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Abstract

This thesis is concerned with the long-term behavior of certain mathematical mod-

els describing predator-prey interactions, virus propagation in vivo and integrated pest

management strategies. Of interest are the stability and impulsive controllability of such

models, since the corresponding mathematical findings are then easily interpretable in

terms of biological concepts with major relevance such as disease endemicity, species ex-

tinction or permanence and pest eradication.

Threshold conditions for the global stability of the equilibria are obtained by means

of Lyapunov’s direct method combined with LaSalle invariance principle. These results,

stated in terms of a biologically significant key parameter called the basic reproduction

number, are then reconfirmed by using monotonicity methods. The models of concern are

formulated in a general way, no specialization being made, for instance, on the incidence

rate of the infection and on the removal rate of the virus (for the virus model) or on

the functional response of the predator (for the predator-prey model). This makes the

findings are applicable to a large class of real-life interactions.

Also, threshold conditions with immediate biological significance which guarantee the

global success of integrated pest management strategies are derived using Floquet theory.

The corresponding impulsive controllability results are then obtained by using comparison

arguments. Also, a bifurcation analysis is performed via an operator theoretic approach

and some situations leading to a chaotic behavior of the solutions are investigated by

means of numerical simulations.
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Introduction

Despite of an active searching for general patterns and a relentless effort towards the

understanding of underlying biological processes, we are still far from a thorough inter-

pretation of certain biological phenomena, the length of the delay between contamination

with HIV and the onset of AIDS being just an example which comes to mind. Con-

sequently, mathematical models can often serve as helpful research tools for biologists,

since various conflicting suppositions about the nature of the biological interactions of

concern can be made precise in mathematical terms and then the predictions gained

through the use of these models can be tested against real data. If proven consistent, a

mathematical model can then be used for interpolating the available data and drawing

conclusions about situations not previously tested, saving difficult experimentation and

painful trial-and-error work in the process. Even the simple process of constructing a

sound mathematical model, not necessarily very accurate, can be useful, since it forces

the searching of a logical framework for the phenomena to be described and requires the

identification of their main features together with precise descriptions in mathematical

terms.

Mathematical biology is consequently an ever-expanding subject, which deals, for in-

stance, with the use of mathematical models in virus dynamics, biofluid mechanics, pat-

tern formation, angiogenesis, to name just a few applications. So broad a subject, then,

cannot have its boundaries clearly delimited and its core area well defined. After all, not

even its name would be universally agreed upon, as it sometimes happen with interdisci-

plinary sciences. Biologists, for instance, may prefer to name the subject “mathematical

biology”, while mathematicians may understandably favor a more self-serving term like

“biomathematics”. Obviously, the perception of the subject for both parties, as well as

for the other parties involved (epidemiologists, geneticists, bioinformaticians and so on)

will also be different. One thing is clear, though: no matter what area of mathematical

biology is concerned and no matter which are the mathematical tools of choice, the only

relevant research results are those which bear clear biological relevance.

The viewpoint of using predominantly analytic methods in order to reliably predict

biological outcomes for given models will be embraced throughout this thesis. In this

1
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regard, only deterministic models involving the use of ordinary and impulsive differential

equations will be employed and questions about validation, stability and control strategies

will be answered, although the importance of statistical methods is also recognized.

This thesis is divided into three chapters, each corresponding to a major biological is-

sue to be discussed. Chapter 1 is concerned with predator-prey interactions characterized

by features such as stage structure, impulsive controls, delay caused by maturation time

and also with coupled interactions in the form of a tritrophic food chain. In this regard,

Section 1.1 is devoted to introducing, discussing and exemplifying the basic concepts of

predator-prey interactions, such as the intrinsic growth rate of the prey and the func-

tional and numerical response of the predator. Section 1.2 treats the global dynamics of

a predator-prey model with stage structure for the predator in which the mature preda-

tor is characterized by a prey-dependent functional response in an abstract form. The

global stability of the positive steady state is first obtained by using a suitable Lyapunov

functional and LaSalle’s invariance principle, under a persistence condition for prey and a

condition upon the numerical response of the mature predator when the prey population

is at the carrying capacity of the environment. This condition strikingly resembles the

endemicity condition used in Section 2.2. The results are then reconfirmed by using a very

different approach, that is, the theory of competitive systems. The existence of orbitally

stable periodic solutions is also discussed along with the stability of the prey-only equi-

librium and the biological significance of the results is motivated. This section is based

on results obtained in Georgescu and Hsieh [28] and Georgescu and Moroşanu [30].

Section 1.3 is concerned with another extension of the classical Lotka-Volterra model

of predation, this time an impulsively perturbed tritrophic food chain system being inves-

tigated. Nonlinear general smooth functions are used to model the functional response of

the intermediate consumer and of the top predator and a general prey-dependent model is

consequently obtained. It is seen that the local stability of the intermediate consumer-free

periodic solution is assured, provided that a certain condition on the productivity of the

intermediate consumer is satisfied. This condition is then seen to be threshold-like, since

it is observed that if the reverse of the productivity condition is satisfied, then the resource

and intermediate consumer-free periodic solution is globally asymptotically stable.

A sufficient condition for the global stability of the intermediate consumer-free periodic

solution, corresponding to the ultimate success of the pest management strategy which

motivates the model, is established by means of a comparison argument and of integral

2
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estimations. It is also observed that, theoretically speaking, the control strategy can

be always made to succeed by means of using highly effective pesticides or voracious

top predators and by means of releasing top predators either frequently enough or in a

sufficiently large amount. Any of these features alone can ensure the global success of the

control strategy, although in concrete situations these requirements may or may not be

biologically feasible or may require a large amount of resources. Finally, it is observed

that since the impulsive perturbations induce commensurate oscillations as they act with

the same period, the system displays an oscillatory behavior, tending to an impulsively

perturbed periodic solution for a large portion of the parameter space. A numerical

analysis of some situations leading to a chaotic behavior of the system is also provided.

This section is based on the results obtained in Georgescu and Moroşanu [29].

In Section 1.4, an impulsively perturbed predator-prey model with delay, stage struc-

ture and Beddington-DeAngelis functional response for the mature predator is analyzed.

The delay parameter is introduced as a constant maturation time, the novelty of the

model consisting in the incorporation of the periodic human exploiting behavior due to

seasonal hunting and harvesting. It is shown that if few mature predators introduced

in a mature predator-free environment with prey at carrying capacity cannot reproduce

fast enough, compensating through-stage mortality, as described by a certain “degree of

stage structure” incorporating the delay term, then the predator-free periodic solution is

globally asymptotically stable. It is also seen that systems with low resources are more

likely to be stabilized to the predator-free periodic solution, while increasing the carrying

capacity of the environment may destabilize an otherwise stable predator-free periodic

solution. Also, it is observed that when the prey has a large intrinsic growth rate, the

proportional reduction of the pest population caused by the use of the impulsive control is

small and the predators can breed quickly, then the coexistence of the prey and predator

populations is assured. This section is based on the results obtained in Zhang, Georgescu

and Chen [138].

Chapter 2 is dedicated to analyzing the dynamics of a viral disease. To this purpose,

several basic concepts of mathematical epidemiology, such as the incidence rate and the

force of infection, the rationale behind using compartmental models and the basic repro-

duction number as a threshold parameter are presented in Section 2.1. In Section 2.2, the

global dynamics of a compartmental model which describes the propagation of a virus

in vivo is analyzed using an argument based on the construction of several Lyapunov

3
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functionals and the use of LaSalle invariance principle. The main feature of this model is

that the functional coefficients involved in its formulation are given in an abstract form,

no specialization being made, for instance, regarding the particular form of the incidence

rate of the infection and of the removal rate of the virus. In certain concrete situations,

these functional coefficients are far from being well-known and an abstract functional

form should consequently be employed, fact which makes our approach worth of consid-

eration. In spite of this abstraction, results regarding the global stability of both the

disease-free and the endemic equilibrium are still obtained under certain conditions, the

most important of which being the monotonicity of the functional quotient between the

nonlinear force of infection and the removal rate of the virus. The existence of a thresh-

old parameter, the so-called basic reproduction number, which controls the stability of

both the disease-free and the endemic equilibrium, not to mention the very existence of

the latter, is consequently established. Moreover, in the absence of the above-mentioned

monotonicity property, local stability results are established and estimations for the sizes

of the domains of attraction are given. The biological significance of the results and a

possible extension of the model are also discussed. The results in this section are based

on Georgescu and Hsieh [27].

Chapter 3 is devoted to discussing a pest removal strategy. First, in Section 3.1,

an overview of the basic goals and methods of integrated pest management strategies

is given. The purpose of Section 3.2 is to construct a mathematical model describing a

pest management strategy relying on the impulsive use of a biological and a chemical

control, which are supposed to act in a periodic fashion, with the same period but not

simultaneously. It is seen that if a certain inequality involving the total action of the

nonlinear force of infection in a period is satisfied, then the susceptible pest-eradication

solution is globally asymptotically stable, while if the opposite of this inequality is satisfied

then the susceptible pest-eradication solution loses its stability and the system under

consideration becomes uniformly persistent. Although the proof of the global stability

result is rather computationally intensive, an immediate justification for the use of the

stability condition is given through a Floquet analysis of the linearized system. It is also

found out that the above persistence and stability conditions have immediate biological

interpretations as balance conditions for the total loss of susceptibles in a period due to

their movement to the infective class and to their removal due to pesticide spraying, on

the one side, and the gain of newborn susceptibles in the same amount of time, on the

4
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other side. It is also observed that in a particular case the above results establish the

existence of a certain threshold parameter for the stability of the system. In addition, is

observed that, from a theoretical viewpoint, the control strategy is successful if enough

resources are invested. The results in this section are based on Georgescu and Moroşanu

[31].

In Section 3.3, the limiting case which separates the situations considered above is

treated from a bifurcation theory viewpoint. The problem of finding nontrivial periodic

solutions is reduced to a fixed point problem, which is in turn treated using the methods

of bifurcation theory. It is shown that once the limiting condition is reached, then the

trivial periodic solution loses its stability and a nontrivial periodic solution appears via

a supercritical bifurcation. In concrete terms, a nontrivial periodic solution corresponds

to the apparition of a persistent susceptible pest population, while a nontrivial periodic

solution with small amplitude, below the economic injury level, indicates that the pest

management strategy is still successful, although the pest population is not completely

eradicated. The results in this section are based on Georgescu, Zhang and Chen [32].

5
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Chapter 1

Predator-prey interactions: enlarging Lotka-Volterra model

1.1 Basic concepts of predator-prey interactions

The Lotka-Volterra model

The Lotka-Volterra model, proposed independently by the American ecologist Alfred J.

Lotka in 1925 as a description of a predator-prey system consisting of a plant population

and of a herbivorous animal which relies on this plant as its only food source and by the

Italian mathematician Vito Volterra in 1926 as a model to describe the interaction between

sharks and fishes in the Adriatic sea, is the simplest model of predator-prey interaction.

It shall consequently be used as a vehicle to introduce a number of theoretical concepts.

Denoting by P = P (t) the density of the predator population and by N = N(t) the

density of the prey population, the model can be described by the following differential

system

(LV)

⎧⎨⎩N ′(t) = rN(t) − aN(t)P (t),

P ′(t) = caN(t)P (t) − dP (t),

where r, a, c, d > 0. The significance of the parameters used in the Lotka-Volterra model

is as follows: r is the growth rate of the prey in the absence of the predation, d is the

mortality rate of the predator, a is the search efficiency (attack rate) of the predator and

c is the efficiency of the predator at converting prey into predator offsprings.

The simplicity of Lotka-Volterra model relies on certain assumptions. First, it is

supposed that the prey population has unlimited food supply and will grow exponentially

in the absence of the predator, as seen from the limit case equation N ′(t) = rN(t), with

solution N(t) = N0e
rt. It is also supposed that the predator species feeds on prey only

and on nothing else, and will starve and become extinct in the absence of prey, rather

than switch to a different type of food, as seen from the limit case equation P ′(t) =

−dP , with solution P = P0e
−dt. Other simplifying assumptions are also made upon

prey searching, prey consumption and environmental complexity. That is, it is assumed

6
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that both species move randomly in a homogeneous environment, which reflects into a

number of predator-prey encounters directly proportional to the product NP of prey and

predator populations, respectively, among of which a fixed proportion aNP are successful.

Note that the fact that the number of predator-prey encounters is directly proportional

to the product NP embeds the very simple fact that there is zero interaction between

these species if one of them is extinct. Finally, it is assumed that the intake of prey is

transformed into predator offsprings at a fixed rate, this assumption being responsible for

the term caNP in the second equation.

These simplifications lead to a number of limitations of the Lotka-Volterra model.

First of all, the per-capita predator consumption rate is aN , while the per-capita predator

birth rate is caN , that is, they are both unbounded when the size of the prey population

grows large, which is unrealistic, as predators need time to hunt and digest prey and

also manifest satiation. Also, the mathematical model is in no circumstance structurally

stable and exhibits periodic oscillations during which the sizes of the predator and prey

populations become much smaller than 1 and easily recover afterwards, which is obviously

unacceptable. It then appears that the Lotka-Volterra model alone is not enough to

describe many predator-prey systems and system-specific information should be added.

A general predator-prey model

After Lotka-Volterra model has been introduced, various studies tried to refine it in many

ways and to address some of the shortcomings mentioned above. A very general model

has been proposed by Yodzis in [135], in the following form

(Y)

⎧⎨⎩N ′(t) = f(N(t)) − P (t)F (N(t), P (t)),

P ′(t) = P (t)G(N(t), P (t)).

That is, in order to characterize such a model, three functions have to be given, namely:

f(N), the intrinsic growth rate of the prey population, that is, the growth rate of the

prey population in the absence of the predation, F (N,P ), the predator’s functional (be-

havioral) response, which represents the number of prey individuals consumed per unit

area and unit time per single predator, that is, the dependence of the rate of consump-

tion upon the density of the prey, and G(N,P ), the predator’s numerical response, which

represents the per capita growth rate of the predator population, that is, the dependence

of the reproductive rate upon the density of the prey.

7
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Of course, in order to bear significance, a model should not only be complex enough

to describe the underlying biological interactions, but should also be mathematically

tractable. In this regard, a few particular forms of the functions mentioned above have

been proved fit to describe certain concrete biological systems, the general form mentioned

above being obviously too vague. Note also that a particular form of the model proposed

by Yodzis is the following Rosenzweig-MacArthur model

(RMA)

⎧⎨⎩N ′(t) = f1(N(t)) −N(t)P (t)F1(N(t)),

P ′(t) = P (t) (cN(t)F1(N(t)) − e) .

The intrinsic growth rate of the prey population

The British political economist Thomas Malthus is generally credited with the idea that

the populations grow exponentially over time. This type of population growth has been

conjectured to occur since it has been supposed that the growth rate of the population is

directly proportional to the population size.

The resources which support the prey population, however, are largely fixed and cannot

grow ad infinitum. As the habitat becomes crowded, diseases act as a limiting factor in real

populations and so does also intraspecific competition. Generally, it has been observed

that the growth rate of the prey population declines at higher prey densities, and there

is an upper limit K of the population density the population can support, called the

carrying capacity.

The logistic model has been introduced by the Belgian mathematician Pierre Verhulst

in 1838 in [127]. In this model the growth rate of the prey population, called hereinafter

the logistic growth rate, is given by

fL(N) = rN

(
1 − N

K

)
,

where r can be interpreted as the intrinsic population growth rate in the absence of the

intraspecific competition. Actually, the logistic model combines three ecological processes:

reproduction, death and competition.

To this day, the logistic growth rate is perhaps the most used to model population

growth. One of its shortcomings, however, is as follows. First, r is primarily seen, as

mentioned above, a parameter which controls the population growth; there are slowly

reproducing population (with low r) and rapidly reproducing populations (with high r).

However, r controls not only the population growth but also the population decline (when

8
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N > K), and populations with a slow (high) reproductive rate may not have the same

type of mortality rate. That is, the logistic growth model may not be appropriate for

populations with different types of reproduction and mortality rates.

Another growth rate with somewhat similar properties which is especially in use in

fishery industry is the one introduced by the Austrian biologist Ludwig von Bertalanffy,

in which

fvB(N) = r(K −N)

called the von Bertalanffy growth rate.

A growth rate which provides a good fit for situations in which growth is slower when N

is close either to 0 or to the carrying capacity K is the Gompertz growth rate, introduced

by the Jewish mathematician Benjamin Gompertz in 1825, for which

fG(N) = fN ln
K

N
.

A very general population growth model has been introduced by the British botanist

Francis J. Richards in 1959, encompassing the logistic, von Bertalanffy and Gompertz

growth rate. In Richards model, the growth rate has the form, called hereinafter the

Richards growth rate,

fR(N) =
rR

1 − δ
N

((
N

K

)δ−1

− 1

)
, δ �= 1.

That is, the growth of the prey population N is proportional to its size multiplied by a

saturating function. The constant K is related to the intrinsic population growth rate, as

seen from the fact that the initial growth rate is rR
δ−1

, while δ determines the shape of the

curve.

For δ = 2, fR(N) reduces to

f2(N) = rRN

(
1 − N

K

)
,

that is, N enjoys in this case a logistic growth rate. For δ = 2
3
, one obtains

f 2
3
(N) = 3rRN

((
N

K

)− 1
3

− 1

)
,

and consequently N
1
3 verifies

d(N
1
3 )

dt
= rRK

1
3 − rRN

1
3 ,

9
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that is, a von Bertalanffy growth. Finally, for δ → 1 one obtains

flimδ→1
(N) = rRN ln

K

N
,

that is, a Gompertz growth rate. A growth rate of a somewhat different nature, defined

as

fNG(N) = N
(
rN1− x

K − d
)
,

has also been proposed by Nisbet and Gurney in [104].

The functional response of the predator

To elaborate upon the functional and numerical response of the predator, it is important

to characterize the way in which the predators interact with one another. While in

some situations, especially at low predator densities, it can safely be considered that

predators do not interact with one another, individual predators may interfere with each

other’s feeding and hunting activities, therefore negatively affecting population growth or,

although less likely, may achieve a certain form of cooperation, facilitating one another’s

feeding activities. As mentioned by Yodzis in [135], especially for social animals such as

marine mammals, this form of interaction cannot be ruled out.

Holling has developed in [51] and [52] a detailed analysis of the components of the func-

tional response, assuming that predators do not interfere with each other. His subsequent

assumptions were that the total time allotted to feeding is divided between searching for

prey and handling prey and that the handling time is the same for all prey consumed.

Let us also denote by a the attack rate, that is, the amount of prey consumed per

unit time, by TS the time spent searching for prey and by Th the time spent handling

prey. Then the total amount of prey consumed is aTS and since the functional response

represents the total amount of prey consumed per unit time, one has

F (N,P ) =
aTS

TS + aTSth

and consequently

F (N,P ) =
a

1 + ath
.

If no interference between predators is assumed, then the attack rate is proportional to

the existing prey density, that is a = bN , b > 0. One then has

FC(N,P ) =
bN

1 + bthN
,
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that is, a functional response of type II (cyrtoid) in Holling’s classification from [51]. If

the predators are more efficient at higher prey densities and less efficient at lower prey

densities, a search rate of type a = bN2 may be considered, in which case

FS(N,P ) =
bN2

1 + bthN2
,

that is, a functional response of type III (sigmoid) in Holling’s classification. These

differences in the efficiency of searching may be due to prey refuges or to the fact that

the predators may detect and respond to chemicals emitted by prey by increasing their

predation activity (especially when prey are insects), while some predators may switch to

the most abundant prey.

Holling also considered a type I (linear) functional response, for which FL(N,P ) = bN .

This functional response has been shown to model the behavior of passive predators such

as spiders. An interesting conclusion can be drawn by looking at the associated mortality

rates caused by predation, that is,

ML(N,P ) = b, MC(N,P ) =
b

1 + bthN
, MS(N,P ) =

bN

1 + bthN2
.

Since MS is the only mortality rate which is actually increasing on a certain subinterval

(specifically, on [0, 1√
bth

]), a predator with a functional response of type III is the only one

able to regulate a prey outbreak, but its regulatory effect is limited to prey populations

with densities less than 1√
bth

, since for higher densities the mortality rate starts to decrease.

Another functional response has been proposed by Ivlev in [59], for which

F (N,P ) = k
(
1 − e−cN

)
.

Following the classification given in Arditi and Ginzburg [6] or in Huisman and DeBoer

[55], the functional responses above may be termed as being prey-dependent, since they

depend only on prey density N and not on predator density P . In this regard, an attack

rate a which depends upon both N and P gives rise to a so-called predator-dependent

functional response (to underline the dependence upon the predator density P , since F is

assumed to depend upon N anyway), or, in the particular case in which a depends upon

the prey-to-predator ratio N
P

, to a ratio-dependent functional response.

Hassell and Varley used in [43] an attack rate of type a = cNn

Pm , n,m > 0, for which

F (N,P ) =
cNn

Pm + cNnth
.

11



C
E

U
eT

D
C

ol
le

ct
io

n

A problem which is common to such type of attack rates is that as P → 0 one has

a → ∞, that is, such predators become unreasonably efficient at small densities. A

different attack rate, addressing the issue mentioned above, that is, the boundedness of

the attack rate when there are few predators, has been proposed by DeAngelis et al in

[21] and by Beddington in [11], actually for different reasons. In this setting, a = cN
P0+P

;

as P → 0, one has that a→ cN
P0

. One then has

F (N,P ) =
1
th
N

N + 1
cth
P + 1

cth
P0

.

It is then seen that this functional response has some qualitative features of the ratio-

dependent functional responses but keeps away from the “low densities problem” men-

tioned above. Regarding the general suitability of prey-dependent and ratio-dependent

functional responses, it is believed that prey-dependent functional responses are more

appropriate for situations in which predation involves random or no search process, while

ratio-dependent functional responses are more appropriate for situations in which preda-

tion involves a thorough search process. See, for instance, Kuang and Beretta [72]. Other

types of functional responses which account for interference between predators have also

been proposed. See, for instance, Crowley and Martin [19]. See also the comprehensive

paper of Skalski and Gilliam [121] for a comparison of the accuracy provided by these al-

ternative functional responses based on statistical data for a wide range of predator-prey

interactions.

The numerical response of the predator

Naturally, the reproductive rate of the predator is proportional to their predation rate, as

increased food intake means more energy available for reproduction. The simplest form

of a numerical response is

G(N,P ) = −d+ cF (N,P ),

appropriate when F is a prey-dependent functional response (F = F (N)), or at least the

only effect of predator interference is on each predator’s rate of consumption. Here, d is

the death rate of the predator, while c is a conversion coefficient. Another different form

of the numerical response is Leslie’s numerical response (see Leslie [78]), in the form

G(N,P ) = r

(
1 − P

hN

)
,
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where r and h are positive constants. Here, it is assumed that the “carrying capacity”

hN depends directly upon the available prey density N . See also Yodzis [135].

1.2 Global dynamics of a predator-prey model with stage structure for preda-

tor

1.2.1 A survey on stage-structured models

In classical models of Lotka-Volterra type it is assumed that all individuals of a single

species have largely similar capabilities to hunt or reproduce. However, the life cycle of

most, if not all, animals and insects consists of at least two stages, immature and mature,

and the individuals in the first stage often can neither hunt nor reproduce, being raised

by their mature parents. Further immediately recognizable morphological and behavioral

differences may exist between these stages and other adaptive stages, such as dormancy

stages, may exist for immediate survival purposes.

To study this situation theoretically, stage-structured models have been attracted

much attention in the recent decades. Fundamental work towards a systematic approach

to stage-structured model formulation has been made by Gurney et al. [37], Nisbet and

Gurney [105], Nisbet et al. [106]. Further progress has been made by Aiello and Freedman

who proposed and studied in their often quoted work [3] a single species model with stage

structure and discrete delay, predicting the global attractivity of the positive steady state

and thereby suggesting that the stage structure does not generate sustained oscillations,

at least for a single species model. General consistency criteria to be satisfied by models

which describe stage-structured ecological interactions have been laid out in Kuang [68]

or Arditi and Michalski [7]. See also Liu, Chen and Agarwal [87] for a recent survey on

the dynamics of stage-structured population models with an emphasis on modeling issues.

Predator-prey models with stage structure for predator have received considerable at-

tention in recent years. Magnusson studied in [103] the destabilizing effect of cannibalism

in a predator-prey system in which mature predators prey upon both immature predators

and prey individuals. Wang [130] and Xiao and Chen [134] studied the global stability

and persistence of a stage-structured predator-prey model by means of the theory of com-

petitive systems. See also Wang and Chen [131], Wang et al. [132], and Gourley and

Kuang [36] for stability analyses of staged predator-prey models with time delays due

to the gestation of the predator and the crowding of the prey. The existence of positive
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periodic solutions for a delayed non-autonomous ratio-dependent predator-prey system

with stage structure for predator has been established by Chen in [17] with the help of

coincidence degree theory.

Apart from analyzing the stability of their delay model, Gourley and Kuang [36] also

discussed its oscillatory dynamics for a linear functional response of the mature predator

and observe that sustained oscillations take place only for a limited interval of maturation

delays. This happens since, for small delays, their models inherits the properties of the

nondelayed (of Lotka-Volterra type) system. However, if the maturation delay is too long,

then the highest possible recruitment rate to adulthood drops below the adult death rate

and the predator population dies out.

As far as the asymptotic behavior of predator-prey systems is concerned, it is known

from Poincare-Bendixson theory that two dimensional continuous time models can ap-

proach either an equilibrium state or a limit cycle with any type of chaotic behavior being

excluded, while three and higher dimensional models can exhibit more complex behavior.

In this regard, staged models may provide in some situations a richer dynamics which

leads to a better understanding of the interactions within the biological system under

consideration. Such models may also incorporate parameters, such as different death

rates for mature and immature predators and various delay effects, which are biologically

more meaningful.

In [131], [130], [134] the following predator-prey model with stage structure for preda-

tor has been considered

(1.2.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′(t) = x(t) (r − ax(t)) − bx(t)

1 +mx(t)
y2(t),

y′1(t) = k
bx(t)

1 +mx(t)
y2(t) − (D + d1)y1(t),

y′2(t) = Dy1(t) − d2y2(t).

Here, x(t), y1(t), y2(t) are the densities of prey, respectively of immature and mature

predators at time t. It is assumed that in the absence of the predators the prey grows

according to a logistic law with intrinsic growth rate r and carrying capacity r/a, while

predators feed on prey only and do not contribute to the growth of the population towards

the carrying capacity. It is also assumed that the immature predators are either raised by

their parents or consume a resource which is available in abundance and for which they

do not have to compete. As a consequence, neither crowding nor intraspecies competition
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terms are added into the equation which models the growth of the immature predator

class. As seen in Section 1.1, the function x �→ bx/(1 + mx) represents the Holling

type 2 functional (behavioral) response of the mature predator, while the function x �→
kbx/(1+mx) is the associated numerical (reproductive) response of the mature predator,

with k representing the conversion coefficient under the assumption that the reproduction

rate of the mature predators is directly proportional to the amount of prey consumed.

The constants d1 and d2 represent the death rates of immature and mature predators.

Also, it is assumed that the predators become mature after a fixed age. In this respect,

D denotes the rate at which immature predators become mature predators, that is, 1/D

represents the total time spent by a predator in its immature stage.

It was proved in Wang [130] that if the condition

(1.2.2) d2(D + d1) <
kbrD

a+mr

holds, then the system (1.2.1) is uniformly persistent and a unique positive steady state

E∗ = (x∗, y∗1, y
∗
2) exists. Moreover, it is shown that, if in addition to (1.2.2), the following

conditions are also satisfied:

x∗(D + d1 + d2)(a+ 2max∗ −mr)

(
D + d1 + d2 +

x∗(a + 2max∗ −mr)

1 +mx∗

)
(1.2.3)

>
by∗2d2(D + d1)

1 +mx∗

a > b+
bmy∗2

1 +mx∗
, D + d1 >

kbr

a+mr
+

kby∗2
1 +mx∗

, d2 > D,(1.2.4)

then the positive steady state E∗ = (x∗, y∗1, y
∗
2) is globally asymptotically stable, where

(1.2.3) alone accounts for the local stability of E∗. The proof uses the theory of competitive

systems as developed in Smith [122], with condition (1.2.3) being used to establish the

local stability of E∗.

More recently, Xiao and Chen [134] noted that condition (1.2.4) contradicts condition

(1.2.2). Incidentally, let us note here that the same applies to relations (2.2) and (4.1)

in Wang and Chen [131], albeit in a slightly different form. They also showed that the

positive steady state E∗ is globally asymptotically stable if (1.2.2) and (1.2.3) hold, in

addition to one of the following two conditions:

(H1) D + d1 > r and x >
r

2a
; (H2) D + d1 < r and x >

r +D + d1

2a
.

Here, x > 0 is the persistency constant for x, which satisfies x ≤ lim inf
t→∞

x(t). The

proof is again based on the theory of competitive systems and uses a result given by Li
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and Muldowney in [81], which amounts to the fact that for competitive and permanent

systems which are defined on convex and bounded sets and have the property of stability

of periodic orbits, the local asymptotic stability of a unique positive steady state implies

its global asymptotic stability. Essentially, the proof in [134] amounts to showing that

the system (1.2.1) has the property of the stability of periodic orbits under either (H1) or

(H2), a fact which is established using a criterion of Muldowney [103] and the theory of

additive compound matrices.

Consider the conditions (1.2.3), (H1), and (H2). It is clear that if the inequality

x > (r + D + d1)/(2a), which is required in (H2), can be weakened to x > r/(2a) and

either (H1) or (H2) can be modified to cover the case D + d1 = r, then (H1) and (H2)

can be combined into a single condition x > r/(2a). Moreover, condition (1.2.3), which

a priori insures the local stability of the positive steady state, was motivated by specifics

of the method used for the proof, which roughly inputs local asymptotic stability and

outputs global asymptotic stability under certain assumptions.

However, it is clear that once the global asymptotic stability of the positive steady

state is proved then its local asymptotic stability is superseded anyway. Moreover, we shall

indicate that in fact (1.2.3) is satisfied if x∗ > r/(2a) (and consequently if x > r/(2a)) in

Xiao and Chen’s setting, so there is no need to assume (1.2.3) separately.

In the remaining part of this section, we shall take a dual view upon studying the global

dynamics of a generalized form of (1.2.1). That is, we shall first study its global dynamics

by constructing a suitable Lyapunov function and using LaSalle’s invariance principle

in Subsection 1.1.3 and then by using the theory of competitive systems in Subsection

1.1.4, the latter method being also employed in Wang [130] and Xiao and Chen [134].

This will enable us to obtain the global asymptotic stability of the positive steady state

under weaker hypotheses than those used in [134] and for a system which is slightly more

general than the one studied in [130] and [134]. In our setting, the persistence condition

x > r/(2a) used in [134] will appear in a natural way as a monotonicity condition in

both the Lyapunov and monotonicity approaches. We shall also provide a dual view upon

the persistency argument in Subsections 1.1.3 and 1.1.4. The first argument is based

on the study of the flow near the boundary, while the second one relies on the use of

Lyapunov-like functionals.

We shall also establish in Subsection 1.1.4 the existence of periodic solutions, together

with their stability. Finally, we shall discuss the biological significance of our results and
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indicate possible extensions of our results to the study of more comprehensive models in

Subsection 1.1.5. The results in this section are based on Georgescu and Hsieh [27] and

Georgescu and Moroşanu [30].

1.2.2 A predator-prey model with stage structure for predator

In the following, we consider the following stage-structured predator-prey system

(PP)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′(t) = x(t)r(x(t)) − x(t)φ(x(t))y2(t),

y′1(t) = kx(t)φ(x(t))y2(t) − (D + d1)y1(t),

y′2(t) = Dy1(t) − d2y2(t),

under the following hypotheses

(H1) (a) x �→ xφ(x) ∈ C1([0,∞), [0,∞)).

(b) x �→ xφ(x) is strictly increasing and bounded on [0,∞).

(c) φ is strictly positive and decreasing on (0,∞).

(H2) (a) x �→ xr(x) ∈ C1([0,∞),R).

(b) r(0) > 0, r strictly decreasing on [0,∞), r(x0) = 0 for some x0 > 0.

(c) x �→ xr(x) is strictly decreasing on [xP ,∞), 0 < xP < x0.

The significance of the functions x, y1, y2 and of the parameters k, D, d1, d2 is the same

as in (1.2.1). Note that (H1) is satisfied for some usual examples of predator functional

response, namely for xφ(x) = bxp/(1 + mxp), 0 < p ≤ 1, that is, the generalized type II

Holling functional response (Holling, [51]) and xφ(x) = k(1−e−cx) (Ivlev, [59]). Also, (H2)

is satisfied for some commonly used examples of growth functions, namely for xr(x) =

x(1 − (x/K)), that is, the classical logistic growth, for xr(x) = x(1 − (x/K)θ), θ ∈ (0, 1],

that is, the generalized logistic growth (Richards [117]) and for xr(x) = x(re1−(x/K) − d)

(Nisbet and Gurney, [104]). As in Aiello and Freedman [3], it is assumed that the imma-

ture predators are either raised by their mature parents or grow on an abundant nutrient

for which they do not have to compete with adults and consequently neither crowding

terms nor intra-species competition terms are added for predators. In the following, we

shall denote x �→ xφ(x) by f and x �→ xr(x) by n.

First, it is easy to see that if x(0), y1(0), y2(0) ≥ 0, then x(t), y1(t), y2(t) ≥ 0 on their

respective intervals of existence. To this purpose, we observe that the vector (R1, R2, R3)
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points inside the closed set Q1 = [0,∞)3 at all points of ∂Q1, where R1, R2, R3 are the

right-hand sides appearing in (1.2.1), so Nagumo’s tangency conditions are satisfied and

Q1 is a positively invariant set for (PP). See Pavel [109] for further reference on flow

invariance problems for ODEs and abstract ODEs.

To prove that Q2 = (0,∞)3 is also a positively invariant set for (1.2.1), suppose that

x(0), y1(0), y2(0) > 0 and note first that d
dt

(y2e
d2t) = Dy1e

d2t ≥ 0, so t �→ y2(t)e
d2t is

increasing. It follows that y2(t) ≥ y2(0)e−d2t for all t for which y2(t) is well-defined, so

y2 remains strictly positive. Also, d
dt

(y1e
(D+d1)t) ≥ 0, so y1(t) ≥ y1(0)e−(D+d1)t and y1

remains strictly positive. To prove that x also remains strictly positive, suppose that

x(t0) = 0 for some t0 > 0. Then one may find ỹ1(0) and ỹ2(0) > 0 such that the solution

which starts at t = 0 from (0, ỹ1(0), ỹ2(0)) also reaches (0, y1(t0), y2(t0)) at t = t0. By the

uniqueness property of (PP), this solution should coincide with the solution which starts

at t = 0 from (x(0), y1(0), y2(0)), which is an obvious contradiction.

We shall now show that x, y1, y2 are bounded on their intervals of existence, which in

turn will imply by a standard continuability argument that they are defined on [0,∞).

Since x′ ≤ n(x), it follows that x(t) ≤ max(x(0), x0) for all t, which insures the bound-

edness of x. Let us also define F (x, y1, y2) = x + (1/k)y1 + (1/k)y2. Computing the

derivative of F along the solutions of (PP), we obtain that

·
F +dF ≤ n(x) + dx,

where d = min(d1, d2), and so

F (x(t), y1(t), y2(t)) ≤ F (x(0), y1(0), y2(0))e−dt

+ (nM + dmax (x(0), x0))
1 − e−dt

d
,

for all t, where nM is a boundedness constant for n on [0,max(x(0), x0)], that is, on the

boundedness interval for x. It follows that x, y1, y2 are bounded and consequently, from

basic ODE theory, they are defined on all [0,∞). This means that the system (PP) is

well-defined in a biological (and mathematical) sense. This implies that y1, y2 are also

bounded and consequently defined on [0,∞).

Finally, we analyze the behavior of solutions which start with initial data (xi, y1i, y2i)

on the boundary of (0,∞)3. If xi = 0, then (x(t), y1(t), y2(t)) → (0, 0, 0) irrespective of the

initial values y1i, y2i ≥ 0. If xi > 0, then (x(t), y1(t), y2(t)) → (x0, 0, 0) for y1i = y2i = 0,

while (x(t), y1(t), y2(t)) enters (0,∞)3 (and stays there) otherwise.
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1.2.3 The Lyapunov approach: the global stability of the predator-free equi-

librium, the uniform persistence of the system and the global stability

of the positive steady state

In this section, we perform a global stability analysis for the system (PP) regarding both

the stability of the boundary equilibrium (x0, 0, 0) (i.e., the case in which the predator

classes tend to extinction) and of the positive steady state (x∗, y∗1, y
∗
2) (i.e., the case in

which the coexistence of both species is assured for all future time at stabilizing positive

levels). As a result, we find sufficient conditions for the stability of the equilibria and

establish the existence of a threshold parameters. The uniform persistence of the system

(i.e., the case in which both species coexist, although at possibly fluctuating levels) is also

discussed

Let us denote T = d2(D + d1)/D. First, we give a condition for the extinction of the

predators.

Theorem 1.2.1. Suppose that T ≥ kf(x0). Then (x0, 0, 0) is globally asymptotically

stable on (0,∞)3.

Proof. Let us consider the Lyapunov function

U1(x, y1, y2) =

∫ x

x0

f(τ) − f(x0)

f(τ)
dτ +

1

k
y1 +

1

k

D + d1

D
y2.

We now compute the derivative of U1 along the solutions of (PP). One then has

·
U1 =

f(x) − f(x0)

f(x)
(n(x) − f(x)y2) +

1

k
(kf(x)y2 − (D + d1)y1)

+
1

k

D + d1

D
(Dy1 − d2y2)

=
f(x) − f(x0)

f(x)
n(x) +

1

k

(
kf(x0) − (D + d1)d2

D

)
y2.

Since f is strictly increasing on [0,∞) and sgnn(x) = sgn(x0 − x) for x ∈ (0,∞), it is

seen that
·
U1 ≤ 0, with equality if and only if x = x0 and either y2 = 0 or T = kf(x0).

In both cases, the only invariant subset M̃ within the set M = {(x, y1, y2); x = x0} is

M̃ = {(x0, 0, 0)}.
Since

·
U1 ≤ 0 on (0,∞)3 and the only possible ω-limit sets of (x(t), y1(t), y2(t)) on the

boundary of (0,∞)3 are {(x0, 0, 0)} and {(0, 0, 0)}, our conclusion follows from LaSalle’s

invariance principle (see Appendix A or LaSalle [77]).
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We now attempt to analyze the existence of the positive steady state E∗ and the

persistence of the system (PP).

Definition 1.2.1. The system (PP) is said to be uniformly persistent (or permanent) if

there is ε0 > 0 such that any solution of (PP) which starts with x(0), y1(0), y2(0) > 0

satisfies

lim inf
t→∞

x(t) ≥ ε0, lim inf
t→∞

y1(t) ≥ ε0, lim inf
t→∞

y2(t) ≥ ε0.

Uniform persistence (permanence) is an important property of systems arising in ecol-

ogy, epidemics, population dynamics and not only. It is actually a concept which is

important and meaningful in itself, addressing the long-term survival of some or all com-

ponents of a system. For other (weaker) types of persistence and criteria to establish the

persistence of a given system, see Butler, Freedman and Waltman [14], Freedman, Ruan

and Tang [25], Hofbauer and So [49].

Theorem 1.2.2. Suppose that T < kf(x0). Then the positive steady state E∗ exists, is

unique and the system (PP) is uniformly persistent.

Proof. Let us consider the Lyapunov function

U2(x, y1, y2) =
1

k
y1 +

1

k

D + d1

D
y2.

We now compute the derivative of U2 along the solutions of (PP). One then has

·
U2 =

1

k
(kf(x)y2 − (D + d1)y1) +

1

k

D + d1

D
(Dy1 − d2y2)

=

(
f(x) − (D + d1)d2

kD

)
y2.

If T < kf(x0), then
·
U2 is positive in all strictly positive points of a vicinity of (x0, 0, 0) and

so (x0, 0, 0) is unstable. Since the only invariant subsets on the boundary of (0,∞)3 are

{(x0, 0, 0)} and {(0, 0, 0)} and their stable manifolds are also contained in the boundary of

(0,∞)3, it follows from a result of Hofbauer and So [49] that the system (PP) is uniformly

persistent.

To show the existence of E∗, we need to find positive solutions for the system

(1.2.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n(x∗) = f(x∗)y∗2,

kf(x∗)y∗2 = (D + d1)y
∗
1,

Dy∗1 = d2y
∗
2.
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After some algebraic manipulations, one obtains that x∗ is the positive root of kf(x∗) =

T , which is unique and belongs to (0, x0), as kf is strictly increasing and continuous,

kf(0) < T and kf(x0) > T . Moreover, it is seen that y∗1 and y∗2 are given by

y∗1 =
d2

D

n(x∗)
f(x∗)

, y∗2 =
n(x∗)
f(x∗)

and are positive, as x∗ belongs to (0, x0), where n is positive. Consequently x∗, y∗1, y
∗
2

are all unique and positive. We also remark that since the system (PP) is uniformly

persistent, it follows that there is an x > 0 such that lim inf
t→∞

x(t) ≥ x.

From Theorems 1.2.1 and 1.2.2, combined with the remark about the behavior of

the solutions starting on the boundary of [0,∞)3 which was made at the end of Subsec-

tion 1.1.2, it also follows that (0, 0, 0) is an unstable equilibrium and its stable manifold

consists of the positive quadrant {(0, y1i, y2i); y1i, y2i ≥ 0}. That is, our model predicts

that the predator and the prey cannot simultaneously face extinction, with the sole ex-

ception of the case in which the size of the initial prey populations equals zero, justified

by the fact that the predators feed on prey only and do not consume other resource, so

in the absence of prey they are condemned to extinction.

Having established the existence and uniqueness of the positive steady state E∗, we

now turn our attention to its stability. For this purpose, we employ a condition on the

persistence constant x, which ensures that the prey population remains ultimately higher

than a certain value.

Theorem 1.2.3. Suppose that T < kf(x0) and x > xP . Then the positive steady state

E∗ is globally asymptotically stable on (0,∞)3.

Proof. Since x > xP , it is seen that there is t0 ≥ 0 such that x(t) > xP for all t ≥ t0 and

also that x∗ > xP . Let us consider the Lyapunov function

U3(x, y1, y2) =

∫ x

x∗

f(τ) − f(x∗)
f(τ)

dτ +
1

k

∫ y1

y∗1

τ − y∗1
τ

dτ +
1

k

D + d1

D

∫ y2

y∗2

τ − y∗2
τ

dτ.

It is easily seen that U3(x, y1, y2) ≥ 0 and U3(x, y1, y2) = 0 if and only if x = x∗, y1 = y∗1,

y2 = y∗2. We now compute the derivative of U3 along the solutions of (PP). One obtains

21



C
E

U
eT

D
C

ol
le

ct
io

n

that

·
U3 =

f(x) − f(x∗)
f(x)

(n(x) − f(x)y2) +
1

k

y1 − y∗1
y1

(kf(x)y2 − (D + d1)y1)

+
1

k

D + d1

D

y2 − y∗2
y2

(Dy1 − d2y2)

= n(x)
f(x) − f(x∗)

f(x)
+ f(x∗)y2 − D + d1

k
y∗1

(
f(x)

f(x∗)
y2

y∗2

y∗1
y1

+
y∗2
y2

y1

y∗1
+
f(x∗)
f(x)

− 3

)
+
D + d1

k
y∗1
f(x∗)
f(x)

− D + d1

k
y∗1 −

D + d1

kD
d2y2.

Since f(x∗) = (D + d1)d2/(kD), this yields

·
U3 = n(x)

f(x) − f(x∗)
f(x)

− D + d1

k
y∗1

(
f(x)

f(x∗)
y2

y∗2

y∗1
y1

+
y∗2
y2

y1

y∗1
+
f(x∗)
f(x)

− 3

)
+
D + d1

k
y∗1

(
f(x∗)
f(x)

− 1

)
=

1

f(x)
(n(x) − n(x∗))(f(x) − f(x∗))

− D + d1

k
y∗1

(
f(x)

f(x∗)
y2

y∗2

y∗1
y1

+
y∗2
y2

y1

y∗1
+
f(x∗)
f(x)

− 3

)
.

From AM-GM inequality, it is clear that

f(x)

f(x∗)
y2

y∗2

y∗1
y1

+
y∗2
y2

y1

y∗1
+
f(x∗)
f(x)

≥ 3,

with equality if and only if

f(x)

f(x∗)
y2

y∗2

y∗1
y1

=
y∗2
y2

y1

y∗1
=
f(x∗)
f(x)

= 1,

that is, x = x∗ and y1/y
∗
1 = y2/y

∗
2.

If x(t) > xP for t ≥ t0, then since n is strictly decreasing on [xP ,∞) and f is strictly

increasing on [0,∞), it follows that

1

f(x)
(n(x) − n(x∗))(f(x) − f(x∗)) ≤ 0

with equality if and only if x = x∗. This implies that
·
U3 ≤ 0, with equality if and only if

x = x∗ and y1/y
∗
1 = y2/y

∗
2. We now find the invariant subsets M̃ within the set

M =

{
(x, y1, y2); x = x∗,

y1

y∗1
=
y2

y∗2

}
.

Since x = x∗ on M̃ and consequently x′ = n(x∗)− f(x∗)y2, it follows that x′ = f(x∗)(y2−
y∗2) and so y2 = y∗2. This implies y1 = y∗1 and consequently the only invariant set in M

is M̃ = {(x, y∗1, y∗2)}. From LaSalle’s invariance principle one then obtains the desired

conclusion.
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1.2.4 Monotonicity methods: global stability results and the existence of

periodic solutions

In the following, we shall also introduce a different method of proving the uniform per-

sistence of our model and showing the global stability of its positive steady state, based

on the use of monotonicity methods. The existence of periodic solutions shall also be

considered.

Let us denote

h =
n

f
=
r

φ
.

It is easy to see that h(0) > 0, h(x0) = 0 and h is strictly decreasing on [xP ,+∞). We

start by proving a quantitative property of the solutions of (PP).

Lemma 1.2.1. For all ρ > 0 small enough, if

lim sup
t→∞

y2(t) ≤ ρ

then

lim inf
t→∞

x(t) ≥ h−1(ρ).

Proof. In these circumstances, it is seen that

x′(t) = f(x(t))

[
n(x(t))

f(x(t))
− y2

]
≥ f(x(t)) [h(x(t)) − (ρ+ ε)]

for t large enough and ε > 0 arbitrary. The conclusion follows easily, if ρ is chosen small

enough, so that 0 < ρ < h(0) and consequently h−1(ρ) is well-defined.

We now introduce a few notions regarding the persistence of a semidynamical system.

Let π1 be a semidynamical system defined on a closed subset F of a locally compact

metric space (X, d).

Definition 1.2.2. It is said that a subset S of F is a uniform repeller if there is η > 0

such that for each x ∈ F\S, lim inft→∞d(π1(x, t), S) > η.

Of course, the semidynamical system is then uniformly persistent if the boundary of

F is a uniform repeller. We now state an elegant result of Fonda ([24, Corollary 1]) about

uniform repellers for semidynamical systems on abstract metric spaces.
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Theorem 1.2.4. Let π be a semidynamical system defined on a locally compact metric

space X and let S be a compact subset of X such that X\S is positively invariant. A

necessary and sufficient condition for S to be a uniform repeller is that there exists a

neighborhood U of S and a continuous function P : X → R
+
0 satisfying

1. P (x) = 0 if and only if x ∈ S.

2. For all x ∈ U\S there is a Tx > 0 such that P (π(x, Tx)) > P (x).

Using the above result, it is possible to prove that the set B = {(x, y1, y2) ∈ [0,M ]3; y2 = 0}
is a uniform repeller, where M is a suitable boundedness constant.

Theorem 1.2.5. Suppose that T < kf(x0) is satisfied. Then B is a uniform repeller.

Proof. It is seen that B is compact and that [0,M ]3\B is positively invariant. Let

P : [0,M ]3 → [0,∞) defined by P (x, y1, y2) = y2. Define also

U =
{
(x, y1, y2) ∈ [0,M ]3, P (x, y1, y2) < ρ

}
where ρ is small enough, so that kf(h−1(ρ))D/(D + d1) > d2 and h−1(ρ) is well defined.

Suppose by contradiction that there is z ∈ U such that for all t > 0 one has

P (π(z, t)) ≤ P (z) < ρ,

where z = (xz, yz1, y
z
2) and π(z, ·) is the solution of (PP) with initial data x(0) = xz,

y1(0) = yz1, y2(0) = yz2.

Let us consider

ξ(t) = y2(t) +
D

D + d1

(1 − ρ∗)y1(t)

with ρ∗ small enough, so that

D

D + d1
(1 − ρ∗)kf(h−1(ρ)) − d2 > 0

One then has

ξ′(t) = (Dy1(t) − d2y2(t)) +
D

D + d1
(1 − ρ∗) [kf(x)y2 − (D + d1)y1]

= Dy1 − d2y2 −D(1 − ρ∗)y1 +
D

D + d1
(1 − ρ∗)kf(x)y2

= ρ∗y1 +

[
D

D + d1
(1 − ρ∗)kf(x) − d2

]
y2

≥ ρ∗y1 +

[
D

D + d1

(1 − ρ∗)kf(h−1(ρ)) − d2

]
y2.
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As a result, ξ′(t) ≥ Cξ(t) for some sufficiently small C and consequently ξ(t) → ∞ as

t → ∞, which contradicts the boundedness of x, y1, y2. It then follows by Theorem 1.2.4

that B is an uniform repeller, which finishes the proof.

It is then easy to see that under the hypotheses of Theorem 1.2.5, the system (PP) is

uniformly persistent provided that condition x > xP holds. Consequently, we obtain the

following result.

Theorem 1.2.6. If T < kf(x0) and x > xP holds, then (PP) is uniformly persistent.

Proof. By Theorem 1.2.5, the boundedness of x, y1, y2 and inequality x > xP , there are

m,M > 0 such that

(1.2.6) m ≤ lim inf
t→∞

ϕ(t) ≤ lim sup
t→∞

ϕ(t) ≤M

for ϕ ∈ {x, y2}. From the second equation in (PP) one infers that

y1(t2) = e−(D+d1)(t2−t1)y1(t1) +

∫ t2

t1

kf(x(s))y2(s)e
−(D+d1)(t2−s)ds,

so

y1(t2) ≥ e−(D+d1)(t2−t1)y1(t1) + kf(m)ρ
1 − e−(D+d1)(t2−t1)

D + d1

for t2 ≥ t1 ≥ t∗, t∗ great enough, which implies that

lim inf
t→∞

y1(t) ≥ kf(m)ρ

D + d1
.

Since y1 is bounded, it follows that (1.2.6) holds for ϕ = y1 as well, with suitable m,M

and consequently (PP) is persistent and in the long term both the predator and prey

populations reach at least a certain level not depending on the initial population sizes.

The biological interpretation of the above result is very simple. Once few mature

predators introduced in a prey-only equilibrium can reproduce fast enough (kf(x0) >

d2(D + d1)/D) and there is an abundance of prey on the long term (x > xP ), then the

survival of all populations is assured for all future time. For other related arguments

pertaining to the persistence of certain epidemiologic systems, see Margheri and Rebelo

[96].

To prove again the global stability of the positive endemic equilibrium E∗ by an alter-

nate method, which will also yield the stability of the periodic solutions as a byproduct,
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we need now introduce a few notions and results about competitive systems and the or-

bital stability of their periodic orbits. See Smith [123] for a comprehensive treatment of

asymptotic behavior of finite and infinite dimensional competitive systems.

Definition 1.2.3. The autonomous differential system

(1.2.7) x′ = f(x), f : D ⊂ R
n → R

n,

is said to be competitive in D if there is a diagonal matrix H = diag(ε1, ε2, . . . , εn),

εi ∈ {−1, 1}, i = 1, .., n such that HJ(1.2.7)H has nonpositive off-diagonal elements for

all x ∈ D.

It is known (see, for instance, Smith [122, Theorem 4.1]) that three-dimensional com-

petitive systems defined on convex sets have the Poincare-Bendixson property, in the sense

that any nonempty compact w-limit set of (1.2.7) which contains no equilibria is a closed

orbit of (1.2.7).

Definition 1.2.4. An orbit O of (1.2.7) is called orbitally stable if and only if for all

ε > 0 there is δ > 0 with the property that any solution x(t) starting in an initial data

x(0) with the property that the distance from x(0) to O is less than δ remains at distance

less than ε from O for any t ≥ 0. The orbit O is then called orbitally asymptotically

stable if it is orbitally stable and the distance from x(t) to O tends to 0 as t→ ∞.

Definition 1.2.5. The system (1.2.7) is then said to have the property of stability of

periodic orbits if all its periodic orbits are orbitally asymptotically stable in the sense

mentioned above.

We now show that our system (PP) is competitive and that, under certain conditions,

has the property of stability of periodic orbits.

Theorem 1.2.7. The system (PP) is competitive. If kf(x0) > T is satisfied and x > xP

holds, then (PP) also has the property of stability of periodic orbits.

Proof. Consider

D = [0,∞]3, H =

⎛⎜⎜⎝
1 0 0

0 −1 0

0 0 1

⎞⎟⎟⎠ .
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It is seen that

(1.2.8) J(PP)(x, y1, y2) =

⎛⎜⎜⎝
n′(x) − f ′(x)y2 0 −f(x)

kf ′(x)y2 −(D + d1) kf(x)

0 D −d2

⎞⎟⎟⎠ ,

and consequently

HJ
(PP)

H =

⎛⎜⎜⎝
n′(x) − f ′(x)y2 0 −f(x)

−kf ′(x)y2 −(D + d1) −kf(x)

0 −D −d2

⎞⎟⎟⎠ ,

and so HJ
(PP)

H has nonpositive off-diagonal entries on D, that is, it is competitive on

D.

We attempt to show that the system (PP) has the property of stability of periodic

orbits by applying Theorem B.2.1, provided that kf(x0) > T is satisfied and x > xP

holds. Let p = (x(t), y1(t), y2(t)) be a positive periodic orbit of (PP).

Let us consider the system

(1.2.9) Z ′(t) = J
[2]

(PP)
(p(t))Z(t), Z = (z1, z2, z3)

T

and prove that this system is asymptotically stable. Let us define

V (z1(t), z2(t), z3(t)) =

∥∥∥∥(z1(t), y1(t)

y2(t)
z2(t),

y1(t)

ky2(t)
z3(t)

)∥∥∥∥ ,
where ‖·‖ is a norm on R

3, defined by

‖(z1, z2, z3)‖ = max (|z1| , |z2| + |z3|) .

Note that V is well defined, since (PP) is persistent under the given hypotheses. Then

system (1.2.9) can be expanded as

(1.2.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z′1 = −(−n′(x) + f ′(x)y2 + (D + d1))z1 + kf(x)z2 + f(x)z3,

z′2 = Dz1 + (n′(x) − f ′(x)y2 − d2)z2,

z′3 = kf ′(x)y2z2 − (D + d1 + d2)z3.

By using (1.2.10), it is possible to derive the estimations

(1.2.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D+ |z1| ≤ −(−n′(x) + f ′(x)y2 + (D + d1)) |z1| + kf(x) |z2| + f ′(x) |z3| ,
D+ |z2| ≤ D |z1| − (−n′(x) + f ′(x)y2 + d2) |z2| ,
D+ |z3| ≤ kf ′(x)y2 |z2| − (D + d1 + d2) |z3| .
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Then

(1.2.12) D+ |z1| ≤ −(−n′(x) + f ′(x)y2 + (D + d1)) |z1| + kf(x)y2

y1

(
y1

y2

(
|z2| + |z3|

k

))
and

(1.2.13) D+

(
|z2| + |z3|

k

)
≤ D |z1| − (d2 + min(−n′(x), D + d1))

(
|z2| + |z3|

k

)
.

From the above, we may infer that

D+

(
y1

y2

(
|z2| + |z3|

k

))
=

·
y1 y2 − y1

·
y2

y2
2

(
|z2| + |z3|

k

)
+
y1

y2

(
D+

(
|z2| + |z3|

k

))
≤

( ·
y1

y1
−

·
y2

y2

)
y1

y2

(
|z2| + |z3|

k

)
y1

y2
D |z1| − k

y1

y2

(
|z2| + |z3|

k

)
and therefore

D+

(
y1

y2

(
|z2| + |z3|

k

))
≤ y1

y2
D |z1| +

( ·
y1

y1
−D

y1

y2
− min (−n′(x), D + d1)

)
y1

y2

(
|z2| + |z3|

k

)
.

It is now possible to evaluate the time derivative of V . Let t0 > 0. If V (t) = |z1(t)| in a

vicinity of t0, then

D+V (t0) ≤ −(−n′(x) + f ′(x)y2 + (D + d1)) |z1| + kf(x)y2

y1

(
y1

y2

(
|z2| + |z3|

k

))
≤
[
kf(x)y2

y1
+ n′(x) − f ′(x)y2 − (D + d1)

]
|z1|

≤
[ ·
y1

y1
+ n′(x) − f ′(x)y2

]
V (t0).

If V (t) = y1(t)
y2(t)

[
|z2(t)| + z3(t)

k

]
in a vicinity of t0, then

D+V (t0) ≤ y1

y2
D |z1| +

( ·
y1

y1
−D

y1

y2
− min (−n′(x), D + d1)

)
y1

y2

(
|z2| + |z3|

k

)

≤
[ ·
y1

y1
− min (−n′(x), D + d1)

]
V (t0).

If neither of these situations happens, then

|z1(t0)| =
y1(t0)

y2(t0)

[
|z2(t0)| + |z3(t0)|

k

]
D+ |z1(t)|

∣∣∣∣
t=t0

= D+

[
y1(t)

y2(t)

(
|z2(t)| + |z3(t)|

k

)]∣∣∣∣
t=t0
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and consequently, by the same argument,

D+V (t0) ≤ min

([ ·
y1

y1

+ n′(x) − f ′(x)y2

]
,

[ ·
y1

y1

− min (−n′(x), D + d1)

])
V (t0)

Then, for all t > 0, one has

D+V (t) ≤ max

([ ·
y1

y1
+ n′(x) − f ′(x)y2

]
,

[ ·
y1

y1
− min (−n′(x), D + d1)

])
V (t)

≤ max

([ ·
y1

y1
+ n′(x) − f ′(x)y2

]
,

[ ·
y1

y1
+ max (n′(x),−(D + d1))

])
V (t)

≤
·
y1

y1
+ max (n′(x),−(D + d1))V (t).

Note that if x > xP , then n′(x(t)) is strictly negative on some [t∗,∞). It follows that

V (t) ≤ V (t∗)
y1(t)

y1(t∗)
e−δ(t−t

∗),

so limt→∞ V (t) = 0. It then follows from the persistence of (PP) that

lim
t→∞

z1(t) = lim
t→∞

z2(t) = lim
t→∞

z3(t) = 0,

so the null solution of (1.2.9) is asymptotically stable. By Theorem B.2.1, the system

(PP) has the property of stability of periodic solutions.

It is then possible to prove that for three-dimensional competitive systems which are

uniformly persistent, the local asymptotic stability of a unique positive equilibrium and

the property of stability of periodic orbits insure that the endemic equilibrium is actually

globally asymptotically stable. More precisely, the following result ([134, Theorem 2.2])

holds.

Proposition 1.2.1. Assume that n = 3 and that D is convex and bounded. If the system

(1.2.7) is competitive and uniformly persistent in D, it has a unique equilibrium in D

and it also has the property of stability of periodic orbits, then the interior equilibrium is

globally asymptotically stable in Int D.

By Theorem 1.2.7 and Proposition 1.2.1, it then follows that the positive equilibrium

is globally asymptotically stable in (0,∞)3 since condition x > xP implies that x∗ > xP

and consequently, as previously noted, the positive equilibrium is locally asymptotically

stable. From all our previous considerations, it is then possible to conclude with the

following global stability result, which characterizes the global asymptotic stability of the

positive equilibrium.
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Theorem 1.2.8. Suppose that kf(x0) > T and x > xP holds. Then (PP) is uniformly

persistent and there is a unique positive equilibrium E∗ = (x∗, y∗1, y
∗
2), which is globally

asymptotically stable on (0,∞)3.

For f(x) = bx/(1 + mx) and n(x) = x(r − ax), our Theorem 1.2.8 improves [134,

Theorem 2.1], since (H1) and (H2) in [134] are unified in a single weaker assumption, while

being observed that there is no need to assume a priori the local asymptotic stability of

the positive endemic equilibrium.

Suppose now that T < kf(x0). Consequently, from Theorem 1.2.8, it follows that the

system (PP) is persistent and the positive steady state E∗ exists and is unique. As seen

in Xiao and Chen [134], it is possible to study the local stability of the positive steady

state and the existence of the periodic solutions together with their orbital stability by

using a result on the behavior of three-dimensional competitive systems established by

Zhu and Smith in [147].

It has been seen that the Jacobian J(PP)(x, y1, y2) of the system (PP) at (x, y1, y2) is

given by (1.2.8). Moreover, the coordinates x∗, y∗1, y
∗
2 of the equilibrium point E∗ verify

the equilibrium relations (1.2.5). From the equilibrium relations (1.2.5), it follows that

the characteristic equation at (x∗, y∗1, y
∗
2) is given by

λ3 + [(D + d1 + d2) + f ′(x∗)y∗2 − n′(x∗)]λ2(1.2.14)

+λ [(D + d1 + d2)(f
′(x∗)y∗2 − n′(x∗))] + (D + d1)d2f

′(x∗)y∗2 = 0.

By the Routh-Hurwitz theorem, all roots of (1.2.14) have negative real parts if

[(D + d1 + d2) + f ′(x∗)y∗2 − n′(x∗)] [(D + d1 + d2)(f
′(x∗)y∗2 − n′(x∗))](1.2.15)

> (D + d1)d2f
′(x∗)y∗2,

while if the reverse of (1.2.15) is satisfied, then two characteristic roots have positive real

parts. Note that since (D + d1)d2f
′(x∗)y∗2 > 0, there is always a negative real root of

(1.2.14). Note also that if x∗ > xP , then n′(x∗) < 0 and consequently

[(D + d1 + d2) + f ′(x∗)y∗2 − n′(x∗)] [(D + d1 + d2)(f
′(x∗)y∗2 − n′(x∗))]

> (D + d1 + d2)
2f ′(x∗)y∗2

≥ 4(D + d1)d2f
′(x∗)y∗2,

so (1.2.15) is satisfied if the inequality x∗ > xP holds and consequently any positive

equilibrium E∗ = (x∗, y∗1, y
∗
2) for which x∗ > xP is locally asymptotically stable.
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In the particular case treated in Georgescu and Hsieh [27], in which

(1.2.16) xr(x) = x(r − ax), xϕ(x) = bx/(1 +mx),

a quick inspection of our argument shows that E∗ is also stable for some x∗ < r/(2a)

(corresponding to x∗ < xP , since in this case xP = r/(2a)), provided that x∗ > r/(2a) −
c̃/(2m), where

(1.2.17) c̃ =

(
1 +

a

mr
−
√

1 −
(
1 − a

mr

)2

+ 4
a

mr

d2 (D + d1)

(D + d1 + d2)
2

)
mr

2a
.

In particular, this shows that the inequality of type (1.2.15), which has been a priori

assumed in Xiao and Chen [134] (stated under the equivalent form (1.2.3)), does actually

follow if either (H1) or (H2) are assumed, since x > r/(2a) implies x∗ > r/(2a), so there

is no need to assume this inequality separately. Also, it is perhaps interesting to remark

that while the inequality x > xP insures the global stability of E∗, a somewhat similar but

weaker estimate x∗ > xP insures its local stability. We do not know, however, whether

the inequality x > xP (or x > r/(2a) in our particular case) is sharp or not, that is, if

xP is the smallest constant C with the property that x > C (or x > r/(2a) insures the

converge of the respective solution of (1.2.1) to E∗, under the condition kf(x0) > T (or

kf(r/a) > T ).

By the previously established competitiveness, persistence and boundedness results,

it follows that (PP) is point dissipative. It is also easy to see that (PP) is irreducible in

[0,∞) × (−∞, 0] × [0,∞).

Since (PP) has an unique equilibrium point E∗ = (x∗, y∗1, y
∗
2) and

det J(PP)(x
∗, y∗1, y

∗
2) = −(D + d1)d2f

′(x∗)y∗2 < 0,

it follows from Theorem 1.2 in Zhu and Smith [147] that either E∗ is stable, or, if it is

unstable, there is at least one but no more than finitely many periodic orbits and at least

one of these is orbitally asymptotically stable. Also, if E∗ is stable but not globally stable,

then since (PP) is a three-dimensional competitive system, it follows from Theorem 4.1

in Smith [123, Chapter 3] that (PP) has a periodic orbit which is necessarily orbitally

unstable. Moreover, if E∗ is hyperbolic and unstable with a 2-dimensional unstable man-

ifold, it follows from Theorem 4.2 in Smith [123, Chapter 3] that the ω-limit of any orbit

of (PP) which does not start on the stable manifold of E∗ is a nontrivial periodic orbit.

Summarizing the above discussion, one obtains the following result.
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Theorem 1.2.9. Suppose that T < kf(x0) and that E∗ is not globally asymptotically

stable.

1. If either (1.2.15) or its reverse is satisfied, then E∗ is hyperbolic and there is at

least a nontrivial periodic orbit. The ω-limit of any orbit with positive initial data

is either E∗ or a nontrivial periodic orbit.

2. If (1.2.15) is satisfied (which happens in particular when x∗ > xP ), then the positive

equilibrium E∗ is locally asymptotically stable and there is at least a periodic orbit

which is necessarily orbitally unstable.

3. If the reverse of (1.2.15) is satisfied, then the positive equilibrium E∗ is unstable

with a 2-dimensional unstable manifold and there is at least one but no more than

finitely many periodic orbits and at least one of these is orbitally asymptotically

stable. Any solution which does not start on the one-dimensional stable manifold of

E∗ converges to a nontrivial periodic orbit.

Unfortunately, we are not able to study analytically whether the periodic solutions

mentioned in parts (2) and (3) above are unique or not.

1.2.5 Numerical simulations and the biological interpretations of the stability

results

First, we discuss the biological significance of our results. From the above results, we know

that T = d2(D+d1)/D is a threshold parameter for the stability of the system and that the

numerical response of the mature predator plays a major role in the long-term behavior of

the stage-structured predator-prey system (PP). More precisely, Theorem 1.2.1 indicates

that if the numerical response of the mature predator for the prey at carrying capacity is

lower than the threshold value T , i.e., if few mature predators introduced in a predator-free

ambient with prey at carrying capacity cannot reproduce fast enough, the predator classes

tend to extinction. This bears a striking resemblance to the nonendemicity conditions used

in mathematical epidemiology. Moreover, we can define the basic reproduction number

of the system by R0 = kf(x0)
D

D+d1
1
d2

and then the condition T ≥ kf(x0) is equivalent to

R0 ≤ 1. This basic reproduction number has a clear biological interpretation: the first

term in R0, kf(x0), gives the mean number of newborn predators per mature predator;

the second term, D
D+d1

, gives the probability that an immature predator will survive to
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adulthood and the third term, 1
d2

, is simply the average lifespan of a mature predator.

Subsequently, the product of these three terms yields the mean number of offspring by

every predator, which is precisely the biological meaning of a basic reproduction number.

Similar threshold condition for coexistence of predator-prey system had previously been

formulated and explained by Pielou [110], among others, but had not been termed as

“basic reproduction number” to our best knowledge.

Furthermore, if the numerical response of the mature predator for the prey at carrying

capacity is higher than the threshold value T and the size of the prey population ultimately

remains higher than another value x > xP , that is, if the prey is always abundant enough,

it is seen from Theorem 1.2.3 that the system tends to a positive steady state. We also note

that if the death rate d1 of the immature predator is negligible compared to the rate D at

which the immature predators become mature predators, then the inequality T < kf(x0)

becomes a very simple comparison between the death rate of the mature predators and

their rate of reproduction. Moreover, the stage structure affects the capability of the

predator species to survive and become uniformly persistent, since it is now (D + d1)/D

times easier for the predator species to become extinct, as can be seen from Theorem

1.2.1. This means that if it takes too much for the immature predators to mature, or the

through-stage death rate of the immature predator is high (that is, D is small compared

to d1, then the total number of offsprings produced during the adult stage will not be

enough to compensate the total loss of immature predators and the predator classes will

tend to extinction.

However, the situation where R0 > 1 (or T < kf(x0)) but x ≤ xP is more complicated.

When x∗ > xP , we know that E∗ is locally asymptotically stable, but we do not know

of its global properties. The same happens for the case x∗ ≤ xP and (1.2.15) holds (see

Theorem 1.2.9). Moreover, the precise conditions for existence and uniqueness of periodic

orbits, namely when E∗ is not globally stable, are unknown under (ii) of Theorem 1.2.9.

Therefore, we proceed to investigate further by using numerical simulations.

In the following, we shall use the particular forms of xr(x) and xφ(x) from Georgescu

and Hsieh [27] which were given in (1.2.16), that is, xr(x) = x(r − ax), xφ(x) = bx/(1 +

mx). For case 1 (see Fig. 1.2.1) we let r = 1 and a = 2. Subsequently, x0 = r
a

= 0.5,

R0 = kbx0

1+mx0

D
d2(D+d1)

= 1.515 > 1, xP = r
2a

= 0.25 and x∗ > r
2a

. Since x∗ > r
2a

, the positive

steady state E∗ is locally asymptotically stable. Numerical simulations of trajectories

starting at various initial populations seem to indicate that the stability is also global for
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the parameter values we used. For case 2 (see Fig. 1.2.2), we let r = 1 and a = 1 so

Figure 1.2.1: Simulation for case 1 with R0 = 1.515 > 1 and x∗ > r
2a

. All trajectories
approach E∗.

0,1
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y0,2
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0,6 0,5

x

0,35

0,4 0,3

0,4

0,2

z

0,1

0,45

0,3

0,5

0,55

that x0 = r
a

= 1, R0 = 2.273 > 1, xP = r
2a

= 0.5, x∗ < r
2a

and (1.2.15) holds. Since

(1.2.15) holds, we know that the positive equilibrium E∗ is locally asymptotically stable.

Numerical simulations seem also to indicate that the stability is global. It is interesting

to note that we are unable to find parameter values under which E∗ satisfies (1.2.15) and

hence it is locally asymptotically stable, but not globally stable.

We also consider case 3 (see Fig. 1.2.3), where r = 3 and a = 2 and subsequently

x0 = r
a

= 1.5, xP = r
2a

= 0.75, R0 = 2.727 > 1, x∗ < r
2a

but (1.2.15) doesn’t hold.

From part (iii) of Theorem 1.2.9, we know that the positive equilibrium E∗ is unstable

and there exists an orbitally asymptotically stable periodic orbit. Our simulation shows

that this orbitally stable periodic orbit is unique and its orbital stability appears to be

global. We summarize our stability results in Table 1.2.5. The three cases described by

last three rows of the table are illustrated with Figs. 1.2.1-1.2.3, respectively. We note

that, biologically, when (1.2.15) fails to hold and E∗ becomes unstable, the coexistence

of the prey and predator populations is still ensured for initial populations not on the

1-dimensional stable region of E∗, albeit with fluctuating population sizes.

We now continue with few comments regarding the a priori estimate x > r/(2a),

which was used to establish the global asymptotic stability of the positive steady state in
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Figure 1.2.2: Simulation for case 2 with R0 = 2.273 > 1, x∗ < r
2a

and (1.2.15) holds. All
trajectories approach E∗.

0,10,2

0,2

0,4

0,3
0,1

0,6

0,8

0,4

z

1

0,15 0,5x
0,2y

0,60,7
0,25 0,8

0,3

R0 E0 x∗ x (4.2) E∗ (x, y1, y2) →
≤ 1 GAS NE NI NA NE E0

> 1

> r
2a > r

2a YES GAS E∗

unstable > r
2a ≤ r

2a YES LAS E∗(1)

≤ r
2a ≤ r

2a YES LAS E∗(1)

≤ r
2a ≤ r

2a NO unstable OASLC(1)

Table 1.2.1: Asymptotic states of the system. ”NE” denotes does not exist, ”NA” denotes
not applicable, , ”NI” denotes no influence, ”OASLC” denotes orbitally asymptotically
stable limit cycle, ”GAS” and ”LAS” denote globally and locally asymptotically stable,
respectively, and ”(1)” denotes conclusion based on simulation results.

our particular case described in (1.2.16).

Let 0 < l < r/a. It is seen that

x∗ > l ⇔ bkDl < (1 +ml)(D + d1)d2,

from which it is easy to infer that

x∗ > l ⇔ kf(l) < T.

Since x > l necessarily implies that x∗ > l (though this condition is only necessary and is

not sufficient), it is seen that in order to have the inequality x > l satisfied, it is necessary
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Figure 1.2.3: Simulation for case 3 with R0 = 2.727 > 1, x∗ < r
2a

but (1.2.15) doesn’t
hold. E∗ is unstable and all trajectories approach an orbitally stable periodic orbit.
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that kf(l) < T . Note that this inequality alone does not suffice to establish that x > l.

Again, this inequality has a certain biological interpretation. In order to have the prey

population ultimately staying above a certain level l, one needs as a pre-requirement that

the numerical response of the predator for prey at density l be lesser than the threshold

value T . Particularizing l = r/(2a), it is seen that in order to obtain that x > r/(2a),

one needs the inequality kf(r/(2a)) < T satisfied.

Also, it is perhaps fitting to give sufficient conditions here which insure the validity

of our boundedness estimate x > r/(2a). From the first equation in (PP) adapted to our

particular case, one obtains that

(1 +mx)x′(t) = x(t) [(r − ax(t))(1 +mx(t)) − by2(t)]

which implies

(1 +mx)x′ ≥ x
[
(r − b(M̄ + ε)) + x(rm− a) − amx2

]
for t large enough, where M̄ is a ultimate upper bound for y2 and ε > 0 is an arbitrary

constant. If r − b(M̄ + ε) > 0, it follows that lim inf
t→∞

x(t) ≥ x2, where x2 is the positive

root of

(r − b(M̄ + ε)) + x(rm− a) − amx2 = 0.
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From the above relations, one may deduce that x > r/(2a) whenever the following condi-

tions are satisfied

r − b(M̄ + ε) > 0, a +
√

(a− rm)2 + 4(r − b(M̄ + ε))am > 2mr.

Since ε > 0 was arbitrary, a set of conditions which ensures that x > r/(2a) is therefore

(1.2.18) r > bM̄ , a+
√

(a− rm)2 + 4(r − bM̄)am > 2mr.

However, it is difficult to give a clear biological interpretation of the inequalities in (1.2.18)

and we would like to point out that our a priori estimate x > r/(2a) (or, in the general

case, x > xP ) is easier to interpret and represents a theoretical device readily adaptable

for the study of other systems of a certain structure, in connection with monotonicity

properties. For explicit estimations of type (1.2.18), this sort of adjustment may not be

transparent. Note that, from the discussions in Subsection 1.1.2 on the boundedness of the

solutions of system (PP), an ultimate upper bound for y2 is M̄ = kmax(r/a, x(0))(r+d)/d,

where d = min(d1, d2). See also Xiao and Chen [134] for a numerical example regarding

the feasibility of the condition x > r/(2a).

Since the mature predator functional response f depends only on the size of the prey

population x, our model (PP) together with its particular form (1.2.1) may be called,

following the terminology given in Section 1.1, prey-dependent. It is also easy to see that

the model (PP) can be thought as a stage-structured version of the classical predator-prey

model with Holling type II functional response given below:

(H)

⎧⎪⎨⎪⎩
x′ = rx(1 − x

K
) − bx

1 +mx
y,

y′ = k
bx

1 +mx
y − dy

.

It is therefore not surprising that, as it is easily seen from (1.2.5), our model inherits the

structure which generates the so-called paradox of enrichment, formulated by Hairston et

al. [39] and by Rosenzweig [119], which states that increasing the carrying capacity of the

environment will cause an increase in the sizes of the predator classes at equilibrium, but

not in that of prey. Also, since the left-hand side of (1.2.15) is a decreasing function of

the carrying capacity r/a while the right-hand side of (1.2.15) is an increasing function

of the same variable, it is seen that an increase in the carrying capacity may destabilize

an otherwise stable positive equilibrium.
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It has already been noted that all prey equilibria x∗ for which x∗ > r/(2a) are locally

asymptotically stable, that is, high prey equilibrium densities are stable. Moreover, it can

also be observed that low prey equilibrium densities are unstable, since the limit of left-

hand side of (1.2.15) as x∗ tends to 0 is also 0, while the same limit of the right-hand of side

(1.2.15) is positive. Consequently, the model (PP) is also affected by the so-called paradox

of biological control (Luck [94]), which states that the low prey equilibrium densities of a

Lotka-Volterra model are inherently unstable

Note that, by Rosenzweig-MacArthur graphical stability criterion, any equilibrium

of (H) with x∗ > r/(2a) − 1/(2m) is stable, while any equilibrium of (H) with x∗ <

r/(2a)− 1/(2m) is unstable. Furthermore, by Theorem 3.2 in Kuang [70], one may prove

that if x > r/(2a) then (x∗, y∗) is globally asymptotically stable. One may then expect

a stability threshold for (1.2.1) which is sharper than r/(2a). Unfortunately, this result

does not carry out nicely for our system (PP) in its particular form (1.2.1) (see (1.2.17)).

Note also that the equilibria of (1.2.1) with x∗ close to r/(2a) − 1/(2m) are unstable, as

the left-hand side of (1.2.15) becomes arbitrarily small, while the right-hand side remains

above a strictly positive lower bound.

This model, or similar ones accounting for the effects of further biological interactions,

may be used to provide details about the survival of endangered mammal and reptilian

species. See Zhang, Chen and Neumann [145], where the problem of optimal harvesting

is also addressed, for a somewhat more complicated model, but under the assumption

that all the functions which are used to model the biological interactions are linear,

except for the logistic term. In [145], the case of the Chinese Alligator is considered,

as a stage-structured species preying on aquatic animals, and some recommendations for

the species preservation are provided. Similarly, the conclusion which arises from our

Theorem 1.2.8 is very simple: to guarantee the survival of the endangered predators

at a stable and sure level, its reproduction rate should be improved, so that R0 > 1

(perhaps by artificial insemination) and the prey should be kept numerically above a

certain level, so that x > xP (perhaps by raising prey offsprings in dedicated facilities and

subsequently releasing them into the natural habitat). Both measures are necessary and

an improvement in a single area would not suffice.

It has also been observed in this study that, for the most part of the parameter space,

the dynamical outcome does not depend on the initial population sizes and the prey
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and predator species cannot face extinction simultaneously. These are hallmarks of prey-

dependent models, as opposed to ratio-dependent models. As seen, for instance, in Jost

et al. [61] or in Beretta and Kuang [12], mutual extinction may occur for ratio-dependent

models, together with other rich dynamics, and the behavior of the system may depend

on the initial population sizes (see also Kuang [71]).

The population ecology models involving ordinary differential equations are often not

as descriptive or as realistic as those using delay differential equations. In this regard,

it has been observed by Harrison in [41] by validating a variety of predator-prey models

against a known data set regarding the interaction between Paramecium aurelia and its

predator Didinium nasutum presented by Luckinbill in [95] that the best numerical fit has

been given by a delayed numerical response of the predator coupled with a sigmoid func-

tional response. However, the stability analysis for the nondelayed model is much easier

to be carried out, as time delays generally have a destabilizing effect and may introduce

bifurcations and other rich dynamics under certain conditions. This simplification has

been done for our model, where the delaying effect of the gestation period for predators

is not taken under consideration. Also, the logistic part of the equation which models the

growth of the prey class may need to contain a delay term, for similar reasons. We plan

to address these issue in a subsequent work.

Our considerations may be easily extended to systems of the form

(1.2.19)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′ = n(x) − f(x)g(y2),

y′1 = kf(x)g(y2) − c1h(y1),

y′2 = c2h(y1) − c3r(y2),

to encompass different types of functional responses from the mature predator and possible

nonlinearity in the behavior of species, including nonlinearity in the predation process,

under appropriate monotonicity assumptions on the functions f, g, h, r. Some examples

of f and n which fit into our framework are f(x) = mxc, 0 < c ≤ 1, f(x) = m(1 − e−cx),

m, c > 0, f(x) = bxp/(1 + mxp), 0 < p ≤ 1 and n(x) = x(r − ax)/(1 + εx), ε > 0,

n(x) = rx(1 − (x/(r/a))c), 0 < c ≤ 1, provided that the threshold value T and the

minimal value r/(2a) for x are modified accordingly. Another simple extension is to a

model in which predators pass through p > 2 life stages, as long as the consumption

of prey occurs only in the last stage. Note that the last form of n(x) given above is

the Richards growth rate, often used to model growth of biological populations [117] or
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severity of disease outbreak [53].

The function n need not be monotone on its whole domain, but only on [x̃,+∞), x̃

being the persistency constant of the prey for the system under consideration. In this

situation, condition lim inf
t→∞

x(t) ≥ x̃ is used to restrict n to its monotonicity domain.

See Section 2.2 or Georgescu and Hsieh [28] for a related argument concerning the global

stability of the endemic equilibrium for the propagation of a virus in vivo, with the remark

that in this situation there is no need to impose any a priori lower bound condition

since the function which corresponds to n is monotone on the whole feasibility domain.

Finally, regarding our construction of a Lyapunov function, we mention that functions

of type V (x1, x2, x3, x4) =
∑4

i=1 ai(xi − x∗i ln xi), to which our function U3 relates, have

also been found useful for the study of SEIR epidemiological models. See Korobeinikov

[64], Korobeinkov and Maini [66] for details. In this regard, global stability results for

models which incorporate nonlinear incidence rates of a very general form have recently

been obtained by Korobeinikov and Maini in [67].

1.3 Impulsive perturbations of a three-trophic prey-dependent food chain

system

1.3.1 An introduction to food chains

Classical two species continuous time models have constituted for a long time the main

tool used to investigate the interactions between ecological populations (see, for instance,

Volterra [128], Leslie-Gower [79], May [97]). However, as seen from Poincaré’s theorem,

such models have only two behavior patterns, that is, they approach either a limit cycle

or an equilibrium point and consequently fail to capture the complex behavior of some

natural ecosystems. Further, other shortcomings of certain two-species models have also

been pointed out. These are the paradox of enrichment and the paradox of biological con-

trol, mentioned in the previous section. To eliminate these shortcomings, ratio-dependent

type models have been introduced as a replacement of Lotka-Volterra models, but these

models have also attracted criticism (see Abrams [1], Deng et al [22]).

Consequently, another paradigm started to prevail, that is, the idea that the behavior

of a complex system can be understood only when mutual interactions between a larger

number of species are considered in a single model (Rosenzweig [119]). As a result,

complex behavior, in the form of stable equilibria, limit cycles, multiple attractors and
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chaos, has been observed in three or more species models (Gilpin [33]) and it has also been

noted that the dynamical outcome may depend on the initial population sizes, which is

more in line with the results of field experiments and observations.

To understand the dynamical behavior of ecological communities, one should start by

tracing their food webs and quantifying the strength of the respective interspecies interac-

tions. It has been observed by Hastings and Powell in [44] and by Klebanoff and Hastings

in [63] that since food webs often describe a net of nonlinear predator-prey interactions,

there is a natural tendency of food webs to oscillate and chaos may ultimately arise when

two or more predator-prey subsystems oscillate with incommensurate frequencies. Mc-

Cann and Yodzis [100] mention that the parameter values chosen by Hastings and Powell

in [44] may be biologically unfeasible, but the conclusions obtained in [44] are valid, and

indicate biologically reasonable sets of parameter values which also produce chaos. They

also provide comments about which biological conditions (metabolic types) favor the ap-

parition of chaos. Six natural types of food web configurations are studied in McCann et

al. [98] and it is also found that the dominance of strong consumer-resource interactions

may generate cyclic dynamics when the frequencies of oscillation are commensurate, re-

spectively chaotic dynamics when the frequencies of oscillation are incommensurate, while

the dominance of weak coupling between interactions may dampen the total oscillation

of the system, together with other biological factors, such as omnivory and food-chain-

predation mechanisms. See also Bascompte et al. [10].

The so-called simple food chain, which is studied in this section, is a tritrophic food

chain which appears when a top predator P feeds on an intermediate consumer C, which

in turn feeds on a resource R. In this model, neither the intermediate consumer nor

the top predator feed on other resources and nutrient recycling is not accounted for.

The qualitative behavior of the simple food chain model with Holling type II functional

responses for both the top predator and the intermediate consumer, that is, for gi(x) =
aix

1+bix
, i ∈ {1, 2}, has been studied in detail by Hastings and Powell in [44] and by Klebanoff

and Hastings in [63]. See also McCann and Yodzis [99], Kuznetsov and Rinaldi [73]. In

these papers, it has been found that the model may exhibit chaotic behaviour in the

neighborhood of the intermediate consumer-free equilibrium and it has also been observed

that the clearance rate b1 of the intermediate consumer is a key parameter for the stability

of the model. A thorough analysis of the simple food chain model with ratio-dependent

functional response for both the top predator and the intermediate consumer has been
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performed in Hsu et al [54]. Particularly, a tristability situation has been observed, in

which different solutions tend to the origin, intermediate consumer-free equilibrium and

positive equilibrium, respectively, for the same set of parameters and a discussion of the

feasibility of the biological control has also been provided. Chaotic-looking solutions have

also been found to exist for certain parameter values.

Simple food chain models may naturally appear as a result of the combined use of

different methods which are specifically suited to the target pest and minimize the harmful

effects on the environment or on non-target organisms. An approach to biological control

is augmentation, relying on supplementing or manipulating the existing natural enemies

of the pest in order to enhance their effectiveness. A way to achieve augmentation is to

breed natural predators of the pest in laboratories and to release them periodically in

the ecosystem. Consequently, in our food chain model R is the resource to be protected,

C is the pest which should be regulated and P is a natural predator of the pest which

is augmented by means of periodic and impulsive release of laboratory-bred individuals.

Also, R, C and P are regulated by means of responsible use of chemical controls (pesticide

spraying) and the use of mechanical accessories, such as pest barriers and pest traps. See

Section 3.1 for general details upon biological controls and pest management strategies.

Due to the inherent discontinuity of human activities (that is, pesticides cannot be

sprayed all year round but only during certain periods of the year), a natural choice is to

use discrete impulsive controls rather than continuous controls for our pest management

strategy. In this regard, the effect of impulsive perturbations on the simple food chain

model has been studied by Zhang and Chen [141] assuming linear responses for the top

predator and the intermediate consumer, by Zhang and Chen in [139] assuming Holling

type II functional responses, by Zhang et al in [144] assuming Holling type IV (or sim-

plified Monod-Haldane) functional responses and by Zhang et al in [143] and Zhang and

Chen in [140] assuming Beddington-DeAngelis functional responses. In all these papers,

only the case of a constant impulsive perturbation has been considered. See also Zhang et

al [142], Zhang et al [146], Liu et al [84] for related results regarding the impulsive control

of predator-prey systems and Georgescu and Moroşanu [31] for the discussion of an in-

tegrated pest management strategy involving biological and chemical impulsive controls.

State-dependent impulsive control strategies are investigated in Meng et al [101] and Jiao

et al [60], while a different approach to the control of a model related to ours, based on

the use of Pontryagin’s principle, is employed in Apreutesei [5].
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In the following, it is seen by means of the Floquet theory of impulsively perturbed

systems of ordinary differential equations that the local stability of the intermediate

consumer-free periodic solution is governed by a threshold-like inequality, provided that a

certain condition on the productivity of the resource is satisfied. If the reverse of the pro-

ductivity condition is satisfied, then the resource and intermediate consumer-free periodic

solution is globally asymptotically stable.

A sufficient condition for the global stability of the intermediate consumer-free peri-

odic solution, corresponding to the ultimate success of our pest management strategy, is

established, while it is observed that, biologically speaking, the integrated pest manage-

ment strategy can be considered successful when the intermediate consumer population

stabilizes under a certain economic injury level, not necessarily when it is completely

eradicated. Formally, both the local and global stability condition display a significant

dependence on the functional response of the top predator. Note that, due to the impul-

sive top predator release of constant strength, our controlled system does not exhibit the

domino effect, characteristic to the unperturbed food chain system, that is, if one species

dies out then all the species at higher trophic levels die out as well (although the extinc-

tion of the resource will attract the extinction of the intermediate consumer, of course).

Due to the proportional impulsive perturbations at t = (n+ l− 1)T , n ∈ N
∗, the resource

and intermediate consumer-free periodic solution is no longer unstable for any values the

parameters involved, as it is the case when only constant impulsive perturbations of the

top predator are employed, and the existence of a threshold parameter which controls its

stability is also established. It is observed that, theoretically speaking, the control strat-

egy can be always made to succeed by the use of proper pesticides, while as far as the

biological control is concerned, its global effectiveness can also be reached provided that

the top predator is voracious enough, or the amount μ of top predator released each time

is large enough or the period T is small enough. Any of these features alone can ensure

the global success of our control strategy, although in concrete situations these may or

may not be biologically feasible or may require a large amount of resources. Also, our food

chain system may be interpreted as the nonlinear coupling of two predator-prey subsys-

tems (intermediate consumer-resource and top predator-intermediate consumer) through

the mediation of the intermediate consumer, while the impulsive perturbations induce

commensurate oscillations, as they act with the same period T . It is therefore expected

that the system will display an oscillatory behavior, tending to a (impulsively perturbed)
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limit cycle of period T for an important portion of the parameter space, corresponding

to impulsive and periodic perturbations with significant strength. Finally, a numerical

analysis of some situations leading to a chaotic behavior of the system is also provided.

This section is based on the results obtained in Georgescu and Moroşanu [29].

1.3.2 The impulsively perturbed food chain system

The abundance and interaction of resource, intermediate consumer and top predator

populations may be expressed in terms of their biomass per spatial unit. In this regard,

let x(t), y(t), z(t) be the biomass per spatial unit of the resource, intermediate consumer

and top predator, respectively. As previously mentioned, we assume that the top predator

feeds on the intermediate consumer only and in turn the intermediate consumer feeds on

the resource only, while the nutrient recycling is not accounted for.

The functional responses of the intermediate consumer and of the top predator are

denoted by the nonlinear smooth functions g1, g2, depending only on the resource biomass

density and on the intermediate consumer biomass density, respectively, and satisfying a

few assumptions which will be outlined below. Due to the assumption above, our model

is a prey dependent one. It is also supposed that in the absence of predation from the

intermediate consumer, the resource grows according to a logistic growth with intrinsic

growth rate r and carrying capacity r/a.

The processes of resource conversion into intermediate consumer biomass and of inter-

mediate consumer into top predator biomass, respectively, are characterized by constant

conversion rates k1 and k2. The death rates d1 and d2 of the intermediate consumer and

of the top predator, respectively, are also assumed to be constant

It is assumed that top predators are bred in laboratories and subsequently released in

an impulsive and periodic fashion of period T , in a fixed amount μ each time. It is also

assumed that pesticides are sprayed in an impulsive and periodic fashion, with the same

period as the action of releasing top predators, but at different moments. As a result of

pesticide spraying, fixed proportions δ1, δ2, δ3 of the resource, intermediate consumer and

top predator biomass are degraded each time.

On the basis of the above assumptions, we may formulate the following impulsively
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perturbed model

(FC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = x(t)[r − ax(t)] − g1(x(t))y(t), t �= (n + l − 1)T, t �= nT ;

y′(t) = k1g1(x(t))y(t) − g2(y(t))z(t) − d1y(t), t �= (n + l − 1)T, t �= nT ;

z′(t) = k2g2(y(t))z(t) − d2z(t), t �= (n + l − 1)T, t �= nT ;

Δx(t) = −δ1x(t), t = (n + l − 1)T ;

Δy(t) = −δ2y(t), t = (n + l − 1)T ;

Δz(t) = −δ3x(t), t = (n + l − 1)T ;

Δx(t) = 0, t = nT ;

Δy(t) = 0, t = nT ;

Δz(t) = μ, t = nT.

Here, T > 0, 0 < l < 1, Δϕ(t) = ϕ(t+)−ϕ(t) for ϕ ∈ {x, y, z} and t > 0, 0 ≤ δ1, δ2, δ3 < 1,

n ∈ N
∗. The functions g1, g2 are assumed to satisfy the following assumptions.

(G) gi is of class C1 on R+, gi(0) = 0, increasing and such that x �→ gi(x)/x is decreasing

on R+, |g′i(x)| ≤ Li for x ∈ R+, i ∈ {1, 2}, where L1, L2 ≥ 0.

Note that hypothesis (G) is satisfied if functions g1, g2 represent Holling type II functional

responses, that is, gi(x) = aix
1+bix

, i ∈ {1, 2}, in which ai, i ∈ {1, 2} are the search rates of

the resource and of the intermediate consumer, respectively, and bi, i ∈ {1, 2}, represent

the corresponding clearance rates, that is, search rates multiplied by the (supposedly

constant) handling time. Also, the above-mentioned constants L1 and L2 can be taken as

globally Lipschitz constants for g1, g2, respectively.

Impulsive perturbations of our three trophic food chain model have also been consid-

ered by Zhang and Chen in [139], in the form of the periodic constant impulsive pertur-

bations of the top predator only (that is, no second group of conditions in (FC)), with

particular Holling type II functional responses for the intermediate consumer and for

the top predator. In [139], the local asymptotic stability of the intermediate consumer-

extinction periodic solution is established, provided that the impulsive period T is small

enough, and it is also shown that the resource and intermediate consumer-free periodic

solution is unstable.

We shall now establish the biological well-posedness of the Cauchy problem associated

to our system (FC) for strictly positive initial data. First, using Lemma C.1.2, it is
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possible to prove that the Cauchy problem with strictly positive initial data is well-posed

for our system (FC), that is, solutions (x, y, z) starting with strictly positive initial data

remain strictly positive and bounded on their whole domains.

Lemma 1.3.1. The positive orthant (R∗
+)3 is an invariant region for the system (FC).

Proof. Let us consider (x, y, z) : [0, T0) → R
3 a saturated solution for (FC) which starts

with strictly positive x(0), y(0), z(0). Under our assumptions (G), it is easy to see that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x′(t) ≥ x(t) [r − ax(t) − g′1(0)y(t)] , 0 ≤ t < T0, t �= (n+ l − 1)T, nT ;

y′(t) ≥ y(t) [k1g1(x(t)) − g′2(0)z(t) − d1] ,

z′(t) = z(t) [k2g2(y(t)) − d2] .

as long as the solution remains positive. It then follows from Lemma C.1.2 that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(t) ≥ x(0) (1 − δ1)

[ t+(1−l)T
T ] e

∫ t
0
p1(s)ds, 0 ≤ t < T0;

y(t) ≥ y(0) (1 − δ2)
[ t+(1−l)T

T ] e
∫ t
0
p2(s)ds,

z(t) ≥ z(0) (1 − δ3)
[ t+(1−l)T

T ] e
∫ t
0
p3(s)ds,

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1(t) = r − ax(t) − g′1(0)y(t);

p2(t) = k1g(x(t)) − g′2(0)z(t) − d1;

p3(t) = k2g2(y(t)) − d2,

that is, x, y, z remain strictly positive on [0, T0).

Also, using Lemma C.1.2, it is possible to show that all solutions of (FC) starting in

(R∗
+)3 remain bounded and are actually defined on the whole R+.

Lemma 1.3.2. All solutions (x(·), y(·), z(·)) of (FC) with initial data (x(·), y(·), z(·)) ∈
(R∗

+)3 are bounded and defined on R+.

Proof. Let us consider a solution (x(·), y(·), z(·)) of (FC) starting with strictly positive

x(0), y(0), z(0) and define u1 : R+ → R+ by

u1(t) = x(t) +
1

k1

y(t) +
1

k1k2

z(t), t ≥ 0.

One then has

(1.3.1)
du1

dt
= x(t)[r − ax(t)] − d1

k1

y(t) − d2

k1k2

z(t), t > 0, t �= (n+ l − 1)T, t �= nT.

46



C
E

U
eT

D
C

ol
le

ct
io

n

Let us denote D = min(d1, d2). It follows that

(1.3.2)
du1

dt
+Du1 ≤ x(t) [r +D − ax(t)] , t > 0, t �= (n+ l − 1)T, t �= nT.

As the right-hand side of (1.3.2) is bounded from above by C = (r +D)2/(4a), it follows

that
du1

dt
(t) +Du1(t) ≤ C, t > 0, t �= (n + l − 1)T, t �= nT,

together with

u1((n+ l − 1)T+) ≤ (1 − δ)u1((n+ l − 1)T )

and

u1(nT+) = u1(nT ) +
μ

k1k2
,

where δ = min(δ1, δ2, δ3). By Lemma C.1.2, it follows that

u1(t) ≤ u1(0+)

⎡⎣ ∏
0<(n+l−1)T<t

(1 − δ)

⎤⎦ e−Dt(1.3.3)

+ C

∫ t

0

⎡⎣ ∏
s≤(n+l−1)T<t

(1 − δ)

⎤⎦ e−D(t−s)ds+
∑

0<nT<t

μ

k1k2
e−D(t−nT ), t > 0,

which yields

(1.3.4) u1(t) ≤ u1(0+)e−Dt +
C(1 − e−Dt)

D
+

μ

k1k2

eDT

eDT − 1
, t > 0,

and since the limit of the right-hand side of (1.3.4) for t→ ∞ is

L =
C

D
+

μ

k1k2

eDT

eDT − 1
<∞,

it easily follows that u is bounded on its domain. Consequently, x, y, z are bounded and

it follows by an easy continuability argument that they are defined on the whole R+.

It is also important to note that by a very similar procedure one may obtain that

u2(t) ≤ u2(0+)e−d1t +
C1

d1

(
1 − e−d1t

)
,

where u2(t) = x(t) + (1/k1)y(t) and C1 = (r + d1)
2/(4a). Consequently,

x(t) +
1

k1
y(t) ≤

[
x(0+) +

1

k1
y(0+)

]
+

(r + d1)
2

4ad1
for t > 0.

47



C
E

U
eT

D
C

ol
le

ct
io

n

At this point, it is useful to note that from the above it may be seen that y is bounded,

with boundedness constant

(1.3.5) B = k1

[
x(0+) +

1

k1

y(0+) +
(r + d1)

2

4ad1

]
.

Of course, this boundedness constant is not necessarily optimal, but it is important to

note that it is T and μ-independent. In the following, we shall also be interested in finding

an ultimate boundedness constant for y, that is, a boundedness constant for y after the

transient effects of the initial data are eliminated, rather than a boundedness constant;

the former can be much smaller.

Also, certain results pertaining to the Floquet theory of impulsive ordinary differential

equations which are mentioned in Appendix C are of interest to our discussion. Note

that we shall be able to use Lemma C.2.1 in our settings even though we also employ the

constant impulse Δz = μ apparently not covered by our Lemma C.2.1. This happens since

we shall actually study the stability of certain periodic discontinuous solutions by means

of the small amplitude perturbations method and the above-mentioned jump condition

disappears after we reduce our problem to the stability of the null solution for certain

systems, using the proper change of variables which involves discontinuous functions.

1.3.3 Periodically forced subsystems

When the intermediate consumer y is eradicated, it is easy to see that the equations in

(FC) decouple and we are led to consider the properties of the subsystems

(RS;x)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′(t) = x(t)[r − ax(t)], t �= nT, (n + l − 1)T ;

Δx(t) = −δ1x(t), t = (n + l − 1)T ;

Δx(t) = 0, t = nT ;

x(0+) = x0,

and

(RS;z)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z′(t) = −d2z(t), t �= nT, (n+ l − 1)T ;

Δz(t) = −δ3z(t), t = (n+ l − 1)T ;

Δz(t) = μ, t = nT ;

z(0+) = z0,
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which describe the dynamics of the resource and of the top predator, respectively, in the

absence of the intermediate consumer. First, it is seen that if a certain inequality which

characterizes resource productivity is satisfied, then the system formed with the first three

equations in (RS;x) has a periodic solution, to which all solutions of (RS;x) starting with

strictly positive x0 tend as t → ∞, while if the opposite inequality is satisfied, then all

solutions of (RS;x) tend to 0 as t → ∞. The above-mentioned periodic solution will

be labeled as x∗r rather than, for instance, x∗r,a,δ1 , as systems of type (RS;x) will always

occur with the same a and δ1, but sometimes with different r’s, so there is no danger of

confusion.

Lemma 1.3.3. The following statements hold.

1. Suppose that ln(1 − δ1) + rT > 0. Then the system formed with the first three

equations in (RS;x) has a periodic solution x∗r. With this notation, the following

properties are satisfied.

(a)
∫ T

0
x∗r(t)dt = (1/a) [ln(1 − δ1) + rT ].

(b) lim
t→∞

|x(t) − x∗r(t)| = 0 for all solutions x(t) of (RS;x) starting with strictly

positive x0.

(c) sup
t≥0

∣∣x∗r1(t) − x∗r2(t)
∣∣ ≤ f1(r1, r2;T, a, δ1), with lim

r1→r2
f1(r1, r2;T, a, δ1) = 0.

2. Suppose that ln(1 − δ1) + rT ≤ 0. Then lim
t→∞

x(t) = 0 for all solutions of (RS;x).

Proof. First, it is easy to see that

(1.3.6) u(t) =
(r/a)u(t0)e

r(t−t0)

(r/a) + u(t0) (er(t−t0) − 1)
, (n+ l − 1)T ≤ t0 < t ≤ (n + l)T

for any solution u of the first equation in (RS;x), and so

u((n+ l)T ) =
(r/a)u((n+ l − 1)T+)erT

r/a+ u((n+ l − 1)T+) (erT − 1)
.

Then

(1.3.7) u((n+ l)T+) = (1 − δ1)
(r/a)u((n+ l − 1)T+)erT

(r/a) + u((n+ l − 1)T+) (erT − 1)

for any solution u of the first equation in (RS;x). Suppose now that ln(1 − δ1) + rT > 0.

By the periodicity requirement, it follows that

x∗r((n + l − 1)T+) =
(r/a)

[
(1 − δ1)e

rT − 1
]

erT − 1
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and so

x∗r(lT+) =
(r/a)

[
(1 − δ1)e

rT − 1
]

erT − 1
.

Obviously, as ln(1 − δ1) + rT > 0, the periodic solution x∗r does indeed exist, is unique

and strictly positive. Actually, it may be seen that

(1.3.8) x∗r(t) =
(r/a)Aer(t−(n+l−1)T )

1 + A (er(t−(n+l−1)T ) − 1)
, (n+ l − 1)T < t ≤ (n+ l)T,

where

(1.3.9) A =
(1 − δ1)e

rT − 1

erT − 1
.

Also, since
x∗r

′(t)
x∗r(t)

= r − ax∗r(t), t ∈ ((n+ l − 1)T, (n+ l)T ],

it follows that

ln (x∗r(t2)) − ln (x∗r(t1)) =

∫ t2

t1

[r − ax∗r(s)] ds, (n+ l − 1)T < t1 ≤ t2 ≤ (n+ l)T

and so

ln (x∗r((n+ l)T )) − ln (x∗r((n + l − 1)T+)) =

∫ (n+l)T

(n+l−1)T

[r − ax∗r(s)] ds.

By the periodicity of x∗r , it follows that

− ln (1 − δ1) =

∫ T

0

[r − ax∗r(s)] ds,

from which the first assertion follows. Note also that

ln (1 − δ1) +

∫ T

0

[r − ax∗r(s)] ds = 0.

Let now x(t) be a solution of (RS;x) starting with strictly positive initial data. We shall

prove that lim
t→∞

|x(t) − x∗r(t)| = 0.

If x(lT+) = x∗r(lT+), then obviously x ≡ x∗r . Suppose now that x(lT+) > x∗r(lT+);

if the reverse inequality is satisfied one can devise a similar argument to obtain the

conclusion mentioned above.

Let us denote f : R+ → R+,

f(x) = (1 − δ1)
(r/a)xerT

(r/a) + x(erT − 1)
.
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It is then seen that x �→ f(x) is strictly increasing on R+, while x �→ f(x)/x is strictly

decreasing on R+. By (1.3.6), it is also seen that

x∗r((l + 1)T+) = f(x∗r(lT+)), x((l + 1)T+) = f(x(lT+))

and by the periodicity of x∗r it is seen that x∗r((l + 1)T+) = x∗r(lT+). It follows that

x((l + 1)T+) = f(x(lT+)) > f(x∗r(lT+)) = x∗r(lT+),

since f is strictly increasing on R+. Also,

x((l + 1)T+) = f(x(lT+)) =
f(x(lT+))

x(lT+)
x(lT+) < x(lT+),

since x(lT+) > x∗r(lT+), f(x∗r(lT+)) = x∗r(lT+) and x �→ f(x)/x is strictly decreasing

on R+.

Similarly, by an induction argument,

x((n + l + 1)T+) = f(x((n+ l)T+)) > f(x∗r((n+ l)T+)) = f(x∗r(lT+))

= x∗r(lT+)

and

x((n+ l + 1)T+) = f(x((n + l)T+)) =
f(x((n + l)T+))

x((n+ l)T+)
x((n + l)T+)

< x((n + l)T+).

One then obtains that (x((n + l)T+))n≥0 is monotonically decreasing and bounded from

below by x∗r(lT+), so it is convergent to some w1 > 0. Also,

x((n + l + 1)T+) − x((n + l)T+) = f(x((n+ l)T+)) − x((n+ l)T+) → 0 as n→ ∞.

From the above, it follows that f(w1) = w1, and so w1 = x∗r(lT+), since the equation

f(t) = t has a single strictly positive solution. It then follows that (x((n + l)T+))n≥0 →
x∗r(lT+) for n→ ∞. Also, by (1.3.6), one may prove that

|x(t) − x∗r(t)| ≤ erT |x((n + l)T+) − x∗r((n+ l)T+)| , for t ∈ ((n+ l)T, (n + l + 1)T ],

from which the second assertion follows. The remaining assertion can be proved by

direct computation, making use of the explicit representation formula (1.3.8) and of the

T -periodicity of x∗r1 and x∗r2 . In fact, one may obtain that∣∣x∗r1(t) − x∗r2(t)
∣∣ ≤ |r1 − r2|

[
1

a
+

(1 − A)2

a

]
+
A(1 − A)

a

∣∣r1er2T − r2e
r1T

∣∣ for t ≥ 0.
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Suppose now that ln(1 − δ1) + rT ≤ 0. Again, by (1.3.7), it is seen that

x((n+ l)T+) = (1 − δ1)
(r/a)x((n+ l − 1)T+)erT

(r/a) + x((n + l − 1)T+) (erT − 1)

= x((n + l − 1)T+)
(r/a)(1 − δ1)e

rT

(r/a) + x((n + l − 1)T+) (erT − 1)

≤ x((n + l − 1)T+),

as (1−δ1)erT ≤ 1. It then follows that (x((n + l − 1)T+))n≥0 is monotonically decreasing

and bounded from below by 0, so it converges to some w2 ≥ 0. Since x((n + l)T+) =

f(x((n+ l − 1)T+)), it follows that f(w2) = w2. Then

w2 = w2
(r/a)(1 − δ1)e

rT

(r/a) + w2 (erT − 1)

and, since ln(1 − δ1) + rT ≤ 0, it easily follows that w2 = 0. By (1.3.6), it also follows

that

x(t) ≤ x((n + l − 1)T+)erT for t ∈ ((n + l − 1)T, (n+ l)T ]

and so lim
t→∞

x(t) = 0.

We now suggest an approximate interpretation of the hypotheses in Lemma 1.3.3.

Let us suppose that x approaches 0 in (RS;x). Then rT approximates the total growth

(per unit biomass) of the resource biomass in a period, while ln(1 − δ1) is a correction

term which accounts for the loss of resource biomass (per unit biomass) due to pesticide

spraying. If the total growth rT does not exceed the loss ln(1 − δ1), there is a net loss

of resource biomass when x approaches 0 and so the resource biomass x(t) tends to 0

as t → ∞, while if ln(1 − δ1) + rT > 0, there is a net gain of resource biomass when x

approaches 0 which prevents the extinction of the resource x.

Secondly, it is seen that the system formed with the first three equations in (RS;z)

has a periodic solution to which all solutions of (RS;z) starting with strictly positive z0

tend as t→ ∞, irrespective of the sign of ln(1− δ1)+ rT . This happens since the survival

of the top predator is assured by the periodic impulse μ and does not depend upon the

survival or extinction of the resource, although the persistence level is, of course, indirectly

affected. Again, this solution will be labeled as z∗d2 , for reasons similar to those outlined

above.

Lemma 1.3.4. The system formed with the first three equations in (RS;z) has a periodic

solution z∗d2. With this notation, the following properties are satisfied.
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1.
∫ T
0
z∗d2(t)dt = μ

1−e−d2T (1−δ3)

[
(1 − e−d2lT ) + (1 − δ3)(e

−d2lT − e−d2T )
]
.

2. lim
t→∞

∣∣z(t) − z∗d2(t)
∣∣ = 0 for all solutions z(t) of (RS;z) starting with strictly positive

z0.

3. sup
t≥0

∣∣∣z∗d2(t) − z∗
d̃2

(t)
∣∣∣ ≤ f2(d2, d̃2;T, μ, δ3), with lim

d̃2→d2

f2(d̃2, d2;T, μ, δ3) = 0.

Proof. First, it is easy to see that

(1.3.10) u(t) = e−d2(t−t0)u(t0) t, t0 ∈ ((n+ l − 1)T, nT ) or (nT, (n+ l + 1)T )

for any solution u of the first equation in (RS;z) and so

z∗d2((n+ 1)T+) = z∗d2((n+ 1)T ) + μ

= e−d2(1−l)T z∗d2((n+ l)T+) + μ

= e−d2(1−l)T (1 − δ3)e
−d2lT z∗d2(nT+) + μ

= e−d2T (1 − δ3)z
∗
d2

(nT+) + μ.

By the periodicity requirement, it follows that

z∗d2(nT+) = e−d2T (1 − δ3)z
∗
d2

(nT+) + μ

and so

(1.3.11) z∗d2(0+) =
μ

1 − e−d2T (1 − δ3)
.

Obviously, by (1.3.11), the periodic solution searched for does indeed exist, is unique and

strictly positive. Actually, it may be seen that

(1.3.12) z∗d2(t) =

⎧⎨⎩
μ

1−e−d2T (1−δ3)
e−d2(t−nT ), t ∈ (nT, (n+ l)T ]

μ
1−e−d2T (1−δ3)

e−d2(t−nT )(1 − δ3), t ∈ ((n+ l)T, (n+ 1)T ].

The first assertion follows then by direct computation.

Let now z be a solution of (RS;z) with strictly positive initial data. We shall prove

that lim
t→∞

∣∣z(t) − z∗d2(t)
∣∣ = 0.

It is seen that z − z∗d2 verifies the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(z − z∗d2)

′(t) = −d2(z − z∗d2)(t), t �= (n+ l − 1)T, t �= nT ;

Δ(z − z∗d2)(t) = −δ3(z − z∗d2)(t), t = (n+ l − 1)T ;

Δ(z − z∗d2)(t) = 0, t = nT.
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Consequently,

(1.3.13) z(t) − z∗d2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e−d2(t−(n−1)T )
(
z(0+) − μ

1−e−d2T (1−δ3)

)
(1 − δ3)

n−1,

t ∈ ((n− 1)T, (n+ l − 1)T ];

e−d2(t−(n−1)T )
(
z(0+) − μ

1−e−d2T (1−δ3)

)
(1 − δ3)

n,

t ∈ ((n+ l − 1)T, nT ];

from which the second assertion follows. The third assertion can be proved by direct

computation, as done for Lemma 1.3.3.

1.3.4 Local stability results. A Floquet analysis

In this section we study the local stability of the resource and intermediate consumer-

free periodic solution (0, 0, z∗d2(t)) and of the intermediate consumer-free periodic solution

(x∗r(t), 0, z
∗
d2

(t)) by means of Floquet theory, supposing that the productivity condition

for the resource ln(1− δ1)+ rT > 0 is satisfied. In this sense, it will be seen that the local

stability of the intermediate consumer-free periodic solution is governed by a threshold-

like condition expressed in terms of an integral involving the periodic solutions x∗r and

z∗d2 introduced in the previous section, while the resource and intermediate consumer-free

periodic solution is always unstable.

Theorem 1.3.1. Suppose that ln(1 − δ1) + rT > 0. The following properties hold.

1. The resource and intermediate consumer-free periodic solution (0, 0, z∗d2(t)) is unsta-

ble.

2. The intermediate consumer-free periodic solution (x∗r(t), 0, z
∗
d2

(t)) is locally asymp-

totically stable provided that

(1.3.14) ln(1 − δ2) +

∫ T

0

[
k1g1(x

∗
r(s)) − g′2(0)z∗d2(s) − d1

]
ds < 0

and unstable provided that the reverse inequality holds.

Proof. To study the stability of the resource and intermediate consumer-free periodic

solution (0, 0, z∗d2(t)), let us denote

(1.3.15) x(t) = u(t), y(t) = v(t), z(t) = w(t) + z∗d2(t),
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u, v and w being understood as small amplitude perturbations. Substituting (1.3.15) into

the first three equations of (FC), one obtains

(1.3.16)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u′(t) = u(t) [r − au(t)] − g1(u(t))v(t)

v′(t) = k1g1(u(t)) − g2(v(t))
[
w(t) + z∗d2(t)

]− d1v(t)

w′(t) = k2g2(v(t)))
[
w(t) + z∗d2(t)

]− d2w(t)

The corresponding linearization of (1.3.16) at (0, 0, 0) is

(1.3.17)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u′(t) = ru(t)

v′(t) = − [
g′2(0)z∗d2(t) + d1

]
v(t)

w′(t) = k2g
′
2(0)z∗d2(t)v(t) − d2w(t)

and so a fundamental matrix of (1.3.17) is

(1.3.18) Φ1
L(t) =

⎛⎜⎜⎝
ert 0 0

0 e−
∫ t
0 [g′2(0)z∗d2

(s)+d1]ds 0

0
(∫ t

0
k2g

′
2(0)z∗d2(s)e

− ∫ s
0 [g′2(0)z∗d2

(τ)+d1]dτds
)
e−d2t e−d2t

⎞⎟⎟⎠ .

The linearization of the jump conditions at (n+ l − 1)T reads as

(1.3.19)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δu(t) = −δ1u(t), t = (n+ l − 1)T ;

Δv(t) = −δ2v(t),
Δw(t) = −δ3w(t),

while the linearization of the jump conditions at nT reads as

(1.3.20)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δu(t) = 0, t = nT ;

Δv(t) = 0,

Δw(t) = 0.

Consequently, the local stability of the resource and intermediate consumer-free periodic

solution (0, 0, z∗d2(t)) can be analyzed by studying the eigenvalues of the monodromy

matrix

M1 =

⎛⎜⎜⎝
1 − δ1 0 0

0 1 − δ2 0

0 0 1 − δ3

⎞⎟⎟⎠Φ1
L(T ).
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Since the eigenvalues of M1 are

λ1 = (1 − δ1)e
rT , λ2 = (1 − δ2)e

− ∫ T
0 [g′2(0)z∗d2

(s)+d1]ds, λ3 = (1 − δ3)e
−d2T

and λ1 > 1, it follows that the resource and intermediate consumer-free periodic solution

(0, 0, z∗d2(t)) is unstable, with an one-dimensional unstable manifold.

We now study the stability of the intermediate consumer-free periodic solution (x∗r(t), 0, z
∗
d2

(t)).

Let us denote

(1.3.21) x(t) = u(t) + x∗r(t), y(t) = v(t), z(t) = w(t) + z∗d2(t),

u, v, w being understood again as small amplitude perturbations. Substituting (1.3.21)

into the first three equations of (FC), one obtains

(1.3.22)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u′(t) = u(t) [r − a(u(t) + x∗r(t))] − g1(u(t) + x∗r(t))v(t)

v′(t) = k1g1(u(t) + x∗r(t))v(t) − g2(v(t))(w(t) + z∗d2(t)) − d1v(t)

w′(t) = k2g2(v(t))(w(t) + z∗d2(t)) − d2w(t).

The corresponding linearization of (1.3.22) at (0, 0, 0) is

(1.3.23)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u′(t) = u(t) [r − ax∗r(t)] − g1(x

∗
r(t))v(t)

v′(t) =
[
k1g1(x

∗
r(t)) − g′2(0)z∗d2(t) − d1

]
v(t)

w′(t) = k2g
′
2(0)z∗d2(t)v(t) − d2w(t).

Let us define

ϕ : R+ → R, ϕ(t) =

∫ t

0

[r − ax∗r(s)] ds,

ψ : R+ → R, ψ(t) =

∫ t

0

[
k1g1(x

∗
r(s)) − g′2(0)z∗d2(s) − d1

]
ds.

Then a fundamental matrix of (1.3.23) is

Φ2
L(t) =

⎛⎜⎜⎝
eϕ(t) −eϕ(t)

∫ t
0
g1(x

∗
r(s))e

ψ(s)−ϕ(s)ds 0

0 eψ(t) 0

0 e−d2t
∫ t
0
k2g

′
2(0)z∗d2(s)e

d2s+ψ(s)ds e−d2t

⎞⎟⎟⎠ .

The linearization of the jump conditions at (n + l − 1)T and nT gives again (1.3.19)

and (1.3.20). Consequently, the local stability of the intermediate consumer-free periodic
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solution (x∗r(t), 0, z
∗
d2

(t)) can be analyzed by studying the eigenvalues of the monodromy

matrix

M2 =

⎛⎜⎜⎝
1 − δ1 0 0

0 1 − δ2 0

0 0 1 − δ3

⎞⎟⎟⎠Φ2
L(T ).

It is seen that the eigenvalues of M2 are

λ1 = (1 − δ1)e
ϕ(T ), λ2 = (1 − δ2)e

ψ(T ), λ3 = (1 − δ3)e
−d2T .

It is obvious that 0 < λ3 < 1. Also, λ1 = 1, from Lemma 1.3.3. If (1.3.14) is satisfied,

then 0 < λ2 < 1 and λ1 = 1 is a simple eigenvalue, which implies that (x∗r(t), 0, z
∗
d2

(t)) is

stable. If the reverse of (1.3.14) is satisfied, then λ2 > 1 and (x∗r(t), 0, z
∗
d2

(t)) is unstable.

Finally, noting that
∫ T
0
g1(x

∗
r(s))e

ψ(s)−ϕ(s)ds > 0, since the integrand is strictly positive,

one sees that if

(1.3.24) ln(1 − δ2) +

∫ T

0

[
k1g1(x

∗
r(s)) − g′2(0)z∗d2(s) − d1

]
ds = 0,

then (x∗r(t), 0, z
∗
d2

(t)) is again unstable, since λ = 1 is an eigenvalue of multiplicity 2 and

its elementary divisor its not simple.

Note that the meaning of condition (1.3.14) is completely similar to that of condition

ln(1 − δ1) + rT < 0, but applied to the dynamics of y this time. Namely, suppose

that y approaches 0. Then
∫ T
0

[
k1g1(x

∗
r(s)) − g′2(0)z∗d2(s) − d1

]
ds approximates the total

growth (per unit biomass) of the intermediate consumer biomass in a period (note that

lim
t→0

(g(t)/t) = g′2(0)), while ln(1 − δ2) is a correction term which accounts for the loss of

intermediate consumer biomass (per unit biomass) due to pesticide spraying. If the total

growth exceeds the loss ln(1 − δ2), then there is a net gain of consumer biomass when

y approaches 0 which prevents the extinction of the intermediate consumer, while if the

loss ln(1 − δ2) exceeds the total growth, there is a net loss of consumer biomass when y

approaches 0 and so y(t) tends to 0 as t→ ∞. Also, condition ln(1−δ1)+rT > 0 ensures

the instability of the resource and intermediate consumer-free periodic solution, since it

prevents the extinction of the resource.

Since g1 and g2 are general functional responses, we have to state our stability condition

(1.3.14) in terms of the periodic solutions x∗r and z∗d2 rather than in a more explicit form.

Actually, this form may make more sense even when the particular forms of g1 and g2 are

known (for instance, when g1, g2 are Holling type II functional responses), as the resulting

explicit inequalities are rather cumbersome and their interpretations are not transparent.
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1.3.5 Global stability results

In this section, we perform a global stability analysis of the resource and intermediate

consumer-free periodic solution (0, 0, z∗d2(t)) and of the intermediate consumer-free peri-

odic solution (x∗r(t), 0, z
∗
d2

(t)), respectively.

Theorem 1.3.2. The following statements hold.

1. Suppose that ln(1−δ1)+rT ≤ 0. Then the resource and intermediate consumer-free

periodic solution (0, 0, z∗d2(t)) is globally asymptotically stable.

2. Suppose that ln(1 − δ1) + rT > 0. Then the intermediate consumer-free periodic

solution (x∗r(t), 0, z
∗
d2

(t)) is globally asymptotically stable provided that

(1.3.25) ln(1 − δ2) +

∫ T

0

[
k1g1(x

∗
r(s)) − cg2z

∗
d2

(s) − d1

]
ds < 0,

where

cg2 = inf
0≤u≤My

g′2(u),

My being an ultimate boundedness constant for y.

Proof. Suppose first that ln(1 − δ1) + rT ≤ 0. Let ε1 > 0 such that k1g1(ε1) < d1 (this

is always possible since lim
ε→0

g1(ε) = 0) and let also η = (1 − δ1)e
(k1g1(ε1)−d1)T . Note that

0 < η < 1. It is seen that

x′(t) = x(t) [r − ax(t)] − g1(x(t))y(t) ≤ x(t) [r − ax(t)]

and so, by Lemma C.1.1, x(t) ≤ x̃(t) for t ≥ 0, where x̃ is the solution of (RS;x) with the

same initial data at 0+ as x. As any such solution x̃ tends to 0 for t → ∞, by Lemma

1.3.3, x tends to 0 as well and there is T1 > 0 such that x(t) ≤ ε1 for t ≥ T1. For the sake

of simplicity, we suppose that x(t) ≤ ε1 for all t > 0. One then obtains that

y′(t) = k1g1(x(t))y(t) − g2(y(t))z(t) − d1y(t)

≤ y(t) [k1g1(ε1) − d1] , t �= (n+ l − 1)T.

By integrating the above inequality on ((n + l − 1)T, (n+ l)T ], one obtains

ln (y((n+ l)T )) − ln (y((n+ l − 1)T+)) ≤ (k1g1(ε1) − d1)T for n ≥ 1
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and so

ln (y((n+ l)T )) − ln (y((n+ l − 1)T )) − ln(1 − δ1) ≤ (k1g1(ε1) − d1)T for n ≥ 1.

It then follows that

y((n+ l)T ) ≤ y((n+ l − 1)T )η

and consequently

y((n+ l)T ) ≤ y(lT )ηn,

which implies that y((n+ l)T ) → 0 as n→ ∞. Also,

y(t) ≤ y((n+ l − 1)T+)e(k1g1(ε1)−d1)(t−(n+l−1)T ), t ∈ ((n + l − 1)T, (n+ l)T ]

which implies that

y(t) ≤ y((n+ l − 1)T+), t ∈ ((n+ l − 1)T, (n+ l)T ]

and consequently y(t) → 0 as t→ ∞.

We finish by proving that z(t) − z∗d2(t) → 0 as t → ∞. To this purpose, let 0 < ε2 <

d2/(k2L2). Since y(t) → 0 as t → ∞, there is some T2 > 0 such that y(t) ≤ ε2 for all

t ≥ T2. For the sake of simplicity, we suppose that y(t) ≤ ε2 for all t > 0.

It follows that

z′(t) = k2g2(y(t))z(t) − d2z(t)

≤ k2L2y(t)z(t) − d2z(t)

≤ −(d2 − k2L2ε2)z(t), t �= (n+ l − 1)T, t �= nT.

Consequently, one infers from Lemma C.1.1 that

z̃1(t) ≤ z(t) ≤ z̃2(t)

where z̃1 is the solution of (RS;z) with the same initial data at 0+ as z and z̃2 is the

solution of (RS;z) with d2 changed into d2 − k2L2ε2 and the same initial data at 0+ as z.

As these solutions become close to z∗d2(t), respectively to z∗d2−k2L2ε2
(t) as t → ∞, by

Lemma 1.3.4, it follows that, for t large enough,

z∗d2(t) − ε2 ≤ z(t) ≤ z∗d2−k2L2ε2
(t) + ε2

and the conclusion follows from Lemma 1.3.4. The first assertion is now established.
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Suppose now that ln(1 − δ1) + rT > 0. We first show that y(t) → 0 as t → ∞. To

this purpose, choose ε3 > 0 such that

ln(1 − δ2) +

∫ T

0

[
k1g1(x

∗
r(s) + ε3) − cg2(z

∗
d2

(s) − ε3) − d1

]
ds < 0

This choice is obviously feasible, as |g1(x
∗
r(s) + ε3) − g1(x

∗
r(s))| ≤ L1ε3 and (1.3.25) is

satisfied. Let us also denote

ξ = (1 − δ2)e
∫ T
0 [k1g1(x∗r(s)+ε3)−cg2 (z∗d2

(s)−ε3)−d1]ds

and observe that 0 < ξ < 1.

It is seen that

x′(t) = x(t) [r − ax(t)] − g1(x(t))y(t) ≤ x(t) [r − ax(t)] ,

and so, by Lemma C.1.1, x(t) ≤ x̃(t) for t ≥ 0, where x̃ is the solution of (RS;x) with the

same initial data at 0+ as x. As any such solution becomes close to x∗r(t) for t → ∞, by

Lemma 1.3.3, there is some T3 > 0 such that x(t) ≤ x∗r(t) + ε3 for t ≥ T3. For the sake of

simplicity, we suppose that x(t) ≤ x∗r(t) + ε3 for all t > 0.

Also,

z′(t) = k2g2(y(t))z(t) − d2z(t) ≥ −d2z(t),

and so, by Lemma C.1.1, z(t) ≥ z̃(t) for t ≥ 0, where z̃ is the solution of (RS;z) with the

same initial data at 0+ as z. As any such solution becomes close to z∗d2(t) for t→ ∞, by

Lemma 1.3.4, there is some T4 > 0 such that z(t) ≥ z∗d2(t) − ε3 for t ≥ T4. For the sake

of simplicity, we suppose that z(t) ≥ z∗d2(t) − ε3 for all t > 0.

Since y(t) is ultimately bounded, there is T5 > 0 such that y(t) ≤ My for all t ≥ T5,

where My is an ultimate boundedness constant for y. For the sake of simplicity, we

suppose that y(t) ≤ My for all t > 0. Also, note that in this situation g2(y(t)) ≥ cg2y(t)

for t ≥ 0. One then obtains that

y′(t) = k1g1(x(t))y(t) − g2(y(t))z(t) − d1y(t)

≤ y(t)
[
k1g1(x

∗
r(t) + ε3) − cg2(z

∗
d2(t) − ε3) − d1

]
, t �= (n+ l − 1)T,

and it consequently follows that

y′(t)
y(t)

≤ k1g1(x
∗
r(t) + ε3) − cg2(z

∗
d2

(t) − ε3) − d1, t �= (n + l − 1)T.
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By integrating the above inequality on ((n + l − 1)T, (n+ l)T ], one obtains

ln(y((n+ l)T )) − ln(y((n+ l − 1)T+))

≤
∫ (n+l)T

(n+l−1)T

[
k1g1(x

∗
r(t) + ε3) − cg2(z

∗
d2(t) − ε3) − d1

]
dt

and so

ln(y((n+ l)T )) − ln(y((n+ l − 1)T )) − ln(1 − δ2)

≤
∫ T

0

[
k1g1(x

∗
r(t) + ε3) − cg2(z

∗
d2

(t) − ε3) − d1

]
dt

by periodicity. It then follows that

y((n+ l)T ) ≤ y((n+ l − 1)T )ξ

and consequently

y((n+ l)T ) ≤ y(lT )ξn,

which implies that y((n+ l)T ) → 0 as n→ ∞. Also

y′(t)
y(t)

≤ k1g1(x(t)) ≤ k̃,

k̃ being a suitable boundedness constant, so

y(t) ≤ y((n+ l − 1)T+)ek̃(t+(n+l−1)T ), t ∈ ((n + l − 1)T, (n+ l)T ]

which implies that

y(t) ≤ (1 − δ2)y((n+ l − 1)T )ek̃T , t ∈ ((n+ l − 1)T, (n+ l)T ],

and consequently y(t) → 0 as t → ∞. We now prove that x(t) − x∗r(t) → 0 as t → ∞.

To this purpose, let 0 < ε4 ≤ r/L1. Since y(t) → 0 as t → ∞, there is T6 > 0 such that

y(t) < ε4 for t ≥ T6. For the sake of simplicity, we suppose that y(t) < ε4 for all t > 0.

It follows that

x′(t) = x(t) [r − ax(t)] − g1(x(t))y(t)

= x(t)

[
r − g1(x(t))

x(t)
y(t) − ax(t)

]
≥ x(t) [(r − L1ε4) − ax(t)]
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for t �= (n + l − 1)T, t �= nT . Consequently, one infers from Lemma C.1.1 that

x̃1(t) ≤ x(t) ≤ x̃2(t)

where x̃2 is the solution of (RS;x) with the same initial data at 0+ as x and x̃1 is the

solution of (RS;x) with r changed into r − L1ε4 and the same initial data at 0+ as x.

As these solutions become close to x∗r(t), respectively to x∗r−L1ε4
(t) as t → ∞, by

Lemma 1.3.3, it follows that, for t large enough,

x∗r−L1ε4(t) − ε4 ≤ x(t) ≤ x∗r(t) + ε4

and the conclusions now follow again from Lemma 1.3.3. To prove that z(t)−z∗d2(t) → 0 as

t→ ∞, we may proceed as done for the proof of the first assertion. The second assertion

is now established.

Note that condition (1.3.25) has a somewhat theoretical value and is only sufficient

for the global asymptotic stability of the intermediate consumer-free periodic solution.

One may not expect, though, an integral condition of type (1.3.25) to be threshold-like

(to be necessary as well). This happens since (FC) has to inherit, at least partially, the

chaotic behavior of the unperturbed system, which is attained for a certain window in the

parameter space, as noted in Klebanoff and Hastings [63]. At this point, the availability

of a good estimate of the ultimate boundedness constant for y or of cg2 is crucial. In

this regard, if one considers the case in which g2 is a Holling type II functional response,

g2(y) = (a2y)/(1+b2y), then g′2(y) = a2/(1+b2y)
2 and then inf

y∈R+

g′2(u) = 0. Consequently,

if no good estimations for the ultimate boundedness constant are available and B is large,

then the only sensible way to ensure the validity of (1.3.25) is to assume that

ln(1 − δ2) +

∫ T

0

[k1g1(x
∗
r(s)) − d1] ds < 0,

but this is a rather crude estimation, which ensures the extinction of the intermediate

consumer even if no top predator is present.

Note also that, at least formally, both the local stability condition (1.3.14) and the

global stability condition (1.3.25) display a significant dependence on the functional re-

sponse g2 of the top predator, with a dominance on the dependence on a2.
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1.3.6 Biological outcomes of the stability results

From Theorem 1.3.2, we note that if the pesticide is not selective enough, that is, if δ1

is large enough to make ln(1 − δ1) + rT negative, or, in other words, if the pesticide

has a significant negative effect on the growth of the resource biomass, then the resource

and intermediate consumer-free periodic solution is globally asymptotically stable, which

means that our control strategy fails. Alternatively, this means that a non-selective

pesticide should not be applied very often (T should be large enough) in order to avoid

resource extinction. Of course, this may have a negative impact on the overall success of

the integrated pest management strategy.

From Theorem 1.3.2, it is seen that, theoretically speaking, our control strategy can be

always made to succeed globally by the use of proper pesticides, provided that δ1 is small

enough, in order to have the inequality ln(1−δ1)+rT > 0 satisfied, and δ2 is large enough

to have (1.3.25) satisfied, for any given top predator functional response g2. Also, it is seen

that an aggressive (g′2(0) large enough) top predator may stabilize an otherwise unstable

intermediate consumer-free periodic solution, at least locally (see (1.3.14)). In order to

stabilize the intermediate consumer-free periodic solution globally, the top predator should

be aggressive enough, even at large intermediate consumer densities, when saturation

effects are supposed to appear, so that

inf
0≤u≤My

g′2(u) >
ln(1 − δ2) +

∫ T
0

[k1g1(x
∗
r(s)) − d1] ds∫ T

0
z∗d2(s)ds

.

If g2 is a Holling type II functional response (see above) or a Ivlev functional response

(g2(x) = k(1−e−bx)), which are convex regarded as functions of x, then the above reduces

to

g′2(My) >
ln(1 − δ2) +

∫ T
0

[k1g1(x
∗
r(s)) − d1] ds∫ T

0
z∗d2(s)ds

.

Note that
∫ T
0
k1g1(x

∗
r(s))ds and

∫ T
0
z∗d2(s)ds are g2-independent.

Since lim
μ→∞

∫ T
0
z∗d2(s)ds = +∞, from Lemma 1.3.4, and x∗r does not depend upon μ, it is

seen from (1.3.2) that the intermediate consumer-free periodic solution can be stabilized

globally by means of increasing μ alone. Note that B, the global boundedness constant

for y which is indicated in (1.3.5) and which may also serve as an ultimate boundedness

constant for y, is μ-independent.
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Also, ∫ T

0

k1g1(x
∗
r(s))ds < k1L1

∫ T

0

x∗r(s)ds = k1L1(1/a) (ln(1 − δ1) + rT ) ,

from Lemma 1.3.3, so

lim sup
T↓−(ln(1−δ1))/r

∫ T

0

k1g1(x
∗
r(s))ds ≤ 0.

As

lim inf
T↓−(ln(1−δ1))/r

cg2

∫ T

0

(z∗d2(s) + d1)ds > 0

from Lemma 1.3.4 and cg2 is T -independent, it is seen from (1.3.2) that the intermediate

consumer-free periodic solution can also be globally stabilized by means of decreasing T

alone, in such a way that ln(1 − δ1) + rT remains strictly positive.

However, the purpose of a pest management strategy is to drive the intermediate

consumer population under the economic injury level rather to eradicate it completely, so

we may considered ourselves successful even in situations in which (1.3.25) is not satisfied,

provided that the intermediate consumer population stabilizes under the economic injury

level.

Accepting (1/T )
∫ T
0
f(t)dt as an averaging measure for the oscillations of a periodic

and positive function f of period T (an average level of persistence, that is), it is seen

from Lemma 1.3.4 that an increase in μ causes an increase in the average level of z∗d2 ,

while from Lemma 1.3.3 is is seen that an increase in μ has no effect on the average level

of x∗r .

From Lemma 1.3.3, it may also be observed that an increase in the carrying capacity

of the environment (a decrease of a while keeping r constant, that is) causes an increase

in the average level of x∗r , while having no effect on the average level of z∗d2 . This is cer-

tainly conceivable, since if y tends to extinction, then the resource x and the top predator

z are essentially independent, as the top predator z does not feed upon the resource x.

Also, as seen from (1.3.14) and (1.3.25), an increase in the carrying capacity of the envi-

ronment may not necessarily destabilize the intermediate consumer-free periodic solution

(x∗r(t), 0, z
∗
d2

(t)), at least when the functional response g1 of the intermediate consumer

is a Holling type II functional, since
∫ T
0
g1(x

∗
r(s))ds is bounded from above as a function

of a, but it certainly reduces the chances of having a stable intermediate consumer-free

periodic solution, since
∫ T
0
g1(x

∗
r(s))ds is decreasing as a function of a. It is then seen

that we obtain a paradox of enrichment for our food chain model, albeit in a weaker

64



C
E

U
eT

D
C

ol
le

ct
io

n

form. Also, noting that all terms in (1.3.14) are negative except for k1

∫ T
0
g1(x

∗
r(s))ds, we

observe that periodic solutions (x∗r(t), 0, z
∗
d2

(t)) with low x∗r ’s are inherently stable rather

than unstable, so the paradox of biological control is not present in our model.

To show that our pest management strategy does not over-rely on the use of pesticides,

although this, in some sense, has already been observed above, we briefly study below the

case in which no pesticides are sprayed (that is, δ1 = δ2 = δ3 = 0) and outline the success

conditions.

It is seen that in this situation ln(1 − δ1) + rT = rT > 0 and
∫ T
0
z∗d2(s)ds = μ/d2.

Also, this time x∗r(t) = r/a for t ≥ 0 (see (1.3.8) and (1.3.9)). We consequently obtain

with the help of Theorems 1.3.1 and 1.3.2 the following result.

Theorem 1.3.3. Suppose that δ1 = δ2 = δ3 = 0. Then the following statements hold.

1. The resource and intermediate consumer-free periodic solution (0, 0, z∗d2(t)) is unsta-

ble.

2. The intermediate consumer-free periodic solution (r/a, 0, z∗d2) is stable provided that

(k1g1(r/a) − d1)T < g′2(0)μ/d2,

respectively globally asymptotically stable provided that

(k1g1(r/a) − d1)T < cg2μ/d2.

3. The intermediate consumer-free periodic solution (r/a, 0, z∗d2) is unstable provided

that

(k1g1(r/a) − d1)T > g′2(0)μ/d2.

It is now easy to see that a voracious top predator can always stabilize the system,

driving the intermediate consumer to extinction and the prey to the carrying capacity

of the environment. Also, for μ large enough or T small enough, the global stability

condition is always satisfied. Note that, for a significant part of the parameter space, the

dynamical outcome does not depend upon the initial population sizes, which is perhaps

not surprising, having in view that we study a model with predator-dependent functional

responses, as opposed to a model with ratio-dependent functional responses.
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We may further particularize gi(x) = (aix)/(1 + bix), i ∈ {1, 2}, and obtain that

(r/a, 0, z∗d2) is stable provided that T < (a2μ(a+ b1r)) / (d2(k1a1r − d1a− d1b1r) and un-

stable provided that the reverse inequality holds, that is, a result similar to Theorem 3.1

in Zhang and Chen [139].

In the situations in which the intermediate consumer-free equilibrium is globally

asymptotically stable, or at least the intermediate consumer population stabilizes be-

low the economic injury level, it would be interesting from a practical point of view to

give a general estimate of the time required for the intermediate consumer population to

drop below the economic injury level. Unfortunately, we were not able to address this

issue in this work.

1.3.7 Numerical simulations

We are are now concerned with the numerical investigation of some situations not covered

by our Theorems 1.3.1 and 1.3.2 which may lead to a chaotic behavior of the system.

Following Klebanoff and Hastings [63] and Kuznetsov and Rinaldi [73], we rescale the

variables using the formulas

x1 =
ax

r
, x2 =

ay

rk1

, x3 =
az

rk1k2

, s = rt

and obtain the following scaled system

(SC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′1(s) = x1(s)[1 − x1(s)] − m1x1(s)

1 + n1x1(s)
x2(s), s �= (n+ l − 1)T1, s �= nT1;

x′2(s) =
m1x1(s)

1 + n1x1(t)
x2(s) − m2x2(s)

1 + n2x2(s)
x3(s) s �= (n+ l − 1)T1, s �= nT1;

−D1x2(s),

x′3(s) =
m2x2(s)

1 + n2x2(t)
x3(s) −D2x3(s), s �= (n+ l − 1)T1, s �= nT1;

Δx1(s) = −δ1x1(s), s = (n+ l − 1)T1;

Δx2(s) = −δ2x2(s), s = (n+ l − 1)T1;

Δx3(s) = −δ3x3(s), s = (n+ l − 1)T1;

Δx1(s) = 0, s = nT1;

Δx2(s) = 0, s = nT1;

Δx3(s) = μ1, s = nT1,
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where

m1 =
a1k1

a
, n1 =

b1r

a
, n2 =

rb2k1

a
, D1 =

d1

r
, D2 =

d2

r
, T1 = rT,

μ1 =
aμ

rk1k2
.

It is easy to see that the corresponding unperturbed system

(RSC)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′1(s) = x1(s)[1 − x1(s)] − m1x1(s)

1 + n1x1(s)
x2(s), s �= (n+ l − 1)T1, s �= nT1;

x′2(s) =
m1x1(s)

1 + n1x1(t)
x2(s) − m2x2(s)

1 + n2x2(s)
x3(s) s �= (n+ l − 1)T1, s �= nT1;

−D1x2(s),

x′3(s) =
m2x2(s)

1 + n2x2(t)
x3(s) −D2x3(s), s �= (n+ l − 1)T1, s �= nT1;

has at most five equilibria, namely

1. The trivial equilibrium O = (0, 0, 0).

2. The intermediate consumer and top predator-free equilibrium R = (1, 0, 0).

3. The top predator-free equilibrium

RC = (D1/(m1 − n1D1), (m1 − n1D1 −D1)/(m1 − n1D1)
2, 0).

4. The positive equilibria

P1 = (xP1
1 , D2/(m2 − n2D2), x

P1
3 ), P2 = (xP2

1 , D2/(m2 − n2D2), x
P2
3 ),

where

xPi1 =
n1 − 1

2n1
+ (−1)i

√
(n1 + 1)2 − 4 m1n1D2

m2−n2D2

2n1

xPi3 =
1

m2 − n2D2

(
m1x

Pi
1

1 + n1x
Pi
1

−D1

)
, i ∈ {1, 2} .

Note that the first two equilibria exist irrespective of the values of the parameters which

characterize the system, while several conditions need to be satisfied for the existence of

the last three equilibria.

The dynamics of the unperturbed system (RSC) has been studied in detail by Kle-

banoff and Hastings in [63] and by Kuznetsov and Rinaldi in [73]. However, the behavior of
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the perturbed system (SC) is severely affected by our periodic forcing and the qualitative

picture bears little resemblance, at least for significant forcing, to that of the unperturbed

system.

From Theorem 1.3.1, it is easy to see that the intermediate consumer-free periodic

solution is unstable provided that m2 < m2s, where

m2s =
ln(1 − δ2) +

∫ T1

0
m1(x1)∗(s)

1+n1(x1)∗(s)
ds−D1T1∫ T1

0
(x3)∗D2

(s)ds

and locally stable provided that the reverse inequality is satisfied.

For m1 = 2.4, n1 = 3, m2 = 0.02, n2 = 0.4, D1 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3,

δ3 = 0.05, μ1 = 0.25, T1 = 10, l = 0.5 (part of the values are close to the ones used by

McCann and Yodzis in [99]) and x1(0) = 0.75, x2(0) = 0.49, x3(0) = 0.05, it is seen that

the intermediate consumer-free periodic solution is unstable and the stabilizing value is

m2s = 0.098. The unperturbed system has a top predator-free equilibrium, but no positive

equilibria.

It is then seen that in this case the trajectory of the perturbed system tends to a peri-

odic orbit of period T1. Apart from deciding the stability or instability of the intermediate

consumer-free periodic solution, the parameter m2 does not seem to otherwise influence

the qualitative properties or the shape of the limiting set. The behavior of the trajectory

is depicted in Figure 1.3.1.

A related behavior is captured in Figure 1.3.2 for m1 = 10, n1 = 3, D1 = 0.4,

m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, μ1 = 0.25, T1 = 11, l = 0.5

and x1(0) = 0.75, x2(0) = 0.49, x3(0) = 0.05. The intermediate consumer-free periodic

solution is unstable and the stabilizing value is m2s = 1.329. The unperturbed system

has a top predator-free equilibrium and a positive equilibrium. In this case the trajectory

of the perturbed system tends to a periodic orbit of period 3T1.

A typical example of chaotic behavior (strange attractor) is captured in Figure 1.3.3

for m1 = 10, n1 = 3, D1 = 0.4, m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3,

δ3 = 0.05, μ = 0.25, T1 = 30, l = 0.5 and x1(0) = 0.75, x2(0) = 0.49, x3(0) = 0.05.

The intermediate consumer-free periodic solution is unstable and the stabilizing value is

m2s = 1.244. Again, the unperturbed system has a top predator-free equilibrium and

a positive equilibrium. The two dimensional plot x2 vs. x1 and the time series for x1,

x2, x3 also indicate that the trajectory has a chaotic behavior. A slight increase in m2
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Figure 1.3.1: m1 = 2.4, n1 = 3, m2 = 0.02, n2 = 0.4, D1 = 0.4, D2 = 0.01, δ1 = 0.1,
δ2 = 0.3, δ3 = 0.05, μ1 = 0.25, T1 = 10, l = 0.5. The trajectory approaches a periodic
orbit of period T1. The unperturbed system admits a top predator-free equilibrium, but
no positive equilibria.
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(m2 = 0.109) “stabilizes” the behavior of the system, and the trajectory tends again to a

periodic solution of period T1.

A somewhat similar situation is captured in Figure 1.3.4 form1 = 10, n1 = 2,D1 = 0.4,

m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1, δ2 = 0.3, δ3 = 0.05, μ = 0.25, T1 = 10, l = 0.5

and x1(0) = 0.75, x2(0) = 0.49, x3(0) = 0.05. The intermediate consumer-free periodic

solution is unstable and the stabilizing value is m2s = 1.745. The unperturbed system

has a top predator-free equilibrium and two positive equilibria. A slight increase in m2

(m2 = 0.1119) “stabilizes” the behavior of the system, and the trajectory tends again to a

periodic solution of period T1. That is, m2 does not have only the potential to stabilize the

intermediate consumer-free periodic solution, but also the potential to mitigate the chaotic

behavior of a trajectory for certain values significantly smaller than the stabilizing critical

value, an increase of m2 over these values ensuring that the trajectories of the system

tend to certain periodic solutions.
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Figure 1.3.2: m1 = 10, n1 = 3, D1 = 0.4, m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1,
δ2 = 0.3, δ3 = 0.05, μ1 = 0.25, T1 = 11, l = 0.5. The trajectory approaches a periodic
orbit of period 3T1. The unperturbed system admits a top predator-free equilibrium and
a positive equilibrium.

0.1

0.8
x1

0.10.7 x2
3.7

4.1

x3

0.1

0.2

0.3

0.4

0.5

0.6

0.7
x2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x1

9000 9050 9100 9150 9200
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7
x2

9000 9050 9100 9150 9200
t

3.7

3.8

3.9

4

4.1

x3

9000 9050 9100 9150 9200
t

1.4 An impulsively perturbed predator-prey system with Beddington-DeAngelis

functional response and time delay

1.4.1 A survey of models with Beddington-DeAngelis functional response

There is much significant evidence to suggest that predator dependence in the functional

response occurs quite frequently in laboratory and natural systems (see, for instance, Jost

and Ellner [62] or Skalski and Gilliam [121]) and due to large numbers of experiments and

observations, the models with predator-dependent functional response stand as reasonable

alternatives to the models with prey-dependent functional response. Arditi and Ginzburg

[6] first proposed and investigated the following ratio-dependent predator-prey model:⎧⎪⎨⎪⎩
N ′ = N(a− bN) − cNP

mP +N
,

P ′ = −dP +
fNP

mP +N
.

Note that the above model is a result of replacing the Holling type II prey-dependent

functional response N
m+N

employed in (H) with a ratio-dependent one N/P
m+N/P

.

The Beddington-DeAngelis functional response F = αN
a+bN+cP

was originally introduced

by Beddington [11] and DeAngelis et al [21], independently, and actually for different
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Figure 1.3.3: m1 = 10, n1 = 3, D1 = 0.4, m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1,
δ2 = 0.3, δ3 = 0.05, μ = 0.25, T1 = 30, l = 0.5. The trajectory is chaotic (bistability-like
scenario). The unperturbed system admits a top predator-free equilibrium and a positive
equilibrium.
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reasons.

Consequently, a predator-prey model with Beddington-DeAngelis functional response

can be obtained through a similar replacement of the Holling type II functional response,

in the form:

(1.4.1)

⎧⎪⎪⎨⎪⎪⎩
x′ = x(r − x

k
) − αxy

a+ bx+ cy
,

y′ = −dy +
βxy

a + bx+ cy
.

Motivated by this system, many researchers proposed and studied models consisting of

ordinary or functional differential equations incorporating Beddington-DeAngelis type

functional responses. For instance, in his papers [56, 57], Hwang showed that the interior

equilibrium of the above system is globally stable provided that it is locally asymptotically

stable. Further, he obtained sufficient conditions for the uniqueness of limit cycles of the

system. Inspired by the work of Beretta and Kuang [12], Liu and Yuan [91] considered

the situation in which the numerical response term appearing in the predator equation

of (1.4.1) contains a delay term τ , which can be regarded as a gestation period or re-

action time of the predators. Further, incorporating a stage structure for the predator

population, Liu and Beretta [86] proposed and studied the case in which a time delay τ
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Figure 1.3.4: m1 = 10, n1 = 2, D1 = 0.4, m2 = 0.1, n2 = 0.4, D2 = 0.01, δ1 = 0.1,
δ2 = 0.3, δ3 = 0.05, μ = 0.25, T1 = 10, l = 0.5. The trajectory is chaotic (bistability-
like scenario). The unperturbed system admits a top predator-free equilibrium and two
positive equilibria.
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appears in the response term of the immature predator equation as well as in the mature

predator equation. Here, τ , dissimilar to the above delay, represents the time taken from

birth to maturity. The stability of the interior equilibrium, the permanence of the system

and conditions for the delay-induced stability switch were also considered in Gopalsamy

[35] and Kuang [69]. Since biological and environmental parameters are naturally subject

to fluctuation in time, in order to describe the model more accurately, Fan and Kuang

[23] studied the dynamics of a nonautonomous, periodic (almost periodic) predator-prey

system with Beddington-DeAngelis functional response by using the coincidence degree

theory, as proposed by Gaines and Mawhin [26].

From the above-mentioned brief literature survey, it may be noted that the effect

caused by the periodic impulsive perturbation of the prey population on the dynamics of

the stage-structured predator-prey model with Beddington-DeAngelis functional response

and time delay has not been modeled and analyzed. The aim of this section is to model

and explain this phenomenon from a mathematical viewpoint. More precisely, hunting

and harvesting usually occur seasonally or yearly, with fixed periodicity, and as a result

the prey population decreases significantly over a short period of time. That is, hunting

and harvesting can be modeled, up to some extent, as occurring in periodic pulses. As
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a result, the dynamics of the system is considerably affected in a way which is worth of

further study.

This section is organized in the following manner. In Subsection 1.4.2, we propose the

model to be studied and give certain preliminary boundedness and comparison results. In

Subsection 1.4.3, we discuss the global attractivity of the predator-free positive periodic

solution. Sufficient conditions for the permanence of the model are obtained in Subsec-

tion 1.4.4. In the final subsection, we present some numerical experiments to illustrate

our results. A brief discussion of the biological significance of our findings is also provided.

This section is based on the results obtained in Zhang, Georgescu and Chen [138].

1.4.2 The model and its simplification

In this section, we denote by x(t) the size of the prey population. Also, the predator

population is divided into juvenile and mature classes, with the size of each class given

by yj(t) and y(t), respectively. The model we shall study has the form:

(BDA)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = x(t)g
(
x(t)

) − bx(t)y(t)

1 + k1x(t) + k2y(t)
,

y′(t) =
βbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− dy(t),

y′j(t) =
βbx(t)y(t)

1 + k1x(t) + k2y(t)
− βbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− djyj(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
t �= kT,

Δx(t) = −μx(t), t = kT

with initial conditions

(1.4.2)

⎧⎪⎨⎪⎩
(x(·), y(·), yj(·)) = (ϕ1(·), ϕ2(·), ϕ3(·)) ∈ C+

3 , ϕi(0) > 0, i = 1, 2, 3,

ϕ3(0) =

∫ 0

−τ
edjθ

βbϕ1(θ)ϕ2(θ)

1 + k1ϕ1(θ) + k2ϕ2(θ)
dθ,

in which,

C+
3
.
= C

(
[−τ, 0],R3

+

)
,

where R
3
+
.
=
{
(z1, z2, z3) : zi ≥ 0, i = 1, 2, 3

}
and τ, T > 0. Here, Δx(t) = x(t+) − x(t).

To derive the mathematical model, the following assumptions are made:

(A1) In the absence of predation, the dynamics of the prey population follows the logistic

law of growth with intrinsic growth rate r and carrying capacity r
c
, i.e. xg(x) =

x(r − cx).
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(A2) Juvenile predators are not able to hunt for prey and are raised by their parents

because of their weakness. Moreover, they can not breed.

(A3) The parameter τ represents a constant maturation time which, from a mathematical

point of view, introduces a delay in our model. The product term βbe−djτx(t−τ)y(t−τ)
1+k1x(t−τ)+k2y(t−τ)

represents the movement of the young predator population to the mature class.

(A4) The prey population is subject to a perturbation which causes its proportional

reduction, with reduction parameter μ (0 ≤ μ < 1). This proportional reduction

can be interpreted as hunting (or harvesting) with a constant hunting (or harvesting)

effort.

(A5) The positive constants b and k1 represent the effects of capture rate and handling

time, respectively, on the feeding rate; β > 0 is the birth rate of the predator and

k2 ≥ 0 is a constant describing the magnitude of the interference among predators.

The positive constants d and dj denote the death rates of the mature predator

population and immature predator population, respectively.

We now define the notion of solution of a delayed impulsive differential system which shall

be used in the following.

Definition 1.4.1. A map X: [−τ,∞) → R
n is said to be a solution of the impulsively

perturbed Cauchy problem

(1.4.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X ′(t) = f(t, X(t), X(t− τ)), t �= kT, k ∈ N,

ΔX(kT ) = Ik(X(kT )),

X(0) = X0,

if it satisfies the following conditions:

(H1) X(t) is continuous on [0, T ] and on each interval (kT, (k + 1)T ], k ∈ N. The points

{kT}, k ∈ N, are discontinuities of the first kind for f , f being continuous at the left of

each point.

(H2) X(t) satisfies the former n equations of the system (1.4.3) on [0,∞)\{kT, k ∈ N}
and satisfies the latter equations for every t = kT , k ∈ N.

Under these circumstances, it can be shown that the positive solutions of (BDA) are

ultimately bounded, fact which is accomplished in the following Lemma.
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Lemma 1.4.1. There exists a constant M > 0 such that x(t) ≤ M , yj(t) ≤ M and

y(t) ≤ M for each positive solution (x(t), y(t), yj(t)) of the system (BDA) and t large

enough.

Proof. Let N(t) = x(t) + 1
β

(
yj(t) + y(t)

)
. By a simple computation we have

D+N
∣∣
(BDA)

= xg(x) − 1

β

(
djyj(t) + dy(t)

)
, t ∈ (kT, (k + 1)T ].

Obviously, from (A1), it is easy to see that there exists a constant λ > 0 such that

D+N |(BDA) + δN < λ, t ∈ (kT, (k + 1)T ], for k large enough,

where δ = min{d, dj}. When t = kT , we get

N(kT+) ≤ N(kT ).

According to Lemma C.1.2, applied for τk = kT , we obtain

N(t) < N(0)e−δt +

∫ t

0

λe−δ(t−s)ds→ λ

δ
as t→ ∞.

Let M
.
= max{λ

δ
, βλ
δ
}. Therefore, by the definition of N(t), we derive that each positive

solution of system (1.4.1) is uniformly ultimately bounded with ultimate boundedness

constant M . This completes the proof.

Finally, we indicate an exponential estimation which shall be used in the following for

proving asymptotic stability results.

Lemma 1.4.2. [40] Let t0 be a real number and τ0 be a nonnegative number. If m :

[t0 − τ0,∞) → [0,∞) satisfies

ṁ(t) ≤ −ρm(t) + �[ sup
t−τ0≤s≤t

m(s)] for t ≥ t0,

and if ρ > � > 0, then there exist positive numbers ι and κ such that

m(t) ≤ ιe−κ(t−t0) for t ≥ t0.

Before going into any detail, we need to simplify the model (BDA). Since

yj(t) =

∫ t

t−τ
e−dj(t−θ) βbx(θ)y(θ)

1 + k1x(θ) + k2y(θ)
dθ,
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i.e. yj(t) is completely determined by x(t), y(t), we may restrict ourselves to the following

reduced model:

(R-BDA)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x′(t) = x(t)g
(
x(t)

)− bx(t)y(t)

1 + k1x(t) + k2y(t)
,

y′(t) =
βbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− dy(t),

⎫⎪⎪⎬⎪⎪⎭ t �= kT,

Δx(t) = −μx(t), t = kT

.

1.4.3 The stability of the mature predator-free periodic solution

Consider the following case in which y(t) ≡ 0 in (R-BDA):

(1.4.4)

⎧⎨⎩ x′(t) = x(t)(r − cx(t)), t �= kT,

Δx(t) = −μx(t), t = kT.

Lemma 1.3.3 then easily leads to the following conclusion.

Lemma 1.4.3. Assume that μ < μ∗ = 1 − e−rT . Then the system (1.4.4) has a unique

positive periodic solution x∗(t) which is globally asymptotically stable, expressed as

x∗(t) =
r
c
(1 − μ− e−rT )

1 − μ− e−rT + μe−r(t−(n−1)T )
, t ∈ ((n− 1)T, nT ], n ∈ N

∗.

Consequently, the system (R-BDA) has a mature predator-free periodic solution (x∗(t), 0).

From (R-BDA), one notes that⎧⎨⎩ x′(t) ≤ x(t)(r − cx(t)), t �= kT,

Δx(t) = −μx(t), t = kT.

Then, by using Lemma 1.4.3, we obtain that for each arbitrary small positive constant ε

there exists a positive integer n1 such that for all t ≥ n1T ,

x(t) ≤ x∗(t) + ε.

As a consequence, for all t ≥ n1T + τ we have

(1.4.5) x(t− τ) ≤ x∗(t− τ) + ε ≤
r
c

(
1 − μ− e−rT

)
(1 − μ) (1 − e−rT )

+ ε = η + ε.

Further, in view of (1.4.5) and the second equation of (R-BDA), we have that for all

t ≥ n1T + τ ,

(1.4.6) y′(t) ≤ βbe−djτ (η + ε)y(t− τ)

1 + k1(η + ε)
− dy(t).

According to the above analysis, the following result is easily derived.
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Theorem 1.4.1. Assume that μ < μ∗ = 1 − e−rT . If

R1 =
βbe−djτη

1 + k1η
< d,

then the mature predator-free periodic solution (x∗(t), 0) is globally attractive.

Proof. Let ε > 0 be such that

βbe−djτ (η + ε)

1 + k1 (η + ε)
< d.

Consider the comparison equation

z′(t) =
βbe−djτ (η + ε) z(t− τ)

1 + k1 (η + ε)
− dz(t).

According to the conditions of Theorem 1.4.1 and with the help of Lemma 1.4.2, one

obtains that

lim
t→∞

z(t) = 0.

Since y(s) = z(s) = ϕ2(s) > 0 for all s ∈ [τ, 0], by a comparison argument, we have

lim sup
t→∞

y(t) ≤ lim sup
t→∞

z(t) = 0.

Using the positivity of y(t), we then obtain that limt→∞ y(t) = 0.

Therefore, for any sufficiently small ε1(0 < ε1 <
r
b
), there exists an integer n2 > n1

such that y(t) < ε1 for all t > n2T ≥ n1T + τ .

From the first equation of the system (R-BDA), we obtain

x(t)(r − bε1
1 + k2ε1

− cx(t)) ≤ x′(t) < x(t)g(x(t)), t �= kT.

From Lemmas C.1.1 and 1.4.3, there exists a n3(> n2) such that x1(t) ≤ x(t) ≤ x2(t)

and x1(t) → x̃(t), x2(t) → x∗(t) as t > n3T , where x1(t) and x2(t) are, respectively, the

solutions of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x′1(t) = x1(t)(r − bε1

1 + k2ε1
− cx1(t)), t �= kT,

Δx1(t) = −μx1(t), t = kT,

x1(0
+) = x0

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′2(t) = x2(t)g(x2(t)), t �= kT,

Δx2(t) = −μx2(t), t = kT,

x2(0
+) = x0,
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while

x̃(t) =

r− bε1
1+k2ε1

c
(1 − μ− e

−(r− bε1
1+k2ε1

)T
)

1 − μ− e
−(r− bε1

1+k2ε1
)T

+ μe
−(r− bε1

1+k2ε1
)(t−(n−1)T )

, (n− 1)T < t ≤ nT, n > n3.

Therefore, for any ε1 > 0 we have x̃(t) − ε1 < x(t) < x∗(t) + ε1 for t large enough. For

ε1 → 0, we get x̃(t) → x∗(t). Hence x(t) → x∗(t) as t→ ∞. This completes the proof.

From the above, one may easily obtain the following result

Corollary 1.4.1. The mature predator-free periodic solution (x∗(t), 0) of the system

(R-BDA) is globally attractive provided that one of the following conditions holds:

(I) R0 ≤ d, where R0 = βbe−djτ

k1
;

(II) R0 > d and r
c
≤ Θ(1 − e−rT ), where Θ = d

k1(R0−d) .

(III) R0 > d, r
c
> Θ(1 − e−rT ) and μ > μ∗, where μ∗ =

(1−Θ c
r )(1−e−rT )

1−Θ c
r
(1−e−rT )

.

Remark 1.4.1. Considering the pulses-free case in the system (R-BDA), one notes from

Liu and Beretta [86] that if R =
βbe−djτ r

c

1+k1
r
c
< d holds, then limt→∞(x(t), y(t)) = ( r

c
, 0). After

adding the periodic impulsive perturbations of the prey population, we first consider for

the new system the dynamics of the mature predator-free periodic solution (x∗(t), 0) which

corresponds to the trivial equilibrium ( r
c
, 0) of the pulses-free system. It is easy to see that

for μ → 0 one has that η → r
c
, so R1 → R and we obtain the persistence result given in

[86] from the above Theorem 1.4.1. Obviously, a similarity among R, μ∗ and Ri(i = 0, 1)

is that these critical values are independent of the effect of k2, which is to introduce a

self-limiting term into the predator equation.

Remark 1.4.2. The fraction βbη1
1+k1η1

approximates the mature predator’s numerical re-

sponse when (x(t), y(t)) is near the mature predator-free periodic solution (x∗(t), 0), while

e−djτ is a correction term incorporating the “degree of stage structure” djτ , named as such

by Liu et al in [88], meant to describe the loss of juvenile predators due to through-stage

mortality. In this regard, Theorem 1.4.1 can be interpreted as if few predators introduced

into an environment stabilized at the periodic mature predator-free solution cannot re-

produce fast enough, compensating through-stage mortality, as described by the degree of

stage structure, then the mature predator-free periodic solution is globally asymptotically

stable.
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Remark 1.4.3. It is interesting to note that, as far as the effect of the delay τ is con-

cerned, a large delay τ may always stabilize the predator-free equilibrium by bringing R0

below d, as seen from (I) of Corollary 1.4.1. Also, from (II) of Corollary 1.4.1, it is seen

that the systems with low resources ( r
c
< Θ(1− e−rT )) are more likely to be stabilized to

the mature predator-free periodic solution. Having also in view (III) of Corollary 1.4.1, it

is seen that increasing the carrying capacity of the system may destabilize an otherwise

stable mature predator-free periodic solution, which is certainly conceivable from a purely

biological point of view.

Remark 1.4.4. Clearly, one notes that the global attractivity of juvenile and mature

predator-free periodic solution (x∗(t), 0, 0) of the system (BDA) is equivalent to the global

attractivity of mature predator-free periodic solution (x∗(t), 0) of the system (R-BDA).

Its biological implication is that for certain harvesting and hunting rates, if the carrying

capacity of the environment is below a certain determinable value, then the predator

population vanishes in time.

1.4.4 A permanence result

Uniform persistence (or permanence), defined as such in Section 1.1, is an important

property of systems arising in ecology, epidemics, population dynamics and not only. It

is actually a concept which is important in itself, addressing the long-term survival of

some or all components of a system. In this subsection, we focus our attention on the

permanence of the system (R-BDA).

In the following, we first consider the single species model with delay described below:

(1.4.7) v′(t) =
a1v(t− ν)

a2 + a3v(t− ν)
− a4v(t),

where ai(i = 1, 2, 3, 4) and ν are positive constants. Obviously, v(t) is strictly positive if

(1.4.8) v(t) = ϕ̃(t) > 0 for t ∈ [−ν, 0].

The following Lemma is an application of Theorem 9.1 in [17,Chapter 4].

Lemma 1.4.4. The equation (1.4.7) has a unique positive equilibrium v∗ = a1−a2a4
a3a4

, which

is absolutely globally asymptotically stable provided that a1 > a2a4.

Here, the absolute global asymptotic stability of v∗ means that v∗ is globally asymp-

totically stable for all ν > 0. We now start investigating the permanence of the system
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(R-BDA). Let ε > 0 be an arbitrary positive constant. Recalling (1.4.5), together with

the second equation of (R-BDA), one notes that there exists a n4 > n3 such that for

t > n4T ,

y′(t) ≤ βbe−djτ (η + ε)y(t− τ)

1 + k1(η + ε) + k2y(t− τ)
− dy(t).(1.4.9)

Hence from the above Lemma, combined with a comparison argument, one obtains that

for an arbitrary small positive constant ε̃, there exists a n5 > n4 such that if

βbe−djτ (η + ε)

(1 + k1(η + ε))d
> 1,

then

y(t) ≤ βbe−djτ (η + ε) − (1 + k1(η + ε))d

dk2

+ ε̃ = ζ(ε, ε̃)(1.4.10)

for t > n5T . Consequently, we obtain that for t > n5T and t �= kT,

x′(t) ≥ x(t)g(x(t)) − bζ(ε, ε̃)

1 + k1(η + ε) + k2ζ(ε, ε̃)
x(t).(1.4.11)

Next let r(ε, ε̃) = r − bζ(ε,ε̃)
1+k1(η+ε)+k2ζ(ε,ε̃)

> 0. In view of Lemmas C.1.1 and 1.4.3, it follows

that there exists a n6 > n5 such that for μ < 1 − e−r(ε,ε̃)T and t ≥ n6T ,

x(t) ≥
r(ε,ε̃)
c

(1 − μ− e−r(ε,ε̃)T )

1 − μ− e−r(ε,ε̃)T + μ
= ϑ(ε, ε̃).(1.4.12)

In the following, we define

W (t) = y(t) + βbe−djτ

∫ t

t−τ

x(s)y(s)

1 + k1x(s) + k2y(s)
ds.

Then the derivative of W (t) with respect to the solutions of the system (R-BDA) is

governed by

dW

dt

∣∣∣
(R-BDA)

=
( βbe−djτx(t)

1 + k1x(t) + k2y(t)
− d

)
y(t)(1.4.13)

≥ ( βbe−djτϑ(ε, ε̃)

1 + k1ϑ(ε, ε̃) + k2y(t)
− d

)
y(t).

If

(1.4.14)
βbe−djτϑ(ε, ε̃)

1 + k1ϑ(ε, ε̃)
− d > 0,
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we can choose sufficiently small y∗ such that

(1.4.15)
βbe−djτϑ(ε, ε̃)

1 + k1ϑ(ε, ε̃) + k2y∗
− d > 0.

We claim that for any t0 > 0, it is impossible that y(t) < y∗ for all t ≥ t0. Suppose that

the claim is not valid. Then there is a t0 > 0 such that y(t) < y∗ for all t ≥ max{t0, n6T}.
From (1.4.13), one notes there exists a t1 > max{t0 + τ, n6T + τ} such that for t ≥ t1,

dW

dt

∣∣∣
(R-BDA)

≥ ( βbe−djτϑ(ε, ε̃)

1 + k1ϑ(ε, ε̃) + k2y∗
− d

)
y(t).(1.4.16)

Set

yl
.
= min

t∈[t1,t1+τ ]
y(t).

We will show that y(t) ≥ yl for all t ≥ t1 > t0. Otherwise, there exists a T0 ≥ 0 such

that y(t) ≥ yl for t1 ≤ t ≤ t1 + τ + T0, and y(t1 + τ + T0) = yl. Hence, from the second

equation of (R-BDA), we derive

y′(t1 + τ + T0) ≥
( βbe−djτϑ(ε, ε̃)

1 + k1ϑ(ε, ε̃) + k2y∗
− d

)
yl

and so y′(t1 + τ + T0) > 0. Consequently, y is locally increasing near t1 + τ + T0 and

cannot fall below yl. Thus

(1.4.17) y(t) ≥ yl

for all t ≥ t1. As a consequence, (1.4.16) and (1.4.17) lead to

dW

dt

∣∣∣
(R-BDA)

> δ̃ for some δ̃ > 0 and t ≥ t1,

which implies that W (t) → ∞ as t → ∞. This contradicts the boundedness of W (t).

The claim that y(t) ≥ yl is then proved.

By the above claim, we need to consider two cases. The first one is the case in which

y(t) ≥ y∗ for all large t, which yields the uniform persistence of the mature predator.

Combined with (1.4.12), this means that our system (R-BDA) is uniformly persistent.

Second, y(t) oscillates about y∗ for all large t. Let us define

q = min
{y∗

2
, y∗e−dτ

}
.

We want to show that y(t) ≥ q for all large t, which, as done above, will yield the uniform

persistence of the system (R-BDA). Let t∗ > 0 and ν̃ > 0 satisfy

y(t∗) = y(t∗ + ν̃) = y∗
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and

y(t) < y∗, t ∈ (t∗, t∗ + ν̃).

It is seen that y(t) is uniformly equicontinuous since the positive solutions of (R-BDA)

are ultimately bounded and y(t) is not affected by the impulsive perturbations. Thus

there exists a T̃ (0 < T̃ < τ , and T̃ is independent of the choice of t∗) such that

y(t) >
y∗

2

for t∗ < t < t∗ + T̃ . If ν̃ ≤ T̃ , there is nothing to prove. Let us consider the case

τ ≥ ν̃ > T̃ . It follows that for t∗ + T̃ ≤ t ≤ t∗ + ν̃,

y′(t) ≥ −dy(t).

Hence

y(t) ≥ y∗e−dτ

for t∗ + T̃ ≤ t ≤ t∗ + ν̃ ≤ t∗ + τ , since y(t∗) = y∗. If ν̃ > τ , it is obvious that y(t) ≥ q

for t ∈ [t∗, t∗ + τ ]. Then, proceeding exactly as the for the derivation of (1.4.17), we see

that y(t) ≥ q for t ∈ [t∗ + τ, t∗ + ν̃]. Since this interval [t∗, t∗ + ν̃] is chosen in an arbitrary

way (we only need t∗ to be large), we conclude that y(t) ≥ q for all large t. Due to the

above-mentioned analysis, we obtain the following result.

Theorem 1.4.2. The system (R-BDA) is permanent provided that

r(0, 0) > 0, μ < 1 − e−r(0,0)T , R1 > d,
βbe−djτϑ(0, 0)

1 + k1ϑ(0, 0)
− d > 0.

After some further computations, we may consequently deduce the following result.

Corollary 1.4.2. The system (R-BDA) is permanent provided that one of the following

conditions holds:

(I) d < R1, r ≥ b
k2

+ cΘ, μ < μ∗
1, where

μ∗
1 = (1 − e−r(0,0)T )(1 − cΘ

r(0, 0)
)

r(0, 0) =

(
r − b

k2

)
+

bd

R1k2

(II) d < R1 < d∗, r < b
k2

+ cΘ, μ < μ∗
1, where

d∗ =
bd

b+ k2cΘ − rk2
.
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Remark 1.4.5. From [86], we note that if R =
βbe−djτ r

c

1+k1
r
c

≥ d holds, then the corresponding

pluses-free system is permanent. After adding periodic impulsive perturbations of the prey

population, in order to keep the permanence of the new system (R-BDA) we have to fulfill

a related condition, although there is still room for improvement in the estimations given

in Corollary 1.4.2.

1.4.5 Numerical analysis and a discussion of the main results

To facilitate the interpretation of our mathematical results and to further establish the

importance of the proportional impulsive part and of the delay term, we proceed to inves-

tigate further by using numerical simulations. A first example is indicated in Table 1.4.5,

which illustrates the loss of permanence due to the effects of the impulsive perturbation.

Let us also choose a set of parameters as follows:

pulses-free r, β, k1 c b d k2 dj τ Permanence
system [86] 1 5/8 1.5 0.5 0.1 0.01 0.8 Yes

impulsive r, β, k1 c b d k2 dj τ R1

system 1 5/8 1.5 0.5 0.1 0.01 0.8 ≈ 0.251 < d
Θ T μ∗ μ∗ η R0 μ Permanence

≈ 0.506 1 ≈ 0.540 ≈ 0.6321 ≈ 0.203 ≈ 1.488 0.6 No

Table 1.4.1: Comparing the impulsive system with the corresponding pulses-free system

• r = 1.8, c = 0.2, β = 1, b = 0.1, dj = 0.01, T = 0.3, τ = 1, d = 0.15, k1 = 0.5,

k2 = 0.1, μ = 0.1.

After a few computations, one gets that

• r(0, 0) ≈ 1.756 > 0, 1− e−r(0,0)T = 0.409 > μ, R1 −d = 0.006 > 0, βbe−djτϑ(0,0)
1+k1ϑ(0,0)

−d ≈
0.002 > 0.

Hence, by applying Theorem 1.4.2, it is shown that the system (BDA) with the above

coefficients is permanent. However, when μ = 0.2 and the other coefficients remain fixed,

it follows that R1 = 0.147 < d and the corresponding impulsive system is not permanent,

the mature predator-free periodic solution being globally asymptotically stable from The-

orem 1.4.1. Similarly, when τ = 6 and the other coefficients remain fixed, it follows that

R1 = 0.149 and the corresponding impulsive system loses again its permanence. As a

consequence, from Table1.4.5 and the above-mentioned example, it is easy to see that the
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impulsive perturbation and the time delay play an important role in the dynamics of the

system.

Obviously, from Corollary 1.4.2 we see that when the prey has a large intrinsic growth

rate, the proportional reduction μ is small and the predators can breed quickly, then

the prey population and predator population can coexist forever. The same happens if

the carrying capacity is lower, provided that the breeding rate of the mature predators

remains also lower than a certain value.

As far as the the impulsive control for the prey population is concerned, we show that

the system tends to a state of “total extinction of the predator” if conditions in Theorem

1.4.1 are satisfied. However, from the point of view of protecting the predator population

and subsistence hunting or harvesting, the aim is to keep both species at an acceptable

level. In this regard, sufficient conditions guaranteeing the permanence of the system are

also found in Theorem 1.4.2.
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Chapter 2

Epidemiology: studying disease dynamics

2.1 Basic concepts of mathematical epidemiology

The latest decades witnessed a resurrection of infectious diseases which were once thought

as being on their way to eradication, due to the apparition of antibiotic-resistant strains

or to climate changes, which helped spreading the diseases to new geographical areas.

Tuberculosis, malaria, dengue fever and yellow fever are just a few diseases which continue

to persist despite of the efforts committed to their eradication and of the advances in

modern medicine and hygiene.

New infectious diseases such as AIDS, SARS and hepatitis C have also emerged and are

now major mortality causes throughout the world. Consequently, there is a rising interest

in the mathematical modeling of infectious diseases, as mathematical models may provide

accurate assessments, identify key threshold parameters and provide hints about possible

eradication strategies. Further, mathematical models provide a convenient vehicle by

the use of which various conceptual conjectures about the nature and transmission of the

disease can be tested against real data. In this regard, comprehensive surveys of concepts,

methods and results in the mathematical modeling of infectious diseases can be found in

Anderson and May [4], Hethcote [46, 47], Capasso [15].

A very important factor which should be considered when attempting to formulate a

mathematical model to describe the evolution of a disease is the time-space scale. For

instance, the constant population assumption, which may be reasonable at the macro-

scopic scale (to study the propagation of a disease in human or animal populations, that

is) is clearly not an option at the microscopic scale (to study the propagation of a virus in

the human body, when of concern are cell populations). Other considerations regarding

the use of different functions to model the spread of the disease at the microscopic and

macroscopic level also apply. Consequently, we have split the remaining part of this sec-

tion into two parts, corresponding to issues arising at the macroscopic and microscopic

scale, respectively.
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2.1.1 Modeling for the macroscopic level

Compartmental models

To model the propagation of a disease in human (or animal) populations, it is often

convenient to subdivide the population which is considered into a small number of epi-

demiological classes, or compartments, the resulting model being called a compartmental

model. The classes which are usually considered are

S The class of susceptibles, that is, the individuals which have not yet been exposed

to infection and do not possess immunity.

E The class of exposed, that is, the individuals which have been exposed to the disease,

but are not yet capable of transmitting the disease, being still in the incubating

stage, and do not possess immunity. This class is also called the latent class.

I The class of infectives, that is, the individuals which are capable of transmitting the

disease to susceptibles.

R The class of removed, that is, the individuals which possess permanent or temporary

immunity and may not contract or transmit the disease, or which have died.

Other classes may be added for increased accuracy. Specifically, the class A of asymp-

tomatic individuals, the class H of hospitalized individuals and the class M of infants

which possess passive (maternally transmitted) immunity are sometimes considered.

Especially for macroparasitic infections, the manifestation and severity of the disease is

dependent upon the parasite load and consequently one may need to consider the so-called

stage structure for the infection, that is, a succession of infection stages, with possibly

different clinical symptoms and chances of survival. The corresponds models are called

stage-structured models.

To model the effect of spatial spread without resorting to the use of partial differ-

ential equations, one may sometimes assume that the above classes are organized into

interrelated, but formally separated, groups of different sizes. The models which are

consequently obtained are called multipatch models.

A flowchart characterizing the general evolution of a disease within the boundaries of

the so-called SEIRS model, named as such after the compartmental flow path, is given

below. In the following, we shall briefly describe the concepts mentioned therein.
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S

births,

immigration

natural deaths

or emigration

E

natural deaths

or emigration

I

vertical incidence

natural deaths,

emigration or

disease-related

deaths

R

natural deaths

or emigration

S

horizontal

incidence

waning

immunity

The sizes of each class at moment t are denoted by S(t), E(t), I(t), R(t), respec-

tively, while N(t) denotes the total population size, that is N = S + E + I + R. If the

time scale of the epidemic process is significantly faster than the demographic time scale

(which is the case for many human diseases, one notable exception, however, being AIDS)

and the disease-induced mortality is low, the population may be considered as being at

equilibrium, that is, N may be assumed as being constant.

Regarding the transmission mechanism, the disease may be transmitted through hori-

zontal incidence (that is, from infectives to susceptibles, the latter moving to the exposed

class or to the infected class if the latent period is negligible) and through vertical inci-

dence (that is, from infected mothers to newborns, the latter being born directly to the

infected class). The per capita rate at which susceptible individuals acquire infection is

sometimes called the force of infection and is generally understood as a function of the

total number of infective individuals.

A typical form of horizontal incidence rate is the so-called standard incidence. To

derive the standard incidence, let β be the average number of adequate contacts (i.e.,

which suffice for transmission) of an individual per unit time. Then the average number

of adequate contacts of an infective individual with susceptibles per unit time is β S
N

, so

the incidence rate is β SI
N

, hereinafter called the standard incidence rate.

The assumption that the average number of adequate contacts is independent of the

total population size N is motivated by the fact that the daily activity pattern of humans

is mostly independent of the community size. A more general situation is the case in

which β is density-dependent, that is, β = β(N), which gives rise to a density-dependent

incidence rate β(N)SI
N

. In this regard, Hesterbeek and Metz proposed in [45] a contact
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rate of type

β(N) =
bN

1 + bN +
√

1 + 2bN
.

Also, it is sometimes argued that β(N) should be independent of N only for large N (that

is, the saturation effect is reached only for large population sizes), while for small N β(N)

should be linear in N . Another reasonable requirement is that β(N)
N

be nonincreasing as

a function of N .

To model vertical incidence, one usually assumes that a fixed proportion of the new-

borns of infective mothers are infected at birth. Consequently, the most common vertical

transmission term is kI, understood as the product of the probability of the disease being

transmitted at birth, the birth rate and the number of infected women.

Regarding the progression from one stage to another, if it is supposed, for instance,

that a fixed fraction pE of the total number of exposed individuals leaves the class at

any given time, it is seen that the waiting time in the exposed class are exponentially

distributed (that is, the probability of a exposed individual still being in the exposed class

t units of time afterwards is e−pt) and the average time spent in this class is 1
p
. Similar

interpretations hold with respect to the other classes. If it is assumed instead that an

exposed individual spends a fixed time τ into the exposed class, then the associated model

contains a delay differential part, with delay τ .

It is often found that the dynamics of a disease is governed by a threshold parameter

R0, called the basic reproduction number (basic reproduction ratio, basic reproductive

rate), defined as the average number of new infections caused by a single infective indi-

vidual introduced into a totally susceptible population at equilibrium. In this regard, it

is usually found out that if R0 < 1, then the disease dies out, while if R0 > 1, then the

disease remains endemic. That is, R0 is a threshold quantity which determines whether

or not a disease is capable of invading a population.

A typical SEIR model with constant population size, vertical transmission, standard

incidence rate and exponentially distributed waiting times is then⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S ′ = μN − μS − β
SI

N
− kI

E ′ = β
SI

N
− (ε+ μ)E

I ′ = εE − (γ + μ)I + kI

R′ = γI − μR.
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For this model, the basic reproduction number R0 is shown to be R0 = βε
(μ+ε)(μ+γ)−kε (see

Li et al [83]).

2.1.2 Modeling for the microscopic level

To model the propagation of a viral disease at the cellular level, it is again useful to divide

the cell population into a number of classes, or compartments, although this time the

resulting partition has a different construction. The classes which are generally considered

are

X The class of susceptible cells.

Y The class infected cells.

V The class of viral cells.

An additional class of exposed cells might be considered, but there is no class of recovered

cells considered separately anymore. Since X, Y are classes of body cells and V is a class

of viral cells (of a different type, that is), a total constant population size is not to be

expected.

The number of cells in each class will be denoted by x, y and v, respectively. The

constant contact rate which has been found appropriate for human populations, based

on the existence of a daily activity pattern, no longer applies. In this situation, under a

homogeneous mixing assumption, it may be assumed that the contact rate of an infective

cell depends on the size of the susceptible class x, which gives rise to the so-called mass

action law, in which the horizontal incidence has the form βxy, that is, it is bilinear. In

this situation, β does not have a direct epidemiological meaning.

Also, at cell level, there is no direct corespondent of the concept of vertical incidence.

Still, the global dynamics of a virus propagation model is again governed by a basic

reproduction number, defined as done for human populations, with a few obvious changes.

A typical virus propagation model is the following, introduced by Zeuzem et al. [136]

and by Bonhoeffer et al. [13]. ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x′ = λ− dx− βxv

y′ = βvx− ay

v′ = ky − μv.
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For this model, the basic reproduction number is shown to be R0 = λβk
adu

(see Bonhoeffer

et al. [13]). Note that certain shortcomings of this model have been pointed out by Min

et al. [102].

2.2 The dynamics of a virus propagation model

We consider a compartmental model for the propagation of a virus in vivo, in the form

(VP)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S ′ = n(S) − c(S)f(V ),

E ′ = c(S)f(V ) − c1i(E),

I ′ = c2i(E) − c3p(I),

V ′ = c4p(I) − r(V ).

Here, S denotes the concentration of the cells in the susceptible (i.e., uninfected) class,

E denotes the concentration of cells in the exposed (i.e., latent) class, I denotes the

concentration of cells in the infected class, and V denotes the concentration of the virus

itself.

The intrinsic growth rate of the susceptible class, which includes both production of

new cells and natural mortality of cells, is given by n(S) with all the newly produced cells

assumed to be susceptible. The movement of cells from the exposed class into the infected

class and the production of free virus from infected cells are given by c2i(E) and c4p(I),

respectively. By c1i(E) and c3p(I), we denote the removal of the exposed and infected

classes, respectively, which include the mortality of cells in the above-mentioned classes.

It is assumed that the infection process is characterized by the incidence rate c(S)f(V ),

where c(S) denotes the contact function at concentration S and f(V ) denotes the force

of infection by virus at concentration V . We note that our incidence rate is sufficiently

general to encompass many forms of commonly used incidence rate, including simple mass

action. The removal rate of the virus is denoted by r(V ). All functions c, f, i, p, r, n are

allowed to be nonlinear and all constants c1, c2, c3, c4 are assumed to be positive.

We thereby assume that the major infection pathway is virus-to-cell, since the cell-to-

cell pathway is sometimes less documented and therefore less considered, particularly in

diseases such as AIDS (see Perelson and Nelson [116]).

While this model has been studied in Bonhoeffer et al. [13], Korobeinikov [64], Nowak

and May [107], and Perelson and Nelson [116], among others, for linear c, f, i, p, r, n,
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it is perhaps important to account for a number of nonlinear features of the biological

phenomena which are involved, especially for the nonlinearity of the incidence rate, which

is influenced by the availability of susceptible cells and by the force of infection of viral

cells. As the concentration of viral cells becomes higher, the simple mass action law βSV

may not necessarily suffice. Moreover, the rate at which an infected cell or virus will

die as a function of their concentrations is generally not known, and hence we make a

further generalization by assuming that the removal rate is also nonlinear. For a detailed

discussion on the virus dynamics of HIV, readers are referred to Perelson and Nelson [116].

We note that in (VP), for i(x) = x and p(x) = x, the constant 1/c1 represents the

average time spent by a cell in the latent state, while 1/c3 represents the average lifetime

of an infected cell. Also, c1 ≥ c2 and c1 − c2 represents the mortality rate of the exposed

cells, while c4 relates to the production of virus from infected cells. See also the details

on the mathematical modeling of infectious diseases given in the previous section.

As noted by Korobeinikov in [64], if there is no exposed class E and consequently

c(S)f(V ) represents the movement of cells from the susceptible class directly into the

infected class, the (reduced three-dimensional) system (VP) is equivalent to a SEIR model

with a constant population assumption. It is therefore expected that the dynamics of our

model will share some features with the dynamics of a SEIR model. Some perspectives

and results from the global stability theory for SEIR models would also be relevant for our

discussion. See Korobeinikov and Maini [66], Li et al. [80], Li and Muldowney [81], and

Li, Muldowney, and van den Driessche [82] for global stability results for SEIR models.

However, in [80, 81, 82] the approach is essentially geometrical, using a stability criteria

which extends the Poincaré–Bendixson theorem and ruling out periodic orbits, rather

than constructing a Lyapunov functional.

A related investigation pertaining to the dynamics of infectious disease models which

incorporated nonlinear incidence rates of a very general form has recently been performed

by Korobeinikov and Maini in [67] by using the Lyapunov method. In [67], the local

stability of the equilibria for SIRS and SEIRS models has been considered assuming that

the incidence rate is given by an arbitrary function f(S, I,N), while the global stability

of the equilibria for SIR and SEIR models has been considered assuming that the inci-

dence rate is of the form f(I)g(S). However, apart from the incidence rate, the other

functions which appear in the models considered in [67] are linear and a constant popu-

lation assumption is used, while for our model full nonlinearity is assured and a constant
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population assumption would not be an option. Moreover, the analysis performed in [67]

is done in a somewhat different manner, with a focus on the role of the concavity of the

nonlinear incidence rate in the existence and stability of the endemic equilibrium.

Substantial results regarding the global dynamics of a three-dimensional HIV model

have been obtained by De Leenheer and Smith [20] using a different approach; their result

distinguishes whether or not the term −kV T , which models the loss of a free virus particle

once it enters the target cell, can be absorbed into the general loss term −γV . In [20], V is

the concentration of free virus particles in the blood and T is the concentration of T cells.

De Leenheer and Smith start with general assumptions on the function f which models T

cell dynamics in a healthy individual and then specialize their results for two particular

functions: f1(T ) = δ−αT + pT (1−T/Tmax) as used by Perelson and Nelson in [116] and

f2(T ) = δ − αT as used by Nowak and May in [107]. Certain linearity assumptions on

some other functions appearing in the model are also made.

In the particular case in which the term −kV T is absorbed into the general loss term

(as done in [116] and [107])) and f = f2, the model used in [20] can be thought of

as a reduced version of our model, with no exposed class and extra linearity assump-

tions. However, the proof of our global stability result uses in an unavoidable manner

the monotonicity assumption on n, which corresponds to f in [20], and therefore it can

accommodate the case f = f2 only and not the case f = f1. In particular, our model

does not admit orbitally asymptotically stable periodic solutions, which are obtained in

[20] for f = f1; see [20, Theorem 1] for details.

The remaining part of this Section is organized as follows. We propose the model to

be studied in Subsection 2.2.1 and discuss its well-posedness. In Subsection 2.2.2, we give

results on the stability of the disease-free equilibrium and persistence of the system, while

Subsections 2.2.3 and 2.2.4 contain discussions on the existence, uniqueness, and global

stability of the endemic equilibrium. Finally, in Subsection 2.2.5, we give some remarks

on the biological interpretation of our results, as well as on some further extensions of the

model . This Section is based on the results obtained in Georgescu and Hsieh [28].
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2.2.1 A compartmental model for the propagation of a virus in vivo

We assume that c, f, i, p, r are real locally Lipschitz functions defined at least on [0,∞)

which satisfy

c(0) = f(0) = i(0) = p(0) = r(0) = 0,

c(t), f(t), i(t), p(t), r(t) > 0 for t > 0

and that n is a real locally Lipschitz function defined at least on [0,∞) with n(0) > 0

such that the equation n(S) = 0 has a single solution S0. We also assume that

(n(S) − n(S0))(S − S0) < 0 for S �= S0,(2.2.1)

(c(S) − c(S0))(S − S0) > 0 for S �= S0

together with

(D)

∫ 1

0+

1

ϕ(τ)
dτ = +∞ for all ϕ ∈ {c, f, i, p} .

Note that (2.2.1) is satisfied if, for instance, n is strictly decreasing and c is strictly

increasing. We also suppose that there are kn, ki, kp, kv, k̃n > 0 such that

n(S) ≤ k̃n − knS for S ≥ 0, i(E) ≥ kiE for E ≥ 0, p(I) ≥ kpI for I ≥ 0,(G)

r(V ) ≥ krV for V ≥ 0.

The set of growth conditions (G) will be used to establish, in our general setting, the

global existence of the solution for the Cauchy problem associated with the system (VP).

We note that these conditions may be dropped if the global existence property is known

or the a priori boundedness of the solutions may be established by other methods. We

shall indicate in Subsection 2.2.5 how to remove conditions (G) at the expense of other

conditions on the behavior of c, f, i, p near +∞ if f/r is nonincreasing on (0,∞).

First, it can be easily shown that a solution of the system (VP) which starts in [0,∞)4

remains there on its whole interval of existence. To this purpose, we note that the vector

(R1, R2, R3, R4) points inside Q = [0,∞)4 at all points of ∂Q, where R1, R2, R3, and R4

are the right-hand sides appearing in (VP), and hence Nagumo’s tangency conditions are

satisfied. See Pavel [109] for details.

From our assumptions, it is clear that the system (VP) has a unique saturated (i.e.,

nonextendable) solution for any initial data (S(0), E(0), I(0), V (0)). Using (G), it is
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possible to prove that all saturated solutions are global. To this aim, note that(
S + E +

c1
2c2

I +
c1c3
4c2c4

V

)′
≤ k̃n − knS − c1ki

2
E − c1c3

4c2
kpI − c1c3

4c2c4
krV,

it follows that there is δ = δ(kn, ki, kp, kr, c1, c2, c3, c4) > 0 small enough such that(
S + E +

c1
2c2

I +
c1c3
4c2c4

V

)′
+ δ

(
S + E +

c1
2c2

I +
c1c3
4c2c4

V

)
≤ k̃n,

which implies that

S + E +
c1
2c2

I +
c1c3
4c2c4

V − k̃n
δ

≤
(
S(0) + E(0) +

c1
2c2

I(0) +
c1c3
4c2c4

V (0) − k̃n
δ

)
e−δt for t ≥ 0,

and therefore S,E, I, V are bounded on their maximal interval of existence. It follows

that the functions S(t), E(t), I(t), V (t) are defined on [0,∞), and so the Cauchy problem

with nonnegative initial data is well-posed for the system (VP). Moreover, if we denote

F =

{
(S,E, I, V ) ∈ [0,∞)4;S + E +

c1
2c2

I +
c1c3
4c2c4

V ≤ k̃n
δ

}
,

it follows that F is a feasible region for the system (VP). Of course, the feasible region

determined above is neither minimal nor unique, and the parameter δ above is obviously

not uniquely determined. We shall simply choose

(2.2.2) δ = min
(
kn,

c1
2
ki,

c3
2
kp, kr

)
.

If S is small, then S ′ = n(S) − c(S)F (V ) > 0 if V stays in a bounded set, since n(0) > 0

and limS→0 c(S) = 0, and we may infer that for any S(0) > 0 there is εS(0) > 0 such that

S(t) ≥ εS(0) for all t > 0. This means that all solutions which start with positive S(0)

do not reach any point with S = 0 in future time. If S(0) = 0, then S ′ > 0 in a vicinity

of 0 and, again, S(t) raises over a certain minimum value (of course, the case in which

S(0) = 0 does not make much biological sense). Also, it can be seen that the only w-limit

point of (VP) on the boundary of F is the disease-free equilibrium (S0, 0, 0, 0) and the

only points on the boundary of [0,∞)4 which can be attained in finite time are situated

on [OS, the positive S-semiaxis containing the origin.
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2.2.2 The stability of the disease-free equilibrium

Since the equation n(S) = 0 has a single solution S0 and f(0) = i(0) = p(0) = r(0) = 0, it

is easy to see that the system (VP) admits a unique disease-free equilibrium (S0, 0, 0, 0).

We now turn our attention to the study of its stability.

Consider the Lyapunov functional

U1(S,E, I, V ) =

∫ S

S0

c(τ) − c(S0)

c(τ)
dτ + E +

c1
c2
I +

c1c3
c2c4

V.

Since (c(S) − c(S0))(S − S0) > 0 for S �= S0, it is seen that U1 increases whenever

any of |S − S0|, E, I, V increases and U1(S,E, I, V ) ≥ 0 for all S,E, I, V ≥ 0, while

U1(S,E, I, V ) = 0 if and only if (S,E, I, V ) = (S0, 0, 0, 0).

We now compute the time derivative of U1 along the solutions of (VP). It is seen that

·
U1 =

(
1 − c(S0)

c(S)

)
(n(S) − c(S)f(V )) + (c(S)f(V ) − c1i(E))

+
c1
c2

(c2i(E) − c3p(I)) +
c1c3
c2c4

(c4p(I) − r(V )),

and since n(S0) = 0, we can deduce that

(2.2.3)
·
U1(S,E, I, V ) =

(
1 − c(S0)

c(S)

)
(n(S) − n(S0)) +

[
c(S0)f(V ) − c1c3

c2c4
r(V )

]
.

Due to (2.2.1), it is easily seen that

(2.2.4)

(
1 − c(S0)

c(S)

)
(n(S) − n(S0)) < 0 for S �= S0,

and the first term in the right-hand side of (2.2.3) is negative. It is then seen that the

stability of the disease-free equilibrium is related to the sign of the remaining term in the

right-hand side of (2.2.3).

Theorem 2.2.1. Suppose that there is a number VR > 0 such that

(2.2.5) c(S0)
f(V )

r(V )

c2c4
c1c3

≤ 1 for V ∈ (0, VR),

and let m = U1(S0, 0, 0, VR). Then the disease-free equilibrium (S0, 0, 0, 0) is locally asymp-

totically stable and its domain of attraction includes the set

Mm =
{
(S,E, I, V ) ∈ (0,∞) × [0,∞)3;U1(S,E, I, V ) < m

}
.
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Proof. From (2.2.3), (2.2.4), and (2.2.5), it is seen that
·
U1(S,E, I, V ) ≤ 0 for 0 ≤ V <

VR, with equality if and only if S = S0 and either V = 0 or the equality in (2.2.5) holds.

Let us denote M̃ = {(S,E, I, V ) ∈ (0,∞) × [0,∞)3, 0 ≤ V < VR} and take k < m

arbitrary. Since for all V ≥ VR one has U1(S,E, I, V ) ≥ U1(S0, 0, 0, VR), it is seen that

Mk ⊂ M̃ . Consequently,
·
U1(S,E, I, V ) ≤ 0 on Mk, with equality if and only if S = S0

and the equality in (2.2.5) holds.

We now find the invariant subsets P̃ within the set

P =
{
(S,E, I, V ) ∈Mk;

·
U1(S,E, I, V ) = 0

}
.

Since S = S0 on P̃ and consequently S ′ = −c(S0)f(V ), it is seen that V = 0 and one

similarly deduces that E = I = 0; that is, the only invariant subset of P is the singleton

P̃ = {(S0, 0, 0, 0)}. From LaSalle’s invariance principle (see Appendix A or LaSalle [77])

and the fact that k < m was arbitrary, the conclusion follows.

Consider the Lyapunov function

U2(S,E, I, V ) = E +
c1
c2
I +

c1c3
c2c4

V.

Similar to the derivation of (2.2.3), the time derivative of U2 along the solutions of (VP)

is given by

(2.2.6)
·
U2(S,E, I, V ) = c(S)f(V ) − c1c3

c2c4
r(V ).

Obviously, if (VP) is uniformly persistent, then the disease remains endemic and sta-

bility for the disease-free equilibrium is excluded. In this regard, we have already observed

that if (2.2.5) is satisfied on some interval (0, VR), then the disease-free equilibrium is lo-

cally asymptotically stable. If, on the other hand, the opposite of (2.2.5) is satisfied on

some interval (0, VR), then the system (VP) is uniformly persistent in the sense mentioned

above.

Theorem 2.2.2. Assume that there is a number VR > 0 such that

(2.2.7) c(S0)
f(V )

r(V )

c2c4
c1c3

> 1 for V ∈ (0, VR).

Then (VP) is uniformly persistent and the disease-free equilibrium (S0, 0, 0, 0) is unstable,

with the positive semiaxis [OS as its stable manifold.
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Proof. From (2.2.6), (2.2.7), and the continuity of the function c at S0, it follows that·
U2 > 0 on a small vicinity of (S0, 0, 0, 0), except for the points with V = 0. It then follows

that any solution which starts in that vicinity remains away from (S0, 0, 0, 0), except for

those starting on the positive semiaxis [OS, which tend to (S0, 0, 0, 0) while remaining

on [OS. It may now be obtained, as in Proposition 3.3 in Li et al. [80], that the system

(VP) is uniformly persistent. This amounts to observing that (S0, 0, 0, 0) is the unique

compact invariant set on the boundary of our feasible domain (so it is isolated) and its

stable manifold is the positive semiaxis [OS, which is contained in the boundary of the

feasible domain. Then the use of Theorem 4.1 in Hofbauer and So [49], together with the

remark that a flow and its time one map have the same maximal compact invariant set

and the same stable set in a region, concludes the proof.

It now remains to indicate some situations in which (2.2.5) or (2.2.7) are satisfied. Sup-

pose for the moment that f/r is nonincreasing on (0,∞) and define a basic reproduction

number R0 of the system (VP) by

(2.2.8) R0 = c(S0)
c2c4
c1c3

lim
V→0

f(V )

r(V )

(note that the limit limV→0
f(V )
r(V )

does indeed exist, since f/r is monotone on (0,∞)).

If R0 ≤ 1, then (2.2.5) is satisfied on [0,∞), while if R0 > 1, then (2.2.7) is satisfied

for V in a vicinity of 0. Also, it may be seen that limVR→∞ U1(S0, 0, 0, VR) = +∞. One

then obtains the following result, which establishes that R0 is the threshold parameter for

the stability of the disease-free equilibrium.

Theorem 2.2.3. Suppose that f/r is nonincreasing on (0,∞).

1. If R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally asymptotically

stable.

2. If R0 > 1, then (VP) is uniformly persistent and the disease-free equilibrium (S0, 0, 0, 0)

is unstable, with the positive semiaxis [OS as its stable manifold.

In fact, if f/r is nonincreasing on (0,∞), more can be said for the case R0 > 1, and

it will be shown in Subsections 2.2.3 and 2.2.4 that, in this situation, the system (VP)

admits a positive endemic equilibrium, which is globally asymptotically stable.
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We also note that if the functions f and r are of class C1 and the limit limV→0
f ′(V )
r′(V )

exists, then by the L’Hôpital theorem

R0 = c(S0)
c2c4
c1c3

lim
V→0

f ′(V )

r′(V )
,

which is in agreement with the definition of the basic reproduction number given by van

den Driessche and Watmough in [126] for a large class of compartmental models, including

the present model. We do not need, however, to assume C1 regularity for the functional

coefficients throughout our proofs. We also note that, since no C1 regularity is assumed,

local stability analysis based on Jacobian matrices would fail.

2.2.3 The existence of the endemic equilibrium

We now try to establish some sufficient conditions for the existence of the endemic equi-

librium (S∗, E∗, I∗, V ∗). Since it would be somehow unrealistic to attempt to solve the

system (EQ) in its greatest generality, we impose some additional conditions on our func-

tional coefficients. Let us suppose the following:

f/r is nonincreasing on (0,∞),(2.2.9)

c, f, i, p are strictly increasing on [0,∞) and n is strictly decreasing on [0,∞),

(2.2.10)

lim
x→∞

i(x) = lim
x→∞

p(x) = +∞.

(2.2.11)

Necessarily, S∗, E∗, I∗, V ∗ > 0, and the following equilibrium relations are satisfied:

n(S∗) = c(S∗)f(V ∗), c(S∗)f(V ∗) = c1i(E
∗), c2i(E

∗) = c3p(I
∗),(EQ)

c4p(I
∗) = r(V ∗).

To solve the equilibrium system (EQ), note first that from the last three equalities in

(EQ) one obtains

c(S∗)f(V ∗) =
c1c3
c2c4

r(V ∗).

Let us define

F1(S, V ) = n(S) − c(S)f(V ), F2(S, V ) = c(S)f(V ) − c1c3
c2c4

r(V ).
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Since S �→ F1(S, V ) is strictly decreasing and F1(0, V ) · F1(S0, V ) < 0 for all V , the

equation F1(S, V ) = 0 can be uniquely solved with respect to S as a function of V for all

V . That is, there is a function S = ψ1(V ) which satisfies

(2.2.12)
n(ψ1(V ))

c(ψ1(V ))
= f(V ).

Since n/c is strictly decreasing and f is strictly increasing, it follows that ψ1 is strictly

decreasing. Note also that due to (2.2.12), limV→∞ ψ1(V ) = 0.

Similarly, S �→ F2(S, V ) is strictly increasing and F2(0, V ) < 0 for all V . However, in

this instance it is not necessarily true that F2(S0, V ) > 0, and hence the same approach

we used to solve the equation F2(S, V ) = 0 would not work. However, for our purpose

we do not actually need the global solvability of the equation F2(S, V ) = 0, since we are

searching for a unique endemic equilibrium and consequently for a single V ∗. In some

situations, local solvability may suffice.

To gain insight, suppose for the moment that the equation F2(S, V ) = 0 may also be

uniquely solved with respect to S as a function of V (locally for V ). That is, there is a

function S = ψ2(V ) which satisfies

c(ψ2(V )) =
c1c3
c2c4

r(V )

f(V )
.

Since c is strictly increasing, it follows that ψ2 is strictly increasing.

Since ψ1 is strictly decreasing, ψ2 is strictly increasing and limV→∞ ψ1(V ) = 0, the

curves defined by S = ψ1(V ) and S = ψ2(V ) have a common point (S∗, V ∗) with

S∗ > 0 and V ∗ > 0 if and only if ψ1(0) > ψ2(0), or equivalently, c(ψ1(0)) > c(ψ2(0)).

Since ψ1(0) = S0 and c(ψ2(0)) = c1c3
c2c4

limV→0
r(V )
f(V )

, the existence condition is c(S0) >

c1c3
c2c4

limV→0
r(V )
f(V )

. Using the basic reproduction number of the system (VP) as defined in

(2.2.8) (note again that f/r is monotone), this condition may be rewritten as R0 > 1.

Up to now, we have shown that if the equation F2(S, V ) = 0 is solvable with respect

to S as a function of V , then the necessary and sufficient condition for the existence of

positive (S∗, V ∗) is that R0 > 1. In this case, we have

F2(S, V ) =
c1c3
c2c4

r(V )

[
c(S)

c2c4
c1c3

f(V )

r(V )
− 1

]
;

and F2(S0, V ) is positive for V in a vicinity of 0. Since we have already noted that

F2(0, V ) < 0 for all V , it follows that the equation F2(S, V ) = 0 is solvable with respect

to S as a function of V (locally for V ) if R0 > 1, which is precisely what we needed. That
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is, we have shown that the existence of positive (S∗, V ∗) is equivalent to the validity of

condition R0 > 1.

Also, if i, p are strictly increasing on [0,∞) and limx→∞ i(x) = limx→∞ p(x) = +∞,

then the equations i(E) = 1
c1
n(S∗) and p(I) = c2

c3c1
n(S∗) will have unique positive solutions

E∗, I∗, respectively. In view of the above, we can summarize our discussion with the

following result.

Theorem 2.2.4. Assume that conditions (2.2.9), (2.2.10), and (2.2.11) are satisfied.

Then there is a unique positive endemic equilibrium (S∗, E∗, I∗, V ∗) of (VP) if and only

if R0 > 1, where R0 is the basic reproduction number for the system (VP), as defined in

(2.2.8).

We note that conditions (2.2.9), (2.2.10), and (2.2.11) (combined with R0 > 1) are

sufficient for the existence of the endemic equilibrium but not necessary. Actually, if

one assumes that the removal rate r(V ) of the virus is influenced by treatment which

is administered if an increase of the virus load over a certain value is observed, while

the force of infection f(V ) is not, it is easy to think of a function f/r which is not

monotone, for instance. In this situation, the disease-free equilibrium may coexist with

multiple positive endemic equilibria. It is perhaps also worth noting that the stability of

the equilibria depends essentially on the behavior of the function f/r and depends on the

contact function c only through the basic reproduction number R0.

2.2.4 The stability of the endemic equilibrium

In this subsection we assume that the system (VP) admits a positive endemic equilibrium

(S∗, E∗, I∗, V ∗) and study its stability. However, we do not assume that (2.2.9), (2.2.10),

and (2.2.11) are satisfied and establish our results under somewhat weaker hypotheses.

This is consistent with the remark that conditions (2.2.9), (2.2.10), and (2.2.11) are suf-

ficient for the existence of the endemic equilibrium but not necessary. For our purpose,

apart from the existence of the endemic equilibrium, we assume that

(c(S) − c(S∗)) (S − S∗) > 0 for S �= S∗, S ≥ 0,(P)

(f(V ) − f(V ∗)) (V − V ∗) > 0 for V �= V ∗, V ≥ 0,

(i(E) − i(E∗)) (E − E∗) > 0 for E �= E∗, E ≥ 0,

(p(I) − p(I∗)) (I − I∗) > 0 for I �= I∗, I ≥ 0

100



C
E

U
eT

D
C

ol
le

ct
io

n

and

(n(S) − n(S∗)) (S − S∗) ≤ 0 for all S ≥ 0.(N)

Note that conditions (P) and (N) are satisfied if (2.2.10) holds. However, nonmonotone

functions c, f, i, p, n can also satisfy (P) and (N).

We consider the Lyapunov function

U3(S,E, I, V ) =

∫ S

S∗

c(τ) − c(S∗)
c(τ)

dτ +

∫ E

E∗

i(τ) − i(E∗)
i(τ)

dτ

+
c1
c2

∫ I

I∗

p(τ) − p(I∗)
p(τ)

dτ +
c1c3
c2c4

∫ V

V ∗

f(τ) − f(V ∗)
f(τ)

dτ.

Due to the sign conditions (P), it is seen that U3 increases whenever any of |S − S∗|,
|E − E∗|, |I − I∗|, |V − V ∗| increases and U3(S,E, I, V ) ≥ 0 for all S,E, I, V ≥ 0, while

U3(S,E, I, V ) = 0 if and only if (S,E, I, V ) = (S∗, E∗, I∗, V ∗). We note that if any of

S,E, I, V tends to 0, then U3(S,E, I, V ) tends to ∞ due to the divergence condition (D).

It then follows that all level sets of U3 have no limit points on the boundary of (0,∞)4.

We now compute the time derivative of U3 along the solutions of (VP).

Lemma 2.2.1. The time derivative of U3 with respect to the solutions of (VP) is

·
U3(S,E, I, V )

= (n(S) − n(S∗))
(

1 − c(S∗)
c(S)

)
+ c(S∗)r(V )

(
f(V ∗)
f(V )

− 1

)(
f(V ∗)
r(V ∗)

− f(V )

r(V )

)
− c1i(E

∗)
[
c(S∗)
c(S)

+
i(E∗)
i(E)

c(S)

c(S∗)
f(V )

f(V ∗)
+

i(E)

i(E∗)
p(I∗)
p(I)

+
f(V ∗)
f(V )

p(I)

p(I∗)
− 4

]
.

If the inequality

c(S∗)r(V )

(
f(V ∗)
f(V )

− 1

)(
f(V ∗)
r(V ∗)

− f(V )

r(V )

)
≤ 0(2.2.13)

holds true for V in some given interval (VL, VR), then
·
U3(S,E, I, V ) ≤ 0 for V ∈ (VL, VR),

with equality if and only if

S = S∗ and
i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

101



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. It is seen that

·
U3 =

(
1 − c(S∗)

c(S)

)
(n(S) − c(S)f(V )) +

(
1 − i(E∗)

i(E)

)
(c(S)f(V ) − c1i(E))

+
c1
c2

(
1 − p(I∗)

p(I)

)
(c2i(E) − c3p(I)) +

c1c3
c2c4

(
1 − f(V ∗)

f(V )

)
(c4p(I) − r(V ))

= n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) − i(E∗)

i(E)
c(S)f(V ) + c1i(E

∗) − c1
p(I∗)
p(I)

i(E)

+
c1c3
c2

p(I∗) − c1c3
c2c4

r(V ) − c1c3
c2

f(V ∗)
f(V )

p(I) +
c1c3
c2c4

f(V ∗)
f(V )

r(V ).

Using the equilibrium relations (EQ), it follows that

·
U3 = n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) − c1i(E

∗)
i(E∗)
i(E)

c(S)

c(S∗)
f(V )

f(V ∗)
+ c1i(E

∗)

− c1i(E
∗)
i(E)

i(E∗)
p(I∗)
p(I)

+ c1i(E
∗) − c1i(E

∗)
r(V )

r(V ∗)
− c1i(E

∗)
f(V ∗)
f(V )

p(I)

p(I∗)

+ c1i(E
∗)
f(V ∗)
f(V )

r(V )

r(V ∗)

= n(S)

(
1 − c(S∗)

c(S)

)
+ c(S∗)f(V ) + c1i(E

∗)
(
f(V ∗)
f(V )

r(V )

r(V ∗)
− r(V ∗)

r(V )

)
− c1i(E

∗)
[
i(E∗)
i(E)

c(S)

c(S∗)
f(V )

f(V ∗)
+

i(E)

i(E∗)
p(I∗)
p(I)

+
f(V ∗)
f(V )

p(I)

p(I∗)
− 2

]
= n(S)

(
1 − c(S∗)

c(S)

)
+ c1i(E

∗)
f(V )

f(V ∗)
+ c1i(E

∗)
(
f(V ∗)
f(V )

r(V )

r(V ∗)
− r(V )

r(V ∗)

)
− c1i(E

∗)
[
c(S∗)
c(S)

+
i(E∗)
i(E)

c(S)

c(S∗)
f(V )

f(V ∗)
+

i(E)

i(E∗)
p(I∗)
p(I)

+
f(V ∗)
f(V )

p(I)

p(I∗)
− 4

]
+ c1i(E

∗)
c(S∗)
c(S)

− 2c1i(E
∗).

This implies that

·
U3 = (n(S) − c1i(E

∗))
(

1 − c(S∗)
c(S)

)
+ c1i(E

∗)
(
f(V ∗)
f(V )

r(V )

r(V ∗)
− r(V )

r(V ∗)
+

f(V )

f(V ∗)
− 1

)
− c1i(E

∗)
[
c(S∗)
c(S)

+
i(E∗)
i(E)

c(S)

c(S∗)
f(V )

f(V ∗)
+

i(E)

i(E∗)
p(I∗)
p(I)

+
f(V ∗)
f(V )

p(I)

p(I∗)
− 4

]
,

and since c1i(E
∗) = n(S∗), it follows that

·
U3(S,E, I, V )
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= (n(S) − n(S∗))
(

1 − c(S∗)
c(S)

)
+ c1i(E

∗)
(
f(V ∗)
f(V )

− 1

)(
r(V )

r(V ∗)
− f(V )

f(V ∗)

)
− c1i(E

∗)
[
c(S∗)
c(S)

+
i(E∗)
i(E)

c(S)

c(S∗)
f(V )

f(V ∗)
+

i(E)

i(E∗)
p(I∗)
p(I)

+
f(V ∗)
f(V )

p(I)

p(I∗)
− 4

]
.

Using the relation c1i(E
∗) = c(S∗)f(V ∗), one gets the required conclusion. Now, from

the sign condition (N) it is seen that

(n(S) − n(S∗))
(

1 − c(S∗)
c(S)

)
≤ 0 for S ≥ 0,

with equality if and only if S = S∗, and from the AM-GM inequality (which says that

the algebraic mean is not smaller than the geometric mean) it is seen that

c(S∗)
c(S)

+
i(E∗)
i(E)

c(S)

c(S∗)
f(V )

f(V ∗)
+

i(E)

i(E∗)
p(I∗)
p(I)

+
f(V ∗)
f(V )

p(I)

p(I∗)
≥ 4,

with equality if and only if

c(S∗)
c(S)

=
i(E∗)
i(E)

c(S)

c(S∗)
f(V )

f(V ∗)
=

i(E)

i(E∗)
p(I∗)
p(I)

=
f(V ∗)
f(V )

p(I)

p(I∗)
= 1.(2.2.14)

It then follows that if the inequality

c(S∗)r(V )

(
f(V ∗)
f(V )

− 1

)(
f(V ∗)
r(V ∗)

− f(V )

r(V )

)
≤ 0

holds true for v ∈ (VL, VR), then
·
U3(S,E, I, V ) ≤ 0. For the equality case, we note that

c(S∗) = c(S) if and only if S = S∗, and substituting this into (2.2.14) one obtains that

i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

It is now obvious that the stability of the endemic equilibrium (S∗, E∗, I∗, V ∗) is related

to the validity of the inequality (2.2.13). Subsequently, we estimate the size of the domain

of attraction associated with (S∗, E∗, I∗, V ∗).

Theorem 2.2.5. Assume that the sign conditions (P) and (N) are satisfied and there are

VL and VR such that

f(V )

r(V )
≤ f(V ∗)
r(V ∗)

for V ∗ ≤ V < VR,(2.2.15)

f(V )

r(V )
≥ f(V ∗)
r(V ∗)

for VL < V ≤ V ∗.
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Define m = min (U3(S
∗, E∗, I∗, VL), U3(S

∗, E∗, I∗, VR)). Then (S∗, E∗, I∗, V ∗) is locally

asymptotically stable and its domain of attraction includes the set

Mm =
{
(S,E, I, V ) ∈ (0,∞)4;U3(S,E, I, V ) < m

}
.

Proof. Denote

M̃ =
{
(S,E, I, V ) ∈ (0,∞)4;VL < V < VR

}
.

From (2.2.15), it follows that (2.2.13) is satisfied for V ∈ (VL, VR), and using Lemma 2.2.1

one may infer that
·
U3(S,E, I, V ) ≤ 0 on M̃ , with equality if and only if

S = S∗ and
i(E)

i(E∗)
=

f(V )

f(V ∗)
=

p(I)

p(I∗)
.

Take an arbitrary k < m. Since U3 increases whenever any of |S−S∗|, |E−E∗|, |I − I∗|,
|V −V ∗| increases, it follows easily that, for all V outside (VL, VR), one has U3(S,E, I, V ) ≥
m for all S,E, I > 0. Consequently Mk ⊂ M̃ . Moreover, as noted previously, Mk is a

bounded set which has no limit points on the boundary of M̃ .

We now find the invariant subsets Ñ within the set

N =
{
(S,E, I, V ) ∈Mk;

·
U3(S,E, I, V ) ≤ 0

}
.

Since S = S∗ on Ñ and consequently S ′ = n(S∗) − c(S∗)f(V ), it follows that S ′ =

c(S∗)(f(V ∗) − f(V )), and so S ′ = 0 if and only if V = V ∗. From i(E)
i(E∗)

= p(I)
p(I∗)

= 1 we

then deduce that E = E∗ and I = I∗ by using the sign condition (P).

Therefore, using LaSalle’s invariance principle (see Appendix A or LaSalle [77]) one

obtains that any trajectory which starts in Mk tends to (S∗, E∗, I∗, V ∗) as t→ ∞. Then

the endemic equilibrium (S∗, E∗, I∗, V ∗) is locally asymptotically stable and the set Mk

belongs to its domain of attraction. Since k was arbitrary and less than m, one obtains

the required conclusion.

We now continue with a few considerations on the inequalities (2.2.15). Since

lim
VL→0

U3(S
∗, E∗, I∗, VL) = lim

VR→∞
U3(S

∗, E∗, I∗, VR) = +∞,

one obtains that if the following inequalities are satisfied,

f(V )

r(V )
≤ f(V ∗)
r(V ∗)

for V ∗ ≤ V,(2.2.16)

f(V )

r(V )
≥ f(V ∗)
r(V ∗)

for 0 < V ≤ V ∗,
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then (S∗, E∗, I∗, V ∗) is globally asymptotically stable in (0,∞)4.

Regarding the inequalities (2.2.16) (or (2.2.15)), it is easy to see that they are verified

if the function f/r is nonincreasing on (0,∞) (or on (VL, VR)); however, this monotonicity

property is only sufficient and not necessary. If r(V ) = kV , for some k, then the above

monotonicity property is satisfied for three common incidence rates, namely c1(S)f1(V ) =

β1SV , c2(S)f2(V ) = β2S
pV q, where 0 < q ≤ 1, and c3(S)f3(V ) = β3SV/(1 + a1V ).

We also remark that the inequalities (2.2.16) alone imply the uniqueness of the en-

demic equilibrium (S∗, E∗, I∗, V ∗). To show this, suppose that there is another endemic

equilibrium (S∗
1 , E

∗
1 , I

∗
1 , V

∗
1 ). Apart from (EQ), one then has

n(S∗
1) = c(S∗

1)f(V ∗
1 ), c(S∗

1)f(V ∗
1 ) = c1i(E

∗
1), c2i(E

∗
1) = c3p(I

∗
1 ),(EQ′)

c4p(I
∗
1 ) = r(V ∗

1 ).

It follows that

c(S∗) − c(S∗
1) =

c1c3
c2c4

(
r(V ∗)
f(V ∗)

− r(V ∗
1 )

f(V ∗
1 )

)
,(2.2.17)

n(S∗) − n(S∗
1) =

c1c3
c2c4

(r(V ∗) − r(V ∗
1 ))(2.2.18)

and therefore

(c(S∗) − c(S∗
1)) (V ∗ − V ∗

1 ) ≥ 0.

If V ∗ > V ∗
1 , then, from (2.2.17), c(S∗) ≥ c(S∗

1) and S∗ ≥ S∗
1 , which implies n(S∗) ≤ n(S∗

1).

Consequently, from (2.2.18), r(V ∗) ≤ r(V ∗
1 ), which is a contradiction. The case V ∗ < V ∗

1

is dismissed in a similar manner, subsequently V ∗ = V ∗
1 and from (2.2.17), S = S∗

1 .

Substituting these equalities into (EQ) and (EQ′) we obtain that i(E∗) = i(E∗
1) and

p(I∗) = p(I∗1 ), and hence E∗ = E∗
1 and I∗ = I∗1 ; that is, the endemic equilibrium is

uniquely determined. However, we should point out that inequalities (2.2.16) ensure the

uniqueness of the endemic equilibrium only and not necessarily its existence.

2.2.5 Discussions and concluding remarks

The earlier analysis clearly indicates the importance of the quantity

c(S0)
f(V )

r(V )

c2c4
c1c3

in the discussion on the local stability of the disease-free equilibrium and the persistence

of the system. Moreover, under the monotonicity condition on f(V )/r(V ), we obtain that
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the basic reproduction number is given by

(2.2.19) R0 = c(S0)
c2c4
c1c3

lim
V→0

f(V )

r(V )
.

We will now give a biological interpretation of this result. From (VP), it is obvious that

the terms in the numerator denote the growth in the concentrations of the infected cells,

E and I, and of the virus V . The terms in the denominator, on the other hand, denote the

removal (or decrease in concentration) of these three same classes. Therefore, the ratio

of the two can be considered as a measurement of the combined “productivity”, perhaps

more aptly, the basic reproductive ratio of the infected classes in the system. The fact that

the stability of the disease-free equilibrium and the persistence of the system depend on

whether this quantity is less than one or not (Theorems 2.2.1 and 2.2.2) further confirms

our assertion.

The quantity f(V )/r(V ) is also important for our results. It can be interpreted as

the efficiency of the virus, that is, the ratio of its infectivity to its removal, as a function

of the virus concentration. Theorems 2.2.3, 2.2.4, and 2.2.5 require f(V )/r(V ) to be

a nonincreasing function of V . Some recent studies (see, e.g., [114, 115]) let f(V ) =

r(V ) = V , an assumption which is supported by some clinical data. We note that in this

case f(V )/r(V ) = 1, and hence our condition of nonincreasing ratio f(V )/r(V ), which

generalizes to the models with nonlinear f(V ) and r(V ), is satisfied. For HIV, it has been

observed that the productivity of the virus, f(V ), increases as the virus concentration

increases. Our analysis is valid if the increase in removal of the virus r(V ) as virus

concentration increases is at least to the same level as the increase in f(V ). Further

studies are needed to verify whether our assertion holds.

On the other hand, if the function f/r is indeed increasing on (0,∞), then U1 and

U3 are not necessarily global Lyapunov functionals and therefore do not create their own

boundedness structure for the solutions of (VP). To obtain the global existence of the

solutions, the growth conditions (G) (see Subsection 2.2.2) need to be imposed. If f/r is

nonincreasing on (0,∞), however, the boundedness structures created by the level sets of

U1 and U3 render the growth conditions unnecessary.

Suppose that f/r is nonincreasing on (0,∞) and R0 > 1. Assume that the following

conditions are satisfied:

(B) lim
y→∞

(
y − ϕ(x)

∫ y

x

1

ϕ(τ)
dτ

)
= +∞ for all x > 0 and ϕ ∈ {c, f, i, p} .
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Note that (B) is satisfied for a function ϕ such that limy→∞ ϕ(y) = +∞, since in this

situation

lim
y→∞

∫ y
x

1
ϕ(τ)

dτ

y
= lim

y→∞
1

ϕ(y)
= 0 for ϕ ∈ {c, f, i, p} .

However, condition (B) is also satisfied for ϕ(x) = xp/(1 + axp), 0 < p ≤ 1 (this is, for

instance, the case when ϕ(V ) = f(V ) = V p/(1 + aV p) is a nonlinear force of infection

with saturation), which does not tend to +∞ as x→ +∞.

Regarding conditions (D), since the only points on the boundary of [0,∞)4 which can

be reached in finite time are situated on [OS and the only w-limit point of (VP) on the

boundary of [0,∞)4 is the disease-free equilibrium (S0, 0, 0, 0), a less restrictive condition

than (D) would suffice to avoid these situations, namely

(D′)
∫ 1

0+

1

ϕ(τ)
dτ = +∞ for some ϕ ∈ {f, i, p} .

Then, by the results in the previous Subsection, there is a unique positive endemic

equilibrium which verifies relations (EQ). Take (S(0), E(0), I(0), V (0)) ∈ (0,∞)4. Then·
U3 ≤ 0 for all t, and it follows that (S(t), E(t), I(t), V (t)) stays in a level set of U3 on its

whole interval of existence. Since the level sets of U3 are bounded due to (B), it follows

that the saturated solution which starts in (S(0), E(0), I(0), V (0)) exists on [0,∞). The

growth conditions (G), which were used to obtain global existence, therefore become

unnecessary and the proof proceeds in the same manner. Then, as in Subsection 2.2.2,

all solutions which start in [0,∞)4 tend to (S∗, E∗, I∗, V ∗), except for those which start

on [OS and tend to (S0, 0, 0, 0) as t → ∞. The growth conditions become unnecessary

for the proof of the uniform persistence result as well, since the system (VP) admits an

endemic equilibrium and it is obviously uniformly persistent.

If R0 ≤ 1, the reasoning is quite similar, with U1 in place of U3, and it is obtained

again that all the saturated solutions are global and the stability result remains valid. We

then summarize our discussion in the following result.

Theorem 2.2.6. Suppose that f/r is nonincreasing on (0,∞) and conditions (2.2.10),

(2.2.11), (B), and (D′) are satisfied.

1. If R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally asymptotically

stable.

2. If R0 > 1, then the system (VP) admits a unique positive endemic equilibrium which
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is globally asymptotically stable. The disease-free equilibrium (S0, 0, 0, 0) is unstable,

with the positive semiaxis [OS as its stable manifold.

Obviously, in the second statement the stable manifold of the endemic equilibrium

actually excludes [OS.

As an example to illustrate the usefulness of our results, it is easy to see that a system

which fits into our framework is

(RS)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S ′ = b−mS − βS
V p

1 + aV p
,

E ′ = βS
V p

1 + a1V p
− c1E,

I ′ = c2E − c3I,

V ′ = c4I − kV γ

for b,m, β, k > 0, a ≥ 0, and 0 < p ≤ γ ≤ 1. In this situation, c(S) = βS, f(V ) =

V p/(1 + aV p), i(E) = E, p(I) = I, r(V ) = V γ , n(S) = b−mS.

It follows that f/r = 1/((1 + a1V
p)V γ−p) is nonincreasing on (0,∞),

lim
E→∞

E = lim
I→∞

I = lim
V→∞

kV γ = +∞,

and limV→∞ V p/(1 + aV p) = +∞ if a = 0, while if a > 0, then

lim
V→∞

(
V − xp

1 + axp

∫ V

x

1 + aτ p

τp
dτ

)
= +∞ for all x > 0.

Also,
∫ 1

0+
1
E
dE = +∞. Note that if a = 0 and p ∈ (0, 1), then f(V ) = V p is not

Lipschitzian on [0,∞) due to its behavior near 0. However, our solutions which start with

V > 0 do not reach points for which V = 0 in finite time. Hence the uniqueness property

is not impaired. The same remark applies to the function r. We can therefore apply the

results in the previous Subsections and obtain the following result.

Theorem 2.2.7. 1. If p < γ, the basic reproduction number R0 of the system (RS)

is +∞. The system (RS) admits a positive endemic equilibrium which is globally

asymptotically stable. The disease-free equilibrium (S0, 0, 0, 0) is unstable, with the

positive semiaxis [OS as its stable manifold.

2. If p = γ, the basic reproduction number R0 of the system (RS) is

R0 =
βb

m

c2c4
c1c3

1

k
.
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In this case, if R0 ≤ 1, then the disease-free equilibrium (S0, 0, 0, 0) is globally asymp-

totically stable, while if R0 > 1, the system (RS) admits a positive endemic equilib-

rium which is globally asymptotically stable. The disease-free equilibrium (S0, 0, 0, 0)

is unstable, with the positive semiaxis [OS as its stable manifold.

Again, the “global” stable manifold of the endemic equilibrium is understood to ex-

clude [OS. Note that for p = γ = 1 and a = 0 we obtain the results given in Korobeinikov

[64].

As a final remark, we note that similar analysis can be extended to a system of the

form

(SE)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S ′ = n(S) − c(S)f(V ),

E ′ = c(S)f(V ) − c1i(E),

I ′1 = c2i(E) − k1p1(I1),

I ′j = k̃j−1pj−1(Ij−1) − kjpj(Ij), 2 ≤ j ≤ n,

V ′ = k̃npn(In) − r(V ).

The associated Lyapunov functionals are in this case

U1(S,E, I1, . . . , In) =

∫ S

S0

c(τ) − c(S0)

c(τ)
dτ + E +

c1
c2

n∑
i=1

(
i−1∏
j=1

kj

k̃j

)
Ii +

c1
c2

n∏
j=1

kj

k̃j
V,

U2(S,E, I1, . . . , In) = E +
c1
c2

n∑
i=1

(
i−1∏
j=1

kj

k̃j

)
Ii +

c1
c2

n∏
j=1

kj

k̃j
V,

and

U3(S,E, I1, . . . , In) =

∫ S

S∗

c(τ) − c(S∗)
c(τ)

dτ +

∫ E

E∗

i(τ) − i(E∗)
i(τ)

dτ

+
c1
c2

n∑
i=1

(
i−1∏
j=1

kj

k̃j

)∫ Ii

I∗i

pi(τ) − pi(I
∗
i )

pi(τ)
dτ

+
c1
c2

(
n∏
j=1

kj

k̃j

)∫ V

V ∗

c(τ) − c(V ∗)
c(τ)

dτ,

with the convention
∏0

j=1
kj

k̃j
= 1.

Again, related asymptotic stability can be obtained as in previous Subsections, and

the size of the domain of attraction depends essentially on the behavior of the function
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f/r. If the function f/r is nonincreasing on (0,∞), the threshold parameter R0 is given

by

R0 = c(S0)
c2
c1

(
n∏
j=1

k̃j
kj

)
lim
V→0

f(V )

r(V )
.

The first Lyapunov functional of type
∑n

i=1 di
(
xi − x∗i − x∗i ln xi

x∗i

)
, to which our func-

tional U3 reduces when c, f, i, p are linear functions, has been used by Volterra in [128]

to treat a two-dimensional predator-prey model which describes the interaction between

sharks and predated fish in the Adriatic Sea. (See also Goh [34].) In [42], Harrison con-

structed a Lyapunov functional of this type for a two-dimensional predator-prey model

which accounted for very general numerical and functional responses of the predator. The

computation of the derivatives is straightforward and hence omitted for brevity.
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Chapter 3

Ecoepidemiology: managing pest populations by inflicting a

disease in the pest

3.1 Basic concepts of integrated pest management

Although synthetic pesticides were first seen as a miraculous way of solving all pest-

related issues, it has been quickly noticed that the heavy use of pesticides creates in the

long run more problems that it solves. In some situations, chemicals become increasingly

ineffective, as many pests quickly develop new generations which are resistant to vari-

ous chemical agents. Also, when pesticides are used to control a given pest, its natural

predators may be killed as well as a side effect, which may actually cause in the long

run an increase in the size of the pest population, rather than the expected reduction.

If the pest is living out of reach or just hiding, then pesticides may simply have no ef-

fect on the pest population. Finally, many pesticides are known to cause environmental

problems and actually damage human health. Consequently, sophisticated and multi-

faceted ecosystem-based strategies have been constructed in order to minimize the use of

hazardous chemicals.

Integrated pest management (IPM) is an ecological approach which represents a syn-

thesis of techniques of various natures to control pests (mechanical, chemical, biological

and not only), with an accent on those which are potentially less damaging to the en-

vironment. Further, techniques specifically suited to the target pests are preferred, in

order to avoid harmful effects on non-target organisms. Specifically, natural predators,

parasites or pathogens of pests may be used, together with genetically-engineered pest-

resistant varieties of crops, mechanical methods of pest control such as traps or insect

barriers and habitat manipulation. In this approach, pesticides are used only as a last

resort, when deemed an absolute necessity. For a historical perspective on the evolution

of IPM definitions, see Bajwa and Kogan [9].

The purpose of IPM is often to drive the size of the pest population under certain

economically significant levels, not to eradicate it totally, as the latter can be impossible,
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cost-ineffective or potentially damaging to the environment. In this regard, the economic

injury level (EIL), as defined in Stern et al. [125], is the lowest population density of a

pest that will cause economic damage, or the amount of pest injury which will justify

the cost of using controls. Another related type of injury level which can be of interest

in certain situations is called the aesthetic injury level (AIL) and is defined in the same

manner, but based on aesthetic rather than economic considerations. Finally, a relevant

parameter is also the action threshold, representing the pest density at which control

measures should be implemented in order to prevent the pest populations to reach the

economic (or aesthetic) injury level. See Stern et al. [125], Pedigo and Higley [112], Pedigo

et al. [113], Pedigo [111] for further details.

Chemical control relies mainly on the use of synthetic pesticides to suppress pests. Bi-

ological pesticides, derived from plants or microorganisms, such as Bacillus Thuringiensis

are also of use in chemical control.

Biological control is defined as the reduction of pest populations by using their natu-

ral enemies (see Hoffmann and Frodsham [50]). To use biological controls in an effective

manner, detailed knowledge of the pest and of its natural enemies is needed, the practical

details of implementing the biological control being then decided accordingly. An ap-

proach to control insect pests, for instance, is to release parasitoids or pathogens. While

the first are generally species which develop within or on the host and ultimately kill it,

the latter are viruses, fungi or bacteria which kill or incapacitate the host by causing a

disease, or otherwise affect the biological processes within the host. Another approach to

biological control is to release pests which are infected in laboratories, with the purpose

of creating and maintaining a disease in the target pest population, on the grounds that

infective pests usually cause less environmental damage. This is the approach to biologi-

cal control which we use in the present section. Among the advantages of using biological

controls, we mention that they are of much less environmental concern, lower cost and

might be more effective if applied correctly. Also, they are self-regulating up to some

extent.
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3.2 Pest regulation by means of impulsive controls

3.2.1 Biological controls and proper incidence rates

Regarding disease transmission, in many papers on epidemiological models treating dis-

ease dynamics in animal populations, use is made of an incidence rate of infection which

is bilinear in both the susceptible and the infective fraction of the total number of in-

dividuals. However, the assumption of homogeneous mixing, which motivates the mass

action law behind the use of the bilinear incidence rate, may not be accurate under certain

conditions. This is the case, for instance, when the concentration of infective pests is very

high and saturation may occur or if multiple exposure to the disease vector or multiple

contacts are required for disease transmission.

Also, many classical models using bilinear incidence rates exhibit threshold dynamics,

that is, if the so-called basic reproduction number R0 (that is, the average number of

new infections produced by a single infective individual introduced in a totally suscep-

tible population) is greater than 1, then the disease remains endemic and the endemic

equilibrium is globally asymptotically stable, while if R0 is lower than 1, then the disease

dies out, the endemic equilibrium loses its stability and and the disease-free equilibrium

becomes globally asymptotically stable. In this setting, the dynamics of the system is un-

affected by the relative sizes of the initial populations. However, it has been observed that

many diseases exhibit yearly variations in a periodic fashion and that for some diseases

the persistence of the infective populations depends on their initial sizes. See Wang [129]

for a more detailed discussion regarding this matter, which also outlines the fact that the

nonlinearity of the force of infection may appear as a result of intervention policies.

Liu, Hethcote and Levin [89] studied a SEIRS model with nonlinear incidence rates

of type λIpSq, 0 < p ≤ 1, 0 < q ≤ 1, where I denotes the size of the infective population

and S denotes the size of the susceptible population, and observed that while the choice

of a q �= 1 does not have a decisive impact on the qualitative behavior of the system, the

choice of a p �= 1 modifies the phase portrait of the system in an obvious manner. In

the latter case, the meaning of the basic reproduction number understood as a threshold

parameter for the stability of the system vanishes completely, since the disease remains

endemic and the system always approaches a unique endemic equilibrium irrespective of

q.

An incidence rate of type g(I)S has been proposed by Capasso and Serio in [16], with
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g(I) = kI/(1 + αI). This incidence rate includes behavioral change and crowding effect

for infectives. A general incidence rate of type g(I)S with g(I) = kIp/(1 +αIq) has been

employed by Liu, Levin and Iwasa in [90]; see also Hethcote and van den Driessche [48].

Particular incidence rates of type g(I)S = kI2S/(1 + αI2), g(I)S = KIS/(1 + αI2) have

been used in Ruan and Wang [120], respectively in Xiao and Ruan [133].

Models with general nonlinear incidence rates of type g(I)h(S) and respectively f(I, S)

have been treated in Korobeinikov and Maini [67], respectively in Korobeinikov [65], and

it has again been observed that the dependence on I plays a more prominent role in the

stability of the endemic equilibrium than the dependence on S. Consequently, we shall

use in the following a general incidence rate of type g(I)S to model disease transmission,

under a few biologically feasible conditions on the nonlinear force of infection g.

A central problem in IPM strategies is to choose the appropriate moment to use each

type of control. To account for the fact that pesticides cannot be sprayed continuously,

we use a model in which both the biological and chemical controls are employed in an

impulsive and periodic fashion, with the same period but not simultaneously. The choice

of using impulsive controls is, in our opinion, justified since for certain pesticides the effect

follows shortly after application and also since the size of the infected pest population

grows immediately after the release of infective individuals. Therefore, such changes can

be modeled as immediate jumps in the population sizes. In this regard, a general account

of the theory of impulsive ordinary differential equations can be found in Bainov and

Simeonov [8].

Our purpose is then to construct a model of pest control using both biological con-

trols (periodic release of pests which are infected in laboratories) and chemical controls

(pesticide spraying). The remaining part of this section is organized as follows: in Subsec-

tion 3.2.2, we formulate the main biological assumptions and subsequently employ them

to construct our impulsive control model. In Subsection 3.2.3, we study the stability of

the susceptible pest-eradication periodic solution, while the permanence of the system is

discussed in Subsection 3.2.4. This section is based on the results obtained in Georgescu

and Moroşanu [31].

3.2.2 The impulsive control model and some preliminaries

In the following, we denote by S the size of the susceptible pest population, by I the

size of the infective pest population, and suppose that all pests are either susceptible

114



C
E

U
eT

D
C

ol
le

ct
io

n

or infective. To formulate our mathematical model, we rely on the following biological

assumptions.

(A1) The intrinsic growth rate of the susceptible pest population in the absence of infec-

tion is given by the nonlinear function Sn(S), where n satisfies certain assumptions

outlined below.

(A2) The infective pests neither recover nor reproduce.

(A3) The infective pests neither damage crops nor contribute to the total size of the

environment-supported population.

(A4) The incidence rate of the infection is nonlinear in I and given by g(I)S, where g

satisfies certain assumptions outlined below.

(A5) Infected pests are released in an impulsive and periodic fashion, in a fixed amount

μ each time.

(A6) Pesticides are sprayed in an impulsive and periodic fashion, with the same period

as the action of releasing infective pests but at different moments. As a result, fixed

proportions p1 and p2 of susceptible pests, respectively infective pests, are killed

each time.

On the basis of the above assumptions, we may formulate the following impulsively con-

trolled model which characterizes the behavior of the system under consideration.

(IPM)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I ′(t) = g(I(t))S(t) − wI(t), t �= (n+ l − 1)T, t �= nT ;

S ′(t) = S(t)n(S(t)) − g(I(t))S(t), t �= (n+ l − 1)T, t �= nT ;

ΔI(t) = −δ2I(t), t = (n+ l − 1)T ;

ΔS(t) = −δ1S(t), t = (n+ l − 1)T ;

ΔI(t) = μ, t = nT ;

ΔS(t) = 0, t = nT.

Here, T > 0, 0 < l < 1, Δϕ(t) = ϕ(t+) − ϕ(t) for ϕ ∈ {S, I}, 0 ≤ δ1, δ2 < 1, n ∈ N
∗.

The functions n and g satisfy the following hypotheses indicated below.

(N) n is decreasing on [0,∞), lim
S→∞

n(S) < −w, S �→ Sn(S) is locally Lipschitz on (0,∞).
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(G) g(0) = 0, g is increasing and globally Lipschitz on [0,∞).

Note that the hypothesis (G) is verified for three commonly used forces of infection,

namely for g1(x) = ax, g2(x) = ax
1+mx

, g3(x) = k(1−e−ax), as they are strictly increasing on

[0,∞) and are globally Lipschitz functions since their derivatives are uniformly bounded

on [0,∞). Also, hypothesis (N) is satisfied if the intrinsic growth rate of the susceptible

population Sn(S) is given by the logistic growth law (Sn(S) = rS(1 − S/K)) or by

Gompertz’s growth law (Sn(S) = rS ln(K/S)). In what follows, let us denote n(0) = r.

Let us also observe that, in view of (G), g(x) ≤ Lx for x ≥ 0, where by L we denote the

Lipschitz constant of g.

Models related to this one have been studied by Zhang, Chen and Georgescu in [137],

where the intrinsic growth rate of the susceptible population is of logistic type, which

corresponds to n(S) = 1 − S/K, but a particular incidence rate of type Ih(S) is used

rather than of type g(I)S, and by Liu, Chen and Zhang in [84], where an impulsively

controlled system which models the dynamics of a prey-dependent consumption model

is studied by similar methods. See also Song and Xiang [124] where an IPM strategy

for a two-prey one-predator model with stage structure for predator is described, or Liu,

Zhi and Chen [85], where the impulsive controllability of a predator-prey system with

Ivlev functional response is studied. Note that, from a formal point of view, the above-

mentioned predator-prey models are related to our model, although they are not, strictly

speaking, disease dynamics models.

It is also to be noted that our model can accomodate some situations in which the

infective pest population contributes to the growth of the total population size towards

the carrying capacity of the environment, that is, when (A3) is only partially satisfied.

Precisely, if the second equation in our model is substituted by

S ′(t) = S(t)

(
1 − S(t) + I(t)

K

)
− g(I)S,

then this equation can be rearranged as

S ′(t) = S(t)

(
1 − S

K

)
−
(
g(I) +

I

K

)
S,

which again fits our framework. Moreover, the decreases in the number of susceptible

and respectively of infective pests in the third and fourth equation of (IPM) can also be

achieved through selective catching rather than by pesticide poisoning only.
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Under these assumptions, it is seen that the Cauchy problem for the system (IPM)

has a unique positive and global solution for positive initial data (I(0), S(0)), while if

the initial data is strictly positive, then the corresponding solution is also unique, strictly

positive and global, that is, the Cauchy problem for (IPM) with positive initial data is

biologically well-posed.

First, using the results given in Appendix C, it is seen that all solutions of (IPM) are

bounded.

Lemma 3.2.1. There is M > 0 such that S(t) ≤M , I(t) ≤ M for t ≥ 0.

Proof. Let us define u : R
∗
+ → R+ by

u(t) = S(t) + I(t), t > 0.

Then

(3.2.1)
du

dt
+ wu = S (n(S) + w) , t > 0, t �= (n + l − 1)T, t �= nT.

Since lim
S→∞

n(S) < −w, it follows that the right-hand side of (3.2.1) is bounded from above

and consequently there is C > 0 such that

D+u+ wu ≤ C, t > 0, t �= (n + l − 1)T, t �= nT.

One also sees that

u((n+ l − 1)T+) ≤ (1 − δ)u((n+ l − 1)T )

and

u(nT+) = u(nT ) + μ,

where δ = min(δ1, δ2). It the follows from Lemma C.1.2 that

u(t) ≤ u(0+)

⎡⎣ ∏
0<(n+l−1)T<t

(1 − δ)

⎤⎦ e−wt + C

∫ t

0

⎡⎣ ∏
s≤(n+l−1)T<t

(1 − δ)

⎤⎦ e−w(t−s)ds(3.2.2)

+
∑

0<nT<t

μe−w(t−nT ), t > 0,

so

(3.2.3) u(t) ≤ u(0+)e−wt +
C(1 − e−wt)

w
+ μ

ewT

ewT − 1
, t > 0,

and since the limit of the right-hand side of (3.2.3) as t → ∞ is C/w + μewT/(ewT − 1),

it easily follows that u is bounded on [0,∞).
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We now describe some properties of the subsystem

(RS)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I ′(t) = −wI(t), t �= nT, (n+ l − 1)T ;

ΔI(t) = −δ2I(t), t = (n+ l − 1)T ;

ΔI(t) = μ, t = nT ;

I(0+) = I0,

which describes the dynamics of the susceptible pest eradication state. It will be seen

that the system formed with the first three equations of (RS) has a periodic solution to

which all solutions of (RS) tend as t → ∞. We shall label this periodic solution with

I∗w, rather than, say, with I∗w,δ2,μ, as systems of type (RS) occur throughout this section

for different w′s but always with the same δ2 and μ so there is no danger of confusion.

Lemma 1.3.3 then easily leads to the following conclusion.

Lemma 3.2.2. The system constructed with the first three equations in (RS) has a positive

T -periodic solution I∗w. With this notation, the following properties are satisfied.

1. lim
t→∞

|I(t) − I∗w(t)| = 0 for all solutions I(t) of (RS) starting with strictly positive I0.

2. sup
t≥0

∣∣I∗w1
(t) − I∗w2

(t)
∣∣ ≤ f2(w1, w2;T, μ, δ2), with lim

w2→w1

f2(w1, w2;T, μ, δ2) = 0.

3.2.3 The extinction of the susceptible pest population

In this subsection, we study the situation in which the susceptible pest population tends to

extinction. This situation occurs if a certain condition on the total action of the nonlinear

force of infection in a period near the infective pest-only equilibrium is satisfied.

Theorem 3.2.1. The susceptible pest-eradication solution (I∗w(t), 0) is globally asymptot-

ically stable provided that

(3.2.4)

∫ T

0

g(I∗w(s))ds > rT + ln(1 − δ1).

Proof. In order to justify the use of (3.2.4), we first study the local stability of (I∗w(t), 0)

by using small amplitude perturbation methods.

Let us denote

(3.2.5)

⎧⎨⎩I(t) = v(t) + I∗w(t),

S(t) = u(t)
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in which u and v are understood to be small amplitude perturbations. Substituting (3.2.5)

into the first two equations of (IPM), one obtains

(3.2.6)

⎧⎨⎩v
′(t) = g(v(t) + I∗w(t))u(t) − wv(t)

u′(t) = u(t)n(u(t)) − g(v(t) + I∗w(t))u(t).

The corresponding linearization of (3.2.6) at (0, 0) is

(3.2.7)

⎧⎨⎩v
′(t) = g(I∗w(t))u(t) − wv(t)

u′(t) = ru(t) − g(I∗w(t))u(t)

and so a fundamental matrix of (3.2.7) is

(3.2.8) ΦL(t) =

(
e−wt

∫ t
0
e−w(t−s)e

∫ s
0
(r−g(I∗w(τ)))dτg(I∗w(s))ds

0 e
∫ t
0
[r−g(I∗w(s))]ds

)
.

The linearization of the jump conditions at (n+ l − 1)T reads as

(3.2.9)

⎧⎨⎩Δv = −δ2v(t), t = (n + l − 1)T ;

Δu = −δ1u(t),

while the linearization of the jump conditions at nT reads as

(3.2.10)

⎧⎨⎩Δv = 0, t = nT ;

Δu = 0.

Consequently, the local stability of the susceptible pest-eradication solution (I∗w(t), 0) can

be analyzed by studying the eigenvalues of the monodromy matrix

M1 =

(
1 − δ1 0

0 1 − δ2

)
ΦL(T )

As the eigenvalues of M1 are

λ1 = (1 − δ2)e
−wT , λ2 = (1 − δ1)e

∫ T
0

[r−g(I∗w(s))]ds

and 0 < λ1 < 1, it follows by Lemma C.2.1 that (I∗w(t), 0) is locally asymptotically stable

provided that

(1 − δ1)e
∫ T
0 [r−g(I∗w(s))]ds < 1
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that is, condition (3.2.4) holds.

We now prove that (I∗w(t), 0) is actually globally asymptotically stable provided that

condition (3.2.4) is satisfied. We first show that S(t) → 0 as t → ∞. To this purpose,

choose ε1 > 0 such that

(3.2.11)

∫ T

0

g(I∗w(s) − ε1)ds > rT + ln(1 − δ1)

(note that such a choice is feasible, as |g(I∗w(s) − ε1) − g(I∗w(s))| ≤ Lε1). Let us also

denote

ξ = (1 − δ1)e
rT−∫ T

0
g(I∗w(s)−ε1)ds

and observe that 0 < ξ < 1.

It is seen that

I ′(t) = g(I(t))S(t) − wI(t) ≥ −wI(t)

and so, by Lemma C.1.1, I(t) ≥ Ĩ(t), where Ĩ(t) is the solution of (RS) with the same

initial data at 0+ as I. As any such solution becomes close to I∗w(t) as t→ ∞, by Lemma

3.2.2, there is some T1 > 0 such that I(t) ≥ I∗w(t)−ε1 for t ≥ T1. For the sake of simplicity,

we suppose that I(t) > I∗w(t) − ε1 for all t > 0.

One then obtains that

S ′(t) = S(t)n(S(t)) − S(t)g(I(t))

≤ S(t) [n(S(t)) − g(I∗w(t) − ε1)] , t �= (n+ l − 1)T

and it consequently follows that

S ′(t)
S(t)

≤ n(S(t)) − g(I∗w(t) − ε1), t �= (n+ l − 1)T.

By integrating the above inequality on ((n + l − 1)T, (n+ l)T ], one obtains

lnS((n+ l)T ) − lnS((n+ l − 1)T+) ≤
∫ (n+l)T

(n+l−1)T

[n(S(s)) − g(I∗w(s) − ε1)] ds

and so

lnS((n+ l)T ) − lnS((n+ l − 1)T ) − ln(1 − δ1) ≤
∫ (n+l)T

(n+l−1)T

[r − g(I∗w(s) − ε1)] ds.

It then follows that

S((n + l)T ) ≤ S((n+ l − 1)T )ξ
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and consequently

S((n+ l)T ) ≤ S(lT )ξn

which implies that S((n+ l)T ) → 0 as n→ ∞. Also,

S ′(t)
S(t)

= n(S(t)) − g(I(t)) ≤ r

so

S(t) ≤ S((n+ l − 1)T+)er(t−(n+l−1)T ), t ∈ ((n+ l − 1)T, (n+ l)T ]

which implies that

S(t) ≤ (1 − δ1)S((n+ l − 1)T )erT , t ∈ ((n + l − 1)T, (n+ l)T ]

and consequently S(t) → 0 as t → ∞. We now prove that I(t) → I∗w(t) as t → ∞. To

this purpose, let 0 < ε2 < w/L. Since S(t) → 0 as t → ∞, there is T2 > 0 such that

S(t) < ε2 for t ≥ T2. For the sake of simplicity, we suppose that S(t) < ε2 for all t > 0.

Since

I ′(t) = g(I(t))S(t) − wI(t), t �= (n+ l − 1)T, t �= nT

and g(x) ≤ Lx for x ≥ 0, it follows that

−wI(t) ≤ I ′(t) ≤ −(w − ε2L)I(t) t �= (n+ l − 1)T, t �= nT.

By Lemma C.1.1, it follows that

Ĩ1(t) ≤ I(t) ≤ Ĩ2(t),

where Ĩ1 and Ĩ2 are the solution of (RS) with the same initial data at 0+ as I, respectively

the solution of (RS) with w changed into w − ε2L and the same initial data. As these

solutions become close to I∗w(t), respectively to I∗w−ε2L(t), it follows that, for t large enough,

I∗w(t) − ε2 < I(t) < I∗w−ε2L(t) + ε2

and the conclusion now follows from Lemma 3.2.2.

Note that from (3.2.4) it follows that the susceptible pest eradication solution is

globally asymptotically stable whenever δ1 > 1 − e−rT , that is, the global asymptotic

stability of this solution can be achieved by controlling δ1 alone, which is a natural re-

sult (repeatedly removing enough many susceptible individuals will make the suscepti-

ble pest eradication solution globally asymptotically stable). The same result can be

121



C
E

U
eT

D
C

ol
le

ct
io

n

achieved provided that T is small enough, but depending on the value of δ1, that is, for

T < (1/r) ln(1/(1 − δ1)).

It is noted that lim
μ→∞

∫ T
0
g(I∗w(s))ds = +∞ for large classes of functions g, so the

impulsive control is also successful provided that μ is large enough. The impulsive control

is then, theoretically speaking, always successful, provided that it is applied often enough

(T is small), enough many susceptible pests die due to pesticide spraying (δ1 is large) or

if enough many infective pests are released periodically (μ is large). However, in practical

contexts, μ cannot be arbitrarily large, and T can be limited by other coordinates of human

activity, as not enough active time can be sometimes dedicated to pesticide spraying

alone. Still, as noted in Section 3.1, the purpose of the IPM is actually to drive the size

of the susceptible pest population below the EIL or the AIL (the infective pests do not

count here, as they are assumed not to damage crops), rather than to eradicate the pests

completely, so the controls may be successful even if (3.2.4) is not satisfied, provided that

the size of the susceptible pest population stabilizes under the EIL (or AIL).

It is perhaps also worth noting that if g(x) = βx for x ≥ 0, then (3.2.4) reduces to

(3.2.12) μ >
w (rT + ln(1 − δ1))

(
1 − e−wT (1 − δ2)

)
β (1 − δ2e−wlT − e−wT (1 − δ2))

.

Combined with a similar rewrite of (3.2.13) in the next subsection, this establishes the

existence of a threshold parameter for the stability of the system, denoted μc and equal

to the right-hand side of (3.2.12). That is, if μ > μc then the susceptible pest-eradication

solution is globally asymptotically stable, while if μ < μc, then susceptible pest-eradication

solution loses its stability and (IPM) becomes uniformly persistent.

Similarly, for g(x) = βx, (3.2.4) also reduces to

1

T

∫ T

0

I∗(s)ds >
r + (1/T ) ln(1 − δ1)

β
.

By rewriting (3.2.13) in a similar manner, one obtains the existence of a second threshold

parameter IC , the so-called “epidemic threshold”, defined as IC = r+(1/T ) ln(1−δ1)
β

. That

is, if the average of I∗ is greater than IC , then the susceptible pest-eradication periodic

solution is globally stable, while if the average of I∗ is less than IC , then the system (IPM)

is uniformly persistent.
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3.2.4 The permanence of the system

In this subsection, we study the permanence of the system and prove that the system

(IPM) is permanent provided that the reverse of (3.2.4) holds.

Theorem 3.2.2. The system (IPM) is permanent provided that

(3.2.13)

∫ T

0

g(I∗w(s))ds < rT + ln(1 − δ1).

Proof. It has already been shown that, given ε > 0, one may find Tε > 0 such that

I(t) > I∗w(t) − ε for all t > Tε. Now, it is enough to choose ε < μe−wT (1−δ2)
1−e−wT (1−δ2)

and observe

that in this situation one has

I(t) >
μe−wT (1 − δ2)

1 − e−wT (1 − δ2)
− ε for all t > Tε.

For the sake of simplicity, let us suppose that the above estimation is satisfied for all

t > 0.

Also, we know that I and S are bounded, by Lemma 3.2.1. It now remains to prove

that S(t) ≥ m1 for some m1 > 0 and t large enough.

First, let m3 > 0 and ε1 > 0 be small enough, so that

(3.2.14) m3 <
w

L
, n(m3)T + ln(1 − δ1) >

∫ T

0

g(I∗w−m3L
(t) + ε1)dt.

As a first step, we now show that one cannot have S(t) < m3 for all t > 0.

We argue by contradiction. Suppose that S(t) < m3 for all t > 0. Then

I ′(t) = g(I(t))S(t) − wI(t) ≤ −(w − Lm3)I(t), t �= (n+ l − 1)T, t �= nT.

By Lemma C.1.1, it follows that I(t) ≤ Ĩ1(t), where Ĩ1(t) is the solution of (RS) with the

same initial data at 0+ as I and w changed into w−Lm3. As this solution becomes close

to I∗w−Lm3
(t) as t → ∞, it follows that there is T1 > 0 such that I(t) ≤ I∗w−Lm3

+ ε1 for

t ≥ T1.

Let n large enough, so that (n+ l − 1)T > T1. One then gets

(3.2.15) S ′(t) ≥ S(t)
[
n(m3) − g(I∗w−m3L

(t) + ε1)
]
, t �= (n + l − 1)T, t �= nT, t ≥ T1.

By integrating the above inequality on ((n + l − 1)T, (n+ l)T ], one obtains

lnS((n+ l)T ) − lnS((n + l − 1)T+) ≥ n(m3)T −
∫ (n+l)T

(n+l−1)T

g(I∗w−m3L
(t) + ε1)dt
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and so

lnS((n+ l)T )− lnS((n+ l− 1)T )− ln(1− δ1) ≥ n(m3)T −
∫ (n+l)T

(n+l−1)T

g(I∗w−m3L
(t) + ε1)dt.

Let us denote

(3.2.16) η = (1 − δ1)e
n(m3)T−∫ (n+l)T

(n+l−1)T
g(I∗w−m3L(t)+ε1)dt

and observe that, by (3.2.14), η > 1. It then follows that

S((n+ l)T ) ≥ S((n+ l − 1)T )η

and consequently

(3.2.17) S((n+ l)T ) ≥ S(lT )ηn,

which implies that S((n + l)T ) → ∞ as n → ∞, which contradicts the boundedness of

S. It is then seen that one cannot have S(t) < m3 for all t > 0 and consequently there is

t1 > 0 such that S(t1) ≥ m3.

If S(t1) ≥ m3 for all t ≥ t1, then (IPM) is persistent and there is nothing left to prove.

Otherwise, S(t) < m3 for some t ≥ t1. Let us denote

t∗ = inf {t > t1;S(t) < m3} .

To continue our investigation, we need to distinguish whether or not t∗ = (n+ l− 1)T for

some n, so that we could discuss the value of S(t∗). Note that the discussion has to be

made in terms of whether or not t = (n+ l− 1)T for some n and not in terms of whether

or not t = nT for some n, as the jumps of S occur only at t = (n+ l − 1)T .

Case A, t∗ = (n1 + l − 1)T for some n1 ∈ N
∗.

In this situation, S(t) ≥ m3 for t ∈ [t1, t
∗] and therefore

S(t∗+) = (1 − δ1)S(t∗) ≥ (1 − δ1)m3.

Also,

S(t∗+) ≤ m3.

Choose n2, n3 ∈ N
∗ so that

(n2 − 1)T >
1

−w + Lm3
ln

ε1

M + μ

1−e−(w−Lm3)

(3.2.18)

(1 − δ1)
n2en2η1Tηn3 > 1,(3.2.19)
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where η is given by (3.2.16) and η1 is defined as

η1 = n(m3) − LM < 0.

Note that n2, n3 do not depend on t∗.

We now show that there should be t2 ∈ (t∗, t∗ + n2T + n3T ] such that S(t2) > m3.

Suppose that this is not the case. Then I(t) ≤ Ĩ(t) on (t∗, t∗ +n2T +n3T ], where Ĩ is the

solution of (RS) with the same initial data at t∗+ as I and w changed into w − Lm3.

It is seen that

(3.2.20)

Ĩ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e−(w−m3L)(t−n1T )
[
Ĩ(n1T+) − μ

1−(1−δ2)e−(w−m3L)T

]
(1 − δ2)

n−(n1+1) + I∗w−m3L
(t),

t ∈ ((n− 1)T, (n+ l − 1)T ];

e−(w−m3L)(t−n1T )
[
Ĩ(n1T+) − μ

1−(1−δ2)e−(w−m3L)T

]
(1 − δ2)

n−n1 + I∗w−m3L
(t),

t ∈ ((n + l − 1)T, nT ],

for n ≥ n1 + 1. By the above relations, it follows that

(3.2.21)
∣∣∣Ĩ(t) − I∗w−m3L

(t)
∣∣∣ < e−(w−m3L)(t−n1T )

∣∣∣∣Ĩ(n1T+) − μ

1 − (1 − δ2)e−(w−m3L)T

∣∣∣∣
for t > (n + l − 1)T , n ≥ n1 + 1.

Also, since

Ĩ(n1T+) = e−(w−m3L)(n1T−t∗)Ĩ(t∗+) + μ,

one has that ∣∣∣∣Ĩ(n1T+) − μ

1 − (1 − δ2)e−(w−m3L)T

∣∣∣∣(3.2.22)

=

∣∣∣∣e−(w−m3L)(1−l)T I(t∗+) + μ− μ

1 − (1 − δ2)e−(w−m3L)T

∣∣∣∣
≤ M +

μ

1 − e−(w−m3L)T
,

for t > (n + l − 1)T and n ≥ n1 + 1.

For t ≥ n1T + (n2 − 1)T , it follows that

(3.2.23)
∣∣∣Ĩ(t) − I∗w−m3L

(t)
∣∣∣ ≤ e−(w−m3L)(n2−1)T

(
M +

μ

1 − e−(w−m3L)T

)
,

by (3.2.18), (3.2.21) and (3.2.22). By (3.2.23), it is then seen that

I(t) ≤ I∗w−m3L(t) + ε1, for n1T + (n2 − 1)T ≤ t ≤ t∗ + n2T + n3T
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and therefore (3.2.15) holds for n1T + (n2 − 1)T ≤ t ≤ t∗ + n2T + n3T . As a result, by

the same argument used for the derivation of (3.2.17), we deduce that

(3.2.24) S(t∗ + n2T + n3T ) ≥ S(t∗ + n2T )ηn3,

where η is given by (3.2.16).

Since g(I(t)) ≤ LI(t) ≤ LM , one obtains that

(3.2.25)

⎧⎨⎩S
′(t) ≥ S(t) [n(m3) − LM ] , t �= (n+ l − 1)T ;

S(t+) = (1 − δ1)S(t), t = (n+ l − 1)T,

for t ∈ [t∗, t∗ + n2T ]. Integrating (3.2.25) over (t∗, t∗ + n2T ], one obtains that

(3.2.26) S(t∗ + n2T ) ≥ m3(1 − δ1)
n2en2η1T .

By (3.2.24) and (3.2.26), one may deduce that

S(t∗ + n2T + n3T ) ≥ m3(1 − δ1)
n2en2η1Tηn3.

By (3.2.19), one obtains that S(t∗ + n2T + n3T ) > m3, which is a contradiction, as

it was supposed that S(t) ≤ m3 on (t∗, t∗ + n2T + n3T ]. It then follows that there is

t1 ∈ (t∗, t∗ + n2T + n3T ] for which S(t1) > m3. Let us denote t̃∗1 = inf
t>t∗

{S(t) > m3}.
Obviously, t̃∗1 ≤ t∗ + n2T + n3T . Also, S(t) ≤ m3 for t ∈ (t∗, t̃∗1), while S(t̃∗1) ≥ m3.

As in the derivation of (3.2.26), one may find that

S(t) ≥ m3(1 − δ1)
n2+n3e(n2+n3)η1T , t ∈ (t∗, t̃∗1)

as t̃∗1 ≤ (n2 + n3)T . Consequently, if we denote,

m′
3 = m3(1 − δ1)

n2+n3e(n2+n3)η1T ,

we see that S(t) ≥ m′
3 for t ∈ (t∗, t̃∗1) and so m′

3 may be taken as a persistency constant

for S on (t∗, t̃∗1). As S(t̃∗1) ≥ m3, our argument may be continued in the same manner.

Case B t∗ �= (n + l − 1)T for all n ∈ N
∗.

In this situation, S is continuous at t∗ and S(t) ≥ m3 for t ∈ [t1, t
∗], while S(t∗) = m3,

as t∗ is not a jump point for S. Suppose that t∗ ∈ ((n2 + l − 1)T, (n2 + l)T ) for some

n2 ∈ N
∗.

If S(t) ≤ m3 on the whole interval (t∗, (n2 + l)T ], then one may continue exactly as in

Case A; we omit the details. If there is t0 ∈ (t∗, (n2 + l)T ) such that S(t) > m3, then let
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us denote t̃∗2 = inf
t>t∗

{S(t) > m3}. Obviously, t̃∗2 ∈ (t∗, (n2 + l)T ], S(t) ≤ m3 for t ∈ (t∗, t̃∗2)

and S(t̃∗2) = m3 by continuity. We now study the persistency constant of S on (t∗, t̃∗2).

Since S(t) ≤ m3 on (t∗, t̃∗2), it is seen that

(3.2.27)

⎧⎨⎩S
′(t) ≥ S(t) [n(m3) − LM ] , t �= (n+ l − 1)T ;

S(t+) = (1 − δ1)S(t), t = (n+ l − 1)T,

for t ∈ (t∗, t̃∗2). Integrating (3.2.27), we obtain that

S(t) ≥ S(t∗)eη1(t−t∗) ≥ m3e
η1T

and so, if we denote

m′
4 = m3e

η1T

we see that S(t) ≥ m′
4 for t ∈ (t∗, t̃∗2) and so m′

4 may be taken as a persistency constant

for S on (t∗, t̃∗2) As S(t̃∗2) = m3, our argument may be continued in the same manner.

We now give an approximative interpretation of (3.2.13). Let us suppose that (I(t), S(t))

approaches the trivial solution (I∗, 0). Then, as the incidence rate of the infection is of

the form g(I)S, the integral
∫ T
0
g(I∗(t))dt approximates the (per-susceptible) loss of sus-

ceptible pests in a period due to their movement in the infective class, while since the

production of newborn susceptible pests is given by Sn(S) and n(0) = r, rT approxi-

mates the total (per-susceptible) gain of susceptible pests in a period. A correction term

− ln(1 − δ1) should also be added to account for the loss of susceptible pests due to pes-

ticide spraying. If (3.2.13) is satisfied, then this inequality prevents (I, S) from being

arbitrarily close to (I∗w(t), 0), as there is a net gain of susceptibles near (I∗w(t), 0), while

the opposite of (3.2.13) makes (I∗w(t), 0) globally asymptotically stable, since there is a

net loss of susceptibles near (I∗w(t), 0).

3.3 The bifurcation of nontrivial periodic solutions

3.3.1 Related results

We now attempt to treat the situation in which∫ T

0

g(I∗w(s))ds = rT + ln(1 − δ1),

not covered by our previous analysis, and prove a bifurcation result for this situation. In

this regard, an unified approach to deal with the existence of nontrivial periodic solutions
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for a large class of two dimensional systems of differential equations which are impulsively

perturbed in a periodic fashion by means of possibly nonlinear controls has been laid

out in Lakmeche and Arino [74]. Their method consists in reformulating the problem

as a fixed point problem for an operator defined ad-hoc which incorporates the effects

of the impulsive perturbations, and solve the latter using the method of bifurcation the-

ory; specifically, a certain projection method is employed. They also apply their general

method to the study of the existence of nontrivial periodic solutions for a concrete prob-

lem arising from the chemoterapeutic treatment of tumors. Their concrete model contains

nonlinearities of logistic type and linear impulses and has been originally introduced by

Panetta in [108].

Consequently, this section employs the method introduced in [74] together with some

of the notations therein, although our model is structurally different from Panetta’s, in

the sense that it is not a competitive model, like the one in [108] (it is actually neither

competitive nor cooperative). Notably, we obtain the bifurcation of nontrivial periodic

solutions for general nontrivial infection rates and employ two distinct types of impulsive

controls, corresponding to the use of a biological and a chemical control, respectively. See

also Lakmeche and Arino [75], where the bifurcation of nontrivial periodic solutions for a

Kolmogorov-like system arising from heterogeneous tumor therapy by several drugs with

instantaneous effects administered one at a time is studied by the same method. The

approach devised by Lakmeche and Arino is also employed, among others, by Lu, Chi

and Chen in [92] for a predator-pest model subject to pulsed use of insecticides and by the

same authors in [93] for a SIR epidemic model with horizontal and vertical transmission

which is subject to pulse vaccination.

The remaining part of this Section is organized as follows. In Subsection 3.3.2, we

introduce a few definitions and notations and reformulate our problem as a fixed point

problem. In Subsection 3.3.3, we study the onset of nontrivial periodic solutions by means

of bifurcation theory. It is to be noted that some more technical computations necessary

in the above are given in the Appendix D. This Section is based on the results obtained

in Georgescu et al. [32].
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3.3.2 Definition and notations. The fixed point problem

It has been shown in the previous section that the susceptible pest-eradication periodic

solution (I∗, 0) is globally asymptotically stable provided that∫ T

0

g(I∗(t))dt > rT + ln(1 − δ1),

while if the opposite inequality is satisfied, then the susceptible pest-eradication solution,

called also in the following the trivial periodic solution, loses its stability and the system

(IPM) becomes uniformly persistent. In the following, we shall mainly study this loss of

stability and prove that it is due to the onset of nontrivial periodic solutions obtained via

a supercritical bifurcation.

We shall denote by Φ(t; X0) the solution of the (unperturbed) system formed with the

first two equations in (IPM) for the initial data X0 = (x1
0, x

2
0); also, Φ = (Φ1,Φ2). We

define I1, I2 : R
2 → R

2 by

I1(x1, x2) = ((1 − δ2)x1, (1 − δ1)x2), I2(x1, x2) = (x1 + μ, x2)

and F1, F2 : R
2 → R by

F1(x1, x2) = g(x1)x2 − wx1, F2(x1, x2) = x2n(x2) − g(x1)x2,

also, F : R
2 → R

2,

F (x1, x2) = (F1(x1, x2), F2(x1, x2)).

First, we reduce the problem of finding a periodic solution of (IPM) to a fixed point

problem. To this purpose, let us define Ψ : [0,∞) × R
2 → R

2 by

Ψ(T,X0) = I2(Φ((1 − l)T ; I1(Φ(lT ; X0))));

also

Ψ(T,X0) = (Ψ1(T ; X0),Ψ2(T ; X0)).

Then X is a periodic solution of period T for (IPM) if and only if its initial data X(0) = X0

is a fixed point for Ψ. Consequently, to study the existence of nontrivial periodic solutions

for (IPM), we need to study the existence of nontrivial fixed points of Ψ.

First, we note that

DXΨ(T,X) = DXΦ((1 − l)T ; I1(Φ(lT ;X)))

(
1 − δ2 0

0 1 − δ1

)
DXΦ(lT ;X).
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Let us denote X0 = (x0, 0) the starting point for the trivial periodic solution (I∗, 0), where

x0 = I∗(0+), I∗(0+) being given by

(3.3.1) I∗(0+) =
μ

1 − e−wT (1 − δ2)
.

We are interested in the bifurcation of nontrivial periodic solutions near (I∗, 0). To this

purpose, we need to find DXΦ(t;X0), which can be computed by (formally) deriving the

first two equations in (IPM) (see Appendix D). One then obtains that

DXΨ(T,X0) =

(
d11 d12

0 d22

)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d11 = (1 − δ2)e
−wT , d11 ∈ (0, 1);

d12 = e−wT
[
(1 − δ2)

∫ lT

0

g(I∗(s))e(r+w)s−∫ s
0
g(I∗(τ))dτds

+(1 − δ1)

∫ T

lT

g(I∗(s))e(r+w)s−∫ s
0
g(I∗(τ))dτds

]
;

d22 = (1 − δ1)e
rT−∫ T

0
g(I∗(s))ds, d22 > 0.

It is known that (I∗, 0), the trivial periodic solution starting from X0, is exponentially

stable if and only if the spectral radius ρ (DXΨ(T,X0)) is less than 1 (see Iooss [58]).

From the above, it follows that the trivial periodic solution (I∗, 0) is exponentially stable

if and only if

(1 − δ1)e
rT−∫ T

0 g(I∗(s))ds < 1.

3.3.3 The bifurcation of nontrivial periodic solutions

We now study the bifurcation of nontrivial periodic solutions near (I∗, 0). To this purpose,

let us denote

τ = T + τ , X = X0 +X.

To find a nontrivial periodic solution of period τ with initial data X, we need to solve the

fixed point problem X = Ψ(τ,X), that is,

X0 +X = Ψ(T + τ ,X0 +X).

Let us define

N(τ ,X) = X0 +X − Ψ(T + τ ,X0 +X); N(τ ,X) = (N1(τ ,X), N2(τ ,X)).
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Using the newly defined function N , it then remains to solve the equation N(τ ,X) = 0.

Let us denote

DXN(0, (0, 0)) =

(
a′0 b′0
c′0 d′0

)
.

Since

DXN(0, (0, 0)) = I2 −DXΨ(T,X0),

it follows that

a′0 = 1 − d11, b′0 = −d12, c′0 = −d21, d′0 = 1 − d22

and consequently

a′0 = 1 − (1 − δ2)e
−wT(3.3.2)

b′0 = −e−wT
[
(1 − δ2)

∫ lT

0

g(I∗(s))e(r+w)s−∫ s
0
g(I∗(τ))dτds(3.3.3)

+(1 − δ1)

∫ T

lT

g(I∗(s))e(r+w)s−∫ s
0 g(I

∗(τ))dτds

]
;

c′0 = 0;(3.3.4)

d′0 = 1 − (1 − δ1)e
rT−∫ T

0 g(I∗(s))ds.(3.3.5)

A necessary condition for the bifurcation of nontrivial periodic solutions near (I∗, 0) is

det [DXN(0, (0, 0))] = 0

and since DXN(0, (0, 0)) is upper triangular and a′0 = 1−(1−δ2)e−wT �= 0, it consequently

follows that d′0 = 0, that is,

(3.3.6) (1 − δ1)e
rT−∫ T

0
g(I∗(s))ds = 1.

It is seen that

dim(Ker [DXN(0, (0, 0))]) = 1,

and a basis in Ker [DXN(0, (0, 0))] is (− b′0
a′0
, 1). Then the equation N(τ ,X) = 0 is equiva-

lent to ⎧⎨⎩N1(τ , αY0 + zE0) = 0;

N2(τ , αY0 + zE0) = 0,

where

E0 = (1, 0), Y0 = (− b′0
a′0
, 1)
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and X = αY0 + zE0 represents the direct sum decomposition of X using the projections

onto Ker [DXN(0, (0, 0))] and Im [DXN(0, (0, 0))]. See Chow and Hale [18, Section 2.4]

for details.

Let us denote

f1(τ , α, z) = N1(τ , αY0 + zE0);(3.3.7)

f2(τ , α, z) = N2(τ , αY0 + zE0).(3.3.8)

First, we see that
∂f1

∂z
(0, 0, 0) =

∂N1

∂x1

(0, (0, 0)) = a′0 �= 0.

By the implicit function theorem, one may locally solve the equation f1(τ , α, z) = 0 near

(0, 0, 0) with respect to z as a function of τ and α and find z = z(τ , α) such that z(0, 0) = 0

and

f1(τ , α, z(τ , α)) = N1(τ , αY0 + z(τ , α)E0) = 0.

Moreover, the first order partial derivatives ∂z
∂α

(0, 0) and ∂z
∂τ

(0, 0) are given by⎧⎪⎨⎪⎩
∂z

∂α
(0, 0) = 0

∂z

∂τ
(0, 0) = −w

a′0
I∗(T )

(see Appendix D).

It now remains to study the solvability of the equation

(3.3.9) f2(τ , α, z(τ , α)) = 0,

that is,

(3.3.10) N2(τ , αY0 + z(τ , α)E0) = 0.

The equation (3.3.10) is called the determining equation and the number of its solutions

equals the number of periodic solutions of (IPM). We now proceed to solving (3.3.10)

(or, equivalently, (3.3.9)). Let us denote

(3.3.11) f(τ , α) = f2(τ , α, z(τ , α)).

First, it is easy to see that

f(0, 0) = N(0, (0, 0)) = 0.
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To determine the number of solutions of (3.3.10), we first determine the Taylor expansion

of f around (0, 0). To this goal, we compute the first order partial derivatives ∂f
∂τ

(0, 0)

and ∂f
∂α

(0, 0) and observe that

∂f

∂τ
(0, 0) =

∂f

∂α
(0, 0) = 0.

For the proof of this fact, see Appendix D.

It now becomes necessary to compute the second order partial derivatives ∂2f
∂α2 (0, 0),

∂2f
∂α∂τ

(0, 0), ∂2f
∂τ2 (0, 0). It is seen that

A =
∂2f

∂α2
(0, 0) = 0

B =
∂2f

∂α∂τ
(0, 0) < 0

C =
∂2f

∂τ 2 (0, 0) > 0.

We need now find a nontrivial solution of the equation f(τ , α) = 0 near (0, 0). By

expanding f into a second order Taylor series, one obtains that

f(τ , α) = Bατ + C
α2

2
+ o(τ , α)(τ 2 + α2).

By denoting τ = kα (k = k(α)), it is seen that

Bk + C
k2

2
+ o(α, kα)(1 + k2) = 0,

equation which is solvable with respect to k as a function of α, since B < 0 and C > 0.

Moreover, k ≈ −2B
C

, that is, k is positive.

From the above, one sees that there is a supercritical bifurcation of a nontrivial periodic

solution near a period T which satisfies the sufficient condition for bifurcation given in

(3.3.6). Note that, as it appears via a supercritical bifurcation, the nontrivial periodic

solution is stable. More precisely, one obtains the following result, in which X0, Y0, E0,

z, τ are as indicated above.

Theorem 3.3.1. Suppose that the impulsive period T satisfies condition (3.3.6). Then

there is ε > 0 such that for all 0 < α < ε there is a stable positive nontrivial periodic

solution of (IPM) with period T + τ(α) which starts in X0 + αY0 + z(τ (α), α)E0.
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3.3.4 Conclusions

Let us briefly comment upon the threshold condition (3.3.6), which may be reformulated

as ∫ T

0

g(I∗(s))ds− ln(1 − δ1) = rT.

Using the interpretation given in the previous section, the threshold condition represents

just the fact that the total (per-susceptible) loss of susceptible pests in a period balances

the total (per-susceptible) gain of newborn susceptible pests in a period. In this regard, it

has been shown in Subsection 3.2.3 that (I∗, 0) is globally asymptotically stable provided

that ∫ T

0

g(I∗(s))ds− ln(1 − δ1) > rT,

while if the opposite inequality is satisfied, then (I∗, 0) loses its stability and (IPM)

becomes uniformly persistent.

In the case in which g is a linear force of infection, g(I) = βI, then the threshold

condition can be reformulated as

1

T

∫ T

0

I∗(s)ds =
r + (1/T ) ln(1 − δ1)

β
.

It is then seen from the above and Theorem 3.3.1 that nontrivial periodic solutions

(I, S) appear when the average of the susceptible pest-eradication periodic solution over a

period reaches the epidemic threshold IC . In concrete terms, a nontrivial periodic solution

coresponds to the onset of a persistent susceptible pest population, while a nontrivial

periodic solution with small amplitude, below the economic injury level, indicates that

the pest management strategy remains successful. As mentioned above, if the average of

I∗ is greater than IC , then the susceptible pest-eradication periodic solution is globally

stable, while if the average of I∗ is less than IC , then the system (IPM) is uniformly

persistent.

Let us also define, for a general g,

RS
0 =

rT∫ T
0
g(I∗(s))ds− ln(1 − δ1)

as being a “basic reproduction number”-like quantity with respect to the susceptible pest

population. Note that this is a “mirror image” of what usually a basic reproduction num-

ber means, since the survival of the susceptible pest population is usually unquestioned,
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the main problem being whether or not the infection becomes endemic. In the usual sit-

uation, the alternative endings are, roughly, an infection-free state and an endemic state,

in which the infective pest population persists, at a certain level, alongside the susceptible

pest population.

Here, the situation is somewhat different. The long-term survival of the infective pest

population is unquestionable, due to the pulsed supply of infectives at t = nT and what

is at stake is the survival of the susceptible pest population, the alternative endings being

a susceptible-free state and an endemic state.

With this notation, the threshold condition can simply be rewritten as RS
0 = 1. If

RS
0 < 1, then the newborn susceptibles are not produced fast enough and the system

tends to the susceptible pest-eradication periodic solution, while if RS
0 > 1, then the

system becomes uniformly persistent, as seen in the previous section.
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Appendix A

Stability results

A.1 Definitions and notations

Throughout this Appendix, we shall introduce a few notions and results regarding the

stability of autonomous differential systems which will ultimately lead to the formulation

of LaSalle invariance principle.

Let us consider the autonomous system

(AS) x′ = f(x),

where f : G∗ → R
n is locally Lipschitz continuous on the open set G∗ ⊂ R

n. Given

x0 ∈ R
n, it is seen that the solution of (AS) with initial data x0 at t = 0, denoted π(·; x0),

is uniquely determined on its maximal interval of existence (α, ω), α < 0 < ω.

The set γ+(x0) = {π(t; x0); t ∈ [0, ω)} is then called the positive orbit of π, while the

associated positive limit set of π (the ω-limit set ω(x0)) is defined as

ω(x0) = {p ∈ R
n; ∃(tn)n≥0 ⊂ [0, ω) such that tn → ω and π(tn; x0) → p as n→ ∞} .

Similarly, the set γ−(x0) = {π(t; x0); t ∈ (α, 0]} is called the negative orbit of π, while the

associated negative limit set of π ( the α-limit set α(x0)) is defined as

α(x0) = {p ∈ R
n; ∃(tn)n≥0 ⊂ (α, 0] such that tn → α and π(tn; x0) → p as n→ ∞} .

A set S ⊂ G∗ is called positively (negatively) invariant if any positive (negative) orbit

starting in S remains there for its whole interval of existence, that is, given x0 ∈ S, it

follows that π(t; x0) ∈ S for all t ∈ [0, ω) and π(t; x0) ∈ S for all t ∈ (α, 0], respectively.

If S is both positively and negatively invariant, then it is called weakly invariant. If S, in

addition to being weakly invariant, has the property that all trajectories π(·; x0) starting

in x0 ∈ S are defined on the whole R, then it is called invariant. If a singleton {x} is

invariant (which implies that π(t, x) = x for all t ∈ R), then x is called an equilibrium

point.
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A solution π = π(·, x0) of (AS) is called positively (negatively) precompact with

respect to G∗ if it is bounded and does not have positive (negative) limit points on the

boundary of G∗. If π is both positively and negatively precompact, then it is called

precompact.

We now introduce the notion of a Lyapunov functional associated to an autonomous

differential system. A function V : G∗ → R is called a Lyapunov functional for (AS) on

G ⊂ G∗ if it is continuous and
·
V (x) ≤ 0 for all x ∈ G, where

·
V (x) = lim inf

t→0

V (π(t; x)) − V (x)

t
.

A.2 LaSalle invariance principle

We shall denote

E =

{
x ∈ G ∩G∗;

·
V = 0

}
;

M∗ = The largest weakly invariant set in E;

M = The largest invariant set in E.

With these notations, one may state the LaSalle invariance principle as follows.

Theorem A.2.1. Let V be a Lyapunov functional for (AS) on G and let π(t; x0) be a

solution of (AS) with initial data x0 which stays in G for t ∈ [0, ω). Then

ω(x0) ∩G∗ ⊂M∗ ∩ V −1(c) for some c ∈ R.

If π(·; x0) is positively precompact, then

π(t; x0) → M ∩ V −1(c) as t→ ∞..

Corollary A.2.1. Under the hypotheses above, it follows that ω(x0) is contained in the

set

{
x ∈ G ∩G∗;

·
V (x) = 0

}
. Also, if π(·; x0) is positively precompact and M ∩ V −1(c)

consists of isolated points, then π(t; x0) approaches an equilibrium point for t→ ∞.

For related stability results, see also LaSalle [77].
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Appendix B

Compound matrices

B.1 Definitions and notations

In this Appendix, we shall define a few notions regarding the theory of compound matrices

and indicate their applications to the stability of periodic trajectories for systems of

ordinary differential equations.

Let C ∈ Mm,n(R) be a m × n real matrix. Given 1 ≤ i1 < i2 < . . . ik ≤ m and

1 ≤ j1 < j2 . . . < jk ≤ n, we shall denote by M j1,j2,...,jk
i1,i2,...,ik

the minor of C determined by

rows i1, i2, . . . , ik and columns j1, j2, . . . , jk. The k-th multiplicative compound C(k) of

C, 1 ≤ k ≤ min(m,n) is then the
(
m
k

) × (
n
k

)
matrix with entries M j1,j2,...,jk

i1,i2,...,ik
considered in

lexicographic order. The term “multiplicative compound” is used since it may be shown

that, given C1 ∈Mm1,n1(R) and C2 ∈Mn1,n2(R), one has that

(C1C2)
(k) = C

(k)
1 C

(k)
2 .

The matrix C [k] is also sometimes called the k-th exterior power of C.

For m = n, the k-th additive compound of C, 1 ≤ k ≤ n is then the
(
n
k

)× (
n
k

)
matrix

defined as

C [k] = D
[
(I + hC)(k)

]∣∣∣
h=0

,

where D denotes (component-wise) derivation with respect to h. The term “additive

compound” is used here since it may be shown that, given C1, C2 ∈ Mn,n(R), one has that

(C1 + C2)
[k] = C

[k]
1 + C

[k]
2 .

An explicit formula for computing the entries of C [k] is as follows. Let 1 ≤ i1 < i2 <

. . . ik ≤ n and 1 ≤ j1 < j2 . . . < jk ≤ n, corresponding to the entry
(
C [k]

)
ij

(that is,

(i1, i2, . . . , ik) is the i-th multiindex in the lexicographic ordering and (j1, j2 . . . , jk) is the
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j-th one, respectively). Let us denote (i) = (i1, i2, . . . , ik) and (j) = (j1, j2 . . . , jk). Then

(
C [k]

)
ij

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ci1j1 + ci2j2 + · · ·+ cikjk if (i) = (j)

(−1)k1+k2cik1
jk2

if exactly one entry ik1 in (i) does not

appear in (j) and exactly one entry

jk2 in j does not appear in (j)

0 otherwise.

For instance, if n = 3, k = 2 and C = (cij)1≤i,j≤3, then the second additive compound of

C is given by the formula

C [2] =

⎛⎜⎜⎝
c11 + c22 c23 −c13
c32 c11 + c33 c12

−c31 c21 c22 + c33

⎞⎟⎟⎠ .

B.2 Applications to stability theory

Let us now consider the autonomous differential system

(B.2.1) x′ = f(x), f : D ⊂ R
n → R

n,

Of great interest in the study of orbital stability of periodic solutions is the following

result of Muldowney [103, Theorem 4.2], which converts a somewhat nonstandard problem

associated to an autonomous dynamical system (the orbital stability of a periodic solution)

into a more standard one, but associated to a nonautonomous system.

Theorem B.2.1. A sufficient condition for a periodic trajectory γ = {p(t); 0 ≤ t ≤ T}
of (B.2.1) to be orbitally asymptotically stable is that the nonautonomous linear system

Z ′ = J
[2]

(B.2.1)
(p(t))Z

be asymptotically stable.

Here, J
[2]

(B.2.1)
is the second additive compound of the Jacobian matrix of (B.2.1). For

other notions or applications of k-th additive and multiplicative compound matrices of

dimension n, see Muldowney [103].
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Appendix C

Impulsive differential equations

C.1 Comparison results

In this Appendix, we shall list a few definitions and notations together with several auxil-

iary results relating to comparison methods and Floquet theory for impulsively perturbed

systems of ordinary differential equations. Let us consider the following differential system

on R
N

(C.1.1) X ′ = f(t, X)

for a continuous function f which is locally Lipschitz in the second variable. Let 0 < L < 1

and let also V0 be the set of functions V : R+ × R
N
+ → R+ which are locally Lipschitz in

the second variable, continuous on ((n+ L− 1)T, nT ]× R
N
+ and on (nT, (n+L)T ]× R

N
+

and for which the limits

lim
(t,y)→((n+L−1)T+,x)

V (t, y) = V ((n+ L − 1)T+, x) and lim
(t,y)→(nT+,x)

V (t, y) = V (nT+, x)

exist and are finite for x ∈ R
N
+ and n ∈ N

∗.

For V ∈ V0, we define the upper right Dini derivative of V with respect to the system

(C.1.1) at (t, x) ∈ ((n+ L − 1)T, nT ) × R
N
+ or (nT, (n+ L)T ) × R

N
+ by

D+V (t, x) = lim sup
h↓0

1

h
[V (t+ h, x+ hf(t, x)) − V (t, x)] .

We now indicate a comparison result for solutions of impulsive differential inequalities.

We suppose that h : R+ × R+ → R satisfies the following hypotheses.

(H) h is continuous on ((n + L − 1)T, nT ] × R+ and on (nT, (n + L)T ] × R+ and the

limits

lim
(t,y)→((n+L−1)T+,x)

h(t, y) = h((n+L− 1)T+, x), and lim
(t,y)→(nT+,x)

h(t, y) = h(nT+, x)

exist and are finite for x ∈ R+ and n ∈ N
∗.
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Lemma C.1.1. ([8]) Let V ∈ V0 and assume that

(C.1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D+V (t, X(t)) ≤ h(t, V (t, X(t))), t �= (n + L− 1)T, nT ;

V (t, X(t+)) ≤ Ψ(1)
n (V (t, X(t))), t = (n + L− 1)T ;

V (t, X(t+) ≤ Ψ(2)
n (V (t, X(t))), t = nT,

where h : R+ × R+ → R satisfies (H) and Ψ
(1)
n ,Ψ

(2)
n : R+ → R+ are nondecreasing for all

n ∈ N
∗. Let R(t) be the maximal solution of the impulsive Cauchy problem

(C.1.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u′(t) = h(t, u(t)), t �= (n+ L − 1)T, nT ;

u(t+) = Ψ(1)
n (u(t)), t = (n+ L − 1)T ;

u(t+) = Ψ(2)
n (u(t)), t = nT ;

u(0+) = u0

defined on [0,∞). Then V (0+, X0) ≤ u0 implies that V (t, X(t)) ≤ R(t) for all t ≥ 0,

where X(t) = X(t, 0, X0) is an arbitrary solution of (C.1.1).

Proof. For t ∈ [0,LT ], we have by the classical comparison theorem for ordinary differ-

ential equations that V (t, X(t)) ≤ R(t). Since Ψ
(1)
1 nondecreasing and V (LT,X(LT )) ≤

R(LT ), we obtain

V (LT+, X(LT+)) ≤ Ψ
(1)
1 (V (LT,X(LT )))

≤ Ψ
(1)
1 (R(LT )) = R(LT+).

For t ∈ (LT, T ], it follows, using again the classical comparison theorem, that V (t, X(t)) ≤
R(t). Since Ψ

(2)
1 is nondecreasing and V (T,X(T )) ≤ R(T ), we get

V (T+, X(T+)) ≤ Ψ
(2)
1 (V (T,X(T )))

≤ Ψ
(2)
1 (R(T )) = R(T+).

Thus, for t ∈ [0, T ], it follows V (t, X(t)) ≤ R(t). Repeating this argument, we finally

arrive at the desired result. This completes the proof.

Note that under appropriate regularity conditions the Cauchy problem (C.1.3) has a

unique solution and in that case R becomes the unique solution of (C.1.3). We now

indicate a result which provides estimations for the solution of a system of differential

141



C
E

U
eT

D
C

ol
le

ct
io

n

inequalities. In this regard, let J be an interval in R. Let us define

PC(J,R)
.
=
{
u : J → R : u is continuous at t ∈ J, t �= τk, for some (τk)k≥1, continuous

from the left at t ∈ J, and has discontinuities of the first kind at the points τk ∈ J, k ∈ N
}

and

PC1(J,R)
.
=
{
u ∈ PC(J,R) : u is continuously differentiable at t ∈ J, t �= τk;

u′(τ+
k ) and u′(τ−k ) exist, k ∈ N

}
.

Under these circumstances, one may obtain the following boundedness result

Lemma C.1.2. ([8]) Let the function u ∈ PC1(R+,R) satisfy the inequalities

(C.1.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
du

dt
≤ (≥)p(t)u(t) + f(t), t �= τk, t > 0;

u(τk+) ≤ (≥)dku(τk) + hk, k ≥ 0;

u(0+) ≤ (≥)u0,

where p, f ∈ PC(R+,R) and dk ≥ 0, hk and u0 are constants and (τk)k≥0 is a strictly

increasing sequence of positive real numbers. Then, for t > 0,

u(t) ≤ (≥)u0

( ∏
0<τk<t

dk

)
e
∫ t
0
p(s)ds +

∫ t

0

( ∏
0≤τk<t

dk

)
e
∫ t

s
p(τ)dτf(s)ds

+
∑

0<τk<t

⎛⎝ ∏
τk<τj<t

dj

⎞⎠ e
∫ t

τk
p(τ)dτ

hk.

For other results on impulsive differential equations, see Bainov and Simeonov [8] or

Lakhsmikantham et al [76].

C.2 Floquet theory

We now introduce a few basic results regarding the Floquet theory of impulsive systems

of ordinary differential equations. Let us consider the system

(C.2.1)
X ′(t) = A(t)X(t), t �= τk, t ∈ R;

ΔX = BkX, t = τk, τk < τk+1, k ∈ Z.

under the following hypotheses.
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(H1) A(·) ∈ PC(R,Mn(R)) and there is T > 0 such that A(t+ T ) = A(t) for all t ≥ 0.

(H2) Bk ∈Mn(R), det(In +Bk) �= 0 for k ∈ Z.

(H3) There is q ∈ N
∗ such that Bk+q = Bk, τk+q = τk + T for k ∈ Z.

Let Φ(t) be a fundamental matrix of (C.2.1). Then there is a unique nonsingular matrix

M ∈ Mn(R) such that Φ(t + T ) = Φ(t)M for all t ∈ R, which is called the monodromy

matrix of (C.2.1) corresponding to Φ. Actually, all monodromy matrices of (C.2.1) are

similar and consequently they have the same eigenvalues λ1, λ2, . . . , λn, which are called

the Floquet multipliers of (C.2.1). Under these hypotheses, the following result holds.

Lemma C.2.1. ([8]) Suppose that conditions (H1)-(H3) hold. Then

1. The system (C.2.1) is stable if and only if all Floquet multipliers λk, 1 ≤ k ≤ n

satisfy |λk| ≤ 1 and if |λk| = 1, then to λk there corresponds a simple elementary

divisor.

2. The system (C.2.1) is asymptotically stable if and only if all Floquet multipliers

λk, 1 ≤ k ≤ n satisfy |λk| < 1.

3. The system (C.2.1) is unstable if there is a Floquet multiplier λk such that |λk| > 1.
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Appendix D

Partial derivatives of Φ, z and f

D.1 The first order partial derivatives of Φ1, Φ2

By (formally) deriving
d

dt
(Φ(t;X0)) = F (Φ(t;X0)),

one obtains
d

dt
[DXΦ(t;X0)] = DXF (Φ(t;X0))DXΦ(t;X0).

Also, it is clear that

Φ(t;X0) = (Φ1(t;X0), 0).

We then deduce

d

dt

⎛⎝∂Φ1

∂x1

∂Φ1

∂x2

∂Φ2

∂x1

∂Φ2

∂x2

⎞⎠ (t;X0) =

⎛⎝−w g(Φ1(t;X0))

0 r − g(Φ1(t;X0))

⎞⎠⎛⎝∂Φ1

∂x1

∂Φ1

∂x2

∂Φ2

∂x1

∂Φ2

∂x2

⎞⎠ (t;X0),

the initial condition being

(D.1.1) DXΦ(0;X0) = I2.

Here, I2 is the identity matrix in M2(R). It follows that

d

dt

(
∂Φ2

∂x1
(t;X0)

)
= (r − g(Φ1(t;X0)))

∂Φ2

∂x1
(t;X0)

and then
∂Φ2

∂x1
(t;X0) = e

∫ t
0
(r−g(Φ1(s;X0)))ds

∂Φ2

∂x1
(0;X0),

which implies, using (D.1.1), that

(D.1.2)
∂Φ2

∂x1
(t;X0) = 0 for t ≥ 0.

One then gets

(D.1.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

(
∂Φ1

∂x1
(t;X0)

)
= −w∂Φ1

∂x1
(t;X0)

d

dt

(
∂Φ1

∂x2
(t;X0)

)
= −w∂Φ1

∂x2
(t;X0) + g(Φ1(t;X0))

∂Φ2

∂x2
(t;X0)

d

dt

(
∂Φ2

∂x2
(t;X0)

)
= (r − g(Φ1(t;X0)))

∂Φ2

∂x2
(t;X0),
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from which we deduce, using (D.1.1), that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Φ1

∂x1
(t;X0) = e−wt

∂Φ1

∂x2
(t;X0) = e−wt

∫ t

0

g(Φ1(s;X0))e
(r+w)s−∫ s

0 g(Φ1(τ ;X0))dτds

∂Φ2

∂x2
(t;X0) = ert−

∫ t
0
g(Φ1(s;X0))ds.

Also, from (D.1.2), it follows that

DXΨ(T,X0) =

(
d11 d12

0 d22

)
,

with d11, d12, d22 being given by

d11 = (1 − δ2)
∂Φ1

∂x1

((1 − l)T ; I1(Φ(lT ;X0)))
∂Φ1

∂x1

(lT ;X0)(D.1.4)

d12 = (1 − δ2)
∂Φ1

∂x1

((1 − l)T ; I1(Φ(lT ;X0)))
∂Φ1

∂x2

(lT ;X0)(D.1.5)

+ (1 − δ1)
∂Φ1

∂x2

((1 − l)T ; I1(Φ(lT ;X0)))
∂Φ2

∂x2

(lT ;X0)

d22 = (1 − δ1)
∂Φ2

∂x2
((1 − l)T ; I1(Φ(lT ;X0)))

∂Φ2

∂x2
(lT ;X0).(D.1.6)

Consequently,

d11 = (1 − δ2)e
−wT ,

(D.1.7)

d12 = (1 − δ2)e
−w(1−l)T e−wlT

∫ lT

0

g(I∗(s))e(r+w)s−∫ s
0 g(I

∗(τ))dτds

(D.1.8)

+ (1 − δ1)e
−w(1−l)T

∫ (1−l)T

0

g(Φ1(s; I1(Φ(lT ;X0))))e
(r+w)s−∫ s

0 g(Φ1(τ ;I1(Φ(lT ;X0))))dτds

· erlT−
∫ lT
0 g(I∗(s))ds

= (1 − δ2)e
−wT

∫ T

0

g(I∗(s))e(r+w)s−∫ s
0 g(I

∗(τ))dτds

+ (1 − δ1)e
−w(1−l)T

∫ (1−l)T

0

g(I∗(s+ lT ))e(r+w)s−∫ s
0
g(I∗(τ+lT ))dτds · erlT−

∫ lT
0

g(I∗(s))ds

= e−wT
[
(1 − δ2)

∫ lT

0

g(I∗(s))e(r+w)s−∫ s
0 g(I

∗(τ))dτds
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+(1 − δ1)

∫ T

lT

g(I∗(s))e(r+w)s−∫ s
0
g(I∗(τ))dτds

]
;

d22 = (1 − δ1)e
r(1−l)T−∫ (1−l)T

0 g(Φ1(s;I1(Φ(lT ;X0))))dserlT−
∫ lT
0 g(I∗(s))ds

(D.1.9)

= (1 − δ1)e
rT−∫ (1−l)T

0
g(I∗(s+lT ))ds−∫ lT

0
g(I∗(s))ds

= (1 − δ1)e
rT−∫ T

0
g(I∗(s))ds

D.2 The partial derivatives of z at (0, 0)

From the implicit function theorem, it follows that

∂N1

∂x1

(0, (0, 0))

(
− b′0
a′0

)
+
∂N1

∂x2

(0, (0, 0)) +
∂N1

∂x1

(0, (0, 0))
∂z

∂α
(0, 0) = 0

and consequently

a′0

(
− b′0
a′0

)
+ b′0 + a′0

∂z

∂α
(0, 0) = 0,

from which we obtain that
∂z

∂α
(0, 0) = 0.

The computations required for finding ∂z
∂τ

(0, 0) are somewhat more complicated, as ∂N
∂τ

(0, (0, 0))

is not known beforehand, unlike ∂N
∂x1

(0, (0, 0)) and ∂N
∂x2

(0, (0, 0)). Again, by the implicit

function theorem, it follows from (3.3.7) that

∂z

∂τ
(0, 0) =

∂Φ1

∂τ
((1 − l)T ; I1(Φ(lT ;X0)))(1 − l)

+
∂Φ1

∂x1
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ2)

(
∂Φ1

∂τ
(lT ;X0) · l + ∂Φ1

∂x1
(lT ;X0)

∂z

∂τ
(0, 0)

)
+
∂Φ1

∂x2

((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)

(
∂Φ2

∂τ
(lT ;X0) · l + ∂Φ2

∂x1

(lT ;X0)
∂z

∂τ
(0, 0)

)
.

Since

∂Φ2

∂x1
(lT ;X0) = 0,(D.2.1)

∂Φ2

∂τ
(lT ;X0) = 0,(D.2.2)

it follows that

∂z

∂τ
(0, 0) =

∂Φ1

∂τ
((1 − l)T ; I1(Φ(lT ;X0)))(1 − l)

+
∂Φ1

∂x1
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ2)

(
∂Φ1

∂τ
(lT ;X0) · l + ∂Φ1

∂x1
(lT ;X0)

∂z

∂τ
(0, 0)

)
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and consequently

∂z

∂τ
(0, 0)

(
1 − ∂Φ1

∂x1
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ2)

∂Φ1

∂x1
(lT ;X0)

)
=
∂Φ1

∂τ
((1 − l)T ; I1(Φ(lT ;X0)))(1 − l) +

∂Φ1

∂x1

((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ2)
∂Φ1

∂τ
(lT ;X0) · l

From (3.3.2), it follows that

∂z

∂τ
(0, 0) =

1

a′0

[
∂Φ1

∂τ
((1 − l)T ; I1(Φ(lT ;X0)))(1 − l)

+
∂Φ1

∂x1

((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ2)
∂Φ1

∂τ
(lT ;X0) · l

]
.

Consequently, one may obtain that

∂z

∂τ
(0, 0) =

1

a′0

[−wI∗(T )(1 − l) + (1 − δ2)e
−w(1−l)T (−wI∗(lT )) · l]

= −w

a′0

[
I∗(T )(1 − l) + e−w(1−l)T I∗(lT+) · l]

= −w

a′0
[I∗(T )(1 − l) + I∗(T ) · l]

= −w

a′0
I∗(T )

D.3 The first order partial derivatives of f at (0, 0)

It is easy to see that

∂f

∂α
(τ , α) =

∂

∂α
[α− Ψ2(T + τ ,X0 + αY0 + z(τ , α)E0)]

= 1 − ∂

∂α
[Φ2((1 − l)(T + τ ); I1(Φ(l(T + τ );X0 + αY0 + z(τ , α)E0))))]

= 1 − ∂Φ2

∂x1

((1 − l)(T + τ); I1(Φ(l(T + τ);X0 + αY0 + z(τ , α)E0)))

· (1 − δ2)

(
∂Φ1

∂x1

(l(T + τ );X0 + αY0 + z(τ , α)E0)

(
− b′0
a′0

+
∂z

∂α
(τ , α)

)
+
∂Φ1

∂x2
(l(T + τ);X0 + αY0 + z(τ , α)E0)

)
− ∂Φ2

∂x2
((1 − l)(T + τ); I1(Φ(l(T + τ );X0 + αY0 + z(τ , α)E0)))

· (1 − δ1)

(
∂Φ2

∂x1
(l(T + τ);X0 + αY0 + z(τ , α)E0)

(
− b′0
a′0

+
∂z

∂α
(τ , α)

)
+
∂Φ2

∂x2

(l(T + τ );X0 + αY0 + z(τ , α)E0)

)
.
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It then follows that

∂f

∂α
(0, 0)

= 1 − ∂Φ2

∂x1
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ2)

(
∂Φ1

∂x1
(lT ;X0)

(
− b′0
a′0

+
∂z

∂α
(0, 0)

)
+
∂Φ1

∂x2
(lT ;X0)

)
− ∂Φ2

∂x2
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)

(
∂Φ2

∂x1
(lT ;X0)

(
− b′0
a′0

+
∂z

∂α
(0, 0)

)
+
∂Φ2

∂x2
(lT ;X0)

)

From (D.2.1) and

(D.3.1)
∂Φ2

∂x1
((1 − l)T ; I1(Φ(lT ;X0))) = 0,

it is seen that

∂f

∂α
(0, 0) = 1 − ∂Φ2

∂x2
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)

∂Φ2

∂x2
(lT ;X0)

= d′0

= 0.

It is also seen that

∂f

∂τ
(τ , α) =

∂

∂τ
[α− Ψ2(T + τ ,X0 + αY0 + z(τ , α)E0)]

= − ∂

∂τ
[Φ2((1 − l)(T + τ); I1(Φ(l(T + τ);X0 + αY0 + z(τ , α)E0))))]

= −∂Φ2

∂τ
((1 − l)(T + τ); I1(Φ(l(T + τ);X0 + αY0 + z(τ , α)E0)))(1 − l)

− ∂Φ2

∂x1

((1 − l)(T + τ ); I1(Φ(l(T + τ );X0 + αY0 + z(τ , α)E0)))

· (1 − δ2)

(
∂Φ1

∂τ
(l(T + τ);X0 + αY0 + z(τ , α)E0) · l

+
∂Φ1

∂x1
(l(T + τ);X0 + αY0 + z(τ , α)E0)

∂z

∂τ
(τ , α)

)
− ∂Φ2

∂x2
((1 − l)(T + τ ); I1(Φ(l(T + τ );X0 + αY0 + z(τ , α)E0)))

· (1 − δ1)

(
∂Φ2

∂τ
(l(T + τ);X0 + αY0 + z(τ , α)E0) · l

+
∂Φ2

∂x1

(l(T + τ);X0 + αY0 + z(τ , α)E0)
∂z

∂τ
(τ , α)

)
.
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It then follows that

∂f

∂τ
(0, 0) = − ∂Φ2

∂τ
((1 − l)T ; I1(Φ(lT ;X0)))(1 − l)

− ∂Φ2

∂x1
((1 − l)T ; I1(Φ(lT ;X0)))

· (1 − δ2)

(
∂Φ1

∂τ
(lT ;X0) · l + ∂Φ1

∂x1
(lT ;X0)

∂z

∂τ
(0, 0)

)
− ∂Φ2

∂x2

((1 − l)T ; I1(Φ(lT ;X0)))

· (1 − δ1)

(
∂Φ2

∂τ
(lT ;X0) · l + ∂Φ2

∂x1
(lT ;X0)

∂z

∂τ
(0, 0)

)
.

From (D.2.1),(D.2.2),(D.3.1) and

(D.3.2)
∂Φ2

∂τ
((1 − l)T ; I1(Φ(lT ;X0))) = 0,

it consequently follows that
∂f

∂τ
(0, 0) = 0.

D.4 The second order partial derivatives of Φ2

Again, by formally deriving

d

dt
(Φ(t;X0)) = F (Φ(t;X0)),

one may obtain ∂2Φ2

∂x2
1

(t;X0),
∂2Φ2

∂x2
2

(t;X0),
∂2Φ2

∂x1∂x2
(t;X0) as the solutions of certain initial

value problems. One sees that

d

dt

(
∂2Φ2

∂x2
1

(t;X0)

)
= (r − g(Φ1(t;X0)))

∂2Φ2

∂x2
1

(t;X0) − g′(Φ1(t;X0))
∂Φ1

∂x1
(t;X0)

∂Φ2

∂x1
(t;X0)

and since
∂Φ2

∂x1

(t;X0) = 0 for t ≥ 0,

it follows that
d

dt

(
∂2Φ2

∂x2
1

(t;X0)

)
= (r − g(Φ1(t;X0)))

∂2Φ2

∂x2
1

(t;X0)

and consequently
∂2Φ2

∂x2
1

(t;X0) = ert−
∫ t
0 g(Φ1(s;X0))ds∂

2Φ2

∂x2
1

(0;X0).

Since ∂2Φ2

∂x2
1

(0;X0) = 0, this implies that

∂2Φ2

∂x2
1

(t;X0) = 0 for t ≥ 0.
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Also,

d

dt

(
∂2Φ2

∂x2
2

(t;X0)

)
= (r − g(Φ1(t;X0)))

∂2Φ2

∂x2
2

(t;X0) − g′(Φ1(t;X0))
∂Φ1

∂x2
(t;X0)

∂Φ2

∂x2
(t;X0)

and since

∂2Φ2

∂x2
2

(0;X0) = 0,

one may deduce that

∂2Φ2

∂x2
2

(t;X0)

(D.4.1)

= −ert−
∫ t
0 g(Φ1(s;X0))ds

∫ t

0

g′(Φ1(s;X0))
∂Φ1

∂x2
(s;X0)

∂Φ2

∂x2
(s;X0)e

−(rs−∫ s
0 g(Φ1(τ ;X0))dτ)ds

= −ert−
∫ t
0 g(Φ1(s;X0))ds

∫ t

0

g′(Φ1(s;X0))
∂Φ1

∂x2

(s;X0)ds.

Similarly,

d

dt

(
∂2Φ2

∂x1∂x2
(t;X0)

)
= (r − g(Φ1(t;X0)))

∂2Φ2

∂x1∂x2
(t;X0) − g′(Φ1(t;X0))

∂Φ1

∂x1
(t;X0)

∂Φ2

∂x2
(t;X0)

and since

∂2Φ2

∂x1∂x2
(0;X0) = 0,

one obtains that

∂2Φ2

∂x1∂x2
(t;X0)

(D.4.2)

= −ert−
∫ t
0
g(Φ1(s;X0))ds

∫ t

0

g′(Φ1(s;X0))
∂Φ1

∂x1
(s;X0)

∂Φ2

∂x2
(s;X0)e

−(rs−∫ s
0
g(Φ1(τ ;X0))dτ)ds

= −ert−
∫ t
0 g(Φ1(s;X0))ds

∫ t

0

g′(Φ1(s;X0))
∂Φ1

∂x1
(s;X0)ds.

150



C
E

U
eT

D
C

ol
le

ct
io

n

D.5 The second order partial derivatives of f

One remarks that

∂2Φ2

∂x1∂τ
((1 − l)T ; I1(Φ(lT ;X0)) = 0(D.5.1)

∂2Φ2

∂x2
1

((1 − l)T ; I1(Φ(lT ;X0)) = 0(D.5.2)

∂2Φ2

∂x2
1

(lT ;X0) = 0.(D.5.3)

By (D.5.1)-(D.5.3), combined with (D.2.1)-(D.3.2), it follows that

∂2f

∂τ 2 (0, 0) = −∂
2Φ2

∂τ 2
((1 − l)T ; I1(Φ(lT ;X0)))(1 − l)2.

Since

(D.5.4)
∂2Φ

∂τ 2 ((1 − l)T ; I1(Φ(lT ;X0))) = 0,

it is then concluded that

∂2f

∂τ 2 (0, 0) = 0.

We then compute ∂2f
∂α2 (0, 0). By (D.2.1) and (D.3.1), it follows that

∂2f

∂α2
(0, 0) = − ∂

∂α

[
∂Φ2

∂x1
((1 − l)(T + τ ); I1(Φ(l(T + τ );X0 + αY0 + z(τ , α)E0))))

] ∣∣∣∣
(τ ,α)=(0,0)

· (1 − δ2)

(
∂Φ1

∂x1
(lT ;X0)

(
− b′0
a′0

+
∂z

∂α
(0, 0)

)
+
∂Φ1

∂x2
(lT ;X0)

)
− ∂

∂α

[
∂Φ2

∂x2
((1 − l)(T + τ ); I1(Φ(l(T + τ );X0 + αY0 + z(τ , α)E0))))

] ∣∣∣∣
(τ ,α)=(0,0)

· (1 − δ1)

(
∂Φ2

∂x1

(lT ;X0)

(
− b′0
a′0

+
∂z

∂α
(0, 0)

)
+
∂Φ2

∂x2

(lT ;X0)

)
− ∂Φ2

∂x2
((1 − l)T ; I1(Φ(lT ;X0)))

· ∂
∂α

[
(1 − δ1)

(
∂Φ2

∂x1
(l(T + τ );X0 + αY0 + z(τ , α)E0)

(
− b′0
a′0

+
∂z

∂α
(τ , α)

)
+
∂Φ2

∂x2
(l(T + τ);X0 + αY0 + z(τ , α)E0)

)] ∣∣∣∣
(τ ,α)=(0,0)

.
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Using again (D.5.2) and (D.2), it follows that

∂2f

∂α2
(0, 0) = −2

∂2Φ2

∂x1∂x2
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)(1 − δ2)

·
(
∂Φ1

∂x1
(lT ;X0)

(
− b′0
a′0

)
+
∂Φ1

∂x2
(lT ;X0)

)
∂Φ2

∂x2
(lT ;X0)

− ∂2Φ2

∂x2
2

((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)
2

(
∂Φ2

∂x2
(lT ;X0)

)2

− ∂Φ2

∂x2
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)

·
[
2
∂2Φ2

∂x2∂x1
(lT ;X0)

(
− b′0
a′0

)
+
∂2Φ2

∂x2
2

(lT ;X0)

]
.

Consequently, from (D.4.1),(D.4.2),(3.3.2) and (3.3.3) one easily gets that

∂2f

∂α2
(0, 0) > 0.

From (D.2.1),(D.2.2) and (D.3.1), one may see that

∂2f

∂α∂τ
(0, 0) = − ∂

∂α

[
∂Φ2

∂τ
((1 − l)(T + τ ); I1(Φ(l(T + τ );X0 + αY0 + z(τ , α)E0))))

] ∣∣∣∣
(τ ,α)=(0,0)

· (1 − l)

− ∂

∂α

[
∂Φ2

∂x1
((1 − l)(T + τ ); I1(Φ(l(T + τ );X0 + αY0 + z(τ , α)E0))))

] ∣∣∣∣
(τ ,α)=(0,0)

· (1 − δ2)

(
∂Φ1

∂τ
(lT ;X0) · l + ∂Φ1

∂x1
(lT ;X0)

∂z

∂τ
(0, 0)

)
− ∂Φ2

∂x2

((1 − l)T ; I1(Φ(lT ;X0)))

· (1 − δ1)
∂

∂α

[
∂Φ2

∂τ
(l(T + τ);X0 + αY0 + z(τ , α)E0) · l

+
∂Φ2

∂x1
(l(T + τ);X0 + αY0 + z(τ , α)E0)

∂z

∂τ
(τ , α)

] ∣∣∣∣
(τ ,α)=(0,0)

.

Using again (D.5.1) and (D.5.3), one sees that

∂2f

∂α∂τ
(0, 0) = − ∂2Φ2

∂x2∂τ
((1 − l)T ; I1(Φ(lT ;X0))))(1 − δ1)

∂Φ2

∂x2
(lT ;X0)(1 − l)

− ∂2Φ2

∂x2∂x1
((1 − l)T ; I1(Φ(lT ;X0))))(1 − δ1)

∂Φ2

∂x2
(lT ;X0)

· (1 − δ2)

(
∂Φ1

∂τ
(lT ;X0) · l + ∂Φ1

∂x1
(lT ;X0)

∂z

∂τ
(0, 0)

)
− ∂Φ2

∂x2

((1 − l)T ; I1(Φ(lT ;X0)))

· (1 − δ1)

(
∂2Φ2

∂x2∂τ
(lT ;X0) · l + ∂2Φ2

∂x2∂x1

(lT ;X0)
∂z

∂τ
(0, 0)

)
.
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We now determine the sign of ∂2f
∂α∂τ

(0, 0). It is seen that

− ∂2Φ2

∂x2∂x1
((1 − l)T ; I1(Φ(lT ;X0))))(1 − δ1)

∂Φ2

∂x2
(lT ;X0)

= er(1−l)T−
∫ (1−l)T
0

g(Φ1(s;I1(Φ(lT ;X0))))ds ·
(∫ (1−l)T

0

g′(Φ1(s; I1(Φ(lT ;X0))))e
−wsds

)
· (1 − δ1)e

rlT−∫ lT
0 g(Φ1(s;X0))ds

= erT−
∫ (1−l)T
0 g(I∗(s+lT ))ds−∫ lT

0 g(I∗(s))ds(1 − δ1)

(∫ (1−l)T

0

g′(I∗(s+ lT ))e−wsds

)

= erT−
∫ T
0 g(I∗(s))ds(1 − δ1)

(∫ (1−l)T

0

g′(I∗(s+ lT ))e−wsds

)
.

Since ∫ T

0

g(I∗(s))ds = rT + ln(1 − δ1),

it follows that

− ∂2Φ2

∂x2∂x1
((1 − l)T ; I1(Φ(lT ;X0))))(1 − δ1)

∂Φ2

∂x2
(lT ;X0)

=

∫ (1−l)T

0

g′(I∗(s+ lT ))e−wsds.

Similarly,

− ∂2Φ2

∂x2∂τ
((1 − l)T ; I1(Φ(lT ;X0))))(1 − δ1)

∂Φ2

∂x2

(lT ;X0)(1 − l)

= − (r − g(Φ1((1 − l)T ; I1(Φ(lT ;X0)))))
∂Φ2

∂x2
((1 − l)T ; I1(Φ(lT ;X0)))

· (1 − δ1)
∂Φ2

∂x2
(lT ;X0)(1 − l)

= −(r − g(I∗(T )))(1 − d′0)(1 − l)

= −(r − g(I∗(T )))(1 − l).

Also,

(1 − δ2)

(
∂Φ1

∂τ
(lT ;X0) · l + ∂Φ1

∂x1
(lT ;X0)

∂z

∂τ
(0, 0)

)
= (1 − δ2)

(
−wI∗(lT ) · l + e−wlT

((
− 1

a′0

)
wI∗(T )

))
= −w(1 − δ2)e

−wlT
(
I∗(0+) · l + 1

a′0
I∗(T )

)
.
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It is seen that

−∂Φ2

∂x2

((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)

[
∂2Φ2

∂x2∂τ
(lT ;X0) · l + ∂2Φ2

∂x2∂x1

(lT ;X0)
∂z

∂τ
(0, 0)

]
= −∂Φ2

∂x2
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)[

(r − g(Φ1(lT ;X0)))
∂Φ2

∂x2
(lT ;X0) · l −

(
∂Φ2

∂x2
(lT ;X0)

∫ lT

0

g′(I∗(s))e−wsds
)
∂z

∂τ
(0, 0)

]
.

Since d′0 = 0, it follows that

−∂Φ2

∂x2
((1 − l)T ; I1(Φ(lT ;X0)))(1 − δ1)

[
∂2Φ2

∂x2∂τ
(lT ;X0) · l + ∂2Φ2

∂x2∂x1
(lT ;X0)

∂z

∂τ
(0, 0)

]
= −(r − g(I∗(lT ))) · l +

(∫ lT

0

g′(I∗(s))e−wsds
)(

− 1

a′0
wI∗(T )

)
= −

[
(r − g(I∗(lT ))) · l + w

a′0

(∫ lT

0

g′(I∗(s))e−wsds
)
I∗(T )

]
It is consequently deduced that

∂2f

∂α∂τ
(0, 0) = −(r − g(I∗(T )))(1 − l)

+

(∫ (1−l)T

0

g′(I∗(s+ lT ))e−wsds

)(
−w(1 − δ2)e

−wlT
(
I∗(0+) · l + 1

a′0
I∗(T )

))
−
[
(r − g(I∗(lT ))) · l + w

a′0

(∫ lT

0

g′(I∗(s))e−wsds
)
I∗(T )

]
= − [r − lg(I∗(lT )) − (1 − l)g(I∗(T ))]

− w

(∫ (1−l)T

0

g′(I∗(s+ lT ))e−w(s+lT )ds

)
(1 − δ2)

(
I∗(0+) · l + 1

a′0
I∗(T )

)
− w

a′0

(∫ lT

0

g′(I∗(s))e−wsds
)
I∗(T ),

which implies

∂2f

∂α∂τ
(0, 0) = − [r − lg(I∗(lT )) − (1 − l)g(I∗(T ))](D.5.5)

− w

(∫ T

lT

g′(I∗(s))e−wsds
)

(1 − δ2)

(
I∗(0+)l +

1

a′0
I∗(T )

)
− w

a′0

(∫ lT

0

g′(I∗(s))e−wsds
)
I∗(T ).

We note that

rT −
∫ T

0

g(I∗(s))ds = − ln(1 − δ1) > 0
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and also, since I∗ is decreasing on (0, T ],∫ T

0

g(I∗(s))ds =

∫ lT

0

g(I∗(s))ds+

∫ T

lT

g(I∗(s))ds

> lTg(I∗(lT )) + (1 − l)Tg(I∗(T )).

Consequently, the first term in the right-hand side of (D.5.5) is negative. Since g is

increasing and I∗ is positive, the other terms are negative as well and consequently

∂2f

∂α∂τ
(0, 0) < 0.
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Index

Action threshold, 113

Attack rate, 11

Basic reproduction number, 89

Carrying capacity, 9

Compartmental model, 87

Competitive system, 27

Compound matrix

k-th additive compound, 139

k-th multiplicative compound, 139

Controls

biological, 113

chemical, 113

mechanical, 112

Determining equation, 133

Floquet

multipliers, 144

theory, 143

Force of infection, 88

Functional response, 8, 11

Beddington-DeAngelis, 13

Hassell-Varley, 13

Holling

cyrtoid, 12

linear, 12

sigmoid, 12

predator-dependent, 12

prey-dependent, 12

ratio-dependent, 12

Growth rate, 8

Gompertz, 10

Ivlev, 12

logistic, 9

Nisbet-Gurney, 11

Richards, 10

von Bertalanffy, 10, 11

Incidence rate

bilinear, 90

horizontal, 88

standard, 88

vertical, 88

Injury level

aesthetic, 113

economic, 113

Integrated pest management, 112

LaSalle invariance principle, 138

Limit set of an orbit

negative limit (α-limit) set, 137

positive limit (ω-limit) set, 137

Low densities problem, 13

Maturation delay, 75

Monodromy matrix, 144

Multipatch models, 87

Numerical response, 8, 13

general form, 13

Leslie, 13

Paradox of

biological control, 39

enrichment, 38
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Permanence, 21

Predator-prey model

Lotka-Volterra, 7

Rosenzweig-MacArthur, 9

Second additive compound of a matrix, 140

SEIRS model, 87

Simple food chain, 42

Stability

absolute global asymptotic, 80

of periodic orbits, 27

orbital, 27

Stage structure, 14, 87

degree of, 79

Uniform persistence, 21

Uniform repeller, 24
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