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Abstract

The objective of this thesis is to build a model of strategic behavior in an oligopolistic

market structure, which takes into account key features of the oil refinery industry, such

as heterogeneity of the output, large-scale investment with sunk costs and a high degree

of uncertainty over future payoffs. In view of recent demand shifts toward lighter refinery

products, the question arises whether it is profitable to undertake the upgrade investment

that enables to increase product yields of those products. Using game theory tools, multi-

product theory and a simple real-options analysis, a Cournot oligopoly model is devised

to attempt to answer that question and to assess the investment behavior of refineries.

It is argued that as long as some refinery enjoys a sufficient technological advantage, the

equilibrium will have only this refinery investing. Further, the model gives insight into

how changes in demand anticipations affect the equilibrium outcome of the investment

game. Finally, the applicability of the model is illustrated by a case study, focusing on

the Hungarian and Romanian oil refining sectors.
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Introduction

Since the emergence of the industrial revolution in the 18th century, the use of fossil

fuels has increasingly become a driving force of economic development. Since then, a

lot of economic research has been devoted to studying the use and management of non-

renewable natural resources. In particular, as petroleum is one of the most valuable

resources today, its efficient exploitation and processing has been a major field of interest

for a large number of researchers.

More specifically, an integral part of the petroleum value chain is refining, a process

that enables to deliver marketable oil output to the end consumers. From an economist’s

point of view, the oil refinery might be just an ordinary corporate entity, whose objective

is to maximize its value, subject to constraints on the supply as well as on the demand

side. Then, to examine the refinery’s behavior, she might apply some of the traditional

theories of the firm developed in economics. However, when doing so, the economist must

be aware of certain issues that are specific to the oil refining industry.

First and utmost, the output of a refinery is a composite product, and as such,

it is subject to competition on a variety of product markets. Second, the minimum

capacity of modern refineries is rather large relative to the demand in a regional market,

thus, adjusting the production process to meet the market demand involves large-scale

investment, which carries significant sunk costs. Third, entrepreneurship in oil refining is

subject to a high degree of uncertainty over future market conditions that can substantially

affect the value of refinery projects.

The objective of this thesis is to build a model of strategic behavior in an oligopolistic

market structure, which takes into account some key features of the refinery industry,

and to apply the model to an analysis of refinery investment decisions. In the short run,

refineries operate within given capacities and maximize their profit, given the market

conditions (e.g. the price of crude oil and of refined products). In the long run, the

refineries may alter their capacities based on their belief of future profitability (e.g. crude

price outlook, demand for and supply of refined products). Since there is a significant lag

between the investment decisions and their materialization, the decisions can be viewed

1
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as strategic commitments that carry considerable risk.

In view of the recent global demand shift from the low-value refined products (e.g. fuel

oil) to the high-value ones (e.g. gasoline, diesel), various ways of upgrading the refining

process to adapt this shift are fiercely debated. Apart from investing in higher capacities,

the refineries may have a possibility to invest in advanced technologies that enable them

to extract higher yields of the high-value products. However, both options are costly

and subject to uncertainty over potential future rewards. Hence, a proper analysis of the

investment motives must be undertaken, which is the main task of this thesis.

Due to a relatively high market share of each firm, the margin behavior of refineries is

probably best analyzed in the framework of an oligopoly model. In this thesis, a Cournot

oligopoly approach with production quantities as strategic variables is developed. If,

however, short-run decisions are made in strategic interaction among refineries, so are

long-run decisions. Thus, the investment decision can also be seen as a game. Hence,

this thesis aims to propose an oligopoly model, incorporating uncertainty and using game

theory tools to assess the investment behavior of the refineries.

The specific features of the refinery industry, the heterogeneity of output and

investment under uncertainty, are to be addressed. The former will be treated as

a special application of the multi-product oligopoly theory, while the latter can be

modeled as stochastic demand with different states of the world: high and low demand

situation for gasoline and diesel, the probabilities of which are common knowledge. These

particularities together may lead to interesting dynamics in investment behavior, e.g.

symmetric and asymmetric equilibria may exist. The model is to give some insight (in this

simplified framework), for example, into how the outcomes change if demand anticipations

are changed.

Some relevant literature that focuses on modeling the oil refining sector include the

following. Manne (1951), one of the first authors to extensively study the refining industry,

uses econometric techniques to estimate the cross-elasticities of the supply of the refined

products, based on which one can predict their relative prices. Later, he develops these

concepts to devise a linear programming model (Manne, 1958) and claims to answer

questions of the substitutability of different products. More recently, Pompermayer et al.

(2002) propose a spatial oligopoly model, which is close to the one treated in this thesis.

Using linear programming techniques, the authors study the behavior of refiners in the

Brazilian refinery market. Finally, Adhitya et al. (2006) use simulation techniques to

evaluate refinery supply chain policies and investment decisions.

While the literatures on multi-product theory and investment under uncertainty are

rich, treatment that would combine the two approaches is less so. Hence, through an

2
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application to the refining industry, one of the objectives of this study is to attempt to

fill this gap in the literature.

The remainder of the thesis is organized as follows. In Chapter 1, the basic

deterministic investment model is presented. Chapter 2 provides an extension by

introducing stochastics into the model. In Chapter 3, applicability of the model is

illustrated by a real-world case study.

3
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Chapter 1

Modeling Oil Refinery Investment

Decisions

The aim of the first chapter is to provide a detailed analysis of the basic deterministic

refinery investment model. We start with a brief introduction to multi-product theory and

a general description of the refinery industry. The investment model is then constructed

in steps, followed a qualitative discussion of the simple case of only two refineries.

1.1 Multi-Product Oligopoly Models

The study of oligopolistic market structures has been in the focus of the economic

literature since the publication of the seminal work of Cournot (1838). Oligopoly is

an industry form where a small number of firms dominate the market for a single

homogeneous product. With only a few producers in the market, it is reasonable to

expect that the actions of individual producers affect the overall state of the industry

and, in turn, the other producers’ performance. Game theory tools have been proved

very useful in analyzing such situations. In a setting where each firm pursues its own

benefit but must also consider the potential responses of its rivals, the central problem

is to find conditions which ensure the equilibrium state of the game. An intuitive notion

of an equilibrium, a state where none of the firms can gain by deviating from its current

strategy, is captured by what game theorists call the Nash equilibrium.

Many models have been proposed to analyze the behavior of firms in an oligopolistic

market structure. A distinguishing element of most of them is the way they view the

firms’ responses to each other and to the market. In the model of the oil refinery oligopoly

treated in this paper, we consider the production strategies to induce interaction among

refineries, which leads us to applying the model of the Cournot quantity competition. In

4
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1.2 The Main Characteristics of the Refinery Sector

this model the firms are assumed to compete in quantities, that is, their decision variables

are the amounts of output to be produced. The equilibrium concept to be used here is

that of a Cournot or Cournot-Nash equilibrium.

In reality, however, firms often produce more than one product, and thus competition

among producers involves interaction on more than one market. This important

generalization of the standard oligopoly models has been widely addressed in the literature

and is also in the focus of this paper. In a multiproduct oligopoly game the firms seek to

maximize their profits by choosing quantities of each product. If the supply of and the

demand for every product is independent of one another, this problem can be restated

in terms of single-product games, so that in every market a standard Cournot game is

played. Yet, this is seldom the case. On the supply side, the technology can be such

that it involves a joint production process, while on the demand side, the products can be

complements or substitutes. Then, more sophisticated methods of analysis are to be called

for. Still, an underlying objective of these methods is to find conditions that guarantee

the existence of the Cournot equilibrium. Okuguchi and Szidarovszky (1990) provide

an extensive treatise on multi-product oligopoly theory. Fortunately, as we will see, the

specificities of the refinery sector will allow us to devise a relatively simple multi-product

model, which will be under certain circumstances representable also in a single-product

form.

1.2 The Main Characteristics of the Refinery Sector

Crude oil is extracted from the ground in a form that is not suitable for market delivery.

It contains many impurities and contaminants, which need to be separated through a

refining process. This is a complex procedure involving a sequence of chemical processes,

such as distillation, catalysis and hydrotreating. It includes a flow of various intermediate

product streams, which yields as a final outcome a range of marketable end products

as gasoline, diesel and fuel oil. The complexity of the whole process varies with different

chemical properties of the oil input and so does the associated cost. In particular, the core

of the refining process lies in the separation of crude-oil ingredients with diverse weight -

hydrocarbons and other compounds such as sulfur, nitrogen and oxygen. It is primarily

the weight of these ingredients that determines the qualitative properties of the crude

(and hence its price), which in turn determine the yields of the refined end products and

their qualitative properties (and their price).1

Hence, the refinery is viewed as a multi-product firm that uses crude oil as input

1For more on the subject of the quality and pricing of crude oil, see Manes (1964).

5
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1.2 The Main Characteristics of the Refinery Sector

and produces a set of final products. It is important to realize that given the available

technology, the type of crude oil, the operating mode of the refinery and the complexity of

the refinery, the yields of the refined products are a result of a particular refining process

and so are technology-specific. This means that the production of each product depends

on the production of the other products. This special characteristics of the production

can be referred to as the inverse Leontief technology,2 where a certain amount of one

product cannot be produced without producing certain amounts of other products at the

same time.

Moreover, the demands for the refined products need not be independent. Specifically,

gasoline and diesel can be viewed as substitutes (although imperfect) by consumers. Also,

horizontal or vertical product differentiation by different refiners is likely to be an issue.

These points may well complicate the building of our refinery oligopoly model.

An obvious consequence of the described characteristics of the refinery sector is a

problem of a potential imbalance between the industry demand and supply. In fact,

over years it has been a major challenge for the refineries to match their product slate

with what the consumer wants. The demand for some products has been growing in

exchange for a decreasing demand for some other ones and, due to the rigid character

of the technology, the refinery supply has increasingly got out of balance with demand.

Particularly, the preference for lighter products, those more easily refined from lighter

oils, has become prevalent. For refiners it is the main challenge to adjust their refining

process to be able to meet the varying preferences for different products.

Although a complex task, the adjustment can be done by investing in facilities that

enable to chemically reprocess some intermediate or residual products to finally yield

lighter products. As a result, the refinery is able to extract more of the lighter, more

valuable products and to reduce the yields of heavier, less valuable ones. For example,

through the process of hydrocracking the refineries can increase their yields of diesel, while

fluid catalytic cracking enables them to raise gasoline yields. These processes, however,

involve costly investment in new cracking plants, so the refinery must carefully analyze

the profitability of their investment decisions. Moreover, since the minimum efficiency

scale in the refinery industry is rather large relative to the market, investment is of a

rather discrete nature.3 Consequently, this investment is seen as a strategic action and

must be analyzed in the context of the oligopolistic structure of the industry.

2Leontief technology assumes fixed proportions of input that produce a single output, while here we
have a single input that produces fixed proportions of output, hence the term ”inverse”.

3That is, it is hardly feasible for a refinery to invest in a relatively small hydrocracking unit and then
to continuously adjust its capacity.

6
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1.3 The Basic Refinery Investment Model

The CERA4 Report by Kennaby (2003) provides an insight into recent developments

in the refinery sector in Europe. According to the report, the demand for European heavy

fuel oil has been steadily decreasing over the 1990s and is expected to continue to fall

further. On the other hand, the demand for middle distillates (e.g. diesel) has been on the

rise and is expected to continue increasing. This shift in the demand profile seems to favor

investing in hydrocracking processes, but the cost is a major barrier. Thus, many of the

simple refineries have even started to face a choice between investment and closure. For

the more complex refineries, the overall trend is to undertake investment in hydrocrackers,

but which refinery actually invests and which does not can be viewed as a game. We will

analyze this game by building a simple refinery investment model.

1.3 The Basic Refinery Investment Model

Our aim is to devise a multi-product model that would take into account the specific

features of the refinery production technology outlined above. The underlying interaction

of the players is modeled as a static non-cooperative game. The firms in the refinery

industry make production decisions in advance, so they can be viewed as competing in

quantities. Hence, the Cournot model appears to be convenient to be applied here.

We consider an elementary oligopoly model of oil refineries as follows. Although we

mentioned earlier that crude-oil types vary significantly in their physical properties, here

we assume that each refinery uses crude oil as a single homogeneous input. However, the

product line is not a single homogeneous good, rather, it consists of several dozen fuels and

chemicals. In particular, through a process of simple distillation the refineries successively

separate lighter products (e.g. liquid petroleum gas, naphtha, gasoline), middle distillates

(e.g. jet fuel, diesel, kerosene) and heaviest products (residual fuel oil). These products are

differentiated by their qualitative characteristics and desirability, which determine their

final value. Moreover, the products are refined in fixed proportions, that is, out of one

unit of crude oil input, the refinery can extract a specific share of each output, depending

on the current technology and the operating mode. It may then be in the interest of

refineries to invest in improved technologies, which increase the yield of the higher-valued

products. This is done through downstream processing, whereby the heavy feedstock is

reprocessed and changed into lighter, more valuable output. Consequently, the question

arises whether and to what extent it is profitable for the refineries to undertake this

upgrade investment, taking into consideration the oligopolistic structure of the refinery

industry and hence the strategic interaction among refineries.

4Cambridge Energy Research Associates.
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1.3 The Basic Refinery Investment Model

1.3.1 Setup

We start with a general setting of the model. We denote by R the number of refineries

operating on a particular market and by Z the number of refined products. Each refinery

r = 1, . . . , R acquires crude oil from the crude market, the amount of which is denoted by

xr. This amount is processed and changed into final products via fixed conversion rates

ρr,z, so the quantity of the refined output z = 1, . . . , Z is

qr,z = ρr,zxr.

The above equality captures the distinguishing feature of the refinery sector, the inverse

Leontief technology described earlier. The total crude intake cannot exceed the refining

capacity, denoted by Kr: xr ≤ Kr. The prices of the refined products pz are determined

by the inverse demand function

pz = pz

(

∑

r

qr,z

)

= pz(Qz), (1.1)

so the prices depend on the total amount of output delivered to the market, Qz. We

mentioned earlier that the demands for different products could be mutually dependent,

i.e. they could be complements or, more likely in case of refinery products, substitutes.

However, this issue is not in the focus of this paper, so in the above formulation we assume

that the demands are independent. Rather, we wish to capture the fact that the products

differ in the value they deliver to the consumers. This can be done by assuming different

price elasticities of the demands.

Now, we can write the total revenue of the refinery as TRr =
∑

z qr,zpz(Qz).

Finally, denoting the total costs, being a function of the input and the capacity, by

Cr = Cr(xr, Kr), we obtain the profit function5

πr = TRr − Cr =
∑

z

ρr,zxrpz(Qz) − Cr(xr, Kr), r = 1, . . . , R. (1.2)

The objective of each refinery is to choose the optimal crude oil intake xr to maximize

(1.2) subject to the capacity constraint xr ≤ Kr. This maximization problem yields

the optimal input as a function of the remaining R − 1 firms’ inputs. Taken together,

these reaction functions then determine the Cournot equilibrium. Our ultimate goal will

be to find and describe the equilibrium. Next, we proceed with the formulation of the

5Observe that our earlier assumption about crude as a homogeneous input can be slightly relaxed. In
fact, having refinery-specific costs, we at least allow for every refinery to use a different type of crude.

8
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1.3 The Basic Refinery Investment Model

investment model in steps.

1.3.2 Fixed Demand

Let us first consider a simple case, where the demand for each product is assumed to be

fixed at Dz, so the equilibrium price is treated as given, and we may write pz = p∗z. This

can be interpreted as a case of a perfectly competitive market, where all the firms are

price takers. The firms’ optimization problem then boils down to

max
xr≤Kr

πr =
∑

z

ρr,zxrp
∗
z − Cr(xr, Kr)

s.t. Qz ≤ Dz.

We can see that the solution of this problem gives the optimal crude input for every

refinery, which is independent of other refineries’ input unless the demand constraint is

binding.

1.3.3 The General Case

We now turn to the general case, where the price relates to the quantity produced through

the inverse demand function (1.1). We then formulate the firms’ problem as

max
xr≤Kr

πr =
∑

z

ρr,zxrpz

(

∑

r

ρr,zxr

)

− Cr(xr, Kr). (1.3)

Solving this problem gives us the input of refinery r as a function of the remaining R− 1

refineries’ input, the reaction function. So we have a system of R equations with R

unknowns, the solution of which yields the Cournot equilibrium.

1.3.4 Upgrade Investment

As discussed in the introductory paragraphs of this section, we would like to find out if

it makes sense for the refineries to invest in more advanced technologies that enable to

extract higher yields of more valuable products from a given amount of crude oil. We can

examine this question by introducing a two-stage game. In the first stage the refineries

(simultaneously) choose the level of investment, which affects their conversion rates but

also their cost functions. Given these levels, an input-choice game is played in the second

stage, as in Section 1.3.2 or as in the general case of Section 1.3.3.

9
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1.4 Solution of the Model

Let us generalize the notation as follows. The conversion rates now depend on

investment Ir, so that ρr,z = ρr,z(Ir). In particular, after investing Ir, the conversion rate

increases for the higher-valued products, while it decreases for the lower-valued products.

Additionally, the investment affects the costs, so we write Cr = Cr(xr, Kr, Ir). Now, the

2nd-stage profit-maximization problem (of Section 1.3.3) has the form

max
xr≤Kr

πr =
∑

z

ρr,z(Ir)xrpz

(

∑

r

ρr,z(Ir)xr

)

− Cr(xr, Kr, Ir).

We can obtain the reaction function of optimal input, which is dependent not only on

other firms’ input, but also on the amount of investment by all the firms. We will then

have xr = x∗
r(X¬r, I), where X

¬r = {xi|i 6= r} and I = {I1, . . . , IR}. But since this holds

for every r = 1, . . . , R, we can solve for xr as a function of I alone: xr = x∗
r(I).

Knowing the optimal choices of input in the 2nd stage, we proceed backwards to find

the optimal investment strategies. Specifically, we want to find such Ir that solves

max
Ir

πr =
∑

z

ρr,z(Ir)x
∗
r(I)pz

(

∑

r

ρr,z(Ir)x
∗
r(I)

)

− Cr (x∗
r(I), Kr, Ir) .

The solution of the above problem produces the optimal investment strategy of firm r

as a function of the investment of the remaining R − 1 firms. Solving this system of R

equations with R unknowns, we obtain the Cournot equilibrium investment strategies.

In the above formulation, the conversion rates and costs are seen as continuously

dependent on investment. However, in the solution of the model we define them for every

particular level of investment, so that finding the Cournot equilibrium involves numerical

comparison of profits for different investment strategies. This is a realistic restriction,

since upgrade investment in the refinery sector is of a discrete nature.

1.4 Solution of the Model

In order to be able to solve the profit-maximization problems formulated in the previous

section, we need to impose further assumptions on the function specifications. A standard

form of the demand function used in the literature is the linear form, which we also use

in this model except for the case of fixed demand. For each product z = 1, . . . Z we have

pz(Qz) = az − bzQz = az − bz

∑

i

ρi,zxi, az > 0, bz > 0.

10
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1.4 Solution of the Model

As for the cost function, we will use a special logarithmic form:

Cr(xr, Kr) = αr − βr log(Kr − xr), αr > 0, βr > 0.

This function is convenient both intuitively and analytically. It captures the nature of the

production process, where it becomes more difficult to produce as the input approaches

the capacity constraint. Formally, it is a result of the marginal cost going to infinity with

input approaching the capacity:

lim
xr→Kr

∂Cr(xr, Kr)

∂xr

= lim
xr→Kr

βr

Kr − xr

= ∞.

Moreover, this property prevents us from obtaining a corner solution of the maximization

problem. Also, the cost function is convex, so the profit is concave, which is a necessary

condition for the existence of maximum. An example of this form of a cost and marginal

cost function is depicted in Figure 1.1. We may now proceed to providing guidance to

Cr
MCr

xr

0 Kr

Figure 1.1: The cost (full line) and marginal cost (dotted line) functions

solving the model.

11



C
E

U
eT

D
C

ol
le

ct
io

n

1.4 Solution of the Model

1.4.1 Fixed Demand

Each refinery r = 1, . . . R chooses xr ≤ Kr to maximize the objective function

πr(xr) =
∑

z

ρr,zxrp
∗
z − Cr(xr, Kr) =

∑

z

ρr,zxrp
∗
z − αr + βr log(Kr − xr)

s.t.















Q1 ≤ D1,
...

QZ ≤ DZ .

Solving for xr gives us6

xr = Kr −
βr

∑

z ρr,zp∗z
(1.4)

Hence, we obtain an interior solution, so that xr < Kr. However, we must assume that

the demand for each product is large enough, so the demand constraints are not binding.7

Thus, we obtain the Cournot equilibrium of optimal crude inputs that are independent

among refineries.

1.4.2 The General Case

Every refinery faces the objective function

πr(xr) =
∑

z

ρr,zxrpz(Qz) − αr + βr log(Kr − xr).

Solving the standard profit-maximization problem, we obtain the following expression for

xr :

xr =

(

∑

z

ρr,zaz−
∑

z

ρr,zbz

∑

i6=r

ρi,zxi+2Kr

∑

z

ρ2
r,zbz

)

4
∑

z

ρ2
r,zbz

−

√

√

√

√

(

−
∑

z

ρr,zaz+
∑

z

ρr,zbz

∑

i6=r

ρi,zxi−2Kr

∑

z

ρ2
r,zbz

)

2

−8
∑

z

ρ2
r,zbz

(

Kr

∑

z

ρr,zaz−Kr

∑

z

ρr,zbz

∑

i6=r

ρi,zxi−βr

)

4
∑

z

ρ2
r,zbz

(1.5)

So we have the optimal input of refinery r as a function of the choices of the remaining

refineries.

6See Appendix for all the derivations.
7In fact, accounting for the demand constraints might become a rather complicated issue. Suppose

that the total supply determined from (1.4) exceeds the demand for some product. Yet, that does not
necessarily mean that the equilibrium involves firms reducing their production. It can still be the case
that a loss from the particular product is compensated by a gain from some other product.
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1.4 Solution of the Model

Let us consider an example with R = 2 refineries. Then we have the best response for

refinery 1, given the choice of refinery 2:

x1 =

(

Z
∑

z=1

ρ1,zaz−x2

Z
∑

z=1

ρ1,zbzρ2,z+2K1

Z
∑

z=1

ρ2

1,zbz

)

4
Z
∑

z=1

ρ2

1,zbz

−

√

√

√

√

(

−
Z
∑

z=1

ρ1,zaz+x2

Z
∑

z=1

ρ1,zbzρ2,z−2K1

Z
∑

z=1

ρ2

1,zbz

)

2

−8
Z
∑

z=1

ρ2

1,zbz

(

K1

Z
∑

z=1

ρ1,zaz−x2K1

Z
∑

z=1

ρ1,zbzρ2,z−β1

)

4
Z
∑

z=1

ρ2

1,zbz

,

(1.6)

and we obtain an analogous expression for the best choice of x2 given x1. The Cournot

equilibrium strategies x1 and x2 can then be found by numerical solution.

1.4.3 Upgrade Investment

The 2nd-stage objective (in the general case) is to choose xr ≤ Kr to maximize

πr(xr, Ir) =
∑

z

ρr,z(Ir)xrpz

(

∑

r

ρr,z(Ir)xr

)

− Cr(xr, Kr, Ir),

where Ir indicates the level of investment from stage 1. The conversion rates and the

costs are now a function of investment. In particular, we may define

Cr(xr, Kr, Ir) = αr(Ir) − βr(Ir) log(Kr − xr),

so both the parameter of the fixed cost, αr, and the parameter of the marginal cost, βr, is

affected by investment. Moreover, the implicit cost of investment is incorporated in the

change in αr.

Setting R = 2 and solving for the best response of refinery 1, given the choice of

refinery 2 and stage-1 levels of investment by both refineries, we arrive at

x1 =

(

Z
∑

z=1

ρ1,z(I1)az−x2

Z
∑

z=1

ρ1,z(I1)bzρ2,z(I2)+2K1

Z
∑

z=1

ρ2

1,z(I1)bz

)

4
Z
∑

z=1

ρ2

1,z(I1)bz

−

√

√

√

√

√

√

√

√

√

(

−
Z
∑

z=1

ρ1,z(I1)az+x2

Z
∑

z=1

ρ1,z(I1)bzρ2,z(I2)−2K1

Z
∑

z=1

ρ2

1,z(I1)bz

)

2

−8
Z
∑

z=1

ρ2

1,z(I1)bz

(

K1

Z
∑

z=1

ρ1,z(I1)az−x2K1

Z
∑

z=1

ρ1,z(I1)bzρ2,z(I2)−β1(I1)

)

4
Z
∑

z=1

ρ2

1,z(I1)bz

,

(1.7)
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1.5 Extensions of the Basic Model

and we obtain an analogous expression for x2. We can then numerically solve for the

optimal input choices as functions of investment levels, so that x1 = x∗
1(I) and x2 = x∗

2(I),

where I = {I1, I2}.
Hence, the 1st-stage objective of refinery r = 1, 2 is to choose Ir to maximize

πr(I) =
∑

z

ρr,z(Ir)x
∗
r(I)pz

(

ρ1,z(I1)x
∗
1(I) + ρ2,z(I2)x

∗
2(I)

)

− Cr

(

x∗
r(I), Kr, Ir

)

.

Consistent with the discrete nature of the investment, suppose that the variable Ir can

attain two discrete values as follows:

Ir =







1 if refinery r does not invest,

2 if refinery r invests
(1.8)

and the conversion rates are defined accordingly, so that ρr,z(2) > ρr,z(1) for some set

of products, while ρr,z(2) ≤ ρr,z(1) for the remainder. We can then find the Cournot

equilibrium by forming a 2 × 2 payoff matrix:

H
H

H
H

H
H

HH
I1

I2
I2 = 1 I2 = 2

I1 = 1 π1(1, 1), π2(1, 1) π1(1, 2), π2(1, 2)

I1 = 2 π1(2, 1), π2(2, 1) π1(2, 2), π2(2, 2)

(1.9)

1.5 Extensions of the Basic Model

In this section we analyze two important extensions of the basic model. While the first

- the problem of the capacity choice - is straightforward and does not involve significant

mathematical complications, the second - the problem of multiple markets - constitutes

a serious analytical difficulty, and we will therefore exclude it from further consideration.

1.5.1 Capacity Games

A Simple Capacity Game

In the first stage the refineries simultaneously choose capacities. An input-choice game

is then played in the second stage, similar to the one examined in preceding sections.

Solving the maximization problem in (1.3) again yields the reaction functions of inputs,

and - since we now explicitly treat capacities as endogenous variables - of capacities, so

we write xr = x∗
r(X¬r, Kr), where X

¬r = {xi|i 6= r}. Hence, we have xr = x∗
r(K), where

14
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1.5 Extensions of the Basic Model

K = {K1, . . . , KR}. Returning to the first stage, the objective is to find the capacity to

solve

max
Kr

πr =
∑

z

ρr,zx
∗
r(K)pz

(

∑

r

ρr,zx
∗
r(K)

)

− Cr

(

x∗
r(K), Kr

)

. (1.10)

For the case of two refineries and three products and with the function specifications

as before, we obtain the best response as in (1.6). However, now the 1st-stage problem

consists of maximizing profits over capacities. It can be seen that after substituting the

best response into (1.10), the objective function becomes a trivial function of K1 and K2.

Thus, the Cournot equilibrium of capacity-choice strategies can be easily found.

Upgrade Investment with Capacity Choice

A straightforward generalization of the upgrade investment game (see Section 1.3.4) is to

include the problem of the capacity choice. This can be done by introducing investment

in capacity. We assume, as before, that investment Ir affects the conversion rates ρr,z and

the costs. In addition, now investment also affects the capacity, so that Kr = Kr(Ir).

Thus, the problem of capacity choice in the previous section is now translated into the

problem of investment choice. Combining this with the upgrade investment model of

Section 1.3.4, we arrive at the 2nd-stage profit-maximization problem of the form

max
xr≤Kr(Ir)

πr =
∑

z

ρr,z(Ir)xrpz

(

∑

r

ρr,z(Ir)xr

)

− Cr

(

xr, Kr(Ir), Ir

)

.

and consequently, the 1st-stage problem of the form

max
Ir

πr =
∑

z

ρr,z(Ir)x
∗
r(I)pz

(

∑

r

ρr,z(Ir)x
∗
r(I)

)

− Cr

(

x∗
r(I), Kr(Ir), Ir

)

.

Suppose that demand is linear and the cost is given by

Cr(xr, Kr, Ir) = αr(Ir) − βr(Ir) log
(

Kr(Ir) − xr

)

.
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1.5 Extensions of the Basic Model

For the case of two refineries, we obtain a similar expression to (1.7) for the best response:

x1 =

(

Z
∑

z=1

ρ1,z(I1)az−x2

Z
∑

z=1

ρ1,z(I1)bzρ2,z(I2)+2K1(I1)
Z
∑

z=1

ρ2

1,z(I1)bz

)

4
Z
∑

z=1

ρ2

1,z(I1)bz

−

√

√

√

√

√

√

√

√

√

(

−
Z
∑

z=1

ρ1,z(I1)az+x2

Z
∑

z=1

ρ1,z(I1)bzρ2,z(I2)−2K1(I1)
Z
∑

z=1

ρ2

1,z(I1)bz

)

2

−8
Z
∑

z=1

ρ2

1,z(I1)bz

(

K1(I1)
Z
∑

z=1

ρ1,z(I1)az−x2K1(I1)
Z
∑

z=1

ρ1,z(I1)bzρ2,z(I2)−β1(I1)

)

4
Z
∑

z=1

ρ2

1,z(I1)bz

.

(1.11)

Then, in the simplest case of discrete investment defined by (1.8), the Cournot equilibrium

can be found by forming a 2 × 2 matrix as in (1.9).

1.5.2 Multiple Markets

Up to now, we have implicitly assumed that all the refineries operate on a single geographic

market, so that all the produced amount of output is delivered and sold within this

market.8 However, this is a slightly distorted depiction of reality, since most of the

refineries operate and compete on more than one geographic market. In particular,

interregional and international trade is an important aspect of the competition in the

refinery sector. To properly analyze the interaction of the refineries on multiple markets,

we would need to introduce a spatial oligopoly model and account for transportation

costs. The profit-maximization problem of every refinery would then look similar to the

following:

max
xr,

qm
r,1,...qm

r,Z
,

m=1,...,M

πr =
M

∑

m=1

(

Z
∑

z=1

(

qm
r,zp

m
z (Qm

z ) − TCm
r,z(q

m
r,z)

)

)

− Cr(xr, Kr), r = 1, . . . , R,

s.t.
M

∑

m=1

qm
r,z = qr,z = ρr,zxr, z = 1, . . . , Z,

where the upper index m denotes the particular market and TCm
r,z(q

m
z ) is the cost of

transporting of qr,z amount of product z to market m. Hence, the decision problem of the

refinery consists of choosing the total amount of crude oil input, xr, and (once qr,z = ρr,zxr

of every product is refined) of choosing the amounts of every product to be delivered to

each of the M markets. Clearly, since the spatial oligopoly game involves a choice of

M × Z + 1 variables and strategic interaction on M markets, the analysis of the model

8This is not to be confused with the markets for different products.
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1.6 Comparison with a Single-Product Case

would go well beyond the framework of this paper.9 Thus, in our basic model, we are

forced to stick to the assumption of one geographic market and no external trade. In the

application of the model in Chapter 3, we do return to this issue, yet with a few strict

assumptions.

1.6 Comparison with a Single-Product Case

The legitimate question arises how the multi-product oligopoly model presented earlier

differs from the standard single-product model. We saw that due to the specific technology

that is characterized by a fixed relation between input and output, the firm’s decision

problem reduces to the choice of a single variable, the level of investment in the upgrade

investment game, or the amount of crude oil intake in the capacity utilization game. It is

then natural to think of an analogy with the single-product oligopoly model. In particular,

let the technology be specified by a linear production function

qr = ρrxr.

Hence, the firm’s output is a single homogeneous good, the price of which is again

determined by the inverse demand function

p = p

(

∑

r

qr

)

= p(Q).

The objective of firm r = 1, . . . , R is to maximize

πr = ρrxrp(Q) − Cr(xr, Kr)

over input xr subject to the capacity constraint xr ≤ Kr. In the case of fixed demand,

the above problem can be written as

max
xr≤Kr

πr(xr) = ρrxrp
∗ − Cr(xr, Kr)

s.t. Q ≤ D.

9Pompermayer et al. (2002) analyze a refinery oligopoly model that accounts for transportation costs
and uses sophisticated linear programming techniques.
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1.7 Qualitative Analysis

Solving for the familiar linear demand and logarithmic cost specifications gives the optimal

input

xr = Kr −
βr

ρrp∗
.

In the general case we solve the profit-maximization problem of the form

πr(xr) = ρrxrp(Q) − Cr(xr, Kr)

With two refineries the reaction curve is given by

x1 =
(ρ1a−x2ρ1bρ2+2K1ρ2

1
b)

4ρ2

1
b

−
√

(−ρ1a+x2ρ1bρ2−2K1ρ2

1
b)

2

−8ρ2

1
b(K1ρ1a−x2K1ρ1bρ2−β1)

4ρ2

1
b

.

We can similarly proceed with the upgrade investment game. Summing up, it is evident

that the multi-product oligopoly model treated in the previous sections is a direct and

straightforward generalization of the simple single-product model, the latter being its

special case. Indeed, by combining the parameters of the multi-product model in a proper

way, we may immediately arrive at the single-product model formulation.

1.7 Qualitative Analysis

Let us now turn our attention back to the basic investment model formulated in Section

1.3. In Section 1.4 we showed that under the assumption of specific functional forms

we are able to find the Cournot equilibrium of the underlying input-choice game, using

expression (1.4) for the case of fixed demand or the reaction functions (1.5) in the general

case. Consequently, defining a discrete relationship between the levels of investment

and the final payoffs enables us to construct a payoff matrix and to find the Cournot

equilibrium of the upgrade investment game. Apparently, the actual solution of the game

involves cumbersome mathematical expressions. Instead of presenting them here, we

rather attempt to provide a simple qualitative analysis of the equilibrium. In particular,

we focus on the case of two refineries that face a decision whether to invest or not in

an upgrading facility. The starting point is the reaction curve derived in the upgrade

investment game, with capacity choice given by (1.11). We simplify the notation by

omitting the dependence on investment and by denoting sums of products of multiple

parameters by a single letter, as follows:

Ar =
Z

∑

z=1

ρr,zaz, Br =
Z

∑

z=1

ρ2
r,zbz, Γ =

Z
∑

z=1

ρ1,zρ2,zbz
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1.7 Qualitative Analysis

Then the reaction function in (1.11) can be rewritten as

x1 =
(A1 − Γx2 + 2K1B1) −

√

(−A1 + Γx2 − 2K1B1)2 − 8B1(K1A1 − K1Γx2 − β1)

4B1

.

(1.12)

1.7.1 The Input Choice Game

First, let us examine the optimal input choices and the corresponding profits, given a

particular combination of the investment strategies of the two firms. What we can see

from (1.11) or (1.12) is that the reaction function is downward-sloping10 (as opposed to

the constant inputs in (1.4)), which is a manifesting feature of Cournot oligopoly models.

Figure 1.2 depicts a reaction curve for a particular choice of parameters.

x1

x2

0

Figure 1.2: Reaction curve

Suppose next that the products vary in the value perceived by the consumers in terms

of the price elasticity of demand. In particular, the higher-valued products are less price-

elastic than the lower-valued ones, or, their demand parameters az and bz are greater.11

Then, we may investigate what happens if - all other parameters holding fixed - refinery

1’s yield of some higher-valued product (denote by h) increases in exchange for a decreased

yield of a lower-valued one (denote by l). We can see that this unambiguously increases

parameter A1 and, if the yield of product h is already higher at both refineries, also

parameters B1 and Γ.

A brief qualitative examination of (1.12) reveals that parameter A1 shifts the reaction

function upwards, while parameters B1 and Γ shift and rotate it downwards. It remains

10See Appendix for a formal derivation of this claim.
11In case of linear demand pz = az − bzQz, the price elasticity for a current price-quantity pair is given

by ez = −pz/(pz − az) or ez = pz/(bzqz).
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1.7 Qualitative Analysis

to determine which of these effects prevails. It turns out that for a reasonable choice of

parameters the effect of A1 outweighs the other two parameters only up to some point,

presumably in a region where refinery 1’s yield of product h is lower than that of product

l yet, that is, where parameter B1 can act reversely. After this point, the effect of B1

and Γ prevails. So, initially the reaction curve gradually shifts up and then returns back

down. Figure 1.3 shows an illustration of a reaction function varying with the yield of

the valued product (and of the lower-valued one). As a consequence, transferring some

of the refining yield from a heavy product to a lighter one affects the optimal crude oil

input such that it increases in the beginning and then bends backward.

x1

x2ρ1,h

0
0 0

Figure 1.3: Reaction curve varying with ρ1,h

The above result is of little surprise. With a higher yield of the valued product it

is optimal for the refinery to attain more crude input to gain the additional profit from

this product. But, at some point, the yield is so high that it can suffice with less input,

so with lower costs. On the other hand, a too high yield of the valued product need

not be beneficial for the refinery. It can happen that even with less input a significant

amount of the product is delivered to the market, which in turn pushes its price down

and hence, the refinery’s profit. Further, we may examine how refinery 2’s optimal choice

and corresponding profit changes with increasing refinery 1’s yield of the valued product.

Since the reaction curve is downward-sloping, the optimal input of refinery 2 will follow

the exact opposite pattern, and so will its profit. Figure 1.4 illustrates the discussed

behavior of optimal input choices and the corresponding profits.

Finally, let us compare the above outcome with the case of fixed demand (perfect

competition). According to (1.4), the optimal input choice increases with a higher yield

of product h, assuming that p∗h > p∗l and that the demand constraints are not binding.

This, however, makes the refinery approach its capacity constraint faster, which in turn
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1.7 Qualitative Analysis

a)

ρ1,h

x1

x2

π

0

b)

ρ1,h

π1

π2

0

Figure 1.4: (a) Optimal input and (b) profit of refinery 1 (full line) and refinery 2 (dotted line) varying
with ρ1,h

significantly affects the costs. In the end, if the competitive prices are sufficiently high,

there might be overproduction, and high costs close to the capacity constraint may

actually make the firms worse off than in the oligopoly case, consistent with what the

theory of perfect competition would suggest.

All these findings confirm that the possibility of investment in technologies which

enable the transfer of yields is an interesting and relevant issue to study. Even more so if

one needs to account for strategic interaction among refiners and for the discrete character

of investment.

1.7.2 The Upgrade Investment Game

We may now proceed with an analysis of the upgrade investment game. In the simplest

case where the two refineries decide whether to invest or not, we have four possible

combinations of investment strategies, of which we can construct a payoff matrix as

in (1.9). Our aim is to determine which of the four combinations can constitute the

Cournot equilibrium. We have just seen that - all else holding fixed - increasing the

yield of the valued product may be profitable up to some point. However, we omitted

two important factors. First, the other refinery also has an opportunity to invest to

increase its yields of higher-valued products. As noted previously, the reaction curves

are downward-sloping, which means that any action of one refinery induces an opposite

response of the competitor.

Second, the upgrade investment is costly. It is natural to think that the investment is

reflected in the change of the cost parameters as follows. The new cost function will be

flatter, so that the marginal cost approaches infinity slower. This is implicitly taken care

of in case of capacity increase. Then, parameter βr is used to adjust the speed of marginal-
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1.7 Qualitative Analysis

cost convergence to infinity. However, the fixed cost of increased capacity is higher and

the refinery must also build the new plant, so it incurs the actual cost of investment.

These two elements are transmitted into a change in parameter αr. An illustration of how

investment can affect the cost and marginal cost curves is shown in Figure 1.5.

a)

xr

Cr

0

b)

xr

MCr

0

Figure 1.5: (a) Total cost and (b) marginal cost before (full line) and after (dotted line) investment

Hence, the resulting equilibrium is an outcome of a few diversely acting forces.

Summing up, to evaluate the profitability of the investment strategy, one must take the

following factors into consideration. First, increased yields of valued products raise the

profit only within a certain range. Second, an action by one refinery aimed at increasing

its profits induces a reaction of the competitor, which pushes the profits down. Third,

investment incurs cost.

The equilibrium of the upgrade investment game can be found by a standard method

for finding the Cournot-Nash equilibrium, that is, by indicating the best response of one

player given the strategy of the second player. This means comparing particular cells

of the matrix in (1.9). For instance, given that refinery 2 decides to invest, refinery

1 compares its payoffs π1(1, 2) and π1(2, 2). The profit from investing, π1(2, 2), will be

greater than π1(1, 2) if, first, refinery 1 is not on its backward bending part of the profit

function, that is, ρ1,h(2) is sufficiently low and, second, the associated cost of investment

and the production cost after investment is not too high, that is, α1(2) is sufficiently

low. If the same holds for refinery 2, the Cournot equilibrium will have both refineries

investing.12

Other types of equilibria may arise. If one of the refineries has some technological

advantage, for example, in terms of costs or in terms of capacity, it can be optimal only

12This result is consistent with a rather general finding in the literature that if the firms compete à
la Cournot in both investment and production stages, the equilibrium exhibits tendencies toward over-
investment by the oligopolists. For reference, see Brander and Spencer (1983) or Reynolds (1986).
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1.7 Qualitative Analysis

for this refinery to invest. The disadvantaged refinery would either find it too costly

to invest, or it would be discouraged by the fact that already a substantial fraction of

the market is served by the other refinery, so the prices are too low. Another kind of

equilibrium can occur if the cost of investment is too high for both refineries. Then,

obviously, none of them will invest. Finally, a special type of equilibrium arises if the

refineries are technologically symmetric, but the demands are insufficient to accommodate

the increased yields of both refineries. In such a case, only one of the refineries invests in

equilibrium, but which of them actually does cannot be determined by this static analysis.

Rather, it might be the subject of a commitment analysis, where one of the refineries has

a 1st-mover advantage and can commit to investment.

Lastly, let us briefly examine how the upgrade investment game can evolve in the case

of the fixed demand problem in the 2nd-stage. In this case the firms have lower incentive

to invest, since their profit functions tend to bend backward faster, as we mentioned

previously. In fact, a type of the equilibrium where only one refinery invests is then more

likely.

This concludes the first chapter. We are now ready to introduce a major extension of

the model that brings it closer to real-world phenomena, uncertainty. Modeling refineries’

decisions under uncertainty is the focus of the second chapter.
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Chapter 2

Modeling Refinery Investment under

Uncertainty

In the present chapter we introduce the second key feature of the refining industry that

this thesis aims to model, uncertainty. First, a preliminary guide to modeling uncertainty

in the literature is provided. Then, a simple two-period application to our refinery

investment model is presented. A qualitative analysis concludes the chapter.

2.1 Investment under Uncertainty

Investment is defined as an act of incurring expenses now with the prospect of profits

generated at some point in the future. Associated with this act is some degree of

uncertainty over the potential payoff. Specifically, the future reward from the investment

follows a certain probability distribution, the realization of which is not known at the

time when the investment decision is taken. Economists have struggled to develop a

general rule that would be able to evaluate the attractiveness of a particular investment

project and hence to help form optimal investment decisions. The traditional neoclassical

theory presents the net present value (NPV) rule as an appropriate criterion for valuing

investment projects. It assumes calculating the present value of the future cash inflow

generated by the project, from which the present value of the cost necessary to launch

the project is deducted. A positive NPV implies that the project should be undertaken.

However, as pointed out by Dixit and Pindyck (1994), the NPV criterion is based on

one of two crucial assumptions, which are often overlooked. First, the investment project

is considered as fully reversible, or, second, the investor is facing a now-or-never decision.

Yet, these two conditions are rarely met in practice. The cost incurred to initiate the

project is at least partially sunk, so it cannot be fully recovered, if the firm decides later
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2.1 Investment under Uncertainty

to retract the project. This is because the project often involves transaction specificity,

so the purchased assets cannot be sold, or if yes, then only at a discount. Also, unless

strategic considerations such as entry deterrence force a firm to decide quickly, it usually

has some flexibility about the timing of the investment. That is, the firm can postpone

its decision until it acquires more information.

The violation of the two conditions has fostered the development of a new view of

investment, the real options approach. This approach recognizes the opportunity cost of

investment, which stems from the two features - the irreversibility and the ability to delay

investment. This is where the notion of a real option emerges. Similar to financial options,

the firm can choose to invest now (to exercise the option) or to wait until the uncertainty

is at least partly resolved, and thus to take the risk that the value of the project changes.

The actual investment decision is then based on comparing the present value of investing

now with the present value of investing at possible future dates.

Research has shown that the opportunity cost of investment can be large and ignoring

it might lead to erroneous investment decisions. In fact, first attempts to capture

uncertainty together with irreversibility and timing flexibility in investment valuation

models date back to 1970s. Most of the valuation techniques originate in the papers of

Merton (1973) and Black and Scholes (1973), the pioneering works on financial options

pricing. Myers (1977) argues that the optimal exercise of real options can create a

significant corporate value. Since then, the literature has seen many attempts at applying

the real options framework to investment models, among which, some of the prominent

ones being Pindyck’s (1988) analysis of the optimal capacity of a project and Trigeorgis’

(1990) treatment of investment in natural resources. More recently, Imai and Watanabe

(2004) examine investment under uncertainty in a market with the presence of a first-

mover advantage and devise a model which could also be applied to the oil refinery sector.

Cruz and Pommeret (2005) analyze investment with embodied technological progress and

energy price uncertainty.

The standard real options model1 utilizes the tools of stochastic calculus. In particular,

the value of the project is assumed to follow a geometric Brownian motion. Then,

the solution of the model calls for an application of dynamic programming techniques

through the use of the Bellman equation and Ito’s lemma. However, in this paper,

being complicated enough by the multi-product part, we consider only a simple discrete-

time application of the real options framework.2 We will assume that the value of the

investment can change at some discrete time points. This makes the calculation of the

1See Dixit and Pindyck (1994).
2Perotti and Kulatilaka (1998) present a discrete-time strategic real option model.
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2.3 Uncertainty in Refinery Investment Models

present values of investing at particular dates considerably simpler.

2.2 Uncertainty in Refinery Investment Models

Since there is a significant lag between investment decisions and their materialization,

the decisions can be viewed as strategic commitments that carry considerable risk. The

future value of the investment project is uncertain due to changing economic conditions.

In our refinery model uncertainty is imposed on the demand side. In particular, we will

assume that at the time when investment decisions are made, the refineries do not know

the future state of the demand when the investment comes into practice.

Demand uncertainty will be modeled as stochastic demand with different states of

the world with commonly known probabilities. Consequently, the refineries base their

decisions on their rational expectations about demand. Consistent with the vast literature

on uncertainty, we will apply the real options approach in our model. To this end,

investment is viewed as, first, irreversible sunk cost and, second, as possible to be delayed.

As opposed to the traditional NPV theory, this approach allows to explicitly account for

the ability to wait and to value the option of delaying investment.

It is important to note that besides demand uncertainty, the refineries can face

other kinds of uncertainty. For instance, at the time when the investment decision is

taken, the refinery has some expectation about the associated cost, but does not know it

precisely. At the time of the materialization of the investment, the cost can turn out to be

larger than previously calculated. Hence, cost uncertainty may emerge as a remarkable

issue. Technically, however, assuming no asymmetry in information,3 modeling cost

uncertainty would not differ much from the treatment of demand uncertainty presented

below. Consequently, only demand uncertainty is considered here.

2.3 The Basic Model with Uncertainty

2.3.1 Setup

In the first chapter we examined the investment behavior of refineries in a static and fully

deterministic setting. We showed that if the refineries have perfect information about

the state of demand for each product, and if they simultaneously choose their investment

plans and crude oil intakes, we can determine the Cournot equilibrium of their investment

3That is, the probability distribution of the costs of every refinery is of common knowledge.
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2.3 The Basic Model with Uncertainty

strategies. In what follows, we develop this model by introducing demand stochasticity

and a multi-period decision algorithm.

Hence, the prices of the refined products are now determined by the inverse demand

function

pz = pz(Qz, εz), z = 1, . . . Z, (2.1)

where εz’s are parameters of random shocks, the (joint) distribution of which is known.

The investment decision is made prior to the realization of this distribution, and therefore,

the refineries’ 2nd- and 1st-stage objective is (in the general case of Section 1.5.1) to

maximize the expected profits:

max
xr≤Kr(Ir)

E[πr] =
∑

z

ρr,z(Ir)xrE

[

pz

(

∑

r

ρr,z(Ir)xr, εz

)]

− Cr

(

xr, Kr(Ir), Ir

)

,

and

max
Ir

E[πr] =
∑

z

ρr,z(Ir)x
∗
r(I)E

[

pz

(

∑

r

ρr,z(Ir)x
∗
r(I), εz

)]

− Cr

(

x∗
r(I), Kr(Ir), Ir

)

,

respectively.

Now, suppose that the refineries have the opportunity to delay the investment decision

and wait until the realization of the demand shock becomes known. Then, waiting

one period will enable them to resolve demand uncertainty, and they will thus face a

deterministic problem as in Section 1.5.1.

Following the above description, we can construct a simple stepwise decision tree. At

the beginning of the first period, the firm forms its expectation about demand and can

choose either to invest or not to invest. At the end of the period, the random shock is

realized and the firm’s payoff is delivered, based on its decision. Then, at the beginning

of the second period, if the firm decided to invest in the first period, no choices are left

now, but if it decided not to invest (that is, to postpone its decision), the firm - already

knowing the state of demand - can again choose to invest or not to invest. The payoff is

then again realized at the end of the period.

Evidently, a trade-off between deciding to invest now and postponing the decision

until the next period may arise. If the firm decides to invest now, it may gain additional

profit from this investment, provided that the realized demand turns out to be favorable.

On the other hand, if it decides to wait, it may gain from resolving demand uncertainty

and thus making a decision based on actual demand conditions. In particular, should the

demand conditions turn unfavorable, the firm might refrain from investing.
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2.3 The Basic Model with Uncertainty

2.3.2 The Case of One Refinery

Let us examine the above decision process in more detail. We start with the simplest

case, where we assume that only one of the refineries has the investment opportunity.4

Suppose that demand stochasticity is represented by

pz = εzpz(Qz), z = 1, . . . Z, (2.2)

where εz is a binomial random variable defined as

εz =







uz with probability λz,

dz with probability 1 − λz,

where uz > 1 and dz < 1. Thus, in addition to what is determined by inverse demand, the

price of each product z can randomly increase by factor uz or decrease by factor dz. The

realization of this distribution comes at the and of the first period and the firm takes its

period-1 decision based on the expectation of (2.2). The refinery’s choices, together with

the payoffs, are depicted in the tree in Figure 2.1.

Period 1 Period 2

I
bπ1(I) + π1(I)

N

bπ1(N) + π1(I)I

bπ1(N) + π1(N)N

Figure 2.1: The tree of the game with one refinery

The refinery evaluates its options based on the expected payoffs. Denote by φi the

probabilities of all 2Z states of the world

φ = {φi|i = 1, . . . , 2Z} =

{

Z
∏

k=1

λθk

k (1 − λk)
(1−θk)|{θ1, . . . , θZ} ∈ {0, 1} × · · · × {0, 1}

}

and by πi
1(I1) the corresponding realized profits in state i5

πi
1(I1) =

∑

z

ρ1,z(I1)x
∗
1(I1)

(

θzuz + (1 − θz)dz

)

pz (·) − C1

(

x∗
1(I1), K1(I1), I1

)

.

4That is, for now, we disregard the competitors from strategic consideration.
5Note that since only refinery 1 can invest, the optimal crude input depends now only on the investment

of refinery 1, so that x∗

1
= x∗

1
(I1).
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2.3 The Basic Model with Uncertainty

Now, for some states of the world investing can yield higher profit, while for other ones

not investing can be more profitable. We denote these subsets of states by G and B,

respectively:

G = {i|πi
1(I) > πi

1(N)},
B = {i|πi

1(I) ≤ πi
1(N)}.

Then, the total expected profit of investing in the first period is

2
2Z
∑

i=1

φiπ
i
1(I) (2.3)

and the total expected profit of delaying investment is

2Z
∑

i=1

φiπ
i
1(N) +

∑

i∈G

φiπ
i
1(I) +

∑

i∈B

φiπ
i
1(N) (2.4)

Expression (2.3) says that if the refinery chooses to invest in the first period, it will gain

the profit of investing in both periods, while (2.4) says that if the refinery does not invest

in the first period, it knows that it will invest in the second period if the state of the world

turns out to be good (i ∈ G) and refrain from investing otherwise (i ∈ B). Consequently,

our objective will be to determine which of the two expected profits is greater and hence

to find the optimal investment rule.

2.3.3 The Case of Two Refineries

Let us proceed with a more general case, where two refineries operate on the market and

both have the investment opportunity. Then, in forming the investment rules, strategic

interaction between the two refineries must be taken into consideration. Starting from

the first period, four possible scenarios may arise. First, if both refineries decide to invest,

then no choices are left in period 2. Second and third, if only one refinery invests and

the other one delays the decision, the latter’s choice between investing and not investing

constitutes the problem of period 2. Fourth, if both refineries delay the decision, then in

period 2 a simple investment game between the two refineries is played. The tree of the

whole game with possible strategies and payoffs is depicted in Figure 2.2.

Let again φi be the probabilities of the states of the world, with the corresponding
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2.3 The Basic Model with Uncertainty

Period 1 Period 2

R1

R2

I

R1
I

R2 b

(

π1(I, I) + π1(I, I)
π2(I, I) + π2(I, I)

)

R1
N

R2

b

(

π1(I, N) + π1(I, I)
π2(I, N) + π2(I, I)

)

I

b

(

π1(I, N) + π1(I, N)
π2(I, N) + π2(I, N)

)

N

R2

N

R1

I

R2I b

(

π1(N, I) + π1(I, I)
π2(N, I) + π2(I, I)

)

R2N b

(

π1(N, I) + π1(N, I)
π2(N, I) + π2(N, I)

)

R1

N

R2

I

b

(

π1(N, N) + π1(I, I)
π2(N, N) + π2(I, I)

)

I

b

(

π1(N, N) + π1(I, N)
π2(N, N) + π2(I, N)

)

N

R2
N

b

(

π1(N, N) + π1(N, I)
π2(N, N) + π2(N, N)

)

I

b

(

π1(N, N) + π1(N, N)
π2(N, N) + π2(N, N)

)

N

Figure 2.2: The tree of the game with two refineries

realized profits of refinery r = 1, 2 in state i given investment I = {I1, I2} denoted by

πi
r(I) =

∑

z

ρr,z(Ir)x
∗
1(I)

(

θzuz + (1 − θz)dz

)

pz (·) − Cr

(

x∗
r(I), Kr(Ir), Ir

)

.

Now, similarly to the one-refinery case, we need to distinguish among the states of

the world that determine optimal strategies of the refineries in the second period. In

particular, we denote by GI
1 (BI

1) the subset of states in which investing (not investing)

is more profitable for refinery 1, given that refinery 2 invests, and similarly by GN
1 (BN

1 )

the states in which investing (not investing) is more profitable for refinery 1, given that
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refinery 2 does not invest:

GI
1 = {i|πi

1(I, I) > πi
1(N, I)}, GN

1 = {i|πi
1(I,N) > πi

1(N,N)},
BI

1 = {i|πi
1(I, I) ≤ πi

1(N, I)}, BN
1 = {i|πi

1(I,N) ≤ πi
1(N,N)}.

For refinery 2, the subsets GI
2 (BI

2) and GN
2 (BN

2 ) are defined analogously.

Then, the expected profits of both refineries for the four possible period-1 scenarios

can be summarized in Table 2.1. Again, our objective is to compare the expected payoffs

and to find the equilibrium of optimal investment rules.

R1\R2 Invest Delay

Invest

2
2

Z
∑

i=1

φiπ
i
1
(I, I)

2
Z

∑

i=1

φiπ
i
1
(I, N) +

∑

i∈GI

2

φiπ
i
1
(I, I) +

∑

i∈BI

2

φiπ
i
1
(I, N)

2
2

Z
∑

i=1

φiπ
i
2
(I, I)

2
Z

∑

i=1

φiπ
i
2
(I, N) +

∑

i∈GI

2

φiπ
i
2
(I, I) +

∑

i∈BI

2

φiπ
i
2
(I, N)

Delay

2
Z

∑

i=1

φiπ
i
1
(N, I) +

∑

i∈GI

1

φiπ
i
1
(I, I) +

∑

i∈BI

1

φiπ
i
1
(N, I)

2
Z

∑

i=1

φiπ
i
1
(N, N)

+
∑

i∈GI

1
∩GI

2

φiπ
i
1
(I, I) +

∑

i∈GN

1
∩BI

2

φiπ
i
1
(I, N)

+
∑

i∈BI

1
∩GN

2

φiπ
i
1
(N, I) +

∑

i∈BN

1
∩BN

2

φiπ
i
1
(N, N)

2
Z

∑

i=1

φiπ
i
2
(I, N) +

∑

i∈GI

1

φiπ
i
2
(I, I) +

∑

i∈BI

1

φiπ
i
2
(N, I)

2
Z

∑

i=1

φiπ
i
2
(N, N)

+
∑

i∈GI

1
∩GI

2

φiπ
i
2
(I, I) +

∑

i∈GN

1
∩BI

2

φiπ
i
2
(I, N)

+
∑

i∈BI

1
∩GN

2

φiπ
i
2
(N, I) +

∑

i∈BN

1
∩BN

2

φiπ
i
2
(N, N)

Table 2.1: The expected payoffs in the two-refinery game

2.4 Qualitative Analysis

Without knowing the exact values of the parameters, it appears rather laborious to

analytically find the solution of the game described above. Instead, we provide a brief

qualitative analysis of the equilibrium and examine how the outcome is affected by varying

different parameters.

2.4.1 One Refinery

In the case of one refinery, the decision problem involves comparing the two expressions

for investing and delaying, (2.3) and (2.4). A trivial case arises if the expected profit of

investing is lower than that of not investing. It is easy to see that the optimal decision

(in the first period) is the same as without the option to delay - the firm will choose not

to invest. Therefore, we consider only the case where the expected profit of investing
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2.4 Qualitative Analysis

is higher, that is, where the conventional NPV rule would suggest to invest. Clearly, in

order for the value of the option to delay to exist, the refinery must expect that such a

period-2 state exists in which it is profitable to refrain from investing, or, the set B is

nonempty. Then, the decision rule reduces to comparing the expected relative gain in

”bad” states in period 2 to the expected relative loss from not investing in period 1, that

is, to determining the inequality

∑

i∈B

φiπ
i
1(N) −

∑

i∈B

φiπ
i
1(I) >

<

2Z
∑

i=1

φiπ
i
1(I) −

2Z
∑

i=1

φiπ
i
1(N),

or
∑

i∈B

φi

(

πi
1(N) − πi

1(I)
)

>
<

2Z
∑

i=1

φi

(

πi
1(I) − πi

1(N)
)

.

The analysis of how investment affects the realized profit in the current state was

conducted in Section 1.7. It remains to examine the effect of stochasticity. Thus, if the

probabilities of the ”bad” states are sufficiently high and avoiding investment in these

states promises a substantial gain (as a result of a substantial price fall, for instance),

it will be optimal for the refinery to delay its decision and wait until period 2 to see

how the state of the economy evolves. Otherwise the refinery will invest immediately. In

particular, in case of only two states,6 a ”good” (g) and a ”bad” (b) state, the condition

for delaying to be optimal is given by

2
φb

φg

>
π

g
1(I) − π

g
1(N)

πb
1(N) − πb

1(I)
.

2.4.2 Two Refineries

To analyze the two-refinery game we start from Table 2.1. Again, a trivial case arises

if for both refineries not investing is (in expectation) more profitable than investing, no

matter what the other refinery does. Then, the equilibrium will have both firms delaying

their decision. Hence, we suppose that this is not the case.

Next, consider the case when refinery 2 decides to invest in the 1st period. Given this,

refinery 1 compares its expected payoff from investing and delaying. But since in the 2nd

period no game between the two refineries will be played, this problem is analogous to

the one treated above. Specifically, refinery 1 would decide to invest immediately if the

probabilities of the ”bad” states are not too high or the relative gain in these states is

low. Conducting the same comparison for refinery 2, we can determine the conditions for

6Or equivalently, two subsets of states that yield the same payoff.
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immediate investment by both refineries to be an equilibrium outcome of the game. In

particular, in case of only two states for each refinery, a ”good” (gI
1 and gI

2 , respectively)

and a ”bad” (bI
1 and bI

2, respectively) state,7 both refineries will choose to invest if the

following two conditions are met:

2
φbI

1

φgI
1

<
π

gI
1

1 (I, I) − π
gI
1

1 (N, I)

π
bI
1

1 (N, I) − π
bI
1

1 (I, I)
and 2

φbI
2

φgI
2

<
π

gI
2

2 (I, I) − π
gI
2

2 (I,N)

π
bI
2

2 (I,N) − π
bI
2

2 (I, I)
.

If one of the above conditions is violated, it can be seen that the equilibrium will have

the respective refinery delaying investment and the other one investing.8 If none of the

conditions holds, it is possible that both refineries will delay their decision. However,

deriving an exact condition in such case would be more complex, as one needs to account

for the possibility of a game played in the 2nd period. Intuitively, this type of equilibrium

can arise if both the probabilities of ”bad” states and the corresponding relative gains are

high for both refineries.

This closes our discussion of uncertainty in the refinery investment models. In the last

chapter we apply concepts presented so far to a real-world case study.

7Again, these are to be interpreted rather as subsets of states that yield the same profit for the
particular refinery, given that the other refinery invests.

8This is simply because if, say, refinery 1 preferred investing to delaying given that refinery 2 invests, it
would exhibit the same preference given that refinery 2 delays, since the prospect of refinery 2 refraining
from investment even in period 2 cannot ”hurt” its opponent.

33



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 3

Application: Refinery Investment in

Hungary and Romania

The aim of the present chapter is to apply the model exposed in the first two chapters to

a specific case study. The players of the upgrade investment game are refineries in two

CEE countries - Hungary and Romania, and their strategic behavior on their common

market is studied. The main task is to adopt the available data on these two countries, so

that the parameters of the model can be calibrated. However, since the model is rather

stylized, to be able to fit the data accurately a number of restrictions will be imposed.

We begin with a brief description of the refining sectors and the demand profiles in the

two countries. Then, the calibration is carried out and the results are discussed.

3.1 The Refining Industry

3.1.1 Hungary

All three of Hungary’s refineries - Duna, Tisza and Zala - are owned by MOL Hungarian

Oil and Gas Plc. (MOL), from 2006 an almost 100%-ly privatized company. However,

the Duna refinery is the only active crude processing refinery, with a distillation capacity

of 164 tb/d.1 The reported capacity utilization rate was rather low until 2001. Then,

MOL closed the distillation capacities at the other two refineries , so the utilization figures

approached the EU average, around 90%. The other two refineries are still used for the

desulfurization of fuels, gasoline blending and bitumen and petrochemicals production.

However, MOL has the option of reactivating the distillation capacity at Tisza in case

demand suddenly increases.

1This and subsequent data come from PFC Energy (2006) report.

34



C
E

U
eT

D
C

ol
le

ct
io

n

3.1 The Refining Industry

In 2005 the crude intake rose by 10%, bringing volumes back to levels of 2001. Also in

2001, a delayed coker was installed, which enabled the refinery to produce equal product

yields, with 12.5% less crude intake since then.

The Duna refinery is the second largest in the region. Moreover, a majority stake in

a small Slovak site Slovnaft allows MOL to coordinate its commercial strategies. In its

domestic market MOL yields surplus production and exports significant product volumes

to the former Yugoslavia, to Germany and to Austria. The refinery is linked to both

the Druzhba and the Adria crude pipeline systems, but currently makes no use of the

latter. In 2005 it processed 13% domestic crude, the remaining 87% crude was of Russian

origin, Russia’s Lukoil being the company’s main crude supplier. The inland location of

Duna efficiently protects it from product imports, except from Austria’s Schwechat, which

enjoys no technological advantage, though.

Having launched the coker in 2001, Duna is a relatively complex refinery. The site has

reduced the share of heavy fuel oil in its product yield below 3% and increased gasoline

and gasoil yields. Also, MOL invests in upgrading the Duna refinery in order to further

raise gasoline production capacity, but mainly to raise the desulfurization capacity.

The completion of MOL’s privatization gives it the freedom to develop its own long-

term growth strategy, with the prospects of expanding in both upstream and downstream,

in order to remain an influential player in the region. However, increasing dependence

on Russian crude supplies can be risky, since Russian operators may become direct

competitors for regional dominance. Another challenge may come from Austria’s OMV,

which is planning to import additional fuels from its refineries in Romania.

3.1.2 Romania

Romania’s refining sector is one of the longest-established in Europe, and among the

largest and most complex ones in the region. In 2003, the overall refining capacity stood

at 495 tb/d.2 Ten crude-processing refineries operate in Romania, dominated by two

integrated operators, which together control over half of total capacity. The 70 tb/d

Arpechim and the 69 tb/d Petrobrazi refineries are owned by Petrom, while Rompetrol

operates the 100 tb/d Petromidia and the 10 tb/d Vega sites. The rest of the sector

consists of three sites, with a capacity between 56 and 70 tb/d, and very small refineries,

with capacities of less than 10 tb/d.

The capacity utilization rates were very low for a long time, with only about 50% in

2002. Nevertheless, the production remains sufficient to export a substantial fraction

2This and subsequent data come from PFC Energy (2005) report.
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3.2 Demand Profiles

of it. In 2005, production increased significantly after Lukoil reopened its Petrotel

site. However, further capacity reductions can be expected in the coming years, due

to EU accession-driven deregulation. The overall conversion capacity is high relative

to the region, but further investment will be required mainly in the middle distillates

desulfurization capacities.

The refining margins have been among the lowest in Europe, mainly due to an unofficial

price capping system facilitated by the government prior to OMV acquiring its stake in

Petrom. Also, the absence of a connection to the Druzhba pipeline system bars the sector

from acquiring cheap Russian crude. Nearly half of the crude currently processed is of

domestic origin. Nevertheless, the margins are expected to increase after the entrance of

foreign strategic investors - Lukoil and OMV.

Romania’s largest refiner, Petrom, operates the refineries Petrobrazi and Arpechim.

Both source their crude intake partly from imports. In 2003, the Petrobrazi site began

producing EU-compliant gasoline, but was unable to produce the equivalent diesel.

Rather, it has become Romania’s largest LPG producer. In 2002, the fluid catalytic

cracking units were upgraded in both refineries. The Arpechim site is more complex and

is one of Romania’s most advanced refineries in terms of product quality. In 2003, most

of its diesel and gasoline export was EU-compliant.

The privatization of part of Romania’s refining sector promises further improvements.

Importantly, OMV’s acquisition in Romania fits its regional strategies, among which

penetrating the Hungarian market is particularly challenging.

3.2 Demand Profiles

3.2.1 Hungary

The increased use of gas and the decline of the industrial and agricultural sectors caused

Hungarian oil demand to fall through the 1980’s and 1990’s. Accordingly, gasoline demand

declined dramatically in the early 1990’s and continued to fall slowly in the late 1990’s,

only to recover in 2000 to reach an average growth of 1% per annum between 2000 and

2005, driven by increasing car ownership.3 On the other hand, increased road freight

transport and the share of diesel cars triggered a diesel demand growth reaching 9% per

annum between 1995 and 2005. Further, demand for LPG has been growing since 2000,

as was demand for naphta. Finally, demand for fuel oil in power generation rose in the

early 1990’s, but began dropping in the late 1990’s and even more sharply in the early

3Taken from Wood Mackenzie (2006a) report.
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3.2 Demand Profiles

2000s, as a result of switching to gas.

Recently the overall oil demand stabilized and it is anticipated that it grows from 6.8

Mt in 2005 to 8.8 Mt in 2020. Over 75% of that growth will come from the transport

sector, the rest from industry. Thus, gasoline demand is forecast to continue growing

moderately until 2010, when a small drop is predicted due to lower car park growth and

increasing vehicle efficiency. A steady rise in road freight is forecast to further induce

diesel demand to reach 3.4 Mt in 2020, at an annual growth rate of 3%. A modest growth

of LPG demand is forecast to continue, mainly due to a lower level of excise duty on LPG.

Naphta demand is also expected to continue growing to reach 1.4 Mt by 2020. Finally,

fuel oil demand is projected to slowly decline until 2020, driven by the decline of the

heavy industry and by further gasification.

The trends in the supply-demand balance of the refinery products have changed over

the years. Gasoline has been steadily in deficit recently, but surplus is expected to emerge

in the long term, due to presumed increased refinery production in the next years and

a slight decline in demand between 2015 and 2020. Diesel has been in surplus but is

predicted to fall into large deficits until 2010, due to an expected demand growth from

the transport sector. Finally, fuel oil is expected to be balanced slightly in surplus, as a

consequence of declining demand.

3.2.2 Romania

Following the deep restructuring of the economy in the early 1990’s, Romanian oil demand

decreased at an annual rate of 5%.4 However, economic growth in the late 1990’s and the

prospects of the EU accession promising further economic restructuring have boosted the

demand to attain a 2.5% annual growth. This development has also affected the demand

for refined products. Gasoline demand has been increasing since 1995 at a 6% annual

rate. The economic recession in the 1990’s had caused freight transport to decline, and

consequently, to decrease diesel demand by 8% per annum between 1996 and 2000. The

subsequent economic recovery triggered a high growth of freight transport resulting in

5% annual growth in diesel demand. Fuel oil demand declined sharply between 1990 and

2000, as a result of switching to nuclear, coal and gas capacities for power generation.

Total oil demand in Romania is forecast to grow at an average yearly rate of 2% from

11.2 Mt in 2005 to reach 15.2 Mt by 2020. The majority of the growth is predictably

attributed to the transport sector. Gasoline demand is expected to grow strongly at a

5% rate until 2010 due to increased car ownership and economic growth, which is also

4Taken from Wood Mackenzie (2006b) report.
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3.3 Application of the Investment Model

predicted to drive 3% annual growth of diesel demand until 2015. Fuel demand trends

are also anticipated to continue with more replacement by alternative sources.

The trends in the supply-demand balance are rather stabilized. Increased utilization

of the refineries is predicted to outweigh gasoline demand growth, so the gasoline surplus

is expected to rise. Investment in desulphurisation by main refineries will enable them

to boost exports. The diesel surplus is expected to slightly decrease, due to growing

transport demand. Fuel oil has been in a deficit but is expected to shift to a balanced

position by 2015.

3.3 Application of the Investment Model

3.3.1 Assumptions

Our goal is to apply the upgrade investment model to the framework outlined above and

to study the investment behavior of the Hungarian and Romanian refineries. However,

it is clear that we face a few challenges regarding the applicability of our model. Most

importantly, although MOL is a single Hungarian refiner, and thus can be considered

player 1 in the investment game, defining the Romanian player 2 is a little obscure. Ten

refineries operate in Romania, so the supply is rather segmented. We will therefore focus

our attention on the largest Romanian refiner, Petrom, which was recently privatized

by MOL’s major regional competitor, Austria’s OMV. Petrom operates two refineries,

Petrobrazi and Arpechim, accounting for more than half of the total Romanian refinery

production. Hence, a significant restriction to the model must be imposed, the supply of

Romanian fringe is taken as given and thus disregarded from strategic consideration both

by MOL and by Petrom.

Related to this issue is the problem of the model’s single-market requirement.5

Obviously, Hungary and Romania are two markets with MOL and Petrom delivering

products mostly to their domestic markets. Moreover, both refiners export a fraction

of their output and at the same time refined products are imported by some foreign

operators. However, for the purposes of our model it is not a dramatic diversion to treat

Hungary and Romania as a common market with two major competitors, due to their

geographic proximity. Also, similar to the problem of fringe supply, we take the exports

to and imports from out of the region as fixed and thus exclude from refiners’ decision

factors.

A consequence of these limitations is the problematic way the demand is viewed. The

5Recall from Section 1.5.2 what are the difficulties associated with multiple markets.
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3.3 Application of the Investment Model

demand the refiners are facing is a residual demand, that is, adjusted after accounting

for fringe supply, imports and exports (since we take these as fixed). Accordingly, the

parameters of the demand functions must be adjusted to reflect this issue.

Hence, taking into account the above issues, we construct a refinery duopoly

investment model as follows. We consider the two refineries, MOL and Petrom that

operate on the Hungarian-Romanian market. Their product slate is approximated

by three groups of products, light distillates, medium distillates and residual oil, the

representative products of which being gasoline, diesel and heavy fuel oil, respectively.

Based on the demand profiles, an attractive investment opportunity appears to arise.

In particular, the projected demand shift from fuel oil toward diesel seemingly favors

investing in a hydrocracking unit, which enables to increase diesel yields. This is, however,

a costly investment. Which of the refineries will invest is the core of the game we wish

to model. The final but implicit assumption, thus, is that the real-world problem can

be approximated by our stylized model, mainly in terms of the specifications of the

technological, as well as the demand side.

3.3.2 Calibration

We may now proceed to calibrating the parameters of the basic investment model based

on the available data.6 We use the 2005 data on prices, demands and supplies of refined

products in both countries. Together with the data on price elasticities of demand, which

are adjusted for residual demand, we are able to construct the demand functions. The

way we treat the problematic issues discussed previously is simply by calculating the

current imbalance between supply and demand and attribute this to fringe supply and

international trade. This imbalance is then held fixed. The calibrated demand parameters

are summarized in Table 3.1.7

Product Supply Demand az bz pz = az − bQz

Light 6012 5907 1601 0.17 594
Middle 4310 6558 1575 0.23 596
Heavy 1929 2093 574 0.17 248

Table 3.1: Calibration of the demand parameters (quantities in kt/year, prices in USD/t)

Further, knowing the refineries’ current conversion rates, capacities and crude inputs,

6The data sources include the PFC Energy (2005, 2006) and the Wood Mackenzie (2006a, 2006b)
reports, Petrom 2005 Annual Report, as well as MOL’s private resources.

7The average prices and the aggregate demands and supplies for the two countries were used. Then,
using the price elasticities of 0.6, 0.4 and 0.7 (these values are realistic, taking into account the fringe
supply and foreign trade) for light, middle and heavy products, respectively, the demand parameters were
calculated. Further, a’s were adjusted to capture the fixed supply-demand imbalance.
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3.3 Application of the Investment Model

we may calibrate the status-quo part of the model, that is, where none of the refiners

invests in upgrading capacity. We do this by equating the crude intake to the expression

in (1.6) and assuming that the players are rational profit maximizers. From (1.6) we then

obtain the only unknown variables that remain to be specified, the parameters of marginal

costs, β1 and β2. Apparently, the parameters of fixed costs (α1, α2) can be taken rather

arbitrarily, since it is only their difference after investment that matters in determining

the equilibrium, as it turns out.

The next step is to specify how the parameters change when the refineries decide to

invest in upgrading capacity. In this we rely on MOL’s expert opinions. In fact, MOL

contemplates investing in a hydrocracking unit, which would increase its diesel yield, as

well as the total refining capacity. In case of Petrom, an increase in the diesel yield is

also possible, but without affecting the total capacity. The cost parameters are then

adjusted as follows. First, before the investment, the fixed costs of both refineries are

approximately at the same level. After the investment, the cost functions become flatter.

For MOL, this is incorporated in the capacity increase, while for Petrom, parameter β2 is

adjusted. Then, the change in parameters α1 and α2 captures the proportional capacity

increase (for MOL) and the cost of investment. In Table 3.2, the parameters for both the

status-quo and the investment part are summarized.

MOL Petrom
Yields Before After Before After
Light 0.43 0.40 0.46 0.44
Middle 0.38 0.44 0.25 0.38
Heavy 0.11 0.11 0.18 0.11
Capacity 8,100 9,400 8,000 8,000
Crude intake 7,100 ? 6,400 ?
Production
Light 3,074 2,938
Middle 2,691 1,619
Heavy 802 1,126
α 2,000,000 2,050,000 3,270,000 3,290,000
β 40,883 40,883 183,008 178,000
Costs 1,717,587 ? 1,919,811 ?
Revenue 3,627,285 ? 2,987,659 ?
Profit 1,909,698 ? 1,067,848 ?

Table 3.2: Parameter values before and after the investment (quantities in kt/year)

3.3.3 Results

We now have sufficient data to solve the basic upgrade investment game as in Chapter

1. To fill the question marks in Table 3.2, we construct the matrix of optimal inputs
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3.3 Application of the Investment Model

and the payoff matrix, as in (1.9). These matrices are shown in Table 3.3 and Table 3.4,

respectively. We can immediately find the Cournot equilibrium of investment strategies.

It turns out that the equilibrium has none of the refineries investing. Thus, the prediction

of the static model is that it is not profitable for the refineries to undertake the upgrade

investment, either due to high costs associated with it, or due to relatively low demands.

MOL/Petrom Not invest Invest
Not invest 7,100 6,400 6,926 6,041
Invest 6,852 6,446 6,594 6,062

Table 3.3: The matrix of optimal inputs

MOL/Petrom Not invest Invest
Not invest 1,909,698 1,067,848 1,705,238 1,063,634
Invest 1,799,626 1,122,322 1,537,241 1,086,746

Table 3.4: The payoff matrix

Let us proceed with the more realistic setting, the two-period investment game under

uncertainty analyzed in Chapter 2. Based on the demand profiles, we project the future

demand shocks as follows. A moderate growth in gasoline demand and a fair growth in

diesel demand are forecast, while a decline in fuel oil demand is anticipated. Applying to

our framework, we approximate the price shocks by the demand shifts of these products.

In particular, suppose that next year the price of the light and middle distillates may

increase by 5% and 10%, respectively, with a 50% probability, independently of each

other, while the price of the residual fuel may decrease by 10% with a 50% probability.

Assuming that these estimates are common, we wish to find the optimal investment rules

of the two refineries, that is, whether it is profitable to invest now or to postpone the

decision until next year, when the uncertainty is resolved. What we need is to construct

the payoff matrix of the four combinations of the investment strategies, as in Table 2.1.

After some calculations we obtain the payoff matrix shown in Table 3.5.

MOL/Petrom Delay Invest
Delay 3,866,434 2,305,107 3,597,967 2,310,037
Invest 3,805,237 2,415,661 3,250,397 2,363,942

Table 3.5: The payoff matrix of the two-period game

Hence, we can see that for Petrom the equilibrium investment rule is to invest

immediately, while MOL should delay its decision. It turns out that this result is

robust against various other demand scenarios, provided that the projected diesel demand

increase is sufficiently high. The explanation can be the following. Petrom utilizes the
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3.3 Application of the Investment Model

benefits of investment in all states and investing is a dominant strategy. The potential

gain from the increased diesel yield outweighs the particularly high cost of investment. On

the other hand, MOL, despite being slightly advantaged in terms of costs and capacity,

the advantage in yields is so high that it is already located on the backward bending part

of its profit function (see Section 1.7.2) and thus, rather paradoxically, investing seems

unprofitable for MOL.

We conclude that in the static setting, high investment costs prevents both MOL and

Petrom from investing in upgrading capacity. A prospect of a future demand growth

of diesel and gasoline, though, apparently benefits Petrom and encourages it to invest.

However, this result should be regarded with caution, due to some notable restrictions of

the model’s application.
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Conclusion

The aim of this thesis was to build an oligopoly model which took into account key

characteristics of the oil refining industry. Using game theory tools and elementary

stochastic modeling techniques, the purpose was to capture the following particularities.

First, the output of a refinery is a heterogeneous composite product, so the refinery is

considered as a multi-product firm simultaneously competing in multiple product markets.

Second, due to a relatively high share of each refinery in the regional market, adjusting

the production to meet changing demand involves large-scale investment that carries

significant sunk costs. Third, a high degree of uncertainty over future payoffs is associated

with operating in the refinery market, due to fluctuating market conditions.

In view of recent changes in the demand profiles from heavy products to lighter

products the question arises whether and to what extent it is profitable for the refineries to

undertake the upgrade investment whereby they can increase the refinery yields of lighter,

higher-valued products. In an attempt to answer this question, strategic interaction

among refineries was taken into account, and a two-stage Cournot investment game was

designed. In the first stage, the refineries choose their investment strategies by which

they can build an upgrading capacity, enabling them to reprocess heavy residual output

to obtain higher yields of lighter output. Then, given the firms’ stage-1 choices, a capacity-

utilization game is played, where the refineries choose the optimal crude oil intake, which,

due to the special character of the refining technology, is a single decision variable of the

second stage.

In this static and deterministic setting, the goal was to study the equilibrium behavior

of the refineries and to determine the conditions under which a particular set of investment

strategies is optimal. Due to considerable mathematical complications, the investment

game between only two refineries was focused on, presumably, without loss of economic

insights. Also, consistent with the discrete nature of investment, the game was reduced

to two choices - to invest or not in the upgrading capacity. A simple qualitative analysis

revealed that, as long as one of the refineries enjoyed a sufficient technological advantage,

the equilibrium would have only this refinery investing, otherwise, if the demands were
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high enough and the costs of investment not too high, both refineries would invest in the

equilibrium, consistently with the findings in the literature.

Furthermore, to model uncertainty over future payoffs, stochasticity was imposed on

the demand side. Particularly, in addition to what is determined by the inverse demand,

the price can increase or decrease by some random factor, the probabilities and magnitudes

of these shocks being of common knowledge. Again, to keep the analysis simple, a two-

period game with two refineries was designed. In each period an upgrade investment

game is played, with the difference that the refineries resolve uncertainty only in the

second period, while in the first period they base their decisions on their expectations.

Also, consistent with the real options approach, the investment is irreversible, so once the

refinery decides to invest in the first period, it cannot undo its decision later, should the

demand turn out to be unfavorable.

The purpose of this model was to examine whether it was profitable for the refineries to

invest immediately or to use the option to wait and see the realization of the demand shock,

and, possibly, even to refrain from investing at all, if it turned out to be unprofitable.

Again, a short qualitative analysis revealed that if the probabilities of the unfavorable

states were too high as was the relative gain in these states compared to preemptive

investment, then the refinery would delay its investment decision.

Finally, the applicability of the refinery investment model was illustrated by a case

study. The investment behavior of Hungarian and Romanian refineries was studied.

The projected demand shift from fuel oil toward diesel seemingly favors investing in a

hydrocracking unit, which makes it possible to increase diesel yields. The application

of the investment model attempted to answer the question which of the refineries would

actually invest. Consistently with previous theoretical findings, the results suggest that

although the Hungarian refinery enjoys a slight technological advantage, the cost of the

investment is rather high, resulting in both refineries refraining from investment. However,

when the model with uncertainty was applied and a sufficiently high probability for the

upward shift of the diesel demand was assumed, it was found that it would be profitable

at least for the Romanian refinery to invest immediately, while the Hungarian refinery

would, rather paradoxically, delay the investment decision.

Lastly, it must be noted that throughout the construction of the model, a few

simplifications and diversions from reality were necessary. Most importantly, refined

product markets are regionally segmented by transportation costs, which was, due to

mathematical complication, omitted in the model. Thus, the model deserves further

elaboration and development. However, the major contribution of this thesis is the

combination of two traditional theories in the economic literature - multi-product
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oligopoly and investment under uncertainty - and applying them to analyze strategic

decision making of firms in a particular industry - in the refinery industry. The author

believes that this goal has been fulfilled.
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Appendix

A.1 Derivation of Optimal Input in the Basic Model

For the case of fixed demand the profit-maximization problem yields the first-order

condition (FOC)

0 =
∂πr(xr)

∂xr

=
∑

z

ρr,zp
∗
z −

∂Cr(xr, Kr)

∂xr

=
∑

z

ρr,zp
∗
z −

βr

Kr − xr

.

Solving for xr gives

xr = Kr −
βr

∑

z ρr,zp∗z
.

In the general case we have the FOC:

0 =
∂πr(xr)

∂xr

=
∑

z

ρr,zpz(Qz) +
∑

z

ρr,zxr

∂pz(Qz)
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∑
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(
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∑

i

ρi,zxi

)

− xr

∑
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=
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z
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∑

z
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∑
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z

ρ2
r,zbz −

βr
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Rearranging gives

(

2
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+
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= 0
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Solving for xr and applying the capacity constraint xr < Kr we have

xr =

(

∑

z

ρr,zaz−
∑

z

ρr,zbz

∑
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∑
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4
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)
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−8
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∑
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z
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∑
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)

4
∑

z

ρ2
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A.2 Derivation of the Slope of the Reaction Function

To show that the reaction curve is downward-sloping, let us differentiate (1.12) with

respect to x2. We obtain

−Γ + A1Γ−x2Γ2−2ΓK1B1√
A2

1
−2A1x2Γ−4A1K1B1+x2

2
Γ2+4x2ΓK1B1+4K2

1
B2

1
+8B1β1

4B1

.

Denoting the expression in the numerator by N and solving it for x2 we obtain

x2 =
2A1NΓ + A1N

2 − 4K1B1NΓ − 2K1B1N
2 ± 2

√
2(Γ + N)

√

−N(2Γ + N)B1β1

ΓN(2Γ + N)
.

We can see that for N > 0 the expression under the root sign is negative, since all the

other parameters are positive. For N = 0, the expression does not make sense. It follows

that there exists no real x2 for which the reaction is upward-sloping or constant. Hence,

it must be downward-sloping.
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