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Abstra
tIn this thesis, we fo
us on two types of problems in extremal �nite set theory. Firstwe introdu
e a distan
e-like 
on
ept, the F -free distan
e of two F -free hypergraphs.For a �xed hypergraph F , we will 
onsider the problem of �nding the pairs of hyper-graphs with the largest F -free distan
e. For some hypergraphs we will obtain exa
tresults while for some others we will obtain upper and lower bounds on the largest F -free distan
e. In the se
ond part of the thesis, we will elaborate on extremal problemsof weighted set systems, where the weight of a set depends only on its size. The maintool in our investigation will be the so-
alled pro�le ve
tor of a set system and we willdetermine the 
onvex hull of the pro�le ve
tors of set systems with some pres
ribedproperties.
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1 Introdu
tionOne of the �rst theorems in extremal �nite set theory is that of Sperner [31℄, statingthat if we 
onsider a family F of subsets of an n-element set (n-set for short) S su
hthat no set F ∈ F 
an 
ontain any other F ′ ∈ F , then the number of sets in F isat most ( n
⌊n/2⌋

). The 
elebrated theorem of Erd®s, Ko and Rado [6℄ (it was publishedonly in 1961, 23 years after it was proved by the authors!) asserts that for any twopositive integers t ≤ k there exists a third one n0(k, t) su
h that if a family G 
onsistsof k-subsets of an n-set, where n ≥ n0(k, t) and if for any two sets G, G′ ∈ G, we have
|G ∩ G′| ≥ t, then the size of G is at most (n−t

k−t

).Both theorems deal with a problem of �nding the largest size that a family of subsetsof a �xed underlying set 
an have if the family satis�es some pres
ribed property.Problems of this type are in the fo
us of extremal �nite set theory.We will use the standard notation 2X to denote the power set of the set X, and
(

X
k

) will denote the set of all k-subsets of X. The set of the �rst n positive integerswill be denoted by [n]. A hypergraph (or set system) H is a pair (V (H), E(H) with
E(H) ⊆ 2V (H). V (H) is the vertex set of the hypergraph and E(H) is the edge set of
H (mostly we will identify hypergraphs with the set (family) of their (hyper)edges).If E(H) ⊆

(

V (H)
k

) then H is said to be k-uniform. We will say that a hypergraph H
ontains a 
opy of another hypergraph F if there exists an edge preserving inje
tion ffrom V (F) to V (H), i.e. whenever F ∈ E(F), then f(F ) = {f(x) : x ∈ F} ∈ E(H),and H is said to be F-free if it does not 
ontain a 
opy of F . We will 
all a mapping
f with the properties above an embedding of F to H, and an embedding of F to itselfis an automorphism of F .With the notations above we 
an formulate the general problem (mentioned in these
ond paragraph) as follows: given a set of families of sets A ⊆ 22X (i.e. a set ofhypergraphs, all with vertex set X), we have to �nd maxF∈A{|F|} (and des
ribe all5
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families with this size, the so 
alled extremal families).One way to de�ne the family A is to �x a hypergraph F and let A be the set of F -free hypergraphs with vertex set X. (Or one may forbid a, possibly in�nite, 
olle
tion
C = {F1,F2, ...} of hypergraphs.) If F is k-uniform and A is the family of all k-uniform
F -free hypergraphs with vertex set [n], then ex(n,F) := maxF∈A{|F|} is the Turánnumber of F . By an observation of Katona, Nemetz and Simonovits [25℄ the sequen
e
ex(n,F)

(n

k)
is non-negative and monotone non-in
reasing, so its limit, the Turán densityexists. For ordinary graphs (i.e. when k = 2), the Turán density is determined by theErd®s-Stone-Simonovits theorem [10℄, [9℄ (even if a 
olle
tion of graphs is forbidden),but only sporadi
 results are known if k ≥ 3 (for a survey on the topi
 see [17℄).In Se
tion 2 (whi
h is based on results from [27℄ and [28℄) we will 
onsider problemsthat are also related to F -free hypergraphs. Let us suppose, we are given two maximal

F -free hypergraphs H1 = (V, E1) and H2 = (V, E2) with the same vertex set V (heremaximality means, that whenever we add a subset of the vertex set to the edge set,the hypergraph obtained will not be F -free). Then their union H1∪H2 := (V, E1∪E2)
annot be F -free, be
ause of their maximality. So several 
opies of F will appear in
H1 ∪ H2 witnessing that H1 and H2 are two di�erent maximal F -free hypergraphs.The more eviden
e (the more 
opy of F) we have, the more di�erent they are.Therefore to measure the di�eren
e between two F -free hypergraphs we introdu
etheir F-free distan
e (whi
h is a bit misleading, sin
e the triangle inequality does nothold even if we 
onsider only maximal F -free set systems) as the number of 
opies of Fthat are 
ontained in H1 ∪H2 (H1 and H2 need not to be maximal, so if there exists amaximal F -free hypergraph 
ontaining both of them, then their distan
e is 0) and wedenote this quantity by DF (H1,H2). To be more pre
ise, DF(H1,H2) is the numberof embeddings of F into H1 ∪H2 divided by the number of automorphisms of F . Fora 
olle
tion C of hypergraphs and two C-free set systems (i.e. F -free for all F ∈ C) we6
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de�ne their C-free distan
e DC(H1,H2) by
DC(H1,H2) =

∑

F∈C

DF(H1,H2).Having introdu
ed the de�nitions above, we 
an ask the following question: given ahypergraph F (or a 
olle
tion of hypergraphs C), what is the maximum F -free (C-free) distan
e that two F -free (C-free) hypergraphs 
an have if the vertex set of bothhypergraphs is [n]. In the introdu
tory part of Se
tion 2. we will show some exampleswhen �nding the maximum distan
e is easy and then we move on to more di�
ult
ases.Let us turn ba
k to our starting problem: how we 
an 
hoose the most numberof subsets of [n] su
h that the set system of our 
hosen sets satisfy some pres
ribedproperty. In appli
ations (and from theoreti
al point of view, as well) it might happen,that we have some preferen
e in pi
king the subsets, so it is quite natural to 
onsidera weighted version of this problem. If w is a real-valued fun
tion (a weight fun
tion)on all the possible subsets (i.e. w : 2[n] → R), then we de�ne the weight of a family ofsets F ⊆ 2[n] by
w(F) =

∑

F∈F

w(F ),and now we are interested in �nding the largest weight that a set system (satisfyingthe pres
ribed property) may have. Note, that the original problem 
orresponds to theall-one weight, or if we 
onsider only k-subsets (as in the Erd®s-Ko-Rado theorem),then all k-sets should have weight 1, and all other sets should have weight 0.Dealing with all possible weight fun
tions seems hopeless (and not very interesting),but there are some types of weight fun
tions that are quite well studied. One type ofweight fun
tions 
omes from a probabilisti
 approa
h. Let us suppose that we pi
ka random subset X of [n] in su
h a way, that for all i ∈ [n] we put i into X withprobability pi (0 ≤ pi ≤ 1) independently from what happens to all other j ∈ [n].7
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Then for any subset A ⊆ [n] we have
P(X = A) =

∏

i∈A

pi

∏

i/∈A

(1 − pi).If we let this probability to be the weight of a subset, we get that the weight of a setsystem is the probability that a randomly 
hosen subset will belong to it. Results onthis type of weight fun
tions 
an be found (among others) in [11℄ or [16℄.In Se
tion 3 (whi
h is based on joint results with Dániel Gerbner [18℄, [19℄) we will
onsider weight fun
tions where the weight of a subset depends only on the size of theset. So formally let f : {0, 1, ..., n} → R be a real-valued fun
tion and for any subset
A ⊆ [n] let w(A) := f(|A|). A very natural weight fun
tion of this type is de�ned bytaking f to be the identity fun
tion (i.e. w(F ) = f(|F |) = |F |). In this 
ase the weightof a set system is

w(F) =
∑

F∈F

|F |the volume of F .When 
onsidering this kind of weights, it is very useful to introdu
e two ve
tors oflength n + 1 (the 
oordinates indexed from 0 to n). The ith 
oordinate of the weightve
tor is the weight of any set with size i. We will denote the weight ve
tor by wand its ith 
oordinate by wi. The ith 
oordinate of the pro�le ve
tor of a set system
F ⊆ 2[n] is the number of sets that belong to F that have size i. The pro�le ve
tor of
F will be denoted by f(F) and its ith 
oordinate by f(F)i.With this notation the weight of a family for a given weight fun
tion w is simplythe inner produ
t of the weight ve
tor and the pro�le ve
tor:

w(F) =
∑

F∈F

w(F ) =

n
∑

i=0

f(F)iwi = f(F) ·w.So we transformed our problem: if for a set A of set systems we denote by µ(A)the set of pro�le ve
tors of the set systems in A, then we are looking for
max

f∈µ(A)
{w · f}.8
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We know from linear programming, that for any weight ve
tor w the maximumabove is taken at one of the extreme points of the 
onvex hull of µ(A), whi
h we denoteby 〈µ(A)〉 and whi
h is 
alled the pro�le polytope of A. The set of extreme points isdenoted by E(A) and the families having a pro�le in E(A), the extremal families by
E(A). So, if one determines E(A), then to get the maximum weight for any weightve
tor w, one just has to 
ompute the weight for the ve
tors in E(A). Unfortunately,the size of E(A) might grow exponentially with n (the size of the underlying set)tending to in�nity.However, if the weights are non-negative, then in
reasing any 
oordinate of thepro�le ve
tor in
reases the weight of the family, so the maximum for these weightsis taken at an extreme point whi
h is maximal with respe
t to the 
oordinate-wiseordering. We 
all these ve
tors essential extreme points and denote them by E∗(A)and the 
orresponding families by E∗(A). Lu
kily, in most known results, the size of
E∗(A) grows only polynomially. Note that to prove that a set of pro�les are the extremepoints of the pro�le polytope one has to express all pro�les as a 
onvex 
ombinationof these ve
tors, while to prove that a set of pro�les are the essential extreme pointsof the polytope it is enough to dominate (a ve
tor f dominates g if it is larger in the
oordinate-wise ordering) any other pro�les.The systemati
 investigation of pro�le ve
tors and pro�le polytopes was started byP.L. Erd®s, P. Frankl and G.O.H. Katona in [7℄ and [8℄, an overview of the topi
 
anbe found in the book of K. Engel [4℄.The notion of pro�le ve
tor 
an be introdu
ed for any ranked partially ordered set(poset) P (a poset P is said to be ranked if there exist a non-negative integer l and asurje
tive mapping r : P → {0, 1, ..., l} su
h that for any p1, p2 ∈ P if p2 
overs p1, wehave r(p1) + 1 = r(p2)). In this 
ase the pro�le of a family F ⊆ P is de�ned by9
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f(F)i = |{p ∈ F : rank (p) = i}| (i = 0, 1, ..., n),where rank (p) denotes the rank of an element p and n is the largest rank in P . Severalresults are known about pro�le ve
tors in the generalized 
ontext as well (see e.g. [4℄,[13℄, [31℄).One of the most studied ranked poset is Ln(q), the poset of subspa
es of an n-dimensional ve
tor spa
e V over the �nite �eld GF (q) with q elements (the ordering isjust set-theoreti
 in
lusion). In this 
ase the rank of a subspa
e is just its dimension,so the pro�le ve
tor f(U) of a family U of subspa
es is a ve
tor of length n+1 (indexedfrom 0 to n) with f(U)i = |{U ∈ U : dim U = i}|, i = 0, 1, ..., n. In the thesis, wedetermine the pro�le polytope of interse
ting families in the poset Ln(q). A family Uof subspa
es is 
alled interse
ting if for any U, U ′ ∈ U we have dim(U ∩ U ′) ≥ 1 (and
t-interse
ting if for any U, U ′ ∈ U we have dim(U ∩ U ′) ≥ t).In the �rst subse
tion of Se
tion 3, we will determine the extreme points of thepro�le polytope of interse
ting families of subspa
es, while in the se
ond subse
tion wewill introdu
e a generalization of the notion of pro�le ve
tors and prove some resultsfor the new 
on
ept.

10
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2 The distan
e of F-free familiesIn this se
tion we 
onsider the following problem: given a hypergraph F , let us �ndthe pair of two F -free hypergraphs that are "the most di�erent" from ea
h other. Ifembed(F ,G) denotes the number of embeddings of F into G and aut(F) denotes thenumber of automorphisms of F , then the di�eren
e of two F -free families with the samevertex set (from now on, all hypergraphs 
onsidered have vertex set [n]) is measuredby their F -free distan
e
DF(H1,H2) =

embed(F ,H1 ∪H2)aut(F)
.For a 
olle
tion of forbidden subhypergraphs C and two C-free hypergraphs H1 and H2,the C-free distan
e is de�ned by DC(H1,H2) =

∑

F∈C DF(H1,H2).Let us 
onsider two easy examples, before we pro
eed to the more 
ompli
atedproblems. In our �rst example we examine hypergraphs of whi
h any pair of hyperedges
H1, H2 either H1 ⊆ H2 or H2 ⊆ H1 hold. To put this property of hypergraphs in our
ontext, we have to de�ne the 
olle
tion of forbidden hypergraphs. Obviously, we haveto in
lude in the 
olle
tion all non-isomorphi
 non-in
luding pairs. Any su
h pair isdetermined by a triple: the size of H1 ∩ H2, H1 \ H2 and H2 \ H1, so formally C⊆ =

{Fk,l,m : 0 ≤ k, 1 ≤ l ≤ m}, where Fk,l,m = {{1, 2, ...k, k + 1, ...k + l}, {1, 2, ..., k, k +

l + 1, k + l + 2, ..., k + l + m}}. Informally, to 
ompute the C⊆-free distan
e of twohypergraphs with the property above we should 
ount the pairs of hyperedges H1, H2 inthe union for whi
h both H1 6⊆ H2 and H2 6⊆ H1 hold. Maximal families with this "non-in
lusion-free" property are saturated 
hains. (A 
hain C = {C0 ⊆ C1 ⊆ ... ⊆ Cn}is saturated if for all j, |Cj| = j holds.) The empty set is a subset of ea
h set,and ea
h set is a subset of the whole underlying set [n], so the maximum number ofpairs of sets none of them 
ontaining the other, where the sets are taken from two
hains C1,C2, is at most (n − 1)2. And for any pair of saturated 
hains of the form11
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C = {C0 ⊆ C1 ⊆ C2 ⊆ ... ⊆ Cn−1 ⊆ Cn} and C
′ = {Cn ⊆ Cn−1 ⊆ ... ⊆ C1 ⊆ C0}where A denotes the 
omplement of the set A, we have DC⊆(C,C′) = (n − 1)2.As another example, let us 
onsider the set systems with the property that forevery F1, F2 ∈ F F1 ∩ F2 = ∅ (i.e. F is a family of pairwise disjoint sets). This time,the 
olle
tion of forbidden 
on�gurations is C 6∩ = {F ′

k,l,m : 1 ≤ k, 0 ≤ l ≤ m}, where
F ′

k,l,m = {{1, ..., k, k + 1, ..., k + l}{1, ..., k, k + l + 1, ..., k + l + m}} and DC6∩(H1,H2) isthe number of pairs of interse
ting hyperedges. In the 
ase of this property maximalfamilies are partitions of [n]. If for every pair we point out an element of the interse
tion,then we get an inje
tive mapping from the non-disjoint pairs to the base set. So thenumber of su
h pairs 
an be at most n. For any partition P we 
an 
reate anotherpartition P ′ by 
hoosing an element from ea
h non-empty set to form a set in P ′,then again 
hoosing one element from all remaining non-empty sets, and so on to have
D 6∩(P,P ′) = n (as an expli
it example, one 
an think of the partition P1 
onsistingonly of the whole underlying set [n] and the partition P2 
onsisting of all singletons of
[n]).2.1 Interse
ting familiesIn this subse
tion we will 
onsider interse
ting families of sets. Just to remember,
F ⊆ 2[n] is 
alled interse
ting if for any two F, F ′ ∈ F we have |F ∩ F ′| ≥ 1. This isequivalent to that there is no disjoint pair of sets in F . So, to get into our framework offorbidden 
on�gurations, we de�ne C∩ = {Fk,l : 0 ≤ k ≤ l}, where Fk,l = {{1, ..., k}{k+

1, ..., k+ l}}. In this way, the C∩-free distan
e of two interse
ting families is the numberof disjoint pairs in their union.The pre
ise form of the Erd®s-Ko-Rado theorem [6℄ for interse
ting families (nothow it is mentioned in the introdu
tion) states that if k ≤ n/2, then the size of any
k-uniform interse
ting family F ⊆ 2[n] is at most (n−1

k−1

) and if k < n/2 and |F| =
(

n−1
k−1

),12
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then F must be isomorphi
 to the family F0 = {F ∈
(

[n]
k

)

: 1 ∈ F}. It is quite naturalto 
onje
ture that the pair
F0 = {F ∈

(

[n]

k

)

: 1 ∈ F}, G0 = {G ∈

(

[n]

l

)

: n ∈ G}will have the largest C∩-free distan
e if we restri
t ourselves to pairs F ,G, where F is
k-uniform and G is l-uniform.Though in the non-uniform 
ase any maximal interse
ting family has size 2n−1 (notonly the family F ′

0 = {F ⊆ n : 1 ∈ F}), one still expe
ts, that the following pair ofinterse
ting families have the largest C∩-free distan
e:
F ′

0 = {F ⊆ [n] : 1 ∈ F}, G′
0 = {G ⊆ [n] : n ∈ G}.We will refer to the pairs (F0,G0 and (F ′

0,G
′
0) as the 
onje
tured hypergraphs/set sys-tems.In what follows we prove that the 
onje
tured sets systems are in fa
t optimal inthe non-uniform 
ase and if n is large enough they are optimal in the uniform 
ase aswell.2.1.1 The Uniform CaseThroughout this subse
tion we will assume that F is k-uniform and G is l-uniform.Now if k + l > n, then there are no disjoint k and l element subsets.If k + l ≤ n, but, say, l > n

2
, then any two l-element subsets meet ea
h other. Forany �xed k-element subset there are (n−k

l

)

l-element subsets disjoint from this �xedset. So the best one 
an do is to let F be the largest interse
ting k-uniform set system,and let G 
onsist of all l-element subsets disjoint from at least one set in F . TheErd®s-Ko-Rado theorem [6℄ says that F should be all k-element sets 
ontaining a �xedelement, so then G should be all l-element sets not 
ontaining this �xed element. Thusin this 
ase the 
onje
tured set systems are not optimal.13
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If 2k = n and k = l then any set has only one disjoint pair (
onsidering now onlythe k-element sets), its 
omplement. So one 
an put from ea
h pair one set into F andone into G, and sin
e in this way subsets 
ontaining 1 and n together (or 
ontainingnone of them) will be put into F or G, these families will have more disjoint pairs, thanthe 
onje
tured systems (and 
learly will be maximal ones).Despite these failures of the 
onje
tured systems, one 
an state the followingTheorem 2.1.1 For any k and l, there exists an n(k, l) su
h that if n ≥ n(k, l)and F , G are k and l-uniform hypergraphs , then D∩(F ,G) ≤ D∩(F0,G0) where F0,G0are the 
onje
tured hypergraphs.Proof:Case A ⋂

F 6= ∅ and ⋂G 6= ∅.In this 
ase⋂F and⋂G must be disjoint, sin
e otherwise there would be no disjointsets in F and G. Let us pi
k an i ∈
⋂

F and a j ∈
⋂

G, and add {F ⊆ [n] : i ∈ F} to
F and {G ⊆ [n] : j ∈ G} to G. In this way we get the 
onje
tured hypergraphs, and
learly D(F ,G) 
annot de
rease.Case B ⋂

F = ∅ (or similarly ⋂G = ∅).Observe the following two things:1, if n ≥ k +2l then again by [6℄ one gets that for a �xed F ∈ F the number of setsin G from whi
h F is disjoint is at most (n−k−1
l−1

), whi
h is the 
ase in the 
onje
turedhypergraphs for all sets in Fi,j. So if |F| ≤ |Fi,j| =
(

n−2
k−1

) then we are done.2, Sin
e ⋂F = ∅ then as a spe
ial 
ase of Theorem3 of [21℄ we get that
|F| ≤ 1 +

(

n − 1

k − 1

)

−

(

n − k − 1

k − 1

)and as for large enough n
(

n − 2

k − 1

)

> 1 +

(

n − 1

k − 1

)

−

(

n − k − 1

k − 1

)14
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holds, by the remark made after the �rst observation we are done. �2.1.2 The Non-Uniform CaseLet us �rst state the main theorem of this subse
tion.Theorem 2.1.2 For any F ,G ⊆ 2[n] and for any n ≥ 2, DC∩(F ,G) ≤ DC∩(F ′
0,G

′
0)holds, where F ′

0,G
′
0 is the 
onje
tured pair.Proof: Without loss of generality one 
an assume that the pair (F ,G) is maximalwith respe
t to the property that all F ∈ F have at least one G ∈ G disjoint from it(and the same holds for any G ∈ G). Our 
onje
tured pair of set systems does not havethis property, so if we remove the "negligible" sets (the ones that are not 
ontained inany disjoint pair of sets in the union F ′

0 ∪G′
0) we get the following pair of hypergraphs:

F ′′
0 = {F ⊆ [n] : 1 ∈ F, n 6∈ F}, G′′

0 = {G ⊆ [n] : n ∈ G, 1 6∈ G},to whi
h we will still refer as the 
onje
tured pair of hypergraphs (and for whi
h
DC∩(F ′

0,G
′
0) = DC∩(F ′′

0 ,G′′
0 ) holds).We begin the proof with the following 
laim:Claim 2.1.3 F ∈ F ⇔ F ∈ G.Proof of Claim: If F ∈ F then there is some G ∈ G su
h that F ∩ G = ∅. Thismeans G ⊆ F , and as G meets all sets in G, F meets them, too. So by maximality

F ∈ G. The other dire
tion follows, sin
e we 
an 
hange the role of F and G. �By virtue of the above 
laim, we 
an �forget about� G. But what should we 
ount,and are there any additional 
onditions on F? Con
erning the �rst question: as for a�xed F we 
ounted the Gs disjoint from it, and sin
e F ∩ G = ∅ ⇔ F ⊆ G, by the
laim we get, that now for a �xed F we should 
ount the number of F ′ ∈ F : F ⊆ F ′.(Note that F ⊆ F also 
ounts, be
ause this is for the pair (F, F )!) Let us denote this15
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number by ρF(F ) (and we will omit F from the index, if it is 
lear from the 
ontext),and put ρ(F) =
∑

F∈F ρF(F ).Now to the other question: sin
e by the above 
laim we know that G = F = {F :

F ∈ F} and the original 
onditions were that both F and G should be interse
ting, weget that F should be interse
ting and 
o-interse
ting. So we 
on
lude the followingClaim 2.1.4 max{D(F ,G) : F ,G are interse
ting} = max{ρ(F) : F is interse
tingand 
o-interse
ting}. �By this 
laim we are left to show that ρ(F) ≤ ρ(F ′′
0 ) whenever F is an inter-se
ting and 
o-interse
ting family (and therefore we will 
all F ′′

0 alone the 
onje
turedhypergraph).Now note that, when 
ounting ρ(F) one 
ounts the pairs (F, F ′) where F, F ′ ∈ Fand F ⊆ F ′. But this 
an be done from the point of view of F ′, that is, if we put
δF(F ′) = |{F ∈ F : F ′ ⊇ F}| and δ(F) =

∑

F∈F δF(F ), then ρ(F) = δ(F). With thisremark we are able to proveLemma 2.1.5 If F is interse
ting and 
o-interse
ting, furthermore ⋂F 6= ∅, then
δ(F) ≤ δ(F ′′

0 ).Proof: W.l.o.g. one 
an assume that 1 ∈ F for all F ∈ F . Consider the hypergraph
F∗ = {F \ {1} : F ∈ F}. Sin
e we removed 1, this need no longer be interse
ting, butit is 
learly 
o-interse
ting on [2, ..., n], furthermore δF (F ) = δF∗(F \ {1}).It is well-known, that if a hypergraph is maximal 
o-interse
ting, then it 
ontainsone set from any pair of 
omplements, and if F ⊆ F ′ ∈ F∗, then F ∈ F∗. So
δF∗(F \ {1}) = 2|F\{1}|, hen
e to obtain the largest δ(F∗) one should put the mostpossible large sets into F∗. Again, by [6℄, we know that for �xed k ≥ n−1

2
we 
an putat most (n−2

k

)

k-element sets into F∗, but in the 
ase of the 
onje
tured hypergraphexa
tly that many sets (now with k + 1-elements, as we put ba
k 1 to all the sets) are16
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there. So for all k we put the most possible number of large sets into our family when
onsidering the k and n − 1 − k-element 
omplementing pairs. �So we will be done, if we 
an proveLemma 2.1.6 For any interse
ting and 
o-interse
ting family F , there exists an-other F ′ with ⋂F ′ 6= ∅ and ρ(F) ≤ ρ(F ′).Before starting the proof of Lemma 2.1.6, we introdu
e some notation: the shiftoperation τi,j is de�ned by
τi,j(F ) =







F \ {j} ∪ {i} if j ∈ F, i /∈ FandF \ {j} ∪ {i} /∈ F

F otherwise (1)Put τi,j(F) = {τi,j(F ) : F ∈ F}.The shift operation is a very well-known and very often used te
hnique in extremal�nite set theory. It was introdu
ed by Erd®s, Ko and Rado in [6℄ and had numerousappli
ations ever sin
e. For a good (but not re
ent) survey see Frankl's paper [12℄.The proof of the following properties of the shift operation 
an be found both in [6℄and [12℄: it preserves the interse
ting and 
o-interse
ting property. It is also known,that starting from any family of sets, performing �nitely many shift operation, one 
anobtain a so-
alled left-shifted family, that is a family for whi
h τi,j(F) = F for all i < j.So in what follows, we 
an assume that F is left-shifted, if we 
an prove the followingClaim 2.1.7 ρ(F) ≤ ρ(τi,j(F)).Proof: We will 
onsider how ρ(F ) 
hanges when performing the operation τi,j .Case A If i, j ∈ F or i, j /∈ F , then τi,j(F ) = F and for all F ′ ∈ F with F ⊆ F ′we have F ⊆ τi,j(F
′). So ρF (F ) ≤ ρτi,j(F)(F ) = ρτi,j(F)(τi,j(F )).Case B Let A ⊆ [n] with i, j /∈ A. Put F = A ∪ {i} and F ′ = A ∪ {j}.Sub
ase B1 F ∈ F , F ′ /∈ F 17
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Now for all G ⊇ F i ∈ G, therefore G = τi,j(G) ⊇ τi,j(F ) = F , thus ρF(F ) ≤

ρτi,j(F)(F ) = ρτi,j(F)(τi,j(F )).Sub
ase B2 F /∈ F , F ′ ∈ FNow τi,j(F
′) = F , and if F ′ ⊂ G ∈ F with i /∈ G, then (G\{j}∪{i}) = G′ ∈ τi,j(F)and 
learly F ⊆ G′. If F ′ ⊆ G with i, j ∈ G, then G = τi,j(G) ⊇ F , thus we 
on
lude,that ρF (F ′) ≤ ρτi,j (F)(F ) = ρτi,j(F)(τi,j(F

′)).Sub
ase B3 F, F ′ ∈ F (thus τi,j(F ) = F, τi,j(F
′) = F ′)Now let G ∈ F 
ontain at least one of F, F ′. If i ∈ G, then τi,j(G) = G 
ontainsas many of F, F ′ as before performing the τ -operation. Otherwise i /∈ G, j ∈ G and

G 
ontains only F ′. So, putting G′ = G \ {j} ∪ {i}, if G′ /∈ F , then τi,j(G) =

G′ and G′ ⊇ F , while if G′ ∈ F , then τi,j(G) = G and still F ′ ⊆ G. So we get
ρτi,j(F)(F ) + ρτi,j(F)(F

′) ≥ ρF (F ) + ρF (F ′).So for sets of type of the �rst 
ase ρ(F ) does not de
rease, and we 
an partition thesets of type of the se
ond 
ase into �pairs" (of whi
h one may be missing) for whi
hthe sum of ρ(F )s does not de
rease. �Further notations:
F + G = {F ∪ G : F ∈ F , G ∈ G}, F − G = {F \ G : F ∈ F , G ∈ G}

∆F = F −F ; SubF = {S : S ⊆ F ∈ F}And we will write 1 + F if G 
onsists of one single set 
ontaining only 1.Now we 
an return to the proof of Lemma 2.1.6. In the proof we will use the basi
ideas of [26℄.Proof of Lemma 2.1.6 For arbitrary F interse
ting and 
o-interse
ting familywe have to de�ne another one of whi
h ea
h set has an element in 
ommon. Now let
F = F0 ∪∗ F1, where F1 = {F ∈ F : 1 ∈ F} and F0 = {F ∈ F : 1 /∈ F}. Put
F ′ = F1 ∪ (1 + SubF0). 18
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We have to prove that a, ⋂F ′ 6= ∅ (and therefore it is interse
ting), b, F ′ is 
o-interse
ting and 
, ρ(F ′) ≥ ρ(F).a, is 
lear, as by de�nition 1 ∈ F for all F ∈ F ′.To prove b, we will use that F is left-shifted (and maximal).Claim 2.1.8 1 + F0 ⊂ F1Proof: Sin
e for any F ∈ F0 F ′ = {1}∪F ⊃ F , F ′ meets all sets in F . We have toshow, that there is no G ∈ F su
h that F ′∪G = [n]. Suppose to the 
ontrary that su
ha G exists. Note that 1 /∈ G, be
ause otherwise G ∪ F = [n] would hold, 
ontradi
tingthe 
o-interse
ting property of F . Now as F is interse
ting, there is j ∈ F ∩ G. Butsin
e F is left-shifted, G \ {j} ∪ {1} = G′ ∈ F . But then G′ ∪ F = [n] would hold - a
ontradi
tion. �By Claim 2.1.8 we know that all new sets in F ′ are subsets of one of the old sets(that is a set from F), therefore as F was 
o-interse
ting, so is F ′.It remains to prove 
,. For this purpose we will de�ne an inje
tive mapping f : F0 →

1 + ∆F0 (observe that ∆F0 ⊆ SubF0!) su
h that for all F ∈ F0 ρF ′(f(F )) ≥ ρF (F ).This is 
learly enough, be
ause F1 ⊆ F ′, so ρ(F ) 
annot de
rease for any F ∈ F1 (andif F1, F2 ∈ F0, then {1} ∪ F1 \ F2 is disjoint from F2, so, by the interse
ting propertyof F , it is not an element of F1, so we will not 
ount twi
e any ρ(F )).To de�ne f (using the notation of [26℄) let k = min{|I| : I = F1 ∩ F2; F1, F2 ∈ F0}(note, that I is not empty, as F is interse
ting!) and �x F1, F2 with I = F1∩F2 : |I| = k.Now 
onsider the following partition of F0:
C = {F ∈ F0 : I 6⊆ F};A = {F ∈ F0 : I ⊆ F, there is F ′ ∈ F0 with F ∩ F ′ = I};

B = F0 \ (A ∪ C).For a better understanding, F ∈ B if I ⊂ F and whenever there is a set F ′ ∈ F0 with
I ⊆ F ′, then F should meet F ′ outside I, as well. Note that A is not empty, sin
e19
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F1, F2 ∈ A. Now for any A ∈ A let f(A) = (A \ I)∪{1}. (Observe that for any A ∈ Athere is A′ ∈ A ⊆ F0 with A∩A′ = I, A \ I = A \A′, so f(A) ∈ 1+∆F0 as required!)As all A ∈ A 
ontain I, f is inje
tive restri
ted to A.To show that ρF ′(f(A)) ≥ ρF (A), observe that f(A) ⊂ A ∪ {1}. Therefore if
A ⊂ F ∈ F and 1 ∈ F (that is F ∈ F1, therefore F ∈ F ′, too) , then f(A) ⊂ F , aswell, so the part of ρ(A) whi
h 
omes from the F s in F1 
annot de
rease.We have to handle the sets A ⊂ F ∈ F0. To do this let (F \ I) ∪ {1} = F ′. Then
F ′ ∈ F ′ and f(A) ⊆ F ′ by de�nition. If F 6= G then F ′ 6= G′, be
ause we took thesame set I away from both (and I ⊆ F, G), and 1 was neither in F nor in G. We stillhave to point out that F ′ is not equal to any G ∈ F 1 , G 
ontaining A for any F ∈ F0(be
ause in that 
ase we would take into a

ount that 
ontaining relation twi
e when
ounting ρ(f(A))). But this is 
lear, be
ause a G of this form 
ontains I (as I ⊆ A),and F ′ ∩ I = ∅ by de�nition (and as we pointed out I is not empty).To �nish the proof we need to 
ontinue this pro
edure now 
onsidering the remainingsets, that is B ∪ C. So we de�ne a new I ′ and a new k′ now only 
onsidering sets in
B ∪ C, then get a new partition A′,B′, C′ with respe
t to this new I ′ and new k′, andde�ne f on A′ with the help of I ′, and then start again with B′ ∪ C′... This pro
edureends after �nitely many steps, as the As are never empty, so there is stri
tly less andless remainder. In ea
h step f is inje
tive, the only di�
ulty is to assure for sets A, Bon whi
h f is de�ned at di�erent steps f(A) = f(B) 
annot happen. This is 
learlydone byClaim 2.1.9 (A− {I}) ∩ ∆(B ∪ C) = ∅

A− {I} is the set of the f -images de�ned at a step (if we do not 
onsider 1, whi
his an element of all images). For a set B on whi
h f is de�ned later, the image is ofthe form B \ I ′ = B \B′ (again without 1), so it is in ∆(B∪C). Therefore by the 
laimwe will be really done. 20
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Proof: This is in fa
t the lemma in [26℄, but to be self-
ontained we repeat theproof.Case 1: A ∈ A, B ∈ B, F ∈ B ∪ C.By the de�nition of B, B must meet A outside of I, too. Therefore F \B does not
ontain this (these) element(s), while A \ I does.Case 2: A ∈ A, C ∈ C, F ∈ B ∪ CBy the de�nition of C, C does not 
ontain I, therefore by the minimality of |I|, Cmust meet A outside of I, too. The rest is as in Case 1. � � �2.2 Sperner FamiliesIn the introdu
tion of the thesis, we 
ited Sperner's famous theorem about Spernersystems without using this expression for the 
on
ept. Let us de�ne it now expli
itly.De�nition: F is a Sperner system/ family if F1 6⊆ F2 for any distin
t F1, F2 ∈ F .Being a Sperner family is a property that 
an be de�ned via forbidden 
on�gura-tions, too. Let C6⊆ = {Gk,l : k ∈ N, l ∈ N} where Gk,l = {{1, ..., k}, {1, ..., k + l}} is the
olle
tion of forbidden hypergraphs, and for shortness' sake let us write D 6⊆(F ,G) =

DC6⊆(F ,G). So the distan
e of two Sperner systems is D6⊆(F ,G) = |{{A1, A2} : Ai ∈

F ∪ G and A1 ⊆ A2}|.Theorem 2.2.1 If F ,G ⊆ 2[n] are two Sperner systems, then
D 6⊆(F ,G) ≤ D 6⊆(F0,G0)where F0 is the family of all sets of size k1, G0 is the family of all sets of size k2(k1 < k2) with ea
h of k1, k2 − k1, n − k2 di�ering by at most one. In parti
ular, if 3divides n, then F0 is the family of all sets of size n/3 and G0 is the family of all setsof size 2n/3. 21
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First proof: W.l.o.g. we 
an assume that both F and G are maximal Spernerfamilies, sin
e adding new sets to the families 
annot de
rease the distan
e.Our goal is to show that by starting with any pair of Sperner systems (F ,G), in�nitely many steps (F i,Gi) we 
an rea
h (F0,G0) = (Fm,Gm) su
h that
D 6⊆(F ,G) ≤ D 6⊆(F1,G1) ≤ D 6⊆(F2,G2) ≤ ... ≤ D 6⊆(Fm,Gm) = D 6⊆(F0,G0).Step 1Let C = F ∩ G and partition F and G by

F = C ∪ F1 ∪ F2 and G = C ∪ G1 ∪ G2where F1 = {F ∈ F : there is G ∈ G G ( F}, F2 = {F ∈ F : there is G ∈ G G ) F}and G1,G2 de�ned similarly. Note, that any F ∈ F 
ontains or is 
ontained in some
G ∈ G, be
ause otherwise we 
ould add it to G, whi
h would 
ontradi
t the maximalproperty of G, and no F ∈ F belongs to both F1,F2, otherwise there exist G1, G2 ∈ Gsu
h that G1 ( F ( G2 
ontradi
ting the Sperner property of G. So C,F1,F2 is reallya partition of F .Now let F1 = C ∪ F1 ∪ G1 and G1 = C ∪ F2 ∪ G2. It is easy to 
he
k that both F1and G1 are Sperner systems. The fa
t that D 6⊆(F ,G) = D 6⊆(F1,G1) follows from thefa
t that E(F) ∪ E(G) = E(F1) ∪ E(G1).By the above 
hange of the systems there is no F ∈ F1 for whi
h there exists a
G ∈ G1 with F ⊆ G, so we 
an refer to F1 as the upper Sperner family, and to G1 asthe lower family.From now on in any even step we repla
e some of the sets of the upper Spernersystem by other sets of larger size, and in any odd step we do the same to some setsof the lower family.Step 2 22
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Partition F1 into two subsystems: F1
1 = {F ∈ F1 : |F | > n/2},F1

2 = {F ∈ F1 :

|F | ≤ n/2}. Put F2 = F1
1 ∪ {F ∈

(

[n]
⌈n/2⌉

)

: there is F ′ ∈ F1
2 su
h that F ′ ⊆ F} and

G2 = G1. It is 
lear that F2 is a Sperner family.
D 6⊆(F1,G1) ≤ D 6⊆(F2,G2) follows from Sperner's lemma [31℄ stating, that if G isa k-uniform family with k ≤ n

2
, then |∇G| ≥ |G|, where ∇G = {G′ ⊂ [n] : |G′| =

k + 1 and there is G ∈ G su
h that G ⊆ G′}.Step 3Now we want to "push the lower system up", so we repla
e the small sets.
G2

2 = {G ∈ G2 : |G| < ⌈
⌈n

2
⌉

2
⌉}; G2

1 = G2 \ G2
2

G3 = G2
1 ∪ {G ∈

(

[n]

⌈
⌈n

2
⌉

2
⌉

)

: there is G′ ∈ G2
2 with G′ ⊆ G}; F3 = F2Just as in the argument in Step 2 G3 is a Sperner system, and using the originalproof of Sperner's theorem one 
an verify that for any �xed F ∈ F3 = F2 the numberof sets in G3 
ontained by F is at least the number of sets in G2 
ontained by F .Suppose we a
hieved in Step 2k that the sets in the upper set system have size atleast ckn, and in Step 2k + 1 that all the sets in the lower set system have size at least

dkn. Then in Step 2(k + 1) we will show that that all sets in the upper family havesize at least ck+1n = dkn + ⌈1−dk

2
n⌉, and in Step 2(k + 1) + 1 that the sets of the lowerfamily have size at least dk+1n = ⌈ ck+1n

2
⌉. Formally Step 2(k +1) and Step 2(k +1)+1are de�ned as follows:Step 2(k + 1)Let F2k+1 = F2k+1

1 ∪ F2k+1
2 , where F2k+1

1 = {F ∈ F2k+1 : |F | > dkn + ⌈1−dk

2
n⌉}and F2k+1

2 = F2k+1 \ F2k+1
1 . Then let

F2(k+1) = F2k+1
1 ∪ {F ′ ∈

(

[n]

dkn + ⌈1−dk

2
n⌉

)

: ∃F ∈ F2k+1 su
h that F ⊆ F ′}23



C
E

U
eT

D
C

ol
le

ct
io

n

and let
G2(k+1) = G2k+1.Step 2(k + 1) + 1Let us partition G2(k+1) into two subfamilies: G

2(k+1)
1 = {G ∈ G2(k+1) : |G| >

⌈ ck+1n

2
⌉} and G

2(k+1)
2 = G2(k+1) \ G

2(k+1)
1 . Then put

G2(k+1)+1 = G
2(k+1)
1 ∪ {G′ ∈

(

[n]

⌈ ck+1n

2
⌉

)

: ∃G ∈ G2(k+1) su
h that G ⊆ G′}and
F2(k+1)+1 = F2(k+1).The fa
t that during Step 2(k+1) and Step 2(k+1)+1 the distan
e of our families
annot de
rease follows just as in the 
ase of Step 2 and Step 3. (Note that in Step

2(k+1) we apply Sperner's lemma to the posets PG = {H\G : H ⊇ G}, where G rangesover the sets in G2k+1, while in Step 2(k + 1) + 1) to the posets PF = {H : H ⊆ F},where F ranges over the sets in F2(k+1).) The statement about ck+1 and dk+1 is trueby de�nition.So (forgetting the 
eiling signs for a moment) ck+1 = 1
2
ck +

1− 1
2
ck

2
= 1/2+ ck/4 (and

dk+1 = ck+1/2). As for any x ∈ [0; 2/3) x < 1/2+x/4, in �nitely many steps (by virtueof the 
eiling sign) we 
an a
hieve that all the sets in the upper family have size atleast ⌈2n/3⌉, and all the sets in the lower family have size at least ⌈n/3⌉.To �nish the proof we need the observation that the 
omplement system of a Spernersystem is a Sperner system, and that (denoting the 
omplement system of F by F =

{[n] \ F : F ∈ F), we have D 6⊆(F ,G) = D 6⊆(F ,G).In the 
omplement systems of the above pair, all sets have size at most ⌊n/3⌋ or
⌊2n/3⌋, and after the same "pushing up pro
edure" we get one of the optimal pairs. �Se
ond proof: By Step 1 of the previous proof we redu
e the problem to Sperner24



C
E

U
eT

D
C

ol
le

ct
io

n

families F ,G where for all F ∈ F there is a G ∈ G with F ⊆ G. Then we are done bythe following theorem of Katona.Theorem 2.2.2 [24℄ (Iterated Sperner theorem) Let A1, ..., Am be subsets of an nelement set satisfying Aj 6⊆ Ak 1 ≤ j, k ≤ m, j 6= k. For ea
h i = 1, ..., m, suppose
Bi,1, ..., Bi,mi

are subsets of Ai satisfying Bi,j 6⊆ Bi,k 1 ≤ j, k ≤ mi. Then
m
∑

i=1

mi ≤

(

n

⌊2n
3
⌋

)(

⌊2n
3
⌋

⌊n
3
⌋

)

.

� Remark: Theorem 2.2.2 (besides Step 1) is stronger than Theorem 2.2.1 (sin
e inTheorem 2.2.2 we do not require that the Bs form a Sperner family), but Katona'sproof of Theorem 2.2.2 uses a generalization of the LYM-inequality, while our �rstproof uses only Sperner's original idea of his well-known theorem.2.3 Kr-free GraphsWe denote by Kr the 
omplete graph on r verti
es. The Kr-free distan
e of two Kr-freegraphs (G1, G2) on the same underlying set V is
DKr

(G1, G2) = |{{x1, ..., xr} : xi ∈ V for all i, and any (xi, xj) ∈ E(G1 ∪ G2)}|In all the 
ases we have already treated (interse
ting, pairwise disjoint and Spernerfamilies, 
hains), the stru
ture of the families in the optimal pair (the pair with themaximum distan
e) was very similar to that of the optimal family in the originalproblem (what is the largest family with the desired property). Therefore it is quitenatural to 
onje
ture that Turán graphs will 
ome into sight. (Turán's well-knowntheorem [32℄ says that a Kr-free graph on n verti
es with the most possible numberof edges must be isomorphi
 to the 
omplete r − 1-partite graph, where the sizes of25
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any two partition 
lasses may di�er by at most one. These graphs are 
alled Turángraphs.)Though it is not true that if DKr
(G1, G2) is maximal, then both G1, G2 should beTurán graphs, still Turán graphs will play an important role in the proof of the nexttheorem. First we need to introdu
e some notation.

T (n, r) is the usual notation for the r-partite Turán graph on n verti
es and t(n, r)denotes the number of edges in the graph. Now let ks(G) denote the number of s-
liquesin G. (So t(n, r) = k2(T (n, r)).)The Ramsey number R(k) denotes the least integer n for whi
h any E0, E1 partitionof the edges of Kn, there is a sample of Kk either in E0 or in E1.Let us write furthermore Dn
r := max{DKr

(G1, G2) : G1, G2 are Kr-free on the samevertex set [n]} and put m = R(r) − 1.Theorem 2.3.1 Dn
r = kr(T (n, m))Proof: For the ≥ part we need a 
onstru
tion.Let us �x a partition E0, E1 of the edges of Km su
h that there is no Kr neither in

E0 nor in E1. We want to de�ne G0, G1 two Kr-free graphs on [1, .., n]. So we haveto de
ide whi
h edges we want to put into G0 and whi
h into G1. To do this, for any
1 ≤ i < j ≤ n write i = lim + i′, j = ljm + j′ where 1 ≤ i′, j′ ≤ m.Now put (i, j) into E(G0) i� (i′, j′) ∈ E0, and into E(G1) i� (i′, j′) ∈ E1. Sin
e
(i, j) is an edge if and only if i 6= j mod m, therefore G0 ∪ G1 is just T (n, m) and the
lasses are just the 
ongruen
y 
lasses modulo m. We have to 
he
k that G0, G1 areboth Kr-free. If not, then i1, i2, .., ir form a Kr in, say, G0. But then i′1, i

′
2, ..., i

′
r shouldbe all distin
t, and should form a Kr in E0 - a 
ontradi
tion.For the ≤ part of the proof, note that G0 ∪G1 
annot 
ontain a KR(r) as otherwise

G0 or G1 would 
ontain a Kr. So the following result of Sauer (its s = 2 
ase is exa
tly26
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Turán's theorem) 
ompletes the proof.Lemma 2.3.2 (Sauer [30℄ see also [3℄) If s < p and G is a Kp-free graph on nverti
es, then the number of Kss in G is at most ks(T (n, p − 1)). �Remark: If m divides n, then kr(T (n, m)) =
(

m
r

)

( n
m

)r, so the problem of givingthe exa
t value of Dn
r for large enough n is equivalent to giving the exa
t value of R(r).2.4 TreesTrees (and forests) are 
y
le-free graphs, so C
y
le = {Ck : k ≥ 3} where Ck is the 
y
leof length k. Therefore this time the question is, how many 
y
les we 
an have in theunion of two trees on the same n-element vertex set. D
y
le (T1, T2) = DC
y
le (T1, T2)will denote the tree-distan
e (the number of 
y
les in the union) of two trees T1 and

T2. Dn
y
le will denote the maximum tree-distan
e of two trees on the same n verti
es.A trivial upper bound on Dn
y
le is 4n−1, sin
e the union of two trees may 
ontainat most 2(n− 1) edges, so the number of subsets of the edge set of the union is 
learlyan upper bound for the number of 
y
les.The following re
ursive 
onstru
tion (�g.1) shows that Dn
y
le does have an expo-nential growth. Suppose we have T n
1 , T n

2 two trees on n verti
es, and an edge e (withendpoints x and y) in their union, through whi
h there are cn 
y
les in T n
1 ∪ T n

2 . Like-wise suppose we have Tm
1 , Tm

2 two trees on m verti
es (with vertex set disjoint from thatof T n
1 and T n

2 ), and an edge f (with endpoints u and v) in their union, through whi
hthere are cm 
y
les in Tm
1 ∪Tm

2 . Let T n+m
1 = T n

1 ∪Tm
1 ∪{xu} and T n+m

2 = T n
2 ∪Tm

2 ∪{yv}.We 
laim that in T n+m
1 ∪ T n+m

2 there are (cn + 1)(cm + 1) 
y
les through the edge xu.Indeed, there are cn paths from x to y in T n
1 ∪ T n

2 plus the edge xy = e, then we haveto go through the edge yv, then 
hoose among the cm paths in Tm
1 ∪ Tm

2 from v to u(or the edge vu = f), and then we �nish o� the 
y
le using the edge xu. Sin
e we27
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just took the sum of the number of verti
es, and the number of 
y
les got multiplied,this is really of exponential growth. To be more 
on
rete: we 
an 
over K4 by two(edge-disjoint) paths, so we have D4
cycle = 7. By the above re
ursive bound we get that

D4n
cycle ≥ 7n = (71/4)4n. (71/4 = 1.625...)

u

f
v

e

x

y

PSfrag repla
ements T n
1 ∪ T n

2

Tm
1 ∪ Tm

2

Figure 1: The re
ursive 
onstru
tion showing the exponential growth of Dn
treeIn the next two subse
tions we prove the following lower and upper bounds on

Dn
cycle:Theorem 2.4.1 There exists a 
onstant c for whi
h the following inequalities hold

cxn
0 ≤ Dn

tree ≤

⌊n
2
⌋

∑

i=1

(

n

2i

)

= 2n−1 − 1,where x0 is the unique real root of the equation x3 − x2 − x − 1 = 0 (x0 = 1.8392...).2.4.1 Lower Bound on Dn
y
leIn this subse
tion we will give a "real" 
onstru
tion for the lower bound on ∆ (see �g.2).Both of the trees in the 
onstru
tion are paths, and we will refer to them as the bluetree (denoted by Bn) and the red tree (denoted by Rn). The verti
es of the trees arethe integers from −k up to k if n = 2k +1 and the integers from −k to k−1 if n = 2k.Two integers are adja
ent in Bn if and only if they are 
onse
utive. If n = 2k +1, thenthe edge set of Rn is {{−l, l} : 1 ≤ l ≤ k} ∪ {{l,−(l + 1)} : 1 ≤ l < k} ∪ {{k, 0}}. If28
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0

−1 −2 −3 −k

1 2 3 k

0

−1 −2 −3 −k

1 2 3 k

Figure 2: The �real 
onstru
tion� Rn ∪ Bn and the orientation of its edges
n = 2k is even, one just drops the vertex k and the edges in
ident to it, and add theedge {−k, 0} to the red tree.Let c(n) denote the number of 
y
les through the edge {k, 0} (that is the numberof paths from the vertex 0 to the vertex k) if n = 2k + 1 and the number of 
y
lesthrough {−k, 0} if n = 2k. We 
laim that the following re
urren
e holds: c(n) =

c(n − 1) + c(n − 2) + c(n − 3) where c(1) = c(2) = 1, c(3) = 2.To see this let us 
onsider the graph Bn ∪ Rn \ {{0, k}} (Bn ∪ Rn \ {{0,−k}} if
n = 2k) as a dire
ted graph with the following orientation of the edges (�g.2): all edgesare dire
ted from the vertex of smaller absolute value to the vertex of bigger absolutevalue. The red edges of type {−l, l} are dire
ted from the vertex −l toward the vertex
l. In the path 0 = x0, x1, ..., xl−1, xl = k the edge {xj, xj+1} is 
alled a ba
kward edge if
xj is the endpoint and xj+1 is the starting point of the edge in the above orientation.Other edges will be 
alled forward edges.First note, that there 
an be no blue ba
kward edges in a path from 0 to k. Sin
e ifthere was, let us take the �rightmost� one {xj , xj+1} (i.e. the one with an endpoint ofgreatest absolute value). Assume xj = −(l+1), xj+1 = −l (the 
ase xj = l+1, xj+1 = lis similar). Then be
ause this is the rightmost ba
kward blue edge in the path, xj−1
annot be −(l + 2) ({−(l + 2),−(l + 1)} would be a ba
kward blue edge "further tothe right"). Therefore xj−1 is either l + 1 or l. In both 
ases the vertex xj+1 = −l is29
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PSfrag repla
ements
xj−1

xj−1

xj

xj xj+1

xj+1

xj+2

xj+2

Figure 3: Ba
kward red edges in oriented paths
ut from the vertex k by the edge {xj−1, xj}, so we 
annot �nish the path in this way.How about ba
kward red edges? (�g.3) If xj = −(l+1), xj+1 = l, then xj−1 
annotbe −(l + 2) as {−(l + 2),−(l + 1)} would be a ba
kward blue edge. xj−1 
annot be
l + 1 either for the edge {xj−1, xj} would 
ut xj+1 from the vertex k. So xj−1 must be
−l. xj+2 
annot be l − 1 (ba
kward blue edge), so xj+2 is l + 1.In the same manner one 
an see, if {xj , xj+1} is a ba
kward red edge with xj = l,
xj+1 = −l, then xj−1 should be l − 1 and xj+2 should be −(l + 1). So if we add thedire
ted edges {{l,−(l + 2)} : 0 ≤ l ≤ k − 2} ∪ {{−l, l + 1} : 1 ≤ l ≤ k − 1} to thedire
ted graph Rn ∪ Bn, then in this new graph, the number of dire
ted paths from
0 to k is equal to the number of non-dire
ted paths from 0 to k in the non-dire
tedgraph Rn ∪ Bn. (In fa
t we 
onstru
ted a bije
tion among the non-oriented and theoriented paths of the two graphs: whenever a non-oriented path of the original graphuses a ba
kward edge, the 
orresponding new edge should be used in the new graph to
reate an oriented path, and vi
e versa.)If we reindex the verti
es as in �g.4 the re
urren
e formula above follows, as anyvertex l is adja
ent to an in
oming edge from l−3, l−2 and l−1. Solving this formulawe get that ∆ ≥ cxn

0 for some 
onstant c, where x0 is the unique real root of theequation x3 − x2 − x − 1 = 0, x0 = 1.8392...

30
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1

2 4 n−1

3 5 n

Figure 4: Rn ∪ Bn with the added oriented edges2.4.2 Upper Bound on Dn
y
leProof of the upper bound in Theorem 2.4.1: To establish the inequality let us
onsider two trees Bn and Rn (a blue one and a red one) on the same n-element vertexset. In a 
y
le in Rn ∪Bn there are 
onse
utive red edges, then 
onse
utive blue edges,then red edges again, and so on. (Edges that are both red and blue will be 
onsideredas red.) A maximal path of 
onse
utive red edges will be 
alled a red segment (a bluesegment is de�ned similarly). The number of blue segments in a 
y
le 
learly equals thenumber of red segments, and sin
e ea
h segment 
ontain at least one edge, the numberof red segments is at most ⌊n
2
⌋ and is at least 1 (for a 
y
le without red segment is ablue 
y
le, whi
h is impossible, sin
e Bn is a tree).We will 
ount the 
y
les in Rn ∪ Bn partitioning them a

ording to the numberof red segments. So we have to show that there are at most (n

2i

) 
y
les having i redsegments. To do this �rst note that in a �xed 
y
le the set of the endpoints of the redsegments and the set of the endpoints of the blue segments are just the same.Lemma 2.4.2 Given a tree and 2i verti
es of its vertex set, then there is at mostone way to 
hoose i vertex-disjoint paths in the tree with the given verti
es as endpoints.Proof: By indu
tion on i. If i = 1 then 
learly the statement holds, for in a treethere is exa
tly one path from any vertex to any other vertex.Let i > 1. A set of vertex-disjoint paths de�nes naturally a mat
hing on the set of31
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endpoints. Noti
e, that an edge in su
h a mat
hing 
orresponds always to the samepath (for there is one single path between any two verti
es of a tree). Let us supposeto the 
ontrary, that there are two di�erent sets of paths satisfying statement of thelemma. If there exists a 
ommon edge in the 
orresponding mat
hings, then removingthis 
ommon edge (and its endpoints) we arrive at a 
ontradi
tion by indu
tion. Ifthere is no su
h edge, then the two mat
hings have together 2i edges on 2i verti
es,so there should be a 
y
le involving these edges, that is there should be a 
y
le in the
orresponding paths, whi
h 
ontradi
ts the fa
t that our graph is a tree. �To �nish the proof of the upper bound, observe that by Lemma 2.4.2. in Rn∪Bn themapping where the image of a 
y
le is the set of endpoints of the segments is inje
tive.The statement of the theorem follows. �Remark: It is easy to see, that in the statement of Lemma 2.4.2, "at most" isne
essary if the tree is not a path. Hen
e we know that the upper bound for Dn
y
leholds with stri
t inequality for non-path trees. Sin
e the graphs of the 
onstru
tionin the previous subse
tion were paths, one may 
onje
ture, that trees with maximaldistan
e are paths. But even if this 
onje
ture is false, the question that how many
y
les we 
an have in the union of two paths is a distan
e-type question. To see thiswe just have to �gure out what the path-distan
e of two paths is. Sin
e a path is a
y
le-free (
onne
ted) graph in whi
h all verti
es have degree at most 2, the forbidden
olle
tion of subgraphs 
onsists of the 
y
les and the 3-star (i.e. the graph 
onsistingof the edges {1, 2}, {1, 3}, {1, 4}). But sin
e any vertex has degree at most 4 in theunion of two paths, any vertex 
an be the middle vertex of at most (4
3

)

= 4 3-stars,therefore there 
an be at most 4n 3-stars in the union of two paths on n verti
es. As 4nis negligible 
ompared to the exponentially growing number of 
y
les, Dpath(P n
1 , P n

2 ) =

Θ(D
y
le(P n
1 , P n

2 )) for the sequen
e of optimal pairs of paths.32
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3 Pro�le ve
torsIn this se
tion we deal with weighted problems on set systems. Espe
ially, we areinterested in weight fun
tions depending only on the size of the sets (i.e. w(F ) = w(G)whenever |F | = |G|). As explained in the introdu
tion, we have to determine the
onvex hull of the pro�le ve
tors (the pro�le polytope) of all set systems having somepres
ribed property (interse
ting, Sperner, et
.).Determining the pro�le polytope means, that we have to �nd its extreme pointsor at least the essential extreme points. A property P ⊆ 22[n] is said to be hereditary(sometimes the term monotone is used) if G ⊆ F ∈ P implies G ∈ P . Note, thatany property that 
an be de�ned through forbidden 
on�gurations is hereditary, soin parti
ular the interse
ting property (when P is the set of all interse
ting families)is hereditary. If the examined property is hereditary, then we know (
f. [8℄) that allextreme points 
an be obtained from an essential extreme point by 
hanging some ofthe non-zero 
oordinates to zero.In this se
tion we will present two methods how to determine pro�le polytopes(both methods were used already in [7℄, [8℄ or [14℄, for a survey on results about pro�leve
tors see Chapter 3 of Engel's book [4℄). In the next subse
tion, we use the methodof inequalities to determine the essential extreme points of the pro�le polytope of theset of interse
ting families of subspa
es, and in the se
ond subse
tion, we introdu
ea generalization of the pro�le ve
tor, whi
h we 
all l-
hain pro�le ve
tor and obtainresults on them with the redu
tion method.3.1 Interse
ting families of subspa
esIn this subse
tion we determine the essential extreme points of the pro�le polytope ofthe set of interse
ting families of subspa
es.We will use the symbol [n
k

]

q
= (qn−1)(qn−1−1)...(qn−k+1−1)

(qk−1)(qk−1−1)...(q−1)
for the Gaussian (q-nomial)33
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oe�
ient denoting the number of k-dimensional subspa
es of an n-dimensional linearspa
e over GF (q) (and q will be omitted, when it is 
lear from the 
ontext). The setof all k-dimensional subspa
es of a ve
tor spa
e V will be denoted by [V
k

].To simplify our 
ounting arguments we introdu
e the followingNotation. If k + d ≤ n, then [n
k

]∗(d)

q
denotes the number of k-dimensional sub-spa
es of an n-dimensional ve
tor spa
e V over GF (q) that are disjoint from a �xed

d-dimensional subspa
e W of V .Here are some basi
 fa
ts about these numbers:Fa
ts.
[

n

k

]∗(d)

=

[

n − d

k

]

qdk,

[

n−1
k−1

]∗(d)

[

n
k

]∗(d)
≤

[

n−1
k−1

]∗(n−k)

[

n
k

]∗(n−k)
=

1

qn−k
≤

1

qk+1
(if 2k + 1 ≤ n),and so indu
tively

[

n−p
k−p

]∗(d)

[

n
k

]∗(d)
≤

1

qp(k+1)
(if 2k + 1 ≤ n).To determine the pro�le polytope of interse
ting families we follow the so-
alledmethod of inequalities. Brie�y it 
onsists of the following steps:

• establish as many linear inequalities valid for the pro�le of any interse
ting familyas possible (ea
h inequality determines a halfspa
e, therefore the pro�les mustlie in the interse
tion of all halfspa
es determined by the inequalities),
• determine the extreme points of the polytope determined by the above halfspa
es,
• for all of the above extreme points �nd an interse
ting family having this extremepoint as pro�le ve
tor.
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The last step gives that the extreme points of the polytope determined by thehalfspa
es are the extreme points of the pro�le polytope that we are looking for.The following theorem on interse
ting families of subspa
es was �rst proved byHsieh [22℄ (only for n ≥ 2k + 1) in 1977, then by Greene and Kleitman [20℄ (for the
ases k|n so espe
ially if n = 2k) in 1978.Theorem 3.1.1. (Erd®s - Ko - Rado for ve
tor spa
es, Hsieh's theorem) If F ⊆
[

V
k

]is an interse
ting family of subspa
es and n ≥ 2k, then
|F| ≤

[

n − 1

k − 1

]

.

The above theorem yields to the following inequalities 
on
erning the pro�le ve
torof any interse
ting family:
• 0 ≤ fi ≤

[

n−1
i−1

], 0 ≤ i ≤ n/2

• 0 ≤ fi ≤
[

n
i

], n/2 < i ≤ nTo establish more inequalities we will need the following statement:Theorem 3.1.2. The following generalization of Hsieh's theorem holds:a, if 2k ≤ n ≤ 2k + 2 and d = 0 or d = n − korb, if n ≥ 2k + 3 and k + d ≤ nthen for any interse
ting family F of k-dimensional subspa
es of an n-dimensionalve
tor spa
e V with all members disjoint from a �xed d-dimensional subspa
e U of V

|F| ≤

[

n − 1

k − 1

]∗(d)

.

35



C
E

U
eT

D
C

ol
le

ct
io

n

Note that the d = 0 
ase is just Hsieh's theorem.Proof: If k|d|n or k|n and d = 0 then the argument of Greene and Kleitman [20℄works. One 
an partition V \U into isomorphi
 
opies of Vk \{0}, and sin
e among the
k-dimensional spa
es of ea
h su
h partition F may 
ontain at most 1, the statementof the theorem follows.So now we 
an assume 2k + 1 ≤ n. We follow the argument in [22℄. First we verifythe validity of the lemmas from [22℄ in our 
ontext. For x ∈ V (A 6 V ) let Fx (FA)denote the set of subspa
es in F 
ontaining x (A).Lemma 3.1.3 (the equivalent of Lemma 4.2. in [22℄) Suppose n ≥ 2k + 1 and let
F be an interse
ting family of k-subspa
es of an n-dimensional spa
e V su
h that all
k-subspa
es belonging to F are disjoint from a �xed d-dimensional subspa
e W of V(where d ≤ n − k). If for all x we have |Fx| ≤

[

n−1−p
k−1−p

]∗(d), then
|F| <

[

n − 1

k − 1

]∗(d)or |FA| ≤

[

n − 1 − p

k − 1 − p

]∗(d)[
k

1

]p−1for all 2-dimensional subspa
es A, where 1leqp ≤ k − 1.Proof: First we 
he
k the validity of the following 
onsequen
e of the "fa
ts":
[

n − 1

k − 1

]∗(d)

> qp

[

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

≥

[

s

1

][

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

, (2)for 1 ≤ s ≤ p. Indeed,
[

n−1
k−1

]∗(d)

[

n−1−p
k−1−p

]∗(d)
≥

[

n−1
k−1

]∗(n−k)

[

n−1−p
k−1−p

]∗(n−k)
= qp(n−k) > qp

(

qk − 1

q − 1

)p

= qp

[

k

1

]p

,where the �rst inequality follows from the fa
ts and the se
ond one uses the assumption
n ≥ 2k + 1.Let us take an arbitrary 2-dimensional subspa
e 〈x, y〉 ⊂ V . If U ∈ F implies36
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U ∩ 〈x, y〉 6= {0}, then by (2) (and the assumption of the lemma) we have
|F| ≤

∑

Z⊂〈x,y〉,Z1−dim

|FZ| ≤

[

2

1

][

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

<

[

n − 1 − p

k − 1 − p

]∗(d)

.Thus we 
an suppose there is some U1 ∈ F su
h that U1 ∩ 〈x, y〉 = {0}. Take 0 6= z1 ∈

U1. If U ∈ F implies U ∩ 〈x, y, z1〉 6= {0}, then (again using (2))
|F| ≤

[

3

1

][

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

<

[

n − 1 − p

k − 1 − p

]∗(d)

.Thus we 
an suppose that there is some U2 ∈ F su
h that U2 ∩ 〈x, y, z1〉 = {0}. Hen
e
|Fx,y,,z1| ≤

[

k
1

][

n−4
k−4

]∗(d), and so |Fx,y| ≤
[

k
1

]2[n−4
k−4

]∗(d).Suppose that for 1 ≤ j ≤ i, 0 6= zj ∈ Uj and 〈x, y, z1, ..., zj〉 ∩ Uj+1 = {0}. Take
0 6= zi+1 ∈ Ui+1. If U ∈ F implies U ∩ 〈x, y, z1, ..., zi+1〉 6= {0}, then by (2)

|F| ≤

[

i + 3

1

][

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

<

[

n − 1 − p

k − 1 − p

]∗(d)

.Thus we 
an suppose that there is some Ui+2 ∈ F su
h that Ui+2 ∩ 〈x, y, z1, ..., zi+1〉 =

{0}. Hen
e we have
|Fx,y,Z1,...,zi+1

| ≤

[

k

1

][

n − i − 4

k − i − 4

]∗(d)

,and by indu
tion we obtain
|Fx,y| ≤

[

k

i

]∗(d)

.Thus for 1 ≤ i ≤ p, either we have |F| <
[

n−1
k−1

]∗(d) or |Fx,y| ≤
[

k
1

]i−1[n−1−i
k−1−i

]∗(d), as aspe
ial 
ase with i = p either we have |Fx,y| ≤
[

k
1

]p−1[n−1−p
k−1−p

]∗(d).
�We will need one more lemma from Hsieh's paper (a
tualized to our 
ontext):Lemma 3.1.4 (the equivalent of Lemma 4.3. in [22℄) Let F be a family of in-terse
ting k-subspa
es of an n-dimensional spa
e V of whi
h all subspa
es are disjointfrom a �xed d-dimensional subspa
e W of V . Furthermore if37
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a, q ≥ 3 and n ≥ 2k + 1 and for all x we have |Fx| ≤
[

k
1

]k−1,or ifb, q = 2 and- n ≥ 2k + 1- and for all x we have |Fx| ≤
[

k
1

]min{k−1,n−k−d}∏k−1−(n−k−d)
i=1

([

k
1

]

−
[

i
1

]) (if k − 1 <

n − k − d, then the produ
t is empty and equals 1),then
|F| <

[

n − 1

k − 1

]∗(d)

.Proof: In all 
ases |F| is at most [k
1

] times the bound on |Fx|.Now if q ≥ 3, then
|F| ≤

[

k

1

]k

=

(

qk − 1

q − 1

)k

< qk2−1 ≤ q(k−1)(n−k) =

[

n − 1

k − 1

]∗(n−k)

≤

[

n − 1

k − 1

]∗(d)

.If q = 2, then for any n ≥ 2k + 1 and d = n − k we have
|F| ≤

k−1
∏

i=0

([

k

1

]

−

[

i

1

])

<

[

k

1

]k−1([
k

1

]

−

[

k − 1

1

])

< (qk)k−1qk−1 =

qk2−1 ≤ q(k−1)(n−k) =

[

n − 1

k − 1

]∗(n−k)

.Sin
e n ≥ 2k + 1, we have n − 2k + 1 ≥ 2 holds. This gives
|F| ≤

[

k

1

]k

=

(

qk − 1

q − 1

)k

< q2(k−1) (q
2k−2 − 1)(q2k−3 − 1)...(qk − 1)

(qk−1 − 1)(qk−2 − 1)...(q − 1)
≤

≤ q(k−1)(n−2k+1)

[

2k − 2

k − 1

]

=

[

n − 1

k − 1

]∗(n−2k+1)

.This establishes the lemma for 0 ≤ d ≤ n−2k+1. For the remaining 
ases (n−2k+1 <

d < n − k), one has to observe that the largest value of d for whi
h the bound on |Fx|in the 
onditions of the lemma is [k
1

]k−1 equals n − 2k + 1 (i.e. the largest d for whi
h38
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k−1 ≤ n−k−d holds). It follows, that when moving from d to d+1 the known boundon |F | is multiplied by [k1]−[n−k−d

1 ]
[k1]

, while our targeted bound de
reases by a fa
tor of
[n−1
k−1]

∗(d+1)

[n−1
k−1]

∗(d) .Easy 
al
ulations show that this latter ratio is larger up till n− k − d < (k − 1)/2,and the former ratio is larger when n − k − d ≥ (k − 1)/2. This means that the gapbetween the bound on |F| and our targeted bound grows while n− k − d < (k − 1)/2,from then on this gap de
reases, but sin
e it still holds in the end, it must hold inbetween as well.This �nishes the proof of the lemma. �Before we get into the details of the proof of Theorem 3.1.2, we just 
olle
t its mainideas:the heart of the proof is the 
on
ept of 
overing number. For a family of subsets
F ⊆ 2[n] this is the size of the smallest set S ⊆ [n] that interse
t all sets in F (Sneed not be in F). For a family of subspa
es F ⊆

[

V
k

] its 
overing number is thesmallest number τ su
h that there is a τ -dimensional subspa
e U of V that interse
tsall subspa
es that belong to F . Observe that the proof of Lemma 3.1.3 was done byan indu
tion on the 
overing number. The proof of Theorem 3.1.2 is again based onan indu
tion on the 
overing number of F . (During the proof, almost all 
omputationswill use the "fa
ts" about Gaussian 
oe�
ients, all inequalities without any furtherremarks follow from them.)If x ∈ ∩F for some 0 6= x ∈ V then |F| ≤
[

n−1
k−1

]∗(d. Thus we 
an suppose that
∩F = {0}.Let x1 6= 0 be su
h that |Fx1| = maxx∈V |Fx|.By our assumption, there is some A1 ∈ F not 
ontaining x1. Thus |Fx1| ≤
[

k
1

][

n−2
k−2

]∗(d). 39
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Suppose that there are two independent ve
tors z1, z2 ∈ A1 su
h that A ∈ F ⇒

A ∩ 〈x1, zi〉 6= {0} for i = 1, 2. If ui ∈ 〈x1, zi〉 \ 〈x1〉, then the ui's are independent.Thus
|F| ≤ |Fx1| +

∑

Ui⊂(〈x1,zi〉\〈x1〉)∪{0}, dim(Ui)=1

|FU1,U2|

≤

[

k

1

][

n − 2

k − 2

]∗(d)

+

([

2

1

]

− 1

)2 [
n − 2

k − 2

]∗(d)

<

[

n − 1

k − 1

](∗(d))

.Thus we 
an suppose that there is at most one z ∈ A1 su
h that A ∈ F ⇒ A∩〈x1, z〉 6=

{0}. Suppose that z ∈ A1 is su
h. Take x ∈ A1 \ 〈z〉, then there is some A ∈ F su
hthat A ∩ 〈x1, x〉 = {0} and hen
e |Fx1,x| ≤
[

k
1

][

n−3
k−3

]∗(d). Thus
|Fx1| ≤ |Fx1,z| +

∑

X⊂(A1\〈z〉)∪{0}, dim(X)=1

|Fx1,X | ≤

[

n − 2

k − 2

]∗(d)

+

[

k

1

]2[
n − 3

k − 3

]∗(d)

.But then
|F| ≤

∑

X⊂〈x1,z〉,dim(X)=1

|FX | ≤

[

2

1

]

(

[

n − 2

k − 2

]∗d

+

[

k

1

]2[
n − 3

k − 3

]∗(d)
)

≤

[

n − 1

k − 1

]∗(d)

.Thus we 
an suppose that for all x ∈ A1 there is some A ∈ F su
h that A∩〈x1, x〉 = {0},and hen
e |Fx1,x| ≤
[

k
1

][

n−3
k−3

]∗(d). Thus |Fx1| ≤
[

k
1

]2[n−3
k−3

]∗(d).In general, suppose that for 1 ≤ p ≤ k−3 we have non-zero ve
tors y1, y2, ..., yp ∈ Vand A1, A2, ..., Ap+1 ∈ F su
h that yi ∈ A and Ai+1 ∩〈x1, y1, .., yp〉 = {0} for 1 ≤ i ≤ p.(We have just proved that for any y1 ∈ A1 there exists su
h an A2 ∈ F or the statementof the theorem holds.) Thus
|Fx1,y1,...,yp

| ≤

[

k

1

][

n − p − 2

k − p − 2

]∗(d)

,and so indu
tively we obtain that
|Fx1| ≤

[

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

.By Lemma 3.1.3, we have
|Fx,y| ≤

[

k

1

]p[
n − p − 2

k − p − 2

]∗(d)40
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for all 2-dimensional 〈x, y〉 ⊂ V .Suppose that there are p + 2 linearly independent ve
tors z1, z2, ..., zp+2 in Ap+2su
h that 〈x1, y1, ..., yp, zi〉 ∩ A 6= {0} for all A ∈ F and i = 1, 2, ..., p + 2. Let ui ∈

〈x1, y1, ..., yp, zi〉 \ 〈x1, y1, ..., yp〉, i = 1, 2, ..., p+ 2, then u1, u2, ..., up+2 are independent.Thus
|F| ≤

∑

X⊂〈x1,y1,...,yp〉,dim(X)=1

|FX| +
∑

Ui⊂(〈x1,y1,...,yp,zi〉\〈x1,y1,...,yp〉)∪{0},dim(Ui)=1

|FU1,U2,...,Up+2|

≤

[

p + 1

1

][

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

+

([

p + 2

1

]

−

[

p + 1

1

])p+2 [
n − p − 2

k − p − 2

]∗(d)

≤

[

p + 1

1

][

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

+ q(p+1)(k−1)

[

n − p − 2

k − p − 2

]∗(d)

≤

([

p + 1

1

]

+ 1

)[

k

1

]p+1[
n − p − 2

k − p − 2

]∗d

<

[

n − 1

k − 1

]∗(d)

.Thus we 
an suppose that there are at most p + 1 su
h zi's. Hen
e
|Fx1,y1,...,yp

| ≤

[

k

1

]2[
n − p − 3

k − p − 3

]∗(d)

+

[

p + 1

1

][

n − p − 2

k − p − 2

]∗(d)

,and so
|Fx1| ≤

[

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+

[

p + 1

1

][

k

1

]p[
n − p − 2

k − p − 2

]∗(d)

.Suppose that we do have independent ve
tors z1, z2 ∈ Ap+2 su
h that A ∈ F ⇒

A ∩ 〈x1, y1, ..., yp, zi〉 6= {0} for i = 1, 2. Then
|F| ≤

∑

X⊂〈x1,y1,...,yp〉,dim(X)=1

|FX | +
∑

Ui⊂(〈x1,y1,...,yp,zi〉\〈x1,y1,...,yp〉)∪{0},dim(Ui)=1

|FU1,U2|

≤

[

p + 1

1

]

(

[

k

1

]p+1[
n − p − 3

k − p − 3

]∗(d)

+

[

p + 1

1

][

n − p − 2

k − p − 2

]∗(d)
)

+

+

([

p + 2

1

]

−

[

p + 1

1

])2 [
k

1

]p[
n − p − 2

k − p − 2

]∗(d)

=

[

p + 1

1

][

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+

(

[

p + 2

1

]2

+ q2(p+1)

[

k

1

]p
)

[

n − p − 2

k − p − 2

]∗(d)41
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≤

[

p + 1

1

][

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+ qp

[

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

≤

(

[

p+1
1

]

qp+2
+

1

q

)

[

n − 1

k − 1

]∗(d)

<

[

n − 1

k − 1

]∗(d)

.Thus we 
an suppose that there is at most one su
h z. Hen
e
|Fx1| ≤

[

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+

[

k

1

]p[
n − p − 2

k − p − 2

]∗(d)

.Suppose that z1 ∈ Ap+1 is su
h a z, then
|F| ≤

∑

X⊂〈x1,y1,...,yp,z1〉,dim(x)=1

|FX | ≤

[

p + 2

1

]

(

[

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+

[

k

1

]p[
n − p − 2

k − p − 2

]∗(d)
)

<

[

p + 2

1

]

(

[

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+
1

q

[

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

≤

(

[

p+2
1

]

qp+2
+

1

qp+2

)

[

n − 1

k − 1

]∗(d)

<

[

n − 1

k − 1

]∗(d)

.Thus we 
an suppose that for all z ∈ Ap+1, there is some A ∈ F su
h A∩〈x1, y1, ..., yp, z〉 =

{0}. Take yp+1 ∈ Ap+1, and let Ap+2 be su
h that A ∩ 〈x1, y1, ..., yp, yp+1〉 = {0}.We obtained, that either the statement of the theorem holds, or there are linearlyindependent ve
tors x1, y1, ..., yk−1 and Ai ∈ F i = 1, ...k − 1 su
h that yi ∈ Ai and
〈x1, y1, ...yi−1〉 ∩ Ai = {0}.If q ≥ 3, this means that either |F| ≤

[

n−1
k−1

]∗(d) or |Fx| ≤ |Fx1| ≤
[

k
1

]k−1 and thenwe are done by Lemma 3.1.4.If q = 2, we have to sharpen our estimations on |Fx1|. We know that for j indepen-dent ve
tors x1, y1, ..., yj−1 with U∩〈x1, y1, ..., yj−1〉 = 0 there exists a subspa
e Aj ∈ Fsu
h that Aj ∩ 〈x1, y1..., xj−1〉 = 0. Then we would have the following upper bound onthe number of subspa
es in F 
ontaining all xi (1 ≤ i ≤ j): [k
1

][

n−j−1
k−j−1

]∗(d). But supposefurther that for some positive l j +k+d = n+ l. Then dim(〈x1, y1..., yj−1, Aj〉∩U) ≥ land so (denoting 〈x1, y1..., yj−1, Aj〉 ∩ U by Uj) dim(〈x1, ..., xj , Uj〉 ∩ Aj) ≥ l as well,42
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therefore when 
hoosing among the ve
tors of Aj a subspa
e of dimension at least l isforbidden. Therefore we have the following better estimate on the number of subspa
esin F 
ontaining x1, y1, ..., yj−1:
([

k

1

]

−

[

l

1

])[

n − j − 1

k − j − 1

]∗(d)

.Hen
e we have that either the statement of the theorem holds or the degree of anyve
tor x is bounded by the expression given in the 
onditions of Lemma 3.1.4. SoLemma 3.1.4 establishes our theorem in this 
ase, too. �Corollary. For the pro�le ve
tor f of any family F of interse
ting subspa
es of an
n-dimensional ve
tor spa
e V , and for any k < n/2 and n/2 < d ≤ n−k, the followingholds

ck,dfk + fd ≤

[

n

d

]

,where ck,d = qd [n−k

d ]
[n−d−1

k−1 ]
, and equality holds in 
ase of fk = 0, fd =

[

n
d

] or fk =
[

n−1
k−1

]

, fd =
[

n−1
d−1

].Proof: Let us double
ount the disjoint pairs formed by the elements of Fk = {U ∈

F : dim U = k} and F ′
d =

[

V
d

]

\ Fd = {U 6 V, U /∈ F : dim U = d}. On the one hand,for ea
h U ∈ Fk there are exa
tly qdk
[

n−k
d

] su
h pairs (this uses the �rst fa
t about
q-nomial 
oe�
ients), while on the other hand by Theorem 3.1.2 we know, that forany W ∈ F ′

d there are at most [n−1
k−1

]∗(d)
= qd(k−1)

[

n−d−1
k−1

] su
h pairs. This proves therequired inequality and it is easy to see that equality holds in the 
ases stated in theCorollary. �Having established these inequalities, we are able to prove the main theorem of thissubse
tion. 43
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Theorem 3.1.5 The essential extreme points of the pro�le polytope of the set ofinterse
ting families of subspa
es are the ve
tors vi (1 ≤ i ≤ n/2) for even n and thereis an additional essential extreme point v+ for odd n, where
(vi)j =



















0 if 0 ≤ j < i
[

n−1
j−1

] if i ≤ j ≤ n − i
[

n
j

] if j > n − i.

(3)and
(v+)j =







0 if 0 ≤ j < n/2
[

n
j

] if j > n/2.
(4)

Proof: First of all, for any x ∈ V , for the families Gi = {U : x ∈ U, i ≤ dim U ≤

n − i} ∪ {U : dim U > n − i} (1 ≤ i ≤ n/2) f(Gi) = vi holds, and if n is odd then thepro�le of the family G+ = {U : dim U > n/2} is v+, and 
learly none of these ve
tors
an be dominated by any 
onvex 
ombination of the others.We want to dominate the pro�le ve
tor f of any �xed interse
ting family F witha 
onvex 
ombination of the ve
tors vj (and possibly v+ if n is odd). We de�ne the
oe�
ients of the vjs re
ursively. Let i denote the index of the smallest non-zero
oordinate of f . For all j < i let αj = 0. Now if for all j′ < j αj′ has already beende�ned, let
αj = max

{

fj
[

n−1
j−1

] −

j−1
∑

j′=i

αj′, 0

}

.Note, that for all j (i ≤ j ≤ n/2) the jth 
oordinate of ∑j
j′=i αj′vj′ is at least fj (andequality holds if when 
hoosing αj, the �rst expression is taken as maximum), so theseve
tors already dominates the ��rst part� of f .44
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When all αjs (i ≤ j ≤ n/2) are de�ned, then let α+ = 1 −
∑n/2

j′=i αj′ and let α+ bethe 
oe�
ient of v+ if n is odd or add α+ to the 
oe�
ient of vn/2 if n is even. Notealso that α+ is non-negative sin
e for all i ≤ j ≤ k ≤ n/2 (vj)k =
[

n−1
k−1

] and by Hsieh'stheorem 0 ≤ fk ≤
[

n−1
k−1

]. Therefore this is really a 
onvex 
ombination of the vjs.The easy observation that this 
onvex 
ombination dominates f in the 
oordinateslarger then n− i follows from the fa
t that all vjs (and v+ as well) have [n
d

] in the dth
oordinate, therefore so does the 
onvex 
ombination whi
h is 
learly an upper boundfor fd.All what remains is to prove the domination in the dth 
oordinates for all n/2 <

d ≤ n − i, that is to prove the inequality
fd ≤

[

n − 1

d − 1

] n−d
∑

j=i

αj +

[

n

d

]

(

1 −
n−d
∑

j=i

αj

)

.Let k ≤ n − d be the largest index with αk > 0. Then we have
fd ≤

[

n

d

]

− ck,dfk =

[

n

d

]

− ck,d

[

n − 1

k − 1

] k
∑

j=i

αj =

(

1 −
k
∑

j=i

αj

)

[

n

d

]

+

[

n − 1

d − 1

] k
∑

j=i

αj

=

(

1 −
n−d
∑

j=i

αj

)

[

n

d

]

+

[

n − 1

d − 1

] n−d
∑

j=i

αjwhere the inequality is just the Corollary, the �rst equality follows from the fa
t that
αk > 0, the se
ond equality uses again the Corollary (the statement about whenequality holds) and the last equality uses the de�ning property of k (for all k < j ≤ n−d

αj = 0).This proves the theorem. �Note that, the (essential) extreme points are 'the same' as in the Boolean 
ase(whi
h was solved in [8℄), one just has to 
hange the binomial 
oe�
ients to the 
orre-sponding q-nomial 
oe�
ients and the stru
ture of the extremal families are really thesame. 45
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3.2 l-
hain pro�le ve
torsBefore getting into the details of the topi
 of this subse
tion, let us give some moti-vation. In Se
tion 2, one of the properties we dealt with was Sperner property. Thisproperty has a natural generalization: a family F ⊆ 2[n] is said to be k-Sperner if it
ontains no 
hains of length k+1 (k+1-
hains for short), or equivalently if F =
⋃k

i=1 Fi,where every Fi is a Sperner family. So the union of two k-Sperner families is a 2k-Sperner family, and, using the terminology of Se
tion 2, their k-Sperner distan
e is thenumber k + 1-
hains in their union.In general, one may ask for any r ≤ s, what is the maximum number of r-
hainsthat an s-Sperner family F may 
ontain (as always, with assumption that F ⊆ 2[n]).(This problem is "somewhat" analogous to the well-known result of Turán/Sauer [32℄,[30℄ whi
h gives the maximum number of Krs that a Ks-free graph 
an have.) A 1-
hain is simply a set in the family, so the 
ase r = 1 asks for the maximum size of an
s-Sperner family. This was solved by Paul Erd®s [5℄ in 1945. Theorem 2.2.1. settlesthe 
ase r = s = 2 and "we are motivated" by the r = k +1, s = 2k 
ase for any k ≥ 2.The original pro�le ve
tor does not help to deal with this problem: two sets withthe same size might be 
ontained in di�erently many l-
hains (if l > 1). What is more!The same set may be 
ontained in di�erently many l-
hains depending on whi
h systemit takes part of. To over
ome this problem we introdu
e a generalization of the 
on
eptof pro�le ve
tor (whi
h redu
es to the ordinary pro�le if l = 1).De�nition: The l-
hain pro�le ve
tor f l(F) of a family F ⊆ 2[n] is a ve
tor oflength (n+1

l

). The 
oordinates are indexed with l-tuples α = (α1, α2, ..., αl) (0 ≤ α1 <

... < αl ≤ n) and the αth 
oordinate f l(F)α is the number of l-
hains 
ontained in Fwith the property that the smallest set in the 
hain has size α1, the se
ond one hassize α2 and so on. 46



C
E

U
eT

D
C

ol
le

ct
io

n

If we denote the all one ve
tor (of length (n+1
l

)) by 1, then the number of l-
hains
ontained in a family F is f l(F) · 1 and using other weight ve
tors one 
an treatweighted problems for l-
hains, where the weight of two l-
hains must 
oin
ide if the
ith sets in both 
hains are taken from the same level for all 1 ≤ i ≤ l. Althoughgenerally weighted l-
hains do not 
ome into pi
ture very often, but 
ontaining pairs ofsets and disjoint pairs of sets (whi
h 
ould be transformed into 
ontaining ones, sin
e
F ∩G = ∅ ⇔ F ⊆ G) are mu
h more investigated, so results on 2-
hain pro�les mighthave some appli
ations.Anyhow, after presenting some further de�nitions and some introdu
tory resultson l-
hain pro�les, we will demonstrate the power of the so
alled redu
tion method ofPéter L. Erd®s, Péter Frankl and Gyula O.H. Katona [8℄ by applying to some not very
ompli
ated sets of families in this new 'l-
hain 
ontext'.3.2.1 De�nitions and remarksIn this se
tion we give some further de�nitions and des
ribe some basi
 
onne
tionsbetween the extreme points in the l-
hain 
ase and the extreme points in the original(1-
hain) 
ase.Notation. For αs with α = (α1, α2, ..., αl), 0 ≤ α1 < α2 < ... < αl ≤ n we de�nethe following multinomial 
oe�
ient:

(

n

α

)

=
l−1
∏

i=1

(

n − αi−1

αi+1 − αi

)

=
n!

α1!(α2 − α1)!...(αl − αl−1)!(n − αl)!where α0 = 0 and 0! = 1 as usual. Note that (n
α

) is the number of l-
hains that 
an beformed from subsets of an n-element set in su
h a way that the smallest set has size
α1, the se
ond smallest has size α2 and so on.De�nition: Given an underlying set X and a family F of its subsets, the up setof F is U(F) = {G ⊆ X : ∃F ∈ F su
h that F ⊆ G} and the down set of F is47
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D(F) = {G ⊆ X : ∃F ∈ F su
h that F ⊇ G}.De�nition: A set A of families is upward (downward) 
losed if F ∈ A implies
U(F) ∈ A (D(F) ∈ A).Examples: Clearly the set of t-interse
ting (t-
o-interse
ting) families is upward(downward) 
losed. (A family F is said to be t-interse
ting if for any two F1, F2 ∈ F

|F1 ∩ F2| ≥ t, and a family G is said to be t-
o-interse
ting if G = {G : G ∈ G} is
t-interse
ting or equivalently if for any two G1, G2 ∈ G |G1 ∪ G2| ≥ t.)De�nition: Let µl(A) denote the set of all l-
hain pro�le ve
tors of families in A,
〈µl(A)〉 its 
onvex hull, El(A) the extreme points of 〈µl(A)〉 and El(A) the families from
A with l-
hain pro�le in El(A). Let furthermore E∗

l (A) denote the essential extremepoints and E∗
l (A) the 
orresponding families.Theorem 3.2.1. For any upward or downward 
losed set of families A ⊆ 22X andfor any l ≥ 1

E∗
l (A) ⊆ µl(E

∗
1(A)).Note that equality does not always hold as the set of interse
ting families, the family

F = {F ⊆ X : |F | > |X|/2} and any l > |X|/2 shows.Proof: The proof is the same for downward and upward 
losed sets of families, sowe assume that A is upward 
losed.Let E∗
1(A) = {F1,F2, ..,Fm} and let f i the pro�le of Fi, f i,l the l-
hain pro�le of

F i and f i,l
α its αth 
oordinate.We have to prove that the l-
hain pro�le f l of any family F in A 
an be dominatedby a 
onvex 
ombination of the f i,ls. Denote the pro�le of F by f . Clearly we have

f l
α ≤ fα1

(

n − α1

α∗

)

,48
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where α = (α1, α2, ..., αl), α
∗ = (α2 − α1, α3 − α1, ..., αl − α1). Inequality holds withequality for the f i

αs and the f i,l
α s (sin
e A is upward 
losed). The fa
t that the f isare the essential extreme points of 〈µl(A)〉 means that for some 
onvex 
ombination

ci, i = 1, ..., m

f ≤
m
∑

i=1

cif
i.But then

f l
α ≤ fα1

(

n − α1

α∗

)

≤

(

n − α1

α∗

) m
∑

i=1

cif
i
α1

=
m
∑

i=1

cif
i,l
α ,whi
h 
ompletes the proof. �Sin
e the 
onvex hull of the pro�le polytope of the set of interse
ting families weredetermined by P.L. Erd®s, P. Frankl and G.O.H. Katona in [8℄, Theorem 3.2.1 providesthe essential extreme points of the 
onvex hull of the l-
hain pro�le polytopes.De�nition: For any family F on a base set X let 
onv(F) = {G ⊆ X : ∃F, F ′ ∈

F(F ⊆ G ⊆ F ′)} denote its 
onvex 
losure. F is said to be 
onvex if F =
onv(F).De�nition: A set of families A is said to be 
onvex 
losed if F ∈ A implies
onv(F) ∈ A.Example: The basi
 example for a 
onvex 
losed set is the set of interse
ting and
o-interse
ting families.Theorem 3.2.2. For any 
onvex 
losed set of families A ⊆ 22X and for any l ≥ 2

E∗
l (A) ⊆ µl(E

∗
2(A)).Proof: The proof is analogous to that of Theorem 3.2.1., the inequality needed is

f l
α ≤ f 2

α1,αl

(

αl − α1

α∗

)where α = (α1, α2, ..., αl), α∗ = (α2 − α1, α3 − α1, ..., αl−1 − α1) and for families withessential extreme pro�le inequality holds with equality. �49
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Unfortunately neither the extreme points of the 1-
hain, nor that of the 2-
hainpro�le polytope are known for the set of interse
ting and 
o-interse
ting families.3.2.2 The redu
tion methodIn this se
tion we des
ribe our main tool in determining the l-
hain pro�le polytopeof families of sets with some given property. We 
all this tool the redu
tion method.In fa
t, this is not a new one. Most of the proofs of results already obtained went thisway, what we observed that the method works for the l-
hain 
ase as well, and - whatseems to us more important - in some 
ases it is enough to redu
e the original problemto the 
hain instead of the 
y
le (what previous proofs did mostly). For the pre
isede�nitions, see below.De�nition: For any l let T l
C
denote the following operator a
ting on the (n+1

l

)-dimensional R-spa
e (
oordinates are still indexed by l-tuples of the set {0, 1, ..., n})
T l

C
: e 7→ T l

C
(e) where T l

C
(e)α =

(

n

α

)

eα.De�nition: For a family F on a base set X and a maximal 
hain C in X let
F(C) = {F ∈ F ∩ C} and for a set of families A let A(C) = {F(C) : F ∈ A}.Theorem 3.2.3 For any set of families A ⊆ 22X if the extreme points e1, e2, ..., emof 〈µl(A(C))〉 do not depend on the 
hoi
e of C, then

〈µl(A)〉 ⊆ 〈{T l
C
(e1), ..., T

l
C
(em)}〉.Proof: The modi�
ation of the argument in [8℄ works. Let F be an element of Awith l-pro�le f = (..., fα, ...). For F = {F1 ⊂ F2 ⊂ ... ⊂ Fl} with |Fi| = αi, i = 1, ..., llet w(F) be the ve
tor of length (n+1

l

) with 1/n! in the αth 
oordinate and 0 everywhereelse (where n is the size of the base set). Consider the sum∑w(F) for all pairs (C,F),50
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where C is a maximal 
hain on X and F ⊂ F ∩ C an l-
hain. For a �xed C we have
∑

F∈F(C)

w(F) =
1

n!
(pro�le of F(C)).Here the pro�le of F(C) is a 
onvex linear 
ombination∑m

i=1 λi(C)ei of the eis. There-fore
∑

C,F

w(F) =
∑

C

∑

F

w(F) =
∑

C

1

n!

m
∑

i=1

λi(C)ei =

m
∑

i=1

1

n!
(
∑

C

λi(C))ei (5)holds where ∑
C

1
n!

∑m
i=1 λi(C) = 1. Thus ∑w(F) is a 
onvex linear 
ombination ofthe eis.Summing in the other way around, we have

∑

C,F

w(F) =
∑

F

∑

C

w(F) =

∑

F

(

0, 0, ...,
|F1|!(|F2| − |F1|)!...(|Fl| − |Fl−1|)!(n − |Fl|)!

n!
, ..., 0

)

=

(

...,
fα
(

n
α

) , ...

)

, (6)sin
e for a �xed F = {F1 ⊂ F2 ⊂ ... ⊂ Fl} there are exa
tly |F1|!(|F2| − |F1|)!...(|Fl| −

|Fl−1|)!(n − |Fl|)! 
hains 
ontaining F. So (5) and (6) give that this last ve
tor is a
onvex linear 
ombination of the eis, whi
h implies that f is the linear 
ombination of
T l

C
(e1), ..., T

l
C
(em). �The stru
ture of maximal 
hains are too simple, so using only them is not enoughto determine the l-
hain pro�le polytope of more 
ompli
ated sets of families. Butthe proof of Theorem 3.2.3. works if we repla
e the 
hain by a pair of 
omplementmaximal 
hains (i.e. for i = 1, 2 C

i = {Ci
0, C

i
1, ..., C

i
n} with Ci

j = X \ C3−i
n−j = C

3−i

n−j forall j = 0, 1, ..., n) or the 
y
le (i.e. the family of subsets of 
onse
utive elements withrespe
t to a 
y
li
 permutation of the base set). In the proof one has to write (insteadof 1
n!
) 2

(n!)
and 1

(n−1)!
(respe
tively) in the de�nition of w(F), and modify the de�nitionof the T -operator to

(T l
C1,C2

(e))α =
1

dα

(

n

α

)

(T l
C(e))α =

1

cα

(

n

α

)

,51



C
E

U
eT

D
C

ol
le

ct
io

n

where dα (cα) is the number of α-type l-
hains in the pair of 
omplementing 
hains (inthe 
y
le). For 
ompleteness' sake we state these versions of the theorem, too.Theorem 3.2.4 (a) For any set of families A ⊆ 22X if the extreme points e1, e2, ..., emof 〈µl(A(C1,C2))〉 do not depend on the 
hoi
e of C
1,C2, then

〈µl(A)〉 ⊆ 〈{T l
C1,C2(e1), ..., T

l
C1,C2(em)}〉.(b) For any set of families A ⊆ 22X if the extreme points e1, e2, ..., em of 〈µl(A(C))〉do not depend on the 
hoi
e of C, then

〈µl(A)〉 ⊆ 〈{T l
C(e1), ..., T

l
C(em)}〉.

3.2.3 Appli
ationsIn this se
tion we determine the pro�le polytope of some sets of families using theredu
tion method. In the �rst part of this subse
tion the problem will be redu
ed tothe 
ase of the maximal 
hain while in the se
ond part we will 
onsider redu
tion toa pair of 
omplement 
hains. Using the results obtained by the latter we will giveexamples when the extreme families of the l-pro�le polytope 
an really depend on l.Redu
tion to the 
hainTheorem 3.2.5 For all l ≥ 1 the extreme points of the 
onvex hull of the l-
hainpro�le ve
tors of 
onvex families are the following:the all zero ve
tor
0 = (0, ..., 0)and for all 0 ≤ i ≤ j ≤ n the ve
tors vi,j 52
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(vi,j)α =







(

n
α

) if i ≤ α1 < αl ≤ j

0 otherwise. (7)
Proof: The ve
tor vi,j is the l-pro�le of the family Fi,j = {F ⊆ [n] : i ≤ |F | ≤ j},whi
h is 
onvex.On a 
hain any 
onvex family must 
onsist of some 
onse
utive subsets of the 
hain.The statement of the theorem follows now from Theorem 3.2.3. �Note that the set of 
onvex families is not hereditary, therefore the extreme points(for the original pro�le ve
tors) need not be the ones obtained from the essential ex-treme points (in this 
ase there is only one su
h, the pro�le of 2[n]) by 
hanging someof the non zero 
oordinates to zero - and as Theorem 3.2.4. shows, they are not thoseve
tors, indeed.Theorem 3.2.6 For any l ≤ k the extreme points of the l-
hain pro�le polytope of

k-Sperner families are the following:the all zero ve
tor
0 = (0, ..., 0, ...0)and for all l ≤ z ≤ k and β = {β1, ..., βz} with 0 ≤ β1 < ... < βz ≤ n the ve
tors vβ

(vβ)α =







(

n
α

) if α ⊆ β

0 otherwise. (8)The 
ase l = 1 is a result of P.L. Erd®s, P. Frankl and G.O.H. Katona [8℄.Proof: It is trivial to see that these ve
tors are l-
hain pro�les of the 
orrespondinglevels, and they are 
onvex linearly independent.53



C
E

U
eT

D
C

ol
le

ct
io

n

A k-Sperner family on a maximal 
hain 
onsists of at most k sets, therefore its
l-
hain pro�le ve
tor have ones in those 
oordinates α = (α1, ..., αl) for whi
h there isan element in the family with size αi for all i = 1, ..., l. All these ve
tors are 
onvexindependent. Therefore they form the 
onvex hull of the pro�le polytope on the 
hain,and Theorem 3.2.3 implies now Theorem 3.2.6. �Applying Theorem 3.2.6 for the 
onstant 1 weight fun
tion one getsCorollary For any l ≤ k if a family F on an n-element base set X does not 
ontaina 
hain of length k + 1, then the number of l-
hains in F is at most

max
β⊂[0,n];|β|=k

∑

α⊆β;|α|=l

(

n

α

)

.As a spe
ial 
ase we get that the answer to our "motivating problem" is that the max-imum distan
e of two k-Sperner families is
max

β⊂[0,n];|β|=2k

∑

α⊆β;|α|=k+1

(

n

α

)

.Remarks.- In the 
ase l = k, even the very simple argument of [24℄ works. First we needa LYM-type inequality. To get this we double-
ount the pairs (C,F) where C is amaximal 
hain and F is an l-
hain 
ontained in C. If we de
ompose the k-Spernerfamily into k anti
hains, then all sets of an F 
ome from di�erent anti
hains, and any
C 
an 
ontain at most k sets from our family, so by a standard 
al
ulation we obtain

∑

α

fα
(

n
α

) ≤

(

k

l

)

. (9)If l = k, then the RHS is 1, and we 
an �nish the proof as follows
∑

α

wαfα =
∑

α

fαwα
(

n
α

)

(

n

α

)

≤ max
α

{

wα

(

n

α

)}

∑

α

fα
(

n
α

) ≤ max
α

{

wα

(

n

α

)}

, (10)54
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where wα is any non-negative weight fun
tion and the last inequality in (10) uses (9).If l = k, then the Corollary gives the maximum number of k-
hains that a k-Sperner family 
an 
ontain. This is (n
α

) where α = (α1, α2, ..., αk) and the numbers
α1, α2 − α1, ...αk − αk−1 di�er by at most one. If k + 1 divides n, then we get theuniqueness of the extremal system (take all F ⊆ X with |F | = αi for some i = 1, ..., k)automati
ally. If k+1 does not divide n, then we 
an lift up (4) to an AZ-type identity(for the original AZ-identity see the paper of Ahlswede and Zhang [2℄) whi
h will assurethe uniqueness.- With the notation of Se
tion 3.2.1, Theorem 3.2.6 implies (if Sk denotes the setof k-Sperner families) E1(Sk) = El(Sk). But the bordering fa
es of the 
onvex hulls
〈µ1(Sk)〉 and 〈µl(Sk)〉 are �not the same�. If l = 1 the 
onvex hull determined by thefa
es given by the inequalities 0 ≤ fi ≤

(

n
i

) and the LYM-inequality ∑i fi/
(

n
i

)

≤ k(see [8℄), while if l > 1 the hyperplanes given by 0 ≤ fα ≤
(

n
α

) and the LYM-typeinequality of (5) are bordering fa
es, but there are some additional ones, whi
h 
anbe seen through the following observation. Choosing (k
l

)

αs in su
h a way that theirunion has size stri
tly larger than k and putting fα =
(

n
α

) for these αs and 0 for theothers, we obtain an essential extreme point of the polytope determined by the aboveinequalities, and whi
h is not an l-
hain pro�le of any k-Sperner families.Redu
tion to a pair of 
omplement 
hainsTheorem 3.2.7 Let n = 2m + 1 and k ≤ m + 1. Then the extreme points of the1-
hain pro�le polytope (i.e. the ordinary pro�le polytope) of the set of 
omplement-free
k-Sperner families are the following ve
tors (indexed with a z-element (z ≤ k) subset
α of {0, 1, 2, ..., n} where αi ∈ α implies n − αi /∈ α)

vα =

(

0, ..., 0,

(

n

α1

)

, 0, ..., 0,

(

n

α2

)

, 0, ..., 0, ..., 0,

(

n

αz

)

, 0, ..., 0

)

.55
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Proof: By Theorem 3.2.3 (a), it is enough to prove the followingLemma 3.2.8 If n = 2m + 1 and k ≤ m + 1, then the extreme points of the pro�lepolytope of 
omplement-free k-Sperner families on a pair of maximal 
omplement 
hainsare the ve
tors with at most k non-zero 
oordinates, where all the non-zero 
oordinatesare 2 (ex
ept for the �rst or the last 
oordinate, if one of them is non-zero, it equals1), and if the ith 
oordinate is non-zero, then the n − ith 
oordinate is zero.Proof of Lemma 3.2.8: If the non-zero 
oordinates of su
h a ve
tor are α1, α2, ..., αz(satisfying the 
ondition of the lemma), then the sets in the two 
hains with 
ardinality
αi for some i = 1, ..., z form a 
omplement-free k-Sperner family with the ve
tor aspro�le.Now let F be a 
omplement-free k-Sperner family on a pair of 
omplement 
hains
C1,C2 with pro�le ve
tor f . Let α be the set of indi
es of the non-zero 
oordinates of
f . Partition α into three subsets. Let CL (
omplete levels) denote the indi
es αi with
fαi

= 2 (and 0 or n if f0 or f1 equals 1). Let furthermore CP (
omplementing pairs)denote the indi
es αi ∈ α with n − αi ∈ α, and let R = α \ (CL ∪ CP ). Note that
CP ∩ CL = ∅, for otherwise F would not be 
omplement-free. Now form two subsets
α1, α2 of α in the following way. Put all indi
es in CL into both α1 and α2. For allpairs of indi
es i, n− i in CP (note that these are really pairs, for n is odd) put one ofthe indi
es into α1 and the other into α2. Finally, 
hoose α1 or α2 for all indi
es of Rin su
h a way, that |α1| ≤ k and |α2| ≤ k hold. (This is possible, for F is k-Sperner,therefore |α| ≤ 2k.) Now let f i, i = 1, 2 the following ve
tors.

f i
j =







2 (1) if j 6= 0, n (j = 0, n) j ∈ αi

0 otherwise. (11)By the fa
ts that both f is are of the form of the statement of the lemma and
f = 1

2
f 1 + 1

2
f 2 , the proof is 
ompleted. � �The 
ase of 
omplement-free families is very analogous (and even simpler), therefore56
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we just sket
h the proof.Theorem 3.2.9 The extreme points of the 
onvex hull of the 1-
hain pro�le ve
torsof 
omplement-free families are the ve
tors 
orresponding to the families 
onsisting ofi, a set I of levels with the property that the ith and the n− ith levels 
annot be bothin I, if n is odd,ii, a set I of levels with the property that the ith and the n−ith levels 
annot be bothin I and possibly half of the sets with size n/2 one from ea
h pair of 
omplementarysets, if n is even.Proof: It is easy to see (with the help of Theorem 3.2.4 (a)) that it is enoughto solve the problem redu
ed to a pair of maximal 
omplement 
hains. There thestatement holds, sin
e there a 
omplement-free family 
an 
ontain at most two setsout of the four with size i or n − i, and the ve
tors (1, 1), (0, 1), (1, 0) are 
onvex
ombinations of the ve
tors (2, 0), (0, 2), (0, 0). �Theorem 3.2.1 and 3.2.2 state that for a 
ertain 
lass of sets of families all 
andidatesfor the families with essential extreme l-
hain pro�les are among the families withessential extreme 1-
hain (2-
hain) pro�le. Theorem 3.2.6 states, that for k-Spernerfamilies the above statement is true for all extreme pro�les (not only for essentialextreme pro�les). It seems natural to 
onje
ture (with the notation of Se
tion 2) thatfor all set of families A and l > 1 El(A) ⊆ E1(A) and/or E∗
l (A) ⊆ E∗

1(A). But this isfalse. Here we present two 
ounterexamples.The �rst example is based on Theorem 3.2.7. Note that the families 
orrespondingto the extreme points 
annot 
ontain sets of size i and n − i at the same time. Hen
eall 2-
hain pro�les of those families have 0 in their 
oordinates indexed with the sets
{i, n− i}, and therefore all their 
onvex 
ombinations have 0 in those 
oordinates. Buta pair of subsets in in
lusion with size i and n − i is of 
ourse a 
omplement-free k-57
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Sperner family (if k ≥ 2), and its pro�le is not in the 
onvex hull of the above-mentionedve
tors.The se
ond example is absolutely analogous to the �rst one. A

ording to Theorem3.2.9 in the extremal families of the set of 
omplement-free systems there are no pairsof sets in in
lusion with size i and n − i (so the 
orresponding 
oordinate is 0 in any
onvex 
ombinations), but there are 
omplement-free families with su
h pairs.

58
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4 Con
luding remarksIn la
k of spa
e, we 
ould not survey all areas of extremal set theory in this thesis.We mainly fo
used on two types of problems. In this last se
tion we would like tosummarize the possibilities of future resear
h and pla
e our results in the theory ofextremal set systems.Though the problem of �nding F -free families with largest F -free di�eren
e seemsvery natural, it was introdu
ed quite re
ently in [28℄ by the author and therefore
ould not be subje
t of extensive resear
h yet. This means that we are not aware ofany other results of this type, thus 
onsidering other forbidden 
on�gurations that wedid in this dissertation and obtaining theorems on the 
orresponding largest possibledistan
e 
ould be the �rst step in future resear
h. Another 
hallenging question 
ouldbe to establsish 
onne
tions with other areas of extremal set theory or other topi
s in
ombinatori
s. For example it would be very interesting to know whether Theorem2.3.1 
ould be used to dedu
e results on Ramsey numbers.Finding the pro�le polytope of families with a pres
ribed property was the othertype of problems we 
onsidered in the thesis. The �rst result in this area was mentioned(impli
itly) by G.O.H. Katona in [24℄ but the systemati
al resear
h was initiated byP.L. Erd®s, P. Frankl and G.O.H. Katona in [7℄ and [8℄and many resear
hers wereengaged in the topi
 ever sin
e. As we mentioned in the introdu
tion, determining thepro�le polytope enables us to maximize easily any weight fun
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(One of) the most important property for whi
h the pro�le polytope is yet to bedetermined is the t-interse
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