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AbstratIn this thesis, we fous on two types of problems in extremal �nite set theory. Firstwe introdue a distane-like onept, the F -free distane of two F -free hypergraphs.For a �xed hypergraph F , we will onsider the problem of �nding the pairs of hyper-graphs with the largest F -free distane. For some hypergraphs we will obtain exatresults while for some others we will obtain upper and lower bounds on the largest F -free distane. In the seond part of the thesis, we will elaborate on extremal problemsof weighted set systems, where the weight of a set depends only on its size. The maintool in our investigation will be the so-alled pro�le vetor of a set system and we willdetermine the onvex hull of the pro�le vetors of set systems with some presribedproperties.
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1 IntrodutionOne of the �rst theorems in extremal �nite set theory is that of Sperner [31℄, statingthat if we onsider a family F of subsets of an n-element set (n-set for short) S suhthat no set F ∈ F an ontain any other F ′ ∈ F , then the number of sets in F isat most ( n
⌊n/2⌋

). The elebrated theorem of Erd®s, Ko and Rado [6℄ (it was publishedonly in 1961, 23 years after it was proved by the authors!) asserts that for any twopositive integers t ≤ k there exists a third one n0(k, t) suh that if a family G onsistsof k-subsets of an n-set, where n ≥ n0(k, t) and if for any two sets G, G′ ∈ G, we have
|G ∩ G′| ≥ t, then the size of G is at most (n−t

k−t

).Both theorems deal with a problem of �nding the largest size that a family of subsetsof a �xed underlying set an have if the family satis�es some presribed property.Problems of this type are in the fous of extremal �nite set theory.We will use the standard notation 2X to denote the power set of the set X, and
(

X
k

) will denote the set of all k-subsets of X. The set of the �rst n positive integerswill be denoted by [n]. A hypergraph (or set system) H is a pair (V (H), E(H) with
E(H) ⊆ 2V (H). V (H) is the vertex set of the hypergraph and E(H) is the edge set of
H (mostly we will identify hypergraphs with the set (family) of their (hyper)edges).If E(H) ⊆

(

V (H)
k

) then H is said to be k-uniform. We will say that a hypergraph Hontains a opy of another hypergraph F if there exists an edge preserving injetion ffrom V (F) to V (H), i.e. whenever F ∈ E(F), then f(F ) = {f(x) : x ∈ F} ∈ E(H),and H is said to be F-free if it does not ontain a opy of F . We will all a mapping
f with the properties above an embedding of F to H, and an embedding of F to itselfis an automorphism of F .With the notations above we an formulate the general problem (mentioned in theseond paragraph) as follows: given a set of families of sets A ⊆ 22X (i.e. a set ofhypergraphs, all with vertex set X), we have to �nd maxF∈A{|F|} (and desribe all5
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families with this size, the so alled extremal families).One way to de�ne the family A is to �x a hypergraph F and let A be the set of F -free hypergraphs with vertex set X. (Or one may forbid a, possibly in�nite, olletion
C = {F1,F2, ...} of hypergraphs.) If F is k-uniform and A is the family of all k-uniform
F -free hypergraphs with vertex set [n], then ex(n,F) := maxF∈A{|F|} is the Turánnumber of F . By an observation of Katona, Nemetz and Simonovits [25℄ the sequene
ex(n,F)

(n

k)
is non-negative and monotone non-inreasing, so its limit, the Turán densityexists. For ordinary graphs (i.e. when k = 2), the Turán density is determined by theErd®s-Stone-Simonovits theorem [10℄, [9℄ (even if a olletion of graphs is forbidden),but only sporadi results are known if k ≥ 3 (for a survey on the topi see [17℄).In Setion 2 (whih is based on results from [27℄ and [28℄) we will onsider problemsthat are also related to F -free hypergraphs. Let us suppose, we are given two maximal

F -free hypergraphs H1 = (V, E1) and H2 = (V, E2) with the same vertex set V (heremaximality means, that whenever we add a subset of the vertex set to the edge set,the hypergraph obtained will not be F -free). Then their union H1∪H2 := (V, E1∪E2)annot be F -free, beause of their maximality. So several opies of F will appear in
H1 ∪ H2 witnessing that H1 and H2 are two di�erent maximal F -free hypergraphs.The more evidene (the more opy of F) we have, the more di�erent they are.Therefore to measure the di�erene between two F -free hypergraphs we introduetheir F-free distane (whih is a bit misleading, sine the triangle inequality does nothold even if we onsider only maximal F -free set systems) as the number of opies of Fthat are ontained in H1 ∪H2 (H1 and H2 need not to be maximal, so if there exists amaximal F -free hypergraph ontaining both of them, then their distane is 0) and wedenote this quantity by DF (H1,H2). To be more preise, DF(H1,H2) is the numberof embeddings of F into H1 ∪H2 divided by the number of automorphisms of F . Fora olletion C of hypergraphs and two C-free set systems (i.e. F -free for all F ∈ C) we6
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de�ne their C-free distane DC(H1,H2) by
DC(H1,H2) =

∑

F∈C

DF(H1,H2).Having introdued the de�nitions above, we an ask the following question: given ahypergraph F (or a olletion of hypergraphs C), what is the maximum F -free (C-free) distane that two F -free (C-free) hypergraphs an have if the vertex set of bothhypergraphs is [n]. In the introdutory part of Setion 2. we will show some exampleswhen �nding the maximum distane is easy and then we move on to more di�ultases.Let us turn bak to our starting problem: how we an hoose the most numberof subsets of [n] suh that the set system of our hosen sets satisfy some presribedproperty. In appliations (and from theoretial point of view, as well) it might happen,that we have some preferene in piking the subsets, so it is quite natural to onsidera weighted version of this problem. If w is a real-valued funtion (a weight funtion)on all the possible subsets (i.e. w : 2[n] → R), then we de�ne the weight of a family ofsets F ⊆ 2[n] by
w(F) =

∑

F∈F

w(F ),and now we are interested in �nding the largest weight that a set system (satisfyingthe presribed property) may have. Note, that the original problem orresponds to theall-one weight, or if we onsider only k-subsets (as in the Erd®s-Ko-Rado theorem),then all k-sets should have weight 1, and all other sets should have weight 0.Dealing with all possible weight funtions seems hopeless (and not very interesting),but there are some types of weight funtions that are quite well studied. One type ofweight funtions omes from a probabilisti approah. Let us suppose that we pika random subset X of [n] in suh a way, that for all i ∈ [n] we put i into X withprobability pi (0 ≤ pi ≤ 1) independently from what happens to all other j ∈ [n].7
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Then for any subset A ⊆ [n] we have
P(X = A) =

∏

i∈A

pi

∏

i/∈A

(1 − pi).If we let this probability to be the weight of a subset, we get that the weight of a setsystem is the probability that a randomly hosen subset will belong to it. Results onthis type of weight funtions an be found (among others) in [11℄ or [16℄.In Setion 3 (whih is based on joint results with Dániel Gerbner [18℄, [19℄) we willonsider weight funtions where the weight of a subset depends only on the size of theset. So formally let f : {0, 1, ..., n} → R be a real-valued funtion and for any subset
A ⊆ [n] let w(A) := f(|A|). A very natural weight funtion of this type is de�ned bytaking f to be the identity funtion (i.e. w(F ) = f(|F |) = |F |). In this ase the weightof a set system is

w(F) =
∑

F∈F

|F |the volume of F .When onsidering this kind of weights, it is very useful to introdue two vetors oflength n + 1 (the oordinates indexed from 0 to n). The ith oordinate of the weightvetor is the weight of any set with size i. We will denote the weight vetor by wand its ith oordinate by wi. The ith oordinate of the pro�le vetor of a set system
F ⊆ 2[n] is the number of sets that belong to F that have size i. The pro�le vetor of
F will be denoted by f(F) and its ith oordinate by f(F)i.With this notation the weight of a family for a given weight funtion w is simplythe inner produt of the weight vetor and the pro�le vetor:

w(F) =
∑

F∈F

w(F ) =

n
∑

i=0

f(F)iwi = f(F) ·w.So we transformed our problem: if for a set A of set systems we denote by µ(A)the set of pro�le vetors of the set systems in A, then we are looking for
max

f∈µ(A)
{w · f}.8
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We know from linear programming, that for any weight vetor w the maximumabove is taken at one of the extreme points of the onvex hull of µ(A), whih we denoteby 〈µ(A)〉 and whih is alled the pro�le polytope of A. The set of extreme points isdenoted by E(A) and the families having a pro�le in E(A), the extremal families by
E(A). So, if one determines E(A), then to get the maximum weight for any weightvetor w, one just has to ompute the weight for the vetors in E(A). Unfortunately,the size of E(A) might grow exponentially with n (the size of the underlying set)tending to in�nity.However, if the weights are non-negative, then inreasing any oordinate of thepro�le vetor inreases the weight of the family, so the maximum for these weightsis taken at an extreme point whih is maximal with respet to the oordinate-wiseordering. We all these vetors essential extreme points and denote them by E∗(A)and the orresponding families by E∗(A). Lukily, in most known results, the size of
E∗(A) grows only polynomially. Note that to prove that a set of pro�les are the extremepoints of the pro�le polytope one has to express all pro�les as a onvex ombinationof these vetors, while to prove that a set of pro�les are the essential extreme pointsof the polytope it is enough to dominate (a vetor f dominates g if it is larger in theoordinate-wise ordering) any other pro�les.The systemati investigation of pro�le vetors and pro�le polytopes was started byP.L. Erd®s, P. Frankl and G.O.H. Katona in [7℄ and [8℄, an overview of the topi anbe found in the book of K. Engel [4℄.The notion of pro�le vetor an be introdued for any ranked partially ordered set(poset) P (a poset P is said to be ranked if there exist a non-negative integer l and asurjetive mapping r : P → {0, 1, ..., l} suh that for any p1, p2 ∈ P if p2 overs p1, wehave r(p1) + 1 = r(p2)). In this ase the pro�le of a family F ⊆ P is de�ned by9
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f(F)i = |{p ∈ F : rank (p) = i}| (i = 0, 1, ..., n),where rank (p) denotes the rank of an element p and n is the largest rank in P . Severalresults are known about pro�le vetors in the generalized ontext as well (see e.g. [4℄,[13℄, [31℄).One of the most studied ranked poset is Ln(q), the poset of subspaes of an n-dimensional vetor spae V over the �nite �eld GF (q) with q elements (the ordering isjust set-theoreti inlusion). In this ase the rank of a subspae is just its dimension,so the pro�le vetor f(U) of a family U of subspaes is a vetor of length n+1 (indexedfrom 0 to n) with f(U)i = |{U ∈ U : dim U = i}|, i = 0, 1, ..., n. In the thesis, wedetermine the pro�le polytope of interseting families in the poset Ln(q). A family Uof subspaes is alled interseting if for any U, U ′ ∈ U we have dim(U ∩ U ′) ≥ 1 (and
t-interseting if for any U, U ′ ∈ U we have dim(U ∩ U ′) ≥ t).In the �rst subsetion of Setion 3, we will determine the extreme points of thepro�le polytope of interseting families of subspaes, while in the seond subsetion wewill introdue a generalization of the notion of pro�le vetors and prove some resultsfor the new onept.

10
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2 The distane of F-free familiesIn this setion we onsider the following problem: given a hypergraph F , let us �ndthe pair of two F -free hypergraphs that are "the most di�erent" from eah other. Ifembed(F ,G) denotes the number of embeddings of F into G and aut(F) denotes thenumber of automorphisms of F , then the di�erene of two F -free families with the samevertex set (from now on, all hypergraphs onsidered have vertex set [n]) is measuredby their F -free distane
DF(H1,H2) =

embed(F ,H1 ∪H2)aut(F)
.For a olletion of forbidden subhypergraphs C and two C-free hypergraphs H1 and H2,the C-free distane is de�ned by DC(H1,H2) =

∑

F∈C DF(H1,H2).Let us onsider two easy examples, before we proeed to the more ompliatedproblems. In our �rst example we examine hypergraphs of whih any pair of hyperedges
H1, H2 either H1 ⊆ H2 or H2 ⊆ H1 hold. To put this property of hypergraphs in ourontext, we have to de�ne the olletion of forbidden hypergraphs. Obviously, we haveto inlude in the olletion all non-isomorphi non-inluding pairs. Any suh pair isdetermined by a triple: the size of H1 ∩ H2, H1 \ H2 and H2 \ H1, so formally C⊆ =

{Fk,l,m : 0 ≤ k, 1 ≤ l ≤ m}, where Fk,l,m = {{1, 2, ...k, k + 1, ...k + l}, {1, 2, ..., k, k +

l + 1, k + l + 2, ..., k + l + m}}. Informally, to ompute the C⊆-free distane of twohypergraphs with the property above we should ount the pairs of hyperedges H1, H2 inthe union for whih both H1 6⊆ H2 and H2 6⊆ H1 hold. Maximal families with this "non-inlusion-free" property are saturated hains. (A hain C = {C0 ⊆ C1 ⊆ ... ⊆ Cn}is saturated if for all j, |Cj| = j holds.) The empty set is a subset of eah set,and eah set is a subset of the whole underlying set [n], so the maximum number ofpairs of sets none of them ontaining the other, where the sets are taken from twohains C1,C2, is at most (n − 1)2. And for any pair of saturated hains of the form11
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C = {C0 ⊆ C1 ⊆ C2 ⊆ ... ⊆ Cn−1 ⊆ Cn} and C
′ = {Cn ⊆ Cn−1 ⊆ ... ⊆ C1 ⊆ C0}where A denotes the omplement of the set A, we have DC⊆(C,C′) = (n − 1)2.As another example, let us onsider the set systems with the property that forevery F1, F2 ∈ F F1 ∩ F2 = ∅ (i.e. F is a family of pairwise disjoint sets). This time,the olletion of forbidden on�gurations is C 6∩ = {F ′

k,l,m : 1 ≤ k, 0 ≤ l ≤ m}, where
F ′

k,l,m = {{1, ..., k, k + 1, ..., k + l}{1, ..., k, k + l + 1, ..., k + l + m}} and DC6∩(H1,H2) isthe number of pairs of interseting hyperedges. In the ase of this property maximalfamilies are partitions of [n]. If for every pair we point out an element of the intersetion,then we get an injetive mapping from the non-disjoint pairs to the base set. So thenumber of suh pairs an be at most n. For any partition P we an reate anotherpartition P ′ by hoosing an element from eah non-empty set to form a set in P ′,then again hoosing one element from all remaining non-empty sets, and so on to have
D 6∩(P,P ′) = n (as an expliit example, one an think of the partition P1 onsistingonly of the whole underlying set [n] and the partition P2 onsisting of all singletons of
[n]).2.1 Interseting familiesIn this subsetion we will onsider interseting families of sets. Just to remember,
F ⊆ 2[n] is alled interseting if for any two F, F ′ ∈ F we have |F ∩ F ′| ≥ 1. This isequivalent to that there is no disjoint pair of sets in F . So, to get into our framework offorbidden on�gurations, we de�ne C∩ = {Fk,l : 0 ≤ k ≤ l}, where Fk,l = {{1, ..., k}{k+

1, ..., k+ l}}. In this way, the C∩-free distane of two interseting families is the numberof disjoint pairs in their union.The preise form of the Erd®s-Ko-Rado theorem [6℄ for interseting families (nothow it is mentioned in the introdution) states that if k ≤ n/2, then the size of any
k-uniform interseting family F ⊆ 2[n] is at most (n−1

k−1

) and if k < n/2 and |F| =
(

n−1
k−1

),12
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then F must be isomorphi to the family F0 = {F ∈
(

[n]
k

)

: 1 ∈ F}. It is quite naturalto onjeture that the pair
F0 = {F ∈

(

[n]

k

)

: 1 ∈ F}, G0 = {G ∈

(

[n]

l

)

: n ∈ G}will have the largest C∩-free distane if we restrit ourselves to pairs F ,G, where F is
k-uniform and G is l-uniform.Though in the non-uniform ase any maximal interseting family has size 2n−1 (notonly the family F ′

0 = {F ⊆ n : 1 ∈ F}), one still expets, that the following pair ofinterseting families have the largest C∩-free distane:
F ′

0 = {F ⊆ [n] : 1 ∈ F}, G′
0 = {G ⊆ [n] : n ∈ G}.We will refer to the pairs (F0,G0 and (F ′

0,G
′
0) as the onjetured hypergraphs/set sys-tems.In what follows we prove that the onjetured sets systems are in fat optimal inthe non-uniform ase and if n is large enough they are optimal in the uniform ase aswell.2.1.1 The Uniform CaseThroughout this subsetion we will assume that F is k-uniform and G is l-uniform.Now if k + l > n, then there are no disjoint k and l element subsets.If k + l ≤ n, but, say, l > n

2
, then any two l-element subsets meet eah other. Forany �xed k-element subset there are (n−k

l

)

l-element subsets disjoint from this �xedset. So the best one an do is to let F be the largest interseting k-uniform set system,and let G onsist of all l-element subsets disjoint from at least one set in F . TheErd®s-Ko-Rado theorem [6℄ says that F should be all k-element sets ontaining a �xedelement, so then G should be all l-element sets not ontaining this �xed element. Thusin this ase the onjetured set systems are not optimal.13
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If 2k = n and k = l then any set has only one disjoint pair (onsidering now onlythe k-element sets), its omplement. So one an put from eah pair one set into F andone into G, and sine in this way subsets ontaining 1 and n together (or ontainingnone of them) will be put into F or G, these families will have more disjoint pairs, thanthe onjetured systems (and learly will be maximal ones).Despite these failures of the onjetured systems, one an state the followingTheorem 2.1.1 For any k and l, there exists an n(k, l) suh that if n ≥ n(k, l)and F , G are k and l-uniform hypergraphs , then D∩(F ,G) ≤ D∩(F0,G0) where F0,G0are the onjetured hypergraphs.Proof:Case A ⋂

F 6= ∅ and ⋂G 6= ∅.In this ase⋂F and⋂G must be disjoint, sine otherwise there would be no disjointsets in F and G. Let us pik an i ∈
⋂

F and a j ∈
⋂

G, and add {F ⊆ [n] : i ∈ F} to
F and {G ⊆ [n] : j ∈ G} to G. In this way we get the onjetured hypergraphs, andlearly D(F ,G) annot derease.Case B ⋂

F = ∅ (or similarly ⋂G = ∅).Observe the following two things:1, if n ≥ k +2l then again by [6℄ one gets that for a �xed F ∈ F the number of setsin G from whih F is disjoint is at most (n−k−1
l−1

), whih is the ase in the onjeturedhypergraphs for all sets in Fi,j. So if |F| ≤ |Fi,j| =
(

n−2
k−1

) then we are done.2, Sine ⋂F = ∅ then as a speial ase of Theorem3 of [21℄ we get that
|F| ≤ 1 +

(

n − 1

k − 1

)

−

(

n − k − 1

k − 1

)and as for large enough n
(

n − 2

k − 1

)

> 1 +

(

n − 1

k − 1

)

−

(

n − k − 1

k − 1

)14
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holds, by the remark made after the �rst observation we are done. �2.1.2 The Non-Uniform CaseLet us �rst state the main theorem of this subsetion.Theorem 2.1.2 For any F ,G ⊆ 2[n] and for any n ≥ 2, DC∩(F ,G) ≤ DC∩(F ′
0,G

′
0)holds, where F ′

0,G
′
0 is the onjetured pair.Proof: Without loss of generality one an assume that the pair (F ,G) is maximalwith respet to the property that all F ∈ F have at least one G ∈ G disjoint from it(and the same holds for any G ∈ G). Our onjetured pair of set systems does not havethis property, so if we remove the "negligible" sets (the ones that are not ontained inany disjoint pair of sets in the union F ′

0 ∪G′
0) we get the following pair of hypergraphs:

F ′′
0 = {F ⊆ [n] : 1 ∈ F, n 6∈ F}, G′′

0 = {G ⊆ [n] : n ∈ G, 1 6∈ G},to whih we will still refer as the onjetured pair of hypergraphs (and for whih
DC∩(F ′

0,G
′
0) = DC∩(F ′′

0 ,G′′
0 ) holds).We begin the proof with the following laim:Claim 2.1.3 F ∈ F ⇔ F ∈ G.Proof of Claim: If F ∈ F then there is some G ∈ G suh that F ∩ G = ∅. Thismeans G ⊆ F , and as G meets all sets in G, F meets them, too. So by maximality

F ∈ G. The other diretion follows, sine we an hange the role of F and G. �By virtue of the above laim, we an �forget about� G. But what should we ount,and are there any additional onditions on F? Conerning the �rst question: as for a�xed F we ounted the Gs disjoint from it, and sine F ∩ G = ∅ ⇔ F ⊆ G, by thelaim we get, that now for a �xed F we should ount the number of F ′ ∈ F : F ⊆ F ′.(Note that F ⊆ F also ounts, beause this is for the pair (F, F )!) Let us denote this15
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number by ρF(F ) (and we will omit F from the index, if it is lear from the ontext),and put ρ(F) =
∑

F∈F ρF(F ).Now to the other question: sine by the above laim we know that G = F = {F :

F ∈ F} and the original onditions were that both F and G should be interseting, weget that F should be interseting and o-interseting. So we onlude the followingClaim 2.1.4 max{D(F ,G) : F ,G are interseting} = max{ρ(F) : F is intersetingand o-interseting}. �By this laim we are left to show that ρ(F) ≤ ρ(F ′′
0 ) whenever F is an inter-seting and o-interseting family (and therefore we will all F ′′

0 alone the onjeturedhypergraph).Now note that, when ounting ρ(F) one ounts the pairs (F, F ′) where F, F ′ ∈ Fand F ⊆ F ′. But this an be done from the point of view of F ′, that is, if we put
δF(F ′) = |{F ∈ F : F ′ ⊇ F}| and δ(F) =

∑

F∈F δF(F ), then ρ(F) = δ(F). With thisremark we are able to proveLemma 2.1.5 If F is interseting and o-interseting, furthermore ⋂F 6= ∅, then
δ(F) ≤ δ(F ′′

0 ).Proof: W.l.o.g. one an assume that 1 ∈ F for all F ∈ F . Consider the hypergraph
F∗ = {F \ {1} : F ∈ F}. Sine we removed 1, this need no longer be interseting, butit is learly o-interseting on [2, ..., n], furthermore δF (F ) = δF∗(F \ {1}).It is well-known, that if a hypergraph is maximal o-interseting, then it ontainsone set from any pair of omplements, and if F ⊆ F ′ ∈ F∗, then F ∈ F∗. So
δF∗(F \ {1}) = 2|F\{1}|, hene to obtain the largest δ(F∗) one should put the mostpossible large sets into F∗. Again, by [6℄, we know that for �xed k ≥ n−1

2
we an putat most (n−2

k

)

k-element sets into F∗, but in the ase of the onjetured hypergraphexatly that many sets (now with k + 1-elements, as we put bak 1 to all the sets) are16
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there. So for all k we put the most possible number of large sets into our family whenonsidering the k and n − 1 − k-element omplementing pairs. �So we will be done, if we an proveLemma 2.1.6 For any interseting and o-interseting family F , there exists an-other F ′ with ⋂F ′ 6= ∅ and ρ(F) ≤ ρ(F ′).Before starting the proof of Lemma 2.1.6, we introdue some notation: the shiftoperation τi,j is de�ned by
τi,j(F ) =







F \ {j} ∪ {i} if j ∈ F, i /∈ FandF \ {j} ∪ {i} /∈ F

F otherwise (1)Put τi,j(F) = {τi,j(F ) : F ∈ F}.The shift operation is a very well-known and very often used tehnique in extremal�nite set theory. It was introdued by Erd®s, Ko and Rado in [6℄ and had numerousappliations ever sine. For a good (but not reent) survey see Frankl's paper [12℄.The proof of the following properties of the shift operation an be found both in [6℄and [12℄: it preserves the interseting and o-interseting property. It is also known,that starting from any family of sets, performing �nitely many shift operation, one anobtain a so-alled left-shifted family, that is a family for whih τi,j(F) = F for all i < j.So in what follows, we an assume that F is left-shifted, if we an prove the followingClaim 2.1.7 ρ(F) ≤ ρ(τi,j(F)).Proof: We will onsider how ρ(F ) hanges when performing the operation τi,j .Case A If i, j ∈ F or i, j /∈ F , then τi,j(F ) = F and for all F ′ ∈ F with F ⊆ F ′we have F ⊆ τi,j(F
′). So ρF (F ) ≤ ρτi,j(F)(F ) = ρτi,j(F)(τi,j(F )).Case B Let A ⊆ [n] with i, j /∈ A. Put F = A ∪ {i} and F ′ = A ∪ {j}.Subase B1 F ∈ F , F ′ /∈ F 17
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Now for all G ⊇ F i ∈ G, therefore G = τi,j(G) ⊇ τi,j(F ) = F , thus ρF(F ) ≤

ρτi,j(F)(F ) = ρτi,j(F)(τi,j(F )).Subase B2 F /∈ F , F ′ ∈ FNow τi,j(F
′) = F , and if F ′ ⊂ G ∈ F with i /∈ G, then (G\{j}∪{i}) = G′ ∈ τi,j(F)and learly F ⊆ G′. If F ′ ⊆ G with i, j ∈ G, then G = τi,j(G) ⊇ F , thus we onlude,that ρF (F ′) ≤ ρτi,j (F)(F ) = ρτi,j(F)(τi,j(F

′)).Subase B3 F, F ′ ∈ F (thus τi,j(F ) = F, τi,j(F
′) = F ′)Now let G ∈ F ontain at least one of F, F ′. If i ∈ G, then τi,j(G) = G ontainsas many of F, F ′ as before performing the τ -operation. Otherwise i /∈ G, j ∈ G and

G ontains only F ′. So, putting G′ = G \ {j} ∪ {i}, if G′ /∈ F , then τi,j(G) =

G′ and G′ ⊇ F , while if G′ ∈ F , then τi,j(G) = G and still F ′ ⊆ G. So we get
ρτi,j(F)(F ) + ρτi,j(F)(F

′) ≥ ρF (F ) + ρF (F ′).So for sets of type of the �rst ase ρ(F ) does not derease, and we an partition thesets of type of the seond ase into �pairs" (of whih one may be missing) for whihthe sum of ρ(F )s does not derease. �Further notations:
F + G = {F ∪ G : F ∈ F , G ∈ G}, F − G = {F \ G : F ∈ F , G ∈ G}

∆F = F −F ; SubF = {S : S ⊆ F ∈ F}And we will write 1 + F if G onsists of one single set ontaining only 1.Now we an return to the proof of Lemma 2.1.6. In the proof we will use the basiideas of [26℄.Proof of Lemma 2.1.6 For arbitrary F interseting and o-interseting familywe have to de�ne another one of whih eah set has an element in ommon. Now let
F = F0 ∪∗ F1, where F1 = {F ∈ F : 1 ∈ F} and F0 = {F ∈ F : 1 /∈ F}. Put
F ′ = F1 ∪ (1 + SubF0). 18
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We have to prove that a, ⋂F ′ 6= ∅ (and therefore it is interseting), b, F ′ is o-interseting and , ρ(F ′) ≥ ρ(F).a, is lear, as by de�nition 1 ∈ F for all F ∈ F ′.To prove b, we will use that F is left-shifted (and maximal).Claim 2.1.8 1 + F0 ⊂ F1Proof: Sine for any F ∈ F0 F ′ = {1}∪F ⊃ F , F ′ meets all sets in F . We have toshow, that there is no G ∈ F suh that F ′∪G = [n]. Suppose to the ontrary that suha G exists. Note that 1 /∈ G, beause otherwise G ∪ F = [n] would hold, ontraditingthe o-interseting property of F . Now as F is interseting, there is j ∈ F ∩ G. Butsine F is left-shifted, G \ {j} ∪ {1} = G′ ∈ F . But then G′ ∪ F = [n] would hold - aontradition. �By Claim 2.1.8 we know that all new sets in F ′ are subsets of one of the old sets(that is a set from F), therefore as F was o-interseting, so is F ′.It remains to prove ,. For this purpose we will de�ne an injetive mapping f : F0 →

1 + ∆F0 (observe that ∆F0 ⊆ SubF0!) suh that for all F ∈ F0 ρF ′(f(F )) ≥ ρF (F ).This is learly enough, beause F1 ⊆ F ′, so ρ(F ) annot derease for any F ∈ F1 (andif F1, F2 ∈ F0, then {1} ∪ F1 \ F2 is disjoint from F2, so, by the interseting propertyof F , it is not an element of F1, so we will not ount twie any ρ(F )).To de�ne f (using the notation of [26℄) let k = min{|I| : I = F1 ∩ F2; F1, F2 ∈ F0}(note, that I is not empty, as F is interseting!) and �x F1, F2 with I = F1∩F2 : |I| = k.Now onsider the following partition of F0:
C = {F ∈ F0 : I 6⊆ F};A = {F ∈ F0 : I ⊆ F, there is F ′ ∈ F0 with F ∩ F ′ = I};

B = F0 \ (A ∪ C).For a better understanding, F ∈ B if I ⊂ F and whenever there is a set F ′ ∈ F0 with
I ⊆ F ′, then F should meet F ′ outside I, as well. Note that A is not empty, sine19
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F1, F2 ∈ A. Now for any A ∈ A let f(A) = (A \ I)∪{1}. (Observe that for any A ∈ Athere is A′ ∈ A ⊆ F0 with A∩A′ = I, A \ I = A \A′, so f(A) ∈ 1+∆F0 as required!)As all A ∈ A ontain I, f is injetive restrited to A.To show that ρF ′(f(A)) ≥ ρF (A), observe that f(A) ⊂ A ∪ {1}. Therefore if
A ⊂ F ∈ F and 1 ∈ F (that is F ∈ F1, therefore F ∈ F ′, too) , then f(A) ⊂ F , aswell, so the part of ρ(A) whih omes from the F s in F1 annot derease.We have to handle the sets A ⊂ F ∈ F0. To do this let (F \ I) ∪ {1} = F ′. Then
F ′ ∈ F ′ and f(A) ⊆ F ′ by de�nition. If F 6= G then F ′ 6= G′, beause we took thesame set I away from both (and I ⊆ F, G), and 1 was neither in F nor in G. We stillhave to point out that F ′ is not equal to any G ∈ F 1 , G ontaining A for any F ∈ F0(beause in that ase we would take into aount that ontaining relation twie whenounting ρ(f(A))). But this is lear, beause a G of this form ontains I (as I ⊆ A),and F ′ ∩ I = ∅ by de�nition (and as we pointed out I is not empty).To �nish the proof we need to ontinue this proedure now onsidering the remainingsets, that is B ∪ C. So we de�ne a new I ′ and a new k′ now only onsidering sets in
B ∪ C, then get a new partition A′,B′, C′ with respet to this new I ′ and new k′, andde�ne f on A′ with the help of I ′, and then start again with B′ ∪ C′... This proedureends after �nitely many steps, as the As are never empty, so there is stritly less andless remainder. In eah step f is injetive, the only di�ulty is to assure for sets A, Bon whih f is de�ned at di�erent steps f(A) = f(B) annot happen. This is learlydone byClaim 2.1.9 (A− {I}) ∩ ∆(B ∪ C) = ∅

A− {I} is the set of the f -images de�ned at a step (if we do not onsider 1, whihis an element of all images). For a set B on whih f is de�ned later, the image is ofthe form B \ I ′ = B \B′ (again without 1), so it is in ∆(B∪C). Therefore by the laimwe will be really done. 20
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Proof: This is in fat the lemma in [26℄, but to be self-ontained we repeat theproof.Case 1: A ∈ A, B ∈ B, F ∈ B ∪ C.By the de�nition of B, B must meet A outside of I, too. Therefore F \B does notontain this (these) element(s), while A \ I does.Case 2: A ∈ A, C ∈ C, F ∈ B ∪ CBy the de�nition of C, C does not ontain I, therefore by the minimality of |I|, Cmust meet A outside of I, too. The rest is as in Case 1. � � �2.2 Sperner FamiliesIn the introdution of the thesis, we ited Sperner's famous theorem about Spernersystems without using this expression for the onept. Let us de�ne it now expliitly.De�nition: F is a Sperner system/ family if F1 6⊆ F2 for any distint F1, F2 ∈ F .Being a Sperner family is a property that an be de�ned via forbidden on�gura-tions, too. Let C6⊆ = {Gk,l : k ∈ N, l ∈ N} where Gk,l = {{1, ..., k}, {1, ..., k + l}} is theolletion of forbidden hypergraphs, and for shortness' sake let us write D 6⊆(F ,G) =

DC6⊆(F ,G). So the distane of two Sperner systems is D6⊆(F ,G) = |{{A1, A2} : Ai ∈

F ∪ G and A1 ⊆ A2}|.Theorem 2.2.1 If F ,G ⊆ 2[n] are two Sperner systems, then
D 6⊆(F ,G) ≤ D 6⊆(F0,G0)where F0 is the family of all sets of size k1, G0 is the family of all sets of size k2(k1 < k2) with eah of k1, k2 − k1, n − k2 di�ering by at most one. In partiular, if 3divides n, then F0 is the family of all sets of size n/3 and G0 is the family of all setsof size 2n/3. 21
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First proof: W.l.o.g. we an assume that both F and G are maximal Spernerfamilies, sine adding new sets to the families annot derease the distane.Our goal is to show that by starting with any pair of Sperner systems (F ,G), in�nitely many steps (F i,Gi) we an reah (F0,G0) = (Fm,Gm) suh that
D 6⊆(F ,G) ≤ D 6⊆(F1,G1) ≤ D 6⊆(F2,G2) ≤ ... ≤ D 6⊆(Fm,Gm) = D 6⊆(F0,G0).Step 1Let C = F ∩ G and partition F and G by

F = C ∪ F1 ∪ F2 and G = C ∪ G1 ∪ G2where F1 = {F ∈ F : there is G ∈ G G ( F}, F2 = {F ∈ F : there is G ∈ G G ) F}and G1,G2 de�ned similarly. Note, that any F ∈ F ontains or is ontained in some
G ∈ G, beause otherwise we ould add it to G, whih would ontradit the maximalproperty of G, and no F ∈ F belongs to both F1,F2, otherwise there exist G1, G2 ∈ Gsuh that G1 ( F ( G2 ontraditing the Sperner property of G. So C,F1,F2 is reallya partition of F .Now let F1 = C ∪ F1 ∪ G1 and G1 = C ∪ F2 ∪ G2. It is easy to hek that both F1and G1 are Sperner systems. The fat that D 6⊆(F ,G) = D 6⊆(F1,G1) follows from thefat that E(F) ∪ E(G) = E(F1) ∪ E(G1).By the above hange of the systems there is no F ∈ F1 for whih there exists a
G ∈ G1 with F ⊆ G, so we an refer to F1 as the upper Sperner family, and to G1 asthe lower family.From now on in any even step we replae some of the sets of the upper Spernersystem by other sets of larger size, and in any odd step we do the same to some setsof the lower family.Step 2 22
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Partition F1 into two subsystems: F1
1 = {F ∈ F1 : |F | > n/2},F1

2 = {F ∈ F1 :

|F | ≤ n/2}. Put F2 = F1
1 ∪ {F ∈

(

[n]
⌈n/2⌉

)

: there is F ′ ∈ F1
2 suh that F ′ ⊆ F} and

G2 = G1. It is lear that F2 is a Sperner family.
D 6⊆(F1,G1) ≤ D 6⊆(F2,G2) follows from Sperner's lemma [31℄ stating, that if G isa k-uniform family with k ≤ n

2
, then |∇G| ≥ |G|, where ∇G = {G′ ⊂ [n] : |G′| =

k + 1 and there is G ∈ G suh that G ⊆ G′}.Step 3Now we want to "push the lower system up", so we replae the small sets.
G2

2 = {G ∈ G2 : |G| < ⌈
⌈n

2
⌉

2
⌉}; G2

1 = G2 \ G2
2

G3 = G2
1 ∪ {G ∈

(

[n]

⌈
⌈n

2
⌉

2
⌉

)

: there is G′ ∈ G2
2 with G′ ⊆ G}; F3 = F2Just as in the argument in Step 2 G3 is a Sperner system, and using the originalproof of Sperner's theorem one an verify that for any �xed F ∈ F3 = F2 the numberof sets in G3 ontained by F is at least the number of sets in G2 ontained by F .Suppose we ahieved in Step 2k that the sets in the upper set system have size atleast ckn, and in Step 2k + 1 that all the sets in the lower set system have size at least

dkn. Then in Step 2(k + 1) we will show that that all sets in the upper family havesize at least ck+1n = dkn + ⌈1−dk

2
n⌉, and in Step 2(k + 1) + 1 that the sets of the lowerfamily have size at least dk+1n = ⌈ ck+1n

2
⌉. Formally Step 2(k +1) and Step 2(k +1)+1are de�ned as follows:Step 2(k + 1)Let F2k+1 = F2k+1

1 ∪ F2k+1
2 , where F2k+1

1 = {F ∈ F2k+1 : |F | > dkn + ⌈1−dk

2
n⌉}and F2k+1

2 = F2k+1 \ F2k+1
1 . Then let

F2(k+1) = F2k+1
1 ∪ {F ′ ∈

(

[n]

dkn + ⌈1−dk

2
n⌉

)

: ∃F ∈ F2k+1 suh that F ⊆ F ′}23
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and let
G2(k+1) = G2k+1.Step 2(k + 1) + 1Let us partition G2(k+1) into two subfamilies: G

2(k+1)
1 = {G ∈ G2(k+1) : |G| >

⌈ ck+1n

2
⌉} and G

2(k+1)
2 = G2(k+1) \ G

2(k+1)
1 . Then put

G2(k+1)+1 = G
2(k+1)
1 ∪ {G′ ∈

(

[n]

⌈ ck+1n

2
⌉

)

: ∃G ∈ G2(k+1) suh that G ⊆ G′}and
F2(k+1)+1 = F2(k+1).The fat that during Step 2(k+1) and Step 2(k+1)+1 the distane of our familiesannot derease follows just as in the ase of Step 2 and Step 3. (Note that in Step

2(k+1) we apply Sperner's lemma to the posets PG = {H\G : H ⊇ G}, where G rangesover the sets in G2k+1, while in Step 2(k + 1) + 1) to the posets PF = {H : H ⊆ F},where F ranges over the sets in F2(k+1).) The statement about ck+1 and dk+1 is trueby de�nition.So (forgetting the eiling signs for a moment) ck+1 = 1
2
ck +

1− 1
2
ck

2
= 1/2+ ck/4 (and

dk+1 = ck+1/2). As for any x ∈ [0; 2/3) x < 1/2+x/4, in �nitely many steps (by virtueof the eiling sign) we an ahieve that all the sets in the upper family have size atleast ⌈2n/3⌉, and all the sets in the lower family have size at least ⌈n/3⌉.To �nish the proof we need the observation that the omplement system of a Spernersystem is a Sperner system, and that (denoting the omplement system of F by F =

{[n] \ F : F ∈ F), we have D 6⊆(F ,G) = D 6⊆(F ,G).In the omplement systems of the above pair, all sets have size at most ⌊n/3⌋ or
⌊2n/3⌋, and after the same "pushing up proedure" we get one of the optimal pairs. �Seond proof: By Step 1 of the previous proof we redue the problem to Sperner24
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families F ,G where for all F ∈ F there is a G ∈ G with F ⊆ G. Then we are done bythe following theorem of Katona.Theorem 2.2.2 [24℄ (Iterated Sperner theorem) Let A1, ..., Am be subsets of an nelement set satisfying Aj 6⊆ Ak 1 ≤ j, k ≤ m, j 6= k. For eah i = 1, ..., m, suppose
Bi,1, ..., Bi,mi

are subsets of Ai satisfying Bi,j 6⊆ Bi,k 1 ≤ j, k ≤ mi. Then
m
∑

i=1

mi ≤

(

n

⌊2n
3
⌋

)(

⌊2n
3
⌋

⌊n
3
⌋

)

.

� Remark: Theorem 2.2.2 (besides Step 1) is stronger than Theorem 2.2.1 (sine inTheorem 2.2.2 we do not require that the Bs form a Sperner family), but Katona'sproof of Theorem 2.2.2 uses a generalization of the LYM-inequality, while our �rstproof uses only Sperner's original idea of his well-known theorem.2.3 Kr-free GraphsWe denote by Kr the omplete graph on r verties. The Kr-free distane of two Kr-freegraphs (G1, G2) on the same underlying set V is
DKr

(G1, G2) = |{{x1, ..., xr} : xi ∈ V for all i, and any (xi, xj) ∈ E(G1 ∪ G2)}|In all the ases we have already treated (interseting, pairwise disjoint and Spernerfamilies, hains), the struture of the families in the optimal pair (the pair with themaximum distane) was very similar to that of the optimal family in the originalproblem (what is the largest family with the desired property). Therefore it is quitenatural to onjeture that Turán graphs will ome into sight. (Turán's well-knowntheorem [32℄ says that a Kr-free graph on n verties with the most possible numberof edges must be isomorphi to the omplete r − 1-partite graph, where the sizes of25
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any two partition lasses may di�er by at most one. These graphs are alled Turángraphs.)Though it is not true that if DKr
(G1, G2) is maximal, then both G1, G2 should beTurán graphs, still Turán graphs will play an important role in the proof of the nexttheorem. First we need to introdue some notation.

T (n, r) is the usual notation for the r-partite Turán graph on n verties and t(n, r)denotes the number of edges in the graph. Now let ks(G) denote the number of s-liquesin G. (So t(n, r) = k2(T (n, r)).)The Ramsey number R(k) denotes the least integer n for whih any E0, E1 partitionof the edges of Kn, there is a sample of Kk either in E0 or in E1.Let us write furthermore Dn
r := max{DKr

(G1, G2) : G1, G2 are Kr-free on the samevertex set [n]} and put m = R(r) − 1.Theorem 2.3.1 Dn
r = kr(T (n, m))Proof: For the ≥ part we need a onstrution.Let us �x a partition E0, E1 of the edges of Km suh that there is no Kr neither in

E0 nor in E1. We want to de�ne G0, G1 two Kr-free graphs on [1, .., n]. So we haveto deide whih edges we want to put into G0 and whih into G1. To do this, for any
1 ≤ i < j ≤ n write i = lim + i′, j = ljm + j′ where 1 ≤ i′, j′ ≤ m.Now put (i, j) into E(G0) i� (i′, j′) ∈ E0, and into E(G1) i� (i′, j′) ∈ E1. Sine
(i, j) is an edge if and only if i 6= j mod m, therefore G0 ∪ G1 is just T (n, m) and thelasses are just the ongrueny lasses modulo m. We have to hek that G0, G1 areboth Kr-free. If not, then i1, i2, .., ir form a Kr in, say, G0. But then i′1, i

′
2, ..., i

′
r shouldbe all distint, and should form a Kr in E0 - a ontradition.For the ≤ part of the proof, note that G0 ∪G1 annot ontain a KR(r) as otherwise

G0 or G1 would ontain a Kr. So the following result of Sauer (its s = 2 ase is exatly26
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Turán's theorem) ompletes the proof.Lemma 2.3.2 (Sauer [30℄ see also [3℄) If s < p and G is a Kp-free graph on nverties, then the number of Kss in G is at most ks(T (n, p − 1)). �Remark: If m divides n, then kr(T (n, m)) =
(

m
r

)

( n
m

)r, so the problem of givingthe exat value of Dn
r for large enough n is equivalent to giving the exat value of R(r).2.4 TreesTrees (and forests) are yle-free graphs, so Cyle = {Ck : k ≥ 3} where Ck is the yleof length k. Therefore this time the question is, how many yles we an have in theunion of two trees on the same n-element vertex set. Dyle (T1, T2) = DCyle (T1, T2)will denote the tree-distane (the number of yles in the union) of two trees T1 and

T2. Dnyle will denote the maximum tree-distane of two trees on the same n verties.A trivial upper bound on Dnyle is 4n−1, sine the union of two trees may ontainat most 2(n− 1) edges, so the number of subsets of the edge set of the union is learlyan upper bound for the number of yles.The following reursive onstrution (�g.1) shows that Dnyle does have an expo-nential growth. Suppose we have T n
1 , T n

2 two trees on n verties, and an edge e (withendpoints x and y) in their union, through whih there are cn yles in T n
1 ∪ T n

2 . Like-wise suppose we have Tm
1 , Tm

2 two trees on m verties (with vertex set disjoint from thatof T n
1 and T n

2 ), and an edge f (with endpoints u and v) in their union, through whihthere are cm yles in Tm
1 ∪Tm

2 . Let T n+m
1 = T n

1 ∪Tm
1 ∪{xu} and T n+m

2 = T n
2 ∪Tm

2 ∪{yv}.We laim that in T n+m
1 ∪ T n+m

2 there are (cn + 1)(cm + 1) yles through the edge xu.Indeed, there are cn paths from x to y in T n
1 ∪ T n

2 plus the edge xy = e, then we haveto go through the edge yv, then hoose among the cm paths in Tm
1 ∪ Tm

2 from v to u(or the edge vu = f), and then we �nish o� the yle using the edge xu. Sine we27
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just took the sum of the number of verties, and the number of yles got multiplied,this is really of exponential growth. To be more onrete: we an over K4 by two(edge-disjoint) paths, so we have D4
cycle = 7. By the above reursive bound we get that

D4n
cycle ≥ 7n = (71/4)4n. (71/4 = 1.625...)

u

f
v

e

x

y

PSfrag replaements T n
1 ∪ T n

2

Tm
1 ∪ Tm

2

Figure 1: The reursive onstrution showing the exponential growth of Dn
treeIn the next two subsetions we prove the following lower and upper bounds on

Dn
cycle:Theorem 2.4.1 There exists a onstant c for whih the following inequalities hold

cxn
0 ≤ Dn

tree ≤

⌊n
2
⌋

∑

i=1

(

n

2i

)

= 2n−1 − 1,where x0 is the unique real root of the equation x3 − x2 − x − 1 = 0 (x0 = 1.8392...).2.4.1 Lower Bound on DnyleIn this subsetion we will give a "real" onstrution for the lower bound on ∆ (see �g.2).Both of the trees in the onstrution are paths, and we will refer to them as the bluetree (denoted by Bn) and the red tree (denoted by Rn). The verties of the trees arethe integers from −k up to k if n = 2k +1 and the integers from −k to k−1 if n = 2k.Two integers are adjaent in Bn if and only if they are onseutive. If n = 2k +1, thenthe edge set of Rn is {{−l, l} : 1 ≤ l ≤ k} ∪ {{l,−(l + 1)} : 1 ≤ l < k} ∪ {{k, 0}}. If28
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0

−1 −2 −3 −k

1 2 3 k

0

−1 −2 −3 −k

1 2 3 k

Figure 2: The �real onstrution� Rn ∪ Bn and the orientation of its edges
n = 2k is even, one just drops the vertex k and the edges inident to it, and add theedge {−k, 0} to the red tree.Let c(n) denote the number of yles through the edge {k, 0} (that is the numberof paths from the vertex 0 to the vertex k) if n = 2k + 1 and the number of ylesthrough {−k, 0} if n = 2k. We laim that the following reurrene holds: c(n) =

c(n − 1) + c(n − 2) + c(n − 3) where c(1) = c(2) = 1, c(3) = 2.To see this let us onsider the graph Bn ∪ Rn \ {{0, k}} (Bn ∪ Rn \ {{0,−k}} if
n = 2k) as a direted graph with the following orientation of the edges (�g.2): all edgesare direted from the vertex of smaller absolute value to the vertex of bigger absolutevalue. The red edges of type {−l, l} are direted from the vertex −l toward the vertex
l. In the path 0 = x0, x1, ..., xl−1, xl = k the edge {xj, xj+1} is alled a bakward edge if
xj is the endpoint and xj+1 is the starting point of the edge in the above orientation.Other edges will be alled forward edges.First note, that there an be no blue bakward edges in a path from 0 to k. Sine ifthere was, let us take the �rightmost� one {xj , xj+1} (i.e. the one with an endpoint ofgreatest absolute value). Assume xj = −(l+1), xj+1 = −l (the ase xj = l+1, xj+1 = lis similar). Then beause this is the rightmost bakward blue edge in the path, xj−1annot be −(l + 2) ({−(l + 2),−(l + 1)} would be a bakward blue edge "further tothe right"). Therefore xj−1 is either l + 1 or l. In both ases the vertex xj+1 = −l is29
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PSfrag replaements
xj−1

xj−1

xj

xj xj+1

xj+1

xj+2

xj+2

Figure 3: Bakward red edges in oriented pathsut from the vertex k by the edge {xj−1, xj}, so we annot �nish the path in this way.How about bakward red edges? (�g.3) If xj = −(l+1), xj+1 = l, then xj−1 annotbe −(l + 2) as {−(l + 2),−(l + 1)} would be a bakward blue edge. xj−1 annot be
l + 1 either for the edge {xj−1, xj} would ut xj+1 from the vertex k. So xj−1 must be
−l. xj+2 annot be l − 1 (bakward blue edge), so xj+2 is l + 1.In the same manner one an see, if {xj , xj+1} is a bakward red edge with xj = l,
xj+1 = −l, then xj−1 should be l − 1 and xj+2 should be −(l + 1). So if we add thedireted edges {{l,−(l + 2)} : 0 ≤ l ≤ k − 2} ∪ {{−l, l + 1} : 1 ≤ l ≤ k − 1} to thedireted graph Rn ∪ Bn, then in this new graph, the number of direted paths from
0 to k is equal to the number of non-direted paths from 0 to k in the non-diretedgraph Rn ∪ Bn. (In fat we onstruted a bijetion among the non-oriented and theoriented paths of the two graphs: whenever a non-oriented path of the original graphuses a bakward edge, the orresponding new edge should be used in the new graph toreate an oriented path, and vie versa.)If we reindex the verties as in �g.4 the reurrene formula above follows, as anyvertex l is adjaent to an inoming edge from l−3, l−2 and l−1. Solving this formulawe get that ∆ ≥ cxn

0 for some onstant c, where x0 is the unique real root of theequation x3 − x2 − x − 1 = 0, x0 = 1.8392...

30
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1

2 4 n−1

3 5 n

Figure 4: Rn ∪ Bn with the added oriented edges2.4.2 Upper Bound on DnyleProof of the upper bound in Theorem 2.4.1: To establish the inequality let usonsider two trees Bn and Rn (a blue one and a red one) on the same n-element vertexset. In a yle in Rn ∪Bn there are onseutive red edges, then onseutive blue edges,then red edges again, and so on. (Edges that are both red and blue will be onsideredas red.) A maximal path of onseutive red edges will be alled a red segment (a bluesegment is de�ned similarly). The number of blue segments in a yle learly equals thenumber of red segments, and sine eah segment ontain at least one edge, the numberof red segments is at most ⌊n
2
⌋ and is at least 1 (for a yle without red segment is ablue yle, whih is impossible, sine Bn is a tree).We will ount the yles in Rn ∪ Bn partitioning them aording to the numberof red segments. So we have to show that there are at most (n

2i

) yles having i redsegments. To do this �rst note that in a �xed yle the set of the endpoints of the redsegments and the set of the endpoints of the blue segments are just the same.Lemma 2.4.2 Given a tree and 2i verties of its vertex set, then there is at mostone way to hoose i vertex-disjoint paths in the tree with the given verties as endpoints.Proof: By indution on i. If i = 1 then learly the statement holds, for in a treethere is exatly one path from any vertex to any other vertex.Let i > 1. A set of vertex-disjoint paths de�nes naturally a mathing on the set of31
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endpoints. Notie, that an edge in suh a mathing orresponds always to the samepath (for there is one single path between any two verties of a tree). Let us supposeto the ontrary, that there are two di�erent sets of paths satisfying statement of thelemma. If there exists a ommon edge in the orresponding mathings, then removingthis ommon edge (and its endpoints) we arrive at a ontradition by indution. Ifthere is no suh edge, then the two mathings have together 2i edges on 2i verties,so there should be a yle involving these edges, that is there should be a yle in theorresponding paths, whih ontradits the fat that our graph is a tree. �To �nish the proof of the upper bound, observe that by Lemma 2.4.2. in Rn∪Bn themapping where the image of a yle is the set of endpoints of the segments is injetive.The statement of the theorem follows. �Remark: It is easy to see, that in the statement of Lemma 2.4.2, "at most" isneessary if the tree is not a path. Hene we know that the upper bound for Dnyleholds with strit inequality for non-path trees. Sine the graphs of the onstrutionin the previous subsetion were paths, one may onjeture, that trees with maximaldistane are paths. But even if this onjeture is false, the question that how manyyles we an have in the union of two paths is a distane-type question. To see thiswe just have to �gure out what the path-distane of two paths is. Sine a path is ayle-free (onneted) graph in whih all verties have degree at most 2, the forbiddenolletion of subgraphs onsists of the yles and the 3-star (i.e. the graph onsistingof the edges {1, 2}, {1, 3}, {1, 4}). But sine any vertex has degree at most 4 in theunion of two paths, any vertex an be the middle vertex of at most (4
3

)

= 4 3-stars,therefore there an be at most 4n 3-stars in the union of two paths on n verties. As 4nis negligible ompared to the exponentially growing number of yles, Dpath(P n
1 , P n

2 ) =

Θ(Dyle(P n
1 , P n

2 )) for the sequene of optimal pairs of paths.32
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3 Pro�le vetorsIn this setion we deal with weighted problems on set systems. Espeially, we areinterested in weight funtions depending only on the size of the sets (i.e. w(F ) = w(G)whenever |F | = |G|). As explained in the introdution, we have to determine theonvex hull of the pro�le vetors (the pro�le polytope) of all set systems having somepresribed property (interseting, Sperner, et.).Determining the pro�le polytope means, that we have to �nd its extreme pointsor at least the essential extreme points. A property P ⊆ 22[n] is said to be hereditary(sometimes the term monotone is used) if G ⊆ F ∈ P implies G ∈ P . Note, thatany property that an be de�ned through forbidden on�gurations is hereditary, soin partiular the interseting property (when P is the set of all interseting families)is hereditary. If the examined property is hereditary, then we know (f. [8℄) that allextreme points an be obtained from an essential extreme point by hanging some ofthe non-zero oordinates to zero.In this setion we will present two methods how to determine pro�le polytopes(both methods were used already in [7℄, [8℄ or [14℄, for a survey on results about pro�levetors see Chapter 3 of Engel's book [4℄). In the next subsetion, we use the methodof inequalities to determine the essential extreme points of the pro�le polytope of theset of interseting families of subspaes, and in the seond subsetion, we introduea generalization of the pro�le vetor, whih we all l-hain pro�le vetor and obtainresults on them with the redution method.3.1 Interseting families of subspaesIn this subsetion we determine the essential extreme points of the pro�le polytope ofthe set of interseting families of subspaes.We will use the symbol [n
k

]

q
= (qn−1)(qn−1−1)...(qn−k+1−1)

(qk−1)(qk−1−1)...(q−1)
for the Gaussian (q-nomial)33
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oe�ient denoting the number of k-dimensional subspaes of an n-dimensional linearspae over GF (q) (and q will be omitted, when it is lear from the ontext). The setof all k-dimensional subspaes of a vetor spae V will be denoted by [V
k

].To simplify our ounting arguments we introdue the followingNotation. If k + d ≤ n, then [n
k

]∗(d)

q
denotes the number of k-dimensional sub-spaes of an n-dimensional vetor spae V over GF (q) that are disjoint from a �xed

d-dimensional subspae W of V .Here are some basi fats about these numbers:Fats.
[

n

k

]∗(d)

=

[

n − d

k

]

qdk,

[

n−1
k−1

]∗(d)

[

n
k

]∗(d)
≤

[

n−1
k−1

]∗(n−k)

[

n
k

]∗(n−k)
=

1

qn−k
≤

1

qk+1
(if 2k + 1 ≤ n),and so indutively

[

n−p
k−p

]∗(d)

[

n
k

]∗(d)
≤

1

qp(k+1)
(if 2k + 1 ≤ n).To determine the pro�le polytope of interseting families we follow the so-alledmethod of inequalities. Brie�y it onsists of the following steps:

• establish as many linear inequalities valid for the pro�le of any interseting familyas possible (eah inequality determines a halfspae, therefore the pro�les mustlie in the intersetion of all halfspaes determined by the inequalities),
• determine the extreme points of the polytope determined by the above halfspaes,
• for all of the above extreme points �nd an interseting family having this extremepoint as pro�le vetor.
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The last step gives that the extreme points of the polytope determined by thehalfspaes are the extreme points of the pro�le polytope that we are looking for.The following theorem on interseting families of subspaes was �rst proved byHsieh [22℄ (only for n ≥ 2k + 1) in 1977, then by Greene and Kleitman [20℄ (for theases k|n so espeially if n = 2k) in 1978.Theorem 3.1.1. (Erd®s - Ko - Rado for vetor spaes, Hsieh's theorem) If F ⊆
[

V
k

]is an interseting family of subspaes and n ≥ 2k, then
|F| ≤

[

n − 1

k − 1

]

.

The above theorem yields to the following inequalities onerning the pro�le vetorof any interseting family:
• 0 ≤ fi ≤

[

n−1
i−1

], 0 ≤ i ≤ n/2

• 0 ≤ fi ≤
[

n
i

], n/2 < i ≤ nTo establish more inequalities we will need the following statement:Theorem 3.1.2. The following generalization of Hsieh's theorem holds:a, if 2k ≤ n ≤ 2k + 2 and d = 0 or d = n − korb, if n ≥ 2k + 3 and k + d ≤ nthen for any interseting family F of k-dimensional subspaes of an n-dimensionalvetor spae V with all members disjoint from a �xed d-dimensional subspae U of V

|F| ≤

[

n − 1

k − 1

]∗(d)

.
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Note that the d = 0 ase is just Hsieh's theorem.Proof: If k|d|n or k|n and d = 0 then the argument of Greene and Kleitman [20℄works. One an partition V \U into isomorphi opies of Vk \{0}, and sine among the
k-dimensional spaes of eah suh partition F may ontain at most 1, the statementof the theorem follows.So now we an assume 2k + 1 ≤ n. We follow the argument in [22℄. First we verifythe validity of the lemmas from [22℄ in our ontext. For x ∈ V (A 6 V ) let Fx (FA)denote the set of subspaes in F ontaining x (A).Lemma 3.1.3 (the equivalent of Lemma 4.2. in [22℄) Suppose n ≥ 2k + 1 and let
F be an interseting family of k-subspaes of an n-dimensional spae V suh that all
k-subspaes belonging to F are disjoint from a �xed d-dimensional subspae W of V(where d ≤ n − k). If for all x we have |Fx| ≤

[

n−1−p
k−1−p

]∗(d), then
|F| <

[

n − 1

k − 1

]∗(d)or |FA| ≤

[

n − 1 − p

k − 1 − p

]∗(d)[
k

1

]p−1for all 2-dimensional subspaes A, where 1leqp ≤ k − 1.Proof: First we hek the validity of the following onsequene of the "fats":
[

n − 1

k − 1

]∗(d)

> qp

[

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

≥

[

s

1

][

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

, (2)for 1 ≤ s ≤ p. Indeed,
[

n−1
k−1

]∗(d)

[

n−1−p
k−1−p

]∗(d)
≥

[

n−1
k−1

]∗(n−k)

[

n−1−p
k−1−p

]∗(n−k)
= qp(n−k) > qp

(

qk − 1

q − 1

)p

= qp

[

k

1

]p

,where the �rst inequality follows from the fats and the seond one uses the assumption
n ≥ 2k + 1.Let us take an arbitrary 2-dimensional subspae 〈x, y〉 ⊂ V . If U ∈ F implies36
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U ∩ 〈x, y〉 6= {0}, then by (2) (and the assumption of the lemma) we have
|F| ≤

∑

Z⊂〈x,y〉,Z1−dim

|FZ| ≤

[

2

1

][

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

<

[

n − 1 − p

k − 1 − p

]∗(d)

.Thus we an suppose there is some U1 ∈ F suh that U1 ∩ 〈x, y〉 = {0}. Take 0 6= z1 ∈

U1. If U ∈ F implies U ∩ 〈x, y, z1〉 6= {0}, then (again using (2))
|F| ≤

[

3

1

][

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

<

[

n − 1 − p

k − 1 − p

]∗(d)

.Thus we an suppose that there is some U2 ∈ F suh that U2 ∩ 〈x, y, z1〉 = {0}. Hene
|Fx,y,,z1| ≤

[

k
1

][

n−4
k−4

]∗(d), and so |Fx,y| ≤
[

k
1

]2[n−4
k−4

]∗(d).Suppose that for 1 ≤ j ≤ i, 0 6= zj ∈ Uj and 〈x, y, z1, ..., zj〉 ∩ Uj+1 = {0}. Take
0 6= zi+1 ∈ Ui+1. If U ∈ F implies U ∩ 〈x, y, z1, ..., zi+1〉 6= {0}, then by (2)

|F| ≤

[

i + 3

1

][

k

1

]p[
n − 1 − p

k − 1 − p

]∗(d)

<

[

n − 1 − p

k − 1 − p

]∗(d)

.Thus we an suppose that there is some Ui+2 ∈ F suh that Ui+2 ∩ 〈x, y, z1, ..., zi+1〉 =

{0}. Hene we have
|Fx,y,Z1,...,zi+1

| ≤

[

k

1

][

n − i − 4

k − i − 4

]∗(d)

,and by indution we obtain
|Fx,y| ≤

[

k

i

]∗(d)

.Thus for 1 ≤ i ≤ p, either we have |F| <
[

n−1
k−1

]∗(d) or |Fx,y| ≤
[

k
1

]i−1[n−1−i
k−1−i

]∗(d), as aspeial ase with i = p either we have |Fx,y| ≤
[

k
1

]p−1[n−1−p
k−1−p

]∗(d).
�We will need one more lemma from Hsieh's paper (atualized to our ontext):Lemma 3.1.4 (the equivalent of Lemma 4.3. in [22℄) Let F be a family of in-terseting k-subspaes of an n-dimensional spae V of whih all subspaes are disjointfrom a �xed d-dimensional subspae W of V . Furthermore if37
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a, q ≥ 3 and n ≥ 2k + 1 and for all x we have |Fx| ≤
[

k
1

]k−1,or ifb, q = 2 and- n ≥ 2k + 1- and for all x we have |Fx| ≤
[

k
1

]min{k−1,n−k−d}∏k−1−(n−k−d)
i=1

([

k
1

]

−
[

i
1

]) (if k − 1 <

n − k − d, then the produt is empty and equals 1),then
|F| <

[

n − 1

k − 1

]∗(d)

.Proof: In all ases |F| is at most [k
1

] times the bound on |Fx|.Now if q ≥ 3, then
|F| ≤

[

k

1

]k

=

(

qk − 1

q − 1

)k

< qk2−1 ≤ q(k−1)(n−k) =

[

n − 1

k − 1

]∗(n−k)

≤

[

n − 1

k − 1

]∗(d)

.If q = 2, then for any n ≥ 2k + 1 and d = n − k we have
|F| ≤

k−1
∏

i=0

([

k

1

]

−

[

i

1

])

<

[

k

1

]k−1([
k

1

]

−

[

k − 1

1

])

< (qk)k−1qk−1 =

qk2−1 ≤ q(k−1)(n−k) =

[

n − 1

k − 1

]∗(n−k)

.Sine n ≥ 2k + 1, we have n − 2k + 1 ≥ 2 holds. This gives
|F| ≤

[

k

1

]k

=

(

qk − 1

q − 1

)k

< q2(k−1) (q
2k−2 − 1)(q2k−3 − 1)...(qk − 1)

(qk−1 − 1)(qk−2 − 1)...(q − 1)
≤

≤ q(k−1)(n−2k+1)

[

2k − 2

k − 1

]

=

[

n − 1

k − 1

]∗(n−2k+1)

.This establishes the lemma for 0 ≤ d ≤ n−2k+1. For the remaining ases (n−2k+1 <

d < n − k), one has to observe that the largest value of d for whih the bound on |Fx|in the onditions of the lemma is [k
1

]k−1 equals n − 2k + 1 (i.e. the largest d for whih38
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k−1 ≤ n−k−d holds). It follows, that when moving from d to d+1 the known boundon |F | is multiplied by [k1]−[n−k−d

1 ]
[k1]

, while our targeted bound dereases by a fator of
[n−1
k−1]

∗(d+1)

[n−1
k−1]

∗(d) .Easy alulations show that this latter ratio is larger up till n− k − d < (k − 1)/2,and the former ratio is larger when n − k − d ≥ (k − 1)/2. This means that the gapbetween the bound on |F| and our targeted bound grows while n− k − d < (k − 1)/2,from then on this gap dereases, but sine it still holds in the end, it must hold inbetween as well.This �nishes the proof of the lemma. �Before we get into the details of the proof of Theorem 3.1.2, we just ollet its mainideas:the heart of the proof is the onept of overing number. For a family of subsets
F ⊆ 2[n] this is the size of the smallest set S ⊆ [n] that interset all sets in F (Sneed not be in F). For a family of subspaes F ⊆

[

V
k

] its overing number is thesmallest number τ suh that there is a τ -dimensional subspae U of V that intersetsall subspaes that belong to F . Observe that the proof of Lemma 3.1.3 was done byan indution on the overing number. The proof of Theorem 3.1.2 is again based onan indution on the overing number of F . (During the proof, almost all omputationswill use the "fats" about Gaussian oe�ients, all inequalities without any furtherremarks follow from them.)If x ∈ ∩F for some 0 6= x ∈ V then |F| ≤
[

n−1
k−1

]∗(d. Thus we an suppose that
∩F = {0}.Let x1 6= 0 be suh that |Fx1| = maxx∈V |Fx|.By our assumption, there is some A1 ∈ F not ontaining x1. Thus |Fx1| ≤
[

k
1

][

n−2
k−2

]∗(d). 39
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Suppose that there are two independent vetors z1, z2 ∈ A1 suh that A ∈ F ⇒

A ∩ 〈x1, zi〉 6= {0} for i = 1, 2. If ui ∈ 〈x1, zi〉 \ 〈x1〉, then the ui's are independent.Thus
|F| ≤ |Fx1| +

∑

Ui⊂(〈x1,zi〉\〈x1〉)∪{0}, dim(Ui)=1

|FU1,U2|

≤

[

k

1

][

n − 2

k − 2

]∗(d)

+

([

2

1

]

− 1

)2 [
n − 2

k − 2

]∗(d)

<

[

n − 1

k − 1

](∗(d))

.Thus we an suppose that there is at most one z ∈ A1 suh that A ∈ F ⇒ A∩〈x1, z〉 6=

{0}. Suppose that z ∈ A1 is suh. Take x ∈ A1 \ 〈z〉, then there is some A ∈ F suhthat A ∩ 〈x1, x〉 = {0} and hene |Fx1,x| ≤
[

k
1

][

n−3
k−3

]∗(d). Thus
|Fx1| ≤ |Fx1,z| +

∑

X⊂(A1\〈z〉)∪{0}, dim(X)=1

|Fx1,X | ≤

[

n − 2

k − 2

]∗(d)

+

[

k

1

]2[
n − 3

k − 3

]∗(d)

.But then
|F| ≤

∑

X⊂〈x1,z〉,dim(X)=1

|FX | ≤

[

2

1

]

(

[

n − 2

k − 2

]∗d

+

[

k

1

]2[
n − 3

k − 3

]∗(d)
)

≤

[

n − 1

k − 1

]∗(d)

.Thus we an suppose that for all x ∈ A1 there is some A ∈ F suh that A∩〈x1, x〉 = {0},and hene |Fx1,x| ≤
[

k
1

][

n−3
k−3

]∗(d). Thus |Fx1| ≤
[

k
1

]2[n−3
k−3

]∗(d).In general, suppose that for 1 ≤ p ≤ k−3 we have non-zero vetors y1, y2, ..., yp ∈ Vand A1, A2, ..., Ap+1 ∈ F suh that yi ∈ A and Ai+1 ∩〈x1, y1, .., yp〉 = {0} for 1 ≤ i ≤ p.(We have just proved that for any y1 ∈ A1 there exists suh an A2 ∈ F or the statementof the theorem holds.) Thus
|Fx1,y1,...,yp

| ≤

[

k

1

][

n − p − 2

k − p − 2

]∗(d)

,and so indutively we obtain that
|Fx1| ≤

[

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

.By Lemma 3.1.3, we have
|Fx,y| ≤

[

k

1

]p[
n − p − 2

k − p − 2

]∗(d)40



C
E

U
eT

D
C

ol
le

ct
io

n

for all 2-dimensional 〈x, y〉 ⊂ V .Suppose that there are p + 2 linearly independent vetors z1, z2, ..., zp+2 in Ap+2suh that 〈x1, y1, ..., yp, zi〉 ∩ A 6= {0} for all A ∈ F and i = 1, 2, ..., p + 2. Let ui ∈

〈x1, y1, ..., yp, zi〉 \ 〈x1, y1, ..., yp〉, i = 1, 2, ..., p+ 2, then u1, u2, ..., up+2 are independent.Thus
|F| ≤

∑

X⊂〈x1,y1,...,yp〉,dim(X)=1

|FX| +
∑

Ui⊂(〈x1,y1,...,yp,zi〉\〈x1,y1,...,yp〉)∪{0},dim(Ui)=1

|FU1,U2,...,Up+2|

≤

[

p + 1

1

][

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

+

([

p + 2

1

]

−

[

p + 1

1

])p+2 [
n − p − 2

k − p − 2

]∗(d)

≤

[

p + 1

1

][

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

+ q(p+1)(k−1)

[

n − p − 2

k − p − 2

]∗(d)

≤

([

p + 1

1

]

+ 1

)[

k

1

]p+1[
n − p − 2

k − p − 2

]∗d

<

[

n − 1

k − 1

]∗(d)

.Thus we an suppose that there are at most p + 1 suh zi's. Hene
|Fx1,y1,...,yp

| ≤

[

k

1

]2[
n − p − 3

k − p − 3

]∗(d)

+

[

p + 1

1

][

n − p − 2

k − p − 2

]∗(d)

,and so
|Fx1| ≤

[

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+

[

p + 1

1

][

k

1

]p[
n − p − 2

k − p − 2

]∗(d)

.Suppose that we do have independent vetors z1, z2 ∈ Ap+2 suh that A ∈ F ⇒

A ∩ 〈x1, y1, ..., yp, zi〉 6= {0} for i = 1, 2. Then
|F| ≤

∑

X⊂〈x1,y1,...,yp〉,dim(X)=1

|FX | +
∑

Ui⊂(〈x1,y1,...,yp,zi〉\〈x1,y1,...,yp〉)∪{0},dim(Ui)=1

|FU1,U2|

≤

[

p + 1

1

]

(

[

k

1

]p+1[
n − p − 3

k − p − 3

]∗(d)

+

[

p + 1

1

][

n − p − 2

k − p − 2

]∗(d)
)

+

+

([

p + 2

1

]

−

[

p + 1

1

])2 [
k

1

]p[
n − p − 2

k − p − 2

]∗(d)

=

[

p + 1

1

][

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+

(

[

p + 2

1

]2

+ q2(p+1)

[

k

1

]p
)

[

n − p − 2

k − p − 2

]∗(d)41
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≤

[

p + 1

1

][

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+ qp

[

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

≤

(

[

p+1
1

]

qp+2
+

1

q

)

[

n − 1

k − 1

]∗(d)

<

[

n − 1

k − 1

]∗(d)

.Thus we an suppose that there is at most one suh z. Hene
|Fx1| ≤

[

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+

[

k

1

]p[
n − p − 2

k − p − 2

]∗(d)

.Suppose that z1 ∈ Ap+1 is suh a z, then
|F| ≤

∑

X⊂〈x1,y1,...,yp,z1〉,dim(x)=1

|FX | ≤

[

p + 2

1

]

(

[

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+

[

k

1

]p[
n − p − 2

k − p − 2

]∗(d)
)

<

[

p + 2

1

]

(

[

k

1

]p+2[
n − p − 3

k − p − 3

]∗(d)

+
1

q

[

k

1

]p+1[
n − p − 2

k − p − 2

]∗(d)

≤

(

[

p+2
1

]

qp+2
+

1

qp+2

)

[

n − 1

k − 1

]∗(d)

<

[

n − 1

k − 1

]∗(d)

.Thus we an suppose that for all z ∈ Ap+1, there is some A ∈ F suh A∩〈x1, y1, ..., yp, z〉 =

{0}. Take yp+1 ∈ Ap+1, and let Ap+2 be suh that A ∩ 〈x1, y1, ..., yp, yp+1〉 = {0}.We obtained, that either the statement of the theorem holds, or there are linearlyindependent vetors x1, y1, ..., yk−1 and Ai ∈ F i = 1, ...k − 1 suh that yi ∈ Ai and
〈x1, y1, ...yi−1〉 ∩ Ai = {0}.If q ≥ 3, this means that either |F| ≤

[

n−1
k−1

]∗(d) or |Fx| ≤ |Fx1| ≤
[

k
1

]k−1 and thenwe are done by Lemma 3.1.4.If q = 2, we have to sharpen our estimations on |Fx1|. We know that for j indepen-dent vetors x1, y1, ..., yj−1 with U∩〈x1, y1, ..., yj−1〉 = 0 there exists a subspae Aj ∈ Fsuh that Aj ∩ 〈x1, y1..., xj−1〉 = 0. Then we would have the following upper bound onthe number of subspaes in F ontaining all xi (1 ≤ i ≤ j): [k
1

][

n−j−1
k−j−1

]∗(d). But supposefurther that for some positive l j +k+d = n+ l. Then dim(〈x1, y1..., yj−1, Aj〉∩U) ≥ land so (denoting 〈x1, y1..., yj−1, Aj〉 ∩ U by Uj) dim(〈x1, ..., xj , Uj〉 ∩ Aj) ≥ l as well,42
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therefore when hoosing among the vetors of Aj a subspae of dimension at least l isforbidden. Therefore we have the following better estimate on the number of subspaesin F ontaining x1, y1, ..., yj−1:
([

k

1

]

−

[

l

1

])[

n − j − 1

k − j − 1

]∗(d)

.Hene we have that either the statement of the theorem holds or the degree of anyvetor x is bounded by the expression given in the onditions of Lemma 3.1.4. SoLemma 3.1.4 establishes our theorem in this ase, too. �Corollary. For the pro�le vetor f of any family F of interseting subspaes of an
n-dimensional vetor spae V , and for any k < n/2 and n/2 < d ≤ n−k, the followingholds

ck,dfk + fd ≤

[

n

d

]

,where ck,d = qd [n−k

d ]
[n−d−1

k−1 ]
, and equality holds in ase of fk = 0, fd =

[

n
d

] or fk =
[

n−1
k−1

]

, fd =
[

n−1
d−1

].Proof: Let us doubleount the disjoint pairs formed by the elements of Fk = {U ∈

F : dim U = k} and F ′
d =

[

V
d

]

\ Fd = {U 6 V, U /∈ F : dim U = d}. On the one hand,for eah U ∈ Fk there are exatly qdk
[

n−k
d

] suh pairs (this uses the �rst fat about
q-nomial oe�ients), while on the other hand by Theorem 3.1.2 we know, that forany W ∈ F ′

d there are at most [n−1
k−1

]∗(d)
= qd(k−1)

[

n−d−1
k−1

] suh pairs. This proves therequired inequality and it is easy to see that equality holds in the ases stated in theCorollary. �Having established these inequalities, we are able to prove the main theorem of thissubsetion. 43
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Theorem 3.1.5 The essential extreme points of the pro�le polytope of the set ofinterseting families of subspaes are the vetors vi (1 ≤ i ≤ n/2) for even n and thereis an additional essential extreme point v+ for odd n, where
(vi)j =



















0 if 0 ≤ j < i
[

n−1
j−1

] if i ≤ j ≤ n − i
[

n
j

] if j > n − i.

(3)and
(v+)j =







0 if 0 ≤ j < n/2
[

n
j

] if j > n/2.
(4)

Proof: First of all, for any x ∈ V , for the families Gi = {U : x ∈ U, i ≤ dim U ≤

n − i} ∪ {U : dim U > n − i} (1 ≤ i ≤ n/2) f(Gi) = vi holds, and if n is odd then thepro�le of the family G+ = {U : dim U > n/2} is v+, and learly none of these vetorsan be dominated by any onvex ombination of the others.We want to dominate the pro�le vetor f of any �xed interseting family F witha onvex ombination of the vetors vj (and possibly v+ if n is odd). We de�ne theoe�ients of the vjs reursively. Let i denote the index of the smallest non-zerooordinate of f . For all j < i let αj = 0. Now if for all j′ < j αj′ has already beende�ned, let
αj = max

{

fj
[

n−1
j−1

] −

j−1
∑

j′=i

αj′, 0

}

.Note, that for all j (i ≤ j ≤ n/2) the jth oordinate of ∑j
j′=i αj′vj′ is at least fj (andequality holds if when hoosing αj, the �rst expression is taken as maximum), so thesevetors already dominates the ��rst part� of f .44
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When all αjs (i ≤ j ≤ n/2) are de�ned, then let α+ = 1 −
∑n/2

j′=i αj′ and let α+ bethe oe�ient of v+ if n is odd or add α+ to the oe�ient of vn/2 if n is even. Notealso that α+ is non-negative sine for all i ≤ j ≤ k ≤ n/2 (vj)k =
[

n−1
k−1

] and by Hsieh'stheorem 0 ≤ fk ≤
[

n−1
k−1

]. Therefore this is really a onvex ombination of the vjs.The easy observation that this onvex ombination dominates f in the oordinateslarger then n− i follows from the fat that all vjs (and v+ as well) have [n
d

] in the dthoordinate, therefore so does the onvex ombination whih is learly an upper boundfor fd.All what remains is to prove the domination in the dth oordinates for all n/2 <

d ≤ n − i, that is to prove the inequality
fd ≤

[

n − 1

d − 1

] n−d
∑

j=i

αj +

[

n

d

]

(

1 −
n−d
∑

j=i

αj

)

.Let k ≤ n − d be the largest index with αk > 0. Then we have
fd ≤

[

n

d

]

− ck,dfk =

[

n

d

]

− ck,d

[

n − 1

k − 1

] k
∑

j=i

αj =

(

1 −
k
∑

j=i

αj

)

[

n

d

]

+

[

n − 1

d − 1

] k
∑

j=i

αj

=

(

1 −
n−d
∑

j=i

αj

)

[

n

d

]

+

[

n − 1

d − 1

] n−d
∑

j=i

αjwhere the inequality is just the Corollary, the �rst equality follows from the fat that
αk > 0, the seond equality uses again the Corollary (the statement about whenequality holds) and the last equality uses the de�ning property of k (for all k < j ≤ n−d

αj = 0).This proves the theorem. �Note that, the (essential) extreme points are 'the same' as in the Boolean ase(whih was solved in [8℄), one just has to hange the binomial oe�ients to the orre-sponding q-nomial oe�ients and the struture of the extremal families are really thesame. 45
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3.2 l-hain pro�le vetorsBefore getting into the details of the topi of this subsetion, let us give some moti-vation. In Setion 2, one of the properties we dealt with was Sperner property. Thisproperty has a natural generalization: a family F ⊆ 2[n] is said to be k-Sperner if itontains no hains of length k+1 (k+1-hains for short), or equivalently if F =
⋃k

i=1 Fi,where every Fi is a Sperner family. So the union of two k-Sperner families is a 2k-Sperner family, and, using the terminology of Setion 2, their k-Sperner distane is thenumber k + 1-hains in their union.In general, one may ask for any r ≤ s, what is the maximum number of r-hainsthat an s-Sperner family F may ontain (as always, with assumption that F ⊆ 2[n]).(This problem is "somewhat" analogous to the well-known result of Turán/Sauer [32℄,[30℄ whih gives the maximum number of Krs that a Ks-free graph an have.) A 1-hain is simply a set in the family, so the ase r = 1 asks for the maximum size of an
s-Sperner family. This was solved by Paul Erd®s [5℄ in 1945. Theorem 2.2.1. settlesthe ase r = s = 2 and "we are motivated" by the r = k +1, s = 2k ase for any k ≥ 2.The original pro�le vetor does not help to deal with this problem: two sets withthe same size might be ontained in di�erently many l-hains (if l > 1). What is more!The same set may be ontained in di�erently many l-hains depending on whih systemit takes part of. To overome this problem we introdue a generalization of the oneptof pro�le vetor (whih redues to the ordinary pro�le if l = 1).De�nition: The l-hain pro�le vetor f l(F) of a family F ⊆ 2[n] is a vetor oflength (n+1

l

). The oordinates are indexed with l-tuples α = (α1, α2, ..., αl) (0 ≤ α1 <

... < αl ≤ n) and the αth oordinate f l(F)α is the number of l-hains ontained in Fwith the property that the smallest set in the hain has size α1, the seond one hassize α2 and so on. 46
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If we denote the all one vetor (of length (n+1
l

)) by 1, then the number of l-hainsontained in a family F is f l(F) · 1 and using other weight vetors one an treatweighted problems for l-hains, where the weight of two l-hains must oinide if the
ith sets in both hains are taken from the same level for all 1 ≤ i ≤ l. Althoughgenerally weighted l-hains do not ome into piture very often, but ontaining pairs ofsets and disjoint pairs of sets (whih ould be transformed into ontaining ones, sine
F ∩G = ∅ ⇔ F ⊆ G) are muh more investigated, so results on 2-hain pro�les mighthave some appliations.Anyhow, after presenting some further de�nitions and some introdutory resultson l-hain pro�les, we will demonstrate the power of the soalled redution method ofPéter L. Erd®s, Péter Frankl and Gyula O.H. Katona [8℄ by applying to some not veryompliated sets of families in this new 'l-hain ontext'.3.2.1 De�nitions and remarksIn this setion we give some further de�nitions and desribe some basi onnetionsbetween the extreme points in the l-hain ase and the extreme points in the original(1-hain) ase.Notation. For αs with α = (α1, α2, ..., αl), 0 ≤ α1 < α2 < ... < αl ≤ n we de�nethe following multinomial oe�ient:

(

n

α

)

=
l−1
∏

i=1

(

n − αi−1

αi+1 − αi

)

=
n!

α1!(α2 − α1)!...(αl − αl−1)!(n − αl)!where α0 = 0 and 0! = 1 as usual. Note that (n
α

) is the number of l-hains that an beformed from subsets of an n-element set in suh a way that the smallest set has size
α1, the seond smallest has size α2 and so on.De�nition: Given an underlying set X and a family F of its subsets, the up setof F is U(F) = {G ⊆ X : ∃F ∈ F suh that F ⊆ G} and the down set of F is47
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D(F) = {G ⊆ X : ∃F ∈ F suh that F ⊇ G}.De�nition: A set A of families is upward (downward) losed if F ∈ A implies
U(F) ∈ A (D(F) ∈ A).Examples: Clearly the set of t-interseting (t-o-interseting) families is upward(downward) losed. (A family F is said to be t-interseting if for any two F1, F2 ∈ F

|F1 ∩ F2| ≥ t, and a family G is said to be t-o-interseting if G = {G : G ∈ G} is
t-interseting or equivalently if for any two G1, G2 ∈ G |G1 ∪ G2| ≥ t.)De�nition: Let µl(A) denote the set of all l-hain pro�le vetors of families in A,
〈µl(A)〉 its onvex hull, El(A) the extreme points of 〈µl(A)〉 and El(A) the families from
A with l-hain pro�le in El(A). Let furthermore E∗

l (A) denote the essential extremepoints and E∗
l (A) the orresponding families.Theorem 3.2.1. For any upward or downward losed set of families A ⊆ 22X andfor any l ≥ 1

E∗
l (A) ⊆ µl(E

∗
1(A)).Note that equality does not always hold as the set of interseting families, the family

F = {F ⊆ X : |F | > |X|/2} and any l > |X|/2 shows.Proof: The proof is the same for downward and upward losed sets of families, sowe assume that A is upward losed.Let E∗
1(A) = {F1,F2, ..,Fm} and let f i the pro�le of Fi, f i,l the l-hain pro�le of

F i and f i,l
α its αth oordinate.We have to prove that the l-hain pro�le f l of any family F in A an be dominatedby a onvex ombination of the f i,ls. Denote the pro�le of F by f . Clearly we have

f l
α ≤ fα1

(

n − α1

α∗

)

,48
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where α = (α1, α2, ..., αl), α
∗ = (α2 − α1, α3 − α1, ..., αl − α1). Inequality holds withequality for the f i

αs and the f i,l
α s (sine A is upward losed). The fat that the f isare the essential extreme points of 〈µl(A)〉 means that for some onvex ombination

ci, i = 1, ..., m

f ≤
m
∑

i=1

cif
i.But then

f l
α ≤ fα1

(

n − α1

α∗

)

≤

(

n − α1

α∗

) m
∑

i=1

cif
i
α1

=
m
∑

i=1

cif
i,l
α ,whih ompletes the proof. �Sine the onvex hull of the pro�le polytope of the set of interseting families weredetermined by P.L. Erd®s, P. Frankl and G.O.H. Katona in [8℄, Theorem 3.2.1 providesthe essential extreme points of the onvex hull of the l-hain pro�le polytopes.De�nition: For any family F on a base set X let onv(F) = {G ⊆ X : ∃F, F ′ ∈

F(F ⊆ G ⊆ F ′)} denote its onvex losure. F is said to be onvex if F =onv(F).De�nition: A set of families A is said to be onvex losed if F ∈ A impliesonv(F) ∈ A.Example: The basi example for a onvex losed set is the set of interseting ando-interseting families.Theorem 3.2.2. For any onvex losed set of families A ⊆ 22X and for any l ≥ 2

E∗
l (A) ⊆ µl(E

∗
2(A)).Proof: The proof is analogous to that of Theorem 3.2.1., the inequality needed is

f l
α ≤ f 2

α1,αl

(

αl − α1

α∗

)where α = (α1, α2, ..., αl), α∗ = (α2 − α1, α3 − α1, ..., αl−1 − α1) and for families withessential extreme pro�le inequality holds with equality. �49
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Unfortunately neither the extreme points of the 1-hain, nor that of the 2-hainpro�le polytope are known for the set of interseting and o-interseting families.3.2.2 The redution methodIn this setion we desribe our main tool in determining the l-hain pro�le polytopeof families of sets with some given property. We all this tool the redution method.In fat, this is not a new one. Most of the proofs of results already obtained went thisway, what we observed that the method works for the l-hain ase as well, and - whatseems to us more important - in some ases it is enough to redue the original problemto the hain instead of the yle (what previous proofs did mostly). For the preisede�nitions, see below.De�nition: For any l let T l
C
denote the following operator ating on the (n+1

l

)-dimensional R-spae (oordinates are still indexed by l-tuples of the set {0, 1, ..., n})
T l

C
: e 7→ T l

C
(e) where T l

C
(e)α =

(

n

α

)

eα.De�nition: For a family F on a base set X and a maximal hain C in X let
F(C) = {F ∈ F ∩ C} and for a set of families A let A(C) = {F(C) : F ∈ A}.Theorem 3.2.3 For any set of families A ⊆ 22X if the extreme points e1, e2, ..., emof 〈µl(A(C))〉 do not depend on the hoie of C, then

〈µl(A)〉 ⊆ 〈{T l
C
(e1), ..., T

l
C
(em)}〉.Proof: The modi�ation of the argument in [8℄ works. Let F be an element of Awith l-pro�le f = (..., fα, ...). For F = {F1 ⊂ F2 ⊂ ... ⊂ Fl} with |Fi| = αi, i = 1, ..., llet w(F) be the vetor of length (n+1

l

) with 1/n! in the αth oordinate and 0 everywhereelse (where n is the size of the base set). Consider the sum∑w(F) for all pairs (C,F),50
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where C is a maximal hain on X and F ⊂ F ∩ C an l-hain. For a �xed C we have
∑

F∈F(C)

w(F) =
1

n!
(pro�le of F(C)).Here the pro�le of F(C) is a onvex linear ombination∑m

i=1 λi(C)ei of the eis. There-fore
∑

C,F

w(F) =
∑

C

∑

F

w(F) =
∑

C

1

n!

m
∑

i=1

λi(C)ei =

m
∑

i=1

1

n!
(
∑

C

λi(C))ei (5)holds where ∑
C

1
n!

∑m
i=1 λi(C) = 1. Thus ∑w(F) is a onvex linear ombination ofthe eis.Summing in the other way around, we have

∑

C,F

w(F) =
∑

F

∑

C

w(F) =

∑

F

(

0, 0, ...,
|F1|!(|F2| − |F1|)!...(|Fl| − |Fl−1|)!(n − |Fl|)!

n!
, ..., 0

)

=

(

...,
fα
(

n
α

) , ...

)

, (6)sine for a �xed F = {F1 ⊂ F2 ⊂ ... ⊂ Fl} there are exatly |F1|!(|F2| − |F1|)!...(|Fl| −

|Fl−1|)!(n − |Fl|)! hains ontaining F. So (5) and (6) give that this last vetor is aonvex linear ombination of the eis, whih implies that f is the linear ombination of
T l

C
(e1), ..., T

l
C
(em). �The struture of maximal hains are too simple, so using only them is not enoughto determine the l-hain pro�le polytope of more ompliated sets of families. Butthe proof of Theorem 3.2.3. works if we replae the hain by a pair of omplementmaximal hains (i.e. for i = 1, 2 C

i = {Ci
0, C

i
1, ..., C

i
n} with Ci

j = X \ C3−i
n−j = C

3−i

n−j forall j = 0, 1, ..., n) or the yle (i.e. the family of subsets of onseutive elements withrespet to a yli permutation of the base set). In the proof one has to write (insteadof 1
n!
) 2

(n!)
and 1

(n−1)!
(respetively) in the de�nition of w(F), and modify the de�nitionof the T -operator to

(T l
C1,C2

(e))α =
1

dα

(

n

α

)

(T l
C(e))α =

1

cα

(

n

α

)

,51
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where dα (cα) is the number of α-type l-hains in the pair of omplementing hains (inthe yle). For ompleteness' sake we state these versions of the theorem, too.Theorem 3.2.4 (a) For any set of families A ⊆ 22X if the extreme points e1, e2, ..., emof 〈µl(A(C1,C2))〉 do not depend on the hoie of C
1,C2, then

〈µl(A)〉 ⊆ 〈{T l
C1,C2(e1), ..., T

l
C1,C2(em)}〉.(b) For any set of families A ⊆ 22X if the extreme points e1, e2, ..., em of 〈µl(A(C))〉do not depend on the hoie of C, then

〈µl(A)〉 ⊆ 〈{T l
C(e1), ..., T

l
C(em)}〉.

3.2.3 AppliationsIn this setion we determine the pro�le polytope of some sets of families using theredution method. In the �rst part of this subsetion the problem will be redued tothe ase of the maximal hain while in the seond part we will onsider redution toa pair of omplement hains. Using the results obtained by the latter we will giveexamples when the extreme families of the l-pro�le polytope an really depend on l.Redution to the hainTheorem 3.2.5 For all l ≥ 1 the extreme points of the onvex hull of the l-hainpro�le vetors of onvex families are the following:the all zero vetor
0 = (0, ..., 0)and for all 0 ≤ i ≤ j ≤ n the vetors vi,j 52
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(vi,j)α =







(

n
α

) if i ≤ α1 < αl ≤ j

0 otherwise. (7)
Proof: The vetor vi,j is the l-pro�le of the family Fi,j = {F ⊆ [n] : i ≤ |F | ≤ j},whih is onvex.On a hain any onvex family must onsist of some onseutive subsets of the hain.The statement of the theorem follows now from Theorem 3.2.3. �Note that the set of onvex families is not hereditary, therefore the extreme points(for the original pro�le vetors) need not be the ones obtained from the essential ex-treme points (in this ase there is only one suh, the pro�le of 2[n]) by hanging someof the non zero oordinates to zero - and as Theorem 3.2.4. shows, they are not thosevetors, indeed.Theorem 3.2.6 For any l ≤ k the extreme points of the l-hain pro�le polytope of

k-Sperner families are the following:the all zero vetor
0 = (0, ..., 0, ...0)and for all l ≤ z ≤ k and β = {β1, ..., βz} with 0 ≤ β1 < ... < βz ≤ n the vetors vβ

(vβ)α =







(

n
α

) if α ⊆ β

0 otherwise. (8)The ase l = 1 is a result of P.L. Erd®s, P. Frankl and G.O.H. Katona [8℄.Proof: It is trivial to see that these vetors are l-hain pro�les of the orrespondinglevels, and they are onvex linearly independent.53
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A k-Sperner family on a maximal hain onsists of at most k sets, therefore its
l-hain pro�le vetor have ones in those oordinates α = (α1, ..., αl) for whih there isan element in the family with size αi for all i = 1, ..., l. All these vetors are onvexindependent. Therefore they form the onvex hull of the pro�le polytope on the hain,and Theorem 3.2.3 implies now Theorem 3.2.6. �Applying Theorem 3.2.6 for the onstant 1 weight funtion one getsCorollary For any l ≤ k if a family F on an n-element base set X does not ontaina hain of length k + 1, then the number of l-hains in F is at most

max
β⊂[0,n];|β|=k

∑

α⊆β;|α|=l

(

n

α

)

.As a speial ase we get that the answer to our "motivating problem" is that the max-imum distane of two k-Sperner families is
max

β⊂[0,n];|β|=2k

∑

α⊆β;|α|=k+1

(

n

α

)

.Remarks.- In the ase l = k, even the very simple argument of [24℄ works. First we needa LYM-type inequality. To get this we double-ount the pairs (C,F) where C is amaximal hain and F is an l-hain ontained in C. If we deompose the k-Spernerfamily into k antihains, then all sets of an F ome from di�erent antihains, and any
C an ontain at most k sets from our family, so by a standard alulation we obtain

∑

α

fα
(

n
α

) ≤

(

k

l

)

. (9)If l = k, then the RHS is 1, and we an �nish the proof as follows
∑

α

wαfα =
∑

α

fαwα
(

n
α

)

(

n

α

)

≤ max
α

{

wα

(

n

α

)}

∑

α

fα
(

n
α

) ≤ max
α

{

wα

(

n

α

)}

, (10)54
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where wα is any non-negative weight funtion and the last inequality in (10) uses (9).If l = k, then the Corollary gives the maximum number of k-hains that a k-Sperner family an ontain. This is (n
α

) where α = (α1, α2, ..., αk) and the numbers
α1, α2 − α1, ...αk − αk−1 di�er by at most one. If k + 1 divides n, then we get theuniqueness of the extremal system (take all F ⊆ X with |F | = αi for some i = 1, ..., k)automatially. If k+1 does not divide n, then we an lift up (4) to an AZ-type identity(for the original AZ-identity see the paper of Ahlswede and Zhang [2℄) whih will assurethe uniqueness.- With the notation of Setion 3.2.1, Theorem 3.2.6 implies (if Sk denotes the setof k-Sperner families) E1(Sk) = El(Sk). But the bordering faes of the onvex hulls
〈µ1(Sk)〉 and 〈µl(Sk)〉 are �not the same�. If l = 1 the onvex hull determined by thefaes given by the inequalities 0 ≤ fi ≤

(

n
i

) and the LYM-inequality ∑i fi/
(

n
i

)

≤ k(see [8℄), while if l > 1 the hyperplanes given by 0 ≤ fα ≤
(

n
α

) and the LYM-typeinequality of (5) are bordering faes, but there are some additional ones, whih anbe seen through the following observation. Choosing (k
l

)

αs in suh a way that theirunion has size stritly larger than k and putting fα =
(

n
α

) for these αs and 0 for theothers, we obtain an essential extreme point of the polytope determined by the aboveinequalities, and whih is not an l-hain pro�le of any k-Sperner families.Redution to a pair of omplement hainsTheorem 3.2.7 Let n = 2m + 1 and k ≤ m + 1. Then the extreme points of the1-hain pro�le polytope (i.e. the ordinary pro�le polytope) of the set of omplement-free
k-Sperner families are the following vetors (indexed with a z-element (z ≤ k) subset
α of {0, 1, 2, ..., n} where αi ∈ α implies n − αi /∈ α)

vα =

(

0, ..., 0,

(

n

α1

)

, 0, ..., 0,

(

n

α2

)

, 0, ..., 0, ..., 0,

(

n

αz

)

, 0, ..., 0

)

.55
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Proof: By Theorem 3.2.3 (a), it is enough to prove the followingLemma 3.2.8 If n = 2m + 1 and k ≤ m + 1, then the extreme points of the pro�lepolytope of omplement-free k-Sperner families on a pair of maximal omplement hainsare the vetors with at most k non-zero oordinates, where all the non-zero oordinatesare 2 (exept for the �rst or the last oordinate, if one of them is non-zero, it equals1), and if the ith oordinate is non-zero, then the n − ith oordinate is zero.Proof of Lemma 3.2.8: If the non-zero oordinates of suh a vetor are α1, α2, ..., αz(satisfying the ondition of the lemma), then the sets in the two hains with ardinality
αi for some i = 1, ..., z form a omplement-free k-Sperner family with the vetor aspro�le.Now let F be a omplement-free k-Sperner family on a pair of omplement hains
C1,C2 with pro�le vetor f . Let α be the set of indies of the non-zero oordinates of
f . Partition α into three subsets. Let CL (omplete levels) denote the indies αi with
fαi

= 2 (and 0 or n if f0 or f1 equals 1). Let furthermore CP (omplementing pairs)denote the indies αi ∈ α with n − αi ∈ α, and let R = α \ (CL ∪ CP ). Note that
CP ∩ CL = ∅, for otherwise F would not be omplement-free. Now form two subsets
α1, α2 of α in the following way. Put all indies in CL into both α1 and α2. For allpairs of indies i, n− i in CP (note that these are really pairs, for n is odd) put one ofthe indies into α1 and the other into α2. Finally, hoose α1 or α2 for all indies of Rin suh a way, that |α1| ≤ k and |α2| ≤ k hold. (This is possible, for F is k-Sperner,therefore |α| ≤ 2k.) Now let f i, i = 1, 2 the following vetors.

f i
j =







2 (1) if j 6= 0, n (j = 0, n) j ∈ αi

0 otherwise. (11)By the fats that both f is are of the form of the statement of the lemma and
f = 1

2
f 1 + 1

2
f 2 , the proof is ompleted. � �The ase of omplement-free families is very analogous (and even simpler), therefore56
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we just sketh the proof.Theorem 3.2.9 The extreme points of the onvex hull of the 1-hain pro�le vetorsof omplement-free families are the vetors orresponding to the families onsisting ofi, a set I of levels with the property that the ith and the n− ith levels annot be bothin I, if n is odd,ii, a set I of levels with the property that the ith and the n−ith levels annot be bothin I and possibly half of the sets with size n/2 one from eah pair of omplementarysets, if n is even.Proof: It is easy to see (with the help of Theorem 3.2.4 (a)) that it is enoughto solve the problem redued to a pair of maximal omplement hains. There thestatement holds, sine there a omplement-free family an ontain at most two setsout of the four with size i or n − i, and the vetors (1, 1), (0, 1), (1, 0) are onvexombinations of the vetors (2, 0), (0, 2), (0, 0). �Theorem 3.2.1 and 3.2.2 state that for a ertain lass of sets of families all andidatesfor the families with essential extreme l-hain pro�les are among the families withessential extreme 1-hain (2-hain) pro�le. Theorem 3.2.6 states, that for k-Spernerfamilies the above statement is true for all extreme pro�les (not only for essentialextreme pro�les). It seems natural to onjeture (with the notation of Setion 2) thatfor all set of families A and l > 1 El(A) ⊆ E1(A) and/or E∗
l (A) ⊆ E∗

1(A). But this isfalse. Here we present two ounterexamples.The �rst example is based on Theorem 3.2.7. Note that the families orrespondingto the extreme points annot ontain sets of size i and n − i at the same time. Heneall 2-hain pro�les of those families have 0 in their oordinates indexed with the sets
{i, n− i}, and therefore all their onvex ombinations have 0 in those oordinates. Buta pair of subsets in inlusion with size i and n − i is of ourse a omplement-free k-57
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Sperner family (if k ≥ 2), and its pro�le is not in the onvex hull of the above-mentionedvetors.The seond example is absolutely analogous to the �rst one. Aording to Theorem3.2.9 in the extremal families of the set of omplement-free systems there are no pairsof sets in inlusion with size i and n − i (so the orresponding oordinate is 0 in anyonvex ombinations), but there are omplement-free families with suh pairs.
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4 Conluding remarksIn lak of spae, we ould not survey all areas of extremal set theory in this thesis.We mainly foused on two types of problems. In this last setion we would like tosummarize the possibilities of future researh and plae our results in the theory ofextremal set systems.Though the problem of �nding F -free families with largest F -free di�erene seemsvery natural, it was introdued quite reently in [28℄ by the author and thereforeould not be subjet of extensive researh yet. This means that we are not aware ofany other results of this type, thus onsidering other forbidden on�gurations that wedid in this dissertation and obtaining theorems on the orresponding largest possibledistane ould be the �rst step in future researh. Another hallenging question ouldbe to establsish onnetions with other areas of extremal set theory or other topis inombinatoris. For example it would be very interesting to know whether Theorem2.3.1 ould be used to dedue results on Ramsey numbers.Finding the pro�le polytope of families with a presribed property was the othertype of problems we onsidered in the thesis. The �rst result in this area was mentioned(impliitly) by G.O.H. Katona in [24℄ but the systematial researh was initiated byP.L. Erd®s, P. Frankl and G.O.H. Katona in [7℄ and [8℄and many researhers wereengaged in the topi ever sine. As we mentioned in the introdution, determining thepro�le polytope enables us to maximize easily any weight funtion with the propertythat the weight of a set depends only on its size (or more generally, in ranked posetsthe weight of an element of the poset depends only on its rank), so after �nding themaximum size of a family with some presribed properties (whih is the basi questionin the theory of extremal set systems) this seems to be the most natural generalization.However, it is quite useful to restrit ourselves to properties where this type of weightfuntions ome into piture naturally, i.e. appliations of the weighted results exists.59
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(One of) the most important property for whih the pro�le polytope is yet to bedetermined is the t-interseting property (if t ≥ 2, the t = 1 was solved in [7℄). InTheorem 3.1.5 we determined the extreme points of the pro�le polytope of intersetingfamilies of subspaes (the t = 1 ase for the poset Ln(q)) and it seems that determiningthe pro�le polytope in Ln(q) for t ≥ 2 ould be easier than in the Boolean ase. This'onjeture' is based on the fat (a theorem of Ahlswede and Khathatrian [1℄ andanother theorem of Frankl and Wilson [15℄), that in the Boolean ase if t and k are�xed, there are many types of di�erent k-uniform extremal families as n ranges throughthe integers larger than 2k − t, while in the ase of the poset of subspaes there arejust 2.Referenes[1℄ R. Ahlswede, L. Kharhatrian, The omplete intersetion theorem for sys-tems of �nite sets, European J. Combin. 18 (1997), 125-136.[2℄ R. Ahlswede, Z. Zhang, An identity in ombinatorial extremal theory, Adv.Math. 80 (1990), No.2, 137-151.[3℄ B. Bollobás, On omplete subgraphs of di�erent order, Math. Pro. Camb.Philos. So., 80 (1976), 19-24[4℄ K. Engel, Sperner Theory, Enylopedia of Mathematis and its Appliations,65. Cambridge University Press, Cambridge, 1997. x+417 pp.[5℄ P. Erd®s, On a lemma of Littlewood and O�ord, Bull. Amer. Math. So., 51(1945), 898-902.[6℄ P. Erd®s, C. Ko, R. Rado, Intersetion theorems for systems of �nite sets,Quart. J. Math. Oxford (2), 12 (1961), 313-318.[7℄ P.L. Erd®s, P. Frankl, G.O.H. Katona, Interseting Sperner families andtheir onvex hulls, Combinatoria 4 (1984), 21-34.[8℄ P.L. Erd®s, P. Frankl, G.O.H. Katona, Extremal hypergraphs problemsand onvex hulls, Combinatoria 5 (1985), 11-26.[9℄ P. Erd®s, M. Simonovits, A limit theorem in graph theory, Studia Math. Aad.Si. Hung. 1 (1966), 51-57. 60
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