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Google Earth Engine revolutionizes land change analysis, as it provides possibilities to analyse 

satellite imagery and other datasets via cloud-computing technology and server-sided 

JavaScript programming. This saves resources on the client’s side and can lead to vast 

improvements of results for scientists of all levels. The application of this new tool was tested 

on the land use classification of the Azov Sea basin and its subbasins. In total, a time series of 

seven land use maps from 1985 to 2015 was created, and urbanization and deforestation trends 

were detected. Additionally, the change within the region of the Donbas conflict was analysed 

from 2013 to 2017 to track the effect of the war on the environment. Subsequently, the collapse 

of the Soviet Union as a driver of agricultural land abandonment was discussed and examined. 

NASA population datasets were analysed to determine the relationship between the 

urbanization of the region and population change. Finally, the precipitation deficit of the Upper 

Don catchment basin was calculated with GLDAS data from 1984 to 2010 to draw conclusions 

on the effect of local land use changes on the water balance. It was concluded that the rising 

proportion of built-up land could have caused a rise in the local temperature in interaction with 

climate change, which caused the local evapotranspiration rates to rise and the water level of 

the Tsimlyansk reservoir to decrease. 

The developed geospatial database was made available online on:  

https://syslab.ceu.edu/projects/GEE-land-use-azov-basin  
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1 Introduction 

More than half of all land surface has been permanently altered by humans, more than one-fifth 

of it has been transformed to permanent cropland, and more than one-fourth of all forests have 

been cleared before the start of this millennium (Steffen et al. 2002). 

Changes in the land use and land cover (LULCC) of our planet have been happening since the 

dawn of humanity. However, with an accelerated population and consumption growth in recent 

decades, it has become more important than ever to monitor these changes, and draw 

connections between the social and ecological processes connected to them. LULCC, as they 

are happening now in the present scope and speed, have immense implications for all parts of 

our environment, and have changed the characteristics of our atmosphere, our soils, and 

especially our water. 

Water is, without a doubt, one of the most crucial resources for human life, with rivers and 

lakes being one of the most accessible forms of freshwater. Our water consumption is 

continuously rising, and the agricultural sector is using more than 70% of our world water 

resources today (Cosgrove and Rijsberman 2000). Analysing LULCC in sea and river 

catchment basins that are located within agriculturally active areas, is, therefore, of utmost 

importance to ensure an adequate policy response to the increasing pressure on the planet’s 

freshwater ecosystems. 

Additionally to the already complex question of what changes happen in any given time frame, 

it is, furthermore, essential to discuss what drives these changes, and what impacts LULCC 

have on the water cycle of a catchment basin, and on the streamflow of rivers. Land use must 

be seen as an integral factor in a wider socio-ecological system that cannot easily be divided 

into its parts. Different economic and social influences can lead to changes in specific regions 

around the planet, and their effects can have vast implications for the ecosystem services of a 

watershed that, in return, influence human well-being. 
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The Azov Sea basin makes an especially intriguing case study, as it is among the most populated 

areas in Ukraine and Russia, and is of great agricultural and economic significance to the wider 

region (Lagutov and Lagutov 2012). Politically, this region has gone through a lot of changes 

recently that have influenced the land use – with the fall of the Soviet Union, the agricultural 

system of the area had to change completely from a centrally planned to a market-based 

economy, which has affected the livelihoods of people in the region (Ioffe 2005). Furthermore, 

the Donbas conflict, which has been going on since 2014, has led to the displacement of almost 

two million people (Coman 2017), which affects the land use and therefore, the environment in 

the border region. However, also ecologically, the Azov Sea basin is of interest as it combines 

two major rivers – the Don and the Kuban – and is home to several key species, such as 

sturgeons. 

Most importantly, however, there has been little attempt to monitor the land use changes within 

this research basin. While there are general land use maps that cover the basin, no study has 

been found that observes the changes in small time steps over the whole basin and over large 

time frames, which is necessary to reach a high-quality research base on drivers and impacts of 

LULCC in a watershed. Therefore, this research gap needs to be filled in order to ensure a better 

understanding of the socio-ecological processes within the Azov Sea basin.  

Remote sensing is making LULCC analysis more accessible and efficient. High-quality satellite 

imagery such as the Landsat or Copernicus programs improve research in this area and reveal 

new possibilities. Using online, server-sided computer programming to process satellite 

imagery, as made possible by Google Earth Engine (GEE), therefore saves time and effort on 

the researcher’s side. This means that even researchers with otherwise insufficient resources, 

and especially small computational power, can analyse large areas of land in frequent time 

steps, which makes land change science (LCS) more accessible for low-budget research 

projects such as this one.  With this new technology that is in many ways a game changer, a 
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research project of only a few months and a single researcher, like this one, can monitor LULCC 

over large time frames, with frequent time steps, and high accuracy measures. This could have 

never been possible before; only through open data policies and cloud computing platforms, 

these advances can be made and can help us reach a higher level of knowledge. 

While remote sensing and automated classification technologies are more complex on the inside 

and give us more precise pictures of reality than ever, they are also easier to understand, adjust, 

and apply. Recognising and utilizing the immense possibilities opened up by a combination of 

machine learning, cloud computing, and remote sensing techniques, can help us make more 

informed decision about our future. This is a combination of techniques that is relatively new 

and not well explored, despite its advantages regarding research quality and efficiency.  While 

the techniques are getting more and more developed, there is still a vast potential that we have 

not yet reached and can only get to by collecting case studies of their application (Lary et al. 

2016). Therefore, to bridge the gap between science and decision makers, these cloud 

computing resources must be explored more, and their effectiveness has to be shown with case 

studies like this one. 

To sum up, this study is combining a crucially important research focus with a key case study 

area and a novel and exciting methodology, to hopefully reach conclusions that can add to the 

current state of knowledge in all its facets. The problem as defined above must be viewed from 

several different angles, and therefore, this study will hopefully serve as a model for similar 

studies utilizing Google Earth Engine. The developed datasets will be made available on the 

CEU Environmental Systems Laboratory to enable future projects to benefit from this study 1. 

  

                                                 
1 https://syslab.ceu.edu/projects/GEE-land-use-azov-basin 
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1.1 Research Aim, Questions, and Objectives 

Resulting from the problem definition above, the aim of this research is two-fold: 

On the one hand, the aim of this research is to analyse how land use changed in the Azov Sea 

basin and the subbasins of its two main feeding rivers, the Don and the Kuban, and to discuss 

what drives these changes, and what effects they have on freshwater ecosystem services. 

On the other hand, this study also has an explorative component, as it aims to discover the 

possibilities offered by Google Earth Engine, a free, open-source API that allows users to 

process remote sensing products through cloud computing quickly and easily.  

These aims will, therefore, be split into two main research questions: 

1. How can Google Earth Engine be applied for the analysis of land use changes on a 

watershed scale, and what are some of the limitations? 

2. How have the Azov Sea catchment basin and the defined sub-basins developed in 

recent years, what drives these changes and what impacts do they have on the 

Tsimlyansk reservoir and its ecosystem services?  

To answer the research questions outlined above and achieve the two research aims, several 

objectives need to be adequately addressed: 

1- Analyse land use changes in the Azov Sea Basin and its subbasins with Google Earth 

Engine, and validate the classification results 

2- Calculate the abandonment or addition of agricultural and urban land 

3- Discuss potential drivers, collect and analyse socio-economic datasets of the area and 

relate them to the land use changes observed before 

4- Draw connections between land use in the area, and the provision of freshwater 

ecosystem services in the Tsimlyansk reservoir 
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1.2 Thesis Outline 

This thesis started by explaining its objectives and aims, and the structure of the following pages 

will strongly be linked to the different objectives as explained in this brief Introduction 

(Section 1). 

Thereafter, the thesis will continue with a Literature Review (Section 2) that will discuss the 

guiding theoretical background and assumptions. The theoretical backgrounds discussed are 

land change science, the DPSIR-framework, and the ecosystem services framework, that all 

play a crucial role in the remaining parts of the thesis. Key terms will be defined there as 

according to the literature. 

Afterwards, a review of the Application and Layout of GEE (Section 3) will be explained to 

set the stage for the methodology and main parts of the thesis, and the few case studies that 

already applied GEE and gave it its reputation will be summarized with their strengths and 

weaknesses. Subsequently, the types of classifiers that exist and are applied in land change 

science with GEE will be discussed; this is necessary to understand the choice of the random 

forest classifier in the later chapters and establishes the theoretical knowledge of processes 

that generally lie beyond the control of the user of GEE. 

Following this literature review, Section 4 will summarize the Methodology and Approach 

of the thesis. This section will furthermore explain how the programming skills were acquired, 

and where the utilized data came from. Workflow charts will visualize the process. 

Section 5 then gives a background on the Case Study Area – the Azov Sea basin and its 

characteristics will be reviewed to give a clearer picture of the unique struggles of land use in 

that area. The focus of this section will be the ecosystem and the goods and services it provides, 

as well as the use of the area for agricultural purposes. Furthermore, the political challenges of 

the area and its development will be outlined.  
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After that, the Land Use Classification Process (Section 6) will be described in detail to enable 

the scope and tools of this research to be as comprehensible as possible. In particular, this 

section will include the description of Google Earth Engine and how it was used as a tool, which 

will include screenshots and snippets of code to make the extensive programming that has been 

carried out more understandable and to answer the first research question. Moreover, the 

extraction of data and the accuracy assessment will be discussed; in this section, the results will 

furthermore be compared to other land use maps made with GEE. 

In the following Impacts and Drivers of Land Use Change (Section 7) chapter, the results 

obtained in section 6 will be reviewed in more detail and theories about what changed and why 

will be elaborated to answer the second research question. This chapter contains a lot of data 

that goes beyond the land use change and combines land change science with the DPSIR 

framework, as well as ecosystem services.  

Finally, Conclusions (Section 8) will be drawn and will summarize concisely the answers to 

the research questions. 
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2 Review of Literature and Theoretical Background 

In the following pages, different aspects of this research will be discussed to set the stage for 

the further chapters. With it, guiding underlying theories will be explained and key-terms will 

be defined as according to the literature. It will establish the theoretical and conceptual 

frameworks employed by this thesis, how they have been used in the past, and how they interact 

with one another. Three main frameworks will be applied: 

First, Land change science (LCS) as a framework in itself will be explained. How this study 

developed in the past, how it can be differentiated from other concepts, and what guiding 

assumptions and theories lay beneath it will be the focus. 

Second, the DPSIR framework, developed by the European Environment Agency (EEA), will 

emphasize how land use change can be seen in a bigger picture of its drivers, impacts, and 

potential policy responses and how the existing literature can be applied in this study. 

Third, Ecosystem Goods and Services (EGS) will be defined and discussed briefly, as it is a 

guiding theory behind the assumption that land change has a direct effect on human well-being. 

2.1 Land Change Science 

How humans alter the land cover of our planet has been a priority for scientists for a long time. 

Nevertheless, land change science (LCS) is still developing as its own contemporary discipline 

as land change was exaggerated in its speed and scope in recent decades (Gutman et al. 2004). 

Furthermore, modern satellite and earth observation technologies only relatively recently gave 

us the possibilities necessary to efficiently monitor land use changes over larger scales; since 

this has never been possible before, it revolutionized LCS. Through these new technologies, 

the field became so big so quickly that a full literature review of all studies considering land 

use change is impossible to carry out (Gutman et al. 2004), and despite the extreme importance 

of land use changes for many other issues, such as climate change (Pielke 2005), or biodiversity 

loss (Sala et al. 2000), purely exploratory and methodological studies exceed real case studies 
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of land use change dynamics (Turner 2002). Therefore, the following pages should just give a 

brief overview of the current state of knowledge and serves as a theoretical background. A later 

chapter will review the explicit technology – GEE – used in this paper and the studies that 

applied it thus far.  

Land change is usually split into a change of land use - the social component of how humans 

use a specific land area - and land cover - the natural component of vegetation cover, soil types, 

et cetera. Those two categories influence one another heavily and have mostly been treated 

together to combine the strengths of the different categories into one consistent body of research 

on LULCC (Meyer and Turner 1992). Combining sustainability science (Kates et al. 2001) and 

research concerning global environmental change, LCS seeks to understand the different 

dynamics of human-environment systems (Rindfuss et al. 2004; Turner et al. 2007). 

Correspondingly, the objectives of LCS include both the monitoring and observation of land 

change, as well as the understanding of how human systems change and influence the natural 

component of the land cover (Turner et al. 2007). Additionally, it aims to understand the effects 

LULCC can have on ecosystems and their services that are directly related to human well-being 

(Rindfuss et al. 2004; Turner et al. 2007). Accordingly, it is important to realise that land use 

changes are non-linear and depend on many different factors that are not easily dissectible 

(Lambin and Meyfroidt 2010). As such, LCS is an interdisciplinary field demanding the skills 

of experts from different major research subjects - remote sensing specialists, natural scientists, 

as well as social scientists are needed to fulfill the demands of LCS systems-thinking (Turner 

et al. 2007).  

LCS is happening on all scales; from local and detailed to global and generalized studies, all 

levels can be found and are necessary to compile a comprehensive body of knowledge. Unifying 

them to a consistent knowledge base is difficult; nevertheless, spatial explicitness is essential 

to LCS (Magliocca et al. 2015). 
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A paper by Allan (2004) is criticising studies that focus on the differences in ecological integrity 

over the course of a river basin without keeping in mind factors such as non-linearity, the 

common natural factors (such as underlying bedrock and soil types) that influence both the land 

use and the river ecosystem, and legacy effects. To avoid problems of confusion between cause 

and effect, more studies need to be conducted that look at the temporal change of land use and 

EGS, instead of looking solely at the spatial differences of these two factors in an area (Allan 

2004). 

While LCS shares a lot with other theoretical frameworks, there are significant differences. For 

example, it shares its interdisciplinary focus on socio-ecological systems that cannot be 

analysed separately with political ecology; however, while LCS tends to focus on the outcomes 

of specific processes in either the human or the environmental subsystem, political ecology 

usually retains a strong focus on the human component and the effects of environmental 

changes on societal systems (Turner and Robbins 2008). 

The intersections between economic geography and LCS are also large; both share their interest 

for spatially explicit models on the interactions of the society, economy, and the environment. 

However, economic geographers are more likely to focus on the role of markets and see the 

economy as something inherent to society, as opposed to outside and linked to it. An integration 

of these frameworks is advised to produce research that is more relevant to policymakers and 

that does not see the economy as something separate (Munroe et al. 2014). 

In the past, research about land use changes has often focused on the role of forests and their 

development only, such as the classical work by Mather (1990) that explains the development 

of forests as a U-shaped curve; as a nation develops, its forest-covered lands will first decline 

as it is replaced with industries and built-up land; then eventually, it will increase again with 

further development as society understands the ecosystem’s value (Mather 1990). A study by 

Lambin et al. (2001) expanded this theory and found that endogenous reforestation, meaning 
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an increase in forest area due to the degradation of its ecosystem services which lead to humans 

withdrawing from the space and moving elsewhere, is rare in today’s society. Much more often, 

technological advances drive the further exploitation of forests, and reforestation is often 

exogenous, taking place due to an institutional decision to grant more space to the natural 

environment (Lambin et al. 2001). 

However, forests cannot be seen as a separate entity; the question always needs to entail what 

land use/land cover replaces the forests, and which ones are, on the other hand, replaced by 

forests. In LCS, the natural environment must be seen and pictured as a part of the socio-

ecological system, and not as separately de- or increasing (Barbier et al. 2010). 

A conceptual framework used in land change science that breaks this issue down to a simple 

relationship is, as according to Lambin and Meyfroidt. (2011, 3465): 

  Natural land = Total land – (Agriculture + Settlements) 

While this is, of course, a simplified view of reality, it opens up opportunities to see how the 

system operates and how different land use classes interact with one another. While “natural 

land” and “non-natural land” are, of course, artificial categories that ignore the spectrum of 

human interference that really exists (Lambin and Geist 2008), some kind of differentiation is 

still useful for the analysis of land use effects, even if the cut-off points have to be defined. This 

research paper will therefore mainly take changes among these three classes into consideration 

– Natural land, which is mostly forested area in the research basin, agricultural land (including 

pastures and cropland), and settlements/built-up land, which includes mining areas and 

industries. As a necessary addition, the extent of the basin covered by water will be analysed. 

The guiding assumption for this paper will be, therefore, that whatever part of land is not 

utilized as agricultural or urban/built-up land, will be free for the natural environment and 

ecosystems. 
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The assumption that Lambin and Meyfroidt (2011) take further, is that the amount of 

agricultural land is determined by the population, the consumption per capita, as well as the 

yield per area. This would be true in a global context, however, as this study is spatially explicit 

and focussed on only a limited area within Ukraine and Russia, this assumption is not 

considered suitable, as trade between this area and others is taking place, and its analysis would 

be beyond the scope of this thesis. 

Numerous papers (DeFries and Eshleman 2004; Dwarakish and Ganasri 2015) highlight the 

importance of technological advancements of hydrological modeling and a river’s dependency 

on land use and land cover change. They argue that an interdisciplinary focus is more and more 

important, considering ecological, economic, social and other factors when designing scenarios 

and studies about the future development of land use changes and rivers. Decision makers need 

to be provided with clear information and instructions that are backed-off with suitable data – 

this seemingly impossible task comes closer to reality through the exploration of different 

information technology tools, such as GEE. 

2.2 DPSIR-Framework 

The Driver-Pressure-State-Impact-Response (DPSIR) framework is a well-known conceptual 

framework that aims to identify causal relationships between different processes. It started as 

the Pressure-State-Response (PSR) Framework that was established by the OECD 

(Organisation for Economic Co-Operation and Development)  (OECD 2003) and was then 

developed further by the EEA (European Environment Agency) to include the driving forces 

and impacts as steps within the framework (Smeets and Weterings 1999). The official graph 

showing the relationship between the different frames, as well as examples for each of them, is 

shown in Figure 1 (EEA 2016). 
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These variables have been defined in various ways in the past when it comes to the role of 

LULCC. In some studies, land use change itself is seen as a driving force that  e.g. leads to the 

release of pollutants (pressure) that then leads to a change in water quality (state) and 

furthermore to a change in the river quality (impact) (Benini et al. 2010). Others see LULCC 

as a pressure; then, the drivers would be migration or the transition of markets, the state can be 

defined as the change in the stock of a certain land cover, and impacts take the form of resulting 

changes in the water quality or streamflow (impact) (Potschin 2009). 

The way Potschin (2009) defines the different stages adds the element of the human behaviour 

at the beginning of the process instead of just as a “Response”; this is more suitable for the 

further analysis of this research and will, therefore, be the applied framework hereafter. With 

LULCC being, in fact, a pressure, socio-economic drivers that lead to this pressure will be 

explained explicitly. The state will then be the absolute amount of each land use type at each 

point of time, and the impacts will especially be focussed on the ecosystem goods and services 

of the water bodies and the river system in the basin’s area and the Tsimlyansk reservoir. As 

policy responses have not yet taken place with respect to any of the mentioned aspects, this 

variable cannot be considered fully. 

Since its development, the framework has been applied frequently for papers that aim to 

produce knowledge targeted at policy and decision makers. It wants to show how policy 

Figure 1: The DPSIR-Framework. Source: EEA 2016 
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responses can influence every single step of the way of environmental degradation and therefore 

aims to bridge the science-policy gap (Tscherning et al. 2012). 

A recent review of existing scientific papers applying the DPSIR framework showed that while 

most studies mention it only in theory, it has indeed been successfully applied to make outcomes 

more understandable for professionals of different domains, and therefore has the potential to 

support decision making. Furthermore, it provides an ideal environment for interdisciplinary 

analysis of complex issues that are neither purely manifested in the natural world, nor purely in 

human societies (Tscherning et al. 2012). 

Several papers have tried to embed the DPSIR framework within different other frameworks to 

establish a more holistic view of the processes. One example of this is how Hägerstrand’s 

system of nested domains (Hägerstrand 2001) can bring the appropriate different levels of scale 

to the DPSIR framework that is otherwise not dealing with scale and can, therefore, be 

problematic in that area (Ness et al. 2010). This view, however, will not be established, as the 

“Responses” to land use change is not the focus of this paper, and the different levels of political 

scale are therefore less relevant to this research. 

Several studies have furthermore treated changes of Ecosystem Services, as defined in the next 

chapter, as a potential impact within the DPSIR framework, which helps with relating social 

and ecological factors to one another (Xue et al. 2015). 

Although helpful, the DPSIR framework has also been criticized in the literature for its 

discursive biases. The applicant can easily draw boundaries and exclude any social impacts or 

states; it is, therefore, important to consider as many aspects as possible and elaborate on any 

boundaries that have been drawn, to avoid excluding relevant parts of the socio-ecological 

system (Svarstad et al. 2008). 

This thesis explicitly draws quite narrow boundaries due to time and resource constraints. The 

focus is going to be land use/land cover changes as a pressure that influences the state of land 
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covered by different types of vegetation or built-up material. The secondary focus is then going 

to be what drove these changes from a socio-economic point of view, and what impacts they 

have on the water cycle of the area and the provision of freshwater ecosystem services. Policy 

responses have not really taken place yet, and the scope of this research is too narrow to give 

recommendations; therefore, responses will not be analysed further. 

2.3 Ecosystem Services 

As mentioned before, the analysis of land use changes on the scale of a sea catchment basin is 

of importance due to the ecosystem services of the river system, the sea, and not least – the 

reservoir. Land use change is, therefore, directly linked to the well-being of humans, and can 

act as a “Pressure” on the “State” of the environment, as discussed above. For this purpose, the 

term Ecosystem Services needs to be defined.  

The Millennium Ecosystem Assessment (MEA) defines ecosystem services as “the benefits 

provided to people, both directly and indirectly, by ecosystems and biodiversity” (Aylward et 

al. 2005, 216). This changed the way we see ecosystems forever by directly linking the well-

being of an ecosystem to the immense benefits it can bring to humanity and our societies (Daily 

and Matson 2008). Nevertheless, the pressure on river ecosystems might have never been 

greater than now (Aylward et al. 2005). Ecosystem goods and services (EGS) of rivers are 

present in all four categories. Some examples for each of the four categories are (as according 

to Aylward et al. 2005, 216): 

 Provisioning services: drinking water, power generation, transport, fish and other 

aquatic organisms for food 

 Regulatory services: natural water filtration and treatment, disaster and flood prevention 

 Cultural services: tourism, recreational activities 

 Supporting services: nutrient cycling, ecosystem resilience 
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All of these services can only be provided by a watershed if the water quality is good enough, 

and if there is enough water at each point of storage or flow. A drying out reservoir can no 

longer be used efficiently for power generation, and with collapsing fish populations, humans 

can no longer gain benefits from them for food and leisure. Land use in that sense influences 

freshwater ecosystem services, as it can reduce or increase the evapotranspiration rates, the 

local temperature, and the amount of runoff (Dwarakish and Ganasri 2015; DeFries and 

Eshleman 2004). All of this will be discussed in greater detail in later chapters. 

However, for this research, it is not only important to ask what ecosystem services the river 

system and the sea itself can bring, but also how the supporting ecosystem services gained from 

natural vegetation, especially forests, that are present in the river catchment basin, can help to 

sustain the river’s balanced ecosystem and regulate the water quality and flow (Guo et al. 2000). 

Ecosystems and their services can therefore not be viewed separately, but the linkages and 

interactions between them must also be taken into account.  

Defining the benefits our society can, directly and indirectly, gain from ecosystems, as per 

definition of EGS, can help us comprehend the importance of protecting them on a societal 

level. Furthermore, it is a framework for evaluating and assessing the ecosystem’s status 

quantitatively, which helps to make interesting comparisons between different management 

practices to ensure the best long-term results. However, this should be handled with care as 

ecosystems are complex and diffuse; they are influenced by many different causal relationships 

that are not yet fully understood. Destroying an ecosystem beyond a certain point can, therefore, 

lead to the point of no return, or tipping point, that damages the system of biotic and abiotic 

components permanently (Huang et al. 2015;  Dai et al. 2012;  Veraart et al. 2012). 

Linking human behaviour to a change in the value of ecosystem services is, therefore, a difficult 

yet important task. Figure 2 shows an example of visualizing the cause-and-effect relationship 

between “Action” (e.g. land use changes) and this change in the value of a river ecosystem. 
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Figure 2: Linking Actions (including, but not limited to LULCC) to a change in the value of ecosystem goods and 

services of a river system Source: Keeler et al. 2012, 1862 

What the graph does not show, however, are the concrete factors that determine the relationship 

between LULCC and a change in water flow; it just assumes that this link exists without further 

collaborating the ways of influence. While plenty of studies aim to show the relationship 

between land use in a watershed and the river’s water quality and flow, there is still only limited 

understanding in terms of future development and adequate management practices and policy 

recommendations (Allan 2004), which is why the combination of the DPSIR framework with 

ecosystem goods and services is a welcome tool as discussed above (Potschin 2009). 

2.4 Conclusion of the Literature Review 

To sum up, LCS is an emerging, interdisciplinary subject that requires its scholars to think of 

systems as a whole that are made up of human-made and natural components that interact with 

one another. It requires spatial explicitness and time-series analyses rather than merely the 

comparison of different areas. While the possible levels of detail are uncountable, 

distinguishing natural, agricultural and built-up land needs to suffice for the purposes of this 

study, and the relationship between those categories needs to be examined. 
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The DPSIR-Framework further embeds land change in a wider array of driving forces, impacts 

and responses. LULCC can then be seen as pressures that are driven by societal processes and 

factors, and that influence, on the other hand, the provision of freshwater ecosystem services 

due to their effect on water quality and yield at different points of the water cycle. The 

combination of these three frameworks makes this study better embedded in the current level 

of knowledge and aims to make it as comprehensible as possible for decision-makers and 

scholars from different disciplines. 
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3 Review of Google Earth Engine 

After the discussion of the theories above, the possibilities of remote sensing technology for 

water management and land use classification schemes need to be discussed in greater detail. 

This includes the importance of using different technologies and the novel possibilities to 

achieve more precise results due to Google Earth Engine. The few already existing case studies 

utilizing Google Earth Engine will be reviewed to emphasize the importance and opportunities 

offered by this new tool, and how this research study adds to the current knowledge. 

Remote sensing is probably the easiest way to observe LULCC on large scales and has been 

applied and developed widely in recent years. Through remote earth observations, data can be 

collected over large time frames as well as large spatial areas, and it is nowadays used for plenty 

of research questions. Hereby, not only the remote sensing technology is important as it 

provides us with the necessary images for land use classifications; also, automated classifiers 

are needed to relieve human researchers from the burden of classifying maps by hand, which 

saves endless time and resources. The following chapters will first discuss the software used in 

this study, how it is setup and how it has been utilized in the past, and then discuss modern 

classification technologies. This analysis gives valuable insights into the automation of the 

classification process and justifies the choice of the classifier in this thesis. 

3.1 GEE Application and Case Studies 

Modern technology is evolving day by day and is expanding our possibilities to deal with 

pressing environmental issues quicker and more efficiently. However, in order to be able to 

further develop the various software available, more research and real-life applications of the 

tools are necessary to validate their functionality and reveal issues that can then be resolved. 

Google Earth Engine (GEE) is offering scientists and researchers the possibility to utilize 

JavaScript programming in a web-browser based online interface to efficiently analyse satellite 

images and vector data from a variety of sources, mostly available on the global scale, with 
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high computational power. By utilizing cloud computing and an intrinsically parallel process, 

even scientists without the resources to do offline satellite imagery processing can take 

advantage of remote sensing technologies due to GEE (Moore and Hansen 2011). GEE 

combines all Landsat collections with over two million images, as well as Sentinel, MODIS, 

GlobCover, and other data, and through the online processing system, the user does not have to 

have access to large computational power, and there is no need to download large amounts of 

data. This opens up possibilities to lay researchers or students that often lack the adequate 

resources for offline processing of large areas of high-quality satellite imagery (Gorelick et al. 

2017). There is also the possibility to use GEE with Python, however, as this will not be the 

approach of this case study, that possibility will not be discussed in detail. 

The layout and setup of Earth Engine are pictured in Figure 3 and will briefly be explained here. 

At the top, GEE established a search bar where users can easily find the different data 

collections available via keywords, but also the geographic location of different places can be 

found.  

On the left side, users can find their own as well as example Scripts, the Docs made available 

by GEE, and Assets users can upload and use later in their scripts. 

In the centre, the main script area is located. How the code actually looks and works will be 

explained in more detail in the main area of this thesis via screenshots and code snippets. 

On the right, there is space for three different outputs – the “Inspector” tab shows the band 

values of all images embedded to the Map at the bottom at exactly the location the cursor is 

placed. The “Console” shows any output the user called for with “print(…)” and can visualize 

results, tables or metadata of images and image collections this way. At “Tasks”, tables and 

images that were called by “Export.toDrive()”, “Export.toAsset()” or other export destinations 

will be shown and can be run on demand. This is useful for larger computations, as the Console 
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has a maximum computation time of five minutes, while Tasks have an unlimited computation 

time (Gorelick et al. 2017). 

Finally, the Map at the bottom can be used to visualize results, draw polygons, or set geographic 

boundaries and locations. 

 

Figure 3: Set up and user interface of Google Earth Engine. Source: Google 2018a. 

GEE is based on, and functions best with server-sided demands, as client-side methods often 

lead to timeouts, or result in wrong information. For this purpose, GEE has defined several 

objects, all found in the “Docs” tab, that start with ee. and are exclusively managed by the 

server. These objects can be images, image collections, feature collections, arrays, or others. If 

an object has to be managed on the client side, this can only be done by calling .getInfo, which 

should be avoided as the benefits of lazy server-side computing cannot be held up with this 

method, and other parts of the code need to be blocked temporarily until the client-sided 

computation is over (Gorelick et al. 2017). GEE utilizes lazy programming on its servers, thus 

it will not compute anything that is not necessary for an output in either the “Console”, the 

“Map”, or the “Tasks” (Navarro 2017). This increases computational speed and prevents the 

premature using up of the quota of concurrent requests for computation each user has. Due to 

the focus on server-sided computation and “objects”, using GEE is quite different from 
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traditional JavaScript programming, which increases the time it takes to fully comprehend 

GEE’s analysis methods. However, after that initial period, GEE is a powerful tool and a true 

game changer. 

Earth Engine is becoming more and more popular among researchers all around the world as 

more people recognise the benefits and wide array of applications of this tool. A few of the case 

studies that illustrate the possibilities of GEE will be summarized here. 

One example of a global scale case study implemented with Earth Engine and the Copernicus 

Programme is the Global Surface Water Explorer, carried out by the European Commission 

Joint Research Center (EC JRC) (Pekel et al. 2016). This project monitors the extent of surface 

water on land, as well as its seasonality and changes over time, using Landsat 5, 7 and 8 imagery 

from 1984 until now. This analysis adds to the current knowledge on water seasonality, water 

stress and droughts on this planet. Where water is, and at what time of the year it will be 

available, is clearer and more understandable than ever before, which helps planning for 

sustainable development (Pekel et al. 2016). 

Another prominent example using GEE is the Global Forest Watch (GFW) implemented by the 

World Resources Institute (WRI) in partnership with Google, Esri, and several other 

organisations and companies (Hansen et al. 2013). It aims to collect data about forest loss, forest 

gain and general canopy health and extend at a 30 meters resolution on a global scale. The GFW 

also uses Landsat 7 data just like the EC JRC, however, the temporal extent of the research is 

significantly smaller with initial data collection only reaching from 2000 to 2012, and in spite 

of new data being incorporated daily to keep the database up-to-date, historical data is not 

added. With this data, several publications were made possible that focus on key regions such 

as tropical rainforests, as well as broader analyses of drivers or impacts of deforestation 

(Goldman et al. 2015; Weisse et al. 2017). 
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A research team from different universities, among them Yale University and the University of 

Florida, has collaborated with the Google Earth Engine developers team to develop the “Map 

of Life”, as it is called. This map is supposed to show the places on earth with the highest 

biodiversity, and specifically, where certain endangered species have their habitats. This way, 

conservation efforts can be focussed better on the most important regions for the protection of 

specific species (Jetz et al. 2015). 

In another study by the UC San Francisco, Google Earth Engine is utilized to map areas that 

have a high risk of future malaria outbreaks. In a later stage of this program, health professionals 

in risk areas will be able to add data about outbreaks themselves to feed an online database that 

will help to predict where the efforts to limit malaria should be concentrated to stop the 

spreading of the disease in due time. However, this project is still under development (Kurtzman 

2014). 

Just recently, a team of eight researchers from the U.S. Geological Survey (USGS) applied GEE 

to analyse and map cropland on the whole African continent from 2003 to 2014, collecting 

training data by citizen science, using a mobile phone application open to the civil society where 

people could enter different crop data. Thereby, they collected almost 3000 training samples. 

This took immense resources and while the results are impressive, a kappa value of around 0.72 

means that the case study is still underdeveloped and in need of improvement (Xiong et al. 

2017). 

To sum up, Earth Engine is a powerful tool that is worth developing further. Despite the small 

number of case studies at the moment, it is getting more popular and can be expected to expand 

in the upcoming years. Utilizing it for a not yet explored, important case study such as the Azov 

Sea Basin, could make this research a model for further similar analysis. The fact that no images 

or Landsat tiles have to be actively downloaded for the application of GEE only made a research 

area of this spatial  (a whole sea catchment basin) and temporal (thirty years of analysis in five 
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year steps) possible without a huge computational power. A land use analysis project has most 

likely not been performed on this scale by a single researcher within a few months. 

3.2 GEE Land Use Classifiers 

To classify basically any group of data, several different machine learning techniques can be 

used and should be considered. With artificial intelligence on the rise and technology more 

user-friendly, accessible and available than ever before, researchers of environmental sciences 

should recognise the immense possibilities of technology in order to improve our knowledge 

on the environment and test the use of machine learning on land use problems. This section is 

therefore also meant as a glossary of short descriptions of different techniques that must be 

considered, and will discuss the application of the different techniques in land use classification. 

Without a doubt, more case studies are needed to establish a good state-of-the-art methodology 

for land use change problems. 

Beforehand, it is important to note that this chapter will only discuss pixel-based classification 

methods. While these pure pixel-based systems have encountered some headwind in the past 

few years, as more and more studies prefer using object-based or knowledge- and expert-based 

classification schemes, it is still the most widely used method (Aitkenhead and Aalders 2011; 

Chen et al. 2015; Richards and Jia 2013). Moreover, while these different schemes can be 

extremely useful and lead to a better accuracy and the ability to classify more types of classes, 

this goes beyond the scope of this research, and will therefore be left out for now. 

To begin with, the different pixel-based categories of supervised and unsupervised 

classification must be made clear. Unsupervised classification clusters the available data points 

without knowing any labels yet. After the clustering, the user has to choose meaningful labels 

for the classes divided by the algorithm. The user can usually only determine the number of 

classes, but not much else (Lu and Weng 2007).  
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Supervised classification, on the other hand, needs a set of training data that has a set label 

attached by the producer of the map. The computer then tries to understand the differences 

between the categories (classes) in its different dimensions (when using remote sensing data, 

the bands are the dimensions) and therefore comes up with rules on how to classify a new point 

not contained in the training data (Lu and Weng 2007). This study will use exclusively 

supervised classification. Within the category of supervised classification, there are several 

different possible classification methods that are here discussed further. 

To understand the different classifiers, the data needs to be imagined as a multi-dimensional 

field, where each dimension is a band of the satellite image, and each data point is a pixel in the 

image. The bands of the different Landsat satellites can be seen in Figure 4, as those will be the 

datasets used for the rest of the study. 

Depending on how much energy of a specific wavelength (corresponding to the bands, or 

dimensions) the pixel radiated, the data point is put on a specific position within the field 

(Richards and Jia 2013). To illustrate this, Figure 5 shows the theoretical scenario of only those 

two dimensions (bands) that are used for calculating the Normalized Difference Vegetation 

Index (NDVI), a well-known and widely-used parameter when detecting vegetation via remote 

sensing. 

Figure 4:  A comparison of different Landsat satellites, their bands, and optimal usage Source: USGS 2015 
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 The NDVI is calculated as: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

with NIR being near infrared (band 4 at Landsat 5 and band 5 at Landsat 8), and RED being 

the visible light perceived as red for the human eye (band 3 at Landsat 5, band 4 at Landsat 

8). This parameter is useful as chlorophyll absorbs red well, while it disperses near infrared; 

therefore, the NDVI of green, chlorophyll-rich plants is high (around 0.8), while it is lower 

for unhealthy plants, and even lower for water or built-up land (usually around 0.2 to 0) 

(Pettorelli et al. 2005). Pixels containing vegetation and pixels containing waterbodies are, 

therefore, vastly different in their NIR and RED spectra and make a good example for 

explaining the use of classifiers in land change science. 

 

Figure 5: Dataset visualization. Classifying water and vegetation with the dimensions red and NIR 

A machine learning classification system now takes all different dimensions into account (more 

than two in almost all cases) and tries to establish rules on how to put a new input data point in 

a category. The difference between the classifiers is how they try to establish those rules. 
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The simplest classifier is just a linear discriminant analysis (Figure 6). It tries out different lines 

drawn through the area and chooses the one that misclassifies the least training data, thus having 

the highest redistribution accuracy. New incoming data will only be classified as according to 

the established line (Lange 2016). 

Support Vector Machines (SVM) are one of the popular advancements to the mere “drawing of 

a line”. By establishing a kernel, a linear graph can be transformed to a polynomial line going 

through the graph and can therefore potentially accommodate outliers better (Lange 2016). 

Furthermore, an SVM usually has a “grey area”, as it is often a so-called “soft” classification 

method that allows new points to be put in between classes instead of forcing them into one 

class as a “hard” classifier does (Richards and Jia 2013). Even if used as a hard classifier, it 

improves the decision graph by drawing it where the distance to all training data points is 

largest, allowing for the biggest probability of classifying newcomers correctly (Lange 2016). 

Decision tree classifiers function in a similar way. Instead of drawing a single line, it always 

only cuts the area (or part of it) in two in the most optimal way, until most training data is 

classified correctly (Lange 2016). “Optimal” here means that it cuts off the most wrongly 

classified features possible in that move. This finally leads to a decision tree, where based on 

the specific value in one band, an element is either classified if that decision is distinctive, or 

moved further down to try out other criteria. This way, it is easy to visualize which bands have 
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Figure 6: Visualization of a Linear Classifier. The new point in red will be classified as 

vegetation in this fictional scenario 
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the most influence on the classification, and in the case of restricted computational power, only 

the most important bands can be taken into account (Lange 2016). 

A decision forest is a classifier combining several decision trees that have been built with only 

parts of the training dataset, which means that every single decision tree uses only parts of the 

available training pixels as well as only some of the available bands/dimensions. The 

classification is then chosen by a majority vote function for discretely numbered classification. 

A “Random Forest” classifier brings a random element to the decision forest which has been 

shown to reduce bias. It draws from the pool of training data pixels and returns the drawn 

element each time. To reduce even more bias, every decision tree only uses parts of the bands 

for its final decision, and randomly cuts out other bands. The random element is especially 

useful to avoid bias if the training data is not chosen as random points equally distributed over 

the area but just chosen strategically by the researcher in order to save resources and time 

(Lange 2016; Richards and Jia 2013). It is therefore well suited for a time-constrained project 

with limited resources, such as this one.  

The k-nearest neighbour (kNN) classifier (Figure 7) is not drawing a line like SVM, decision 

trees, or linear discriminant analysis classifiers. It considers simply, for every new data point, 

the class of the nearest neighbour and classifies it this way. It can be improved by considering 

not one, but two or more (specified as “k”) nearest neighbours and choosing the class by a 

majority vote solution. KNN is a lazy learner, meaning that while the set-up of the model is 

extremely fast, the actual classification of the data takes more time as compared to other 

classifiers (Lange 2016). 
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The Naïve Baye’s law is another popular and simple tool. First, it calculates the probabilities 

of a point in a specific class having a specific feature. For example, the probability of a training 

pixel that is vegetation having a radiation value of above 0.25 in the Near infra-red wavelength, 

is in the above example 100%, as all training data points fulfill that criterion. The probability 

of it having a value of under 0.09 in the red spectrum is also 100%. Therefore, when classifying 

new data, the Maximum Likelihood Classifier (MLC) utilizing the Naïve Bayes algorithm will 

sum up and normalize the probabilities of each dimension of a pixel for each class, and select 

the class with the highest overall matching probability. For the maximum likelihood 

classification techniques, the number of training points being 10 to 100 times the number of 

bands in the dataset should be enough.  (Richards and Jia 2013) This means that when 

considering 8 bands (dimensions) a minimum of 80 and a maximum of 800 pixels per class 

should be trained. 

Just like random forests explained above, artificial neural networks (ANN) are combining 

different classifiers. Information is transmitted from each of the nodes to the next layer, with a 

unique weight and bias that is randomly chosen each time (Nielsen 2015). By combining the 

results of different classifiers and weighting them differently, this classifier can have very high 

accuracy rates (Nielsen 2015); however, it’s training as well as classification time and power 
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Figure 7: Visualization of the kNN classifier. The nearest neighbours all being vegetation, it 

will be classified as such with almost any k. 
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need are very high, which is why it is unsuitable for a study of this scale. As of now, support 

vector machines (SVM) and artificial neural networks are the most explored techniques 

regarding the intersection of remote sensing and machine learning (Lary et al. 2016). 

In conclusion, the variety of classifiers out there is large and for every case study, the ideal 

classifier needs to be detected. While all of them achieve good results with large enough training 

data sets, especially random forests, and other combined classifiers that decide by a majority 

vote tend to avoid biases that single classifiers might have towards specific classes. If training 

data is limited and not exactly equally distributed over the whole area, a random element should 

be introduced in the classification process, which is why the random forest classifier will be the 

classifier of choice for this study. As it is not a lazy learner, the overall classification process 

takes place faster, and the possibility to look at the different decision trees and the importance 

of the branches facilitates more transparency than other classifiers. 
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4 Methods and Approach 

The main part of this thesis, especially Chapter 6 and 7, consists of several parts and smaller 

steps; the chronology and relationship of the workflow are pictured in Figure 8. 

 

Figure 8: Workflow chart of the whole methodology 

4.1 Land Use Mapping 

First, the land use had to be analysed which is mainly explained in Chapter 6. For this purpose, 

skills in JavaScript programming and especially on the unique server-sided approach Google 

Earth Engine takes had to be acquired. This could mainly be achieved by the extensive Google 

Developer’s Guide, online tutorials, and recordings of lectures of Google Earth Engine 

workshops that took place in the past (Google 2018b). All of these resources are freely available 

online and provided a good basis for this new skill. The workflow that followed can be seen in 

Figure 9. 

After the basic skills were acquired, Google Earth Engine was utilized with a trial-and-error 

approach to analyse the longest possible time frame in as much detail as possible. It was 

concluded that Landsat 5 (for the years 1984 – 2011) and Landsat 8 (2013 – 2017) images are 

the best options for the case study at hand; this way, seven land use maps, representative for the 

years 1985, 1990, 1995, 2000, 2005, 2010 and 2015 were acquired that were each fed by data 

from August of three consecutive years (e.g. 1984, 1985 and 1986 for the data point labeled as 

“1985”). The training data was collected through a visual interpretation by the researcher of 

strategically selected data points of the Landsat images in the band combination 6-5-4 (Landsat 

8) and 5-4-3 (Landsat 5), respectively. The visualization of the NDVI was used for decisions 

regarding vegetation. Hereby, it was necessary to ensure that the data point were well 
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distributed over the whole case study area. Subsequently, a random forest classifier was used 

for the supervised classification process which has been explained in the literature review, as 

the user has no influence on the process behind it. The accuracy was evaluated with separate 

validation data; training data was added bit by bit until the overall accuracy, the kappa value, 

as well as user’s and producer’s accuracy for each class, seemed appropriate for the purposes 

of this study. The cut-off values for appropriate accuracy were set to a kappa value and an 

overall accuracy value of minimum 90%, and user’s and producer’s accuracy of minimum 70% 

for each individual class. As a final step, the areas of the whole Azov Sea basin, as well as 

different sub-parts of the basin were calculated, to establish where in the basin change was 

happening. 

4.2 Interpretation of Land Use Data 

Additionally to the seven land use maps explained above, maps for the buffer region around the 

border of the Donbas conflict were created for the years 2013 to 2017, always taking the median 

Figure 9: Workflow of the Land Use Classification Process with Google Earth Engine 
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of all cloudless pixels available from May to September. The polygon of the buffer area was 

created with ArcGIS by geo-referencing and digitalizing the border of the war region by The 

Economist (2016), visible later in Chapter 6.3 in Figure 40. The digitized border was used to 

create a buffer zone of 20 kilometres on each side; the resulting polygon was imported to 

Google Earth Engine and further land change analysis was carried out there. For this part, the 

same training polygons as for the land use map of 2015 were used, minus those polygons 

situated directly within the conflict region to avoid confusion and false classifications. 

To validate the overall results, the created land use maps of the whole Azov Sea basin were 

compared to data from the case studies mentioned above, namely the Global Forest Watch 

(Hansen et al. 2013), and the EC JRC Surface Water study (Pekel et al. 2016). This was done 

by calculating the areas of agreement and disagreement between the different datasets. This 

comparison gives further credit and validity to the results obtained in this study. 

Furthermore, to interpret land use changes, the change in agricultural land was calculated in 

order to see which parts have always, never, or at certain points in time been agriculturally used. 

This is important as agriculture is the primary land use in the sea basin, and land abandonment 

is a well-known issue in the states of the former Soviet Union. 

4.3 Collection and Analysis of Socio-Economic Data 

After the finalization of the land use analysis, socio-economic data was collected to analyse the 

driving forces and impacts of the land use changes.  

First, crop yield data acquired and made available by the EnviroGRIDS project (EnviroGRIDS 

2012) for the yield of the Russian part of the basin has been analysed statistically with R to 

detect changes. As this was not a spatially explicit dataset, it was not fed to Google Earth 

Engine, but was only divided into the four subbasins. 

Also, spatially explicit population data as acquired by the Center for International Earth Science 

Information Network (CIESIN) and made available from the NASA Socioeconomic Data and 
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Applications Center (SEDAC) (CIESIN 2011; CIESIN 2017a; CIESIN 2017b) has been used 

as an asset in GEE to calculate where the transformation to urban land was driven by an actual 

increase of population, versus where it has been driven by industrialisation and built-up without 

a population change. 

Finally, to determine the effects of LULCC in the basin on the water cycle, data from NASA’s 

Global Land Data Assimilation System (Rodell et al. 2004) has been used to calculate the area-

average of different hydrological parameters of the Upper Don basin. While this data is 

available in Google Earth Engine, the author decided to use NASA’s Giovanni application to 

download data and analyse it offline, as GEE’s user memory limit was otherwise always 

exceeded. Nevertheless, the data quality and spatial and temporal resolution are the same, and 

the data has been visualized and verified with GEE. Among the analysed parameters are 

specifically evapotranspiration, precipitation, as well as temperature. This was, in further 

consequence, used to calculate the precipitation deficit and therefore, draw conclusions 

regarding the changing water level of the Tsimlyansk reservoir. Water level data was taken 

from the Theia Land Data Center (Theia Land 2018) that estimates their data through remote 

sensing. From the water level data, conclusions on the state of the ecosystem services of the 

Tsimlyansk reservoir can be drawn. 

All of this data was set into the DPSIR-framework to analyse connections between the socio-

ecological systems as a novel approach to the issue that has not yet been applied to the case 

study region. 

4.4 Limitations 

Limitations for the land use analysis definitely include the lack of training data from external 

sources. As the training data was, therefore, not randomly distributed over the whole case study 

region, biases towards specific land use types or regions are possible. This was addressed by 

choosing a random forest classifier, and by reviewing the maps and the underlying data several 
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times to increase accuracy and minimize errors. Nevertheless, an underlying bias (as with any 

land use classification) cannot be ruled out completely. 

Furthermore, no different crop types or agricultural practices were analysed due to – again – 

limited data availability. Different vegetation types and agricultural practices, such as whether 

crops were rain-fed or irrigated and what the types of fertilizers were used, could potentially 

have a big independent effect that has a different influence than purely the amount of 

agricultural land. However, this type of data was not found despite serious efforts to collect it. 

Therefore, only the differentiation between “crops” and “natural vegetation” could be carried 

out, which still led to suitable results.  

Another limitation is the imperfect Landsat data; several regions were cloudy which leads to 

data gaps and incorrect outcomes. Therefore, not the total area of each type was reviewed, but 

merely the percent-point changes between the land use types. 

A limitation for the non-land use data was, once again, the unsuitable data availability in 

English for the region, and often the unsuitable time frames. For example, crop yield data was 

available for the Russian part of the case study region for 1990 and 2000 only, whereas, for the 

Ukrainian part, only data from 2006 to 2009 was covered. As these four years are of little 

interest to the overall research questions, the yield data only refers to the Russian part of the 

case study area and cannot speak for the whole Azov Sea basin. 

Furthermore, the reliability and quality of water-related data in freshwater ecosystems in Russia 

is limited; several reviews of the publicly available data have shown that almost half of the 

water quality data gathered and analysed in the former USSR and in Russia until the early 2000s 

is not fit for scientific research (Zhulidov et al. 2003); therefore, an analysis of water quality 

could not be carried out. 

In the following chapters, these issues will be addressed further and in greater detail.  
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5 Case Study Area: Azov Sea Basin 

Figure 10 shows the location and extent of the research area – the Azov Sea basin – and 

visualizes the river system in the basin. It furthermore highlights the regional centres in the 

area, which all take advantage of the water the rivers Don and Kuban provide; the most 

important centres here being Kharkiv and Rostov-on-Don, which both have over one million 

inhabitants. Besides that, the location of the border between Ukraine and Russia, the two 

countries sharing the basin and managing the sea by a bilateral agreement, is pictured (Lagutov 

and Lagutov. 2012). 

 

Figure 10: The Azov Sea basin. Source: Lagutov and Lagutov 2012, 9 

In Russia, the Azov Sea basin covers the entire area of the provinces Rostov, Krasnodar Krai, 

Voronezh, Lipetsk, and Adygea, as well as parts of the provinces Karachay-Cherkessia, 

Stavropol Krai, Belgorod, Volgograd, Kursk, Oryol, Tula, Tambov, Penza, and Saratov. In 

Ukraine, parts of the oblasts Luhansk, Kharkiv, Dnipropetrovsk, Donetsk, Zaporizhia, Kherson 

and Crimea are covered. 
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5.1  Ecosystem 

The Azov Sea itself has a unique ecosystem due to its relatively low salinity content of only 

10,9‰ before the major river regulations and the establishment of the Tsimlyansk reservoir, 

and still only 14‰ thereafter. It is relatively shallow and the smallest sea in the world, but well 

supplied with nutrients and sediments by the two dominating feeding rivers, the Don and the 

Kuban. This makes it very favourable for a wide variety of fish and invertebrate species and 

causes its extremely high biological productivity as compared to other seas, which brings with 

it a high value for ecosystem services of all kinds (Lagutov and Lagutov 2012). 

One of the most interesting and crucial fish of the Don are the different sturgeon species. They 

are widely used for their meat and are also of cultural importance, which makes them relevant 

for the provision of EGS (Dubinina and Kozlitina 2000). Due to the large alterations of the river 

flow in recent years, especially through the Tsimlyansk reservoir, spawning grounds for 

sturgeons become rarer, leading to a collapse of parts of the population. The increased salinity 

has furthermore damaged the bream and pikeperch population health and the overall ecosystem 

integrity (Dubinina and Kozlitina 2000). 

In the catchment basin, most of the terrestrial ecosystem belongs to the biomes temperate forests 

and steppe; the steppe-zone of both countries being the most important agricultural area as 

explained below. Only in the South of the basin, in the Kuban catchment area, do mountainous 

forests dominate the natural ecosystems (Dupliak 1994; Trofimov et al. 2014).  

5.2  Agriculture 

The catchment basin of the Don is also known as the “Black Earth” or chernozem region of 

Russia, as it has one of the most fertile soils, making the region one of the most populated in 

both Ukraine and Russia (Rashleigh et al. 2012). However, to make up for unfavourable climate 

conditions in some parts of the catchment basin, the pressure to extract water for irrigation 

purposes is exaggerated (Lagutov and Lagutov 2012). Projects that tried to cultivate rice or 
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cotton – very water-intensive crops – have failed to do so due to unsuitable agricultural practices 

(Rashleigh et al. 2012). While agricultural productivity has decreased dramatically (up to 50%) 

in the 1990s, the water consumption has not decreased equally, and the pressure on the water 

ecosystems continue to increase (Dubinina and Kozlitina 2000). 

All parts of the area use around 80% of the agricultural land for crop production, and the rest 

for hay production or pastures. The main crops produced are corn, sunflower, barley, wheat, 

rye, and vegetables, however, rice is also produced in the catchment basin of the Kuban (Dronin 

and Kirilenko 2012). 

For several crops, the Russian provinces situated in the Azov Sea basin are the top-producers, 

as the data in Figure 11 shows. The data has been extracted from the Russian Federation Grain 

and Feed Annual Report of 2017, published by the FAS/Moscow Staff of the Global 

Agricultural Information Network (Gray 2017), and has then been visualized by the researcher 

with ArcGIS 10.4. 

Figure 11: Top Producers of Corn, Barley and Winter Wheat in the Azov Sea basin and the rest of Russia. Not 

pictured areas of Russia are not considered top producers in any of the categories. Created by the author with 

ArcMap 10.4, Data Source: Gray 2017 
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A “top producer” in each category is defined as a province/oblast that produced over 1000 TMT 

(thousand metric tonnes) of winter wheat, over 500 TMT of barley, or over 400 TMT of corn 

per season. As visualized, several provinces that are within the Azov Sea basin are defined as 

top producers for all three crops, whereas no province outside of the basin can produce all three 

top priority commodities in those quantities. More specific numbers of the exact yield can be 

read in Grey 2017, page 16. 

As grains are the most common crops in the region, it has been a tradition to have a field cropped 

one year while keeping it fallow the next, due to shortages in additional fertilizers and therefore 

the need to keep the natural fertility of the soil high. This has impacts on the overall productivity 

of the region and each farm (Ioffe et al. 2014). 

The population of this region is extremely dependent on the agricultural yields and on the water 

that the two river basins provide, due to the high irrigation needs (Dronin and Kirilenko 2012). 

While this area is often called the “breadbasket” of Russia, its productivity could be much 

higher still with better mechanization, and even the Food and Agricultre Organization (FAO) 

has expressed high hopes in the agricultural intensification of this area (FAO 2010). 

The agricultural market of the case study area experienced incredible changes during the 

timeframe of this study. Russia went through a shift from the USSR, a communist, centrally 

planned economy that heavily relied on state subsidies for fertilizer and machinery production, 

to a market economy with private farm owners and almost no subsidies for farmers. The 

massive drop in state subsidies led to a decrease in crop yields and animal yields at first, 

especially in the early 1990s, which in further consequence led to a lack of investments in 

agriculture and the abandonment of lands (Bobyliev and Ligert 1994). More of this will be 

explained in chapter 7.1. 
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5.3  Industrial and Economic Development 

The economic development in the region in the past century has altered the basin and especially 

the river Don, dramatically. The Tsimlyansk reservoir was built in 1951 to produce energy for 

the region and store water for irrigation purposes; Figure 12 shows the irrevocable change in 

the average discharge that happened as a result. The seasonal changes of the discharge have 

been smoothed drastically, which means that the natural annual spring flooding that occurred 

prior to these changes was widely stopped, which has vast implications for agriculture, fisheries 

and the connected ecosystem goods and services of the basin.  

Furthermore, while the whole basin has only scarcely available water resources (it accounts for 

less than 1% of Russia’s water resources (Lagutov and Lagutov 2012)), the inhabitants of the 

region are vastly dependent on the ecosystem services it provides. Especially in the Don region, 

a lack of other smaller rivers leads to a dependency on freshwater from the Don for municipal 

purposes. The water and food security of the local population is therefore threatened by the 

further economic development of the region leading to surface water pollution and an 

irrevocably altered discharge cycle. A lack of regulatory ecosystem services that filtrate the 

Figure 12: "Changes in the Don River hydrological regime after completion of the Tsimlyansk reservoir” 

Source: Lagutov and Lagutov 2012, 40 
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water naturally can therefore also increase water pollution-related diseases, and the lack of 

seasonal flooding due to river regulations and impoundment disturbs the natural system 

(Lagutov and Lagutov 2012). Nevertheless, not only the big regional centres that heavily 

depend on the Don are of importance; additionally, the traditional Cossack communities living 

dispersed all over the basin in ultimate proximity to the rivers are vastly dependent on the Don 

and the Kuban (Lagutov and Lagutov 2012). 

Also in the light of the political situation of Russia and Ukraine, the past and future development 

of the Azov Sea basin seems worth studying. The Ukrainian crisis in 2014 was a new turning 

point for the region and the Donbas conflict will be discussed later on. 

Beyond that, Russia articulated plans to significantly increase its Black Sea Fleet, and in general 

has mostly security related interests in the region, as opposed to environmental ones (Delanoe 

2014). With a direct connection to the Black Sea, access to the Azov Sea is a high priority for 

both countries. Through the Azov Sea, the Don, the Volga-Don canal and the Volga River, there 

is a direct connection available from Moscow to the Mediterranean Sea and therefore the oceans 

(Sharvak et al. 2012). This route gains traffic every year and is of enormous importance to 

Russia’s economic and security-related interests, which also makes train transportation to the 

ports of the Azov Sea more prevalent (Sharvak et al. 2012).  The planned Eurasia canal that 

was proposed by Kazakhstan in 2007 would connect the Caspian to the Azov and the Black 

Sea, and would go through the Manych valley, a tributary of the Don. This would significantly 

alter the hydrological system once more on an unpredictable scale (Bekturganov et al. 2017). 

Coal is an important export good of the Azov Sea basin, as the Donetsk basin provides coal for 

Ukraine and Russia, and due to its proximity to the ports of the Azov Sea, it is easily 

transportable to Europe and different parts of Russia (Kurakov et al. 2010;  Privalov et al. 

2004). Productivity in the region has been massively reduced and several coal mines have 
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closed down from 1990 until today, however, it continues to be of importance to the energy 

security of the region (Kurakov et al. 2010;  Privalov et al. 2004). 

The rising economic importance of the region for all kinds of sectors (mining, agriculture, 

energy production, oil distraction) has increased the tension for both Ukraine and Russia, and 

Vladimir Putin articulated plans to increase the turnover on Russian ports as compared to 

Ukrainian and other foreign ones (Lagutov and Lagutov 2012). This could potentially go hand 

in hand with further regulations and therefore denaturalisation of the present ecosystem.  

The Tsimlyansk reservoir, which is incredibly important for the above-mentioned 

transportation means, is endangered by increasing siltation processes. The water quality of the 

reservoir is, furthermore, continuously decreasing due to Manganese and other heavy metal 

pollution (Sharvak et al. 2012). 

5.4 Conclusion of the Case Study Area Review 

The combination of a unique ecosystem, the strong dependency of the population on the rivers 

and the sea, and the increasing economic development and important strategic location make 

the Azov Sea basin a remarkable case study that has been widely neglected by the international 

scientific community thus far. The changes that have occurred in the area in the past years have 

been dramatic, and just as much change is suspected to happen there in the future. Plenty of 

research gaps still need to be closed, and no time series analysis that monitors land use changes 

in the basin could be found. Future policy recommendations and management measures for this 

region could potentially be adapted to other similar ecosystems, which makes additional 

research on the Azov Sea basin even more crucial. 
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6 Land Use Classification 

In the following section, the detailed process of land use classifications with Google Earth 

Engine will be discussed. Due to the novelty and unfamiliarity for most researchers of this tool 

to date, a detailed description of the possibilities of this technology, including screenshots of 

the code and outcomes, is important. However, despite showing code snippets in this section to 

give easily comprehensible examples, the full code can be found in Appendix A. 

While the researcher had some previous experience with JavaScript programming, it is still 

important to mention here that this methodology was achieved by trial and error, as resources 

and expertise necessary for the handling of the program had not been available prior. The 

described version here is a description of the final version of the code. The methodology below 

will contain screenshots of the final code to ensure repeatability in future studies and optimal 

transparency of the achieved results, and to answer the first research question. 

6.1 Classification Process with GEE 

After the base map was chosen and visualized, the supervised classification process usually 

takes up several steps (Richards and Jia 2013): 

- Choosing the type and amount of classes; collecting and classifying the training data; 

(both discussed in 6.1.2) 

- Training the classifier; using the classifier to classify all pixels in the research area; 

producing a map that is fully classified; (discussed in 6.1.3) 

-  And assessing the accuracy of the process for user and producer (discussed in 6.1.4). 

The results and their interpretation will finally be discussed thereafter. 

6.1.1  Setting the Stage 

The choice of the right data set has to take several aspects into account; the most important ones 

being availability, accessibility, spatial and temporal resolution, as well as data quality 

(Aitkenhead and Aalders 2011). For a case study of this kind that has a regional scope and 
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limited computational power, a medium spatial scale such as that of Landsat TM/ETM+/OLI is 

optimal and widely used by researchers (Lu and Weng 2007). 

A time frame from 1985 (first Landsat 5 images) to 2015 (most recent available data for five-

year-timesteps) was chosen. Extending the time frame with Landsat 2 MSS images to 40 years, 

from 1975 to 2015, was considered, however, the full collection of Landsat 2 MSS on Google 

Earth Engine is very limited; in Figure 13, all images recorded by Landsat 2 in August of the 

years 1975 to 1985 in the case study region can be seen; it is obvious, that the lack of data 

availability does not allow a bigger time frame. 

The land use images were always chosen for the specific year only for the month of August. 

All cloudy pixels were masked out; of the remaining data points for each pixel the median value 

was chosen for each band, as the reflectance over time is, of course, not normally distributed, 

which makes the median a more significant measurement. As a compromise between cloudless 

images and a narrow time frame, pictures for the August of three consecutive years were chosen 

(e.g. 1984, 1985 and 1986, thereafter labelled as “1985”; 1989, 1990, 1991, labelled as “1990”, 

Figure 13: Available images of Landsat 2 MSS in the case 

study region between 1975 and 1985 
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etc.), and are labelled in future sections only by the middle year the data came from. Only for 

the map standing representative for the year 2000 and being labelled as such, the data of 1998 

has been included as well, as images from this time frame were extremely cloudy in the North-

East of the research area, and the data loss would have been too large to ensure comparability 

between the years. This needs to be considered when interpreting the results. 

For all six maps between 1985 and 2010, the USGS Landsat 5 Surface Reflectance Tier 1 

collection was chosen in Google Earth Engine. The Image Collection ID at which this collection 

can be found in Google Earth Engine is LANDSAT/LT05/C01/T1_SR. The spatial resolution 

for all bands of the Landsat 5 ETM sensor is 30 metres per pixel, and the temporal resolution 

is 16 days. For 2015, due to a lack of data available from Landsat 5, the USGS Landsat 8 

Surface Reflectance Tier 1 was used, available at Earth Engine with the Image Collection ID 

LANDSAT/LC08/C01/T1_SR, and also with a spatial resolution of 30 meters for most bands, 

and a temporal resolution of 16 days. For this year, again, images of August of 2014, 2015 and 

2016 were used to fill up all cloud-covered areas. 

After choosing the image collection, it was filtered by the bounds of the basin, calendar range 

of the years, and the calendar range of August each time, and was sorted by least cloudy 

pictures, as can be seen in Figure 14.  

 

Figure 14: Choosing the image collection, filtering bounds and calendar range 

As a next step, all clouds had to be masked out. This was achieved by filtering the “pixel_qa” 

band the Landsat 5 Surface reflectance Collection 1 Tier 1 in Google Earth Engine already has 

embedded. This band gives a numeric value to each pixel; 1 being clear, 2 being water, 3 cloud 

shadow, 4 snow, 5 clouds, and 6-7 had an additional cloud confidence value split into low, 

medium, and high confidence. This band was then filtered to determine all pixels with the 
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values of 3 (cloud shadow) or 5 (cloud); these pixels were then masked out, and the median of 

each band of the remaining images was taken as the value for the whole map. The code therefor 

is visible in Figure 15. 

 

Figure 15: Masking clouds out of the picture and taking the median of each band for each pixel of the remaining 

images 

Furthermore, the NDVI for each pixel was calculated. Due to the common usage of this 

parameter in vegetation analysis, Google Earth Engine provides its own function named 

.normalizedDifference(), and the formula itself does not have to be calculated. For all images 

using Landsat 5, band 4 and band 3 were used for the NDVI calculation, whereas for Landsat 

8, band 5 and band 4 had to be used, respectively. These bands represent the red and the near-

infrared spectrum, as this normalized difference is normally high for healthy, green vegetation, 

lower for not healthy vegetation, and close to zero for water or built-up land. These differences 

can also be seen later in the mean spectra for the pixels in the different classes, which adds to 

the validation and discussion of the results.  The NDVI was subsequently added as an additional 

band to the image, and the whole mosaic was clipped to the borders of the basin, as seen in 

Figure 16. C
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Figure 16: Calculating and adding the NDVI 

The map was then centred to the area with a zoom level of 5 to ensure the whole basin is visible, 

but not unnecessarily much land around it. For the creation of the training data, mainly a 

visualization of bands 5 (as red), 4 (as green) and 3 (as blue) for Landsat 5 images, normalized 

to a minimum value of 0 and a maximum value of 0.3 was used. For 2015, using Landsat 8, the 

bands 6 (as red), 5 (as green) and 4 (as blue) were visualized, normalised to a minimum value 

of 0 and a maximum value of 0.5. These bands, namely Short-wave Infrared 1, Near Infrared, 

and Red were chosen since they offer the best combination for vegetation analysis (Butler 2013; 

Barsi et al. 2014). With this band combination, healthy vegetation can easily be seen as green, 

whereas water is almost black and bare land is brown/magenta coloured. The resulting map for 

2015 in Google Earth Engine can be seen here in Figure 17 as an example visualization for the 

following methodology steps.  

Additionally, a layer showing only the NDVI was created to compare the NDVI to the greenness 

of the picture, in order to be more certain about the vegetation status. It was normalised to a 

minimum value of 0 being shown as white (e.g. water is easily recognisable), and a value of 0.8 

as red (very green forests). The example visualization for 2015 can be seen in Figure 18. C
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6.1.2  Collecting Training Data 

Level 1 of the classic land use classification system established by the USGS for Landsat 

imagery (Anderson et al. 1983) has been adopted for this study as it was deemed detailed 

enough for the more exploratory purpose of the study and the theoretical framework explained 

in previous chapters. The categories evaluated and classified are: 

- Urban or built-up land, which includes residential, commercial, and industrial land, as 

well as built-up land with transportation infrastructure. Most importantly, in this study, 

it contains open mining fields as well. The development of trade infrastructure and 

industry will be discussed in the later chapters, as this could potentially have immense 

implications on the urban percentage in the region. Figure 19 shows an example of an 

area with large mining fields and areas built up with train tracks and industrial buildings. 

 

Figure 17: The least cloudy pictures for 2015, visualized as 

band combination 6 - 5 - 4 of Landsat 8 
Figure 18: Visualization of the NDVI of the least cloudy 

pictures in 2015, calculated from Landsat 8 images 
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- Agricultural land, which includes cropland, pastures, vineyards, horticulture, and 

others; here, this has been split up in land that was clearly vegetated in August, and land 

that was clearly bare, as this could have effects on the hydrological cycle and the overall 

yield and productivity. Bare land in this sense could mean that it has already been 

harvested at that point of time, or that it was kept fallowed, as this is common cultural 

practice in some provinces of the region. 

- Forest land, which includes deciduous, evergreen, and mixed forest lands, as well as the 

mountainous forest of the Kuban river basin. 

- Water, which includes streams, canals, lakes, reservoirs, and bays. 

Not used, despite present in the report by Anderson et al. (1983), are rangeland, wetlands, 

barren land, tundra, and perennial snow or ice. These categories are not visibly present in the 

case study area and therefore uncalled-for. Categories going beyond this first level classification 

would need significantly more data which is not available and not possible to create due to the 

severe time constraints of this study. 

After choosing those categories, polygons were drawn to create the training data. The land use 

classes and borders of the polygons were identified by zooming far into the 5-4-3 Landsat 5 

map (aka 6-5-4 for the Landsat 8 map) and NDVI maps, and using the expert knowledge of the 

map producer about the region. Earth Engine’s polygon drawing tool was used to set the 

polygons and classify them in one of the five different categories. Most polygons (especially 

Figure 19: Large industrial and mining areas that are included in the category "urban" 
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for water, urban, and natural vegetation) were initially drawn for 2015, and then revised and 

checked for the upcoming years; the classes Vegetated Agriculture and Bare Agriculture, 

however, were completely deleted and created from scratch for each map, as the location of 

vegetated versus bare agricultural land can differ extremely between the years due to crop 

rotation techniques applied in the area, and the different harvesting time frames for the different 

crops.  

While assembling the training data, some issues emerged that will briefly be discussed here. 

A very common problem when assessing the water extent of an area is that the spectral 

reflectance of eutrophication is sometimes more similar to that of natural vegetation than that 

of water. This can lead to cases such as the Landsat image shown in Figure 20 that was 

misclassified as visible in Figure 21. Furthermore, too much of the surrounding areas have been 

classified as “urban”; these screenshots visualize the earlier process of back-and-forth of 

classifying and establishing training data. 

 

Problematic were also clouded areas that made the underlying image invisible. While these are 

partly visible in Figure 20 and Figure 21 at the bank of the river, the following  

Figure 22 shows an even bigger area of clouds that stretch over the whole tile and over a large 

urban area that will consequently leave a data gap.  

Figure 21: Eutrophic water falsely classified as forest 

(dark green patches) 
Figure 20: Eutrophication visible in the Landsat 5 map 
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Figure 22: Data gaps due to cloudiness over an urban and agricultural area 

 

The accumulated area of all training data polygons was calculated to show the comparability 

and draw conclusions about the accuracy measurements; the example of a code for the 

calculation of all “water” polygons can be seen in Figure 23. This was repeated in the exact 

same way for the remaining four classes. 

 

Figure 23: Calculation of amount of pixels and total area of polygons of each class, example code for water 

polygons of 1985. 
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The results of this calculation can be seen in Table 1.  

Table 1: Area of the Training data polygons for each class in km² 

 1985 1990 1995 2000 2005 2010 2015 

Water 946 942 940 942 942 948 942 

Crops 235 125 196 261 182 118 116 

Bare 327 357 213 451 212 159 93 

Urban 58 50 41 54 59 28 51 

Forest 481 131 185 129 503 131 163 

 2 046 1 605 1 575 1 836 1 898 1 384 1 365 

These areas sum up to around 3.4 million pixels, depending on the year. There are plenty of 

reasons for the differences in the area of the polygons, the first and most important one being 

the accuracy of the training results as seen in the later accuracy assessment. As the accuracy for 

some maps, especially the map of 1985 and 2005, was initially very low, more training data 

was created than for the other maps (e.g. 2015), where the accuracy values were acceptable 

from the beginning and a minimum of training data had to be created. This could be explained 

by lower quality images, higher variability of the spectra of these years, or clouds covering up 

small crucial areas, such as regional centres or natural forests, which effectively makes certain 

crucially important polygons useless and requires additional polygons to be drawn. This process 

consisted of several steps back and forth between drawing new polygons and running the script 

again, until the accuracy was satisfactory. 

To avoid just considering the redistribution accuracy of how well the classifier classified the 

pixels it was initially trained with, only 80% of the drawn polygons were used as a training 

partition, and the remaining 20% were saved for the accuracy assessment, as can be seen later. 

6.1.3 Classifying the Map 

After the training data was successfully established, the five different training feature 

collections (one for each class) had to be merged into one new feature collection and 
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transformed into a training data set. At this step, the scale had to be reduced from 30 meters per 

pixel to 300 meters per pixel, as Google Earth Engine would otherwise always time out in the 

later steps. The transformation from five different feature collections to one coherent training 

dataset can be seen in Figure 24. 

 

Figure 24: Merging all five feature collections and transforming them into potential training data 

Then, as already mentioned in the previous step, this dataset was split again randomly into two 

partitions – the first partition, using 80% of the initially classified pixels, will be used as a 

training partition, while the remaining 20% will be saved to build the testing partition for later 

on. For this purpose, a random column was created for each dataset, containing random 

numbers between 0 and 1. By splitting the data set according to its random column at a value 

of 0.8, a random choice of roughly 80% of pixels will be used for training. 

Subsequently, the classifier was trained with this data, and the classification was carried out on 

the whole basin. The “random forest” classifier was chosen as it is considered the state-of-the-

art classifier at the moment by several remote sensing specialists – a more detailed review of 

the different classifiers and their functionalities can be seen in the literature review. To ensure 

optimal comparability and not favour certain classes in certain time frames, the bands 1, 2, 3, 

4, 5 and 7 were used for the training and classification of Landsat 5 images, and the bands 2, 3, 

4, 5, 6 and 7 were used for those of Landsat 8 images. The code for all of the training and 

classification can be seen in Figure 25. 
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Figure 25: Randomly splitting polygons into training and testing datasets, and using the training partition to train 

and classify the Landsat 5 image 

Following the classification, the results can be visualized in the Map of Google Earth Engine. 

The code for the visualization is pictured in Figure 26. 

 

Figure 26: Visualizing the classified land-use map in Google Earth Engine 

The seven classified maps are pictured here in Figure 27 for a quick visual comparison; a higher 

quality and larger image will be available in Appendix B, and the proportional development of 

each of the classes will be discussed in a later chapter.  
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Figure 27: Land use Maps for the years 1985 to 2015 of the Azov Sea Basin 

C
E

U
eT

D
C

ol
le

ct
io

n



55 

 

6.1.4 Accuracy Assessment 

Immediately after the Landsat images have been classified, it is important to assess the accuracy 

– the code for which can be seen in Figure 28, where both the confusion matrix using the testing 

partition, as well as the overall accuracy and the kappa value of the confusion matrices have 

been calculated. To avoid a computation timeout, the confusion matrix had to be transformed 

into a feature collection and further exported as a CSV-file. 

 

Figure 28: Calculation of the different accuracy measures 

For this study, threshold values of minimum 90% overall accuracy and kappa values, and 

minimum 70% user’s and producer’s accuracy for each of the five classes were chosen – if 

these thresholds were not reached initially, more strategically chosen training polygons were 

added to the existing base training data to increase accuracy values. These values are in line 

with what other studies deem relevant results (Goldman et al. 2015; Richards and Jia. 2013). 

The overall accuracy is calculated by dividing the number of correctly classified pixels by the 

sum of all testing pixels. 

The kappa value is a bit more complicated than the overall accuracy, and is therefore, believed 

to reduce bias, as it rules out any agreement that happened by chance (Richards and Jia 2013). 

In words, simplified, it is defined by Richards and Jia (2013, 402) as: 

𝐾 =  
(𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) − (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡)

1 − 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
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As a formula utilizing the elements of a confusion matrix, it can be also expressed as 

𝐾 =  
(𝑁 ∗ 𝑑) − 𝑞

𝑁2 − 𝑞
 

, whereas N is the sum of all elements in the confusion matrix, d is all correctly classified pixels 

(the diagonal of a confusion matrix), and q is the product of the pixels classified for one class 

and the pixels that were supposed to be classified as a said class, summed up over all classes. 

A kappa value of above 0.81 is seen as “Almost perfect” (Richards and Jia 2013, 404) and 

therefore, an extremely good result was achieved by the classification of these maps. 

The following Table 2 of kappa values and overall accuracy values gives an idea of the 

differences between the seven maps; subsequently, the confusion matrices are given to provide 

a more coherent picture of the quality of this land use classification.  

Table 2: Overall validation accuracy and kappa values for all seven land use maps 

Year Validation overall 

accuracy 

Kappa value  

1985 0.95 0.93 

1990 0.95 0.91 

1995 0.95 0.92 

2000 0.96 0.93 

2005 0.95 0.92 

2010 0.97 0.94 

2015 0.95 0.91 

 

Table 3 to Table 9 show the full confusion matrices for each of the seven maps. All values are 

generally satisfactory.  The highest accuracy is always achieved for water with 100% for each 

year except 1985, where the value is still 99%.  

Second in place are usually forest/natural vegetation and bare land, with values over 90% for 

almost all maps. The only exceptions are here the bare land values of 2005 and 2015, which 

still over 85% and over 75%, respectively.  

The categories that are posing the most problems, however, are urban land and cropland. The 
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lowest value present in all matrices is a 70% user’s accuracy for urban areas of 1995; this is 

still, as mentioned, satisfactory for this type of research. These categories are often very close 

together in their average spectra as can be seen in the next chapter, making them easily 

confusable and therefore prone to error in any land use study. 

Table 3: Confusion matrix for 1985 

1985 

 

Water Crops Urban Bare Forest SUM User’s Accuracy 

Water 3169 11 2 1 4 3187 99 

Crops 8 693 20 60 44 825 84 

Urban 5 27 149 19 3 203 73 

Bare 2 63 33 1035 4 1137 91 

Forest 1 44 5 1 1560 1611 97 

SUM 3185 838 209 1116 1615   

Producer’s 

Accuracy 99 83 71 93 97   
 

Table 4: Confusion matrix for 1990 

1990 Water Crops Urban Bare Forest SUM User’s Accuracy 

Water 3090 0 4 5 2 3101 100 

Crops 0 354 22 68 17 461 77 

Urban 2 16 142 10 5 175 81 

Bare 5 85 12 1126 3 1231 91 

Forest 1 22 0 2 439 464 95 

SUM 3098 477 180 1211 466   

Producer’s 

Accuracy 100 74 79 93 94   
 

Table 5: Confusion matrix for 1995 

1995 Water Crops Urban Bare Forest SUM User’s Accuracy 

Water 3041 3 2 2 0 3048 100 

Crops 3 552 29 53 22 659 84 

Urban 1 15 91 9 1 117 78 

Bare 1 57 6 644 2 710 91 

Forest 2 28 2 3 581 616 94 

SUM 3048 655 130 711 606   

Producer’s 

Accuracy 100 84 70 91 96   
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Table 6: Confusion matrix for 2000 

2000 Water Crops Urban Bare Forest SUM User’s Accuracy 

Water 3066 6 3 4 0 3079 100 

Crops 2 774 19 80 11 886 87 

Urban 2 27 150 11 0 190 79 

Bare 0 76 6 1375 0 1457 94 

Forest 0 17 0 1 431 449 96 

SUM 3070 900 178 1471 442   

Producer's 

Accuracy 100 86 84 93 98 

  

 

Table 7: Confusion matrix for 2005 

2005 Water Crops Urban Bare Forest SUM User’s Accuracy 

Water 3129 0 3 1 0 3133 100 

Crops 0 474 34 88 34 630 75 

Urban 4 27 152 18 6 207 73 

Bare 1 69 10 618 2 700 88 

Forest 1 40 6 0 1609 1656 97 

SUM 3135 610 205 725 1651   

Producer’s 

Accuracy 100 78 74 85 97   
 

Table 8: Confusion matrix for 2010 

2010 Water Crops Urban Bare Forest SUM User's Accuracy 

Water 3123 1 2 0 0 3126 100 

Crops 2 425 17 17 18 479 89 

Urban 2 24 167 15 2 210 80 

Bare 0 24 20 516 1 561 92 

Forest 1 32 0 0 841 874 96 

SUM 3128 506 206 548 862   

Producer’s 

Accuracy 100 84 81 94 98   

 

Table 9: Confusion matrix for 2015 

2015 Water Crops Urban Bare Forest SUM User's Accuracy 

Water 3133 1 3 0 0 3137 100 

Crops 0 312 6 60 13 391 80 

Urban 2 12 158 10 0 182 87 

Bare 0 74 7 249 0 330 75 

Forest 2 16 0 1 510 529 96 

SUM 3137 415 174 320 523   

Producer’s 

Accuracy 100 75 91 78 98  
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6.1.5 Mean Spectra 

With Google Earth Engine, it is fairly easy to visualize the mean reflectance of each of the 

classes in each of the bands. First, the computation and code thereof are explained in Figure 29. 

 

Figure 29: Calculations of mean spectra for each class within the Azov Sea basin 

The mean spectra give an idea of why the accuracy between certain classes might be low; the 

following Figure 30 shows an example - the other 6 mean spectra graphs can be seen in 

Appendix C. Here it is visible how often, vegetated agricultural land and built up land have a 

similar reflectance over all bands, which explains the relatively high number of pixels confused 

between those two classes as shown in Chapter 6.1.4. The utter utility of the NDVI can, 

therefore, be easily explained – the most significant difference between the urban land and 

cropland spectra is that crops show a slightly lower value in band 3 (red), and a slightly higher 

value in band 4 (near infrared). Furthermore, it is visible that pixels in the class “natural 
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vegetation/forest” have the highest reflectance in band 4, and the lowest in band 3.  

This visualization can also be useful when deciding which bands to use for the classification 

process; in this case, since all classes have almost the same reflectance value in band 6 

(temperature), this band can safely be ignored in the classification process, saving 

computational power and time. However, it is also evident why all six other available bands are 

important for classification, as the differences between the classes are variable and the highest 

accuracy and precision was always achieved when these six bands were utilized. 

Comparing the seven different mean spectra of all classes can be interesting again in relation to 

the accuracy differences between the seven maps; for example, a higher average NDVI of the 

water class could indicate eutrophication. 

When comparing the graphs in the appendix, it is important to note that the x-Axis is showing 

the bands as according to the Landsat 5 table shown above in Figure 4; in 2015, where Landsat 

8 was used, the x-Axis was modified to show the Landsat 5 band titles to ensure easier visual 

comparability. This means that the actual B1 of Landsat 8 was ignored (for the classification as 

well as for this graph), B2 was labeled as B1, and so on and so forth.   

Figure 30: Mean spectra of each land use class in the different Landsat 5 bands of the 1985 land use map 
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6.2 Land Use Areas of the Subbasins 

To make the maps provided in Chapter 6.1.3 more meaningful and analyse the land change 

differences in the regions, the overall area of each of the classes has been extracted five times: 

First, the areas of the classes for the whole Azov sea basin were calculated, as this is the basic 

case study area.  

Second, calculation was carried out for the river Kuban, as this region is situated in the 

mountainous region in the South and therefore contains the majority of the forests in the region 

– the extent of this area and its most recent Land use map is pictured in Figure 31.   

Third, the whole Don River basin has been extracted, as this is the biggest river of the basin 

and takes up the majority of the area – the extent and land use are pictured in Figure 32. 

Fourth, only the Upper Don basin (Figure 33), containing everything upstream of the 

Tsmilyansk reservoir, has been calculated, as this reservoir is of the utmost importance for the 

region. 

And lastly, the rest of the area was calculated, to see what is happening in the areas not directly 

surrounding the two main rivers. This area is home to more than 20 smaller tributaries (Lagutov 

and Lagutov 2012). 

Figure 33: Extent and Land use in 2015 

of the Upper Don River basin 
Figure 31: Extent and Land use in 

2015 of the Kuban River basin 
Figure 32: Extent and Land use in 2015  

of the Don River basin 
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The areas have been calculated with the following code (Figure 34); for the calculations of the 

sub-regions, the “results” and “classes” maps have been clipped accordingly – for the exact 

code Appendix A can be consulted: 

 

Figure 34: Calculations of the area per class 

This code prints a matrix of all areas in the console; to make it more readable, this data has been 

exported into Microsoft Excel. The absolute area values can hardly be compared to the overall 

area of the whole basin differs to due data gaps resulting from cloudy areas. Therefore, the 

relative part of the area was calculated for each map. 

As visible in Figure 35, the total area of agriculture in the whole basin has been slightly reduced, 

however, no big changes have happened from 1985 to 2015. In 1985, 74.6 % of the whole area 

were covered with agriculture, and while there have been ups and downs in between, the 

difference is negligible, as the total area was 73.9% in 2015. The same is more or less true for 

the analysed sub-areas as well. The whole Don region is the most agriculturally active of the 

region, in absolute numbers as well as percent. Agriculture in the Kuban basin has always been 

limited and there is no significant change detectable. 
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However, not only the development of the whole agricultural area, but also the partitions that 

are bare versus vegetated in August are interesting. This can help to make conclusions about 

the types of crops and connections to the water cycle. The two values are fluctuating strongly 

among one another, however, bare land is showing a downward trend especially since 2005, 

while cropland is increasing in the same time frame (Figure 36). 

Figure 36: Cropped versus bare agricultural land, in percent of the whole Azov Sea basin 

  

Figure 35: Proportion of all agricultural area (split into the different sub-areas) in the Azov Sea 

basin between 1985 and 2015 
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Figure 37 shows the change in the percent of forested area of the whole sea basin. In this graph, 

the area is visualized as a percentage of the total area. As with agriculture, while there are 

significant fluctuations and a decreasing trend from 2000 to 2010, no overall trend is visible. 

The majority of the Kuban’s area – around 60% – is covered with forest, despite forested area 

in the whole basin making up less than 20%; this means that changes there are more significant 

than in any other sub-area. 

Figure 37: Proportion of forest in the Azov Sea basin from 1985 to 2015 

When just looking at urban areas, however, the trend is clearly going towards more urbanization 

as visible in Figure 38. The whole Don area (upper and lower Don together), as well as the 

“Rest”  area that is not directly surrounding one of the two main rivers, are clearly showing a 

rapid urbanization/industrialization ever since 1995. The Kuban, however, is showing a quite 

stable development from 1985 until 2010, with a more rapid urbanization happening in the most 

recent years. Still today, only just above 7% of the whole basin is urbanized – this means that 

while the change in urban areas seems drastic, only a – relative to the whole area – small 

percentage has changed in the other land use categories, despite them obviously having 

interactions. A trend line of the total urban area has shown to have a gradient of 0.3, and an R²-

value of 0.89, showing a high compatibility. 
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The percentage of area covered by water is small all over the sea basin, and heavily dependent 

on a variety of factors. Nevertheless, it has to be mentioned that this analysis showed a clear 

downward trend in water availability in all sub-areas of the basin, consistently over the past 30 

years. A linear trend line of the total water covered area showed a gradient of 0.06, and an R² 

value of 0.82. The percentage of area covered by water in each of the subbasins can be seen in 

Figure 39. 

 

  

Figure 38: Proportion of urban areas in the Azov Sea Basin from 1985 to 2015 

Figure 39: Proportion of water area in the Azov Sea basin from 1985 to 2015 
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6.3 Donbas Conflict 

Since spring 2014, a violent conflict has been going on in the Donbas region as separatist rebels 

called out the Donetsk and Luhansk People’s Republics (DNR and LNR, respectively), and 

have since taken control of large parts of the Donetsk and Luhansk oblasts in Ukraine 

(Katchanovski 2016; Kuzio 2015; The Economist 2016). This conflict has since then developed 

into a violent war that has received international attention and hurt thousands of civilians 

(Buckley et al. 2018). Furthermore, it brings enormous economic implications with it, not only 

for Ukraine, but for Russia and the European Union just as well, causing governmental leaders 

all over the EU to participate in the negotiations (Havlik and Astrov 2014; Katchanovski 2016).  

At the moment of writing, more than four years have passed since the conflict first started. By 

now, almost two million people have been displaced from the region, mostly internally to other 

parts of the Ukraine, and around 10.000 people have died in the conflict zones (Coman 2017). 

This abandonment of the region led to dramatic land use changes; quantifying those changes 

gives, on the one hand, a clearer picture of the potential influence of the disruptions on the land 

use, and, on the other hand, validates the local accuracy of the results discussed above, as it is 

quite obvious that agricultural areas and urban areas must have decreased in recent years, as so 

many inhabitants have left. 

Figure 40 (The Economist 2016) is visualizing the situation and the border between rebel-held 

areas and the areas still in control of the Ukrainian government as it was in October 2016. Until 

now, this still remains the area of most conflicts and battles and lays in its majority within the 

Azov Sea basin. 
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The map provided in Figure 40 also served as a base map for the following analysis; it was geo-

referenced with the aid of data from Humanitarian Data Exchange by the United Nations Office 

for the Coordination of Humanitarian Affairs Ukraine (OCHA Ukraine 2017) with ArcGIS, and 

then a buffer of 20km on each side of the border was established to receive a polygon including 

the most profoundly conflicted areas.  

 

In Figure 41, the result of this analysis can be seen, with the border in red, and the buffer zone 

in brown. For reference purposes, the borders of the case study region, as well as the country 

borders in the region are also visualized. 

Figure 40: Situation of the conflict in the Donbas region in October 2016. 

Used as a base map for all further analysis. Source: The Economist, 2016 
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The analysis was then carried out with the same script as established above and used for the 

land use map of 2015, but focussing always on the summer months (May to September) of the 

years 2013 to 2017. As explained above, the median of all cloudless images for the time frame 

was chosen. The exact same training polygons were taken for all five years as established for 

the whole land use map of 2015. Polygons that were lying directly in the conflict zone have 

been eliminated to avoid falsely classifying those areas that have gone through large changes 

in the training polygons. 

The results show clearly what was expected. The amount of agricultural area decreases from 

73 % to 67% of the total area (Figure 42). Almost half of all urban landscapes were destroyed 

which caused a decrease from almost 10% built-up area in 2013 to merely 5.2% in 2017 (Figure 

43), and natural vegetation took over the abandoned and destroyed landscapes, causing this 

category to enormously increase from 17% before the conflict to 27% in 2017 (Figure 44). 

However, when interpreting these results, it is important to note that this analysis might be 

flawed as it does not distinguish between different vegetation types apart from “agriculture” 

and “forest”. Much more, if not all, of the agricultural fields, might have actually been 

Figure 41: Result of digitalizing the conflict zone in the Donbas region 
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abandoned between the start of the conflict and now, but their change in reflectance in the 

different bands might not have been big enough for the simple differentiation carried out here. 

Moreover, bare soil has been classified as “agriculture” in this study, as it is mostly already 

harvested fields; the chernozem is so fertile, that any non-harvested area would be overgrown 

by wild plants quite quickly. However, as a lot has been destroyed in the region, some bare soils 

might just be destroyed areas where nothing can grow anymore, and those would have been 

falsely classified as agriculture in this study. 

It is interesting to note at what time changes occurred. The most dramatic changes happened 

between 2013 and 2014, which is understandable as this is when the conflict started and was 

most intense. On the other hand, while agricultural areas dropped quite continuously from 2015 

until the most recent map and are most likely still dropping now, urbanized areas seem to have 

risen slightly from 2015 to 2016. This could easily be a classification mistake, or it could be the 

temporary building of simple settlements by rebels or soldiers. Another possible explanation is 

the temporary cease-fire, called “Minsk II”, that lasted from fall 2015 to spring 2016 and led to 

a partial calming of the situation until the fights later became more extreme than ever before 

(Kramer 2017; Gibbons-Neff 2016; Zinets and Prentice 2016). 
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Figure 42: Development of agriculture in the Donbas conflict region from 2013 to 2017, in percent 

of the whole buffer area 
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Figure 44: Development of natural vegetation and forests in the Donbas conflict region from 2013 to 

2017, in percent of the whole buffer area 
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Figure 43: Development of urban area in the Donbas conflict region from 2013 to 2017, in percent 

of the whole buffer area 
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6.4 Validation of Results  

As discussed in the literature review, Google Earth Engine has been utilized by several 

scientists and organisations in the last years. For some of the discussed results, such as those of 

the Global Forest Watch (Hansen et al. 2013) or the JRC Global Surface Water Explorer (Pekel 

et al. 2016), datasets are available online and embedded in GEE. This enables a form of 

validating the results obtained in this study by comparing them to results of other studies that 

used similar methods. 

6.4.1 Global Forest Watch 

The dataset of the Global Forest Watch is titled “Hansen Global Forest Change v1.3 (2000-

2015), and can be imported into Earth Engine with the Image Collection ID 

“UMD/Hansen/global_forest_change_2015_v1_3”. It has several bands, such as 

“treecover2000” that contains data of the tree canopy cover for the year 2000 from 0 to 100 

percent, which is the main band used for the following analysis. However, it also has bands 

about forest loss, that is only either marked as 0 (no loss from 2000 until 2015), or 1 (there was 

a loss from 2000 to 2015), as well as forest gain, again marked as 0 for no gain or 1 for gain 

between 2000 and 2012. The other bands are the same as those of the cloud-free Landsat 7 

image composites that were used for the analysis. The reason why forest gain and loss has not 

been used for the comparison is the ambivalence of results; just “gain” or “loss” is too vague to 

draw clear conclusions as compared to the analysis of this study. 

As a first step, the image has been imported and clipped to the area of the Azov Sea basin. 

Subsequently, the land use map of 2000 was imported as an asset. 

For the comparison of the tree cover in 2000, a new image was created with the bands 

“treecover2000”, which is the corresponding map of the Hansen dataset, and “myforest2000”, 

which contained the classification bands of the 2000 land use map, and is therefore numbered 
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from 1 to 5, with class 5 being forests. The code for the merging of the data sets can be seen in 

Figure 45. 

 

Figure 45: Preparation of data sets for the forest analysis 

Afterwards, the image was masked three times in three different ways. While this research is 

only making a difference between forest and not-forest, Hansen et al.’s study actually 

determines the percentage of canopy cover as a number from 0 to 100 for each pixel. To still 

enable a meaningful comparison, different percentages were chosen as cut-off points of what 

still counts as “forest”, to determine the percentage with the highest agreement between the 

maps. 

The first mask called “both” contained all pixels that had a larger number in the 

“treecover2000”-band than the specified cut-off canopy cover, and a 5 as a classification ID 

number. The second masked, called “Hansen”, had a larger canopy cover than the specified 

percentage, but was not classified as forest in the created map, thus was something other than 

5. And the last mask, called “mine”, was not reaching the specified cut-off canopy cover in the 

Hansen dataset, but it was classified as forest in the map created during this research. The 

classes were differentiated by using .expression() with the adequate comparison and ternary 

operators. The exact code for a canopy cover of over 90% can be seen in Figure 46. 
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Figure 46: Using .expression() and mathematical operators to determine the masks for both, Hansen, and thesis 

only data sets. 

Consequently, the areas of all three classes were calculated as demonstrated in earlier chapters. 

As this research does not clearly define how much the canopy cover has to be for a piece of 

land to be classified as covered by forest, the classes were calculated with several break-off 

points between 10% and 90% canopy cover, as visible in Figure 47. 

 

Figure 47: Forest classification of Hansen et al. 2013 versus this study 
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The results in Figure 47 show that the largest relative area has been classified as “both” for any 

canopy cover between 50% and 10%. For every value above 50%, the “thesis only” values 

exceed the “both” values, which is plausible, as a forest defined as only everything over 50% 

canopy cover is defined quite narrowly. The best ratio between forest classified in both maps, 

versus Hansen or thesis only, is reached at a minimum canopy cover of 50% or 40%. If only 

forest with a canopy cover of over 90% is counted as “forest”, the majority of forest area is only 

classified as such in this thesis, which is understandable; the small percentage that is still 

classified as “Only Hansen” then is most likely an inaccurately classified area or an area that 

was covered by clouds in the thesis data set. 

The differences in forest classification can have plenty of reasons. Neither the GFW, nor this 

research is without errors, and it is difficult or near impossible to determine where the error lies 

in each specific location without a field visit.  

Another reason can be the difference in base data used – while GFW used Landsat 7 images, 

this study used Landsat 5 images in order to avoid having to pre-process the faulty Landsat 7 

images. Since the Scan Line Corrector failed in the early times of Landsat 7, around 22% of its 

pixels contain data gaps and faults (USGS 2018). 

Furthermore, it has to be considered that this study is taking into account images of August 

only, but of four consecutive years (1998 – 2001), as the cloud cover was otherwise deemed 

too high for this specific year. GFW, on the other hand, uses all images of the year 2000, without 

any consecutive years or constraints to any specific months. 

Equally important, as GFW has a global scale for its paper, clouds over specific areas are not 

taken into account when choosing the base map. Therefore, it is possible that indeed forested 

areas have been overshadowed by clouds in the GFW example. 

As fifteen researchers have been co-authoring the mentioned paper and its database, and as they 

directly collaborated with Google engineers and plenty different companies and organisations 
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to achieve the best results, their resources have been completely different than the ones for this 

study. With 30 meters per pixel, they could achieve a ten times higher spatial resolution as they 

did not have to deal with timeouts. All of this needs to be taken into account when comparing 

the results. Nevertheless, the level of agreement between the datasets is satisfactory. 

6.4.2 JRC Surface Water Data Set 

Just like the forest data, the EC JRC’s water dataset is also available and embedded in Google 

Earth Engine as an Image Collection, offering one image per year from 1984 to 2015 with a 

single band called “waterClass”. The band is numbered from 0 to 3; 0 meaning no data, 1 equals 

no water, 2 seasonal water, and 3 permanent water cover of that year. The ID for this Image 

Collection is “JRC/GSW1_0/YearlyHistory” and is provided by EC JRC and Google as a joint 

project, and used images from Landsat 5, 7 and 8 (Pekel et al. 2016). 

This data was embedded into the script and compared to all seven land use maps, similarly as 

explained in the previous chapter with the GFW data, just this time filtered by year instead of 

canopy cover. Only areas with a value of 3 (permanent water) were considered as water for this 

comparison, in order to retain simplicity. 

Figure 48 shows the results of said analysis. The majority of water is classified as such in both 

data sets in all years. As the JRC dataset is using a scale of 30 meters per pixel for its 

classification, it usually detects more of the smaller water bodies and slim or partly overgrown 

parts of the rivers, as opposed to this study. A scale of 300 meters per pixel is too coarse to 

detect those, but was necessary due to timeout issues. As the JRC cooperated with Google, it 

could most likely use unlimited computational power which made a more precise scale possible; 

this thesis, on the other hand, could only operate with the normal Google user’s computational 

power and time, which times out after five minutes per computation. 
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Figure 48: Area of water in km² as according to the JRC, this thesis, or both data sets. 

From 1985 to 1995, the thesis only water detection is surprisingly high compared to the other 

years. This is the case due to data gaps in the JRC images; an example of this can be seen in 

Figure 49, where the black area means “no data” in the JRC set, but has been fully identified as 

water in the data set utilized for this thesis. The light blue in the graph means permanent water, 

green means no water, and red means seasonal water. 

Parts of the seasonal water of the JRC were in fact classified as water in this study. Figure 50 

(map for 1985) shows in yellow which areas have only been identified in the thesis as opposed 
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Figure 49: Data gaps in the JRC water data sets of 1985. Areas with no data are marked as black 

C
E

U
eT

D
C

ol
le

ct
io

n



77 

 

to the JRC data for the same year. As visible, the data gaps make out the majority of the thesis 

only data. 

In general, therefore, the adequacy of the results obtained in this thesis can be called sufficient. 

Of course, it is not perfect, but no land use map that has purely been created with remote sensing 

techniques could ever be. Nevertheless, the quality of the maps achieved here can hold up to 

the quality of high-resource studies that were conducted over years and in cooperation with the 

Google engineers directly.  

Figure 50: Areas identified as water in the thesis dataset (yellow), projected over the JRC data 

set 
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7 Impacts and Drivers of Land Use Changes 

The results described in Chapter 6 will now be interpreted and set into the context of the DPSIR 

framework. Hereby, land use change will be seen as a pressure, and the amount of area occupied 

by each land use, especially natural vegetation, will be seen as the environmental state; the 

driving forces of the land use change, as well as the impacts of this state on the water cycle,  

will be evaluated. As no adequate policy responses tackle either of the discussed drivers, 

pressures, state or impacts, no responses will be discussed. 

7.1  Drivers: Transition to a Market Based Economy 

The most important socio-political driver of land use changes in the Azov basin in the time 

frame must have been the collapse of the Soviet Union in the early 1990s, as already briefly 

mentioned in Chapter 5. 

In January 1992, the USSR’s centrally-planned agricultural system suddenly collapsed and 

changed to a wild, market-driven economy that put pressure on Russia’s peasants (Ioffe 2005). 

Consequently, the Russian agricultural landscape in the 1990s was shaped by chaos, as state 

subsidies decreased from around 60 Billion US Dollars a year in the late 1980s, to roughly one 

Billion Dollars a year in the late 1990s. Still in 2004, Russia was only providing its farmers 

with around 12.50$ of state subsidies per hectare agricultural land on average, while the USA 

were spending around 200$, and the EU 800$ per hectare, in comparison (Ioffe 2005). 

Prior to 1990, 98% of all agricultural land was managed by large collective farms that, instead 

of utilizing their economies of scale, were vastly inefficient and produced mostly unprofitably 

(Sedik et al. 1999). They were hardly able to adapt to the new rules of the free market, were not 

supported by the government anymore, but were broken down only slowly. Gradually, private 

family households took over large parts of the land during the chaotic transition as more and 

more people started to leave (Ioffe et al. 2004); however, a moratorium on trading land was 

established in the 1990s, which enabled local authorities to take away lands again that were 
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previously declared as private, which led to more land abandonment (Bobyliev and Ligert 

1994). 

As a result, agriculture all over the country decreased in its inputs and outputs and did not 

resume growing until 1999, which caused the abandonment of land and a migratory trend away 

from the countryside (Ioffe 2005). 

Overall, the state failed to establish a successful new agricultural system, due to a lack of 

technological advancement, not enough bank credits for farmers, and only an inadequate 

establishment of new market structures (Pallot and Nefedova. 2003). In parts of Ukraine, the 

abandonment of agricultural land as a result of the breakdown of the Soviet Union has been at 

least as dramatic as after the Chernobyl disaster in 1986, when parts of the country had to be 

evacuated (Hostert et al. 2011). 

The environmental and social impacts of these agricultural changes have been immense. While 

the situation in the better-off and more fertile chernozem areas of the Azov Sea basin has been 

less extreme than in the rest of the country, poverty and desperation among the rural poor have 

still been tremendous (Ioffe 2005). 

The following two sub-chapters analyse data on the two most important factors when 

considering land use change during the collapse of the Soviet Union – productivity changes per 

hectare land on the one hand, and agricultural land abandonment on the other hand. 

7.1.1 Agricultural Productivity Changes 

Policy changes as explained above led to, among other effects, a loss in the productivity of the 

Russian agriculture, especially since the decrease in state expenses also heavily resulted in a 

decrease in fertilizer subsidies (Prishchepov et al. 2013;  Trueblood and Arnade 2001). This 

makes especially the analysis of pre-2000 data valuable, as all agricultural activity was 

decreasing during that time frame. 

C
E

U
eT

D
C

ol
le

ct
io

n



80 

 

Data containing the grain yield per hectare averaged from 1986 to 1990 and from 1997 to 2000, 

respectively, was provided by the EnviroGRIDS Project (EnviroGRIDS 2012). The data set 

contains 203 data points that stand equivalent to rayons (districts) and that are situated within 

the boundaries of the Azov Sea basin. The analysis of this data set showed an overall reduction 

of the yield in its median as well as mean. A dependent, two-tailed t-test revealed that the 

difference between the means of the pre-1990 and pre-2000 data is significantly different, as 

the p-Value was 2.2 * 10-16, and therefore very significantly within the confidence level of 95%. 

The Boxplot for these variables can be seen in Figure 51. 

 

  

Figure 51: Box-Whisker Plots of grain yield in 100 kg per ha, averaged over the years 1986 – 1990 (a) and 1997 

– 2000 (b) 

For the purposes of reviewing the productivity of the four sub-basins, additional analysis was 

carried out that split the data into the sub-categories Kuban river basin, Upper Don river basin, 

Lower Don river basin, and the remaining parts of the sea basin labelled as “Rest”, most of 

which directly surround the sea and are made up of approximately 20 smaller streams. Of all 

the reviewed rayons where yield data was available, 22 were located in the Kuban, 93 in the 

Upper Don basin, 67 in the Lower Don basin, and 21 in the remaining parts. The Boxplots in 

Figure 52 make the changes of agricultural productivity in the sub-basins visible. The means in 
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all four areas have decreased dramatically, however, by far the lowest change has been observed 

in the Upper Don area, where the mean has only decreased by 7% (from 1.91 t/ha to 1.77 t/ha), 

whereas in all three other sub-basins, the change of the means have been over 30% (Lower Don 

31% change, Kuban 33%, Rest 38%). It is interesting to note, additionally, that while the Upper 

Don region is occupied by more than 40% of agriculture, its grain yields even before the big 

structural changes in the 1990s have been fairly low compared to the Kuban and Rest, which 

are made up of agriculture by approximately 25% (Kuban) and 80% (rest), respectively.  

 

Figure 52: Box-Whisker Plots of the grain yield in 100kg per ha, averaged over the years 1986 – 1990 (a), and 

1997 – 2000 (b) 

However, not only crops were affected by the reduction of productivity - when regarding the 

milk yields in kilogram per cow per year of the different rayons, a similar, despite less dramatic, 

picture becomes visible. The mean has been reduced from 2746 kg/cow to 2216 kg/cow, as 

visible in the Box-Whisker Plot in Figure 53, and are strongly statistically different according 

to a two-tailed dependent t-test. 
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Figure 53: Box-Whisker-Plots of the milk yield in kg per cow and year, for 1990 (a) and 2000 (b) 

Again, an analysis of the four sub-basins was also carried out. This time, there was data 

available in 24 rayons within the Kuban river basin, 93 in the Upper Don basin, 70 in the Lower 

Don basin, and 28 in the remaining basin. Again, milk yields decreased for all subbasins. 

However, for this variable, the Kuban mean decreased only by 21%, the Lower Don by 28%, 

Upper Don by 26%, and the remaining parts only by 16%. The Box-Whisker plots can be seen 

in Figure 54. 

 

Figure 54: Box-Whisker Plots of the average milk yield in kg per cow and year for 1990 (a) and 2000 (b) 

The decreasing productivity over several agricultural products could be a determining driving 

force in the socio-ecological system of the Azov Sea Basin. This could explain the decreasing 
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agricultural area of the total basin, especially between 1995 and 2000, as more and more farmers 

left the region and agricultural areas were taken over by natural vegetation and forests. A return 

later on could be explained by the agricultural importance of the basin – while all of Russia and 

Ukraine were in an economic crisis at the time, the fact that this area has the most fertile soil - 

chernozem - in both these countries, and is one of the only regions in Russia that has a climate 

suitable for agriculture, could have motivated people to return to this region first, which is why 

the overall trend of the basin is not strongly negative, but merely fluctuating over time. 

Nevertheless, even nowadays, studies show that the agricultural productivity and yield rates of 

Russia and Ukraine could still be expanded vastly and hold possibilities for the further food 

security of the region (Deppermann et al. 2018). 

7.1.2 Abandoned Land 

In the light of the previous chapter, the exact analysis of abandoned agricultural land is worth 

discussing. For this study, the created land use maps explained above have been used for 

reference. As the consideration of all seven maps would have increased the graph’s options to 

128 possibilities, only the land use maps of 1985, 2000, and 2015 have been used, creating only 

8 possible scenarios and therefore a simplified version of reality, but a more concise one for 

this study’s purposes. Therefore, the categories have been reduced to “Agriculture” or “Not 

Agriculture”, without splitting them up in all five different classes as above. Similarly to the 

code in the previous chapters, .expression() was used in combination with comparison and 

ternary operators to determine those areas where agriculture has always been there (1 – 1 – 1), 

never been there (0 – 0 – 0), and all other combinations as explained below. The full code can 

be found in Appendix D. One of the eight options was so small that it can be neglected, which 

is areas that have not been agriculturally used in 1985 or 2015, but that have been agriculture 
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in 2000 (0 – 1 – 0). The results for all other 7 combinations can be viewed in Figure 55.  

 

Figure 55: Development of agricultural areas in the Azov sea basin, in percent of the total area 

Between 1985 and 2015, the case study area has been covered permanently to 64% with 

agricultural area; on the other hand, there are only 8% that have never been agriculture at all, 

so that have either permanently been forest, water, or urban/industrial areas. The remaining 

28% have changed between agricultural and non-agricultural land use types over time, and can 

pretty equally be split into three groups. According to these maps, around 9% of the land in 

agricultural areas have been abandoned over time and have not been converted back to 

agriculture. However, around 10% of all areas have also been converted to cropland after being 

other land use types before, and the other 9% were agricultural land before and after 2000, but 

not in the year 2000 itself. 

Therefore, a total of 18% of land has been abandoned at least at some point between 1985 and 

2015, even though as explained above, this has not been permanent  in half the cases, probably 

due to the critical importance of this area to Russia’s food supply. Conversely, almost as much 

agricultural area has been added between 1985 and 2015, as has been abandoned during the 

same timeframe. This means that despite land abandonment being a temporal problem during 
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the fall of the Soviet Union, the area is mostly not returning to natural habitats and afforestation 

is not taking over agriculturally used lands. 

Figure 56 furthermore shows where what kind of land transition took place. All land that was 

either permanently agriculture or never agriculture is visualized in grey. Permanently 

abandoned land is pictured in red, land that was converted from other land use types to 

agriculture is yellow, and blue is the colour for land that used to be agriculture before 1990, and 

was only temporarily abandoned thereafter. The red strip in the north-western corner of the map 

is due to a cloudy area in the map of 1985 and is, therefore, not relevant. Other than that, it is 

interesting to see that land was abandoned and added all around the basin more or less equally; 

however, the majority of only temporarily abandoned land (blue) is clearly located in the area 

west and north of the Tsimlyansk reservoir. This area is located in the Upper and Lower Don 

catchment area, and therefore, the area of the least primary grain yield, but also of the least 

productivity reduction as explained above. It is, therefore, plausible, that the agricultural area 

was first reduced there as yields have not been high, but also, that it has been re-developed quite 

soon as the fall in productivity was less dramatic than in other regions. 

Figure 56: Visualization of Abandoned agricultural 

land (red), added agricultural land (yellow), and 

land that was temporarily abandoned and re-

developed (blue). 
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In respect to literature, it makes sense that in the Azov Sea Basin (one of the most agriculturally 

productive areas of the wider region), land abandonment was relatively low in comparison to 

the rest of the former Soviet Union. This is plausible as a market-oriented economy demands 

that only the most efficient farms can succeed when state support and subsidies fall away (Ioffe 

et al. 2014; Prishchepov et al. 2013; Deppermann et al. 2018). Studies investigating land 

abandonment in the former Soviet Union reached the conclusion that the chernozem zone was 

the least damaged of the economic transitions, due to its soil fertility, relatively mild climate, 

and proximity to regional centres and the ports of the Black and Azov Sea (Ioffe and Nefedova 

2000;  Deppermann et al. 2018). 

A detailed study only regarding the Stavropol oblast (Ioffe et al. 2014), which is located in the 

Lower Don as well as in the Kuban river basin, also concluded that it has been much more 

successful in keeping up a relatively high living standard and, hand in hand with that, a lot of 

actively farmed lands. Even private family farms have largely not been leased to bigger 

corporations, but have stayed in the hands of the original owners. The loss in productivity 

during the 1990s has by now been restored in those areas (Ioffe et al. 2014). Overall agricultural 

productivity and yields per area are likely to further increase in the future, as less productive 

areas are being abandoned and agricultural areas in the Azov Sea basin and other productive 

areas are not (Ioffe et al. 2004). 

7.2 Drivers: Population Change and Urbanization 

Most commonly, an increase in built-up land either stems from changes in the amount/location 

of the population, or from the development of the local industry and transportation 

infrastructure (Meyer and Turner 1992). To rule out some of the potential reasons and draw 

conclusions for the case study, the population development in the Azov Sea basin was 

examined. 
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For this purpose, the spatially explicit population datasets found at the NASA Socioeconomic 

Data and Applications Center (SEDAC) and created by the Center for International Earth 

Science Information Network (CIESIN) at the Columbia University were used. All used data 

was available in a 30 arc second resolution (approximately one square kilometre per pixel), has 

been downloaded in the GeoTIFF format and has subsequently been uploaded as several assets 

to the Google Earth Engine servers. 

Unfortunately, no single dataset spanning the whole study time frame was available. Therefore, 

the used data came from two different sets: 

The first set, spanning a time frame from 1970 to 2000 and having data available in ten-year 

steps, was used for the years 1980 to 2000. The set is called “Global Population Count Grid 

Time Series Estimates, v1 (1970 – 2000)”, and is based on the official UN World Population 

Prospects (UNWPP) of the years 2000 and 2008, to then project the data backwards. The data 

sets are believed to be good estimates; nonetheless, they do not depict reality absolutely 

correctly, which should be taken into account when reading the next few pages (CIESIN 2011; 

CIESIN 2017a). 

The second data set used was available in 5-year-time steps from 2000 until 2020 and is based 

on the UNWPP of 2015 and was then projected back- and forwards. The dataset is called “UN 

WPP-Adjusted Population Count, v4.10”. It is available in several resolutions; for an optimal 

comparability, the 30 arc second resolution data sets have been chosen (CIESIN 2017b). 

According to the official guidelines of the data sets, it is not recommended to use them in 

combination with one another, which is why they will be treated separately. The year 2000 will 

be used for both parts of the analysis, once with the first dataset and once with the second to 

avoid confusion, as they are based on slightly different assumptions. However, the methods of 

analysis were the same for both datasets: 
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First, the data sets were imported and clipped to the basin; then, they were all put into a single 

image as bands with the different years in order to do calculations. Subsequently, the bands 

were subtracted from one another, added to the layer and visualized as green for population 

increase, red for a decrease, and white for no change. Furthermore, the mean population per 

pixel of the subbasins have been calculated. 

7.2.1 Population Development 1980 – 2000 

Figure 57 shows the development of the region as a single image from 1980 to 2000 as 

according to the CIESIN 2017a data set explained above. Red, in this case, means a decrease 

in population, white means no change, and green indicates a population increase. The maximum 

decrease observed in those twenty years was located in the urban Donetsk region, where the 

population density decreased by around 67 people per 1 km² grid cells. The maximum increase, 

on the other hand, was around 75 people  per 1 km² grid cell in the Upper Don as well as in the 

Kuban region in the South of the basin. 

Figure 58 shows the development of the mean population per grid cell in the basin. While all 

areas showed a small increase in mean population from 1980 to 1990, only the Kuban area 

Figure 57: Population development per grid cell 

(30 arc seconds resolution) from 1980 to 2000. 

Data Source: CIESIN 2017a 
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continued growing beyond that up to 2000, while the Don and the Upper Don decreased 

slightly, pushing the overall mean population down too. This graph also makes clear that the 

Kuban has the highest average population density as compared to other regions, despite its high 

forest cover and relatively low agricultural land use cover. 

The development of the total population of the regions is in line with that, as visible in Figure 

59 (not cumulative). This figure also shows that while the Kubas has the highest average 

population density, it has in total the lowest population of all. 
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Figure 58: Population development from 1980 to 2000 in the different regions of the Azov Sea Basin, 

in No. of people per 30 arc seconds grid cell. Data Source: CIESIN 2017a 
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Figure 59: Population development from 1980 to 2000 of the different sub-basins within the Azov 

Sea Basin. Data Source: CIESIN 2017a 
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7.2.2 Population Development 2000 – 2015 

From 2000 to 2015, the overall population has decreased significantly; the maximum decrease 

in one grid cell was 123 people, whereas the maximum increase was 60 people. Especially in 

the Donbas region, the change has been dramatic; not least because of the political changes 

described in Chapter 7.1. Figure 60 is showing where which changes occurred – again, 

especially the Kuban basin has increased in those fifteen years, together with regions in the 

North-West of the basin around the city Belgorod. The maps picturing the change in five-year 

steps can be found in Appendix E. 

Figure 60: Population change from 2000 to 2015. Areas with a 

decrease in population are pictured in red, areas with an increase 

are pictured in green. The darker the colour, the stronger the change 

has been. Data Source: CIESIN 2017b 
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Again, the Kuban area, being the sub-basin with the highest average population density, has a 

steadily increasing mean population density from 2000 to 2015 (Figure 62). In absolute (non-

cumulative) numbers (Figure 61), the situation is similar – in the total area, as well as in the 

Don and Upper Don area, the overall population is decreasing. Only in the Kuban area, the 

overall population is slightly increasing. 
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Figure 62: Population development from 2000 to 2015 in the different regions of the Azov Sea Basin, 

in No. of people per 30 arc seconds grid cell. Data Source: CIESIN 2017b 

Figure 61: Population development from 2000 to 2015 of the different sub-basins within the Azov 

Sea Basin Data Source: CIESIN 2017b 
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7.2.3 Correlation Population Development and Urbanization 

Similar to the analysis of change in agricultural land, the correlation of urbanized land and 

population development was analysed with the data sets described above. 

Again, the land use maps of 1985, 2000 and 2015 were imported as assets to GEE and divided 

into urban land (1) and non-urban land (2). Following that, an image was created that has three 

land use bands of the three years, as well as 2 population datasets – the first one being the 

population change between 1980 to 2000 (CIESIN 2011; CIESIN 2017a), and the second one 

being the change of 2000 to 2015 (CIESIN 2017b). Then, with the help of .expression(), 

different categories were created and the area of each of the categories was calculated. The four 

main categories of interest were as follows: 

- Land that was urbanized in 1985, however, not in 2000 or 2015, therefore leading to the 

conclusion that it was permanently abandoned before 2000. This category was named 

“Abandoned Before 2000”, and was split into land where population either decreased 

(“Decrease”) from 1980 to 2000, or not (“No Decrease”). 

- Land that was urbanized in 1985 and 2000, but not in 2015; therefore labelled as 

“Abandoned after 2000”. This category was again split into land where the population 

decreased between 2000 and 2015 (“Decrease”), or not (“No Decrease”). 

- Land that was not urbanized in 1985, but that was urbanized in 2000 and 2015; this 

category is labeled as “Added before 2000”. This category is split into an increasing 

population between 1980 and 2000 (“Increase”), and a stable or decreasing part (“No 

Increase”). 

- Land that was not urbanized in 1985 and 2000, but that was urban in 2015 (“Added 

After 2000”. Again, it was split into an increase between 2000 and 2015 (“Increase”), 

and a stable/decreasing, but urbanized part (“No Increase”). 
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All other combinations are either not of interest, or occupying an area too small to be worth 

analysis. 

Figure 63 shows the total added land as explained above. It is interesting to note that much 

more urbanized areas were added post-2000 than before 2000, which could most likely be 

driven by the transition to a market-based economy as explained above, which caused the 

livelihoods of people to decrease in the 1990s. However, the areas that were added before 2000 

were predominantly added due to a population increase in the same area, whereas after 2000, 

urbanization mostly did not go hand in hand with a population increase. This could be related 

to the taking over of commercially owned farms and industrialization (Ioffe et al. 2004). The 

majority of the built-up area is, therefore, not housing, but either transportation infrastructure 

for trade or industrial buildings in areas of little population change.  

 

Figure 63: Urbanized land divided into the point of time of urbanization and relationship with 

population increase 

The graph showing the total abandoned land (Figure 64) is showing quite the opposite of the 

added land, as is plausible. Most land was abandoned prior to 2000, which makes sense with 

the huge economic transitions the area had to go through between 1990 and 2000. However, 
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around two-thirds of the pre-2000 abandoned land does not show a decrease in population at 

the same time. This could be explained by the loss of infrastructure and industry in that time 

frame; while people were not necessarily moving away, they did focus more on subsistence 

agriculture instead of exporting goods (Baumann et al. 2011), which potentially decreased the 

amount of built-up area in the sea basin. After 2000, much less land was abandoned, some of 

which was related to a population decrease, while other land was just abandoned without a 

decrease in population, which could, again, be due to infrastructure changes. 

 

7.3 Impact: Freshwater Ecosystem Services 

Due to the complex relationships between land use and land cover changes and the hydrology 

of a watershed, data for the Upper Don area will be extracted from the overall results, and only 

changes in that part of the case study area will be discussed. Since the Tsimlyansk reservoir is 

offering those ecosystem services that have the most direct and important effect on the well-

being of the whole case study region, such as energy production, drinking water provision, 

irrigation, et cetera, it makes sense to focus on everything upstream of the reservoir; also, this 

30%

59%

4%

7%

Before 2000: Decrease

Before 2000: No Decrease

After 2000: Decrease

After 2000: No Decrease

Figure 64: Land switching from urbanized to other land use types, split into point of time of the 

transition, and relationship with population decrease 
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way, the actual water level of the reservoir can be analysed, as reliable water level data is only 

available for this reservoir in the region. 

First, the literature covering land use/land cover changes and their effects on the water yield 

will be discussed, to subsequently set them into context with data acquired by NASA’s Global 

Land Data Assimilation System (Rodell et al. 2004). This dataset is also embedded in GEE and 

ready for spatially explicit analysis there; however, as the datasets there are only available in 3-

hour-values as opposed to monthly values, long-term analysis is impossible as it will always 

lead to a computation time out, or to an exceedance of the user memory limit. An analysis over 

26 years as targeted here (from 1984 to 2010) in 3-hour-time steps would lead to 75 920 data 

points in the set, and cannot easily be averaged over each month, as looping is not recommended 

in Earth Engine and can lead to errors. As, however, the same dataset is available for analysis 

in the Giovanni online data system, developed and maintained by the NASA GES DISC, the 

monthly-averaged datasets were downloaded from there and analysed offline (Acker and 

Leptoukh 2007). 

Unfortunately, no reliable data discussing a change of water quality in the Tsimlyansk reservoir 

or the Don River could be found; therefore, only changes of water yield will be discussed. 

To understand the effects of land use changes on stream flow and water yield, the different 

ways water can reach the flow must be taken into account. The water yield of a river depends 

on different processes above and below ground; most importantly surface runoff (consisting of 

snowmelt runoff and overland flow), evapotranspiration (often split into transpiration and 

evaporation), infiltration, base flow, lateral groundwater inflow, discharge, and effective 

precipitation (Kresic and Mikszewski 2013; Brutsaert 2005). 
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The water cycle, visualising the relationship between these parameters as a simplified version 

of reality, is shown in Figure 65 (NASA 2018). 

Simplified, all these parameters can be summarized into 4 major variables – runoff (R), 

precipitation (P), evapotranspiration (ET), and the change of water stored in rivers, ponds, lakes, 

or underground (dS), which is necessarily the most important factor for water ecosystem 

services. The relationship between those four variables can be calculated as (Jenkins et al. 

1994): 

𝑅 = 𝑃 − 𝐸𝑇 + 𝑑𝑆 

The streamflow and water yield of a river is, therefore, positively influenced by increased 

precipitation and runoff, and can be negatively influenced by increased evapotranspiration. The 

causes of a change in these parameters are complex, with soil type and moisture, climatic 

variables, and topography being in interaction with land use and land cover changes, making 

the differentiation of the importance of all of these causes difficult to determine (Wei and Zhang 

2010). Especially changes in temperature and precipitation can have immense influences, as 

they individually influence all of the above-mentioned flows. Subtracting out the climatic 

variables, however, is a difficult task. It is useful to e.g. consider the run-off coefficient, which 

is commonly defined as the ratio of annual rainfall to annual runoff, therefore excluding the 

effect increased rainfall has; however, measuring and determining the annual runoff is an 

extremely difficult task for a larger case study area (Wei and Zhang 2010). 

Figure 65: The water cycle and its most important components 

Source: NASA 2018 
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7.3.1 Literature Review of LULCC in a Watershed 

For the sake of staying within the scope of this research, only effects of changes between the 

land use types forests, cropland, pastures, and urban/built-up land will be discussed, as these 

were also the land use categories investigated in this study. 

The effects of deforestation and afforestation on the water cycle have been studied well in the 

past years, especially on a smaller, mostly sub-basin, scale, but with partly contradictory results. 

In general, forests are known to retain more water in their soil and increase evapotranspiration,  

decrease run-off and soil erosion, and decrease the local temperature (Sun et al. 2016). This can 

especially be helpful when managing smaller floods, as the peak run-off is often decreased 

(Hundecha and Bárdossy 2004). Deforestation, on the other hand, almost independently of 

whether the forest is transformed to agricultural land or urban land, usually leads to an increased 

water yield all year around. This is due to increased run-off and decreased evapotranspiration, 

which leads to higher peak water flow accompanied by a general higher total discharge amount 

and a higher groundwater flow with decreasing forest area in a catchment basin (Anaba et al. 

2017; Dwarakish and Ganasri 2015; Sun et al. 2016; Fohrer et al. 2001). Additionally, the 

evapotranspiration has been shown to decrease more when a forest is transformed to agricultural 

cropland than to pasture (Fohrer et al. 2001). 

Contrarily, however, other recent studies found woodland and forests to actually increase run-

off, explaining this e.g. with steeper slopes in the forested area, and a too small hummus layer 

of the observed forests (Liu et al. 2017; Wang et al. 2014). Furthermore, while forests buffer 

smaller floods, during larger flood events, forest area could actually be positively correlated to 

the amount of run-off, as – once saturated – the soil can give off more water at once. The 

resilience of forests is, thus, limited. While they do balance the stream flow during smaller flood 

events, this can actually back-fire in extreme cases (Sriwongsitanon et al. 2011). 
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Moreover, there are also indirect effects of land use changes on runoff and discharge. By 

transforming forests to agricultural land, the increased albedo can change the micro-climate and 

thus lead to more evaporation (Vitousek et al. 1997). At the same time, built-up areas can store 

heat and further increase the local temperature, leading to a heat-island effect (Imhoff et al. 

2010). Human settlements and irrigated agricultural lands can change a river by their increased 

usage of the water and therefore water extraction (Vitousek et al. 1997). 

One study (Liu et al. 2017) found that agricultural land decreases run-off also due to a usually 

ploughed and therefore loose top-soil, which increases filtration of the water into the soil and 

prevents run-off; another one (Fohrer et al. 2001) found the opposite – directly after harvesting 

and sowing, the soil is the most vulnerable due to a lack of vegetation, which leads to more run-

off together with soil erosion. 

Urbanization on the expense of agricultural land, on the other hand, has been shown to increase 

low peak run-off in the summer months dramatically after a storm; however, the effect on high 

peak run-off in winter was negligible. This was explained by a higher evapotranspiration in 

summer in agricultural land, and drier soils in summer that can take up more water, therefore 

buffering the flood event (Hundecha and Bárdossy 2004). 

When talking about increased surface run-off, the severe effects of erosion and sediment yield 

cannot be ignored that are directly positively correlated to run-off  (Jain and Kothyari 2000; 

Wang et al. 2009; Sabri et al. 2017). This can have effects on the depth and health of the soil, 

and therefore potentially reduce the areas suitable for growing crops and vegetation, but also 

has an impact on the river flow. The risk of erosion is usually largest in least vegetated areas, 

and in areas with the biggest slope (Jain and Kothyari 2000; Wang et al. 2009; Sabri et al. 

2017). 
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7.3.2 Calculating the Precipitation Deficit 

When looking at causal relationships, only land use changes in the Upper Don area can have a 

significant influence on the hydrology of the Tsimlyansk reservoir, as all other areas are 

downstream of the reservoir or not connected to it at all. The Upper Don catchment basin has 

gone, similarly to the rest of the region, through continuous urbanization from 1990 to 2010, 

and showed a fluctuating forest area with a significant deforestation trend at the same time. 

Agricultural areas have fluctuated with a decrease of bare/harvested land in August, and an 

increase of cropped land. As several different parameters could influence the water level of the 

Tsimlyansk reservoir, it is important to compare different hydrological parameters. 

The following data has all been acquired from the Global Land Data Assimilation Systems 

provided by NASA (Rodell et al. 2004) that is embedded in Google Earth Engine and can be 

found under the Image ID “NASA/GLDAS/V20/NOAH/G025/T3H”. While the data was 

visualized and verified there, the results of the following pages finally come from an offline-

calculation after the monthly-averaged data was downloaded from NASA GES DISC and the 

Giovanni online system (Acker and Leptoukh 2007) to avoid an exceedance of the user memory 

limit and the computation time. However, an example visualization of the average 

evapotranspiration of the year 1984 as available in Google Earth Engine can be seen in Figure 

66.  

Figure 66: Visualization of the GLDAS 

Evapotranspiration dataset in GEE. 

Red = high ET, green = low ET 
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As GLDAS 2.0, with a time frame from 1948 to 2010, and GLDAS 2.1, from 2010 until today, 

can hardly be compared due to a different methodology in the processing of the data, only 

GLDAS-2.0 will be used, as it covers a bigger time frame of what has been addressed in this 

study. The data is available in monthly time steps and over a 0.25 arc-degrees spatial resolution. 

The data has been averaged over the whole Upper Don river basin for each monthly time step 

from January 1984 to December 2010. 

The data sets provided by GLDAS, unfortunately, do not calculate overall run-off; run-off data 

is only available as base flow groundwater runoff, and storm surface runoff. Both of these 

datasets peak at irregular times over the whole area and are close to zero the rest of the time; 

analysis in respect to long-term trends is therefore difficult, as the low number of storm events 

can hardly be analysed and can have multiple factors. Figure 67 shows the storm surface runoff 

as an example; it is clear that no further trends of run-off can be analysed. 

Figure 67: Area-averaged storm surface runoff of the Upper Don river basin. Values are monthly with a 1deg 

spatial resolution. Data Source: GLDAS, Rondell et al. 2004 

More interesting is GLDAS data concerning evapotranspiration and precipitation, as well as the 

so-called precipitation deficit as used by Harmsen et al. (2009) (PD = P – ET); hereby, a 

negative PD indicates an arid environment, while a positive PD actually indicates a precipitation 

excess that can increase the water stored in rivers and lakes, or that can contribute to the 

groundwater flow (Harmsen et al. 2009). Figure 68 is visualizing the average monthly 

evapotranspiration and precipitation in the Upper Don river basin from January 1984 to 
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December 2010. It is clearly visible that the evapotranspiration has always succeeded 

precipitation in the summer months, and has usually been below it in the winter months.  

To determine trends over time more clearly, the monthly values were added up in order to 

visualize the annual precipitation and evapotranspiration rates. Then, the precipitation deficit 

of the whole area was calculated and visualized in Figure 69. A small downward trend in the 

PD is visible, driving it towards values below zero. This means that the water that stays in the 

soil or runs off to lakes and rivers must be decreasing, as the difference between the amounts 

of water precipitating versus the amount that is evaporating is decreasing. 
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Figure 68: Change of ET and P in the Upper Don river basin over time. Data Source: GLDAS, Rondell et al. 2004 

Trendline:
y = -60,662x + 122386

R² = 0,0365
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Figure 69: PD of the Upper Don river basin in kg2 m-2 s-1, from 1984 to 2010, summed up monthly values per 

year. Data Source: GLDAS; Rondell et al. 2004 
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In the Upper Don catchment basin, forested land has been clearly and quite constantly decreased 

until 2010, while urbanized areas have increased. Nevertheless, and contrarily to the majority 

of the literature, evapotranspiration is increase,ng – this most likely means that the local climatic 

changes enhanced by these land use changes override other effects, as the average annual air 

temperature over the Upper Don basin shows an increasing trend (Figure 70). The heat island 

effect and a potentially higher albedo could cause the ET to rise despite the lower vegetated 

area. Additionally, the higher cropped/vegetated agricultural area, as opposed to harvested/bare 

agricultural area, could also increase evapotranspiration and use up more water under certain 

circumstances.  
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Figure 70: Mean annual air temperature in Kelvin over the Upper Don river basin. Data Source: GLDAS, Rondell 

et al. 2004 
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7.3.3 Effects of the Precipitation Deficit on the Tsimlyansk Reservoir 

The potential effects of the precipitation, evapotranspiration, and temperature on the 

Tsimlyansk reservoir are shown in Figure 71 (Theia Land 2018). The graph shows the change 

in the water level of the Tsimlyansk reservoir, the most important reservoir of the case study 

region, from 1992 to 2018; unfortunately, no pre-1992 data is available for this region. This 

data was calculated with remote sensing techniques, and due to cloudiness, the possible error 

of certain data points, as pictured in red, is quite high at times. 

Figure 71: Water level in meters of the Tsimlyansk reservoir from 1992 to 2018. Source: Hydroweb, Theia Land 

2018 

After calculating the average water level for each calendar year, a general downward trend is 

visible; a linear trend line has an R² value of 0.36 as visible in Figure 72. The years 1992 and 

2018 have been kept out of this graph, as the data is not available for the whole calendar year 

and would be biased due to the seasonal variety of the data sets. The water level change could 

result from the precipitation decrease (not influenced by the land use changes), as well as from 

the evapotranspiration and temperature increase. With this visualization, the especially low 

values of 2011 and 2015 are notable, which could influence and explain the different water 

extent measured in the land use classification scheme partly. 
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This is also in line with a report by the Federal Agency of Water Resources (FAWR) that claims 

that the last two decades have been arider than previous ones, which made the Tsimlyansk 

reservoir shallower with an actual water level of 32 meters from 2010 until 2012 (31 meters is 

usually considered the absolute minimum) (FAWR 2012). Furthermore, a higher pollution level 

was recognised (FAWR 2012). Also other papers claim that the increasing temperature in recent 

years in the region is not met with an equally increasing precipitation, therefore lowering the 

PD stronger than a change in land use could (Dronin and Kirilenko 2012). 

However, it has to be noted here that this data does not necessarily explain the fall in water 

extent in the whole case study area; the swampy areas directly surrounding the Azov Sea, and 

the extent of the sea itself, could potentially make a much bigger difference. As explained in 

previous chapters, potential misclassifications due to eutrophication over time of the reservoir 

and other water areas in the basin could also add to the loss in perceived water extent; this does 

not necessarily mean a lower water content generally. Furthermore, fluctuating water extraction 

from the reservoir, as well as temperature differences over time, could also have an immense 

influence that can further alter the water level. 

Nevertheless, the conclusion can be made that the lower forest area and the increased 

urbanization of the Upper Don catchment basin did not have the expected effect of a higher 

y = -0,0708x + 175,74
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Figure 72: Water level of the Tsimlyansk reservoir, averaged per calendar year. Ten data points have been 

averaged for each year, and are evenly distributed from January to December. Data Source: Theia Land 2018 
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runoff and therefore, a higher general water level. More likely, the climatic variables offset any 

land use change effects, and the higher albedo and the heat-island effect of urbanized land 

furthermore increased the temperature and evapotranspiration rates. All of this most likely had 

an effect on the water level of the Tsimlyansk reservoir, which tends to dry out. If this trend 

continues in the same manner, the reservoir will most likely not be able to support all the 

ecosystem services it provides today. Currently, over 450 thousand inhabitants are using the 

freshwater provided by the reservoir, and more than 150 thousand hectares of agricultural land 

are irrigated with water from the reservoir (Sharvak et al. 2012). Beyond that, it is supporting 

the energy production of the region, and is used to cool the Rostov nuclear power plant (Sharvak 

et al. 2012). All of these goods and services are not yet significantly reduced, however, if trends 

continue as they did in the past thirty years, a decrease in the provision of EGS cannot be ruled 

out.  
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8 Conclusion 

In respect of the first research question, it was found that GEE is a useful tool that should be 

applied more by researchers of all levels and all institutions that are willing to invest the time 

to learn the specific server-sided version of JavaScript. Despite some issues of frequent 

computation time outs and a sometimes insufficient maximum memory limit, Earth Engine has 

the potential to improve remote sensing analysis and make it more efficient and accessible for 

low-resource research projects. It is an excellent tool that takes away many constraints that 

junior researchers otherwise face when it comes to computational power, memory space, and 

time, and is in that sense a true game changer. It has been shown that the results obtained by 

this tool are of satisfactory accuracy and are in line with real directly observed events, such as 

the Donbas conflict. By incorporating many different data sets by default, and by giving 

researchers the opportunity to save results as assets for new scripts or upload their own data 

sets as assets, results for many different fields can be achieved and combined. This has the 

potential to make spatially explicit research generally easier to carry out. 

With this tool, the second research question was answered, and the changes the Azov Sea basin 

has gone through in the past 30 years have successfully been detected. A consistent change has 

been the urbanization and industrialization of the region – the urban percentage has more or 

less steadily increased from 1985 until 2015 at the expense of natural vegetation. While 

agriculture has fluctuated a lot and has especially decreased up until the year 2000, there is no 

clear trend recognisable. In particular, the fall of the Soviet Union has decreased the average 

agricultural yield per hectare, which led to the partial abandonment of agricultural land; 

however, just as much land has been converted back to agriculture at some point of the time 

frame, or has been converted to agricultural land from other land use types. The Azov Sea basin 

is most likely less affected by land abandonment than other parts of the former Soviet Union, 

as it has the highest yields, most fertile soils, and a relatively mild climate as opposed to other 
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areas. As the transition to a market-based economy caused only the most efficient farms to 

survive, the Azov Sea basin was less affected than other areas.  

The ongoing Ukrainian crisis has and is still influencing the area of conflict in the Donbas 

region immensely. Thus, urban areas, as well as agricultural areas, have been decreasing 

dramatically since 2014, while the forest cover/natural vegetation increased due to the 

abandonment of the area by large parts of the population. 

The further urbanization of the Upper Don area could have added to a change in the local 

climate; the increasing temperature is not met with an increase in precipitation, which leads to 

a potential future precipitation deficit. The Tsimlyansk reservoir has been observed to get drier 

and more polluted in recent years, which could have a negative effect on the ecosystem services 

the reservoir provides. As such, the LULCC in the Upper Don area have been shown to have a 

measurable effect on the provision of ecosystem services and, therefore, human well-being. 

The geospatial databases developed during the making of this study are all available at the CEU 

Environmental Systems Laboratory2 for further investigation.  

                                                 
2 https://syslab.ceu.edu/projects/GEE-land-use-azov-basin 
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Appendices 
Appendix A: Main code for land use classification 
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Appendix B: Land Use Maps 
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Appendix C: Mean spectra of all 7 years of all classes 
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Appendix D: Code for Abandoned land 
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Appendix E: Population Change Maps in ten- and five-year-steps, respectively 
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