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Abstract

Based on the closing spot prices of Western Texas Intermediate (WTI) crude oil and Henry

Hub natural gas spanning from 1994 to 2009, this work examines the performance of four risk

quantification methodologies (widely known as Value-at-Risk) and assesses them against several

accuracy and efficiency criteria. The results indicate that at 95% confidence level GED-GARCH

method performs better than any other alternative: the VaR series obtained with this method are

statistically accurate and are the least likely to result in forgone profits from speculation. The

VaR series calculated with GED-GARCH are used further to investigate extreme risk spillover

between the respective markets. Using the Hong’s concept of Granger causality in risk (2002),

we show that there is a significant risk spillover from oil market to natural gas market during the

period in consideration, while there is no spillover in the reverse direction. Moreover, the upside

risk  spillover  from  oil  to  gas  markets  is  found  to  be  more  statistically  (and  economically)

significant and protracted than the downside risk spillover.
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1. Introduction

The OPEC oil embargo of 1973, the Iranian Revolution of 1979, and deregulation of energy

markets in the eighties put an end to the era of controlled stable energy prices that prevailed

before. Indeed, it was then that energy markets have become so volatile that quantification and

management of the price risk turned into a critical issue.

To fully understand the patterns of energy commodities risk it is not enough to merely

calculate it; it would also be helpful to determine its origins. While there are always many

independent factors affecting price dynamics in oil or gas market (commodity storage capacity,

demand prospects), it may be the case that the risk in one market can generate risk in another.

The information about such risk spillover can scarcely be overestimated and is of practical

importance for commodity market participants as well as for other economic agents.

Using the time series of closing spot prices of Western Texas Intermediate (WTI) crude oil

and Henry Hub natural gas spanning from 1994 to 2009, this work sets out as a purpose to

examine four methodologies of risk estimation (widely known as Value-at Risk), test their

performance against several accuracy and efficiency criteria, and compare the findings with

those obtained in the literature of the field. The results of the best-found approach are used

further for investigating extreme risk spillover between the respective energy markets.

1.1. Value-at-Risk (VaR) and extreme risk spillover

As a measure of risk, we employ VaR methodology, which nowadays has been accepted as a

frontline defense versus price risk. Its main idea was established by JP Morgan under the name

RiskmetricsTM in 1989 and was popularized in the technical document of 1994, which is

considered to have launched the use of VaR by financial and public institutions. In 1996 the
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concept found its place in the Amendment to Basel Accord and has made the existing rigid 8%

rule of capital requirement much more efficient since it allowed the institutions to choose own

models to quantify the maximum loss over ten days with 99% confidence level (Giot and

Laurent, 2003).

In  its  essence,  VaR  is  a  universal  tool  that  assesses  a  potential  loss  within  a  pre-specified

period of time at a pre-specified confidence level. For example, if the value of VaR for a time

series of prices is equal to $23,000 over one day at 95% confidence level, a market participant

can assert: “I am 95% sure that tomorrow the price will not fall below $23,000 (if tomorrow is a

trading day).” What made VaR approach quite appealing is its parsimoniousness – the entire

price risk can be represented with a single number.

Generally, one might use different confidence levels and VaR time periods. For example,

99% confidence level and ten day horizon is the specification advised by Basel Committee

(Nylund, 2001). Lower confidence levels and frequencies are used as well. In this work, 95%

confidence level and one day period VaR specification is employed (although 99% specification

will also be partly discussed).

Although the importance of energy market risk management per se is out of question, the

choice of a better VaR methodology remains less unambiguous. Plenty of ways to measure VaR

exist, each having own advantages and shortcomings. While, for example, the methods of

Historical Simulation family are easy to implement and are very intuitive, their assumption of

time-constant returns distribution is at odds with continuous structural changes in energy

markets, which can lead to very rigid VaR estimations. On the other hand, a standard GARCH

method is better equipped to model returns volatility; however, it imposes the normality

assumption that contradicts the empirical observation that the distribution of energy commodity
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returns is often leptokurtic. As a result, the VaR measures are underestimated. Hence, augmented

by methodological speculations, the task of finding a better VaR approach becomes that of

purely empirical nature.

The extreme risk spillover between oil and natural gas markets is of great interest since the

two energy commodities are substitutes for particular groups of non-residential consumers; so,

for example, a positive price shock in the oil market can lead to larger demand in the gas market,

and prices can start to converge. On the other hand, there is a big impediment to their

substitutability. While oil is traded internationally, natural gas markets are regional due to

imperfect mobility – natural gas requires developed pipeline infrastructure to be freely

transported1.  That’s  why,  for  example,  in  case  of  a  positive  oil  price  shock,  the  profitable

substitution of expensive oil by cheap gas cannot be so pronounced. Also, since the price of oil is

subject to changes in international demand (as opposed to regional demand in case of natural

gas), we are effectively speaking about the risk spillover from oil market to natural gas market,

since there is no any feasible way of regional natural gas market risk to translate into

international oil market risk.

1.2. Main findings and contributions

The assessment indicates at the complete failure of Historical Simulation methods for both

energy commodities and at the rigidity of the assumption that future risk can be approximated by

past  risk.  Generalized  Error  Distribution  (GED)  GARCH  method  proves  to  be  the  best  VaR

method at 95% confidence level due to its higher efficiency relative to other methods. Quite

surprisingly, GARCH-N, the method that does not account for non-normality of returns’

1 The world of energy is changing however. Liquefied Natural Gas (LNG) is the future of mobile gas since its
transportation does not require pipelines. Currently accounting for 7% of the world natural gas demand, LNG is
expected to grow annually on average by 6.7% in trade by 2020 (Cook, 2005).
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distribution, is found to perform better than GED-GARCH at 99% confidence level, and the

reason is that the relative benefit from its efficiency is larger than relative cost from its

inaccuracy.

With respect to extreme risk spillover results, we find statistically significant risk spillover

running from WTI to Henry Hub, while none is found for the reverse direction. In the Granger

causality sense, WTI risk can therefore be a good basis for risk prediction in Henry Hub market

but not the other way around. The robustness check provides rough evidence that the source of

extreme risk in Henry Hub market can indeed be the risk in WTI market.

Finally, we find that there exists asymmetry in opportunities between sellers and buyers of

gas because the upside risk spillover from WTI to Henry Hub is much more statistically

significant and protracted than the downside one. We show that an extreme positive oil price

shock advantageous for gas sellers can translate to natural gas market shortly (five days) and can

accumulate over time (up to two weeks), while a negative shock advantageous for gas buyers is

much less significant and, if happens, is shorter (up to five days).

The work extends the existing expertise of the field in a number of aspects. First, VaR

concept has traditionally been perceived as a precaution measure against downside risk, that is,

falling prices. However, the risk in financial markets (and more so in case of commodity

markets) comes from rising prices as well2, and it also needs quantification. That’s why VaR

measures for both upside and downside risk are analyzed in this work. To the best of our

knowledge, only two papers considered risk in both directions.

Second, regarding the criteria of VaR approaches assessment, only few papers considered

both accuracy and efficiency criteria. While it is important for a risk manager to use an accurate

2 In stock markets rising prices have adverse consequences for short-sellers; while in commodity markets the roles
of winners and losers are even more pronounced: falling prices favor buyers, while rising prices favor sellers of
commodities.
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VaR  method,  which  would  not  underpredict  a  price  shift  for  tomorrow,  it  is  also  important  to

avoid conservative VaR estimates overpredicting the risk, since this would lead to forgoing

potential profits. As such, efficiency criteria are known for long since the work of Hendricks

(1996); however, their use in energy market risk literature surprisingly has been limited. The

VaR methodology assessment in this work uses both accuracy and efficiency criteria for

inference.

Third, the sample used here for VaR forecasts is nontrivial for the fact that it covers both

calm and volatile periods, and provides quite challenging environment for assessing predictive

performance of the VaR methods. Finally, the Granger causality in risk concept used in this work

for  extreme risk  spillover  investigation  is  applied  to  oil  and  natural  gas  dimension  for  the  first

time. Fan et al. (2008) use this methodology for WTI and Brent crude oil while Hong et al.

(2009) apply it to Euro/Dollar and Yen/Dollar rates.

The  structure  of  the  thesis  is  as  follows.  We  start  with  the  Section  2,  which  reviews  the

existing  relevant  literature  of  the  field.  Section  3  speaks  about  the  chosen  VaR methods,  their

assessment, and the Granger causality in risk approach for studying the extreme risk spillover. In

Section 4, we describe our data and sample as well as prepare the data for further use. The

findings of the research are covered in Section 4, while in Section 5 we present concluding

remarks, implications, and describe some limitations of our research, which could be accounted

for in future extensions.
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2. Literature Review

In this section we review the existing background of the field. First, we describe the general

taxonomy and basic characteristics of VaR approaches developed so far. Then we shift the focus

to the literature on VaR approaches used in energy markets. Finally, we examine the literature on

the risk spillover between oil and natural gas markets.

2.1. VaR measurement: A general sketch3

Methods for VaR measurement are categorized into three groups: Variance-Covariance

(VCV) (also known as delta-normal or analytic VaR), Historical Simulation, and Extreme Value

Theory (EVT). In what follows, we describe each separately.

2.1.1. Variance-Covariance (VCV)

The basic assumption of VCV is that the returns are normally distributed and the errors are

not serially correlated. With this, the potential loss changes in proportion to the standard

deviation of a variable under consideration (prices, returns, or portfolio values):

VaR t t ,

where  is the value of Normal CDF for a given probability (0.95 (or 0.05) and 0.99 (or 0.01) in

this work), and t  is the sample standard deviation4. Calculation of VaR therefore pins down to

calculation of the sample standard deviation since values are predetermined. VCV has four

ramifications to model the standard deviation for time t.

3 This sub-section follows the typical structure that majority of papers on VaR follow when considering VaR
taxonomy. For more formal categorization the reader is referred to Ch.10 “Approaches to measuring VaR” of
Philippe Jorion’s “Value at Risk: The New Benchmark for Controlling Market Risk” (Jorion, 1997).
4 This is the specification for single financial series. A more general would be the one for a portfolio:

2 2
, , , , , ,

1 1

VaR 2
n n n

t p t i t i t i t j t ij t
i i j i

w w w , that is, including covariance among the variables. This

research, however, is limited to single variables only, that’s why the aspect of covariance is irrelevant here.
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First, standard deviation may be assumed constant over time. So, once it has been estimated

for one sub-sample, it is used for all future observations as well. This rigidity in the assumed

volatility is without doubt a very unrealistic assumption because volatility of some returns tends

to be time-variant5. The following three ways of modeling standard deviation suppress the

constancy assumption.

One could use Equally Weighted Moving Average approach to get the value of standard

deviation (Hendricks, 1996). Some fixed amount of historical data ( k  days of prices or returns)

is used recursively to generate the value of t  but the weights assigned to the variables in time

from s  to 1t  are assumed equal regardless of their temporal remoteness:

1
21

1

t

t s
s t k

x
k

,

where sx is the change in the variable value on the day s , and  is the average change.

Another alternative is to use the Exponentially Weighted Moving Average approach first

presented by Roberts (1959). Intuitively, it assigns smaller weights to more remote observations:

1
211

t
t s

t s
s t k

x .

So, as s  approaches 1t , the assigned weight grows larger. 0< <1 is a “decay factor”, which

shows how fast these weights diminish as they become more remote.

Finally, (G)ARCH models by Engle (1982) and Bollerslev (1986) are another way to model

volatility of returns, and will be presented in detail in the methodology section.

The last three specifications of VCV relax the assumption of constant volatility but one still

has to bear in mind that standard versions of these models do impose the assumption of

5 Such non-constant behavior of volatility is nicely characterized by Hopper (1996) as playing different roulette
wheels every evening with different ranges of returns.
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normality.  It  is  considered  as  the  worst  shortcoming of  VCV since  many financial  series  (Van

den Goorbergh and Vlaar, 1999) including those of energy commodities proved to be having

thicker tails than what Normal distribution would presume. Hence, the extreme deviations, which

are  naturally  concentrated  in  the  tails  of  distributions,  are  underpredicted  if  the  assumption  of

normality is imposed. The rest two approaches described below do not make any assumptions

about the distribution of variables. Nevertheless, they are not ideally applicable either.

2.1.2. Historical Simulation (HS)

This is conceptually the simplest method of calculating VaR. It hinges on the actual

distribution of the variable and therefore makes no theoretical assumption about it; the only

assumption is the constancy of this distribution over time. Its core idea is that future resembles

the  past,  and  tomorrow’s  risk  can  be  modeled  by  the  information  set  based  on  the  past

distribution of returns of certain length (so called window).

HS has some common characteristics with Equally Weighted Moving Average approach

considered shortly before. It also assigns equal weights to past returns and uses their distribution

for inference. Yet they should not be confused. The former method uses history only to estimate

the standard deviation and imposes normality assumption, while HS does not make such

assumption; rather it readily uses the actual percentiles of the distribution.

2.1.3. Extreme Value Theory (EVT)

In its essence, EVT is a combination of VCV and Historical Simulation. It explicitly targets

statistical modeling of the tails distribution thereby eliminating the need to assume normality.

First, a threshold percentile is determined, which separates non-tail from tail distribution, and



C
E

U
eT

D
C

ol
le

ct
io

n

9

then the tail distribution is approximated by known functions. A comprehensive coverage of

EVT practical aspects is given by Këllezi and Gilli (2000).

2.2. VaR measurement: Energy markets

The need for energy markets risk quantification is stipulated by the volatile environment of

these markets and significant importance they hold. Movements in energy prices can have

profound impact on all facets of human activity, not only well-being of those involved in

commodity trading. For example, Sadorsky (1999) finds that oil price shocks have asymmetric

effects on an economy as a whole.  Thus,  he finds that oil  price shocks have full  impact on the

economic activity, while changes in economic activity barely have any impact on oil prices. The

importance of this finding is more pronounced for the commodity export-oriented countries

whose budget revenues could be exposed to a real disaster once oil prices unexpectedly plunge.

Although not as crucial on a global level, the natural gas prices are no less important on the

regional scale. Inherently larger volatility of gas markets complicates the decision-making of

local municipalities in finding the best time to buy gas. Consequent losses from poor timing

purchases are passed on individual consumers even when the gas futures prices are falling

(Davis, 2006). Such inefficiency also calls for means of managing market risk.

 Naturally, however, risk in energy commodities was first investigated together with risk in

other commodities since all commodities share the “physical” aspect. Moreover, prices of all

commodities (energy, agriculture, metals) are affected by supply and demand imbalances,

storage constraints, and seasonality effects (Giot and Laurent, 2003). VaR calculation for

individual energy commodities is a relatively recent research ramification.

From the beginning the vein of literature admitted the non-normality of the commodities

distributions (fat tails and sometimes negative skewness) and concentrated on the search for
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models capable of capturing these facts. Traditionally, researchers have been taking

RiskmetricsTM as a reference method, literally trampling it down and proving the superiority of

newly proposed approaches. Thus, Giot and Laurent (2003) test the performance of skewed

Student ARCH and skewed Student APARCH (Asymmetric Power ARCH) methodologies

(Student distributions are intended to account for fat tails while skewed versions – naturally for

skewness) for a number of commodities including WTI and Brent crude oil. They conclude with

superiority of Student APARCH specification over Student ARCH and RiskmetricsTM and

explain this by its greater flexibility: when modeling the second moment of the returns

distribution, it relaxes the requirement of conditional variance modeling as they find that for

many commodities – especially energy – one should model the conditional standard deviation

rather than variance. Student ARCH methodology, however, is still found to perform quite well

for “small” percentiles, and, besides, it attracts with its relative simplicity and applicability in a

plain spreadsheet setup without programming.

Rather than inventing new techniques, some researchers opt for improving the extant ones.

Cabedo  and  Moya  (2003)  advance  the  Historical  Simulation  (HS)  approach  by  adding  the

element of ARMA forecasts (HSAF)6. For the daily spot Brent crude oil prices, they show that

HSAF methodology is both more accurate (VaR values are closer to the assumed likelihood

level) and efficient (less rigid) than the standard HS methodology. The findings also indicate that

HSAF is more efficient than ARCH methodology (not as accurate though).

Employing the same methodology and research structure, Sadeghi and Shavvalpour (2006)

similarly show that for OPEC weekly oil prices, HSAF outperforms both HS and ARCH-type

methodology at 99% confidence level. Neither group of the authors, however, do not consider

6 The approach will explicitly be covered in the methodology section.
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the sensitivity of the method performance to the choice of fitted ARMA model, so their results

cannot be taken universally unambiguous.

One  of  the  first  works  exclusively  dedicated  to  VaR  in  energy  commodities  on  a  more

structural level is the one of Hung et al. (2008). Besides analyzing crude oil (both WTI and

Brent) markets, they consider various refined products such as propane, gasoline, and heating oil

for more robust results. They use the family of GARCH models and evaluate them based on the

accuracy and efficiency criteria. Specifically, GARCH-HT (Heavy Tail) model is introduced for

the first time and is compared to GARCH-t and standard GARCH models. The first rationale for

GARCH-HT is again the evidence for heavy tails in the distributions of commodities’ returns in

question. Second, GARCH-t, which is often used to account for non-normality, is unable to

simultaneously capture the heavy-tails and positive excess kurtosis due to its distributional

properties, in contrast to GARCH-HT. Thus, GARCH-t model is found the least while GARCH-

HT the most accurate at both low and high confidence levels. In terms of efficiency, the findings

have  been  mixed  but  generally,  the  authors  summarize  GARCH-HT  as  the  more  preferred

model.

Finally, Fan et al. (2008) use another tool for modeling fat tails – Generalized Error

Distribution (GED), which at some parameters converges to Normal distribution. They also

employ GARCH models and apply standard GARCH and GED-GARCH to the daily series of

WTI and Brent prices. GED-GARCH is found to perform better than standard GARCH at 99%

confidence level, while at 95% the two models are statistically identical.

An interesting fact: the overwhelming majority of the authors when emphasizing their

contributions keep saying that former literature assumed that the returns of commodities are

normally distributed, although the search for tools accommodating heavy tails has been going for
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more than a decade already. Non-normality of the commodities returns’ distribution is a well-

established fact, and its “discovery”, in our opinion, cannot be considered a contribution

anymore.

To summarize general as well as energy market specific VaR categorization, we reflect all

methods in the Diagram 1 below. The highlighted methods are used in this research and are

considered in greater detail in 3.1.

Diagram 1.
Structural presentation of VaR taxonomy

2.3. Extreme risk spillover

The literature on this phenomenon is rather scarce. To the best of our knowledge, the earliest

relevant piece is the one of Ewing et al. (2002) where they consider volatility transmission in oil

and natural gas markets rather than extreme risk spillover. They use oil and natural gas indices,

which are comprised of stock prices of fifteen largest widely held oil and gas companies in the

US. In addition to volatility persistence in both markets, they find that “oil return volatility

depends on past natural gas return volatility (as well as its own past volatility)” (p.536). This fact

VaR model types

Variance-Covariance: Historical Simulation: Extreme Value Theory

Constant Variance

Equally Weighted MA

Exponentially Weighted MA

GARCH

Standard HS

HS ARMA Forecasts

Standard GARCH (GARCH-N)

GED-GARCH

GARCH-HT

Other
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is explained as the result of some substitutability between these two commodities; however, no

clear reason is given why the volatility transmission goes in the gas-to-oil direction.

A fundamentally different approach of risk spillover investigation is proposed in Hong

(2002) and is implemented with respect to Chinese stock markets in Hong (2003). The author

proposes the concept of Granger causality in risk and focusing solely on the left tail probabilities

(thereby concentrating on extreme downside risk) he finds significant intra-China risk spillover7.

The spillover between Chinese stock markets and Asian (Korea, Taiwan, Singapore) as well as

international (US, Japan, Germany) markets is less evident: some groups of Chinese shares are

found to have risk links to those markets while some are not. The cited reason is the stock market

segmentation in China: at that time, local and foreign investors had access to separate markets,

which effectively restricted the propagation of extreme shocks from international stock markets.

Granger causality in risk methodology has been applied to energy markets as well. Fan et al.

(2008) investigate the extreme risk spillover between WTI and Brent crude oil returns. They

establish two-way Granger causality in the commodities’ extreme risk. More specifically, WTI

risk helps predict the risk in Brent returns for both downside and upside shocks; however, Brent

risk carries no information for predicting downside risk in WTI, though can predict upside. The

reason for the very existence of causality in risk, the authors say, is increasing globalization,

while the direction of risk causality from WTI to Brent is explained by the US dollar being the

major invoicing currency and the US oil consumption being largest on the world scale.

With  respect  to  risk  spillover  task,  our  work  combines  the  economic  logic  of  Ewing  et  al.

(2002) with the methodology introduced by Hong (2002). With this in mind, we now turn to

methodology section, which will feature a detailed review of some of the cited models of 2.2 as

well as Hong’s concept of Granger causality in risk.

7 We note that it is the methodology of Hong (2003) but not its subject what is relevant for our work.
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3. Methodological Issues

This section provides the theoretical framework for the research. The first sub-section

describes the methodology of the implemented VaR approaches; the second one features several

criteria along which the approaches are assessed, while the third sub-section speaks about the

methodology of Granger causality in risk to investigate the extreme risk spillover between the

two markets.

3.1. VaR methodology

Overall,  four  approaches  are  employed  in  this  work:  Historical  Simulation  (HS),  Historical

Simulation  with  ARMA  Forecasts  (HSAF),  GARCH  Normal  Distribution  (GARCH-N),  and

GARCH Generalized Error Distribution (GED-GARCH).

There are two rationales to use these methods. First, HS and HSAF methods constitute one

family (Historical Simulation), while GARCH-N and GED-GARCH – another (GARCH); and

this dimension tempts to ask which family of approaches performs better in our exercise.

Second, each method represents an extreme case of HS and GARCH groups in terms of

evolution and flexibility. To the best of our knowledge, HSAF and GED-GARCH are the latest

versions of Historical Simulation and GARCH families respectively, while standard HS and

GARCH-N are the simplest versions of those. Thus, it is also interesting to test the intra-group

superiority of these methods. The first pair of the methods to be described is Historical

Simulation group.
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3.1.1. Standard Historical Simulation (HS) approach

As it was said in the literature review section, this is conceptually the simplest method, which

presumes that the recent past of certain length explains the present risk. So, basically, VaR for

time t is the value of a return r  at a given percentile p  in the past returns distribution:

| 1 1VaR p
t t tr .

The calculation routine is repeated over time adding a new observation to the window and

dropping the most distant one. That’s why this method is “just taking sample percentiles over a

moving sample” (Van den Goorbergh and Vlaar, 1999, p.22). For example, if we choose the

window size to be 150 days, then the 95% confidence level negative VaR for the 151st day will

be  the  return  corresponding  to  the  5th percentile based on the distribution or returns spanning

from  day  1  to  day  150.  VaR  for  the  152nd day,  however,  will  be  based  on  the  2  to  151

distribution of returns, etc.

Just like a negative shift for producers, an upward shift in the commodity prices is a source of

risk for consumers. That’s why we calculate two series of VaR for each commodity – upside and

downside VaR8. Both upside and downside VaR measures are calculated for all methods we

describe below.

How many observations to include into the distribution of past returns is the main analytical

question of the method.  A practitioner may be interested in capturing short-term risk and choose

the small size of the window (say, 150 days). The undesirable consequence of this choice is over-

sensitivity of VaR values to accidental changes. If, however, the purpose is to estimate historical

distribution percentiles as properly as possible, one might decide to use a window of a larger size

8 The separation of upside and downside VaR is important in methodological sense as well. If we uniformly consider
both positive and negative returns, the series of upside and downside VaR would be identical and would lead to
unreliable VaR estimates. After all, for example, why would one need to be cautious downward for tomorrow if
today there is a positive shock but no negative?
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(say, 1500 days). This is not flawless as well: in this case, the two-three year ago outcomes

would be kept in the distribution, while they might not be relevant already. As a result, the series

of VaR estimates can remain unchanged for long periods, which is inefficient (we illustrate the

relevance of this issue in section 4).

3.1.2. Historical Simulation with ARMA Forecasts (HSAF)

Developed by Cabedo and Moya (2003), HSAF methodology uses the distribution of fitted

residuals obtained from ARMA model of past returns. To implement it, one should go through

the following four steps.

First, as in any procedure involving ARMA modeling, the data should be checked for non-

stationarity. Non-stationary series should be modified to get stationary ones, and then their

autocorrelation behavior should be investigated. If there is no statistically significant

autocorrelation in the series, there is no need to go further as the whole process can be modeled

by the standard HS method. Only if we spot statistically significant autocorrelation in the series,

can we proceed to the second step of the method.

The second step is the past returns ARMA model estimation using the standard Box-Jenkins

methodology, which posits that the behavior of any time series can be approximated by AR, MA,

or ARMA models. Several ways to evaluate a model can be employed at this stage such as the

analysis of Q-statistics and Akaike Information or Schwarz Criteria.

After obtaining a satisfactory model, one should get the “in-sample” forecasts, which are

simply fitted values. Fitted residuals are then calculated using these fitted values (or they can be

obtained independently of fitted values). The distributions of these residuals (positive and

negative separately) is analyzed and the percentiles corresponding to the assumed confidence

level are calculated.
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Finally, we use the ARMA model again; this time in order to get the “out-of-sample”

forecasts. These forecasts form the basis for VaR measures, but to finally calculate the VaR

series we must correct these forecasts by the percentiles calculated in the previous stage. We

separately add the percentiles for negative and positive residuals to the “out-of-sample”

forecasts; so, intuitively, the deviations in returns should not exceed the obtained VaR measures

because we assume that the distribution of the residuals in the “out-of-sample” period will

remain the same as it was in the “in-sample” period.

3.1.3. GARCH-N (Normal distribution)

The model has traditionally been used to account for volatility clustering. The mean equation

takes the following form:

t t tr X , t t tu , 1|t tu ~ (0,1)N ,

where tX  is the vector of independent variables, which can include the lags of r , and is the

coefficient vector. The variance of a (G)ARCH ( p , q ) model is explained by p  lags of the past

values of variance, and q  lags of past squared errors:

2 2 2

1 1

p q

t j t j i t i
j i

.

The key assumption of the method is that the error tu  is normally distributed.

Practically, the approach works as follows. First, the above model is estimated for the “in-

sample” stationary data (the mean equation should essentially be taken the same as it was in

HSAF methodology). Then, “out-of-sample” forecasts and GARCH standard errors for these

forecasts are obtained9. Again, the standard errors for upside and downside forecasted returns are

analyzed separately. These errors are then multiplied by the Normal cumulative distribution

9 Eviews routinely calculates these values.
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function values corresponding to the assumed confidence levels10 (this  way  the  Normal

distribution is assumed; this step is the principal difference from GED-GARCH, which is the

next approach to be described). Finally, the forecasted returns series are corrected by the

obtained products of CDF values and model standard errors, and we get two VaR series for the

“out-of-sample” positive and negative returns11:

ˆVaRupside
t t N tr ,

ˆVaR downside
t t N tr .

3.1.4. GED-GARCH (Generalized Error Distribution)

This specification of GARCH has been developed to account for a leptokurtic distribution

(Nelson, 1991), which is at odds with Normal distribution. With respect to our work, GED-

GARCH presents an excellent theoretical basis to check the fit of non-Normal setup in energy

markets.

The modeling of GARCH element (mean and variance equations) remains the same as in

GARCH-N. The difference concerns the generalization of distribution in the following fashion.

The probability density function obtains the form of:

1
2

1 12

k

k
k

kef

k

, 0 k , where

1
2 212

3

k

k

k

, and  is the gamma function.

The principal components of GED are scale parameter  and shape parameter k.  For  us,  it  is

exactly parameter k that  brings  difference.  Indeed,  when k=2 (plus if µ=0 and =1), GED

10 For 95% level the value is 1.645, while for 99% it is 2.33.
11 One should note, however, that the two equations are absolutely identical. The signs in the equation are only
indicative of the actual signs. For example, the second equation is written in negative only because the returns and
the values of cumulative distribution function in that case are negative by definition.
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becomes Standard Normal distribution and one can say that Normal distribution is a special case

of GED with k=2:

2

21
2

f e .

Figures A.1a-d (Appendix I) visualize the range of GED possibilities by illustrating

probability density functions with different k parameters ceteris paribus. As k gets smaller than 2,

the tails of the distribution get thicker and the peak gets sharper.

The first step in calculating VaR using GED-GARCH is estimating the model (luckily,

Eviews has a built-in GED estimation) for the “in-sample” period. Along with the results, the

software returns a GED-parameter, which is exactly k. Here comes the principal difference from

GARCH-N method. With GARCH-N, we would now be ready to use the critical values of CDF.

Yet, here, we must first take use of the k parameter by replicating a distribution with the obtained

k value.

As we get the distribution, we are ready to follow the same procedure as with GARCH-N:

obtain the fitted “out-of-sample” returns and correct them by the product of corresponding

standard errors and the assumed GED cumulative distribution values:

ˆVaRupside
t t GED tr ,

ˆVaR downside
t t GED tr .

3.2. VaR assessment criteria

The performance of a VaR model can be estimated only by backtesting, that is, checking how

well our predictions performed in the past. Our choice of the most satisfactory model will be

based on several criteria, which can be classified into two groups. The accuracy criteria focus on
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whether a VaR daily measure is able to cover the realized daily loss, that is, whether VaR is able

to “keep its promise”. The efficiency criterion assesses how conservative VaR is, or whether VaR

“overworks”. The consideration of both accuracy and efficiency criteria is vital for objective

judgment because even if a VaR model is accurate, it can be “too accurate”, or conservative, so

that investors may have unrealized profits.

We start the discussion with the three accuracy criteria.

3.2.1. Binary loss function (BLF)

Based  on  our  “out-of-sample”  results,  we  assess  the  success  of  our  models.  There  are  two

possible daily realizations: we can name them “norm” (0) – when VaR is able to cover the

realized loss and “exception” (1) – when VaR fails to do that. Then the BLF for a method i looks

as follows:

, 1 ,
, 1

, 1 ,

1, if VaR
BLF

0, if VaR
i t i t

i t
i t i t

r
r

 for 0r ; , 1 ,
, 1

, 1 ,

1, if VaR
BLF

0, if VaR
i t i t

i t
i t i t

r
r

 for 0r .

As we get these ones and zeros for every day, we calculate the average binary loss function

(ABLF) and get a number between 0 and 1. Ideally, VaR would just “keep its promise”, and the

percentage of “exceptions” in the “out-of-sample” period would be exactly equal to (1-c) where c

is the assumed confidence level (95% or 99% in this work). That is, if 95% is the assumed

confidence level and the returns intersect VaR series exactly in 5% of the cases, the model is

considered adequate. Intuitively, the value of ABLF shows the probability of the returns

intersecting the value of VaR.
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3.2.2. Quadratic loss function (QLF)

Unlike BLF, QLF treats “exceptions” differently. It assigns different weights to those of

different magnitude:

2
, 1 i,t , 1 ,

, 1

, 1 ,

1 VaR , if VaR
QLF

0                            , if VaR
i t i t i t

i t

i t i t

r r

r
 for 0r ;

2
, 1 i,t , 1 ,

, 1

, 1 ,

1 VaR , if VaR
QLF

0                            , if VaR
i t i t i t

i t

i t i t

r r

r
 for 0r .

The application of QLF could be crucial in cases where the judgment based on BLF produces

marginally different results when the number of “exceptions” in one method almost equals that

in another method. QLF can single out the methods where “exceptions” are much larger than in

others in terms of magnitude.

3.2.3. Kupiec LR test

The likelihood ratio test suggested by Kupiec (1995) is a formal statistical check of VaR

models accuracy. We denote the desired confidence level as (1-c), number of “exceptions” as M,

and a sample size as N, hence, the rate of “exceptions” (also called as the rate of failures) equals

M
N

. The statistic of the Kupiec test is:

LR=2ln 1 2 ln 1
N M M

N M MM M c c
N N

~ 2 1 ,

and  the  null  hypothesis  is  that  the  rate  of  “exceptions”  is  the  true  probability  ( M c
N

).  If  we

reject this hypothesis (that is, if LR statistic is larger than the critical value), we say that the

model is inadequate. We should also note that we treat Kupiec test as a superior indicator of
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accuracy over BLF and QLF since we are interested in the statistical, rather than absolute

precision. BLF and QLF are taken as indicators of the deviation magnitude to have

understanding of how methods over- or underestimate risk in absolute terms.

3.2.4. Mean relative scaled bias (MRSB)

This is an efficiency assessment measure proposed by Hendricks (1996). A risk manager may

forgo profits if he chooses a too conservative model. Using MRSB, one can find out which

model produces the smallest average VaR. Naturally, since this is a relative measure, all VaR

models should be estimated before making inference about MRSB.

The process goes in the following way. First, we should calculate an average VaR measure

tX  for a date t across all M methods:

,
1

1 M

t i t
i

X X
M

.

Second, we measure the percentage deviation of each method daily VaR from tX . This gives us

the daily relative bias for each method and each date. Finally, we average these deviations across

all N dates and obtain MRSB – a single number – for each method:

,

1

1MRSB
N

i t t
i

t t

X X
N X

.

When making inference about the MRSB results, one should completely abstract from accuracy

measures. MRSB criterion is purely relative; it has no external benchmark to assess against.

Once we get the results of all four criteria, we have to proceed with the choice; so the main

question is how the criteria are ranked in their importance. Of course, an ideal scenario would be

to have a method with a “fail-to-reject” Kupiec statistic and the smallest MRSB to proclaim that

method the best. But what if a method does not satisfy the accuracy criteria but has the smallest
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MRSB?  Shall  we  leave  it  in  consideration  at  all?  That  is,  will  accuracy  or  efficiency

consideration dominate? We adopt the idea expressed in Hung et al. (2008): the accuracy of a

model is a more important criterion for a risk manager than efficiency. They rationalize it by the

fact that “Basel Committee on Banking Supervision (BCBS) allows banks to adopt the internal

VaR model if their models can pass the backtests” (p.1188), that is, accuracy tests. In addition,

we think that one should consider the object of research in question – here we are speaking about

commodities, which bring “physical” value; so the necessity to secure supplies for consumers or

profit for producers may be more pronounced than the potential for speculative windfalls.

Overall, however, we believe that the issue of criteria superiority is open to debate: after all, it

pins down to the problem of relative importance of hedging versus speculation in energy

commodity markets. To the best of our knowledge, no research explicitly considered this matter.

3.3. Extreme risk spillover

To measure the risk spillover between WTI and Henry Hub markets we employ the concept

of Granger causality in risk coined by Hong (2002).

The most popular concept in Granger causality sense has been Granger causality in mean,

and there also exists the concept of Granger causality in variance. However, in the extreme risk

spillover investigation we concentrate on the comovements of distribution tails – either left (for

downside risk) or right (for upside risk). Even Granger causality in variance is irrelevant since

variance is a “two-sided risk measure” (Hong, 2009, p. 3), while the VaR framework presumes

one-sided risk estimation (that is, upside and downside risk considered separately). Moreover,

the sole consideration of either first or second moments is insufficient because comovements of

distribution tails can be brought about by skewness and kurtosis as well. Thus, Granger causality

in risk in the VaR setup can rise even if there is no Granger causality in first moments.
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In its nature, the method checks if the extreme risk in one market (the times when actual

returns cross VaR values) carries predictive power for the extreme risk in another market in

future. As a measure of extreme risk we take the VaR series of the method that we find to be the

best at 95% confidence level following the methodology in 3.2.

In what follows we describe the method of Granger causality in risk in detail. First, we

generate the risk indicator 1( VaR ),  1, 2lt lt ltZ Y l  for upside risk and

1( VaR ),  1, 2lt lt ltZ Y l  for downside risk where 1( ) is the indicator function and l represents

WTI or Henry Hub markets. When the returns exceed the VaR measure, ltZ takes the value of 1,

otherwise it is 0. Practically, this function is the same as Binary Loss Function described earlier.

As we get these risk indicator series, the whole essence of the method pins down to testing

the null hypothesis 0
1 1 1 1 1H : ( | ) ( | )t t t tE Z I E Z I  against the alternative

1 1 1 1 1H : ( | ) ( | )A
t t t tE Z I E Z I . Here 1 1 1 2 1( , )t t tI I I  where 1 1 1 1 11,...,t tI Y Y and

2 1 2 1 21,...,t tI Y Y are t – 1 information sets for WTI and Henry Hub, which contain the time

series of returns backwards to the first observation.

Then we estimate the cross-covariance function between the vectors 1
ˆ

tZ and 2
ˆ

tZ :

1
1 1 2 2

1

1
1 1 2 2

1

ˆ ˆˆ ˆ( )( ), 0 j T 1,
ˆ ( )

ˆ ˆˆ ˆ( )( ), 1 T j 0,

T

t t j
t j

T

t j t
t j

T Z Z
C j

T Z Z

where 1

1

ˆˆ
T

l lt
t

T Z ,  that  is,  the means of WTI and Henry Hub risk indicators.  The j variable

can be referred to as the lag indicator. Basically its meaning depends on the meaning of l values.

In this work l=1 designates Henry Hub market while l=2 designates WTI market; that’s why the
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values of 0 j T 1 represent the lags, with which WTI risk translates into Henry Hub risk,

while  the  values  of 1 T j 0 represent the lags, with which Henry Hub risk translates into

WTI risk.

We use the sample cross-covariance function in order to get the sample cross-correlation

function
1 2

ˆ ( )ˆ ( ) , 0, 1,..., ( 1)ˆ ˆ
C jj j T
S S

 where ˆ ˆ ˆ(1 )l l lS  is the sample standard

deviation of ˆ
ltZ series12.  In  a  spreadsheet  environment  like  Excel  we  can  present  this  cross-

correlation function as two series of correlations between various lags of one commodity returns

and the contemporaneous values of another’s returns and vice versa.

However, the assessment of risk spillover solely based on cross-correlation functions would

be meaningless as even if there is no risk spillover at, say, the 100th lag, there still can be positive

correlation just because the intersection of VaR in one market took place 100 days after the

intersection of VaR in another. However, we know that markets are largely affected by recent

events rather than distant ones. To avoid the mechanical inference we need to find a way to sort

relevant  VaR  intersections  from  irrelevant  ones.  One  way  to  do  it  is  to  use  a  kernel  function,

which would impose a larger weight on the nearby lags relative to the higher order lags13.

Following Hong et al. (2009) we use the Daniell kernel sin( )( ) xk x
x

to separate the relevant

lags.

12 Such specification is due to the fact that ˆ
ltZ follows Bernoulli distribution.

13 There exist truncated and non-truncated versions of kernel functions. A truncated (uniform) function imposes
equal weight on the values in its range, while a non-truncated distinguishes them by different weights (e.g.
downward-weighting for more distant lags). Hong et al. (2009) considers several kernel function specifications,
which could be applied in this method. He finds that as long as non-truncated versions of kernel function are used, a
choice of a particular function has little substantive impact on the results.
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The test statistic (for 0H against AH ), which asymptotically converges to N(0,1) is as

follows:

1
2 2

1

ˆ( )
( )

T

j

jT k j C M
M

Q M
D M

 where
1

2

1

1
T

j

j jC M k
T M

is the centering

moment and
1

4

1

12 1 1
T

j

j j jD M k
T T M

is the standardization moment. The

argument M basically represents the truncation lag; it denotes how many lags we are considering

for further analysis of risk spillover. For example, taking M=3 we test if the risk spillover from

one market to another is statistically significant within 3 lags14.

Intuitively, the larger the value of Q(M) the more likely we are to reject 0H since Q(M) is

basically comprised of standardized, summed and weighted correlations across j. If this sum of

cross-correlations is sufficiently large, we can suggest that information about risk in one market

can help in predicting risk in another.

One might wonder, however, why care about this method if we could simply apply a basic

Granger causality regression-based test to the risk indicators 1
ˆ

tZ and 2
ˆ

tZ ? Hong et al. (2009,

p.3) motivate it by the fact that “the risk indicator ltZ has to be estimated, and parameter

estimation uncertainty has a nontrivial impact and should be taken care of properly”. They also

find that the finite sample performance of a regression-based method is inferior to the

performance of the downward-weighting-based method. Since this work sets out to apply a

method that proved to perform better than others in the field, the comparison of methodologies is

left for further research.

14 The graphs of Daniell kernel for different M are given in Appendix II in order to provide a better visual perception
about the nature of this function.
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4. Data and Sample Description

4.1. Data

The research uses the daily time series of spot prices of West Texas Intermediate (WTI)

crude oil ($ per barrel) and Henry Hub natural gas ($ per mmbtu15) obtained from the official

website of the State of Utah citing Wall Street Journal as a source of these daily series. WTI, also

known as Texas Light Sweet, is produced and refined in the US. It is high quality oil with low

content of sulfur and low API gravity16, which makes it a pricing benchmark for oil products not

only in the US but in the whole North American region (EIA, 2006). Henry Hub is the central

connection of natural gas pipelines located in Louisiana. It connects to other 13 pipelines in the

US, and, like WTI in oil pricing, is a major benchmark for natural gas pricing in North America.

The  choice  of  these  two  commodities  for  the  research  is  not  arbitrary.  Both  are  traded  on

New York Mercantile Exchange (NYMEX) and, as has been said, are basis-forming energy

commodities in the region; hence, they are not subject to endogenous shocks. Second exogeneity

concern relates to the risk spillover between the two markets. The thing is that there is no ex ante

mechanism of tying gas prices to oil prices in North America; so, gas price should solely be the

result of supply and demand factors. On the contrary, the explicit integration of oil prices into

gas prices is an issue in Continental Europe (Energy Charter, 2007). Furthermore, the choice of

North American commodities is due to the sample issue as well. The European Energy Exchange

(EEX) – the counterpart of NYMEX – has only three incomplete years of available natural gas

price data, which is not enough for any sort of reasonable inference.

15 Millions of British thermal units. 1 cf (cubic foot) equals 1028 btu.
16 American Petroleum Institute (API) gravity measures the density of oil relative to water.
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The sample spans from May 1994 to March 2009 and covers 3890 observations. May 2, 1994

is the date when Henry Hub natural gas price was first recorded. So, although WTI had been

traded long before May 1994, this date is the starting observation of the sample common for

these two commodities. The sample is divided into two periods: “in-sample” (May 1994 –

December 2006) and “out-of-sample” (January 2007 – March 2009). The “in-sample” data are

used to estimate the coefficients, while the “out-of-sample” data are used for forecasting.

The  dynamics  of  prices  for  the  whole  sample  are  depicted  in  Figure  1.  The  series  tend  to

move together with occasional divergences. It is consistent with the fact that oil and natural gas

are substitutes for some non-residential consumers; so, during gas shortages (e.g. 2001 winter

“gas shock”) prices start to converge since those who can substitute gas for oil find it profitable

to do so. The comovement, however, is neither ideal nor should it be. Oil is traded internationally

and its price is subject to shifts in international demand; while natural gas cannot be freely

transported, so its markets are regional, and its prices are mostly affected by domestic demand.

Figure 1. Spot prices of WTI crude oil and Henry Hub natural gas
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We start formal investigation of the prices by testing whether the series are stationary. If the

series are non-stationary (integrated of order n) one should difference those n times  to  get

stationary ones. Otherwise further consideration is meaningless since means of the series are

statistically  non-constant.  The  Augmented  Dickey-Fuller  (ADF)  test  shows  that  oil  and  gas

prices series in levels are non-stationary (see Table 1). Thus we generate the series of returns

1ln lnit it itr P P  where i denotes  oil  or  gas.  Since  the  returns  series  are  stationary,  we  can

conclude that the original price series are integrated of the first order. Henceforth the returns

series are used for our analysis.

Table 1.
ADF statistics for oil and gas

The  stationary  returns  series  are  shown  in  Figures  2  and  3.  A  note  of  caution:  Henry  Hub

returns are delusively illustrated as being less volatile. This is because its scale is made wider

than the one of WTI in order to fit the extreme deviations of 1996 and 2003 into the graph.

Series (in logs) ADF statistics for levels (p-value) ADF statistics for returns (p-value)
WTI crude oil -1.45 (0.559) -63.98 (0.000)

Henry Hub natural gas -2.32 (0.165) -58.54 (0.000)

Figure 2. WTI returns
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Series: DLOG_OIL_ACTUAL
Sample 1 3890
Observations 3889

Mean  0.000287
Median  0.000000
Maximum  0.212765
Minimum -0.200321
Std. Dev.  0.025627
Skewness  -0.097482
Kurtosis  9.812652

Jarque-Bera 7526.874
Probability  0.000000

The sample descriptive statistics with returns’ distributions are given in Figures 4 and 5.

Figure 4. WTI descriptive statistics

Figure 3. Henry Hub returns
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Figure 5. Henry Hub descriptive statistics

Neither commodity returns’ distribution is normal. Both feature negative skewness and

positive excess kurtosis. The former indicates at the asymmetry of the returns, while the latter is

the evidence of fat tails. Another noteworthy fact is the larger volatility of the natural gas market.

The maximum and minimum gas returns are larger than the respective values of WTI in absolute

terms, and its standard deviation is two times larger as well.

4.2. Sample

As was mentioned, the sample has been divided into the modeling and forecasting sub-

samples. The main characteristic of both sub-samples is their heterogeneity. The resultant

impediment with respect to the “in-sample” period is the difficulty to fit a single model as it is

usually easier to fit several different models for several homogeneous sub-samples. Despite this,

the research employs the large single “in-sample” period since our objective is to test several

models under the same conditions rather than tailor a certain model to a sub-sample and achieve

its best possible performance.
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The same feature applies to the “out-of-sample” period, however, again, disregarding this

fact,  we  use  the  single  sample  since  its  heterogeneity  presents  an  excellent  opportunity  to  test

models in two structurally different volatility environments – calm (January 2007 - September

2008) and unsteady (September 2008 - March 2009).
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4. Research Findings

We first consider the choice of our models for both commodities for 95% confidence level.

The 99% confidence level results are covered in Appendix III, however, the comparative aspects

will be explicitly considered in this section. We then proceed to the extreme risk spillover

results.

4.1. VaR estimation results

4.1.1. Standard Historical Simulation (HS) approach

Following the methodological description we estimate two VaR series – upside and

downside. The initial HS VaR value is based on the sub-sample spanning from May 2nd 1994 to

December 29th 2006. Further on, the most distant days are removed and the upcoming days are

included into the distribution one by one. The “out-of-sample” estimation results for both

commodities are given in Figures 6a and 6b.

Figure 6a. VaR for positive and negative WTI oil returns,
HS approach
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From the first visual examination, it is evident that the model exhibits permanent

inflexibility.  Both  series  for  both  commodities  “tear”  through the  return  peaks  and  bottoms.  In

the oil market, the explosion of volatility in September 2008 led to slight widening of the VaR

series; however, since thousands of remote observations still have their impact on the

distribution, this widening was disproportionately small relative to the size of return deviations.

In the gas market, the situation is exactly the opposite: those are the extreme deviations of 1996,

which have finally been dropped from the window by September 2008, and since then did not

have any effect on the returns distribution. That’s why we can see a slight VaR range contraction

after the elimination of extremes.

Both figures indicate at the failure of the main assumption of HS method – that history

repeats itself. The results show that neither relatively calm (“in-sample”) past of oil market nor

the volatile past of gas market can be extrapolated to the future.

One should still bear in mind, however, that if we took a smaller size of the window in this

method, the weight of a single observation in the distribution of returns would be smaller, and

there would be more shifts in the VaR series. So, again, the larger the size of the window the less

Figure 6b. VaR for positive and negative Henry Hub gas returns,
HS approach
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flexible  a  VaR  is.  However,  since  the  purpose  of  this  work  is  to  assess  the  performance  of

different methods within identical conditions, we do not consider alternative sizes of HS window

further.

4.1.2. Historical Simulation with ARMA forecasts (HSAF)

We have to estimate the ARMA model of the returns, and need to use stationary data. The

results of stationarity tests have been reported in the data description section, that’s why we

readily start investigating the returns series.

We follow the Box-Jenkins methodology to identify the best model for the behavior of oil

and  natural  gas  returns.  One  has  to  bear  in  mind  that  the  performance  of  HSAF method relies

solely on the fit of the obtained ARMA model since unlike in GARCH methods here we do not

model the returns’ volatility. That’s why all reasonable model alternatives deserve careful

consideration.

The criteria that we evaluate our models against are Akaike Information Criterion (AIC), the

general  fit  of  the  model  (R-squared),  statistical  significance  of  the  coefficients,  as  well  as

Breusch-Godfrey  serial  correlation  test.  Similar  to  Cabedo and  Moya (2003)  who apply  HSAF

methodology to Brent crude oil returns, we find that the models for WTI and Henry Hub returns

require both AR and MA elements and can be approximated by ARMA(1,1) specification. The

estimation  results  for  the  chosen  models  of  WTI  and  Henry  Hub  returns  are  given  in  Table  2

below.

In  both  cases  ARMA(1,1)  model  is  one  of  those  preferred  by  AIC  and  has  the  highest  R-

squared. Both AR and MA terms are economically and statistically significant at any

conventional level of acceptance in both equations.
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Table 2.
Estimation results for ARMA(1,1) model of WTI crude oil and Henry Hub returns.

WTI returns Henry Hub returns
c 0.00036 (0.00031) 0.00031 (0.00107)
AR(1) 0.86747c (0.06830) -0.66257c (0.14757)
MA(1) -0.92040c (0.05763) 0.79043c (0.09867)
R2 0.012241 0.028312
AIC -4.643444 -2.891556
Breusch-Godfrey LM test 0.13 0.25 0.26 0.93 0.09 0.15
Notes: a) Standard errors are in parentheses; b) a, b, and c superscripts denote significance at 10%, 5% and 1%; c) LM
test entries are p-values for the Breusch-Godfrey serial correlation LM test for the 2nd, 3rd, and 4th lags. Insignificance
at 5% means independent errors.

Since the sub-samples are heterogeneous, the choice of the best model requires uneasy trade-

offs. In particular, a higher order ARMA model leads to less reliable coefficients for us (more so

in case of Henry Hub returns), though the fit of such model is (naturally) larger. Thus, for

example, the ideal model for natural gas equation in terms of AIC and R-squared is ARMA(4,3);

however, we decide not to overcomplicate the choice, and opt for a simple-cum-parsimonious

model. Had our sub-sample been more homogeneous, fewer compromises would be required.

After obtaining the “out-of-sample” forecasts and correcting them with the 0.05 and 0.95

percentiles of “in-sample” residuals’ distribution, we get VaR series shown in Figures 7a and 7b.

Figure 7a. VaR for positive and negative WTI crude oil returns,
HSAF approach
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What  we  see  on  the  figures  is  a  “good  effort”  to  have  flexible  predictions  of  risk  but  not

more. ARMA behavior can clearly be viewed as an improvement over the rigid standard HS; yet,

the general behavior remains the same – no major deviations from the VaR mean over time.

4.1.3. GARCH-N (Normal distribution)

First of all, further examination of the data indicates that there is significant ARCH effect in

both returns series, which requires variance modeling. We estimate a GARCH model for WTI

and Henry Hub returns. Based on the significance of ARCH terms in the variance equations, AIC

values and ARCH LM test, we fit GARCH(1,1) model to both returns:

Table 3.
Estimation results for the GARCH-N (1,1) variance equation of WTI and Henry Hub returns.

WTI returns Henry Hub returns
c 1.72E-05c (5.24E-06) 4.99E-05c (1.23E-05)
ARCH(-1) 0.079500c (0.019887) 0.162706c (0.020200)
GARCH(-1) 0.893265c (0.023400) 0.840058c (0.016268)
R2 0.000994 0.013444
AIC -4.73551 -3.629910
ARCH LM test 0.07 0.13 0.22 0.82 0.93 0.98
Notes: a) Standard errors are in parentheses; b) a, b, and c superscripts denote significance at 10%, 5% and 1%; c)
LM test entries are p-values for the ARCH LM test for serial correlation in squared residuals for the 2nd, 3rd, and 4th

lags. Insignificance at 5% means independent errors.

Figure 7b. VaR for positive and negative Henry Hub gas returns,
HSAF approach
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Following manipulations with the “out-of-sample” forecasts and the standard errors

described in 3.1.3, we obtain the VaR series shown in Figures 8a and 8b.

Volatility modeling brought about a clear improvement over the approaches of Historical

Simulation family. There is more flexibility and, in general, the VaR series are able to correctly

“guess” the dynamics of the “out-of-sample” returns. At least, visually, the models’ performance

Figure 8a. VaR for positive and negative WTI crude oil returns,
GARCH-N approach
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Figure 8b. VaR for positive and negative Henry Hub gas returns,
GARCH-N approach
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in predicting Henry Hub risk is better than WTI risk. Still, since the returns of both commodities

exhibit fat tails, it might be that accounting for non-normality could introduce some

improvement. GED-GARCH approach is the one to try.

4.1.4. GED-GARCH (Generalized Error Distribution)

In a similar fashion, we estimate the GARCH(1,1) model with the Generalized Error

Distribution specification. Apart from traditionally provided output, Eviews reports the value of

GED parameter (k in 3.1.4). The statistics of both models are given in Table 4 below.

Table 4.
Estimation results for the GED-GARCH (1,1) variance equation of WTI and Henry Hub returns.

WTI returns Henry Hub returns
c 7.15E-06c (2.28E-06) 0.000102c (1.58E-05)
ARCH(-1) 0.035640c (0.005797) 0.171933c (0.021343)
GARCH(-1) 0.951428c (0.008325) 0.773284c (0.021077)
R2 0.003325 0.000959
AIC -4.826942 -3.863363
ARCH LM test 0.22 0.33 0.23 0.89 0.97 0.99
GED parameter 1.14509 0.98424
Notes: a) Standard errors are in parentheses; b) a, b, and c superscripts denote significance at 10%, 5% and 1%; c)
LM test entries are p-values for the ARCH LM test for serial correlation in squared residuals for the 2nd, 3rd, and 4th

lags. Insignificance at 5% means independent errors.

The fact that both GED parameters are very different from 2 is a vivid demonstration of the

normality assumption irrelevance with respect to these two commodities. As expected, GED

parameter of WTI returns model is closer to 2 than that of Henry Hub returns because the

distribution of Henry Hub is much more leptokurtic. After replicating a theoretical distribution

with each GED parameter in Excel, we can find the exact CDF critical values at 95% and 99%:

Table 5.
Critical values of cumulative density function with different k parameters.

95% 99%
Normal distribution (k=2) 1.645 1.96
WTI GED (k=1.14509) 1.646 2.68
Henry Hub GED (k=0.98424) 2.678 2.78
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The following are the VaR series obtained after correcting forecasted returns by the product

of obtained CDF critical values and standard errors of the model:

The visual comparison of GARCH-N and GED-GARCH seems a bit complicated by the

similarity  of  VaR  dynamics.  For  more  formal  inference  about  the  performance  of  each  of  the

four described methods, we evaluate them according to the criteria cited in 3.2.

Figure 9a. VaR for positive and negative WTI crude oil returns,
GED-GARCH approach
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Figure 9b. VaR for positive and negative Henry Hub gas returns,
GED-GARCH approach
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4.2. VaR performance assessment

We start the formal investigation with the 95% confidence level (Table 6)17.

Table 6.
The indicators of methods' performance at 95% confidence level.

Binary Loss function
(upside/downside)

Kupiec LR statistic
(upside/downside)

Mean Relative Scaled
Bias (upside/downside)

WTI
HS 0.05651 0.06336 0.5142a 2.05794a 0.02522W 0.05043
HS ARMA 0.05822 0.05993 0.80807a 1.16442a 0.01454 0.05538W

GARCH-N 0.05832 0.05489 0.80818a 0.28467a -0.00223 -0.0339
GED-GARCH 0.06346 0.06003 2.05805a 1.16453a -0.03753B -0.07191B

Henry Hub
HS 0.01541 0.01712 19.87019 17.55720 0.18608 0.16902
HS ARMA 0.0137 0.01712 22.40933 17.55720 0.2016W 0.18390W

GARCH-N 0.03431 0.03602 3.38143a 2.64618a -0.15227 -0.14777
GED-GARCH 0.04803 0.04460 0.04836a 0.37125a -0.23541B -0.20516B

Notes: a) B and W superscripts in the Mean Relative Scaled Bias denote “best” and “worst” across the methods
respectively; b) a and b superscripts denote significance of Kupiec LR statistics at 5% and 1% respectively; c) the
best modeling approach is highlighted in bold.

Consider oil market first. Even though all models underpredict 5% incidence of both upside

and downside risk, they are still roughly correct to the extent that all of them formally pass the

Kupiec test, and thus, are adequate. With respect to both Historical Simulation models, however,

we must consider the real meaning of these statistics. From the graphs it’s clear that if there were

longer high volatility at the end of “out-of-sample” period, the performance of the models would

deteriorate “in proportion” to the added period since VaR series are unable to capture any of the

latest largest peaks. It is the calm period of January 2007 – October 2008 that positively told

upon the performance of both Historical Simulation approaches. So the poor performance during

the volatile period has been averaged out by good performance during the calm period.

17 For the sake of brevity, the quadratic loss function (QLF) values are not reported since being marginally different
from the binary loss function (BLF) values, they do not change the general pattern of the results.
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The rigidity of Historical Simulation VaR measures is reflected in the efficiency criterion

MRSB: on average, the Historical Simulation methods have been less efficient than GARCH

methods. Combining common sense (graphs) and statistical results (tables) we can infer that HS

and HSAF methods have been the least accurate and efficient VaR series for oil market at 95%

confidence level.

Since we made sure of Historical Simulation methods sub-optimality, we now face the choice

of GARCH-N against GED-GARCH. There is, however, no ex ante reason why any of them

would be better than another at 95% confidence level. Both GARCH methods pass the Kupiec

test, so we again consider the efficiency criterion. The table shows that GED-GARCH is more

efficient at 95% because it has the smallest mean relative bias. This makes our choice: GED-

GARCH is accurate enough and is also the most efficient method. A relevant consideration with

respect to our way of selection is the fact that GARCH-N actually produces more accurate VaR

in economic terms than GED-GARCH in both upside and downside cases. The thing is that we

choose the method, which is able to produce statistically accurate indicators. Once the measures

are found statistically significant we don’t care how significant  they  are.  In  this  way  we  limit

ourselves to statistical rather than economic significance, just like the most previous papers did

when employing the Kupiec test.

The assessment of natural gas returns at 95% is done in a similar fashion. This time, both the

table and the graphs show that Historical Simulation methods are completely inadequate. Kupiec

test rejects the M c
N

 hypothesis (see p. 21) because the models consistently overestimate VaR

over the sample, and MRSB shows that HS and HSAF are more inefficient. So again the choice

of a better model pins down to GARCH-N versus GED-GARCH, and following the same logic

as for oil market we opt for GED-GARCH.
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Now we shift to the consideration of 99% confidence level (Table 7)18.

Table 7.
The indicators of methods' performance at 99% confidence level.

Binary Loss function
(upside/downside)

Kupiec LR statistic
(upside/downside)

Mean Relative Scaled
Bias (upside/downside)

WTI
HS 0.02568 0.01712 10.15742 2.48153a 0.04932W 0.12151W

HS ARMA 0.03082 0.01541 16.50315 1.49315a 0.01323 0.11795
GARCH-N 0.01544 0.01201 1.49318a 0.22288a -0.08066B -0.16303B

GED-GARCH 0.00686 0.00172 0.65202a 6.17427b 0.01811 -0.07643
Henry Hub
HS 0 0 N/A N/A 0.27921 0.27572
HS ARMA 0 0 N/A N/A 0.39265W 0.28566W

GARCH-N 0.01029 0.01544 0.00496a 1.49318a -0.36527B -0.32588B

GED-GARCH 0.00858 0.01372 0.12540a 0.73096a -0.30658 -0.23549
Notes: a) B and W superscripts in the Mean Relative Scaled Bias denote “best” and “worst” across the methods
respectively; b) a and b superscripts denote significance of Kupiec LR statistics at 5% and 1% respectively; c) the
best modeling approach is highlighted in bold.

Again, we start with oil market. The case of Historical Simulation methods failure is more

pronounced here. Now both HS and HSAF VaR measures are insignificant; this time they

actually underestimate the true risk. At the same time, HS is the most inefficient method. This

gives a reason to question the findings of Cabedo and Moya (2003) that HSAF method, even if

not as accurate, is more efficient than GARCH-N, and hence, they argue, is more preferred at the

99% confidence level for Brent returns. We find however that HSAF is both inaccurate and

inefficient. We think the reason for such a discrepancy is general vulnerability of HSAF

methodology to the model’s fit. Since HSAF does not feature volatility modeling, the returns

must be well approximated by AR and MA coefficients. However, since HSAF is constrained to

use only own lags without other relevant exogenous variables, a single instance success of the

methodology should not be generalized.

18 See the VaR graphs in Figures A.3a-h in the Appendix III.
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Between GARCH-N and GED-GARCH models we opt for GARCH-N this time. First, GED-

GARCH overestimates the risk for negative returns, so it passes the Kupiec test only at 1%

significance (in spite of a generally nice look of the VaR fit, the model “fails” to predict only 1

(!) returns excess). Second, GARCH-N turns out to be more efficient than GED-GARCH.

One  might  however  be  surprised  by  the  fact  that  GARCH-N  is  preferred  over  GED  at  the

99% confidence level. After all, didn’t we show that oil returns exhibit fat tails? The thing is that

indeed GARCH-N underpredicts oil risk at this confidence level. But it does so within the

confidence interval; so the failure rates in positive and negative returns of 1.54% and 1.2%

respectively are statistically equal to the required 1%; thus, the model passes the Kupiec test. On

the other hand, GED-GARCH fails less frequently at 99%, but in case of negative returns it

actually “overperforms”, and that’s why not only is inefficient but also barely passes the Kupiec

test at 1%. In other words, the relative benefit from GARCH-N efficiency is larger than the

relative cost from its inaccuracy. Our model choice in this case is GARCH-N, and this finding is

different from the one of Fan et al. (2008). They support the choice of GED-GARCH over

GARCH-N at 99% confidence level for WTI and Brent returns, and they explain it solely by the

Kupiec test statistics without consideration of any efficiency criteria.

Same applies to gas returns. This case is the harshest demonstration of Historical Simulation

methods’ deficiencies. Kupiec test statistic could not even be calculated because it would require

division by zero (zero is the number of times actual Henry Hub returns exceed VaR measures in

this case). The gas market is very volatile but its volatility was more or less homogeneous during

the forecast period. That’s why there were no volatility explosions which could produce some if

any intersections. This is also the evidence of the GARCH modeling necessity: HSAF is of

course less rigid than HS but the overall trend of its VaR still remains linear and the method is
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not very helpful to fit the Henry Hub risk. Again, in this case GARCH-N is preferred over GED-

GARCH since both methods pass the Kupiec test while GARCH-N is more efficient.

To sum up, Historical Simulation methods are found to be the least successful candidates to

measure the risk in these two commodities. Between GED-GARCH and GARCH-N, the former

is a better option for 95% confidence level, while the latter is better for 99% confidence level.

4.3. Risk spillover results

The previous sub-section is indispensable for the present one. As GED-GARCH is found the

best performing method at 95% confidence level, we use the upside and downside VaR series of

WTI and Henry Hub using GED-GARCH in order to investigate the extreme risk spillover

between these two markets. Following the methodological steps in 3.3 we calculate the test

statistics and corresponding p-values for upside and downside risk running in both directions.

The results are given in Table 8.

Table 8.
The test statistics of Granger causality in risk for the two energy markets.

Upside risk Downside risk
M=5 M=10 M=15 M=5 M=10 M=15

WTI  Henry Hub 2.31b (0.01) 4.98b (0.00) 5.16b (0.00) 1.37a (0.09) 0.45 (0.33) 0.45 (0.33)
Henry Hub  WTI -0.43 (0.67) -0.30 (0.62) -0.53 (0.7) -0.28 (0.61) -0.44 (0.67) 0.02 (0.49)
Notes: a) The reported values are the test statistics with corresponding upper-tailed p-values in parentheses; b) a and
b superscripts denote significance of the statistics at 10% and 5% respectively;

First,  consider  the  causality  from  WTI  to  Henry  Hub.  The  p-values  for  the  upside  risk

causality test are well below 5%, which indicates at significant extreme risk spillover from oil to

natural gas market during the period under consideration. The case with downside risk is less

clear-cut because we can confirm significant test statistics only at 10% and only at M=5. Though

weaker, however, the spillover is still in place.
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One should also note the dynamics of the test  statistics at  different values of M. In case of

upside risk, growing M is associated with more statistically significant risk spillover, that is, the

risk from the oil market is translated both shortly (within 5 days) and accumulates with time

(within 15 days). On the contrary, the downside risk is not so protracted: weak within 5 days, it

gets even weaker after 10 days and does not change 15 days after the negative return shock in the

oil market. A more general representation of the risk spillover dynamics from WTI market to

Henry Hub market is given in Figures 10a and 10b.

Mirroring the Table 8, the Figure 10a shows that the upside risk spillover becomes

significant after 4-5 days and starts decaying after approximately 13 days. On the contrary, the

downside risk (Figure 10b) is significant only at the beginning, then it strictly diminishes and

after 6 days becomes insignificant even at 10%19.

19 The graphs however do not report the test statistics for M=1. The use of Daniell kernel function specification
leads to heavily exaggerating test statistics for M=1; e.g. the M=1 statistics for the upside risk spillover from WTI to
Henry Hub is equal to 107.5 (that is, very statistically significant); however, cases when the upside risk translates
from oil to gas market after one day do not exist at all. The visual data examination shows that starting with M=2 the
test statistics reflect the reality much more accurately. The absence of M=1 test statistics, however, does not
contradict the general pattern of our results.

Figure 10a. The upside risk spillover dynamics in oil-to-gas
direction
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Quite expectedly, the Granger causality in risk from Henry Hub to WTI is non-existent

according to the obtained results (Table 8). The p-values of the test statistics are larger than 10%

in case of both upside and downside risk and at any M. The evolution of risk spillover over time

is less clear-cut in this case, so the graphs are not provided.

4.3.1. Robustness check

One  should  note,  however,  that  Granger  causality  does  not  presume  causality  in  direct

meaning. That’s why the obtained results of Granger causality in risk should not be taken

literally.  While  we  find  significant  risk  spillover  from  WTI  to  Henry  Hub,  the  WTI  risk  can

Granger-cause Henry Hub risk in case if a third process causes both of them with different lags.

For example, both Henry Hub and WTI risk could be a result of general market volatility, but we

cannot consider such possibility as a shortcoming of the method.

Nonetheless we check whether we can indeed speak about direct risk causality. We proxy

general market volatility by General Volatility Index (designated as VIX). VIX is a measure of

Figure 10b. The downside risk spillover dynamics in oil-to-gas
direction
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S&P 500 expected volatility during next 30 days and is often referred to as “fear” index. Rather

narrow in representing general market volatility, this index, we believe, is sufficient to account

for major volatile episodes. If VIX is found to Granger-cause the dispersion in Henry Hub and

WTI, this would cast doubt on our results.

Testing the impact of VIX on the size of returns, however, would be incorrect; that’s why we

use returns in absolute value. Intuitively, if VIX increases, the values of both WTI and Henry

Hub returns are expected to increase in absolute value if they are affected by general market

volatility. Another note of caution is that VIX series are non-stationary, so we use differenced

series (Table A.1). We do the following regressions:

0 1 2
1 1

0 1 2
1 1

abs(oil) abs(oil) dVIX

abs(gas) abs(gas) dVIX

n n

t j t j j t j t
j j

p p

t j t j j t j t
j j

,

where abs(oil)t  and abs(gas)t  are the series of WTI and Henry Hub returns in absolute value, and

p is not necessarily equal to n.

At n=4 and p=3, we find that neither Henry Hub nor WTI absolute returns are Granger-

caused by VIX (the models are provided in Appendix IV). Undoubtedly, the nature of this

robustness check concentrating on dispersion is different from the nature of extreme risk

spillover methodology. Nonetheless, the fact that general market volatility does not Granger-

cause any of the two returns series is believed to roughly confirm that the source of extreme risk

in Henry Hub market can indeed be the risk in WTI market.
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5. Concluding Remarks

Based on the prices of Western Texas Intermediate (WTI) crude oil and Henry Hub natural

gas, we test the performance of four Value-at-Risk approaches and assess them against several

accuracy and efficiency criteria. The results indicate that at 95% confidence level GED-GARCH

method performs better than any other alternative. The VaR series obtained with this method are

statistically accurate and are the least likely to result in forgone profits from speculation. The

VaR series calculated with GED-GARCH are used further to investigate the extreme risk

spillover between oil and natural gas markets. Using the Hong’s concept of Granger causality in

risk (2002), we find that there is significant risk spillover from oil market to natural gas market

during the period in consideration, while there is no spillover in the reverse direction. Moreover,

the upside risk spillover from oil to gas markets is found to be more statistically (and

economically) significant and protracted than the downside risk spillover.

Our results have some important implications. First, it follows that participants of the natural

gas market are relatively more vulnerable to the external risk than those of oil market. Of course,

the  results  we  obtained  cannot  be  taken  unambiguously  since  there  are  numerous  other  factors

having impact on both natural gas and oil prices. Nonetheless, this evidence shows that ceteris

paribus there is a point in being more cautious in trading natural gas than oil. And in spite of the

absence of ex ante pricing mechanism tying the two markets in the US, WTI risk can indeed be a

good basis for the risk estimation in Henry Hub.

Second, significant and protracted upside risk spillover from WTI to Henry Hub versus weak

and short downside one is an indicator of opportunities asymmetry between buyers and sellers of

natural gas. The positive oil price shocks are found to be translated to the gas market for a long

while, which is advantageous for gas sellers. However, there is no “opportunity compensation”
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for buyers since the transmission of negative oil price shocks is weak and short, which leaves gas

buyers in a more risky environment than gas sellers. This asymmetry is magnified by the fact

that gas sellers – large international companies – usually have full-fledged risk management

departments and can hedge themselves against a potential misfortune. Yet when gas buyers are

concerned with risk they tend to address companies specializing in risk management advice, and,

to the best of our knowledge, such companies are quite scarce on the global market20.

Among limitations and possible extensions we would highlight the following. The first one

concerns HSAF methodology, which performed rather poorly in this work and was eliminated

too easily. Since we tried to replicate the exact features of Cabedo and Moya work (2003), we

did not opt for enrichment of the model by relevant exogenous variables. Rather we stuck to lags

specification only. The success of this model is in its high fit; hence, we recommend considering

broader HSAF model specifications in future works.

Second, due to space limitations we did not consider the reasons for drastic dissimilarity

between upside and downside risk spillover running from WTI to Henry Hub. To our mind, a

deeper analysis of these reasons involving each market’s inherent features would definitely

contribute to the topic.

Finally, we would like to bring up the policy aspect of risk management as well. From our

personal communication with a representative of an energy risk management company in

Budapest, we can infer that there is a detachment of academia and business with respect to this

field. The benefit from using the VaR methods, which proved to work well (say, based on

Monte-Carlo simulation), is said to be larger than the benefit from introducing and testing new

ones. Thus it is no surprise that numerous advancements in energy risk management literature

20 E.g. Encore International is one of only 4 (!) independent energy risk management services providers in Europe.
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are left in dust. The integration of theory and practice is of utmost importance for successful risk

management, especially, in today’s unstable environment.

It  is  natural  to  conclude  that  irrespective  of  whether  oil  or  gas,  sellers  or  buyers  are

concerned, risk quantification and management in energy markets is an indispensable way of

business survival and prosperity. With ever increasing liberalization and competition, the VaR

methods had better not be used separately; rather, intelligent use of their combination would

enable a risk manager to get a more comprehensive estimation of market risk.
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Appendices

Appendix I. GED for different k parameters

Figure A.1a

Figure A.1b

Figure A.1c

Figure A.1d
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Appendix II. The shape of Daniell kernel function

Note that the first intersection (to the left and to the right of zero) with the horizontal axis

takes place at the corresponding M. E.g. the kernel function with M=5  makes  the  first

intersection at 5j .  The  hump-shaped  form of  the  function  ensures  that  the  remote  lags  (yet

within M range) are given smaller weights.

Figure A.2. Daniell kernel function shape for different arguments
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Appendix III. Value-at-Risk at 99% confidence level

Historical Simulation – Standard Approach

Figure A.3a. VaR for positive and negative WTI oil returns
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Figure A.3b. VaR for positive and negative gas returns
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Historical Simulation – ARMA Forecasts

Figure A.3c. VaR for positive and negative oil returns
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Figure A.3d. VaR for positive and negative gas returns
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Figure A.3f. VaR for positive and negative gas returns
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Figure A.3e. VaR for positive and negative oil returns,
GARCH-N approach
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GED-GARCH

Figure A.3g. VaR for positive and negative oil returns,
GED-GARCH approach
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Figure A.3h. VaR for positive and negative Henry Hub gas returns,
GED-GARCH approach
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Appendix IV. Robustness check statistics

Table A.1.
ADF statistics for the General Volatility Index

Table A.2.
WTI Granger causality estimation results
abs(oil)
c 0.009064c (0.00163)
abs(oil) (-1) 0.080762 (0.058149)
abs(oil) (-2) 0.157463b (0.076422)
abs(oil) (-3) 0.135724b (0.062599)
abs(oil) (-4) 0.234741c (0.079403)
dVIX (-1) -0.037318 (0.02872)
dVIX (-2) -0.04996a (0.027991)
dVIX (-3) 0.042259 (0.029801)
dVIX (-4) 0.026963 (0.030041)
R2 0.173814
AIC -4.68254
F-statistic for joint significance of dVIX (p-value) 2.137 (0.075)
Notes: a) Standard errors are in parentheses; b) a, b, and c superscripts denote significance at 10%, 5% and 1%.

Table A.3.
Henry Hub Granger causality estimation results
abs(gas)
c 0.021696c (0.002007)
abs(gas) (-1) 0.009651 (0.047549)
abs(gas) (-2) 0.080596a (0.050362)
abs(gas) (-3) -0.006597 (0.04174)
dVIX (-1) 0.039041 (0.025128)
dVIX (-2) 0.025229 (0.025668)
dVIX (-3) 0.00194 (0.026454)
R2 0.011161
AIC -4.676683
F-statistic for joint significance of dVIX (p-value) 0.978 (0.403)
Notes: a) Standard errors are in parentheses; b) a, b, and c superscripts denote significance at 10%, 5% and 1%.

Series (in logs) ADF statistics for levels (p-value) ADF statistics for differences (p-value)
VIX -1.65 (0.454) -21.80 (0.000)
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