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Abstract

In this thesis, we focus on two types of problems in extremal finite set theory. First
we introduce a distance-like concept, the F-free distance of two F-free hypergraphs.
For a fixed hypergraph F, we will consider the problem of finding the pairs of hyper-
graphs with the largest F-free distance. For some hypergraphs we will obtain exact
results while for some others we will obtain upper and lower bounds on the largest F-
free distance. In the second part of the thesis, we will elaborate on extremal problems
of weighted set systems, where the weight of a set depends only on its size. The main
tool in our investigation will be the so-called profile vector of a set system and we will
determine the convex hull of the profile vectors of set systems with some prescribed

properties.
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1 Introduction

One of the first theorems in extremal finite set theory is that of Sperner [3T], stating
that if we consider a family F of subsets of an n-element set (n-set for short) S such
that no set F' € F can contain any other F/ € F, then the number of sets in F is
at most (Ln72J)' The celebrated theorem of Erdds, Ko and Rado [6] (it was published
only in 1961, 23 years after it was proved by the authors!) asserts that for any two
positive integers t < k there exists a third one ng(k,t) such that if a family G consists
of k-subsets of an n-set, where n > ngy(k,t) and if for any two sets G, G' € G, we have
|G NG| > t, then the size of G is at most (7).

Both theorems deal with a problem of finding the largest size that a family of subsets
of a fixed underlying set can have if the family satisfies some prescribed property.
Problems of this type are in the focus of extremal finite set theory.

We will use the standard notation 2% to denote the power set of the set X, and
()k() will denote the set of all k-subsets of X. The set of the first n positive integers
will be denoted by [n]. A hypergraph (or set system) H is a pair (V(H), E(H) with
E(H) C 2V, V(H) is the vertex set of the hypergraph and E(H) is the edge set of
H (mostly we will identify hypergraphs with the set (family) of their (hyper)edges).
If E(H) C (VSZ{)) then H is said to be k-uniform. We will say that a hypergraph H
contains a copy of another hypergraph F if there exists an edge preserving injection f
from V(F) to V(H), i.e. whenever F' € E(F), then f(F) = {f(z):x € F} € E(H),
and H is said to be F-free if it does not contain a copy of F. We will call a mapping
f with the properties above an embedding of F to H, and an embedding of F to itself
is an automorphism of F.

With the notations above we can formulate the general problem (mentioned in the

second paragraph) as follows: given a set of families of sets A C 22* (i.e. a set of

hypergraphs, all with vertex set X), we have to find maxzep{|F|} (and describe all
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families with this size, the so called extremal families).

One way to define the family A is to fix a hypergraph F and let A be the set of F-
free hypergraphs with vertex set X. (Or one may forbid a, possibly infinite, collection
C = {Fi, Fa, ...} of hypergraphs.) If F is k-uniform and A is the family of all k-uniform
F-free hypergraphs with vertex set [n], then ex(n,F) := maxgcp{|F|} is the Turan

number of F. By an observation of Katona, Nemetz and Simonovits [25] the sequence

ex(n,F)
(%)

exists. For ordinary graphs (i.e. when k = 2), the Turan density is determined by the

is non-negative and monotone non-increasing, so its limit, the Turdn density

Erdés-Stone-Simonovits theorem [I0], [9] (even if a collection of graphs is forbidden),
but only sporadic results are known if & > 3 (for a survey on the topic see [I1]).

In Section 2 (which is based on results from [27] and [28]) we will consider problems
that are also related to F-free hypergraphs. Let us suppose, we are given two maximal
F-free hypergraphs H; = (V, Ey) and Hy = (V, Ey) with the same vertex set V' (here
maximality means, that whenever we add a subset of the vertex set to the edge set,
the hypergraph obtained will not be F-free). Then their union H; UHs := (V, E1 U Es)
cannot be F-free, because of their maximality. So several copies of F will appear in
‘H1 U H, witnessing that H; and H, are two different maximal F-free hypergraphs.
The more evidence (the more copy of F) we have, the more different they are.

Therefore to measure the difference between two F-free hypergraphs we introduce
their F-free distance (which is a bit misleading, since the triangle inequality does not
hold even if we consider only maximal F-free set systems) as the number of copies of F
that are contained in H; UHs (H; and Hz need not to be maximal, so if there exists a
maximal F-free hypergraph containing both of them, then their distance is 0) and we
denote this quantity by Dg(H;,Hs). To be more precise, Dx(H1, Hz) is the number
of embeddings of F into H; U Hs divided by the number of automorphisms of F. For

a collection C of hypergraphs and two C-free set systems (i.e. F-free for all F € C) we
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define their C-free distance D¢(Hy, Ha) by

De(Hi, M) = Y Dr(Hi, Ha).
FeC

Having introduced the definitions above, we can ask the following question: given a
hypergraph F (or a collection of hypergraphs C), what is the maximum F-free (C-
free) distance that two F-free (C-free) hypergraphs can have if the vertex set of both
hypergraphs is [n]. In the introductory part of Section 2. we will show some examples
when finding the maximum distance is easy and then we move on to more difficult

cases.

Let us turn back to our starting problem: how we can choose the most number
of subsets of [n] such that the set system of our chosen sets satisfy some prescribed
property. In applications (and from theoretical point of view, as well) it might happen,
that we have some preference in picking the subsets, so it is quite natural to consider
a weighted version of this problem. If w is a real-valued function (a weight function)
on all the possible subsets (i.e. w : 2" — R), then we define the weight of a family of

sets F C 2l by

FeF

and now we are interested in finding the largest weight that a set system (satisfying
the prescribed property) may have. Note, that the original problem corresponds to the
all-one weight, or if we consider only k-subsets (as in the Erdgs-Ko-Rado theorem),
then all k-sets should have weight 1, and all other sets should have weight 0.

Dealing with all possible weight functions seems hopeless (and not very interesting),
but there are some types of weight functions that are quite well studied. One type of
weight functions comes from a probabilistic approach. Let us suppose that we pick
a random subset X of [n] in such a way, that for all ¢ € [n] we put i into X with

probability p; (0 < p; < 1) independently from what happens to all other j € [n].

7
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Then for any subset A C [n] we have

=1In ] -p).

€A i¢gA
If we let this probability to be the weight of a subset, we get that the weight of a set

system is the probability that a randomly chosen subset will belong to it. Results on
this type of weight functions can be found (among others) in [IT| or [T6].

In Section 3 (which is based on joint results with Daniel Gerbner [I8], [T9]) we will
consider weight functions where the weight of a subset depends only on the size of the
set. So formally let f : {0,1,...,n} — R be a real-valued function and for any subset
A C [n] let w(A) := f(]A]). A very natural weight function of this type is defined by
taking f to be the identity function (i.e. w(F) = f(|F|) = |F|). In this case the weight

of a set system is

~ S |F]

FEF
the volume of F.

When considering this kind of weights, it is very useful to introduce two vectors of
length n + 1 (the coordinates indexed from 0 to n). The ith coordinate of the weight
vector is the weight of any set with size i. We will denote the weight vector by w
and its ith coordinate by w;. The ith coordinate of the profile vector of a set system
F C 2[" is the number of sets that belong to F that have size i. The profile vector of
F will be denoted by f(F) and its ith coordinate by f(F);.

With this notation the weight of a family for a given weight function w is simply

the inner product of the weight vector and the profile vector:

w(F) = Z Zf Jiw; = f(F) - w.

FeF
So we transformed our problem: if for a set A of set systems we denote by u(A)

the set of profile vectors of the set systems in A, then we are looking for

max {w- f}.
fEM(A){ f}
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We know from linear programming, that for any weight vector w the maximum
above is taken at one of the extreme points of the convex hull of p(A), which we denote
by (u(A)) and which is called the profile polytope of A. The set of extreme points is
denoted by E(A) and the families having a profile in E(A), the extremal families by
E(A). So, if one determines F(A), then to get the maximum weight for any weight
vector w, one just has to compute the weight for the vectors in £(A). Unfortunately,
the size of F(A) might grow exponentially with n (the size of the underlying set)
tending to infinity.

However, if the weights are non-negative, then increasing any coordinate of the
profile vector increases the weight of the family, so the maximum for these weights
is taken at an extreme point which is maximal with respect to the coordinate-wise
ordering. We call these vectors essential extreme points and denote them by E*(A)
and the corresponding families by £*(A). Luckily, in most known results, the size of
E*(A) grows only polynomially. Note that to prove that a set of profiles are the extreme
points of the profile polytope one has to express all profiles as a convex combination
of these vectors, while to prove that a set of profiles are the essential extreme points
of the polytope it is enough to dominate (a vector f dominates g if it is larger in the
coordinate-wise ordering) any other profiles.

The systematic investigation of profile vectors and profile polytopes was started by
P.L. Erdds, P. Frankl and G.O.H. Katona in [7] and [8], an overview of the topic can
be found in the book of K. Engel [].

The notion of profile vector can be introduced for any ranked partially ordered set
(poset) P (a poset P is said to be ranked if there exist a non-negative integer [ and a
surjective mapping r : P — {0, 1, ..., 1} such that for any p;,p, € P if py covers p;, we

have r(p1) + 1 = r(p2)). In this case the profile of a family F C P is defined by
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f(F)i=WHpe F :rank (p) =i} (i=0,1,..,n),

where rank (p) denotes the rank of an element p and n is the largest rank in P. Several
results are known about profile vectors in the generalized context as well (see e.g. [,
31, [E10).

One of the most studied ranked poset is L,(q), the poset of subspaces of an n-
dimensional vector space V' over the finite field GF(q) with ¢ elements (the ordering is
just set-theoretic inclusion). In this case the rank of a subspace is just its dimension,
so the profile vector f(U) of a family U of subspaces is a vector of length n+1 (indexed
from 0 to n) with f(U); = {U € U : dimU = i}|, i = 0,1,...,n. In the thesis, we
determine the profile polytope of intersecting families in the poset L,(q). A family U
of subspaces is called intersecting if for any U, U’ € U we have dim(UNU’) > 1 (and
t-intersecting if for any U, U’ € U we have dim(U N U’) > t).

In the first subsection of Section 3, we will determine the extreme points of the
profile polytope of intersecting families of subspaces, while in the second subsection we
will introduce a generalization of the notion of profile vectors and prove some results

for the new concept.

10
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2 The distance of F-free families

In this section we consider the following problem: given a hypergraph F, let us find
the pair of two F-free hypergraphs that are "the most different" from each other. If
embed(F,G) denotes the number of embeddings of F into G and aut(F) denotes the
number of automorphisms of F, then the difference of two F-free families with the same
vertex set (from now on, all hypergraphs considered have vertex set [n]) is measured

by their F-free distance

embed(]:, Hl U Hz)
D = )
F(H, Ho) aut(F)
For a collection of forbidden subhypergraphs C and two C-free hypergraphs H; and Ho,

the C-free distance is defined by D¢(Hy, Ha) = D oo Dr(Hi, Ha).

Let us consider two easy examples, before we proceed to the more complicated
problems. In our first example we examine hypergraphs of which any pair of hyperedges
H,, Hy either H; C H, or Hy C H; hold. To put this property of hypergraphs in our
context, we have to define the collection of forbidden hypergraphs. Obviously, we have
to include in the collection all non-isomorphic non-including pairs. Any such pair is
determined by a triple: the size of Hy N Hy, Hy \ Hy and Hy \ Hy, so formally Cc =
{Frim 0 <k, 1<1<m}, where Frpm = {{1,2,..k,k+ 1,..k+1},{1,2, ...k k+
I+ 1,k+1+2,..,k+1+m}}. Informally, to compute the Cc-free distance of two
hypergraphs with the property above we should count the pairs of hyperedges H,, Hs in
the union for which both H; € H, and Hy € H; hold. Maximal families with this "non-
inclusion-free" property are saturated chains. (A chain C = {C, C C; C ... € C,}
is saturated if for all j, |Cj| = j holds.) The empty set is a subset of each set,
and each set is a subset of the whole underlying set [n], so the maximum number of
pairs of sets none of them containing the other, where the sets are taken from two

chains Cy, C,, is at most (n — 1)2. And for any pair of saturated chains of the form

11
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C={C,c(,CC,C..CC, 1 CCland C' ={C,CC, 1 C..CC; CCf}
where A denotes the complement of the set A, we have D¢ (C,C') = (n — 1)

As another example, let us consider the set systems with the property that for
every F1,Fo € F F1 N Fy, = () (i.e. F is a family of pairwise disjoint sets). This time,
the collection of forbidden configurations is Cjz = {]:,;JM 01 < k,0<1<m}, where

i = UL sk k+ 1 kI, k kT4, k+ T+ m}} and De,(Hi, Hy) is
the number of pairs of intersecting hyperedges. In the case of this property maximal
families are partitions of [n]. If for every pair we point out an element of the intersection,
then we get an injective mapping from the non-disjoint pairs to the base set. So the
number of such pairs can be at most n. For any partition P we can create another
partition P’ by choosing an element from each non-empty set to form a set in P/,
then again choosing one element from all remaining non-empty sets, and so on to have
Dy(P,P') = n (as an explicit example, one can think of the partition P; consisting

only of the whole underlying set [n] and the partition P, consisting of all singletons of

[n]).

2.1 Intersecting families

In this subsection we will consider intersecting families of sets. Just to remember,
F C 2" is called intersecting if for any two F, I’ € F we have |F N F’| > 1. This is
equivalent to that there is no disjoint pair of sets in F. So, to get into our framework of
forbidden configurations, we define Cr = {F},; : 0 < k <[}, where Fi,; = {{1, ..., k}{k+
1,....,k+1}}. In this way, the Ch-free distance of two intersecting families is the number
of disjoint pairs in their union.

The precise form of the Erdés-Ko-Rado theorem [6] for intersecting families (not
how it is mentioned in the introduction) states that if & < n/2, then the size of any

k-uniform intersecting family & C 20" is at most (}}) and if k < n/2 and |F| = (7)),

12
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then F must be isomorphic to the family Fy = {F € ([Z]) : 1 € F}. It is quite natural

to conjecture that the pair

Fo={F € (T) 1€ F},Gyo={Ge ([7;]) n € G}

will have the largest C~-free distance if we restrict ourselves to pairs F, G, where F is
k-uniform and G is [-uniform.

Though in the non-uniform case any maximal intersecting family has size 2"~ (not
only the family F) = {F C n : 1 € F}), one still expects, that the following pair of

intersecting families have the largest C-free distance:
Fo={FCn]:1€F},Gy={G C[n]:ne G}

We will refer to the pairs (Fo, Gy and (F|, G|) as the conjectured hypergraphs/set sys-
tems.

In what follows we prove that the conjectured sets systems are in fact optimal in
the non-uniform case and if n is large enough they are optimal in the uniform case as

well.

2.1.1 The Uniform Case

Throughout this subsection we will assume that F is k-uniform and G is [-uniform.
Now if k 4 [ > n, then there are no disjoint k£ and [ element subsets.

If £+ 1 <n, but, say, [ > 7, then any two [-element subsets meet each other. For
any fixed k-element subset there are (";k) [-element subsets disjoint from this fixed
set. So the best one can do is to let F be the largest intersecting k-uniform set system,
and let G consist of all [-element subsets disjoint from at least one set in F. The
Erdés-Ko-Rado theorem [6] says that F should be all k-element sets containing a fixed

element, so then G should be all [-element sets not containing this fixed element. Thus

in this case the conjectured set systems are not optimal.

13
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If 2k = n and k = [ then any set has only one disjoint pair (considering now only
the k-element sets), its complement. So one can put from each pair one set into F and
one into G, and since in this way subsets containing 1 and n together (or containing
none of them) will be put into F or G, these families will have more disjoint pairs, than
the conjectured systems (and clearly will be maximal ones).

Despite these failures of the conjectured systems, one can state the following

Theorem 2.1.1 For any k and I, there exists an n(k,l) such that if n > n(k,l)
and F, G are k and l-uniform hypergraphs , then Dn(F,G) < Dn(Fo, Go) where Fo, Go

are the conjectured hypergraphs.

Proof:

Case A NF#0and NG # 0.

In this case () F and [ G must be disjoint, since otherwise there would be no disjoint
sets in F and G. Let us pick an i € ((F and a j € (G, and add {F C [n] : i € F} to
F and {G C [n]: j € G} to G. In this way we get the conjectured hypergraphs, and

clearly D(F,G) cannot decrease.
Case B N F =0 (or similarly G = 0).

Observe the following two things:

1, if n > k+ 2l then again by [6] one gets that for a fixed F' € F the number of sets
in G from which F' is disjoint is at most ("l_fl_l), which is the case in the conjectured
hypergraphs for all sets in F; ;. So if |F| < |F; ;| = (?77) then we are done.

2, Since (| F = () then as a special case of Theorem3 of [21] we get that

n

—1 n—kFk—1
< _
(i) - (0

and as for large enough n

(oD () - ()

14
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holds, by the remark made after the first observation we are done. []

2.1.2 The Non-Uniform Case
Let us first state the main theorem of this subsection.

Theorem 2.1.2 For any F,G C 2" and for any n > 2, D¢ (F,G) < De. (F), Gb)

holds, where Fi, G|, is the conjectured pair.

Proof: Without loss of generality one can assume that the pair (F,G) is maximal
with respect to the property that all /' € F have at least one G € G disjoint from it
(and the same holds for any G € G). Our conjectured pair of set systems does not have
this property, so if we remove the "negligible" sets (the ones that are not contained in

any disjoint pair of sets in the union FjUG() we get the following pair of hypergraphs:
Fo={FCnl:1e Fn¢gF}, Gy={GCInl:neG1¢G},

to which we will still refer as the conjectured pair of hypergraphs (and for which
De, (¥4, 90) = Den (Fg, Gg) holds).

We begin the proof with the following claim:

Claim 2.1.3 Fe F & F €g.

Proof of Claim: If F' € F then there is some G € G such that F NG = (). This

means G C F, and as G meets all sets in G, F meets them, too. So by maximality

F € G. The other direction follows, since we can change the role of F and G. [J

By virtue of the above claim, we can “forget about” G. But what should we count,
and are there any additional conditions on F? Concerning the first question: as for a
fixed F' we counted the Gs disjoint from it, and since FNG = ) & F C G, by the
claim we get, that now for a fixed F' we should count the number of F/ € F: ' C F".

(Note that F C F also counts, because this is for the pair (F, F)!) Let us denote this

15
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number by pz(F) (and we will omit F from the index, if it is clear from the context),
and put p(F) = > per pr(F).

Now to the other question: since by the above claim we know that G = F = {F :
F € F} and the original conditions were that both F and G should be intersecting, we

get that F should be intersecting and co-intersecting. So we conclude the following

Claim 2.1.4 maz{D(F,G) : F,G are intersecting} = max{p(F) : F is intersecting

and co-intersecting}. [

By this claim we are left to show that p(F) < p(F]) whenever F is an inter-
secting and co-intersecting family (and therefore we will call F{ alone the conjectured
hypergraph).

Now note that, when counting p(F) one counts the pairs (F, F’) where F, F' € F
and ' C F’. But this can be done from the point of view of F”, that is, if we put
or(F")=|{F e F:F' 2 F} and 0(F) = Y per 0r(F), then p(F) = 6(F). With this

remark we are able to prove

Lemma 2.1.5 If F is intersecting and co-intersecting, furthermore (\F # 0, then
IF) < o(FY).

Proof: W.l.o.g. one can assume that 1 € F' for all ' € F. Consider the hypergraph
F*={F\{1}: F € F}. Since we removed 1, this need no longer be intersecting, but
it is clearly co-intersecting on [2, ..., n], furthermore 6x(F) = 0z (F \ {1}).

It is well-known, that if a hypergraph is maximal co-intersecting, then it contains
one set from any pair of complements, and if FF C F' € F*, then ' € F*. So
S« (F \ {1}) = 2P\ hence to obtain the largest 6(F*) one should put the most
possible large sets into F*. Again, by [6], we know that for fixed k& > "T_l we can put
at most (";2) k-element sets into F*, but in the case of the conjectured hypergraph

exactly that many sets (now with k + 1-elements, as we put back 1 to all the sets) are

16
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there. So for all £ we put the most possible number of large sets into our family when

considering the k and n — 1 — k-element complementing pairs. [J
So we will be done, if we can prove

Lemma 2.1.6 For any intersecting and co-intersecting family F, there exists an-

other F' with (F' # O and p(F) < p(F').

Before starting the proof of Lemma 2.1.6, we introduce some notation: the shift

operation 7, ; is defined by

L (F) = F\ {j;u {i}if jeF,i¢ Fj:dF'\ {jlu{i} ¢ F 0

Put 7, ;(F) = {r;(F) : F € F}.

The shift operation is a very well-known and very often used technique in extremal
finite set theory. It was introduced by Erdés, Ko and Rado in [6] and had numerous
applications ever since. For a good (but not recent) survey see Frankl's paper [T2].
The proof of the following properties of the shift operation can be found both in [6]
and [T2]: it preserves the intersecting and co-intersecting property. It is also known,
that starting from any family of sets, performing finitely many shift operation, one can
obtain a so-called left-shifted family, that is a family for which 7, ;(F) = F for all i < j.

So in what follows, we can assume that F is left-shifted, if we can prove the following
Claim 2.1.7 p(F) < p(1;;(F)).

Proof: We will consider how p(F) changes when performing the operation 7 ;.
CASE A Ifi,je Fori,j¢F,then 7,;(F) = F and for all F' € F with F' C F’
we have F - TZ'J'(F,). So p]:(F) < pTi,j(]‘-)(F) = /)n,j(}')(Ti,j(F))'

CASE B Let AC [n] withi,j ¢ A. Put F =AU {i} and F' = AU {j}.

SUBCASE Bl FeF, I["¢F

17



CEU eTD Collection

Now for all G O F i € G, therefore G = 7,;(G) D 7,;(F) = F, thus pzr(F) <
Pr () (F) = pro ) (715 (F)).

SUBCASE B2 FF¢ F '€ F

Now 7; ;(F') = F,and if I C G € F withi ¢ G, then (G\{j}U{i}) =G’ € 7, ;(F)
and clearly FF C G'. If F' C G with i,j € G, then G = 7, ;(G) D F, thus we conclude,
that pr(F') < pr, ;(7)(F) = pr, ;(7) (70 (F))-

SUBCASE B3 F,F' € F (thus 7, ;(F) = F, 7, ;(F') = F’)

Now let G € F contain at least one of F, F'. If i € G, then 7, ;(G) = G contains
as many of F, F" as before performing the 7-operation. Otherwise i ¢ G,j € G and
G contains only F’. So, putting G' = G \ {j} U {i}, if G’ ¢ F, then 7,;(G) =
G’ and G' O F, while if G' € F, then 7,;(G) = G and still F" C G. So we get
Pr P E) + pr 5 (F') = pr(F) + pr(F).

So for sets of type of the first case p(F') does not decrease, and we can partition the
sets of type of the second case into “pairs" (of which one may be missing) for which

the sum of p(F')s does not decrease. [J
Further notations:
F+G={FUG: FeF,GeG}, F-G={F\G:FeF,GeG}
AF=F—F; SubF={S:SCFeF}

And we will write 1 + F if G consists of one single set containing only 1.

Now we can return to the proof of Lemma 2.1.6. In the proof we will use the basic

ideas of [26].

Proof of Lemma 2.1.6 For arbitrary F intersecting and co-intersecting family
we have to define another one of which each set has an element in common. Now let
F=F U F' where F! = {F e F:1e€ F}and F' = {F € F:1¢ F}. Put
F'=F'U(1+ SubF?).
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We have to prove that a, () F' # 0 (and therefore it is intersecting), b, F’ is co-
intersecting and ¢, p(F’) > p(F).

a, is clear, as by definition 1 € F for all F € F.

To prove b, we will use that F is left-shifted (and maximal).

Claim 2.1.8 1+ 7% C F!

Proof: Since for any FF € F° F/ = {1}UF D F, F’" meets all sets in F. We have to
show, that there is no G € F such that F'UG = [n]. Suppose to the contrary that such
a G exists. Note that 1 ¢ G, because otherwise G U F' = [n| would hold, contradicting
the co-intersecting property of 7. Now as F is intersecting, there is j € FFNG. But
since F is left-shifted, G\ {j} U {1} = G’ € F. But then G’ U F' = [n] would hold - a
contradiction. [

By Claim 2.1.8 we know that all new sets in F’ are subsets of one of the old sets

(that is a set from F), therefore as F was co-intersecting, so is F.

It remains to prove ¢,. For this purpose we will define an injective mapping f : F° —
1+ AF? (observe that AF® C SubF°!) such that for all F' € F° pr (f(F)) > pr(F).
This is clearly enough, because F* C F', so p(F) cannot decrease for any F € F' (and
if Fi,F, € F° then {1} U Fy \ F; is disjoint from F}, so, by the intersecting property
of F, it is not an element of F', so we will not count twice any p(F)).

To define f (using the notation of [26]) let k = min{|I| : I = Fy N Fy; Fy, Fy € F°}
(note, that I is not empty, as F is intersecting!) and fix Fy, Fy with I = FiNF; - |I| = k.

Now consider the following partition of F°:
C={FecF’ . I1¢F};A={FecF°:1CF, thereis F' € F'with FNF =1};

B=7"\(AUC).

For a better understanding, I’ € B if I C F and whenever there is a set F’ € F° with

I C F', then F should meet F’ outside I, as well. Note that A is not empty, since
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Fi, F5 € A. Now for any A € Alet f(A) = (A\T)U{1}. (Observe that for any A € A
there is A’ € A C FO with ANA' =1, A\I = A\ A, so f(A) € 1+ AF" as required!)
As all A € A contain I, f is injective restricted to A.

To show that pz(f(A)) > pr(A), observe that f(A) C AU {1}. Therefore if
ACF e Fand1€F (thatis F € F!, therefore F € F', too) , then f(A) C F, as
well, so the part of p(A) which comes from the F's in F! cannot decrease.

We have to handle the sets A C F' € F°. To do this let (F\ I)U {1} = F’. Then
F' € F' and f(A) C F’ by definition. If F' # G then F’ # G’, because we took the
same set I away from both (and I C F, ), and 1 was neither in F' nor in G. We still
have to point out that F’ is not equal to any G € F! , G containing A for any F' € FY
(because in that case we would take into account that containing relation twice when
counting p(f(A))). But this is clear, because a G of this form contains I (as [ C A),

and F' NI = () by definition (and as we pointed out I is not empty).

To finish the proof we need to continue this procedure now considering the remaining
sets, that is BUC. So we define a new I’ and a new &’ now only considering sets in
B UC, then get a new partition A’, B’,C" with respect to this new I’ and new k', and
define f on A’ with the help of I’, and then start again with B’ UC’... This procedure
ends after finitely many steps, as the As are never empty, so there is strictly less and
less remainder. In each step f is injective, the only difficulty is to assure for sets A, B
on which f is defined at different steps f(A) = f(B) cannot happen. This is clearly

done by

Claim 2.1.9 (A - {I})NA(BUC) =)

A —{I} is the set of the f-images defined at a step (if we do not consider 1, which
is an element of all images). For a set B on which f is defined later, the image is of

the form B\ I’ = B\ B’ (again without 1), so it is in A(BUC). Therefore by the claim

we will be really done.
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Proof: This is in fact the lemma in [26], but to be self-contained we repeat the

proof.

CASE1: Ac A,Be B, e BUC.
By the definition of B, B must meet A outside of I, too. Therefore '\ B does not

contain this (these) element(s), while A\ I does.

CASE2: Ac A,CeC,FeBUC
By the definition of C, C' does not contain I, therefore by the minimality of |I], C

must meet A outside of I, too. The rest is as in CASE 1. O 0 [

2.2 Sperner Families

In the introduction of the thesis, we cited Sperner’s famous theorem about Sperner
systems without using this expression for the concept. Let us define it now explicitly.

Definition: F is a Sperner system/ family if Fy € F5 for any distinct Fy, Fy € F.

Being a Sperner family is a property that can be defined via forbidden configura-
tions, too. Let Cg = {Gy, : k € N,l € N} where G, = {{1, ...k}, {1, ...,k + [} } is the
collection of forbidden hypergraphs, and for shortness’ sake let us write Dg(F,G) =
De, (F,G). So the distance of two Sperner systems is Dg(F,G) = [{{A1, A2} : 4; €
FUGand A; C Ay}

Theorem 2.2.1 If F,G C 2" are two Sperner systems, then
Dg¢(F,G) < Dg(Fo,Go)

where Fy is the family of all sets of size ki, Gy is the family of all sets of size ko
(k1 < ko) with each of ki, ke — ki,n — ky differing by at most one. In particular, if 3
divides n, then Fqy is the family of all sets of size n/3 and Gy is the family of all sets
of size 2n/3.
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First proof: W.l.o.g. we can assume that both F and G are maximal Sperner
families, since adding new sets to the families cannot decrease the distance.
Our goal is to show that by starting with any pair of Sperner systems (F,G), in

finitely many steps (F*,G') we can reach (Fo, Go) = (F™,G™) such that
Dg(F,G) < Dg(F',G") < Dg(F?,G%) < ... < Dg(F™,G™) = Dg(Fo,Go)-

Step 1

Let C = F NG and partition F and G by
f:CUflLJfQ andg:CUglugz

where Fi = {F € F : thereis G € GG C F}, Fo ={F € F : thereis G € GG 2 F}
and Gy, Gy defined similarly. Note, that any ' € F contains or is contained in some
G € G, because otherwise we could add it to G, which would contradict the maximal
property of G, and no F' € F belongs to both F;, F5, otherwise there exist G, G5 € G
such that G; C F' C G, contradicting the Sperner property of G. So C, Fy, F; is really
a partition of F.

Now let F1 =CUF, UG, and G' = CU F, U G,. Tt is easy to check that both F*!
and G' are Sperner systems. The fact that Dg(F,G) = Dg(F*,G') follows from the
fact that E(F)U E(G) = E(F') U E(GY).

By the above change of the systems there is no I € F! for which there exists a
G € G with F' C @, so we can refer to F! as the upper Sperner family, and to G! as

the lower family.

From now on in any even step we replace some of the sets of the upper Sperner
system by other sets of larger size, and in any odd step we do the same to some sets

of the lower family.

Step 2
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Partition F' into two subsystems: F} = {F € F' : |F| > n/2}, Fy = {F € F':
|F| < n/2}. Put F? = FlU{F € ([5/1121) . there is F’ € F} such that IV C F} and
G? = G'. Tt is clear that F? is a Sperner family.

Dg(F',GY) < Dg(F?,G?) follows from Sperner’s lemma [31] stating, that if G is
a k-uniform family with & < %, then |VG| > |G|, where VG = {G" C [n] : |G| =

k+ 1 and there is G € G such that G C G'}.

Step 3

Now we want to "push the lower system up", so we replace the small sets.

G ={ced: (6l < 2} g=g\ a3
n
g?’:gfu{ae( )

&~

2

) s there is G’ € G2 with G’ C G}; F? = F?

Just as in the argument in Step 2 G is a Sperner system, and using the original
proof of Sperner’s theorem one can verify that for any fixed F' € F? = F? the number

of sets in G® contained by F'is at least the number of sets in G2 contained by F.

Suppose we achieved in Step 2k that the sets in the upper set system have size at
least cyn, and in Step 2k + 1 that all the sets in the lower set system have size at least

dgn. Then in Step 2(k 4+ 1) we will show that that all sets in the upper family have

size at least ¢y 1m = dyn + [25%n], and in Step 2(k + 1) + 1 that the sets of the lower

family have size at least dj1n = [%52]. Formally Step 2(k+1) and Step 2(k+1) +1
are defined as follows:

Step 2(k + 1)

Let F26+1 = FPAHL g F2FH where FPFT = {F € F*+1 ¢ |F| > dyn + [5%0]}

and F2EH = F2HL\ F2HL Then let

FUAHD — FhAL [n]l—d . 3F € F**! such that F C F'}
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and let

g2(k+1) _ g2k+1 )

Step 2(k +1) +1

Let us partition G2**D into two subfamilies: G:*™) = {G e G2k |G| >

reean)) and gD = g0k \ g2EHD | Then put

I‘Ck-gln‘l

G+ _ gf(kﬂ) UG e ( i ) 3G € G2FHY such that G C G'}

and

FARDHL _ p2(kt1)

The fact that during Step 2(k+1) and Step 2(k+ 1) + 1 the distance of our families
cannot decrease follows just as in the case of Step 2 and Step 3. (Note that in Step
2(k+1) we apply Sperner’s lemma to the posets P = { H\G : H O G}, where G ranges
over the sets in G%**1 while in Step 2(k + 1) + 1) to the posets Pr = {H : H C F},
where F' ranges over the sets in F2*+1 ) The statement about cyy; and dj is true

by definition.

_1,

So (forgetting the ceiling signs for a moment) ¢4y = 3¢5 + . 2= =1/2+¢/4 (and
di+1 = Ck11/2). As for any = € [0;2/3) x < 1/24 /4, in finitely many steps (by virtue
of the ceiling sign) we can achieve that all the sets in the upper family have size at

least [2n/3], and all the sets in the lower family have size at least [n/3].

To finish the proof we need the observation that the complement system of a Sperner
system is a Sperner system, and that (denoting the complement system of F by F =
{[n]\ F: F € F), we have Dg(F,G) = Dg(F,G).

In the complement systems of the above pair, all sets have size at most |n/3| or

|2n/3], and after the same "pushing up procedure" we get one of the optimal pairs. [

Second proof: By Step 1 of the previous proof we reduce the problem to Sperner
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families F, G where for all F' € F there is a G € G with FF C G. Then we are done by

the following theorem of Katona.

Theorem 2.2.2 [24] (Iterated Sperner theorem) Let Ay, ..., A, be subsets of an n
element set satisfying A; € Ap 1 < j,k < m,j # k. For each i = 1,...,m, suppose
Bi1, ..., Bim, are subsets of A; satisfying B; ; € B, 1 < j,k <m,. Then

im : (LﬁJ) (LLZJ)'

w

Remark: Theorem 2.2.2 (besides Step 1) is stronger than Theorem 2.2.1 (since in
Theorem 2.2.2 we do not require that the Bs form a Sperner family), but Katona’s
proof of Theorem 2.2.2 uses a generalization of the LYM-inequality, while our first

proof uses only Sperner’s original idea of his well-known theorem.

2.3 K,-free Graphs

We denote by K, the complete graph on r vertices. The K,-free distance of two K,-free

graphs (G, Gs) on the same underlying set V' is
Dk, (G1,G2) = [{{z1,...,x,} 1 x; € V for all i, and any (x;,x;) € E(G; U G>)}|

In all the cases we have already treated (intersecting, pairwise disjoint and Sperner
families, chains), the structure of the families in the optimal pair (the pair with the
maximum distance) was very similar to that of the optimal family in the original
problem (what is the largest family with the desired property). Therefore it is quite
natural to conjecture that Turan graphs will come into sight. (Turan’s well-known
theorem [32] says that a K,.-free graph on n vertices with the most possible number

of edges must be isomorphic to the complete r — 1-partite graph, where the sizes of
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any two partition classes may differ by at most one. These graphs are called Turan

graphs.)

Though it is not true that if Dy, (G, G2) is maximal, then both G1, G5 should be
Turan graphs, still Turan graphs will play an important role in the proof of the next
theorem. First we need to introduce some notation.

T'(n,r) is the usual notation for the r-partite Turan graph on n vertices and t(n, )
denotes the number of edges in the graph. Now let k;(G) denote the number of s-cliques
in G. (So t(n,r) = ko(T(n,r)).)

The Ramsey number R(k) denotes the least integer n for which any FEy, Fy partition
of the edges of K, there is a sample of K}, either in Ej or in Fj.

Let us write furthermore D) := max{ D, (G1,G2) : G1, G2 are K,-free on the same

vertex set [n|} and put m = R(r) — 1.

Theorem 2.3.1 D' = k,.(T'(n,m))

Proof: For the > part we need a construction.

Let us fix a partition Fy, F; of the edges of K, such that there is no K, neither in
Ey nor in E;. We want to define Gy, G; two K,-free graphs on [1,..,n]. So we have
to decide which edges we want to put into Gy and which into GG;. To do this, for any
1<i<j<nwritei=1IlLm+i, j=Im+j where 1 <7, j <m.

Now put (i,7) into E(Gy) iff (¢/,j") € Ep, and into E(G,) iff (¢',j") € E;. Since
(,7) is an edge if and only if i # j mod m, therefore Gy U G is just T'(n,m) and the
classes are just the congruency classes modulo m. We have to check that Gy, G; are
both K,-free. If not, then iy, s, .., 7. form a K, in, say, Gy. But then i, ,, ..., should

be all distinct, and should form a K, in E; - a contradiction.

For the < part of the proof, note that Gy U G cannot contain a Kg(,) as otherwise

Gy or G1 would contain a K,.. So the following result of Sauer (its s = 2 case is exactly
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Turan’s theorem) completes the proof.

Lemma 2.3.2 (Sauer [B0] see also [3]) If s < p and G is a K,-free graph on n

vertices, then the number of Kys in G is at most ks(T'(n,p —1)). O

Remark: If m divides n, then k.(T(n,m)) = ("')(£)", so the problem of giving

T m

the exact value of D} for large enough n is equivalent to giving the exact value of R(r).

2.4 Trees

Trees (and forests) are cycle-free graphs, so Ceyele = {Cj, : k > 3} where Cj, is the cycle
of length k. Therefore this time the question is, how many cycles we can have in the
union of two trees on the same n-element vertex set. Deyce (17,7%) = Dq,,.. (Th,T3)

will denote the tree-distance (the number of cycles in the union) of two trees 77 and

Ty. Dy, will denote the maximum tree-distance of two trees on the same n vertices.

A trivial upper bound on D¢, is 471 since the union of two trees may contain

at most 2(n — 1) edges, so the number of subsets of the edge set of the union is clearly

an upper bound for the number of cycles.

n

eyl does have an expo-

The following recursive construction (fig.1) shows that D
nential growth. Suppose we have T}, T3 two trees on n vertices, and an edge e (with
endpoints z and y) in their union, through which there are ¢, cycles in 77" U Ty'. Like-
wise suppose we have 77", T3 two trees on m vertices (with vertex set disjoint from that
of T1" and T3'), and an edge f (with endpoints u and v) in their union, through which
there are ¢, cycles in T/"UTY". Let T]"™ = TPUT"U{zu} and Tyt = ToUTU{yv}.
We claim that in T7"7™ U Tyt there are (¢, + 1)(c,, + 1) cycles through the edge .
Indeed, there are ¢, paths from x to y in 77" U T} plus the edge zy = e, then we have
to go through the edge yv, then choose among the c,, paths in 77" UT3" from v to u

(or the edge vu = f), and then we finish off the cycle using the edge xu. Since we
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just took the sum of the number of vertices, and the number of cycles got multiplied,

this is really of exponential growth. To be more concrete: we can cover K4 by two

edge-disjoint) paths, so we have D? == 7. By the above recursive bound we get that
cycle
Din, > = (7Yt (74 = 1.625...)

Tm U T

Figure 1: The recursive construction showing the exponential growth of Dy,

In the next two subsections we prove the following lower and upper bounds on

Dn

cycle:

Theorem 2.4.1 There exists a constant ¢ for which the following inequalities hold

L3] n

i=1

where xq is the unique real root of the equation 2 — 2> —x —1 =10 (zo = 1.8392...).

2.4.1 Lower Bound on D"

cycle

In this subsection we will give a "real" construction for the lower bound on A (see fig.2).
Both of the trees in the construction are paths, and we will refer to them as the blue
tree (denoted by B,) and the red tree (denoted by R,). The vertices of the trees are
the integers from —k up to k if n = 2k + 1 and the integers from —k to k —1 if n = 2k.
Two integers are adjacent in B,, if and only if they are consecutive. If n = 2k + 1, then

the edge set of R, is {{—0,l} : 1 <I<Kk}U{{l,—(+1)}: 1 <I<k}U{{k,0}}. If
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Figure 2: The “real construction” R, U B,, and the orientation of its edges

n = 2k is even, one just drops the vertex k£ and the edges incident to it, and add the
edge {—k,0} to the red tree.

Let ¢(n) denote the number of cycles through the edge {k,0} (that is the number
of paths from the vertex 0 to the vertex k) if n = 2k + 1 and the number of cycles
through {—£,0} if n = 2k. We claim that the following recurrence holds: ¢(n) =
cn—1)4c¢(n—2)+ c(n —3) where ¢(1) =¢(2) =1, ¢(3) = 2.

To see this let us consider the graph B, U R, \ {{0,k}} (B, U R, \ {{0,—k}} if
n = 2k) as a directed graph with the following orientation of the edges (fig.2): all edges
are directed from the vertex of smaller absolute value to the vertex of bigger absolute
value. The red edges of type {—[, [} are directed from the vertex —I toward the vertex
[. In the path 0 = xg, 21, ..., ;1,2 = k the edge {z;, x;11} is called a backward edge if
x; is the endpoint and x;; is the starting point of the edge in the above orientation.

Other edges will be called forward edges.

First note, that there can be no blue backward edges in a path from 0 to k. Since if
there was, let us take the “rightmost” one {z;,z;.1} (i.e. the one with an endpoint of
greatest absolute value). Assume z; = —({+1),x;41 = —[ (the case z; =+ 1,211 =
is similar). Then because this is the rightmost backward blue edge in the path, z;_;
cannot be —(1 +2) ({—(l + 2),—(l 4+ 1)} would be a backward blue edge "further to

the right"). Therefore x;_; is either [ + 1 or . In both cases the vertex x;;; = —[ is
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N\ :
® *——0 o e =@ @
Tj—1 Ty Tj+1 Tjt2

Figure 3: Backward red edges in oriented paths

cut from the vertex k by the edge {x;_1,2;}, so we cannot finish the path in this way.

How about backward red edges? (fig.3) If z; = —(I+1), z;41 = [, then z;_; cannot
be —(I +2) as {—(l +2),—(l + 1)} would be a backward blue edge. x;_; cannot be
[ + 1 either for the edge {z;_1,2,} would cut x;;; from the vertex k. So z;_; must be
—l. xj19 cannot be [ — 1 (backward blue edge), so x4 is [ + 1.

In the same manner one can see, if {z;, 2,1} is a backward red edge with z; =,
xjy1 = —l, then z;_; should be [ — 1 and z;;2 should be —({ +1). So if we add the
directed edges {{{,—(I+2)}: 0<I<k—-2}U{{-,l+1}: 1<I[<k—1} to the
directed graph R, U B, then in this new graph, the number of directed paths from
0 to k is equal to the number of non-directed paths from 0 to k£ in the non-directed
graph R, U B,,. (In fact we constructed a bijection among the non-oriented and the
oriented paths of the two graphs: whenever a non-oriented path of the original graph
uses a backward edge, the corresponding new edge should be used in the new graph to
create an oriented path, and vice versa.)

If we reindex the vertices as in fig.4 the recurrence formula above follows, as any
vertex [ is adjacent to an incoming edge from [ — 3,/ —2 and [ — 1. Solving this formula
we get that A > cx for some constant ¢, where xy is the unique real root of the

equation 2® — 2?2 —x — 1 =0, 29 = 1.8392...
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Figure 4: R, U B, with the added oriented edges

2.4.2 Upper Bound on D"

cycle

Proof of the upper bound in Theorem 2.4.1: To establish the inequality let us
consider two trees B,, and R, (a blue one and a red one) on the same n-element vertex
set. In a cycle in R, U B,, there are consecutive red edges, then consecutive blue edges,
then red edges again, and so on. (Edges that are both red and blue will be considered
as red.) A maximal path of consecutive red edges will be called a red segment (a blue
segment is defined similarly). The number of blue segments in a cycle clearly equals the
number of red segments, and since each segment contain at least one edge, the number
of red segments is at most |%] and is at least 1 (for a cycle without red segment is a
blue cycle, which is impossible, since B, is a tree).

We will count the cycles in R, U B, partitioning them according to the number
of red segments. So we have to show that there are at most (Z) cycles having i red
segments. To do this first note that in a fixed cycle the set of the endpoints of the red

segments and the set of the endpoints of the blue segments are just the same.

Lemma 2.4.2 Given a tree and 2i vertices of its vertex set, then there is at most

one way to choose 1 vertex-disjoint paths in the tree with the given vertices as endpoints.

Proof: By induction on 7. If i = 1 then clearly the statement holds, for in a tree
there is exactly one path from any vertex to any other vertex.

Let 7 > 1. A set of vertex-disjoint paths defines naturally a matching on the set of
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endpoints. Notice, that an edge in such a matching corresponds always to the same
path (for there is one single path between any two vertices of a tree). Let us suppose
to the contrary, that there are two different sets of paths satisfying statement of the
lemma. If there exists a common edge in the corresponding matchings, then removing
this common edge (and its endpoints) we arrive at a contradiction by induction. If
there is no such edge, then the two matchings have together 2i edges on 2i vertices,
so there should be a cycle involving these edges, that is there should be a cycle in the

corresponding paths, which contradicts the fact that our graph is a tree. [J

To finish the proof of the upper bound, observe that by Lemma 2.4.2. in R,UB,, the
mapping where the image of a cycle is the set of endpoints of the segments is injective.

The statement of the theorem follows. [

Remark: It is easy to see, that in the statement of Lemma 2.4.2, "at most" is

n

necessary if the tree is not a path. Hence we know that the upper bound for Df,

holds with strict inequality for non-path trees. Since the graphs of the construction
in the previous subsection were paths, one may conjecture, that trees with maximal
distance are paths. But even if this conjecture is false, the question that how many
cycles we can have in the union of two paths is a distance-type question. To see this
we just have to figure out what the path-distance of two paths is. Since a path is a
cycle-free (connected) graph in which all vertices have degree at most 2, the forbidden
collection of subgraphs consists of the cycles and the 3-star (i.e. the graph consisting
of the edges {1,2},{1,3},{1,4}). But since any vertex has degree at most 4 in the
union of two paths, any vertex can be the middle vertex of at most (g) = 4 3-stars,
therefore there can be at most 4n 3-stars in the union of two paths on n vertices. As 4n
is negligible compared to the exponentially growing number of cycles, Dpn (P, Py') =

O(Deyeie(P], Py')) for the sequence of optimal pairs of paths.
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3 Profile vectors

In this section we deal with weighted problems on set systems. Especially, we are
interested in weight functions depending only on the size of the sets (i.e. w(F) = w(G)
whenever |F| = |G|). As explained in the introduction, we have to determine the
convex hull of the profile vectors (the profile polytope) of all set systems having some
prescribed property (intersecting, Sperner, etc.).

Determining the profile polytope means, that we have to find its extreme points
or at least the essential extreme points. A property P C 22" is said to be hereditary
(sometimes the term monotone is used) if G C F € P implies G € P. Note, that
any property that can be defined through forbidden configurations is hereditary, so
in particular the intersecting property (when P is the set of all intersecting families)
is hereditary. If the examined property is hereditary, then we know (cf. [8]) that all
extreme points can be obtained from an essential extreme point by changing some of
the non-zero coordinates to zero.

In this section we will present two methods how to determine profile polytopes
(both methods were used already in [7], [8] or [T4], for a survey on results about profile
vectors see Chapter 3 of Engel’s book []). In the next subsection, we use the method
of inequalities to determine the essential extreme points of the profile polytope of the
set of intersecting families of subspaces, and in the second subsection, we introduce
a generalization of the profile vector, which we call [-chain profile vector and obtain

results on them with the reduction method.

3.1 Intersecting families of subspaces

In this subsection we determine the essential extreme points of the profile polytope of

the set of intersecting families of subspaces.

We will use the symbol [’lﬂq = (qn(_qi)fq{;(_qlkj)_”i()'_’f(::z—1) for the Gaussian (g-nomial)
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coefficient denoting the number of k-dimensional subspaces of an n-dimensional linear
space over GF'(q) (and ¢ will be omitted, when it is clear from the context). The set

of all k-dimensional subspaces of a vector space V will be denoted by [‘,ﬂ
To simplify our counting arguments we introduce the following

Notation. If £ + d < n, then [Z];(d) denotes the number of k-dimensional sub-

spaces of an n-dimensional vector space V over GF(q) that are disjoint from a fixed

d-dimensional subspace W of V.

Here are some basic facts about these numbers:

n*(d)_ n—d| u
l{? - l{? q,

Facts.

I vl e S S T
[n}l*(d) < [n]l*(nk) = q"*k < qurl (lf 2k +1 < n)’
k k
and so inductively
[ 1
[n]p*(d) — qp(k+1) (lf 2k +1 S TL)
k

To determine the profile polytope of intersecting families we follow the so-called

method of inequalities. Briefly it consists of the following steps:

e establish as many linear inequalities valid for the profile of any intersecting family
as possible (each inequality determines a halfspace, therefore the profiles must

lie in the intersection of all halfspaces determined by the inequalities),
e determine the extreme points of the polytope determined by the above halfspaces,

e for all of the above extreme points find an intersecting family having this extreme

point as profile vector.
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The last step gives that the extreme points of the polytope determined by the

halfspaces are the extreme points of the profile polytope that we are looking for.

The following theorem on intersecting families of subspaces was first proved by
Hsieh [22] (only for n > 2k + 1) in 1977, then by Greene and Kleitman [20] (for the

cases k|n so especially if n = 2k) in 1978.

Theorem 3.1.1. (Erdds - Ko - Rado for vector spaces, Hsieh’s theorem) If F C Dﬂ

15 an intersecting family of subspaces and n > 2k, then

n—1
< .
7l < [k_l]

The above theorem yields to the following inequalities concerning the profile vector

of any intersecting family:

e 0< fi<[]], 0<i<n/2

e 0<f;<[7], n/2<i<n

To establish more inequalities we will need the following statement:

Theorem 3.1.2. The following generalization of Hsieh’s theorem holds:
a, if 2k <n<2k+2andd=0ord=n—k
or
b, ifn>2k+3 and k+d<n
then for any intersecting family F of k-dimensional subspaces of an n-dimensional

vector space V- with all members disjoint from a fized d-dimensional subspace U of V

n — 1] *(d)

<
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Note that the d = 0 case is just Hsieh’s theorem.

Proof: If k|d|n or kln and d = 0 then the argument of Greene and Kleitman [20]
works. One can partition V'\ U into isomorphic copies of V} \ {0}, and since among the
k-dimensional spaces of each such partition F may contain at most 1, the statement
of the theorem follows.

So now we can assume 2k + 1 < n. We follow the argument in [22]. First we verify
the validity of the lemmas from [22] in our context. For x € V (A < V) let F, (Fa)

denote the set of subspaces in F containing z (A).

Lemma 3.1.3 (the equivalent of Lemma 4.2. in [22]) Suppose n > 2k + 1 and let
F be an intersecting family of k-subspaces of an n-dimensional space V' such that all
k-subspaces belonging to F are disjoint from a fized d-dimensional subspace W of V
(where d < n — k). If for all x we have |F,| < [Z:}:Z]*(d), then

*(d) *(d) p—1
n—1 n—1—p k
<
A O T A R

for all 2-dimensional subspaces A, where lleqgp < k — 1.

Proof: First we check the validity of the following consequence of the "facts":

n—1 kpn—l—p*(d)> s kpn—l—p*(d) )
k1 U k—1-p| = 1]|1] [k=1-p|
for 1 < s < p. Indeed,
n—17*(d) n—17*(n—k) k p
[k—l} > [k—l} pn—k) 5 g (q _1) _qp{k]p’

11 ¥ @ = Tp1_pyrn—k) 4 _ -
o -1 !

*(d)
> ¢

where the first inequality follows from the facts and the second one uses the assumption

n > 2k + 1.

Let us take an arbitrary 2-dimensional subspace (z,y) C V. If U € F implies
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UnN{x,y) # {0}, then by (2) (and the assumption of the lemma) we have
21 k17 [n — 1 — p]*@ n—1-p]*@
< < .
PP S Bl ) Pt B i
ZC{z,y),Z1—dim
Thus we can suppose there is some U; € F such that U; N (z,y) = {0}. Take 0 # z; €
Upy. If U € F implies U N (x,y, z1) # {0}, then (again using (2))

31 (k1P n—1-p]"? [n—1-p]"@
|F| < < :
11| |[E—=1—=p k—1—p
Thus we can suppose that there is some Uy € F such that Uy N (x,y, z1) = {0}. Hence

Froomn] < 7Y, and so [ Foy| < [ [2747

Suppose that for 1 < j < 4,0 # z; € U; and (z,y, 21, ..., 2;) N Uj31 = {0}. Take
0# 21 €Uy If U € F implies U N (x,y, 21, ..., zix1) # {0}, then by (2)

~ Pry, 1 _ 1% IR T, R ()
7l < 1+ 3| k| In—1—p - n—1—p .
1 1] [k—=1—p k—1—p

Thus we can suppose that there is some U; o € F such that U0 N (x,y, 21, ..., 2i11) =

Kl [n—i—4]"@
<
|fo,y,Zl ..... Zl+1| _— [1] |:k/' o Z N 4:| y

and by induction we obtain
k *(d)

Thus for 1 < i < p, either we have |F| < [Z:ﬂ*(d) or |Fuyl < miflmjiﬂ*(d), as a

{0}. Hence we have

special case with ¢ = p either we have |F, ,| < [ﬂ et [Zj:ﬁ*(d)

O
We will need one more lemma from Hsieh’s paper (actualized to our context):

Lemma 3.1.4 (the equivalent of Lemma 4.3. in [22]) Let F be a family of in-
tersecting k-subspaces of an n-dimensional space V' of which all subspaces are disjoint

from a fized d-dimensional subspace W of V. Furthermore if
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a, ¢ >3 andn > 2k + 1 and for all x we have |F,| < mk_l,
or if
b, g =2 and
-n>2k+1
- and for all x we have |F,| < m minth=tnked) Hi.:ll_(n_k_d) (m — m) (if k—1<
n —k —d, then the product is empty and equals 1),

then
*(d)
n—1
#1<[r 2]

Proof: In all cases |F| is at most [}] times the bound on |F,|.

Now if ¢ > 3, then

Lk k qk—l k oy n—1 *(n—k) n—1 *(d)
< _ 1 (k=D n—k) _ < .
\fI_H <q—1) == k-1 = k-1

If g =2, then for any n > 2k + 1 and d = n — k we have

W) <0 @ Fi e

-n . 1:| *(n—k)

k21 (k—1)(n—k)
<
e =1 k-1

Since n > 2k + 1, we have n — 2k + 1 > 2 holds. This gives

7| < mk - (qk - 1)k c o @ D@ D (gt )

1 -1 (¢t =1)(F2-1)...(¢—1) —

2k — 9 n—1 *(n—2k+1)
k—J:[k—J '

< B D=2k+1) [

This establishes the lemma for 0 < d < n—2k+1. For the remaining cases (n—2k+1 <
d < n — k), one has to observe that the largest value of d for which the bound on |F,|

in the conditions of the lemma is mkil equals n — 2k + 1 (i.e. the largest d for which
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k—1 < n—k—d holds). It follows, that when moving from d to d+ 1 the known bound

k] [n—k—d
on |F| is multiplied by %, while our targeted bound decreases by a factor of
[n—l]*(d+1) '

k[;;]*(d) :

k—1

Easy calculations show that this latter ratio is larger up tilln —k —d < (k —1)/2,
and the former ratio is larger when n — k — d > (k — 1)/2. This means that the gap
between the bound on |F| and our targeted bound grows while n —k —d < (k —1)/2,
from then on this gap decreases, but since it still holds in the end, it must hold in
between as well.

This finishes the proof of the lemma. [J

Before we get into the details of the proof of Theorem 3.1.2, we just collect its main
ideas:
the heart of the proof is the concept of covering number. For a family of subsets

F C 2" this is the size of the smallest set S C [n] that intersect all sets in F (S

\%4

k] its covering number is the

need not be in F). For a family of subspaces F C [
smallest number 7 such that there is a 7-dimensional subspace U of V' that intersects
all subspaces that belong to F. Observe that the proof of Lemma 3.1.3 was done by
an induction on the covering number. The proof of Theorem 3.1.2 is again based on
an induction on the covering number of F. (During the proof, almost all computations

will use the "facts" about Gaussian coefficients, all inequalities without any further

remarks follow from them.)

If € NF for some 0 # = € V then |F| < [Z:ﬂ*(d. Thus we can suppose that
NF = {0}.
Let xy # 0 be such that |F,,| = max,cy | Fal.

By our assumption, there is some A; € F not containing x;. Thus |F,,| <

M
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Suppose that there are two independent vectors zi,zo € A; such that A € F =
AN (xy,2z) # {0} for i = 1,2. If u; € (xq1,2) \ (z1), then the w;’s are independent.
Thus

| F| < | Faul + > | For |

Ui C({z1,2:)\(z1))U{0}, dim(U;)=1
Kl [n—21"" /]2 PIn—21"Y  [n—1]"@
< —1 < )
o3t P R (o R N R P
Thus we can suppose that there is at most one z € A; such that A € F = AN(xy,2) #
{0}. Suppose that z € A; is such. Take z € A; \ (z), then there is some A € F such
that AN (z1,2) = {0} and hence |, .| < [}] [Z:g’]*(d). Thus
«(d) 2 «(d)
n—2 k|"In—3
fm < f:vl z f:vl S .
Pl VPl + NN T vl I
XC(A\()U{0}, dim(X)=1
But then

ns 5 sl ) <l

XC(z1,2),dim(X)=

Thus we can suppose that for all x € A; there is some A € F such that AN(zy,x) = {0},
and hence |7, .| < [F] 274", Thus |7, | < [ [227.

In general, suppose that for 1 < p < k—3 we have non-zero vectors yi, ys, ..., y, € V
and Ay, Ay, ..., Aps1 € F such that y; € Aand A1 N (21,91, .., y,) = {0} for 1 <i <p.
(We have just proved that for any y; € A; there exists such an Ay € F or the statement

of the theorem holds.) Thus

|~7:J11,y1 ----- yzu|S |:1} [k_p_2:| ’

and so inductively we obtain that

k} p+1 [n e 2] *(d)

<

By Lemma 3.1.3, we have

k‘ V4 n_p_2 *(d)
<
Foal < H {k—p—Q}
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for all 2-dimensional (z,y) C V.

Suppose that there are p 4 2 linearly independent vectors zi, 2a, ..., Zp4o In A,y
such that (x1,y1,...,yp,z) N A # {0} forall A € Fandi=1,2,....,p+2. Let u; €
(1, Y1, s Ypy 2) \ (1, Y1y ooy Yp)s © = 1,2, ..., p+ 2, then uy, ug, ..., u,y4o are independent.

Thus

‘fl S Z |fX| + Z |fU1,U2 ..... Up+2|

XC<$173/1 7777 yp>7dlm(X):1 UiC(<3317y17---7yp72¢>\<$17y1 7777 yp>)U{Q}7dzm(Ul):1

_ p+1 k,p+1 n—p—2 "k(d)+ p+2 B p+1 p+2 n—p—Q*(d)
! 1 k—p—2 1 1 k—p—2

< [P Tk P —p—2 *(d)_i_q(prl)(kfl) n—p—2]"

- 1 1 k—p—2 k—p—2

SRRl A

Thus we can suppose that there are at most p + 1 such z;’'s. Hence

wovtetel = g —p— 3 1 k—p—2 ’

‘f‘< kp+2n_p_3*(d)+p+1 /{an—p—Q*(d)
=1 k—p—3 1 1| |[k—p—2 '
Suppose that we do have independent vectors z;,2, € A,.s such that A € F =

AN (1, Y1y ooy Yps zi) # {0} for ¢ =1,2. Then

7| < > \Fx|+ > | Fu,0,]

Xc<x17y1 7777 yp>,dzm(X):1 UiC((:vl,yl,...,yp,zi>\<m1,y1 7777 yP))U{Q}7dzm(UZ):1
- p+1 k;pﬂn—p—?)*(d)Jr p+1 n—p—Z*(d) .
11 1 k—p—3 1 k—p—2
n p+2| [p+1 ? k;pn—p—Q*(d)
1 1 1| |[k—p—2
_|p+1 kp+2n—P—3*(d)+ p+22+ 2p41) [ K]” n—p-2]"
1 (|1 |k=p-3 1 1 1 ) k—p—2
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_ p+1 kp+2n_p_3*(d)+qpkp+1 TL—p—Q*(d)
Sl k—p-3 1| |k—p-2

P 1\ n—11""  [n—1]"?
<|==+- < .
@2 q) k-1 kE—1
Thus we can suppose that there is at most one such z. Hence

pt2r o g1*(d) Pl _ o o]*d
| < k n—p—3 . El"In—p—2 .
1 k—p—3 1| |[k—p—2

Suppose that z; € A, is such a z, then

D+ 2 kp+2n_p_3*(d) kpn_p_Q*(d)
< <
7] < > |ﬁ”—{ 1}(L} k-p-3] Tl1) [k-p-2
XC(z1,Y1,5e-3Yp,21),dim(z)=1
- p+2(kp+2n—p—3*(d)+ll{:p+1n—p—2*(d)
1 1 k—p—3 q|1 k—p—2

S SR N U TR S T
- qp+2+qp+2 kE—1 < kE—1 ’

Thus we can suppose that for all z € A, ;, there issome A € F such AN(z1, Y1, ..., Yp, 2) =

{0}. Take y,1 € Api1, and let A, o be such that AN (xy, y1, ..., Yp, Yp+1) = {0}
We obtained, that either the statement of the theorem holds, or there are linearly

independent vectors z1,y1,...,yx—1 and A; € F i = 1,..k — 1 such that y; € A; and

(1,91, -.yi—1) N A; = {0}

If ¢ > 3, this means that either |F| < [Z:ﬂ*(d) or |Fo| < |Ful < [5] “! and then
we are done by Lemma 3.1.4.

If ¢ = 2, we have to sharpen our estimations on |F,,|. We know that for j indepen-
dent vectors z1, Y1, ..., yj—1 with UN (21,41, ...,yj—1) = O there exists a subspace A; € F
such that A; N (x1,y;...,2,-1) = 0. Then we would have the following upper bound on

the number of subspaces in F containing all z; (1 < i < j): m [Z:?:ﬂ*(d)

. But suppose
further that for some positive | j+k+d = n+1[. Then dim({(z1,v1...,y;-1, 4;) NU) > 1

and so (denoting (z1,v1...,y;—1,4;) N U by U;) dim((x1,...,z;,U;) N A;) > 1 as well,
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therefore when choosing among the vectors of A; a subspace of dimension at least [ is
forbidden. Therefore we have the following better estimate on the number of subspaces

in F containing x1,yi, ..., y;j-1:

k N [n—j—11""
1 1 k—j—1 '
Hence we have that either the statement of the theorem holds or the degree of any

vector x is bounded by the expression given in the conditions of Lemma 3.1.4. So

Lemma 3.1.4 establishes our theorem in this case, too. [

Corollary. For the profile vector f of any family F of intersecting subspaces of an
n-dimensional vector space V', and for any k < n/2 andn/2 < d < n—k, the following

holds

Chafr + fa < {Z] ;

n—k
where ¢y q = qd[n_;;_]l], and equality holds in case of fr =0, fg = [Zﬂ or fr = [Z:ﬂ fa=

k-1
1)

Proof: Let us doublecount the disjoint pairs formed by the elements of Fj, = {U €
F:dimU =k} and Fj = [V] \Fa={U < V,U ¢ F : dimU = d}. On the one hand,
for each U € Fj, there are exactly ¢% [";k} such pairs (this uses the first fact about

g-nomial coefficients), while on the other hand by Theorem 3.1.2 we know, that for

nfl} *(d) _ qd(kfl) [nfffl

k—1 o1 ] such pairs. This proves the

any W € F) there are at most |
required inequality and it is easy to see that equality holds in the cases stated in the

Corollary. [

Having established these inequalities, we are able to prove the main theorem of this

subsection.
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Theorem 3.1.5 The essential extreme points of the profile polytope of the set of
intersecting families of subspaces are the vectors v; (1 < i < n/2) for even n and there

is an additional essential extreme point vt for odd n, where

0 if 0<75<1
(vi); = [T if i <j<n—i (3)
] if j>n—i

and

if i <n
(), = O IsTE ()
0] if j>mn/2.

Proof: First of all, for any « € V|, for the families G; = {U : v € U,1 < dimU <
n—i} U{U :dimU >n—i} (1 <i<n/2) f(G;) = v; holds, and if n is odd then the
profile of the family Gt = {U : dimU > n/2} is v™, and clearly none of these vectors

can be dominated by any convex combination of the others.

We want to dominate the profile vector f of any fixed intersecting family F with
a convex combination of the vectors v; (and possibly v* if n is odd). We define the
coefficients of the v;s recursively. Let ¢ denote the index of the smallest non-zero
coordinate of f. For all j < i let a; = 0. Now if for all j* < j «; has already been

defined, let

. i-1
o = max{ [nfjl] — Zaj/,O} .

Jj—1 j'=i
Note, that for all j (i < j < n/2) the jth coordinate of Z?,:i ajvj is at least f; (and
equality holds if when choosing «;, the first expression is taken as maximum), so these

vectors already dominates the “first part” of f.
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n/2

When all a;s (i < j < n/2) are defined, then let a* =1 — 377" a; and let a* be

the coefficient of v™ if n is odd or add a* to the coefficient of v, if n is even. Note
also that o™ is non-negative since for all i < j <k <n/2 (v;)x = [Z:ﬂ and by Hsieh’s
theorem 0 < fi < [k 1] Therefore this is really a convex combination of the v;s.

The easy observation that this convex combination dominates f in the coordinates
larger then n — i follows from the fact that all v;s (and v™ as well) have [}] in the dth
coordinate, therefore so does the convex combination which is clearly an upper bound
for f,.

All what remains is to prove the domination in the dth coordinates for all n/2 <

d < n —1, that is to prove the inequality

fdg[ ]Za] [](1—Z%>.

Let £ < n — d be the largest index with a; > 0. Then we have

<[ S (S0 [ L5

(- Ee) [ [ )2

where the inequality is just the Corollary, the first equality follows from the fact that
ar > 0, the second equality uses again the Corollary (the statement about when
equality holds) and the last equality uses the defining property of k (for all k < j < n—d
a; =0).

This proves the theorem. []

Note that, the (essential) extreme points are ’the same’ as in the Boolean case
(which was solved in [§]), one just has to change the binomial coefficients to the corre-
sponding g-nomial coefficients and the structure of the extremal families are really the

Same.
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3.2 [-chain profile vectors

Before getting into the details of the topic of this subsection, let us give some moti-
vation. In Section 2, one of the properties we dealt with was Sperner property. This
property has a natural generalization: a family F C 2/ is said to be k-Sperner if it
contains no chains of length k41 (k+1-chains for short), or equivalently if F = Ule Fi,
where every F; is a Sperner family. So the union of two k-Sperner families is a 2k-
Sperner family, and, using the terminology of Section 2, their k-Sperner distance is the
number k + 1-chains in their union.

In general, one may ask for any r < s, what is the maximum number of r-chains
that an s-Sperner family F may contain (as always, with assumption that F C 2],
(This problem is "somewhat" analogous to the well-known result of Turan/Sauer [32],
[B0] which gives the maximum number of K,s that a K -free graph can have.) A 1-
chain is simply a set in the family, so the case » = 1 asks for the maximum size of an
s-Sperner family. This was solved by Paul Erdds [B] in 1945. Theorem 2.2.1. settles

the case r = s = 2 and "we are motivated" by the r = k+ 1, s = 2k case for any k > 2.

The original profile vector does not help to deal with this problem: two sets with
the same size might be contained in differently many /-chains (if { > 1). What is more!
The same set may be contained in differently many [-chains depending on which system
it takes part of. To overcome this problem we introduce a generalization of the concept

of profile vector (which reduces to the ordinary profile if [ = 1).

Definition: The [-chain profile vector fY(F) of a family F C 2" is a vector of
length ("71) The coordinates are indexed with I-tuples o = (a1, g, ..., ) (0 < oy <
... < a; < n) and the ath coordinate f'(F), is the number of l-chains contained in F
with the property that the smallest set in the chain has size «ay, the second one has

size a9 and so on.
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If we denote the all one vector (of length ("Jlrl)) by 1, then the number of [-chains
contained in a family F is f!/(F) - 1 and using other weight vectors one can treat
weighted problems for [-chains, where the weight of two [-chains must coincide if the
ith sets in both chains are taken from the same level for all 1 < ¢ < [. Although
generally weighted [-chains do not come into picture very often, but containing pairs of
sets and disjoint pairs of sets (which could be transformed into containing ones, since
FNG =0« F CG) are much more investigated, so results on 2-chain profiles might
have some applications.

Anyhow, after presenting some further definitions and some introductory results
on [-chain profiles, we will demonstrate the power of the socalled reduction method of
Péter L. Erdés, Péter Frankl and Gyula O.H. Katona [8] by applying to some not very

complicated sets of families in this new ’l-chain context’.

3.2.1 Definitions and remarks

In this section we give some further definitions and describe some basic connections
between the extreme points in the [-chain case and the extreme points in the original

(1-chain) case.

Notation. For as with a = (ay, s, ...,;),0 < ag < ay < ... < ay < n we define

the following multinomial coefficient:

(n)_ﬁ(n—ail)_ n!
« Qi1 — O 041!(0@—(11)!...((11—al,l)!(n—al)!

i=1

where ag = 0 and 0! = 1 as usual. Note that (Z) is the number of /-chains that can be

formed from subsets of an n-element set in such a way that the smallest set has size

a1, the second smallest has size s and so on.

Definition: Given an underlying set X and a family F of its subsets, the up set
of FisUU(F) = {G C X : IF € F such that ' C G} and the down set of F is
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D(F)={G C X :3F € F such that F D G}.

Definition: A set A of families is upward (downward) closed if F € A implies
U(F) e A (D(F) eA).

Examples: Clearly the set of t-intersecting (t-co-intersecting) families is upward
(downward) closed. (A family F is said to be t-intersecting if for any two Fy, F, € F
|Fy N Fy| > t, and a family G is said to be t-co-intersecting if G = {G : G € G} is

t-intersecting or equivalently if for any two G1,G2 € G |Gh U Go| > t.)

Definition: Let y;(A) denote the set of all [-chain profile vectors of families in A,
(1 (A)) its convex hull, £(A) the extreme points of (1;(A)) and Ej(A) the families from
A with [-chain profile in &(A). Let furthermore £(A) denote the essential extreme

points and E/(A) the corresponding families.

Theorem 3.2.1. For any upward or downward closed set of families A C 22 and
for anyl >1

& (A) C u(E7(A)).

Note that equality does not always hold as the set of intersecting families, the family
F={FCX:|F|>|X|/2} and any [ > | X|/2 shows.

Proof: The proof is the same for downward and upward closed sets of families, so
we assume that A is upward closed.

Let Ef(A) = {F, Fo, .., Fpn} and let f¢ the profile of F;, f the [-chain profile of
Fiand filits ath coordinate.

We have to prove that the [-chain profile f! of any family F in A can be dominated

by a convex combination of the f%!s. Denote the profile of F by f. Clearly we have

()
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where a = (g, g, ..., qq),a* = (ag — ag,a3 — aq, ..., — 7). Inequality holds with
equality for the fis and the fils (since A is upward closed). The fact that the fis
are the essential extreme points of (14;(A)) means that for some convex combination
c,t=1,....m

m

I < Zcifl.

i=1

But then

m m
1 n — oy n—aoq . Y
a S foq( a* ) S ( ot )chféfl = ZCZ' (Z);’

i=1 i=1

which completes the proof. [J
Since the convex hull of the profile polytope of the set of intersecting families were
determined by P.L. Erdgs, P. Frankl and G.O.H. Katona in [8], Theorem 3.2.1 provides

the essential extreme points of the convex hull of the [-chain profile polytopes.

Definition: For any family F on a base set X let conv(F) = {G C X : IF, F' €
F(F C G C F')} denote its convex closure. F is said to be convex if F =conv(F).

Definition: A set of families A is said to be convex closed if F € A implies

conv(F) € A.

Example: The basic example for a convex closed set is the set of intersecting and

co-intersecting families.
Theorem 3.2.2. For any convex closed set of families A C 22 and for any 1 > 2

& (A) © u(E5(A)).

Proof: The proof is analogous to that of Theorem 3.2.1., the inequality needed is

ap — Qg
ig 210&[( * )
’ [0

where a = (aq,ag, ..., qp), & = (ag — oy, 3 — aq, ..., q_1 — 1) and for families with

essential extreme profile inequality holds with equality. [J
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Unfortunately neither the extreme points of the 1-chain, nor that of the 2-chain

profile polytope are known for the set of intersecting and co-intersecting families.

3.2.2 The reduction method

In this section we describe our main tool in determining the /-chain profile polytope
of families of sets with some given property. We call this tool the reduction method.
In fact, this is not a new one. Most of the proofs of results already obtained went this
way, what we observed that the method works for the [-chain case as well, and - what
seems to us more important - in some cases it is enough to reduce the original problem
to the chain instead of the cycle (what previous proofs did mostly). For the precise

definitions, see below.
Definition: For any [ let TS denote the following operator acting on the ("71)—

dimensional R-space (coordinates are still indexed by I-tuples of the set {0,1,...,n})

TS e Th(e) where TL(e)o = (n) €q-

a
Definition: For a family F on a base set X and a maximal chain C in X let

F(C) ={F € FNC} and for a set of families A let A(C) = {F(C): F € A}.

Theorem 3.2.3 For any set of families A C 2% if the extreme points ey, €, ..., €m

of (u(A(C))) do not depend on the choice of C, then

(u(A)) € {Te(er), ., Telem)}).

Proof: The modification of the argument in [8] works. Let F be an element of A
with [-profile f = (..., fa,...). For F ={F, C F, C ... C F}} with |F}| = o;,i =1, ..., 1
let w(F) be the vector of length ("Jl“l) with 1/n!in the ath coordinate and 0 everywhere

else (where n is the size of the base set). Consider the sum > w(F) for all pairs (C, F),
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where C is a maximal chain on X and F € F N C an [-chain. For a fixed C we have

Z w(F) = %(proﬁle of F(C)).

FeF(C)

Here the profile of F(C) is a convex linear combination ;" | A\;(C)e; of the e;s. There-
fore
SwE) =YY wE) = LS MOe =3 (MO ()
CF C F c im1 i=1 C
holds where Yo 43" X(C) = 1. Thus > w(F) is a convex linear combination of
the e;s.
Summing in the other way around, we have

Y wE) =) Y wF) =

C,F

Z(0707.__7\F1|!<\F2\—|F1|>!...<|m—m1|>!<n—|ﬂ\>!7___70): < o ) ©

v n! (&)

since for a fixed F = {F} C F, C ... C F} there are exactly |Fy|!(|Fy| — [FA)!...(|F| —

|F,_1))!(n — |F}|)! chains containing F. So (5) and (6) give that this last vector is a
convex linear combination of the e;s, which implies that f is the linear combination of

TE(er), o, T (). O

The structure of maximal chains are too simple, so using only them is not enough
to determine the [-chain profile polytope of more complicated sets of families. But
the proof of Theorem 3.2.3. works if we replace the chain by a pair of complement
maximal chains (i.e. for i = 1,2 C' = {C§, Ci, ..., Ci} with Ci = X \ €% = T, for
all 7 =0,1,...,n) or the cycle (i.e. the family of subsets of consecutive elements with

respect to a cyclic permutation of the base set). In the proof one has to write (instead

of 4

nl

) (72,) and ﬁ (respectively) in the definition of w(F), and modify the definition

of the T-operator to

Thoa=1 (1) @en=—(2),
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where d, (c,) is the number of a-type [-chains in the pair of complementing chains (in

the cycle). For completeness’ sake we state these versions of the theorem, too.

Theorem 3.2.4 (a) For any set of families A C 2% if the extreme points ey, ea, ..., €,

of {u(A(CY, C?))) do not depend on the choice of C', C?, then

(m(A)) € {Torco(er), o, Ten co(em) ).

(b) For any set of families A C 22 if the extreme points 1, es, ..., em of {1(A(C)))

do not depend on the choice of C, then

((A)) € ({Te(er), ... Te(em)}).

3.2.3 Applications

In this section we determine the profile polytope of some sets of families using the
reduction method. In the first part of this subsection the problem will be reduced to
the case of the maximal chain while in the second part we will consider reduction to
a pair of complement chains. Using the results obtained by the latter we will give

examples when the extreme families of the [-profile polytope can really depend on [.

REDUCTION TO THE CHAIN

Theorem 3.2.5 For all | > 1 the extreme points of the convex hull of the l-chain
profile vectors of convex families are the following:

the all zero vector

0=1(0,...,0)
and for all 0 < ¢ < j < n the vectors v;

52



CEU eTD Collection

(M)if i<ay <o <j
(Vij)a = (7)
0 otherwise.

Proof: The vector v; ; is the [-profile of the family F; ; = {F C [n] : i < |F| < j},
which is convex.
On a chain any convex family must consist of some consecutive subsets of the chain.

The statement of the theorem follows now from Theorem 3.2.3. [J

Note that the set of convex families is not hereditary, therefore the extreme points
(for the original profile vectors) need not be the ones obtained from the essential ex-
treme points (in this case there is only one such, the profile of 2["]) by changing some
of the non zero coordinates to zero - and as Theorem 3.2.4. shows, they are not those

vectors, indeed.

Theorem 3.2.6 For any | < k the extreme points of the l-chain profile polytope of
k-Sperner families are the following:

the all zero vector

and for alll <z <k and B ={0,..., 0.} with0 < [ < ... < B, < n the vectors vg

" if aC g
)= W0 (®)
0 otherwise.

The case [ = 1 is a result of P.L.. Erdés, P. Frankl and G.O.H. Katona [8].

Proof: Tt is trivial to see that these vectors are [-chain profiles of the corresponding

levels, and they are convex linearly independent.
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A k-Sperner family on a maximal chain consists of at most k sets, therefore its
[-chain profile vector have ones in those coordinates a = (ay, ..., ;) for which there is
an element in the family with size «; for all ¢ = 1,...,1. All these vectors are convex
independent. Therefore they form the convex hull of the profile polytope on the chain,

and Theorem 3.2.3 implies now Theorem 3.2.6. []
Applying Theorem 3.2.6 for the constant 1 weight function one gets

Corollary For any l < k if a family F on an n-element base set X does not contain
a chain of length k + 1, then the number of l-chains in F is at most
max 3 (“)
6C[O7n};‘6|:kagﬁ;|a\:l o
As a special case we get that the answer to our "motivating problem” is that the maz-
imum distance of two k-Sperner families is

n
max :
Bclon];|Bl=2k Z (0‘)

alpilal=k+1

Remarks.

- In the case [ = k, even the very simple argument of [24] works. First we need
a LYM-type inequality. To get this we double-count the pairs (C,F) where C is a
maximal chain and F is an [-chain contained in C. If we decompose the k-Sperner
family into k antichains, then all sets of an F come from different antichains, and any
C can contain at most k sets from our family, so by a standard calculation we obtain

sh4()

[e% (0%

If | = k, then the RHS is 1, and we can finish the proof as follows

S-S ) s () oo ()}

«

fata
()
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where w,, is any non-negative weight function and the last inequality in (10) uses (9).

If | = k, then the Corollary gives the maximum number of k-chains that a k-
Sperner family can contain. This is (Z) where o = (aq, o, ..., ax) and the numbers
a1, — Qq,...ap — a1 differ by at most one. If k£ 4+ 1 divides n, then we get the
uniqueness of the extremal system (take all F' C X with |F| = a; for some i = 1, ..., k)
automatically. If k+1 does not divide n, then we can lift up (4) to an AZ-type identity
(for the original AZ-identity see the paper of Ahlswede and Zhang [2]) which will assure

the uniqueness.

- With the notation of Section 3.2.1, Theorem 3.2.6 implies (if S;, denotes the set
of k-Sperner families) F1(S;) = Ei(Sg). But the bordering faces of the convex hulls
(11(Sg)) and (1 (Sk)) are “not the same”. If [ = 1 the convex hull determined by the
faces given by the inequalities 0 < f; < (’Z) and the LYM-inequality }_, fz/(’:) <k
(see [8]), while if I > 1 the hyperplanes given by 0 < f, < (") and the LYM-type
inequality of (5) are bordering faces, but there are some additional ones, which can
be seen through the following observation. Choosing (l;) as in such a way that their
union has size strictly larger than &k and putting f, = (Z) for these as and 0 for the

others, we obtain an essential extreme point of the polytope determined by the above

inequalities, and which is not an [-chain profile of any k-Sperner families.

REDUCTION TO A PAIR OF COMPLEMENT CHAINS

Theorem 3.2.7 Let n =2m + 1 and k < m + 1. Then the extreme points of the
1-chain profile polytope (i.e. the ordinary profile polytope) of the set of complement-free
k-Sperner families are the following vectors (indexed with a z-element (z < k) subset

a of {0,1,2,....n} where a; € « implies n — a; & «)

Vg = (0,...,0, (”)00 (”)000 (n)oo) .
(03] Q9 QL
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Proof: By Theorem 3.2.3 (a), it is enough to prove the following

Lemma 3.2.8 If n =2m+ 1 and k < m+ 1, then the extreme points of the profile
polytope of complement-free k-Sperner families on a pair of mazximal complement chains
are the vectors with at most k non-zero coordinates, where all the non-zero coordinates
are 2 (except for the first or the last coordinate, if one of them is non-zero, it equals

1), and if the ith coordinate is non-zero, then the n — ith coordinate is zero.

Proof of Lemma 3.2.8: If the non-zero coordinates of such a vector are aq, s, ..., a,
(satisfying the condition of the lemma), then the sets in the two chains with cardinality
a; for some ¢ = 1, ...,z form a complement-free k-Sperner family with the vector as
profile.

Now let F be a complement-free k-Sperner family on a pair of complement chains
C., C, with profile vector f. Let « be the set of indices of the non-zero coordinates of
f. Partition « into three subsets. Let C'L (complete levels) denote the indices a; with
fo, =2 (and 0 or n if fy or fi equals 1). Let furthermore C'P (complementing pairs)
denote the indices o; € a with n —a; € a, and let R = o\ (CL U CP). Note that
CPNCL =, for otherwise F would not be complement-free. Now form two subsets
al,a? of « in the following way. Put all indices in C'L into both o' and o?. For all
pairs of indices i,n — i in C'P (note that these are really pairs, for n is odd) put one of
the indices into a! and the other into o, Finally, choose a! or o? for all indices of R
in such a way, that |a'| < k and |a?| < k hold. (This is possible, for F is k-Sperner,

therefore || < 2k.) Now let f, i = 1,2 the following vectors.

o2 it j£0n (G=0n) jea
fi= (11)
0 otherwise.
By the facts that both fis are of the form of the statement of the lemma and

f=3f"+1f*, the proof is completed. O OJ
The case of complement-free families is very analogous (and even simpler), therefore

56



CEU eTD Collection

we just sketch the proof.

Theorem 3.2.9 The extreme points of the convex hull of the 1-chain profile vectors
of complement-free families are the vectors corresponding to the families consisting of

i, a set I of levels with the property that the ith and the n —ith levels cannot be both
i I, if n s odd,

i1, a set I of levels with the property that the ith and the n—ith levels cannot be both
in I and possibly half of the sets with size n/2 one from each pair of complementary

sets, if n is even.

Proof: It is easy to see (with the help of Theorem 3.2.4 (a)) that it is enough
to solve the problem reduced to a pair of maximal complement chains. There the
statement holds, since there a complement-free family can contain at most two sets
out of the four with size i or n — i, and the vectors (1,1),(0,1),(1,0) are convex

combinations of the vectors (2,0), (0, 2), (0,0). O

Theorem 3.2.1 and 3.2.2 state that for a certain class of sets of families all candidates
for the families with essential extreme [-chain profiles are among the families with
essential extreme 1-chain (2-chain) profile. Theorem 3.2.6 states, that for k-Sperner
families the above statement is true for all extreme profiles (not only for essential
extreme profiles). It seems natural to conjecture (with the notation of Section 2) that
for all set of families A and [ > 1 Ej(A) C Ei(A) and/or Ef(A) C E7(A). But this is

false. Here we present two counterexamples.

The first example is based on Theorem 3.2.7. Note that the families corresponding
to the extreme points cannot contain sets of size 7 and n — i at the same time. Hence
all 2-chain profiles of those families have 0 in their coordinates indexed with the sets
{i,n—1i}, and therefore all their convex combinations have 0 in those coordinates. But

a pair of subsets in inclusion with size ¢ and n — 7 is of course a complement-free k-
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Sperner family (if £ > 2), and its profile is not in the convex hull of the above-mentioned
vectors.

The second example is absolutely analogous to the first one. According to Theorem
3.2.9 in the extremal families of the set of complement-free systems there are no pairs
of sets in inclusion with size i and n — ¢ (so the corresponding coordinate is 0 in any

convex combinations), but there are complement-free families with such pairs.
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4 Concluding remarks

In lack of space, we could not survey all areas of extremal set theory in this thesis.
We mainly focused on two types of problems. In this last section we would like to
summarize the possibilities of future research and place our results in the theory of
extremal set systems.

Though the problem of finding F-free families with largest F-free difference seems
very natural, it was introduced quite recently in [28] by the author and therefore
could not be subject of extensive research yet. This means that we are not aware of
any other results of this type, thus considering other forbidden configurations that we
did in this dissertation and obtaining theorems on the corresponding largest possible
distance could be the first step in future research. Another challenging question could
be to establsish connections with other areas of extremal set theory or other topics in
combinatorics. For example it would be very interesting to know whether Theorem
2.3.1 could be used to deduce results on Ramsey numbers.

Finding the profile polytope of families with a prescribed property was the other
type of problems we considered in the thesis. The first result in this area was mentioned
(implicitly) by G.O.H. Katona in [24] but the systematical research was initiated by
P.L. Erd6s, P. Frankl and G.O.H. Katona in [7] and [8]and many researchers were
engaged in the topic ever since. As we mentioned in the introduction, determining the
profile polytope enables us to maximize easily any weight function with the property
that the weight of a set depends only on its size (or more generally, in ranked posets
the weight of an element of the poset depends only on its rank), so after finding the
maximum size of a family with some prescribed properties (which is the basic question
in the theory of extremal set systems) this seems to be the most natural generalization.
However, it is quite useful to restrict ourselves to properties where this type of weight

functions come into picture naturally, i.e. applications of the weighted results exists.
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(One of) the most important property for which the profile polytope is yet to be
determined is the ¢-intersecting property (if ¢ > 2, the ¢ = 1 was solved in [7]). In
Theorem 3.1.5 we determined the extreme points of the profile polytope of intersecting
families of subspaces (the t = 1 case for the poset L, (q)) and it seems that determining
the profile polytope in L, (q) for ¢ > 2 could be easier than in the Boolean case. This
‘conjecture’ is based on the fact (a theorem of Ahlswede and Khatchatrian [T] and
another theorem of Frankl and Wilson [I5]), that in the Boolean case if ¢ and k are
fixed, there are many types of different k-uniform extremal families as n ranges through
the integers larger than 2k — ¢, while in the case of the poset of subspaces there are

just 2.

References

[1] R. AHLSWEDE, L. KHARCHATRIAN, The complete intersection theorem for sys-
tems of finite sets, European J. Combin. 18 (1997), 125-136.

[2] R. AHLSWEDE, Z. ZHANG, An identity in combinatorial extremal theory, Adv.
Math. 80 (1990), No.2, 137-151.

[3] B. BOLLOBAS, On complete subgraphs of different order, Math. Proc. Camb.
Philos. Soc., 80 (1976), 19-24

[4] K. ENGEL, Sperner Theory, Encyclopedia of Mathematics and its Applications,
65. Cambridge University Press, Cambridge, 1997. x+417 pp.

[5] P. ERDGOS, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc., 51
(1945), 898-902.

[6] P. ErRDGOs, C. Ko, R. RADO, Intersection theorems for systems of finite sets,
Quart. J. Math. Oxford (2), 12 (1961), 313-318.

[7] P.L. ERDOs, P. FRANKL, G.O.H. KATONA, Intersecting Sperner families and
their convex hulls, Combinatorica 4 (1984), 21-34.

[8] P.L. ErRDGS, P. FRANKL, G.O.H. KATONA, Extremal hypergraphs problems
and convex hulls, Combinatorica 5 (1985), 11-26.

[9] P. ERDOS, M. SIMONOVITS, A limit theorem in graph theory, Studia Math. Acad.
Sci. Hung. 1 (1966), 51-57.

60



CEU eTD Collection

[10] P. ERDOs, A.H. STONE, On the structure of linear graphs, Bull. Amer. Math.
Soc. 52 (1946), 1089-1091.

[11] P.C. FisHBURN, P. FRANKL, D. FREED, J.C. LAGARIAS, A.M. ODLYZKO,

Probabilities for intersecting systems and random subsets of finite sets, STAM J.
Algebraic Discrete Methods, 7 (1986), no. 1, 73-79.

[12] P. FRANKL, The shifting technique in extremal set theory, in: Surveys in Combi-
natorics, London Math. Soc. Lect. Note Ser., 123 (1987), 81-110.

[13] P. FRANKL, The convex hull of antichains in posets. Combinatorica 12(4) (1992),
493-496.

[14] P. FRANKL, G.O.H. KATONA, Polytopes determined by hypergraph classes. Eu-
ropean J. Combin. 6 (1985), no. 3, 233-243.

[15] P. FRANKL, R.M. WILSON, The Erdgs-Ko-Rado theorem for vector spaces. J.
Combin. Theory Ser. A 43 (1986), no. 2, 228-236.

[16] E. FRIEDGUT, On the measure of intersecting families, uniqueness and stability,
submitted

[17] Z. FUREDI, Turan type problems, Surveys in Combinatorics, London Math. Soc.
Lecture Notes Ser., vol. 166, Cambridge Univ. Press, 1991, pp. 253-300.

[18] D. GERBNER, B. PATKOS, [-chain profile vectors, to appear in STAM Journal on
Discrete Mathematics

[19] D. GERBNER, B. PATKOs, Profile vectors in the lattice of subspaces, submitted

[20] C. GREENE, D.J. KLEITMAN, Proof techniques in the theory of finite sets. Stud-
ies in combinatorics, pp. 22-79 MAA Stud. Math., 17, Math. Assoc. America,
Washington, D.C., 1978.

[21] A.J.W. HiLTON, E.C. MILNER, Some intersection theorems for systems on finite
sets, Quart. J. Math. Oxford (2), 18 (1967), 369-384.

[22] W.N. HsIEH, Intersection theorems for systems of finite vector spaces. Discrete
Math. 12 (1975), 1-16.

[23] G.O.H. KATONA, A simple proof of the Erdgs-Chao Ko-Rado theorem. J. Com-
binatorial Theory Ser. B 13 (1972), 183-184.

[24] G.O.H. KATONA, Two applications (for search theory and truth functions) of
Sperner type theorems, Period. Math. Hung., 3 (1973) 19-26.

[25] G.O.H. KaToNA, T. NEMETZ, M. SIMONOVITS, On a graph problem of Turan
(in Hungarian), Mat. Fiz. Lapok 15 (1964), 228-238.

[26] J. MARICA, J. SCHONHEIM, Differences of sets and a problem of Graham, Can.
Math. Bull. 12 (1969), 635-637.

61



CEU eTD Collection

[27] B. PATKOS, How different can two intersecting families be?, Electronic Journal of
Combinatorics, 12 (2005), R24

[28] B. PATKOS, The distance of F-free families, to appear in Studia Math. Acad. Sci.
Hung.

[29] A. SALIL, A Note on Convex Hulls of More-part Sperner Families, J. Combin.
Theory Ser. A 49 (1988), 188-190.

[30] N. SAUER, A generalization of a theorem of Turan, Res P. 61, Department of
Mathematics, Calgary, 1968.

[31] E. SPERNER, Ein Satz iiber Untermenge einer endlichen Menge, Math Z., 27
(1928), 544-548.

[32] P. TURAN, An extremal problem in graph theory, Mat. Fiz. Lapok, 48 (1941),
436-452. (in Hungarian)

62



	Introduction
	The distance of F-free families
	Intersecting families
	The Uniform Case
	The Non-Uniform Case

	Sperner Families
	Kr-free Graphs
	Trees
	Lower Bound on Dncycle 
	Upper Bound on Dncycle 


	Profile vectors
	Intersecting families of subspaces
	l-chain profile vectors
	Definitions and remarks
	The reduction method
	Applications


	Concluding remarks

