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Abstract

We consider two different Turán-type problems for hypergraphs. The first

concerns uniform and non-uniform hypergraphs avoiding cycles of a given

length. Here we use the loosest definition of a cycle (due to Berge). We are

able to bound the number of edges of l-uniform hypergraphs containing no

cycle of length 2k+1 by O(n(k+1)/k) if l ≥ 3 and n is the number of vertices of

the hypergraph. We give the same bound to l-uniform hypergraphs avoiding

a cycle of length 2k. These orders of magnitudes are shown to be sharp when

k = 2, 3 or 5. We also consider the problem for non-uniform hypergraphs.

Here we are able to bound the total size of the hypergraph (
∑

h∈E(H) |h|) by

O(n1+1/k) for hypergraphs H if either H contains no cycle of length 2k or H

contains no cycle of length 2k + 1.

The second problem is a perturbation of the famous Erdős-Ko-Rado The-

orem. We find the largest possible unbalance of k-uniform hypergraphs whose

edges have pairwise non-trivial intersections. The unbalance of such a hy-

pergraph is defined as the size (number of edges) of the hypergraphs minus

the size of the largest degree in the hypergraph.

To introduce these two problems, we give a short introduction to the

history of Turán type problems paying close attention to those problems and

results which motivate and or relate to our results.
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1 INTRODUCTION 1

1 Introduction

The first Turán type result (Mantel’s Theorem) appeared almost exactly 100

years ago. However, it was not until the second half of the 20th century, fol-

lowing the publication of Turán’s famous paper, that Turán type problems

became a subfield of their own within the larger field of extremal combina-

torics. At this time, this subfield has grown so large that we are forced to

restrict our attention to a small segment of the possible problems, results

and techniques.

Turán problems are questions of the following sort. Let F be a family of

graphs. How many edges can a graph have if the graph contains no mem-

ber of F as a subgraph? (We will also ask this question in the context of

hypergraphs.) As we shall see, these easily stated problems are often quite

difficult to solve; the theory is quite deep and the methods needed to solve

these problems can be varied and complex. In what follows, we present a

short history of the most notable Turán-type results including some of the

important proofs. Of course in a short paper such as this, we are forced to

be selective; the material represented here reflects the author’s bias and is

by no means a complete exposition on the subject of Turán type problems

in combinatorics. In deciding which proofs to include (that are not our own)

we tried to choose proofs that were elegant, simple, and above all important

either in technique or result to the general field. We have tried to give an

idea of the many different approaches and techniques that have been used to
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1 INTRODUCTION 2

solve Turán problems. However, here also we have had to leave out impor-

tant and nice results. Before we jump into the actual mathematics, we start

with a few definitions.

A graph G consists of a finite vertex set V (G) and a collection of edges

E(G) ⊆
(

V (G)
2

)
which are subsets of V (G) of size two. If we allow a graph

to have multiple copies of an edge, we call it a multigraph. We often refer to

the number of edges in the graph G as e(G). As usual, the complete graph

on n vertices is referred to as Kn while Kn1,n2,...,nr refers to the complete

r-partite graph with parts of size n1, n2, . . . , nr. The Turán Graph, Tn,r, is

the complete r-partite graph on n vertices in which the partite sets are as

close in size as possible to each other: if ni is the size of the ith partite set,

then we require |ni − (n/r)| < 1 for all i. The length of a cycle or a path

refers to the number of edges in it. Unless otherwise specified, Ck and Pk

will refer to a cycle, respectively path, of length k. Often we refer to cycles

by their geometric equivalents; a triangle refers to a 3-cycle, a pentagon to a

5-cycle.

A hypergraph H is a generalization of a graph where an edge (or hyper-

edge) can be a subset of any size of the vertex set. If all the edges are of size

2, then the hypergraph is just a graph. Note that our notation distinguishes

graphs from hypergraphs; graphs are represented with uppercase letters, hy-

pergraphs with script letters. In general, we call a hypergraph k-uniform if

all of its edges are of size k. We also sometimes call such a hypergraph a

k-graph. If the edges of the hypergraph have varying sizes, the hypergraph
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1 INTRODUCTION 3

is called nonuniform.

For a graph G, or a collection of graphs G, ex(n,G) (respectively ex(n,G))

denotes the maximal number of edges a graph on n vertices can have without

containing the graph G (or a member of G) as a subgraph. The study of

Turán type problems is concerned with determining the values of ex(n,G)

for various graphs G. One can ask similar questions for hypergraphs; given

a fixed k-uniform hypergraph, H, we let exk(n,H) denote the maximum

number of edges in a k-uniform hypergraph can have without containing H

as a sub-hypergraph. If it is clear from the context that we are talking about

k-uniform hypergraphs, we may suppress the k. For a forbidden k-uniform

hypergraph, H, the Turán density is defined as

π(H) = limn→∞
exk(n,H)(

n
k

) (1.1)

The first Turán type result was proved by Mantel[81] in 1907. Mantel

showed that if a graph on n vertices has more than n2/4 edges, then it must

contain a triangle. This result did not generate much attention until after

Turán proved a much more general theorem. Turán’s seminal paper can

easily be credited for popularizing and indeed starting this field of study;

this is why it bears his name. In this paper, Turán found the largest graphs

which do not contain a Kk for any fixed k. (These are the Turán graphs.)

Interestingly, Turán first approached this problem from a Ramsey theoretical

viewpoint. Ramsey’s theorem states that for a given k, there is a function

n0(k) such that ∀n > n0(k), any graph on n vertices which does not contain
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k independent vertices must contain a Kk as a subgraph. Turán then asked,

if a graph on n vertices contains enough edges, can one insure the existence

of a Kk as a subgraph? Of course, Turán not only answered this question in

the affirmative, but also found the unique maximal graphs containing no Kk.

Here we give Turán’s elegant proof[97] which was published in 1941. (See

also [98])

1.1 Turán’s Theorem

Theorem 1.1 (Turán). Let G be a graph on n vertices containing no Kk

with at least e(Tn,k−1) edges. Then G = Tn,k−1.

Proof. By induction on n, the number of vertices in G. Without loss of

generality, suppose G contains a subgraph H = Kk−1. Write e(G) = e+f+g

where e is the number of edges in H, f the number of edges in G\V (H), and

g the number of edges joining H to G\V (H). By the induction hypothesis,

we know f ≤ e(Tn−k+1,k−1). Also, each vertex not in H can have at most

k−2 neighbors in H. Thus g ≤ (n−k+1)(k−2). As e =
(

k−1
2

)
, we conclude

e(G) ≤ e(Tn,k−1). Then by assumption, e(G) = e(Tn,k−1) and we must show

that G = Tn,k−1.

As equality holds, we must have each vertex not inH connected to exactly

k− 2 neighbors of H. Then we can partition the vertices of G (including the

vertices of H) into k− 1 classes depending on which k− 2 vertices in H they

neighbor. Clearly, these classes must by independent; thus G is complete
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(k − 1)-partite. It is easy to check that the largest complete (k − 1)-partite

graph on n vertices is the Turán graph Tn,k−1.

The simplicity and elegance of Turán’s result inspired further analysis.

One can ask similar questions about any graphs - not just complete graphs.

Interestingly, it turns out that Turán’s result lies much deeper than one might

guess at first. In fact, the Turán graphs, Tn,p, are very similar to the extremal

graphs for many other classes of graphs. Here the theory of extremal graphs

bifurcates; there are two distinct classes of graphs which one can forbid. If

the forbidden graph has chromatic number at least three, then its extremal

graph is very close indeed in size and structure to the appropriate Turán

graph. In this case, there are some very nice structural theorems that more

or less solve the problem. On the other hand, the situation is quite different if

the forbidden graph has chromatic number two. In this case, while there are

some known bounds, many of the extremal graphs are completely unknown.

Following the terminology of Simonovits[93], we call the first type of Turán

problem ”non-degenerate” and the second, ”degenerate.”

The difference between these two classes of problems can hardly be over-

stated. In non-degenerate problems, the extremal graphs all have Θ(n2)

edges. However, in the degenerate problems, the extremal graphs have o(n2)

edges. Many of the known structural theorems known give quantitative re-

sults with an error term of o(n2), which when applied to degenerate problems,

renders such theorems trivial. Thus there is very little general theory concern-
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ing the structures of the extremal graphs for degenerate problems. Indeed,

most of the results are partial results and some of the most basic problems

remain unanswered. However, this is not the case at all for non-degenerate

problems. As the theory of non-degenerate problems builds directly upon

Turán’s results, we examine them first.

1.2 Non-Degenerate Problems

After Turán’s Theorem, the second major step the theory of non-degenerate

problems is a theorem of Erdős and Stone[38], published in 1946.

Theorem 1.2 (Erdős-Stone). Let Kn,p+1 be a regular (p + 1)-partite graph.

Then

ex(n,Kn,p+1) =

(
1− 1

p

) (
n

2

)
+O(n)

Twenty years later, Erdős and Simonovits realized that this had very deep

implications for the generalized Turán problem. For a family of graphs F , we

define its subchromatic number to be one less than the minimum chromatic

number over all the graphs in the family. Erdős and Simonovits[39] showed

that the Erdős-Stone theorem easily implies the following:

Theorem 1.3 (Erdős-Stone-Simonovits). If F is a family of forbidden sub-

graphs whose subchromatic number is p, then

ex(n,F) =

(
1− 1

p

) (
n

2

)
+ o(n2) (1.2)
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We note that the Erdős-Stone-Simonovits Theorem is trivial in the de-

generate case. For families with subchromatic number one, that is families

containing a graph with chromatic number 2, the first term in Equation 1.2

disappears and the theorem only tells us that the extremal graphs have o(n2)

edges. We do not know what the correct order of magnitude is. However,

in the non-degenerate case, when the subchromatic number of the family is

at least 2, the Erdős-Stone-Simonovits Theorem gives not only the correct

order of magnitude for the extremal family size, but also the correct coeffi-

cient. In fact, even more is known about the extremal graphs. They are close

structurally to the Turán graphs. The following two theorems (developed by

Erdős and Simonovits - see [25], [26], and [91]) show this.

Theorem 1.4 (Structure Theorem). Let F be a family of forbidden subgraphs

with subchromatic number p. If {Gn} are the extremal graphs on n vertices

for this family, then Gn can be obtained from Tn,p by adding or deleting at

most o(n2) edges.

As one might expect at this point, not only are all the extremal graphs

very similar to the Turán graphs, but also, any graph close in size to the

extremal graph must also be similar to the Turán graph. This is expressed

in the following stronger result:

Theorem 1.5 (Stability Theorem). Let F be a family of forbidden subgraphs

with subchromatic number p. For ε > 0, there is a δ and n0(ε) such that

if G is a graph on n vertices containing no member of F , n > n0(ε), and
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e(G) > ex(n,F)−δn2, then G can be obtained from Tn,p by adding or deleting

at most εn2 edges.

The Stability Theorem says that the Turán graphs are not only the unique

extremal graphs avoiding a Kk (for given k), but also any other graphs avoid-

ing a Kk with approximately the same number of edges as Tn,k−1 will have

the same structure as Tn,k−1 with just a few edges changed. In this sense,

the structure of the Turán graphs is ’stable’ - graphs with close to the same

number of edges must have basically the same structure. In some ways,

Turán’s problem is now completely solved in the non-degenerate case; we

know the extremal graphs and even the structure of graphs that are almost

extremal. However, this is in no way the end of the theory; there are still

more structural questions one can ask about the extremal graphs.

One way to further study the structure of the extremal graphs is to take

a common characteristic of the extremal graph and forbid it as well. If the

resulting extremal graphs are quite different from the originals, we know the

new forbidden trait is an important characteristic of the original extremal

graphs. Such problems are called perturbation problems. For instance, two

of the most basic characteristics of the Turán graphs Tn,k are that they have

large independent sets and are k-colorable. We consider both perturbation

problems resulting from limiting each of these characteristics from the ex-

tremal graph.

To perturb the size of the independent sets in our extremal graphs, we

can ask: what is the largest graph on n vertices with no more than f(n)
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independent vertices which does not contain a Kk? Note that if we perturb

the graphs in this way too much, no graph will satisfy our requirements.

That is, Ramsey’s theorem says that graphs with no Kk must contain large

independent sets (for large enough n.) In other words, large independent

sets are an integral part of the extremal graphs avoiding a Kk. Thus for

our question to be interesting, we should make sure f(n) does not grow too

slowly. In this way, we can perhaps quantify the importance of having large

independent sets. Let ex(n,Kk, f) denote the size of the largest graph on n

vertices having no more than f(n) independent vertices and containing no

Kk. Erdős and Sós[36] proved that if f is linear in n, but smaller than n/k

(the number of independent vertices in Tn,k) then ex(n,Kk+1, f) is Ω(n2)

smaller than ex(n,Kk+1). For f(n) = o(n) they proved the following:

Theorem 1.6 (Erdős-Sós[36]). There is a constant, c > 0, such that if

g(n) = c
√
nlog n and g(n) ≤ f(n) = o(n), then

ex(n,Kk+1) ≤ ex(n,K2k+1, g) ≤ ex(n,K2k+1, f) ≤ ex(n,Kk+1) + o(n2)

Note that this theorem gives the exact bound (including the constant

factor) for a wide range of f . It is interesting that the results are different

when the order of the forbidden complete graph is even - see for instance

[32]. Next we consider chromatic perturbation; can we have large graphs

with chromatic number (k + 1) avoiding a family F of forbidden subgraphs

whose subchromatic number is k? The following theorem by Simonovits[92]

answers that question in the negative; if a graph G containing no member
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of F has almost the same number of edges as the Turán graph Tn,k, then it

must also have chromatic number k.

Theorem 1.7 (Simonovits). Let F be a family of graphs with subchromatic

number k whose extremal graph is the Turán graph Tn,k for all n > n0. Then

there is a constant K such that if a graph G on n vertices contains no member

of F and has chromatic number greater than k, then

e(G) < ex(n,F)− (n/k) +K

We consider another perturbation problem related to chromatic pertur-

bation. Erdős[28] asked the following question: How many edges must one

delete to make a triangle free graph bipartite? He conjectured that the

blown up pentagon was the extremal graph; that at most n2/25 edges needed

to be deleted. (The blown up pentagon is a five-partite graph with parts

V1, . . . V5 such that all the vertices are connected between parts Vi and Vj

iff |i − j| ∈ {1, 4} modulo 5; otherwise there are no edges between Vi and

Vj.) In the same paper, Erdős also asked how many pentagons a triangle-free

graph can contain. Again he conjectured that the answer was (n/5)5 with the

extremal graph being a blown up pentagon. The best known upper bound

is approximately 1.03(n/5)5 which was proved by Győri[62]. Motivated by

these questions, Bollobás and Győri asked the converse question: how many

triangles can a pentagon-free graph contain? They proved[10] that such a

graph could contain at most Ω(n3/2) triangles. They also showed that 3-

uniform hypergraphs with no C5 had at most Ω(n3/2) edges. As we will see
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in the next section, this is the order of magnitude of the extremal graph

containing no 4-cycle. These problems are closely related. In fact, Bollobás

and Győri’s constructions are built upon maximal C4-free graphs. We will

return to this question later in Section 1.4.

Having considered some structural properties of extremal graphs, we look

at the inverse problem: which graphs can be extremal graphs? More specif-

ically, which sequences of graphs {Gn} on n vertices can occur as extremal

graphs? Simonovits[91], [92] provides a nice characterization of the forbidden

families for which the Turán graphs are the extremal graphs:

Theorem 1.8. A family F of forbidden graphs with subchromatic number k,

has the Turán graph Tn,k as an extremal graph (for large n) iff there exists

an F ∈ F and an edge e ∈ E(F ) such that χ(F − e) = k. In addition, if

the Turán graphs are extremal for infinitely many values of n, then for all n

large enough, the Turán graph is the only extremal graph.

1.3 Degenerate Problems

Having provided a brief overview of the non-degenerate case, we now turn

our attention to the degenerate problems. Here, in contrast to the non-

degenerate problems, there is very little general theory and indeed many of

the most basic questions are unsolved. There are some important partial

results, but a break through is needed. It is a testament to the difficult

nature of the degenerate problems that the extremal graphs for two of the
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most basic families of bipartite graphs remain unsolved: the even cycles,

and the complete bipartite graphs. On the one hand, we exclude extremely

sparse bipartite graphs, on the other, very dense bipartite graphs. In both

cases, upper bounds are know which are generally believed to be correct (up

to constant factors) but the constructions (or proof of their existence) are

missing.

The simplest two-chromatic graph is a path. The extremal numbers for

graphs not containing a path of a certain length were first found by Erdős

and Gallai[31] in 1959.

Theorem 1.9 (Erdős-Gallai). ex(n, Pk) = 1
2
(k − 1)n, equality holds if k is

a divisor of n.

The extremal graphs in this case, are the disjoint union of complete graphs

on k vertices. This result was improved on later by Faudree and Schelp[40].

In Section 2.2.2 we will make use of the following corollary of the Erdős-Gallai

Theorem.

Lemma 1.10 (Győri-Lemons[66]). Let G be a graph on vertex set V. Let P

be a proper coloring of V. Suppose that there is no path on 2l vertices with

endpoints in different color classes. Then e(G) ≤ 2(l − 1)|V|.

Note that if G is given a discrete coloring (every vertex its own color),

then Lemma 1.10 is almost the same as the Erdős-Gallai Theorem; however

it is off by a factor of two. It is unclear what constant factor in Lemma 1.10

should be; perhaps it is best possible. Interestingly, the situation is very
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different for paths of even length. If G is a two-colored bipartite graph on

n vertices, then it can have as many as n2/4 edges without containing any

paths of even length with endpoints in different color classes! (Clearly in a

bipartite graph, all even length paths start and end in the same part.) Thus

it is unclear what the corresponding statement for even length paths should

be. Certainly the proof of Lemma 1.10 relies heavily on the fact that the

path is of odd length.

Proof of Lemma 1.10. First note that we can find a bipartition of V such that

each color class sits completely within one partition class and so that at least

half the edges are between the two parts, i.e., we can find a bipartite subgraph

of G by deleting at most half the edges such that each color class is completely

within one part. This is clear because if we assign color classes randomly to

either part A or to part B with probability 1/2, then the expected number

of edges between A and B is (1/2)e(G). Thus there must be at least one

bipartition of the color classes with at least half the edges of G between the

two classes. Let G1 = (A,B) be such a bipartite subgraph of G. Now any

path on 2l vertices in G1 has endpoints both in A and in B; the endpoints

are in different color classes. So we can have no such path. The classical

theorem of Erdős and Gallai[31] says that e(G1) ≤ (l − 1)|V|. We conclude

e(G) ≤ 2e(G1) ≤ 2(l − 1)|V| as desired.

Returning to the Erdős-Gallai Theorem, we note that the same bound

holds for the extremal graph containing no star K1,k. This led Erdős and Sós
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to conjecture that for every tree on k + 1 vertices, the extremal graph with

no such tree has at most 1
2
(k − 1)n edges. This was proved for large enough

trees by Ajtai, Komlós, and Szermerédi[2], [3].

Theorem 1.11. There is a constant c such that for all k > c, and for any

tree T on k + 1 vertices,

ex(n, T ) ≤ 1

2
(k − 1)n

The same bound was proved by Sidorenko[90] for all trees on k vertices

with a vertex with at least (k − 2)/2 neighboring leaves.

The relative completeness of the extremal problem for trees is rare. Very

few of the non-degenerate problems have been solved. The rest of this section

is devoted to the two most famous classes of bipartite graphs for which we

do not know the extremal graphs: the even cycles and the complete bipartite

graphs.

As far back as 1938, Erdős[23] found the exact order of magnitude for a

graph with no cycle of length four:

ex(n,C4) = Θ(n3/2)

This result was partially generalized by Kővári, T. Sós, and Turán[75] who

gave an upper bound on the size of complete bipartite graphs. (Note that

C4 = K2,2.)

Theorem 1.12. Suppose r ≤ s. Then ex(n,Kr,s) ≤ 1
2
(s − 1)1/2n2−(1/r) +

O(n).
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The proof is a nice example of the power of double counting, a common

technique in combinatorics, so we present it here.

Proof. Let G be a graph on n vertices with no Kr,s. Count the stars K1,r in

G. Every set of r vertices is in such a star for at most (s−1) different vertices.

Thus there are at most (s−1)
(

n
r

)
such stars. However, if d1, d2, . . . , dn are the

degrees of the vertices in G, then the total number of such stars is
∑n

i=1

(
di

r

)
.

Applying Jensen’s Inequality we get

n

(
2e(G)/n

r

)
≤

n∑
i=1

(
di

r

)
≤ (s− 1)

(
n

r

)

Erdős, Rényi, and Sós[35] and (independently) Brown[12] showed that for

r = s = 2 and infinitely many values of n, Theorem 1.12 is best possible.

Namely, for infinitely many n,

ex(n,C4) =
1

2
n3/2 +O(n) (1.3)

This was generalized by Füredi[57], who showed:

Theorem 1.13. For t ≥ 1, ex(n,K2,t) = 1
2

√
t− 1n3/2 +O(n).

Füredi’s result is quite impressive as there are very few asymptotics known

for degenerate problems. Indeed the correct orders of magnitude of the ex-

tremal graphs are mostly unknown for degenerate problems. Füredi’s con-

structions are closely related to the construction given in Theorem 1.19.
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Theorem 1.12 is also known to give the correct order of magnitude for

r = s = 3 (see Brown[12][13]), but in general, the correct order of magnitude

is unknown. The best lower bound was proved by Erdős and Spencer[37]

using a probabilistic technique:

Theorem 1.14 (Erdős-Spencer).

ex(n,Kt,t) ≥
1

2
n2−2/(t+1)

However, the above examples suggest that the upper bound is indeed the

correct bound. In the case of K3,3, while the correct constant factor is not

known, the order of magnitude of the extremal graphs is known. Due to a

nice construction of Brown[12] [13], we have

Theorem 1.15 (Brown). For infinitely many values of n, ex(n,K3,3) ≥
1
2
n5/3 + o(n5/3).

We now direct attention to a second famously unsolved problem. Bondy

and Simonovits[11] proved in 1974 the famous even cycles theorem.

Theorem 1.16 (Bondy-Simonovits).

ex(n,C2k) < 100kn1+1/k

In fact they showed something a bit stronger:

Theorem 1.17 (Even Cycles Theorem). If G is a graph on n vertices with

at least 100kn1+1/k edges, then G contains a C2t for all t ∈ [k, kn1/k].
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Again, the first general lower bounds were done by Erdős[24] using prob-

abilistic methods.

Theorem 1.18. ex(n,C2k) ≥ Θ(n1+1/(2k)).

Margulis[82], Imrich[69], and Lubotzy, Phillips, and Sarnak[79] have used

results in number theory and eigenvalue methods in graph theory to construct

Ramanujan graphs which have large chromatic number and girth. These

graphs show:

ex(n,C2k) ≥ Θ(n1+3/(4k+21)) (1.4)

The only cases where orders of magnitude are known are when k = 2, 3, 5.

These constructions were done using finite geometry (see Benson[6] and

Erdős-Rényi-Sós[35]) and then simplified by Wenger[99]. New constructions

have also been given by Lazebnik, Ustimenko, and Woldar[77].

Here we give the Erdős-Rényi-Sós-Brown construction for extremal graphs

avoiding a four-cycle. First note that a careful inspection of Theorem 1.12

reveals that to obtain an extremal graph, almost all the vertices should have

degree approximately
√
n and any pair of vertices should have exactly one

neighbor in common. Luckily, structures like this exist ’in nature,’ namely

the lines of a projective plane have this very property.

Theorem 1.19. For infinitely many values of n,

ex(n,C4) ≥
1

2
n3/2 +O(n4/3)

.
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Proof. Fix a prime p and let the vertices of G be the p2 pairs (x, y) of residues

(modulo p). Then connect the vertex (x, y) to the vertex (a, b) iff ax+by = 1.

(If the resulting graph contains loops, delete them; their are at most p2 of

them.) As there are p solutions to the equation ax + by = 1, even after

deleting loops, there are at least 1
2
p2(p − 1) edges in G. It is easy to check

that G has no four-cycle as such an event would imply the existence of two

lines in the projective plane intersecting in two different places.

The construction[12], [13] giving the best lower bound for graphs con-

taining no K3,3 also arises from geometry. Due to the importance of these

constructions, we will reproduce this as well. The idea is to make the infinite

graph whose vertices are the points in Euclidean 3-space where two points

are connected iff they lie at distance one from each other. Now in this graph

there is clearly no K3,3; the three points of one class cannot be collinear as

no point is equidistant from three collinear points. Thus the three must lie

on a circle. But in 3-space, at most two points can be equidistant from three

points on a circle.

Proof of Theorem 1.15. Let p be a prime of the form k − 1. Let G be the

graph whose vertices are the triples (x, y, z) of residue classes (modulo p).

Two vertices (x, y, z) and (a, b, c) are adjacent iff

(a− x)2 + (b− y)2 + (c− z)2 = 1 (1.5)

Now a theorem of Lesbegue implies that for fixed (a, b, c), Equation 1.5 has

p(p− 1) solutions. Thus G has 1
2
n5/3 + o(n5/3) edges and G has no K3,3.
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We remark that the proof that G has no K3,3, while outlined above, is

not complete - the language of analytical geometry is needed to formalize the

proof. It is interesting that for p = 4k + 1, the sphere defined by (a− x)2 +

(b− y)2 + (c− z)2 = 1 may have three collinear points which is why we must

require p = 4k − 1.

Another famously open problem (probably due to Erdős) is:

Conjecture 1.20. ex(n, {C4, C6, . . . , C2k}) = Ω(ex(n,C2k))

Of course, for the first few cases, this is known to be true. Indeed,

Győri[64] has proved that if G is any C6-free graph, then one can delete

at most half the edges of G to make it C4-free as well.

We close this section with a conjecture by Simonovits and Erdős[93]. It is

somewhat of an inverse problem: which values are realized as the correct or-

der of magnitude of some extremal graph? They conjecture that all rationals

between 1 and 2 are realizable:

Conjecture 1.21. Let 1 ≤ r ≤ 2 be a rational. Then there exists a graph G

such that ex(n,G) = Θ(nr).

1.4 Hypergraphs

We now move on to a natural generalization and extension of extremal graph

theory; extremal hypergraph theory. Almost all of the questions we posed

above for graphs can also be asked for hypergraphs. Indeed, for each specific

type of extremal graph problem, there are usually several possible different
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analog hypergraph problems. In general the hypergraph generalizations of

graph problems are much more complex and difficult than the original prob-

lems. Thus, despite a plenitude of problems, it is even a challenge to find

problems which are solvable. For instance, a natural analog of Turán’s The-

orem to hypergraphs is completely unsolved - even the simplest cases of this

analog question are unknown.

Let Kk(l) be the k-uniform hypergraph on l vertices with every possible

edge. This is a natural extension of complete graphs to hypergraphs; note

that K2(l) is just the complete graph on l vertices. Recall that the Turán

density π(H) of a k-uniform hypergraph H is limn→∞ exk(n,H)/
(

n
k

)
where

exk(n,H) is the size of the largest k-uniform hypergraph on n vertices not

containing H as a subgraph. Letting πk(l) = π(Kk(l)), it is easy to check

that this limit exists for all k and l, but still, no value of π is known for

l > k ≥ 3. Turán himself, in his seminal paper[97] asked how large a 3-

uniform hypergraph could be if it does not contain a K3(4). He gave a

construction showing π(K3(4)) ≥ 5
9

and conjectured it was best possible, but

to this day, the question remains open.

That is not due to lack of exposure: the problem has been famously

open ever since Turán’s original paper appeared with his conjecture and

there are some notable partial results. In the case mentioned above with

k = 3 and l = 4, other non-isomorphic constructions have been found, all of

which have the same size as Turán’s original construction. Brown[13] found

six, Todorov[96] eight, and Kostochka[73] 2(n/3)−2 different non-isomorphic



C
E

U
eT

D
C

ol
le

ct
io

n

1 INTRODUCTION 21

families. If the conjecture is true, these different constructions give a clue as

to why the problem is so hard; there is no common structure to the extremal

hypergraphs. The best upper bound for π(K3(4)) is (3 +
√

17)/12 < 0.593,

due to Chung and Lu[21]. This is an improvement on work by Giraud[58],

who gave (−1+
√

21)/6 as an upper bound. Even earlier, de Caen[18] proved

π(K3(4)) ≤ 0.6213 an improvement on the result of Katona, Nemetz, and

Simonovits[72] who showed π(K3(4)) ≤ 9/14.

Due to the seemingly intractable nature of the Turán problem for com-

plete k-graphs, Katona[70] suggested that a generalization of Mantel’s theo-

rem to hypergraphs should be studied. The problem is the following: Find

the maximum number of edges in a k-uniform hypergraph on n vertices such

that the symmetric difference of any two edges is not contained in a third

edge. We write Dk for the family of k-uniform hypergraphs composed of

three edges {A,B,C} such that A M B = (A\B) ∪ (B\A) ⊆ C. Bollobás[9]

conjectured the following:

Conjecture 1.22. exk(n,Dk) =
⌊

n
k

⌋ ⌊
n+1

k

⌋
· · ·

⌊
n+k−1

k

⌋
Furthermore, he conjectured that the complete, equipartite k-uniform

hypergraph is the only extremal hypergraph. Frankl and Füredi[45] proved

Conjecture 1.22 for n ≤ 2k, and Bollobás[9] solved the case k = 3. In

1987, Sidorenko[89] proved the case k = 4. Here we present Sidorenko’s

proof for the cases k = 3, 4. First we note the following simpler problem

posed by de Caen[17]. What is the largest k-uniform family which does not
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contain 3 members A,B, and C such that |A ∩B| = k − 1 and A M B ⊆ C.

Letting Ai = {{1, 2, . . . , k}, {1, 2, . . . , k−1, k+1}, {i, i+1, . . . , i+k−1}} and

Sk = {A2,A3, . . . ,Ak} we can rewrite de Caen’s problem as: find exk(n,Sk).

Theorem 1.23 (Sidorenko). For k = 3 and 4, ex(n,Sk) =
⌊

n
k

⌋ ⌊
n+1

k

⌋
· · ·

⌊
n+k−1

k

⌋
We remark that this clearly implies Conjecture 1.22 for k = 3, 4 as

⌊n
k

⌋⌊n+ 1

k

⌋
· · ·

⌊n+ k − 1

k

⌋
≤ exk(n,Dk) ≤ exk(n,Sk)

Sidorenko’s proof utilizes the Lagrange function of a hypergraph (first used by

Motzkin and Strauss[85] to give a new proof of Turán’s theorem for graphs,

and by Frankl and Rödl[54][55] in this case of hypergraphs.) For H a k-

uniform hypergraph on n vertices, we associate the polynomial

f(H, x1, x2, . . . , xn) =
∑
H∈H

∏
i∈H

xi

Then the Lagrange function is defined as

λ(H) = max{f(H,x) :
∑

i

xi = 1, xi ≥ 0}

Here we use x to denote the vector (x1, x2, . . . , xn). The support of x is

Supp(x)={i : xi > 0}. We say that H is a 2-cover if every pair of vertices is

contained in an edge of H. We call H(j) = {H\{j} : j ∈ H ∈ H} the link of

vertex j. Also, for S ⊆ V(H), we let H|S represent the hypergraph defined

on the vertices S with edge set {h ∈ E(H) : h ⊆ S}. Frankl and Rödl[54]

show that if x is chosen to achieve the maximum (f(H,x) = λ(H)) and have
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the smallest support, then the induced hypergraph H|Supp(x) is a 2-cover. In

this case they also show,

f(H(j),x−j) = kλ(H) (1.6)

where x−j = (x1, . . . , xj−1, xj+1, . . . , xn). We are now ready to present Sidorenko’s

proof.

Proof of Theorem 1.23. Let H be an Sk-free family. Let x be chosen so that

f(H,x) is maximal and such that Supp(x) is minimal. For i, j ∈ Supp(x),

we must have the links H(i) and H(j) disjoint. Otherwise there are two

edges H1, H2 ∈ H such that |H1 ∩ H2| = k − 1 and H1 M H2 = {i, j}.

But i, j ∈ Supp(x) which implies the existence of an edge H3 ∈ H|Supp(x)

containing both i and j. But then H is not Sk-free, so this cannot happen.

Thus the polynomials f(H(j),x−j) have no common terms and therefore

∑
j∈Supp(x)

f(H(j),x−j) ≤ σk−1(Supp(x))

where σk−1(Supp(x)) is the elementary symmetric polynomial of rank k − 1

with variables from Supp(x). Letting m = |Supp(x)|, and as xi ≥ 0, we can

bound the right hand side by σk−1(
1
m
, . . . , 1

m
). Using Equation 1.6, we get

kmλ(H) ≤
(

m
k−1

)
mk−1

(1.7)

For k = 3, the right hand side is clearly at most km/kk for m ≥ k. The

same is true for k = 4 and m ≥ k if m 6= 5. However, m cannot be 5 as then

either ||H|Supp(x)|| = 1 in which case it is not a 2-cover, or ||H|Supp(x)|| ≥ 2
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and ∀H,H ′ ∈ H|Supp(x), |H ∩H ′| = 3 = k−1 implying that H is not Sk-free,

a contradiction.

Conjecture 1.22 remains open for k ≥ 5. When k = 3, there are two non-

isomorphic forbidden systems: H1 = {123, 124, 234} andH2 = {123, 124, 345}.

Given Bollobás’ result, the next step has been to find the Turán density of

the respective extremal systems. Frankl and Füredi[44] proved π(H2) = 2/9:

Theorem 1.24 (Frankl-Füredi). ex3(n,H2) =
⌊

n
3

⌋ ⌊
n+1

3

⌋ ⌊
n+2

3

⌋
for all n ≥

3000.

Frankl and Füredi[47] also gave a construction for an extremal 3-graph

containing no H1 which has Turán density 2/7. de Caen[16] proved that 1/3

is an upper bound for π(H1). This was improved upon by Mubayi[83] to

1
3
− (4.5305× 10−6) and by Talbot[95] to .32975 < 1

3
− 1

280
. This is currently

the best upper bound for π(H1).

There are some other hypergraphs besidesH2 for which the Turán density

is known. The most notable is the Fano plane. In 1976, V. T. Sós[94]

conjectured that the Turán density of the Fano plane was 3
4
. The conjecture

remained open for almost thirty years until de Caen and Fürei[19] proved

its veracity. Their simple proof inspired more work in the Turán densities of

various simple 3-uniform hypergraphs. (See for instance [84].)

The complimentary question to the Turán density of hypergraphs is the

determination of the Turán numbers T (n, k, l). This is the size of the mini-

mum k-uniform hypergraph such that every l-set is contained in at least one
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edge. Note that T (n, k, l) =
(

n
k

)
− exk(n,Kk(l)). This formulation of the

problem has perhaps been studied even more than the original; in this form

the question is very similar to packing questions. Another related question

is the determination of fk(n, v, t) = exk(n,Lk(v, t)) where Lk(v, t) is the col-

lection of all k-uniform hypergraphs on v vertices with t edges. Ruzsa and

Szemerédi[88] showed that fk(n, 6, 3) has a non-polynomial order of magni-

tude. Specifically, they showed that fk(n, 6, 3) = o(n2) and for all ε > 0,

lim fk(n, 6, 3)/n2−ε = ∞. This is remarkable as it seems likely that in the

case of graphs, all the extremal graphs have polynomial orders of magnitude.

Frankl and Füredi [48] found a single hypergraph whose extremal hypergraph

also has a non-polynomial order of magnitude. These results show how much

more complicated Turán’s problem is for hypergraphs as compared to graphs.

(Though as we have seen, the degenerate problem in extremal graph theory

is already quite hard!)
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2 Hypergraphs Avoiding Cycles of Given Length

Having looked at extensions of complete graphs in the setting of hypergraphs,

we consider the problem of finding extremal hypergraphs avoiding cycles of

a given length. It is not surprising that there are many possible definitions

of a cycle in a hypergraph. In fact, we have already discussed one possible

generalization of a triangle in hypergraphs due to Katona: namely a triple of

edges such that the symmetric difference of two of them is contained within

the third. Here we note another important generalization (following the

approach of Berge[7][8]). A k-cycle in a hypergraph H is a sequence of k

distinct vertices v0, . . . , vk−1 and distinct edges H0, . . . , Hk−1 such that for

all 0 ≤ i ≤ k − 1, vi, vi+1 ⊂ ei (here we consider the subscripts modulo k).

Hypergraphs avoiding such cycles are the focus of this Section. Of course

there are even other types of cycles in hypergraphs that have been studied,

but we do not have space here to cover all such problems.

2.1 The Berge Approach

We now consider a hybrid approach to hypergraph Turán problems. In con-

trast to the problems outlined in Section 1.4, here we consider extremal hy-

pergraph problems that have a distinctly graph theoretic flavor. This point

of departure is closely associated with Berge[7][8], who grafted graph the-

ory problems and methods into the theory of hypergraphs. The difference

between this approach and previously described approaches lies in how one
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generalizes the basic structures of graphs for hypergraphs. For instance, as

we have already seen, there are several possible generalizations of complete

graphs in a hypergraph setting. Berge’s approach to the question of such gen-

eralization problems is the following. Suppose we want to find an appropriate

generalization of a graph G to a hypergraph. The information contained in

the graph G can be expressed in an adjacency matrix, or even in an incidence

matrix - a graph is an incidence structure of points and lines where each line

is incident with exactly two points. Now if M(G) is the incidence matrix of

the graph G, the Berge hypergraph generalization of G is any hypergraph H

with incidence matrix M(H) where M(G)i,j = 1 ⇒ M(H)i,j = 1. In other

words, the same incidences occur in H (or possibly more) as in G.

Note that the definition above of a k-cycle in a hypergraph follows this

approach exactly; all that matters is that the correct incidents occur.

We will consider the Turán problem on hypergraphs for such cycles. How-

ever as we have seen, the realm of hypergraphs is quite large and it is impor-

tant to keep in mind some differences between different hypergraph settings.

For instance, one can ask how large a r-uniform hypergraph can be containing

no cycle of length k or how large a non-uniform hypergraph can be containing

no cycle of length k. These questions can be quite different from each other,

namely, in the non-uniform case it is often very hard to prove upper bounds

with good constant coefficients. In the uniform setting it is somewhat easier

to prove tighter theorems with sharp results. Another possible variation is

to allow multiple edges. In some cases this is impractical; one could have as
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many copies of a give 3-edge as one wants and still avoid a cycle of length k

for any fixed k ≥ 4. However, if the size of the edges is larger than the size

of the forbidden cycle, it makes sense to find the largest multi-hypergraphs

avoiding the given cycle; in this case we do.

One of the most striking aspects of this Berge-approach to Turán prob-

lems in hypergraphs is how strongly connected the problems are to the analo-

gous graph theoretic questions. However, there are some notable differences.

When considering forbidden cycles in the theory of graphs, the parity of the

cycle is of utmost importance; there is a huge difference between excluding

a 2k cycle and excluding a 2k + 1 cycle from a graph (forbidding the first is

a degenerate problem, while forbidding the second is a non-degenerate prob-

lem.) However, when one considers this problem for hypergraphs with edges

of size at least 3, this difference between odd and even cycles is erased. This

is true for both uniform and non-uniform hypergraphs.

The following two theorems nicely demonstrate both the similarities to

the analogous graph theory problems and the differences. The first was

proved by Kostochka and Verstraëte[74].

Theorem 2.1. Let H be a hypergraph on n ≥ 3 vertices whose edges are all

of size at least k ≥ 2. If H contains no even cycles then
∑

h∈E(H)(|h| − 1) ≤

b k
k−1

(n− 1)c − 1

This theorem clearly shows the connections between graphs and hyper-

graphs as it gives very similar bounds for both graphs and hypergraphs. On
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the other hand, in the case of odd cycles, Gyárfás, Jacobson, Kézdy, and

Lehel[60] proved the following.

Theorem 2.2. Let H be a hypergraph on n vertices whose edges are all of

size at least k ≥ 3. If H contains no odd cycle then
∑

h∈E(H)(|h|−1) ≤ 2n−2.

Of course, it is important here that no 2-edges are allowed here; in a

graph one can have n2/4 edges without having an odd cycle. As we shall see,

this is not an unusual result; hypergraphs with forbidden odd or even cycles

behave similarly to each other as long as all the edges are of size at least 3.

2.2 Uniform Hypergraphs

We will now consider extremal hypergraphs with just one forbidden cycle.

The first such result was found by Győri[64] who, motivated by a problem in

number theory, found the maximal number of edges in an unbalanced C6-free

bipartite graph. Later he realized that this question can be reformulated in

the language of hypergraphs. (It is clear that a C6-free bipartite graph can be

thought of as the incidence graph of a C3-free (multi-)hypergraph.) Győri[65]

was able to improve his previous bounds by looking at the hypergraph case.

Indeed, he proved

Theorem 2.3 (Győri). Let H be a (multi-)hypergraph on n vertices contain-

ing no triangles. Then for large enough n,∑
H∈H

(|H| − 2) ≤ n2/8
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His result is best possible. Here we prove a special case of Theorem 2.3

(due to Győri[65] and independently, Frankl, Füredi and Simonyi[[50]]).

Theorem 2.4. Let H be a 3-uniform hypergraph on n vertices. Then

e(H) =
∑
H∈H

(|H| − 2) ≤ n2/8

Proof. First note that for any three distinct edges, H1, H2, H3 in H with

|H1 ∩H2| = |H1 ∩H3| = 2, we must have H1 ∩H2 = H1 ∩H3. Otherwise the

three edges constitute a triangle. Thus for a given hyperedge H = {x, y, z}

we may assume without loss of generality that for all H
′ ∈ H distinct from

H, we have that {x, y}, {x, z} 6⊂ H
′
. Then we can replace H with two graph

edges, namely x, y and x, z. Doing this for every edge, we produce a graph

G on the vertices of H. Note that in this graph, there are no multiple edges.

It is also easy to see that G is triangle-free. But then Mantel’s theorem says

that e(G) ≤ n2/4, so we conclude that e(H) ≤ n2/8 as desired.

Motivated by this result and the conjecture of Erdős mentioned in Section

1.2, Győri and Bollobás[10] asked the following two questions.

1) How many triangles can a C5-free graph have?

2) How many edges can a 3-uniform C5-free hypergraph have?

As mentioned in Section 1.2, they proved[10] that the answer to both

these questions is Θ(n3/2) = Θ(ex2(n,C4)).

Theorem 2.5 ([10]). Let H be a 3-uniform hypergraph on n vertices con-

taining no 5-cycle. Then e(H) ≤
√

2n3/2 + 4.5n
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Theorem 2.6 ([10]). If G is a graph on n vertices containing no C5 then the

number of triangles in G is at most (
√

2/4 + 1)n3/2 + o(n3/2).

It is not an accident that both these answers are of the same order of mag-

nitude as that of C4-free graphs; the constructions giving the lower bounds

are built upon C4-free graphs. We reproduce those here:

Construction 2.7. Let G0 be a C4-free bipartite graph with classes of size

n/3 and approximately (n/3)3/2 edges. Double each vertex in one of the

classes and add an edge joining the old and new copy. Call this new graph

G. Clearly G has n vertices and 2(n/3)3/2 + n/3 edges. The number of

triangles in G is equal to the number of edges in G0. Also, it is easy to check

that G has no 5-cycles.

Construction 2.8. Let G0 be a C4-free bipartite graph with classes of size

n/3. Again, double each vertex in one of the classes to turn each edge

into a triple. Call the resulting hypergraph H. Now H has n vertices, and

e(H) = e(G) = (n/3)3/2 + o(n3/2) edges. It is easy to check that here as well,

there is no 5-cycle in H.

To emphasize the close relation between even and odd cycles (in hyper-

graphs) we note that Lazebnik and Verstraëte[76] showed that the extremal

r-uniform hypergraphs of girth 5 have also order of magnitude n3/2 (here as

always n is the number of vertices.)

Theorem 2.9 (Lazebnik-Verstraëte). Let H be a 3-uniform hypergraph on

n vertices with girth at least 5. Then e(H) ≤ 1
6
n
√
n− 3

4
+ 1

12
n
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Theorem 2.9 is sharp when k = 3 for infinitely many values of n while

Theorem 2.5 is sharp up to a constant factor. Thus extremal 3-uniform

hypergraphs with girth 5 have the same order of magnitude as extremal

3-uniform hypergraphs containing no cycle of length 5.

Of course, one can ask questions (1) and (2) above for other odd cycles

as well. The general cases for question (1) were solved by Győri and Li[67]

who proved that

Theorem 2.10 (Győri-Li). If G is a C2k+1-free graph, then the number of

triangles in G is at most

(2k − 2)(16k − 8)

3
ex(n,C2k)

Remark 2.11. This theorem is essentially sharp (i.e. up to the constant

factor) if, as conjectured the functions ex(n,C4, c6, . . . , C2k) and ex(C2k) are

essentially the same.

On the other hand, the generalization of question (2) was solved by Győri

and Lemons[66] who proved

Theorem 2.12 (Győri-Lemons). Let H be a 3-uniform hypergraph contain-

ing no cycle of length 2k + 1. Then e(G) < 4k4n(k+1)/k + 15k4n+ 10k2n.

This will be proved in Section 2.2.2 and in Section 2.2.1 we will prove the

following related result:

Theorem 2.13 (Győri-Lemons). Let H be a 3-uniform hypergraph contain-

ing no cycle of length 2k. Then e(H) = O(n1+1/k).



C
E

U
eT

D
C

ol
le

ct
io

n

2 HYPERGRAPHS AVOIDING CYCLES OF GIVEN LENGTH 33

In fact we will show that the same order of magnitude is an upper bound

in Theorems and for all l-uniform hypergraphs if l ≥ 3. We note that both

theorems give the correct orders of magnitude for the extremal hypergraphs

if the following famous conjecture is true for graphs:

ex(n,C4, C6, . . . , C2k) = Θ(n(k+1)/k)

(This is known to be true for k = 2, 3, 5.) This again shows how closely

connected the graph and hypergraph Turán problems are for forbidden cycles.

If we take an extremal bipartite graph with girth 2k+2, then from this graph,

we can easily build a 3-uniform hypergraph with no cycles of length 2k or

2k + 1 as the following construction shows.

Construction 2.14. Let G be a an extremal bipartite graph with girth

2k+ 2 and each part containing n vertices. Take 2k− 2 copies of each of the

vertices in one part; in this way we now have 2kn vertices. Now from each

edge e = {x, y} of G we produce
(
2k−1

2

)
3-edges. Suppose x is the vertex of

e which we copied 2k − 2 times. Then we take all the
(
2k−1

2

)
pairs made up

from x and its copies. To each of these pairs we add the vertex y; in this

way we obtain a 3-uniform hypergraph H. (This will produce a C2k+1-free

hypergraph. If we want to produce a C2k-free hypergraph, we simply take

one less copy of the each of the copied vertices.)

If C is a cycle in H, then we call C
′
in G the trace of C, if C

′
is obtained

by identifying each duplicated pair of H. Note that C
′
will have length no

more than that of C. It is clear that H can have no cycle of length 2k+ 1 as
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such a cycle would trace out a cycle of length l, 1 < l ≤ 2k in the graph G,

a contradiction.

Construction 2.14 can be modified by taking all (m− 1)-sets from within

the copied vertices (instead of the pairs) together with the unduplicated

vertex to obtain 2k+1-free (or 2k-free)m-uniform hypergraphs from bipartite

graphs of girth 2k + 2 (as long as 2k > m.) Thus our results can be stated

in the following manner:

Theorem 2.15.

O(n1+1/k) ≥ exm(n,C2k) ≥ Ω(ex2(n,C4, C6, . . . , C2k))

O(n1+1/k) ≥ exm(n,C2k+1) ≥ Ω(ex2(n,C4, C6, . . . , C2k))

2.2.1 Forbidden Even Cycles

While our results are similar for even and odd cycles, the proof techniques

are quite different. The difference stems from the difference in graph theory

between graphs avoiding a given even or a given odd cycle. That is, our

bound concerning l-uniform hypergraphs containing no C2k is built up from

the Bondy-Simonovits Theorem. The following lemma is our main tool in

this approach.

Lemma 2.16 (Reduction Lemma). Let 2 ≤ l < m and let H be a m-uniform

hypergraph with no cycle of length k. Define the l-uniform hypergraph H1 in

the following way. Order the edges of H and going through the edges one by

one, pick an l-set from each to be in H1, but at each point, pick this l-set
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to have as small multiplicity as possible. Obviously the hypergraph H1 will

also have no k-cycle and each of its hyperedges will have multiplicity no more

than
∑k−1

j=1

(
j−l
m−l

)
+ k + 1.

Remark 2.17. Note that if k ≤ m then the lemma trivially holds; if a hyper-

edge of H1 has multiplicity more than k + 1 then there is an hyperedge h of

H such that every l-subset of h is contained within more than k edges and

we can clearly find a k-cycle within h, a contradiction.

The first statement of Theorem 2.15 immediately follows as a corollary

of this result when l = 2 and the Bondy-Simonovits Theorem[11]. However,

the constant factor produced in this way is far from sharp. (And of course

Theorem 2.2) is a special case of Theorem 2.15. Note that we can not use the

same technique to prove the second statement of Theorem 2.15 as extremal

graphs containing no odd cycle can have Θ(n2) edges. Instead, we will prove

that 3-uniform hypergraphs with no C2k+1 have at most O(n1+1/k) edges. We

will then use this Reduction Lemma to extend the result to any l-uniform hy-

pergraph containing no C2k+1 (for l ≥ 3.) Due to these consequences, Lemma

2.16 is quite an important result; yet at the same time it has a simple proof.

Proof of Lemma 2.16. We suppose that the cycle is even; the proof for odd

cycles is exactly the same and is thus omitted. Suppose the lemma is not

true. Let H be an m-uniform hypergraph containing no C2k and let H1 be a

l-uniform hypergraph defined as in the statement of the lemma and suppose

H1 has an edge, e1, of multiplicity greater than M =
∑2k−1

j=1

(
j−l
m−l

)
+ 2k + 1.
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We will find a sequence of hyperedges h1, . . . , h2k in H forming a 2k-cycle.

To distinguish between the hypergraphs H and H1, we will refer to the edges

of the former as hyperedges and those of the later simply as edges. Similarly

we will use the variables hi for hyperedges in H and the variables ei for edges

in H1. For h ∈ E(H), we will refer to the l-set chosen in the construction of

H1 to represent h as e(h).

Consider the last hyperedge which contributed to the multiplicity of e1 in

the construction of H1. Call this hyperedge h1. (Thus for instance, e(h1) =

e1.) By definition, each l-set contained within h1 must be an edge in H1

and indeed, must have multiplicity at least M . Otherwise when we picked

e(h1) from h1 to be in the graph, we would have chosen one of the other

less-represented l-sets in h1. Let the vertices x0, x1 ∈ e1 and pick e2 ⊂ h1

with x1 ∈ e2 6= e1. Let y1 ∈ e2\{x1}.

As e2 has multiplicity at least M in H1, we can find h2 ∈ E(H) with

e(h2) a multiple of e2 such that every l-set contained in h2 is an edge in H1

with multiplicity at least M − 1. Note that h1 does not contribute to the

multiplicity of e2 as e(h1) is a multiple of e1.

Claim 2.18. Let i ≤ 2k − 1 be odd. Suppose we can find distinct vertices

x1, x2 . . . , x(i−1)/2 and y1, y2, . . . , y(i−1)/2 and distinct edges e1, e2, . . . , ei−1 ∈

E(H1) and h1, h2, . . . , hi−1 ∈ E(H) such that the following conditions hold:

• ∀j ≤ i−1
2
, xj ∈ (e2j−1 ∩ e2j) and yj ∈ (e2j ∩ e2j+1)

• ∀j < i− 1, ej ∪ ej+1 ⊆ hj
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• hi−1 6⊆ (∪j≤(i−1)/2{xj, yj})

• each l-set in hi−1 has multiplicity at least M −
∑i−1

j=1

(
j−l
m−l

)
− (i− 2)

Then we can find an edge of H1, ei ⊂ hi−1 and a vertex x(i+1)/2 ∈ ei such

that x(i+1)/2 is distinct from the vertices {xj, yj}(i−1)/2
j=1 . Moreover, there ex-

ists a hyperedge hi of H, containing ei such that hi is not contained in

{xj, yj}(i−1)/2
j=1 ∪ {x(i+1)/2} and such that each l-set of hi occurs with mul-

tiplicity at least M −
∑i

j=1

(
j−l
m−l

)
− (i− 1).

Claim 2.19. Let i ≤ 2k be even. Suppose we can find distinct vertices

x1, x2 . . . , xi/2 and y1, y2, . . . , y(i/2)−1 and distinct edges e1, e2, . . . , ei−1 ∈ E(H1)

and h1, h2, . . . , hi−1 ∈ E(H) such that the following conditions hold:

• ∀j ≤ i
2
, xj ∈ (e2j−1 ∩ e2j) and ∀j ≤ i

2
− 1, yj ∈ (e2j ∩ e2j+1)

• ∀j < i− 1, ej ∪ ej+1 ⊆ hj

• hi−1 6⊆ (∪j≤(i/2)−1{xj, yj} ∪ {xi/2})

• each l-set in hi−1 has multiplicity at least M −
∑i−1

j=1

(
j−l
m−l

)
− (i− 2)

Then we can find an edge of H1, ei ⊂ hi−1 and a vertex yi/2 ∈ ei such

that yi/2 is distinct from the vertices {xj, yj}(i/2)−1
j=1 and xi/2. Moreover, there

exists a hyperedge hi of H, containing ei such that hi is not contained in

{xj, yj}i/2
j=1 and such that each l-set of hi occurs with multiplicity at least

M −
∑i

j=1

(
j−l
m−l

)
− (i− 1).
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Remark 2.20. The proofs of these statements are almost exactly the same.

The only difference lies in the parity of i; in one case an x(i−1)/2 is produced,

in the other a yi/2 is produced. To avoid unnecessary repetition, we will only

prove Claim 2.18.

Proof of Claim 2.18. We find x(i+1)/2, ei and hi in the following way. By the

third condition, we can pick a new edge ei ⊂ hi−1 such that there exists a

vertex

x i+1
2
∈ ei\

( ⋃
j≤ i−1

2

{xj, yj}
)

By the fourth condition, ei has multiplicity at least M −
∑i−1

j=1

(
j−l
m−l

)
− (i−2)

in H1. Let E∗i = {h ∈ E(H) : e(h) is a multiple of ei}. We want to pick

h ∈ E∗i such that h is not contained within the xj and yj. As there are i such

points, there are at most
(

i−l
m−l

)
such forbidden edges in E∗i . Thus, letting

Ei = {h ∈ E∗i : h 6⊆ ∪{xj, yj}}, we have

|Ei| ≥ |E∗i | −
(
i− l

m− l

)
− (i− 2) ≥M −

i∑
j=1

(
j − l

m− l

)
− (i− 2)

Then picking hi to be the last hyperedge (in our original ordering of the

edges) of Ei, we must have that every l-set in hi has multiplicity in H1 at

least M −
∑i

j=1

(
j−l
m−l

)
− (i − 1). In this way we have picked xi, ei, and hi

such that the above five conditions still hold.

Thus by induction on i and using Claims 2.18 and 2.19, we can find 2k

vertices x1, . . . , xk and y1 . . . , yk such that there are 2k edges ei in H1 and

2k hyperedges in H such that for 1 ≤ j ≤ k we have: xj ∈ e2j−1 ∩ e2j and
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yj ∈ e2j ∩ e2j+1. We also have for 2 ≤ j ≤ 2k that ej ⊂ hj−1 ∩ hj. Thus we

conclude that for 1 ≤ j ≤ k − 1, we have xj, xj+1 ∈ h2j and yj, yj+1 ∈ h2j+1.

Also we clearly have xk, yk ∈ e2k ⊂ h2k and x1, y1 ∈ e1 ⊂ h1. Thus we have

produced the following 2k-cycle in H: x1, . . . , xk, yk, . . . , y1 (in the odd case:

x1, . . . , xk, xk+1, y1, . . . , yk); we have arrived at our contradiction.

We state the important special case when m = 3 and l = 2 of Lemma

2.16 as a corollary as we will use it several times in the proof of Theorem 2.2.

Corollary 2.21. Let H be a 3-uniform hypergraph with no cycle of length

k. Define the 2-graph G in the following way. Order the edges of H and

going through the edges one by one, pick a 2-set from each to be in G, but at

each point, pick this 2-set to have as small multiplicity as possible. Then the

graph G will also have no k-cycle and each of its edges will have multiplicity

no more than
(
2k+1

2

)
+ 1.

2.2.2 Forbidden Odd Cycles

We now turn our attention to bounding the size of a 3-uniform hypergraph

containing no C2k+1; that is we will prove Theorem 2.2. This, together with

the Reduction Lemma will imply the verity of the second part of Theorem

2.15. The general proof technique which we describe here will be used again

to bound the size of non-uniform hypergraphs avoiding a given cycle (in

Section 2.3).

Suppose H is a hypergraph containing no cycle of length 2k+1. The idea
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is to pick a vertex x ∈ V(H) and prove that each off the first k successive

neighborhoods of x must be approximately the average degree in H times the

size of the previous neighborhood. If it is also true that H contains no cycles

of length less then 2k, then each of these neighborhoods will be disjoint. As

the kth neighborhood can be no larger then O(n), we can argue that the

average degree in H should be no more than O(n1/k).

However, we can not assume that these successive neighborhoods are dis-

tinct; thus while the we utilize the same type of argument, the technicalities

are a bit more complicated. Namely, we will define disjoint subsets of V(H)

which will act as successive neighborhoods of the fixed vertex x and which

will still be approximately as large as the real neighborhoods.

Definition 2.22. An approximate k-neighborhood structure of the hyper-

graph H around the vertex x ∈ V(H) consists of k + 1 pairwise disjoint

sets S0, . . . , Sk ⊂ V(H), a subset ES ⊂ E(H) and maps π : Si → Si−1

and φ : ∪i>0Si → ES such that S0 = {x}, φ is a bijection and for each

v ∈ Si, {v, π(v)} ⊆ φ(v). An approximate k-neighborhood structure is

greedily defined if for each i > 0, there is no edge e ∈ E(H)\φ(∪i
j=1Sj) with

e ∩ Si−1 6= ∅ and e 6⊆ (Si−1 ∪ Si).

It is clear that greedily defined approximate neighborhood structures al-

ways exist and can easily be found as the following algorithm shows. Pick

x ∈ V(H) and set S0 = {x} and ES = ∅. Suppose we have defined already

Si−1. Then Si is defined in the following way.
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(*) If there is an edge h ∈ E(H)\ES with h∩Si−1 6= ∅ and h 6⊂ (Si−1∪Si),

then pick u ∈ h\(∪j≤i) and v ∈ h ∩ Si−1. Add u to Si and h to ES and set

φ(u) = h and π(u) = v.

Repeat (*) until there are no more such edges. Then we have defined Si.

Before we proceed with the proof of Theorem 2.2, we state two important

lemmas which we will use. The first is a type of complimentary result to the

generalization of the Erdős-Gallai Theorem (see Theorem 1.10.) The second

is a result about approximate neighborhood structures. We state and prove

both lemmas before the proof of the theorem.

Lemma 2.23. Let H be a C2k+1-free 3-uniform hypergraph with approximate

neighborhood structure (Si, ES, π, φ) around a fixed vertex x. Then if i ≤ k

and G is a graph on Si such that ∃E∗ ⊂ E(H)\ES and a bijection ψ : E(G) →

E∗ such that ∀e ∈ E(G), e ⊂ ψ(e). Then ignoring multiplicities (in G),

e(G) < 2|Si|
(

k
2

)
.

Proof. We partition the edges of G into sets E1, E2, . . . , Ei, where e =

{v1, v2} ∈ Ej if j is the smallest integer such that πj(v1) = πj(v2) (here

and later, πj is the jth power of the map π.) Note that for all v ∈ Si,

πi(v) = x so there always exists such an integer. Now if u, v ∈ V(G) are in

the same connected component of G|Ej
then clearly πj(u) = πj(v). We claim

there can be no path in G|Ej
of length 2(k − j) + 1 with endpoints u and

v where πj−1(u) 6= πj−1(v). Otherwise, there exists a path in H|E(H)\ES
of

length 2(k− j)+1 between u and v. But, since j is the smallest integer with
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πj(u) = πj(v), there is a path of length 2j in H|ES
between u and v. These

two paths in H are vertex disjoint (except for the common vertices u and v)

since the first is contained within ∪l<iSl and the second within Si. Thus the

two paths form a 2k + 1 cycle in H, a contradiction. Applying Lemma 1.10,

we find that, ignoring multiplicities, e(G|Ej
) ≤ 2(k − j)|Si|. As this is true

for any j, 1 ≤ j ≤ k, we conclude:

e(G) ≤ 2|Si|
i∑

j=1

(k − j)

= 2|Si|[
(
k

2

)
−

(
k − i

2

)
]

< 2|Si|
(
k

2

) (2.1)

Lemma 2.24. Let G be a bipartite graph with parts A and B. Fix i and k

with 0 < i < k. Suppose there are partitions Rj, 0 ≤ j ≤ i of A with the

following properties:

(1) For each j < i, Rj+1 is a refinement of Rj. R0 is the trivial partition

(there is only one partition class) and Ri is the discrete partition.

(2) For 0 ≤ l ≤ i − 1, there are no paths of length 2(k − i + l) with

endpoints u, v ∈ A such that u, v are in the same partition class of Rl but

are in different classes of Rl+1.

Then the average degree in G is less than 2k2.

Proof. Suppose not. Then we can delete vertices of G of degree less than k2

and their incident edges without decreasing the average degree of G. Thus
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we may assume that the minimum degree of G is at least k2. Consider the

partition R1 of A. We say a vertex v ∈ B is of Type 1 if no more than k of

its neighbors lie outside some class, say Rm
1 of R1. In this case, we delete the

edges incident with v not going into Rm
1 . (We do this for all Type 1 vertices.)

We call all other vertices in B Type 2 vertices. Now we have deleted at most

k|B| edges from G. Thus, e(G) ≥ k2(|A|+ |B|)− k|B| > k(k− 1)(|A|+ |B|).

Thus the average degree in G is now no less than 2k(k − 1), so again, we

may delete all vertices with degree less than k(k − 1) without lowering the

average degree. After these modifications, the minimal degree of G will be

no less than k(k − 1).

Claim 2.25. ∀u, v ∈ B, if there is a path of length 2(k − i + 1) from u to

v in G, then u and v are Type 1 vertices both of whose neighbors lie in the

same partition class of R1.

Proof. Consider a path P0 of length 2(k − i − 1) with endpoints in B. Let

P0 = b1, a1, b2, . . . , ak−i−2, bk−i−1. Suppose at least one of the endpoints (say

b1) of P0 is of Type 2. Then we may extend P0 to a path of length 2(k − i)

with endpoints in different partition classes of R1. This is clear: first we pick

a neighbor of bk−i−1 not already in P0. We can do this because d(bk−i−1) ≥

k(k − 1). This new vertex, ak−i−1, is in some partition class of R1: say Rm
1 .

But then since b1 is Type 2 and has degree at least k(k − 1), we can find

a neighbor of b1 that is neither in P0 nor in R1
m. But this contradicts the

property (2) of G above.
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If both b1 and bk−i−1 are of Type 1 then by the same reasoning, their

neighbors (outside of P0) must lie in the same partition class of R1.

Let P0 = b1, a1, b2, . . . , ak−i−2, bk−i−1 be a path of length 2(k-i+1) with

endpoints in B. Then by Claim 2.25, all the neighbors of b1 and bk−i−1 lie in

the same partition class of R1, say Rm
1 .

Claim 2.26. In any extension of P0 from bk−i+1, all the vertices of B in the

extension are of Type 1 and have neighbors in Rm
1 .

Proof. We show that any extension of P0 by two points has this property

and that b2 is also of Type 1 with all of its neighbors in Rm
1 . The rest follows

by induction.

Extend P0 from bk−i+1 by two more points; ak−i+1 and then bk−i+2. Call

this path P1. (We can do this because the minimal degree of G is at least

k(k− 1).) Suppose we can find a neighbor of bk−i+2 that is neither in P1 nor

in Rm
1 . But then, there is a path of length 2(k − i + 1) from this vertex to

a1 contradicting property (2) of G as a1 ∈ Rm
1 . Since the degree of bk−i+2 is

at least k(k − 1), we must assume that bk−i+2 is a Type 1 vertex with all of

its neighbors in Rm
1 . Now there is a path of length 2(k − i + 1) between b2

and bk−i+2. Thus by Claim 2.25, both b2 and bk−i+2 are Type 1 vertices with

neighbors in the same partition class of R1. We know that the neighbors of

bk−i+2 lie in Rm
1 , therefore the neighbors of b2 do as well.

Claim 2.27. For 1 ≤ l ≤ i−1, we can extend P0 to Pl, a path of length 2(k-

i+l-1) such that all the neighbors of the endpoints b1 and bk−i+l lie within one
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partition class of Rl. Call this partition class Rm
l . Furthermore, by deleting

appropriate edges in G, we can insure that in any further extension of Pl

from bk−i+l−1, all the vertices of the extension in B will only have neighbors

in Rm
l and that the minimum degree of G is at least k(k − l).

Proof. We use induction on l. The first case is proved in Claims 2.25 and

2.26 above. Suppose the statement holds for j − 1, j fixed. We reclassify

the vertices of B. Now, a vertex v ∈ B is of Type 1 if no more than k of

its neighbors lie outside some class Rm
j of Rj. In this case we delete all the

edges incident with v not going into Rm
j . All other vertices of B are Type 2

vertices. Again we deleted no more than k|B| edges from G. Thus we have

e(G) ≥ k(k− j+1)(|A|+ |B|)−k|B| > k(k− j)(|A|+ |B|). Thus the average

degree in G is now no less than 2k(k − j) and we can delete vertices of G of

degree less than k(k− j) without decreasing the average degree of G. In this

way we guarantee that the minimum degree of G is at least k(k − j). Now

suppose that one of the endpoints of Pj−1 is a Type 2 vertex; say b1. Then

we can extend Pj−1 to a path of length 2(k−i+j) with endpoints in different

partition classes of Rj, contradicting property (2) of G above. We do this

by first picking a neighbor of bk−i+j−1 not in Pj−1. Let this point be in the

partition class Rm
j of Rj. Then since b1 is a Type 2 vertex and has degree

at least k(k − j) ≥ 2k (j ≤ i− 1 < k − 1) we can pick a neighbor of b1 that

is neither in Pj−1 nor in the partition class Rm
j . We conclude that both b1

and bk−i+j−1 are of Type 1 and only have neighbors within one class of Rj.
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Call this class Rm
j . Note that we can find extensions of Pj−1 as the minimum

degree in G is at least k(k − j) > 2k. It is clear that in any extension of

Pj−1, the new vertices of the path in B must also be of Type 1 and only have

neighbors in Rm
j . The argument is exactly the same as in the proof of Claim

2.

Finally, we can find a path of length 2(k − 2) the neighbors of whose

endpoints lie in the same partition class of Ri−1. Since the minimum degree

in B is at least k2−k(k−2), we can extend our path into A from both ends.

But then we get a path of length 2(k-1) contradicting property (2) of G.

We are ready to prove the main theorem in this section.

Proof of Theorem 2.2. Suppose not. Let H be a C2k+1-free 3-uniform hyper-

graph with at least 4k4n(k+1)/k + 15k4n + 10k2n edges on n vertices. Since

the average degree in H is at least 12k4n1/k + 45k4 + 30k2, if we delete all

vertices of H of degree less than 4k4n1/k + 15k4 + 10k2 together with their

adjacent edges, the average degree in H will not decrease. Thus we may

suppose without loss of generality that the minimum degree, δ, in H is at

least 4k4n1/k +15k4 +10k2. Pick x in V(H) and let (Si, ES, π, φ) be a greedily

defined approximate neighborhood structure centered around x.

The proof of the theorem follows directly from the following proposition.

Proposition 2.28. The sets Si, for 1 ≤ i ≤ k have the following properties:

(A) There are no more than k4(|Si|+|Si−1|) edges of E(H)\ES intersecting

Si in one point and Si−1 in two points.
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(B) There are no more than k4(|Si|+|Si−1|) edges of E(H)\ES intersecting

Si in two points and Si−1 in one point.

(C) |Si| > 4k3ni/k

Note that Proposition 2.28 implies that |Sk| > 4k3n, a contradiction.

Thus all that remains is to prove Proposition 2.28.

Proof. We will prove the proposition by induction on i.

Base Case. Define a graphG on vertex set S1. For each edge h ∈ E(H)\ES

with x ∈ h let h\{x} be in E(G). Now in G, there cannot be a path on 2k

vertices v1, v2, . . . , v2k. Otherwise, there exists distinct edges φ(v1), φ(v2k) ∈

ES adjoining v1 and v2k to x respectively in H. But then x, v1, . . . , v2k form

a 2k + 1 cycle in H, a contradiction. The Erdős-Gallai Theorem says that

e(G) ≤ (k − 1)|V(G)|. Now there are exactly |{h ∈ ES : x ∈ h}| = |S1| =

|V(G)| edges of H containing x but not represented in G. We conclude that

|S1| ≥ dH(x)/k > 4k3n1/k. Also the number of edges in H intersecting both

S1 and S0 is no more than k|S1|.

Inductive Step. Suppose there exists an i, 1 ≤ i ≤ k such that ∀j ≤

i, |Sj| > 4k3nj/k and that the number of edges in E(H)\ES intersecting Si in

one point and Si−1 in two points is at most k4(|Si−1|+ |Si|) and the number

of edges in E(H)\ES intersecting Si in two points and Si−1 in one point is

also at most k4(|Si−1|+ |Si|).

We prove the size of Si+1 is greater than 4k3n(i+1)/k by double counting

pairs (v, h) where v ∈ h ∩ Si and h ∈ E(H). The first count is simple:
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∑
v∈Si

dH(v) ≥ δ|Si|. The other count is not as simple. First we show there

are not too many edges of H falling completely within Si. This, together

with the induction hypothesis, implies many edges must intersect both Si

and Si+1. Finally, we show that these edges must be sparsely located in Si+1

which will imply the proof of the Proposition.

First we count pairs (v, h) with v ∈ h ∩ Si, h ∈ ES. It is clear from the

definition of approximate neighborhood structures, that the number of such

pairs is at most:

| ∪j<i Sj|+ 2|Si|+ |Si+1| (2.2)

Next, we count pairs (v, h) with v ∈ h ∩ Si, h ∈ E(H)\ES, and h ∩

(∪j<iSj) 6= ∅. The induction hypothesis says that these edges contribute at

most:

3k4(|Si−1|+ |Si|) (2.3)

Now we are ready to count pairs (v, h) with v ∈ h ∩ Si, h ∈ E(H)\ES

and h ⊂ Si. We define a graph G0 on Si. One by one, for each edge h ∈

{h ∈ E(H)\ES : h ⊂ Si}, pick a two-set from h which has least multiplicity

so far in G0 to be in E(G0). Now applying Lemma 2.23 to G0, we find that,

ignoring multiplicities, e(G0) ≤ 2|Si|
(

k
2

)
. Then we apply Lemma 2.21 to find

that each edge in G0 has multiplicity at most
(
2k−1

2

)
+ 2. We conclude that

|{h ∈ E(H) : h ⊂ Si}| = e(G0) ≤ 2|Si|
(

k
2

)
(
(
2k−1

2

)
+ 2). Thus the number of

pairs (v, h) coming from such edges is at most:

6|Si|
(
k

2

)
(

(
2k − 1

2

)
+ 2) (2.4)
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We now count pairs (v, h) with v ∈ h∩Si, h ∈ E(H)\ES, and |h∩Si+1| = 1.

Note that {h ∈ E(H)\ES : h ∩ Si 6= ∅ and |h ∩ Si+1| = 1} = {h ∈ E(H)\ES :

|h ∩ Si+1| = 1 and |h ∩ Si| = 2}. Let E∗ = {h ∈ E(H)\ES : |h ∩ Si+1| = 1

and |h ∩ Si| = 2}. We define a graph G1 on Si. For each edge h ∈ E∗, let

e(h) = h ∩ Si be an edge in G1. Let G∗1 be the simple graph obtained from

G1. As we do in Lemma 2.23, we can partition E(G∗1) into k parts such

that there is no path of length 2k − 1 within any of the parts. Applying the

theorem of Erdős and Gallai, (Theorem 1.9) we conclude that if G+ is one

of these k parts, then e(G+) ≤ (k − 1)|V (G+)|. We now apply the following

theorem of Nash-Williams[86].

Theorem 2.29. A graph G is decomposable into l forests iff for any X ⊂

V (G), e(G|X) ≤ l(|X| − 1).

Thus we can further partition each of these k parts into at most k − 1

edge disjoint forests. In particular, we can partition E(G∗1) into no more

than k(k − 1) < k2 edge disjoint forests. Let F1 be the forest such that the

number of edges of G1 which are multiple with some edge of F1 is greatest.

We will bound the number of edges of G1 by bounding the number of edges

of G1 that are multiples of edges of F1.

To this purpose, we define an auxiliary bipartite graph GA on parts V1 =

Si+1 and V2 = E(F1). Recall that for each e ∈ E(G1), there is an associated

vertex t = t(e) ∈ Si+1. For each edge e ∈ E(G1) where e is a multiple of an

edge in F1, add (t(e), e) to the edges of GA. Then the number of edges in
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GA equals the number of edges in G1 that are multiples of edges of F1. To

count the number of edges in GA, we will use a technique similar to that in

Lemma 2.23.

We define partitions on V2 = E(F1) related. To do this, we need to

associate each edge e ∈ E(F1) = V2 to a vertex in Si. For each component of

F1, pick a vertex in that component, and orient the edges of the component

away from the distinguished vertex. Let p, s : E(F1) → Si be maps such that

∀e ∈ E(F1), s(e) is the vertex towards which e is oriented, and p(e) is the the

vertex away from which e is oriented. Now for j ≤ i, note that the nonempty

sets πi−j(y) for y ∈ Si−j partition the vertex set Si. For each such nonempty

set, consider its inverse image under the map s; these resulting sets partition

V2 = E(F1). Call this partition Qj. We are now ready to prove the following

claim which is similar to Lemma 2.23 in technique.

Claim 2.30. Let ea, eb ∈ E(F1). Let l be maximal such that ea and eb are

in the same partition class of Ql. If the minimal degree in GA is at least k,

then there can be no path of length 2(k − i+ l) in GA from ea to eb.

Proof. Suppose not. Let P be such a path. Let va = s(ea) and vb = s(eb).

As l was chosen maximally and va, vb ∈ Si, we must have that l is the largest

integer satisfying πi−l(u) = πi−l(v). Thus there is a path of length 2(i − l)

in H|ES
from va to vb. We will use the path P in GA to find a path from

va to vb in H|E(H)\ES
of length 2(k − i + l) + 1 using only vertices in Si and

Si+1. It is clear that once we produce such a path, we will have arrived at a
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contradiction as H is C2k+1-free.

Write P = (ea = e1, u1, e2, u2, . . . , ek−i+l−1, uk−i+l−1, eb = ek−i+l). Since

F1 is a forest, ∃em ∈ {e1, e2 . . . , ek−i+l} such that ∀j ≤ k−i+l, s(ej) 6= p(em).

As the minimum degree in GA is at least k, ∃u∗ ∈ NGA
(em) with u∗ 6∈

{u1, u2, . . . , uk−i+l−1}. Note that (e1 ∪ u1), (u1 ∪ e2), . . . , (um−1 ∪ em), (em ∪

u∗), (em ∪ um), (um ∪ em+1), . . . , (uk−i+l−1 ∪ ek−i+l) ∈ E(H)\ES form a path

from va to vb on the following vertices of Si ∪ Si+1:

s(e1), u1, s(e2), u2, . . . , um−1, p(em), s(em), um, . . . , uk−i+l−1, s(ek−i+l)

We remark that if m = 1, then the order of the vertices changes slightly:

s(e1), p(e1), u1, s(e2), u2, . . . , um−1, p(em), s(em), um, . . . , uk−i+l−1, s(ek−i+l)

Thus we have found the desired path in H and reached our contradiction.

Claim 2.31. e(GA) < k2(|Si|+ |Si+1|)

Proof. Suppose not. Then the average degree in GA is at least 2k2. Thus we

can safely delete vertices from GA of degree less than k2 without lowering the

average. Applying Claim 2.30 and then Lemma 2.24, we get a contradiction.

To summarize Claims 2.30 and 2.31, we have showed |E1| = e(G1) <

k4(|Si|+ |Si+1|). This proves part (A) of Proposition 2.28. Since each edges

in E1 intersects Si in two points, the number of pairs (v, h) coming from the

edges of E1 is at most:

2k4(|Si|+ |Si+1|) (2.5)
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We are now ready to count pairs (v, h) with v ∈ h∩Si and |h∩Si+1| = 2.

Let E2 = {h ∈ E(H)\ES : |h∩Si| = 1 and |h∩Si+1| = 2}. We will count these

edges in almost exactly the same way we counted the edges of E1. Let G2 be

a graph on Si+1. For h ∈ E2 let e(h) = h ∩ Si+1 be in E(G2). Let G∗2 be the

simple graph obtained from G2. As before, we decompose G∗2 into at most

k(k−1) < k2 edge disjoint forests. Let F2 be the forest such that the number

of edges in G2 that are multiple with edges in F2 is greatest. By bounding

the number of edges of G2 multiple with edges of F2, we will get a bound on

the total number of edges in G2. Let GB be an auxiliary bipartite graph on

parts V1 = Si and V2 = E(F2). Recall that for each edge e ∈ E(G2), there is

an associated vertex t(e) ∈ Si. For each e ∈ E(G2) where e is a multiple of

some edge in F2, let (e, t(e)) be an edge of GB. Then the number of edges in

GB is equal to the number of edges in G2 which are multiple with some edge

of F2.

We orient the edges of F2 as we did with F1. For each component in

F2, pick a vertex and orient the edges of the component away from this

distinguished vertex. Let p, s : E(F2) → Si+1 be maps such that ∀e ∈ E(F2),

s(e) is the vertex towards which e is oriented and p(e) is the vertex away

from which e is oriented. We are now ready to prove a variant of Claim 2.30

and Lemma 2.23 for the bipartite graph GB.

Claim 2.32. Let u, v ∈ Si. Let l be maximal such that πi−l(u) = πi−l(v). If

the minimum degree of GB is at least k, then there can be no path of length

2(k − i+ l) in GB from u to v.
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Proof. Suppose not. Let P be such a path. Note that by assumption, there is

a path of length 2(i− l) from u to v in H|ES
. This second path lies completely

within (∪j<iSj) except for the endpoints u and v. We will use the path P in

GB to find a third path in H|E(H)\ES
from u to v of length 2(k − i + l) + 1

contained entirely within Si ∪ Si+1. The existence of such a path guarantees

a C2k+1 in H, a contradiction. Now we produce such a path.

Write P = (u = u1, e1, u2, e2, . . . , ek−i+l−1, uk−i+l). As F2 is a forest,

∃em ∈ {e1, e2 . . . , ek−i+l} such that ∀j ≤ k − i + l, s(ej) 6= p(em). As the

minimum degree in GB is at least k, ∃u∗ ∈ NGB
(em)\{u1, u2, . . . , uk−i+l}.

Now (u1∪e1), (e1)∪u2), . . . , (um∪em), (u∗∪em), (em∪um+1), . . . , (ek−i+l−1∪

uk−i+l) ∈ E(H)\ES form a path in H of length 2(k− i+ l)+1 on the vertices:

u1, s(e1), u2, . . . , um, s(em), p(em), um+1, . . . , s(ek−i+l−1), uk−i+l

Thus we have found the desired path, a contradiction.

Claim 2.33. e(GB) < k2(|Si|+ |Si+1|)

Proof. Suppose not. Then the average degree in GB is at least 2k2. Thus we

can safely delete vertices from GB of degree less than k2 without lowering the

average. Applying Claim 2.32 and then Lemma 2.24 to get a contradiction.

�

In Claims 2.32 and 2.33, we have showed that |E2| = e(G2) < k4(|Si| +

|Si+1|). This proves part (B) of Proposition 2.28. As each of the edges in E2

intersects Si in only one point, the number of pairs (v, h) coming from edges
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in E2 is at most:

k4(|Si|+ |Si+1|) (2.6)

We are now ready to calculate the size of Si+1. From Equations (2.2)

through (2.6), we have:∑
v∈Si

d(v) ≤ 3k4(|Si−1|+ |Si|)

+ | ∪j<i Sj|+ 2|Si|+ |Si+1|

+ 6|Si|
(
k

2

) [(
2k + 1

2

)
+ 2

]
+ 2k4(|Si|+ |Si+1|)

+ k4(|Si|+ |Si+1|)

≤ (3k4 + k)|Si−1|

+

[
6k4 + 6

(
k

2

)(
2k − 1

2

)
+ 12

(
k

2

)
+ 2

]
|Si|

+ (3k4 + 1)|Si+1|

(2.7)

As δ > 4k4n1/k + 15k4 + 10k2 is the minimum degree of H, we have:

|Si+1| >
|Si|(δ − 12k4 − 10k2)− |Si−1|(3k4 + k)

3k4 + 1

> 4k3ni/k

(2.8)

This proves part (c), the final part of Proposition 2.28.

2.3 Non-Uniform Hypergraphs

We now turn to non-uniform hypergraphs avoiding cycles of a given length.

Here, the only interesting question remaining given Theorem 2.15, is how
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large can a hypergraph be if it has arbitrarily large edges, and contains no

C2k+1? Also, if we allow arbitrarily large edges, we are interested in not just

the number of possible edges in such a hypergraph, but in a more exact

notion of the size of the hypergraph. Namely, we would like to bound the

size of
∑

e∈E(H) |e| =
∑

v∈V(H) d(v). The following theorem gives an answer

to this question which is consistent with the previous results.

Theorem 2.34 (Győri-Lemons[66]). Fix k > 1 and let H be a (multi) hyper-

graph with all of its edges of size at least 4k2 such that H contains no cycle

of length 2k + p where either p = 0 or p = 1. Then

∑
v∈V(H)

d(v) ≤ 8k4n(k+1)/k + (68k5 + 24k4)n

The proof of 2.34 broadly speaking uses the same technique as that in

the proof of Theorem 2.2 - the bound for 3-uniform hypergraphs avoiding

a given odd cycle. However, many of the technical details are different; in

many ways this is a simpler proof as we can assume all the edges are quite

large. Before we prove this theorem, we note a special case:

Theorem 2.35 (Győri-Lemons). Let H be a hypergraph containing no C4.

Then ∑
e∈E(H)

(|e| − 3) = O(n3/2)

Theorem 2.35 is an interesting special case of Theorem 2.34 because we

have a completely different proof for Theorem 2.35. This second proof 2.35

is much simpler (being less general) but it also stands out as nice example
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of the substitution method. That is, the idea of the proof is to replace each

hyperedge in the hypergraph with a suitable graph and then analyze the

resulting graph.

We note that the constant factor we obtained for an upper bound in The-

orem 2.35 is most likely not sharp - neither is the one in Theorem 2.34; we use

a much weaker (larger) constant than for instance Lazebnik and Verstraëte

(see Theorem 2.9). However, our result is more general in the sense that it

covers non-uniform hypergraphs; and it seems to be difficult to achieve sharp

bounds for non-uniform hypergraphs. Given the next theorem, it seems very

likely to us that Theorem 2.35 could be extended to show similar bounds for

hypergraphs avoiding a C2k for fixed k. We also note that Theorem 2.35 is

sharp up to the constant factor as the following construction similar in spirit

to Construction 2.14 shows.

Construction 2.36. Let G be a complete C4-free bipartite graph on V =

(V1, V2) with |V1| = |V2| = n/4. We define a 4-uniform hypergraph, H, in the

following way. We define this on V1 together with 3 copies of V2. For each

edge e = (v1, v2) in G we take the corresponding 4-edge containing v1 and

the 3 copies of the v2. It is clear from the construction that H has no C4.

Moreover, H has approximately (1/2)(n/4)3/2 edges.

Proof of Theorem 2.35. Let H be a C4-free hypergraph on n vertices. With-

out loss of generality, we may assume all the edges in H are of size at least 4.

We will define a graph G on V(H) from H such that the number of edges in
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G is proportional to
∑

e∈E(H) (|e| − 3). The idea is to replace each hyperedge

with a star graph (a connected tree where all except one of the vertices have

degree one) on the vertices of the hyperedge. For such star-graphs, we call

the vertices of degree one, the rays of the star, and the remaining vertex the

center of the star. We then give each star a unique color. Thus the problem

will be reduced to finding the max number of edges in a regular graph with

such a ”star” coloring where there is no cycle on 4 colors. Of course such a

cycle would correspond to a forbidden 4-cycle in H. (Note that a cycle on 4

colors in G could be of length between 4 and 8.)

Claim 2.37. We can replace each edge h ∈ E(H) where |h| ≥ 7 with a star-

graph of size at least 1
2
(|h| − 3) on the vertices of h such that each graph

edge occurs with multiplicity 1. Here the size of the star-graphs refers to the

number of edges (equivalently the number of rays) in the star.

Proof. We replace the hyperedges of size at least 7 one by one with star

graphs of unique color in the following way. Suppose we are replacing some

hyperedge h ∈ E(H) with a star-graph. Let k = |h|. Now there may already

be some graph edges defined on the k vertices of the hyperedge h. However,

there cannot be too many: there can be no path (on these graph edges) of

length 5 within h. Such a path would necessarily span at least 3 different

colors and thus would correspond to a path (in H) of length at least 3 within

h. But then this is clearly (together with h) a 4-cycle in H. Thus we can

use the Erdős-Gallai Theorem (Theorem 1.9) to bound the number of such
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graph edges within h from above by

q

(
5

2

)
+

(
r

2

)
(2.9)

where k = 5q + r, 0 ≤ r ≤ 4. This implies that the number of pairs of

vertices in h which are not yet graph edges is at least(
k

2

)
−

(
q

(
5

2

)
+

(
r

2

))
(2.10)

And we conclude that there are is at least one vertex within h with non-degree

at least (
2

k

) [(
k

2

)
−

(
q

(
5

2

)
+

(
r

2

))]
≥ k − 5 (2.11)

Here we are simply considering the graph edges defined so far within the

hyperedge h. That is, we can always define a star of size k − 5 without

repeating any graph edges in h no matter how the previous stars were defined.

Now as |h| = k ≥ 7, we have k − 5 ≥ 1
2
(k − 3). So for each such edge h, we

can find stars of size ≥ 1
2
(k − 3) within h.

Before we proceed, we need a definition.

Definition 2.38. Two vertices are covered by color i if they are both leaves

of the star of color i.

Claim 2.39. We can replace each edge h ∈ E(H) where |h| ≥ 7 with a star-

graph of size at least 1
6
(|h|− 3) on the vertices of h such that each graph edge

occurs with multiplicity 1 and such that any pair of vertices is covered by at

most 3 colors.
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Proof. Again, we replace the hyperedges one by one. Let h be an edge of

size at least 7 in H. From Claim 2.37 we can find a star-graph within h of

size at least 1
2
(k − 3). We will find a substar of this star graph satisfying

the conditions of Claim 2.39. We define a an auxiliary graph Gh on the

1
2
(k − 3) rays of the star. In Gh, two vertices are connected iff they are

already covered three times. Then the components of Gh are either of size

3 or are stars. Otherwise, suppose there is a component of size at least 4

that is not a star. In this case, there is a path of length at least 3 within

this component - that is, there is a 3-path within h on 3 different colors, a

contradiction as H is quadrilateral-free. Thus there is an independent set in

Gh of size at least 1
3
|V(Gh)|. We then replace h with this substar consisting

of the center and this independent set; this star has size at least 1
3
∗ 1

2
(|e|−3),

and no two leaves in the star are covered by more than three colors.

We now replace each hyperedge in H of size at least 7 with such a star.

For each hyperedge of size less than 7, we put in exactly one graph edge such

that it does not overlap any already defined graph edges and so that the two

vertices of this graph edge are not covered by more than three colors. It

is clear that if the edge has size at least 3, both of these conditions can be

satisfied. In this way the graph G is defined.

Now we estimate the size of the graph G. We can find a subgraph G1 of G

which is bipartite and has at least 1
2
e(G) edges. Again, we can find a further

subgraph G2 of G1 such that the centers of all the stars in G2 are contained
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within one of the partition classes such that G2 has at least 1
2
e(G1) edges.

Call the partition class of G2 containing the centers of the stars V1 and let V2

be the other partition class containing the rays of the stars. Now we claim

that G2 contains no K2,5 with 5 vertices in V1 and 2 in V2. Otherwise, such

a K2,5 must contain a 4-colored K2,2 since no two vertices in V2 are covered

by more than 3 colors. But such a 4-colored K2,2 implies that our original

hypergraph H had a 4-cycle. Thus there is no such K2,5 in our graph. We

are now prepared to estimate the number of edges in G2. We know:

∑
x∈V2

(
d(x)

2

)
≤ 5

(
|V1

2

)
(2.12)

and |V1| = |V2| gives

n

2
d(x)2 ≤ 5(

n

2
)2 (2.13)

We conclude:

d(x) ≤ (
5n

2
)1/2 and e(G2) ≤ (

5

8
n3)1/2 (2.14)

Thus: ∑
h∈H

(|h| − 3) ≤ 12

√
5

8
n3/2 (2.15)

This proof utilizes the simple trick of replacing hypergraph edges with

a nicely chosen graph (in this case a star-graph.) In this way we are able

to convert a relatively hard hypergraph problem into a much easier graph

problem. Unfortunately, it is unclear how to generalize this proof technique

for other even cycles, or even how to proceed in the case of a forbidden C6.
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Thus we consider a different approach; that of Theorem 2.2 to prove Theorem

2.34.

These proofs are not exactly the same; the main outline of the proof is the

same, but the technical details in Theorem 2.34 are a bit more complicated.

We will use the following lemma in the proof.

Lemma 2.40. Let H be a multi-hypergraph with all of its edges of size at

least 2l for some fixed constant l. Suppose also that H has no path on l

vertices. Then the average degree in H is less than 3l.

Proof. We prove this by induction on the number of vertices of H. Clearly,

if H has n vertices (l ≤ n < 4l) and the average degree is 3l, there will be a

path of length l in H. Otherwise, let n > 4l be the number of vertices of H,

and suppose that the average degree in H is at least 3l. Let P be a longest

path in H. Let j be the length of this path (so j < l.) Let the E1 be one

of the tail edges of the path. Note that the number of vertices in E1 not in

the interior of the path is at least |E1| − (j − 1) ≥ 2l − j + 1 ≥ l. Each of

these vertices is contained only within the edges of P - each has degree at

most j. Pick l of these vertices and delete them and the edges of P which

subsequently have less than 2l vertices from H (forming a new hypergraph

H1). Then H1 has at most j(3l − 1) fewer incidences than does H. And so∑
e∈E(H1) |e| ≥

∑
e∈E(H) |e| − j(3l − 1) ≥ 3ln − j(3l − 1) ≥ 3l(n − l). Thus

the average degree in H1 is still at least 3l and by induction it must have a

path of length l.
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Proof of Theorem 2.34. Suppose the theorem is not true. Let H be a hyper-

graph on n vertices containing no C2k+p where either p = 0 or p = 1. Suppose

also that all the edges of H have size at least 4k2 and that
∑

h∈E(H) |h| >

8k4n(k+1)/k + (68k5 + 24k4)n. We derive a contradiction by showing H must

have more than n vertices.

First note that we may assume the minimum degree of H to be at least

2k2n1/k +17k3+6k2. Otherwise we can delete those vertices of smaller degree

and any edges that become smaller than 4k2 without decreasing the average

degree in H. The resulting hypergraph will still be a counterexample to

Theorem 2.34 and will have minimum degree δ ≥ 2k2n1/k + 17k3 + 6k2 as

desired.

Pick ∈ V(H) and let ({Si}, ES, π, φ) be a greedily defined approximate

k-neighborhood structure of H around x. For 1 ≤ i ≤ k let Ei = φ−1(Si).

Note that these sets partition ES.

Proposition 2.41. |Si| ≥ ni/k for i = 0, 2, . . . , k.

Before we prove Proposition 2.41, we note that Theorem 2.34 easily fol-

lows from Proposition 2.41. As the sets Si are pairwise disjoint, Proposition

2.41 implies |V(H)| > n, a contradiction.

Proof of Proposition 2.41. We prove this by induction on i. Clearly the base

case holds. Suppose the proposition holds for some i, 0 ≤ i < k. We will

show that |Si| ≥ n1/k|Si−1|. To do this we simply double count the pairs

(v, h) where v ∈ h ∩ Si−1 and h ∈ E(H). We distinquish between four types
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of these pairs:

(A) pairs (v, h) with h ∈ Ej for j < i.

(B) pairs (v, h) with h ∈ E\(∪j≤iEj) = E\(ES).

(C) pairs (v, h) with h ∈ Ei) and |h ∩ Si−1| > 2k2.

(D) pairs (v, h) with h ∈ Ei) not of type (C).

Note that that every pair (v, h) with v ∈ h ∩ Si−1 is exactly one of these

four types. In particular, there are no edges h ∈ Ej for j > i intersecting

Si−1. Also note that for pairs (v, h) of type (D) we have |h ∩ Si| > 2k2. The

heart of Proposition 2.41 lies in the following claims:

Claim 2.42. There are no more than 14k3|Si−1| pairs (v, h) of type (A).

Claim 2.43. There are no more than (3k3 + 6k2)|Si−1| pairs (v, h) of type

(B) and of type (C).

Letting y represent the number of pairs of type (D), we find:

(17k3 + 6k2)|Si−1|+ y ≥ δ|Si−1| (2.16)

Which implies y ≥ [δ − (17k3 + 6k2)] |Si−1| ≥ 2k2n1/k|Si−1|. If (v, h) is a pair

of type (D) then h intersects Si−1 in at most 2k2 places, thus there must be

at least n1/k|Si−1| edges h such that ∃v ∈ h with (v, h) a pair of type (D).

But clearly |Si| = |E∗i | ≥ n1/k|Si−1|.

Thus, all that remains to prove Proposition 2.41 is to prove the above

two claims.
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Proof of Claim 2.42. Fix j < i. Let F = {h ∈ Ej : |h∩Si−1| > 4k2}. Clearly

the number of pairs of type (A) is no more than

∑
h∈F

|f ∩ Si−1|+ 4k2|Si−1| (2.17)

Let F1 = {h ∩ Si−1 : h ∈ F} and for f ∈ F1, and let f̂ represent the edge

from which f was derived in F . Let H1 be the hypergraph consisting of the

edges F1 and vertex set Si−1. Clearly H1 may have multiple edges. We now

attempt to find a linear bound (in terms of |Si−1|) for
∑

f∈F1
|f |.

Suppose without loss of generality that
∑

f∈F1
|f | ≥ 4k4|Si−1|. Then we

may delete those vertices of H1 of degree less than 2k2 and any edges that

are smaller than 2k2 without decreasing the average degree of H. As we will

be bounding the size of H1 by a linear function of its vertex set, we can thus

assume that H1 has minimum degree 2k2 and that all the edges are of size

at least 2k2.

We now define an improper coloring of the vertices of H1 based on the

vertices of Sj to which they are connected. For a vertex v ∈ F(H1), there

are m = m(v) ≥ 2k2 edges f1, . . . , fm edges in E(H1) containing v. These

derive from the edges f̂1, . . . f̂m ∈ F ⊆ Ej ⊆ E(H). Thus there are vertices

wl(v) = φ−1(f̂l) ∈ Sj and ul(v) = π(wl) ∈ Sj−1 for 1 ≤ l ≤ m. We

remark that the ul’s may not be pairwise distinct, however throughout we

will be refering to the number of ul with certain properties (or in certain

sets) and in all of these cases, we mean the number of ul including (counting)

multiplicities.
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We define sets Q0(v), . . . , Qj−1 ⊆ Sj−1 in the following way. Let Q0(v) =

Sj−1. Suppose we have defined Ql for some l. Then pick Ql+1(v) from the

family {π−[(j−1)−(l+1)](y) : y ∈ Sl+1 and π−[(j−1)−(l+1)](y) ⊆ Ql(v)} such that

|Ql+1 ∩ {u1, . . . , um}| is maximal.

We are now ready to define the color of the vertex v. Let l < j − 1 be

the smallest integer such that |Ql ∩ {u1, . . . , um}| ≥ 2k(k − l) and such that

more than 2k of the vertices {u1, . . . , um} are contained in Ql\Ql+1. Color

v with color l + 1. If no such integer l exists, then |Qj−1 ∩ {u1, . . . , um}| ≥

2k(k − (j − 1)) ≥ 4k and we color v color j.

We now color the edges of H1. Recall that for f ∈ F1, we have |f | ≥ 2k2.

We define setsQ0(f), . . . , Qj−1(f) similarly to the prequel. LetQ0(f) = Sj−1.

Suppose we have defined Ql(f) for some 0 ≤ l < j − 1. Let Ql+1(f) be the

set occurring most frequently in the family {Ql+1(v) : v ∈ f,Ql(v) = Ql(f)

and the color of v ≥ m + 2}. After finding these sets, we can now color the

edge f . Let m < j− 1 be the smallest integer such that |{v ∈ f : Qm−1(v) =

Qm−1(f)}| ≥ 2k(k − (m − 1)) and |{v ∈ f : Qm−1(v) = Qm−1(f), v is of

color m or, Qm(v) 6= Qm(f)}| ≥ 2k. If no such integer exists, let m = j − 1.

Color f with color m. Delete from the edge f ∈ E(H1) the vertices for which

Qm−1(f) 6= Qm−1(v). In this way we decrease the size of individual edges

of H1, but not the number of vertices in H1. Altogether, we diminish the

sum
∑

f∈F1
|f | by less than 4k2|E(H1)| ≤ 4k2|Sj−1|. Also note that every

edge will have at least 2k(k − (j − 2)) ≥ 4k vertices remaining after these

deletions.
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Now we claim that there is no path P on the edges of H of color l and of

length 2(k−j+l−1)+p. Otherwise let e1 and e2 be the first and last edges in

this path respectively. As e1 has at least 4k vertices, we can pick v1 not in the

path P . Now as e2 has color l, we most have |{v ∈ e2 : Ql−1(v) = Ql−1(e2), v

has color l, or Qm(v) 6= Qm(e2)}| ≥ 2k. By choice of Qm(e2), this implies

there are at least 2k vertices v in e2 with Qm(v) 6= Qm(v1). In particular we

can find such a vertex v2 not in the path P . Note that we have produced

vertices v1 and v2 such that there is a path in H1 of length 2(k− j+ l−1)+1

between them and such that Ql−1(v1) = Ql−1(v2) but Ql(v1) 6= Ql(e2). We

will now find a distinct path in H between these vertices of length 2(j−l+1).

By definition of Ql(v1), we can find a vertex u1(v1) ∈ Ql(v1) such that

the associated edge π−1(φ−1(u1)), is not contained in the path P . Also as

v2 has color l, there must be at least 2k vertices u(v2) ∈ Ql−1(v2) such

that u 6∈ Ql(v1). In particular we can pick u2(v2) to be such a vertex such

that the associated edge π−1(φ−1(u2)) is not in the path P . Then it is easy

to see that there is a path of length 2(j − l) between the vertices u1(v1)

and u2(v2) in H. The vertices of this path are: u1, π(u1), . . . , π
j−l(u1) =

πj−l(u2), . . . , π(u2), u2. The edges of this path are from the sets Ej−l, . . . , Ej−1.

But as the edges of the hypergraph H1 are derived from edges of H within

the set Ej, and as the vertices are distinct, we can combine the path P with

this second path to get a cycle of length 2k + p in H; a contradiction. Thus

by Lemma 2.40, we conclude that the sum of the sizes of the edges of color

l in H1 is strictly less than 3[2(k − j + l) + p− 1]|Si−1|. Summing over l, we
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find ∑
f∈E(H1)

|f | ≤ 6k2|Si−1| (2.18)

We conclude that ∑
h∈F

|h ∩ Si−1| ≤ 14k2|Si−1| (2.19)

This concludes the proof of Claim 2.42 as summing over j < i, we have that

the number of pairs (v, h) of type (A) is less than 14k3|Si−1|

The proof of Claim 2.43 closely mimics the proof of Claim 2.42. However,

there are some technical details which are different; for the sake of clarity

and completeness we include this proof here.

Proof of Claim 2.43. Let F = {h ∈ E(H) : ∃v ∈ V(H) where (v, h) is a

pair of type (B) or (C)}. Let F2 = {f ∩ Si−1 : f ∈ F} and let cH2 be the

hypergraph on the vertex set Si−1 with edges F2. As before, we color the

edges of H2.

For an edge f ∈ E(H2), letQ0(f) = Si−1. We define the setsQ1(f) . . . , Qi−1(f)

in the following way. Suppose we have defined Ql for some 0 ≤ l < i − 1.

Then pick Ql+1 from within the family {π−[(i−1)−(l+1)](y) : y ∈ Sl+1 and

π−[(i−1)−(l+1)](y) ⊆ Ql(f)} to maximize |Ql+1(f) ∩ f |. Having defined the

sets Qm(f) for 0 ≤ m < i, we are ready to assign a color to the edge

f . Let l be the smallest integer such that |Ql(f) ∩ f | ≥ 2k(k − l) and

|f ∪ (Ql(f)\Ql+1(f))| ≥ 2k. Note as the edge f has size at least 2k2 such

an integer must exist. Color the edge f with color l and delete from f those

vertices not in Ql(f).
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Claim 2.44. Coloring (and deleting vertices from) each edge in this manner,

we decrease the total size of the hypergraph H2 by less than 2k2|E(H2)|.

For fixed l, we claim that there can be no path of length 2(k − [(i −

1) − l]) + p in H2 on edges of color l. Suppose such a path P exists, and

let e1 and e2 be the first and last edges respectively of the path. Then as

each edge of H2 has size at least 4k, we can find a vertex v1 ∈ e1 that

is not contained in the path P . As e2 has color l, there are at least 2k

vertices of e2 which do not belong to the set π−[(i−1)−l+1](π(i−1)−(l+1)(v1)). In

particular, we can pick such a vertex v2 from e2 which does not belong to the

path P . But then we have π(i−1)−l(v1) = π(i−1)−l(v2) and π(i−1)−(l+1)(v1) 6=

π(i−1)−(l+1)(v2). This implies there is a path from v1 to v2 of length 2(i−1−l)

within the vertices of the Sm for m < i − 1 and on the edges of Em for

m < i − 1. Namely, the path is: v1, π(v1), . . . , π
(i−1)−(l+1)(v1), π

(i−1)−l(v1) =

π(i−1)−l(v2), π
(i−1)−(l+1)(v2), . . . , π(v2), v2. But this together with the path P

is a 2k + p cycle in H, a contradiction. Thus we can apply Lemma 2.40 to

find that the sum of the edge sizes of color l is strictly less than 3[2(k− (i−

1− l)) + p]|Si−1|. Summing over all the edges in H2 we get:

∑
f∈E(H2)

|f | ≤ 6k2|Si−1| (2.20)

As every edge in H2 has at least 4k vertices, there can be no more than

1.5k|Si−1| edges in H2. This implies that in Remark 2.44, we diminished the
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size of H2 by less than 3k3|Si−1|. Therefore, we have

∑
h∈F

|h ∩ Si−1| ≤ (3k3 + 6k2)|Si−1| (2.21)

Thus the number of pairs (v, h) of types (B) and (C) is no more than (3k3 +

6k2)|Si−1|.
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3 Extremal Set Systems

We look at a different type of problem - one that can be easily expressed

in the language of forbidden substructures, but which has its origin in set

theory. These problems are fundamentally different in flavor and in proof

technique. Almost all of the problems which we will look at in this section

are extensions, generalizations, and outgrowths of the celebrated Erdős-Ko-

Rado[30] Theorem:

Theorem 3.1 (Erdős-Ko-Rado). Suppose H is a k-uniform hypergraph on

n vertices such that any two members intersect in at least t points. Then

e(H) ≤
(
n− t

k − t

)
holds for n > n0(k, t). Moreover, equality holds iff H consists of all the

k-edges containing a fixed t-element set.

This seminal paper introduced the so called ’shifting technique’ which

has subsequently become a standard proof technique in extremal set theory.

Erdős, Ko, and Rado showed that n0(k, 1) = 2k. Later, Frankl[41] found the

exact bound for all t ≥ 15 and Wilson[100] proved that for all t, n0(k, t) =

(k − t+ 1)(t+ 1). This bound is best possible; for smaller values of n, there

are bigger t-intersecting hypergraphs. For instance, let

Hr = {H ∈
(

[n]

k

)
: |H ∩ [t+ 2r] ≥ t+ r}

Frankl[41] conjectured that the families Ar are the only (up to isomorphism)

extremal t-intersecting families. It is easy to see that the family Hr is the
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largest if r satisfies:

(k − t+ 1)(2 +
t− 1

r + 1
) ≤ n < (k − t+ 1)(2 +

t− 1

r
) (3.1)

Frankl and Füredi[49] proved the family Hr was the largest for r satisfying

(3.1) for n > (k− t+1)c
√
t/log t and t ≥ 1+ cr(r). Later this was improved

by Ahlswede and Khachatrian[1] who showed it was true for all n.

All of these papers utilized the shifting technique as their main approach.

Here we describe the basic idea. Suppose H is a t-intersecting hypergraph

(the edges pairwise intersect in at least t points) and let 1 ≤ i < j ≤ n. Let

Pij : H →
(
[n]
k

)
be the mapping

Pij(H) =


(H\{j}) ∪ {i} if i 6∈ H, j ∈ H, (H\{j}) ∪ {i} 6∈ H,

H otherwise

(3.2)

A hypergraph H is said to be left-shifted if for all 1 ≤ i < j ≤ n, Pij(H) =

H. It is easy to see that shifting a hypergraph preserves the property of

being t-intersecting. That is, if H is t-intersecting, then so is Pij(H). The

main idea of the above proofs is to show that if H is a t-intersecting, left-

shifted hypergraph, then there exists an r such that for all H1, H2 ∈ H,

|H1 ∩H2 ∩ [t+ 2r]| ≥ t.

We can express the Erdős-Ko-Rado theorem using the language of Turán

type problems easily: Let Hl
k = {[k], [k − l + 1, 2k − l]}, that is two k-sets

which intersect in l points. Then Theorem 3.1 says that ex(n,H<t
k ) =

(
n−t
k−t

)
for n > n0(k, t).
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3.1 Erdős-Ko-Rado Type Problems

An important generalization of the Erdős-Ko-Rado problem is the following:

what can we say about H if we want to restrict the sizes of the pairwise

intersections of H? Let L ⊆ [k − 1], and suppose

∀H1, H2 ∈ H, |H1 ∩H2| ∈ L (3.3)

The Erdős-Ko-Rado Theorem tells us the maximal size of such a hypergraph

H if the set of possible intersection sizes L = {t + 1, . . . , k − 1}. In general,

we write

m(n, k, L) = ex(n,Hl
k : 0 ≤ l < k, l 6∈ L)

If we only allow small intersections (as opposed to only large intersections

in the Erdős-Ko-Rado Theorem) then the problem of finding the extremal

hypergraph is a packing problem. Specifically, if L = {0, 1, . . . , t − 1} then

H satisfying 3.3 is called a (n, k, t)-packing. In 1964, Erdős and Hanani[29]

conjectured that for fixed k and t,

m(n, k, {0, 1, . . . , t− 1}) = (1− o(1))

(
n

t

)
/

(
k

t

)
They proved this for t = 2 and for infinitely many values of k when t = 3. The

conjecture was proven correct for all n, k, and t by Rödl[87] in 1985. The first

general result for m(n, k, L) for any L was found in 1975 by Ray-Chaudhuri

and Wilson[20].

Theorem 3.2. m(n, k, L) ≤
(

n
s

)
if s = |L|.
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Later, in 1991, Alon, Babai, and Suzuki[4] proved Theorem 3.2 using the

so called linear algebra method. This elegant proof technique has become

quite important in the study of extremal systems. The idea is to associate

appropriate linearly independent polynomials to each hyperedge in our hy-

pergraph. Then, if we have chosen a nice finite dimensional polynomial space,

and we know its dimension, we can get a bound on the number of edges in

the hypergraph. Here we sketch Alon, Babai, and Suzuki’s proof. We use the

following notation. If f is a polynomial in n variables, x1, . . . , xn then there

is a multilinear polynomial f ∗ obtained from f by replacing each occurrence

of xj
i with xi (for all j ≥ 2 and all 1 ≤ i ≤ n).

Proof. Associate to H ∈ H the polynomial

gH =
∏
l∈L

(
∑
i∈H

xi − l)

and let g∗H be the corresponding linear polynomial. Now clearly for H1, H2 ∈

H we have g∗H1
(H2) = 0 if H1 6= H2. Otherwise, g∗H1

(H1) > 0. (Here and from

now on, we consider the edge Hi to represent the vector with components

xj = 1 iff j ∈ H and xj = 0 iff j 6∈ H). Let h =
∑

i∈[n] xi − k. Clearly,

h(H) = 0 for all H ∈ H. Now for I ⊂ [n] we write xI for the polynomial∏
i∈I xi. It is easy to show that the set of polynomials

{g∗H : H ∈ H} ∪ {(xIh)
∗ : I ⊂ [n], |I| ≤ s− 1}

is linearly independent. All of these polynomials are multilinear and thus
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live in a space of dimension
∑s

i=0

(
n
i

)
. We are done as

|{(xIh)
∗ : I ⊂ [n], |I| ≤ s− 1}| =

s−1∑
i=0

(
n

i

)

Theorem 3.2 was improved by Frankl and Wilson[56] who showed that if

there is an integer valued polynomial f of degree d and a prime p such that

for all l ∈ L, p, |, f(l) but p, -, f(k) then

m(n, k, L) ≤
(
n

d

)
On a similar note, Babai and Frankl[5] proved that if the greatest common

divisor of L does not divide k thenm(n, k, L) ≤ n. In 1986, Frankl[43] showed

that for all rationals 1 ≤ r, there exist k and L such that m(n, k, L) = Θ(nr).

We now consider a different generalization of the Erdős-Ko-Rado Theo-

rem, which can be considered a perturbation result. Namely, how large can a

k-uniform intersecting hypergraphH be if we require ∩H∈HH = ∅? (Such hy-

pergraphs are called non-trivial.) LetH∗ = {H ∈
(
[n]
k

)
: 1 ∈ H,H∩[2, k+1] 6=

∅} ∪ [2, k + 1]. Hilton and Milner[68] proved this is the maximal non-trivial

intersecting family and moreover that for k ≥ 4, it is the only extremal

family.

Theorem 3.3. If H is a k-uniform non-trivial intersecting hypergraph then

|H| ≤ |H∗| =
(
n− 1

k − 1

)
−

(
n− k − 1

k − 1

)
+ 1



C
E

U
eT

D
C

ol
le

ct
io

n

3 EXTREMAL SET SYSTEMS 75

To emphasize the importance of the shifting method, we note that Frankl

and Füredi[46] gave a short proof of this theorem using the shifting technique.

Note that in the Erdős-Ko-Rado Theorem, the construction is a ’star’

hypergraph; there exists one vertex contained in every hyperedge. Similarly

in the Hilton-Milner construction, there is one vertex contained in every

hyperedge but one. We consider more results in this direction. The set

C ⊂ [n] is a transversal for the hypergraph H if for all H ∈ H, H ∩ C 6= ∅.

The minimal size of a transversal is denoted τ(H) and is called the transversal

number of the hypergraph H. Then we can ask how big can an intersecting

family be if it has transversal number τ? (Note that Theorem 3.1 answers

this for τ = 1 while Theorem 3.3 answers this for τ = 2.) Frankl, Ota

and Tokushige[51] answer the general question by considering the following

function. For a hypergraph H ⊂
(
[n]
k

)
, and an integer t ≥ 1, let

Ct(H) = {C ∈
(

[n]

t

)
: ∀H ∈ H, C ∩H 6= ∅}

Of course, if t is less than the transversal number of H, Ct(H) will be empty.

Now define

pt(k) = max{|Ct(H)| : H ⊂
(

[n]

k

)
is intersecting and τ(H) ≥ t}

Gyárfás[59] proved that |Ct(H)| ≤ kt for hypergraphs H which are not nec-

essarily intersecting. For k ≥ 2, this bound is only achieved when H consists

of t disjoint edges. Frankl, Ota, and Tokushige[51] found the correct values

of p1(k), p2(k), and p3(k). The significance of this function is explained by

their theorem:
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Theorem 3.4. Let F be a k-uniform intersecting family with a minimal

transversal of size τ with k > k0(τ). Then

|F| ≤ pτ−1(k)

(
n− τ

k − τ

)
+O(nk−τ−1)

Thus they have determined the maximal size of hypergraphs with transver-

sal number 3 and transversal number 4. Erdős and Lovász[33] constructed

k-uniform hypergraphs with transversal number k of size k!(e−1). Lovász[80]

conjectured this was maximal but Frankl, Ota, and Tokushige[51] have man-

aged to construct a 4-uniform hypergraph with transversal number 4, and

42 edges (one more edge than in the Erdős-Lovaász construction). Frankl,

Ota, and Tokushige conjecture that their construction is best possible, but

it remains an open problem. They also conjecture that

Conjecture 3.5. pt(k) = kt −
(

t
2

)
kt−1 +O(kt−2) holds for k ≥ k0.

3.2 The Unbalance of a Hypergraph

We now examine one last Erdős-Ko-Rado-type problem. Define the unbal-

ance of a hypergraph H as u(H) = |H| − d(H), where d(H) is the maximal

degree size in H. The problem of finding a hypergraph with largest possi-

ble unbalance is something of a perturbation problem of the Erdős-Ko-Rado

Theorem. We want to find a large intersecting hypergraph with relatively

small maximum degree. Dinur and Friedgut[22] proved that if H is an in-

tersecting hypergraph then u(H) = O(
(

n−2
k−2

)
). The proof used analysis and

Katona[71] asked if there was a simple purely combinatorial proof. Here we
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present the combinatorial proof from [78] of a sharp bound on the maximum

unbalance of k-uniform intersecting families. Our proof relies heavily upon

the classification of families based on their transversal number.

Observe that in the case of equality in Theorem 3.1 we have a family

with unbalance equal to 0. Families with transversal number equal to 1 are

referred to as trivial families. In [68], Hilton and Milner proved that the

largest nontrivial k-uniform family has size
(

n−1
k−1

)
−

(
n−k−1

k−1

)
+1 when n ≥ 2k.

It is worth noting that this family has only slightly larger unbalance; it has an

unbalance of 1. We will use the following to construct families with maximal

unbalance.

Definition 3.6. A (2l + 1)-kernal system is the following family. Take a

(2l+1) element subset of the ground set. This is the kernel of the family.

The family consists of all k-sets containing at least (l + 1) vertices from the

kernel.

The 3-kernel system has 3
(

n−3
k−2

)
+

(
n−3
k−3

)
sets and max degree 2

(
n−3
k−2

)
+

(
n−3
k−3

)
;

it has unbalance
(

n−3
k−2

)
. We will show that this is the maximal unbalance a k-

uniform family can achieve. In fact, we will show that every family achieving

this bound is either isomorphic to the 3-kernel system or to any sub-family

of the 3-kernel system which contains all the k-sets intersecting the kernel

in exactly 2 elements. Clearly adding or deleting those sets containing the

entire kernel has no effect on the unbalance of the family. We prove that this

is true for all n > 6k3. For 3k − 2 ≥ n it is easy to check that the 5-kernel
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system has a larger unbalance than the the 3-kernel system.

We conjecture that the 3-kernel system is best for n > 3k − 2.

Theorem 3.7 (Lemons-Palmer[78]). If F ⊂
(
[n]
k

)
is intersecting and n >

n0(k) = 6k3 the unbalance of F is u(F) ≤
(

n−3
k−2

)
. Equality holds iff F is a

subfamily of the 3-kernel system which contains all the k sets intersecting the

vernal in two points.

To prove the theorem, we investigate the cases when τ(F) = 1, τ(F) = 2,

and τ(F) ≥ 3. The second case will give us our 3-kernel system. We then

refine this approach, considering both subcases τ = 3 and τ ≥ 4 to improve

our bound of n0(k). In [42], Frankl gives the exact bounds on the size of

families with τ(F) = 3. Similarly, in [52], Frankl, Ota, and Tokushige found

the exact bounds on the size of families with τ(F) = 4. However, we include

our calculations here both for the sake of completeness (as the calculations

are fairly simple) and because our results are true for all n.

Proof of Theorem 3.7. Let F be an intersecting family, and let T be a transver-

sal of minimal size for F . We consider three cases.

1. |T | = 1. Then there exists a vertex x that is contained in every F ∈ F .

So, d(F) = d(x) = |F| implying u(F) = 0.

2. |T | = 2. Let T = {x, y}. Let Fx = {F ∈ F : F ∩T = {x}}. Similarily,

let Fy = {F ∈ F : F ∩T = {y}}. Now, |F| = d(x)+d(y)−d(xy) and clearly
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d(F) ≥ max{d(x), d(y)}. Thus,

u(F) = |F| − d(F)

≤ d(x) + d(y)− d(xy)−max{d(x), d(y)}

= min{d(x), d(y)} − d(xy)

= min{|Fx|, |Fy|}

Let Fx − x and Fy − y be the families achieved by removing x, respectively

y, from every set in Fx (respectively Fy.) Clearly |Fx − x| = |Fx| and

|Fy − y| = |Fy|. Now (Fx − x) and (Fy − y) are (k − 1)-uniform families on

the ground set X\{x, y}. As F is intersecting, we must have that ∀ ∈ Fx−x

and ∀f ∈ Fy−y, h∩f 6= ∅. That is, Fx−x and Fy−y are cross-intersecting.

We can now apply a theorem of Frankl and Tokushige[53]:

Theorem 3.8. Suppose F ,G ∈
(

X
k

)
, are cross-intersecting families with

|X| = n ≥ 2k. If |F| ≥
(

n−1
k−1

)
−

(
n−k−1

k−1

)
+ 1 and F is nontrivial, then

|G| ≤
(

n−1
k−1

)
−

(
n−k−1

k−1

)
+ 1 �

If at least one of (Fx − x), (Fy) is nontrivial, then we can apply this

directly, so that,

u(F) ≤ min{|Fx|, |Fy|}

≤
(

(n− 2)− 1

(k − 1)− 1

)
−

(
(n− 2)− (k − 1)− 1

(k − 1)− 1

)
+ 1

=

(
n− 3

k − 2

)
−

(
n− k − 2

k − 2

)
+ 1

<

(
n− 3

k − 2

)
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On the otherhand, if both Fx and Fy are trivial and maximal, Theorem 3.1

implies that there is a z1 and z2 contained in all the sets of Fx−x and all the

sets of Fy − y respectively. In this case we have |Fx| = |Fy| =
(
(n−2)−1
(k−1)−1

)
=(

n−3
k−2

)
. Since Fx − x and Fy − y are cross-intersecting, z1 must be the same

as z2 and thus F must be one of the subfamilies of the 3-kernel system with

kernel {x, y, z1} which contains all the edges intersecting the kernel in two

points.

3. |T | ≥ 3. Let x, y, z ∈ T . By the minimality of |T | for each v ∈

T, ∃F ∈ F such that F ∩ T = {v} (otherwise v need not be included in T .)

Let F,G ∈ F such that F ∩ T = {x} and G ∩ T = {y}. Let L = F ∩ G.

Now for each point v ∈ L, ∃Fv ∈ F such that Fv ∩ {x, y} 6= ∅ and v, z 6∈ F .

Otherwise each set from {F : F ∩{x, y, z} 6= ∅} meets at least one point from

{v, z}. But this means that x and y can be replaced by z to make a smaller

transversal, contradicting the minimality of T . Thus the sets Fv must exist.

Now we can find a simple upper bound for d(z) by overcounting the number

of sets that contain z.

Consider a set H containing z. H must intersect both F and G. We

distinguish two subcases.

3.1. H intersects both F and G in v ∈ L. The point v can be chosen

in |L| < k ways. Now H must also intersect Fv (recall that v 6∈ Fv). The

intersection of H and Fv can be chosen in |Fv| = k ways. The remaining

k − 3 points of H can be chosen in
(

n−3
k−3

)
ways. This gives no more than

k2
(

n−3
k−3

)
choices for H.
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3.2. H intersects F and G in distinct points outside of L. The intersection

of H and F can be chosen in k− |L| < k ways. The intersection of H and G

can be chosen in k − |L| < k ways. The remaining k − 3 points of H can be

chosen in
(

n−3
k−3

)
ways. This gives no more than k2

(
n−3
k−3

)
choices for H.

In total we have d(z) ≤ 2k2
(

n−3
k−3

)
. It should be noted that in general

this will be a gross overcount. The choice of z from T was arbitrary, so

∀v ∈ T, d(v) ≤ 2k2
(

n−3
k−3

)
. Clearly |T | ≤ k, so we have |F| ≤

∑
v∈T d(v) ≤

2k3
(

n−3
k−3

)
. For n > 2k3(k − 2) + k we have 2k3

(
n−3
k−3

)
<

(
n−3
k−2

)
.

With a little closer analysis, we can improve n0(k) to 6k3. The above

argument shows that if τ(F) = 3, then |F| < 6k2
(

n−3
k−3

)
. This is less than(

n−3
k−2

)
for n > 4k3 − 12k2 + k. Thus all we need to do is bound the size of F

when τ(F) ≥ 4.

Suppose F is intersecting with τ(F) ≥ 4. Then there is a minimal

transversal T of the family containing at least four elements. Let them be

t1, t2, t3, and t4. By minimality of T , for 1 ≤ i ≤ 3 there are edges in the

family Fi such that T ∩ Fi = {ti}. We estimate the degree of t4. Each edge,

H containing t4 must intersect all the Fi for i ≤ 3. There are 3 possibilities.

1. Suppose we pick a point x ∈
⋂

i≤3 Fi to be in H (if such an x exists).

Now x cannot replace t1, t2, and t3, in the transversal T (otherwise T would

not be minimal) so there must exist 3 edges Gi, 1 ≤ i ≤ 3, meeting {t1, t2, t3}

such that: x, t4 6∈ Gi, and
⋂

i≤3Gi = ∅. Otherwise all sets containing t1, t2,

and t3, also contain one of x, t4 or a point z ∈
⋂

i≤3Gi. But then we can

replace t1, t2 and t3 in the transversal with x and z, violating the minimality
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of T . Now H must intersect each of the Gi; we must choose at least one

point from one of the pairwise intersections and one from the remaining Gi.

The remaining k − 4 points of H we choose arbitrarily. In this way we can

construct no more than k3
(

n−4
k−4

)
edges containing t4.

2. Suppose we pick a point x in the intersection of exactly two of the sets

Fi - say F1 and F2 (the two sets can be chosen in 3 different ways) to be in H.

Now H must intersect F3. Let it do so in the point y. Then as above, there

must exist an edge G meeting {t1, t2, t3} such that x, y, t4 6∈ G. Otherwise x

and y could replace t1, t2 and t3 in T , a contradiction by the minimality of

T . Now H must also intersect G. Thus the number of such edges is no more

than 3k3
(

n−4
k−4

)
edges containing t4.

3. Suppose we pick points xi ∈ Fi \Fj for 1 ≤ i, j ≤ 3, and j 6= i to be in

H. We then choose the remaining vertices of H arbitrarily. Again we have

the number of such edges is at most 3k3
(

n−4
k−4

)
edges containing t4.

Altogether we estimate that degree of t4 to be no more than 7k3
(

n−4
k−4

)
.

We conclude that |F| ≤ 6k4
(

n−4
k−4

)
. We note that this is less than

(
n−3
k−2

)
for

n > 6k3 as desired.

It is not known if n0(k) = O(k3) is best possible. An easy lower bound

is n0(k) ≥ 3k − 2. As mentioned above, the unbalance of F , a 5-kernel

system, is greater than that of the 3-kernel system for such values of n and

k. We have |F| = 10
(

n−5
k−3

)
+ 5

(
n−5
k−4

)
and d(F) = 6

(
n−5
k−3

)
+ 4

(
n−5
k−4

)
yields

u(F) = 4
(

n−5
k−3

)
+

(
n−5
k−4

)
. This is larger than

(
n−3
k−2

)
when n < 3k − 2.
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4 Further Questions

Here we consider some of the questions raised by our results and possibilities

for further research. Most of our results concerned hypergraphs but there was

one directly about graphs, namely Lemma 1.10. We previously mentioned

that it would be interesting to know if this theorem is sharp. It is also

interesting that we do not know what the corresponding statement should

be regarding paths of even length. Another possible extension of our work

concerning graphs is the following: our proof technique in section 2.2.2 might

be translatable to graphs - and if so, perhaps could give a better bound to the

Bondy-Simonivits Even Cycles Theorem. The best that we could hope for is

an improvement in the bound by a factor of k but this would be interesting.

Concerning hypergraphs, the most interesting next step (regarding our

main theorems) would be to prove the sharpness of our bounds - however it

seems like this will be no easier than it has been in the case of graphs; a major

breakthrough is needed. On the other hand, the Berge approach that we have

followed here seems to be relatively unstudied (at least as Turán problems.)

As far as we know, only the extremal hypergraphs avoiding Berge-cycles of

a certain length have been studied so far. Certainly other graphs could yield

interesting questions in the hypergraph setting as well. For instance, we are

unaware of any results concerning the Berge-type generalization of complete

graphs to hypergraphs. Finding the extremal hypergraphs containing no such

Berge-type complete hypergraph may be easier than finding the extremal hy-
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pergraphs avoiding Turán-type complete hypergraphs. An even easier prob-

lem would be to determine the extremal size of hypergraphs with large edges

containing no short path; in other words, the generalization of Lemma 2.40

should be a simple problem. Again, as far as we know, these problems have

not been looked at yet, despite their simplicity. In general it would be inter-

esting to know which Berge type Turán problems are degenerate and which

are not. Clearly the extremal hypergraphs avoiding Berge-cycles is an ex-

tremely degenerate problem; we have upper bounds that are the same as the

bounds for the corresponding degenerate problems in graph theory. However,

it is easy to imagine there are problems that are only mildly degenerate; that

is that there are k-uniform hypergraphs avoiding a Berge-type structure with

Θ(nr) edges where k > r > 2. For instance finding extremal k-uniform hy-

pergraphs avoiding a Berge-type complete graph on l vertices with k > l is

almost certainly such a ’mildly degenerate’ problem.
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[29] Erdős, P. and Hanani, H. On a limit theorem in combinatorial analysis,

Publ. Math. Debrecen 10, (1963) 10-13.
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results on Ramsey-Turán type problems, Combinatorica 3 (1983), n. 1,

69-81.
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