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1 Introduction

It is well known that there are c = 2ω many disjoint dense subset of the real line.

On the other hand, it is easy to see that if, using Zorn’s lemma, we take a max-

imal 0-dimensional and crowded refinement of the usual topology of the rational

numbers then the resulting (countable) space has no two disjoint dense subset.

Numerous such questions may be asked about the resolvability of topological

spaces into disjoint dense subsets. Such questions were first studied by E. Hewitt,

[17], in 1943.

In the second section we introduce a ZFC method that enables us to build

spaces (in fact special dense subspaces of certain Cantor cubes) in which we have

"full control" over all dense subsets. Using this method we are able to construct,

in ZFC, for each uncountable regular cardinal λ a 0-dimensional T2, hence Ty-

chonov, space which is µ-resolvable for all µ < λ but not λ-resolvable. This

yields the final (negative) solution of the following celebrated problem of Ceder

and Pearson that was raised in 1967: Are ω-resolvable spaces maximally resolv-

able? This method enabled us to solve several other open problems concerning

resolvability as well.

In the third section, we study the resolvability properties of spaces that have

only small discrete or closed discrete subsets. In a recent paper O. Pavlov proved

the following two interesting resolvability results:

1. If a space X satisfies ∆(X) > ps(X) then X is maximally resolvable.

2. If a T3-space X satisfies ∆(X) > pe(X) then X is ω-resolvable.
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Here ps(X) (pe(X)) denotes the smallest successor cardinal such that X has no

discrete (closed discrete) subset of that size and ∆(X) is the smallest cardinality

of a non-empty open set in X .

We improve 1. by showing that ∆(X) > ps(X) can be relaxed to ∆(X) ≥

ps(X). In particular, if X is a space of countable spread with ∆(X) > ω then X

is maximally resolvable.

The question if an analogous improvement of 2. is valid remains open but we

present here a proof of 2. that is simpler than Pavlov’s.

In the final section we study resolvability properties of a special class of

spaces, namely the monotonically normal spaces. We note that both metric and

linearly ordered spaces are monotonically normal. We show that every crowded

monotonically normal (in short: MN) space is ω-resolvable and almost µ-resolvable,

where µ = min{2ω, ω2}. On the other hand, if κ is a measurable cardinal then

there is a MN space X with ∆(X) = κ such that no subspace of X is ω1-

resolvable.

1.1 Basic definitions and notation

Given a cardinal κ > 1, a topological space X is called κ-resolvable iff it con-

tains κ disjoint dense subsets. X is κ-irresolvable iff it is not κ-resolvable. X is

resolvable iff it is 2-resolvable and irresolvable otherwise.

X is called (< κ)-resolvable iff for every µ < κ X is µ-resolvable.

If X is κ-resolvable and G ⊂ X is any non-empty open set in X then clearly
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κ ≤ |G|. Hence if X is κ-resolvable then we have κ ≤ ∆(X) where

∆(X) = min
{
|G| : G is a nonempty open set

}
.

This observation explains the following terminology of J.Ceder, [5]: a space X is

called maximally resolvable iff it is ∆(X)-resolvable.

A space X is called open hereditarily irresolvable (OHI) iff every nonempty

open subspace of X is irresolvable. It is well-known that every irresolvable space

has a non-empty open subspace that is OHI. Clearly, X is OHI iff every dense

subset of X contains a dense open subset, i. e. if S ⊂ X dense in X implies that

Int(S) is dense, as well.

Next, a space X is called hereditarily irresolvable(HI) iff all subspaces of X

are irresolvable. Since a space having an isolated point is trivially irresolvable, any

space is HI iff all its crowded subspaces are irresolvable. (Following van Douwen,

we call a space crowded if it has no isolated points.) Having this in mind, if P is

any resolvability or irresolvability property of topological spaces then the space

X is called hereditarily P iff all crowded subspaces of X have property P.

Following the terminology of [34], a topological space X is called NODEC if

all nowhere dense subsets of X are closed, and hence closed discrete. All spaces

obtained by our main theorem 2.13 will be NODEC.

A space is called submaximal (see [17]) iff all of its dense subsets are open.

The following observation is easy to prove and will be used repeatedly later: a

space is submaximal iff it is both OHI and NODEC.

A set D ⊂ X is said to be κ-dense in X iff |D ∩ U | ≥ κ for each nonempty

5
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open set U ⊂ X . Thus D is dense iff it is 1-dense. Also, it is obvious that the

existence of a κ-dense set in X implies ∆(X) ≥ κ.

We shall denote by N (X) the family of all nowhere dense subsets of a space

X . Clearly, N (X) is an ideal of subsets of X and the notation =∗ or ⊂∗ will

always be used to denote equality, resp. inclusion modulo this ideal.

Following the notation introduced in [6], we shall write

nwd(X) = min{|Y | : Y ∈ P(X) \ N (X)} = non− (N (X)),

i. e. nwd(X) is the minimum cardinality of a somewhere dense subset of X .

Malychin was the first to suggest studying families of dense sets of a space

X that are almost disjoint with respect to the ideal N (X) rather than disjoint, see

[29]. He calls a spaceX extraresolvable if there are ∆(X)+ many dense sets inX

such that any two of them have nowhere dense intersection. Here we generalize

this concept by defining a space X to be κ-almost-resolvable if there are κ many

dense sets in X such that any two of them have nowhere dense intersection. Note

that, although κ-almost-resolvability of X is mainly of interest if κ > ∆(X), it

does make sense for κ ≤ ∆(X) as well. Clearly, κ-resolvable implies κ-almost-

resolvable, moreover the converse holds if κ = ω.

6
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2 Separating various resolvability properties

2.1 D-forced spaces

Definition 2.1. LetD be a family of dense subsets of a spaceX . A subsetM ⊂ X

is called a (D, X)-mosaic iff there is a maximal disjoint family V of open subsets

of X and for each V ∈ V there is DV ∈ D such that

M = ∪{V ∩DV : V ∈ V}.

A set M of the above form with V disjoint, but not necessarily maximal disjoint,

is called a partial (D, X)-mosaic.

A set P of the form P = D ∩ U , where D ∈ D and U is a nonempty open

subset of X , is called a (D, X)-piece. So, naturally, any (partial) (D, X)-mosaic

is composed of (D, X)-pieces. Let

M(D, X) = {M : M is a (D, X)-mosaic}

and

P(D, X) = {P : P is a (D, X)-piece}.

When the space X is clear from the context we will omit it from the notation:

we will writeD-mosaic instead of (D, X)-mosaic, andD-piece instead of (D, X)-

piece, etc. The following statement is now obvious.

Fact 2.2. Every (D, X)-mosaic is dense in X and every (D, X)-piece is some-

where dense in X .

7
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Thus we arrive at the following very simple but, as it turns out, very useful

concept.

Definition 2.3. Let D be a family of dense subsets of a topological space X . We

say that the space X (or its topology) is D-forced iff every dense subset S of X

includes a D-mosaic M , i. e. there is M ∈M(D, X) with M ⊂ S .

It is easy to check that one can give the following alternative characterization

of being D-forced.

Fact 2.4. The spaceX isD-forced iff every somewhere dense subset ofX includes

a (D, X)-piece.

Since X is always dense in X , the simplest choice for D is {X}.

Fact 2.5. A subset P ⊂ X is an {X}-piece iff it is non-empty open; M is an

{X}-mosaic iff it is dense open in X . Consequently, X is {X}-forced iff it is

OHI.

Let us now consider a few further, somewhat less obvious, properties of D-

forced spaces. The first result yields a useful characterization of nowhere dense

subsets in such spaces. Note that a subset Y of any space X is nowhere dense iff

S\Y is dense in X for all dense subsets S of X . Not surprisingly, in a D-forced

space it suffices to check this for members of D.

Lemma 2.6. Assume that X is D-forced. Then

N (X) = {Y ⊂ X : D \ Y is dense in X for each D ∈ D}.

8
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Proof. Assume that Y /∈ N (X), i.e. Y is somewhere dense. Then, by fact 2.4, Y

contains some D-piece U ∩D, where D ∈ D and U is a nonempty open subset of

X . Then (D \Y )∩U = ∅, i.e. D \Y is not dense. This proves that the right-hand

side of the equality includes the left one. The converse inclusion is obvious.

The following result will be used to produce irreducible (even OHI) spaces.

Of course, the superscript * in its formulation designates equality and inclusion

modulo the ideal N (X) of nowhere dense sets.

Lemma 2.7. Let X be D-forced and S ⊂ X be dense such that

(†) for each D ∈ D we have S ∩D =∗ ∅ or S ⊂∗ D.

Then S, as a subspace of X , is OHI.

Proof. Let T ⊂ S be dense in S, then T is also dense in X , hence it must contain

aD-mosaic, say M =
⋃
{V ∩DV : V ∈ V}. But then we have S ⊂∗ DV for each

V ∈ V by (†). Consequently,

T ∩ V ⊂ S ∩ V ⊂∗ V ∩DV ⊂ T ∩ V

and so T ∩ V =∗ S ∩ V holds for all V ∈ V . This clearly implies that T =∗ S.

In other words, we have shown that every dense subset T of S has nowhere dense

complement in S, i. e. the subspace S of X is OHI.

The following lemma will enable us to conclude that certain D-forced spaces

are not κ-(extra)resolvable for appropriate cardinals κ.
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Lemma 2.8. Assume that X is a topological space and D is a family of dense

subsets of X . Assume, moreover, that µ ≥ ĉ(X) (i.e. X does not contain µ many

pairwise disjoint open subsets) and

(∗) for each E ∈
[
D
]µ there is F ∈

[
E
]ĉ(X) such that

D0 ∩D1 is dense in X whenever {D0, D1} ∈
[
F
]2
.

Then for any family of D-pieces {Pi : i < µ} ⊂ P(D) there is {i, j} ∈
[
µ
]2

such that Pi ∩ Pj is somewhere dense in X .

In particular, if X is D-forced and |D|+ ≥ ĉ(X) then X is not |D|+-almost-

resolvable(hence not |D|+-resolvable, either).

Proof. Assume that Pi = Ui ∩ Di, where Di ∈ D and Ui is a nonempty open

subset of X for all i ∈ µ. By (∗) there is I ∈
[
µ
]ĉ(X) such that Di ∩Dj is dense

for each {i, j} ∈
[
I
]2. By the definition of ĉ(X), there is {i, j} ∈

[
I
]2 such that

U = Ui ∩ Uj is non-empty. But then U ∩ Di ∩ Dj ⊂ Pi ∩ Pj , hence Pi ∩ Pj is

dense in the nonempty open set U .

The last statement now follows becauseD trivially satisfies condition (∗) with

µ = |D|+ and, as X is D-forced, every dense subset of X includes a D-piece

(even a D-mosaic).

The following fact is obvious.

Fact 2.9. Let D be a family of dense sets in X and

M =
⋃
{V ∩DV : V ∈ V}
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be a partial D-mosaic. If all the dense sets DV are µ-(extra)resolvable for V ∈ V

then so is M .

We finish this section with a result that, together with fact 2.9, will be used

to establish hereditary (extra)resolvability properties of several examples con-

structed later.

Lemma 2.10. Let X be a D-forced space in which every crowded subspace is

somewhere dense. (This holds e. g. if X is NODEC.) Then for every crowded

S ⊂ X there is a partial D-mosaic M ⊂ S that is dense in S. So if, in addition,

all D ∈ D are µ-resolvable (resp. µ-almost-resolvable) then X is hereditarily

µ-resolvable (resp. µ-almost-resolvable).

Proof. Let V be a maximal disjoint family of open sets V such that there is an

element DV ∈ D with V ∩DV ⊂ S and consider the partial D-mosaic

M =
⋃
{V ∩DV : V ∈ V}.

Then M ⊂ S is dense in S, since otherwise, in view of the maximality of V , the

set S \M 6= ∅ would be crowded and could not include any D-piece. The last

sentence now immediately follows using fact 2.9.

2.2 The Main Theorem

We have introduced the concept of D-forced spaces but one question that imme-

diately will be raised is if there are any beyond the obvious choice of D = {X}?
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The aim of this section is to prove theorem 2.13 that provides us with a large sup-

ply of such spaces. All these spaces will be dense subspaces of Cantor cubes, i. e.

powers of the discrete two-point space D(2). As is well-known, there is a natural

one-to-one correspondence between dense subspaces of size κ of the Cantor cube

D(2)λ and independent families of 2-partitions of κ indexed by λ. (A partition of

a set S is called a µ-partition if it partitions S into µ many pieces.) For technical

reasons, we shall produce our spaces by using partitions rather than Cantor cubes.

We start with fixing some notation and terminology.

Let ~λ = 〈λζ : ζ < µ〉 be a sequence of cardinals. We set

FIN(~λ) = {ε : ε is a finite function with dom ε ∈
[
µ
]<ω and

ε(ζ) ∈ λζ for all ζ ∈ dom ε}.

Note that if λζ = λ for all ζ < µ then

FIN(~λ) = Fn(µ, λ).

Let S be a set, ~λ = 〈λζ : ζ < µ〉 be a sequence of cardinals, and B =
{〈
Bi
ζ : i < λζ

〉
: ζ < µ

}
be a family of partitions of S. Given a cardinal κ we say that B is κ-independent

iff

B[ε]
def
=
⋂
{Bε(ζ)

ζ : ζ ∈ dom ε}

has cardinality at least κ for each ε ∈ FIN(~λ). B is independent iff it is 1-

independent, i.e. B[ε] 6= ∅ for each ε ∈ FIN(~λ). B is separating iff for each

{α, β} ∈
[
S
]2 there are ζ < µ and {ρ, ν} ∈

[
λζ
]2 such that α ∈ Bρ

ζ and β ∈ Bν
ζ .
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We shall denote by τB the (obviously zero-dimensional) topology on S gen-

erated by the subbase {Bi
ζ : ζ < µ, i < λζ}, moreover we set XB = 〈S, τB〉.

Clearly, the family {B[ε] : ε ∈ FIN(~λ)} is a base for the space XB. Note that XB

is Hausdorff iff B is separating.

The following statement is very easy to prove and is well-known. It can cer-

tainly be viewed as part of the folklore.

Observation 2.11. Let κ and λ be infinite cardinals. Then, up to homeomor-

phisms, there is a natural one-to-one correspondence between dense subspacesX

of D(2)λ of size κ and spaces of the form XB = 〈κ, τB〉, where B = {
〈
B0
ξ , B

1
ξ

〉
:

ξ < λ} is a separating and independent family of 2-partitions of κ. Moreover, X

is µ-dense in D(2)λ iff B is µ-independent.

The spaces obtained from our main theorem 2.13 will all be of the above

form, with λ = 2κ. The following fact will be instrumental in finding appropriate

families of dense sets D to be used to produce D-forced spaces.

Fact 2.12. For each infinite cardinal κ, there is a family

B = {
〈
Bi
ξ : i < κ

〉
: ξ < 2κ}

of 2κ many κ-partitions of κ that is κ-independent.

Indeed, this fact is just a reformulation of the statement that the space D(κ)2κ ,

the 2κth power of the discrete space on κ, contains a κ-dense subset of size κ. This,

in turn, follows immediately from the Hewitt-Marczewski-Pondiczery theorem,

see e. g. [13, theorem 2.3.15].
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Main theorem 2.13. Assume that κ is an infinite cardinal and we are given

B =
{〈
B0
ξ , B

1
ξ

〉
: ξ < 2κ

}
, a κ-independent family of 2-partitions of κ, more-

over a non-empty family D of κ-dense subsets of the space XB. Then there is

another, always separating, κ-independent family C = {
〈
C0
ξ , C

1
ξ

〉
: ξ < 2κ} of

2-partitions of κ that satisfies the following five conditions:

(1) every D ∈ D is also κ-dense in XC (and so ∆(XC) = κ),

(2) XC is D-forced,

(3) nwd(XC) = κ, i.e.
[
κ
]<κ ⊂ N (XC),

(4) XC is NODEC.

Moreover, if J ⊂ 2κ is given with |2κ \ J | = 2κ then we can assume that

(5) C |̀ J = B |̀ J .

Proof. Assume that J is given and let I = 2κ \ J . We partition I into two disjoint

pieces, I = I0 ∪ I ′, such that |I0| = κ<κ and |I ′| = 2κ. Next we partition I0 into

pairwise disjoint countable sets JA,α ∈
[
I0

]ω for all A ∈
[
κ
]<κ and α ∈ κ \ A. If

ξ ∈ JA,α (for some A ∈
[
κ
]<κ and α ∈ κ \ A) then we let

C0
ξ = (B0

ξ ∪ A) \ {α},

and

C1
ξ = (B1

ξ \ A) ∪ {α}.

Next, let us fix any enumeration {Fν : ν < 2κ} of [κ]κ and then by transfinite

recursion on ν < 2κ define
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• sets Kν ⊂ I ′ with Kν = ∅ or |Kν | = κ,

• partitions 〈C0
σ, C

1
σ〉 of κ for all σ ∈ Kν ,

• finite functions ην ∈ Fn(2κ, 2),

such that the inductive hypothesis

(φν) ∀ε ∈ Fn(2κ, 2) ∀D ∈ D |D ∩ Bν [ε]| = κ

holds, where

Bν =
{〈
C0
σ, C

1
σ

〉
: σ ∈ Iν

}
∪
{〈
B0
σ, B

1
σ

〉
: σ ∈ 2κ \ Iν

}
with

Iν = I0 ∪
⋃
ζ<ν

Kζ .

Note that (φν) simply says that every set D ∈ D is κ-dense in the space XBν .

We shall then conclude that C = B2κ is as required.

Let us observe first that (φ0) holds because, by assumption, we have |B[ε] ∩

D| = κ for all D ∈ D and ε ∈ Fn(2κ, 2), moreover

∣∣B[ε]4 B0[ε]
∣∣ < κ.

Clearly, if ν is a limit ordinal and (φζ) holds for each ζ < ν then (φν) also

holds. So the induction hypothesis is preserved in limit steps.

Now consider the successor steps. Assume that (φν) holds. We distinguish

two cases:
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Case 1. Fν contains a (D, XBν )-piece, i.e. Fν ⊃ D ∩ Bν [ην ] for some ην ∈

Fn(2κ, 2) and D ∈ D.

This defines ην and then we set Kν = ∅. The construction from here on will

not change the partitions whose indices occur in dom(ην), thus we shall have

Bν [ην ] = B2κ [ην ] and so at the end Fν will include the (D, XB2κ
)-piece D ∩

B2κ [ην ]. Also, in this case we have Bν = Bν+1, hence (φν+1) trivially remains

valid.

Case 2. Fν does not include a (D, XBν )-piece, i.e. (D ∩ Bν [ε]) \ Fν 6= ∅ for all

ε ∈ Fn(2κ, 2) and D ∈ D.

In this case we choose and fix any set

Kν ⊂ I ′ \
(
∪{dom ηζ : ζ < ν} ∪ ∪{Kζ : ζ < ν}

)
of size κ and let Kν = {γν,i : i < κ} be a 1-1 enumeration of Kν . We also set

ην = ∅. We want to modify the partitions with indices in Kν so as to make the set

Fν closed discrete in XBν+1 and hence in XB2κ
as well. To do this, we set for all

i < κ

C0
γν,i

= (B0
γν,i
\ Fν) ∪ {i},

and

C1
γν,i

= (B1
γν,i
∪ Fν) \ {i}.

Then for each i ∈ κ we have i ∈ C0
γν,i

and

Fν ∩ C0
γν,i
⊂ {i},

16
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consequently Fν is closed discrete in XBν+1 , hence Fν will be closed discrete in

XB2κ
.

We still have to show that (φν+1) holds in this case, too. Assume, indirectly,

that for some D ∈ D and ε ∈ Fn(2κ, 2) we have

∣∣D ∩ Bν+1[ε]
∣∣ < κ.

Then we can clearly find ξ ∈ I0 \ dom ε with

(D ∩ Bν+1[ε]) ∪ dom(ε) ⊂ C0
ξ ,

and so for ε∗ = ε ∪ {〈ξ, 1〉} we even have

D ∩ Bν+1[ε∗] = ∅.

On the other hand, our choices clearly imply that

Bν+1[ε∗] ⊃ Bν [ε
∗] \ Fν ,

consequently

D ∩ Bν+1[ε∗] ⊃ (D ∩ Bν [ε
∗]) \ Fν 6= ∅,

a contradiction. This shows that (φν+1) is indeed valid, and the transfinite con-

struction of C = B2κ is thus completed. We show next that C satisfies all the

requirements of our main theorem.

C is separating because e. g. for any ξ ∈ J{α},β the partition
〈
C0
ξ , C

1
ξ

〉
sepa-

rates α and β.

17



C
E

U
eT

D
C

ol
le

ct
io

n

That C is κ-independent and that (1) holds (i. e. each D ∈ D is κ-dense in

XC) both follow from (φ2κ).

If A ∈
[
κ
]<κ and α ∈ κ \ A, then for any ξ ∈ JA,α we have A ⊂ C0

ξ and

α ∈ C1
ξ , hence α /∈ AXC . Thus every member of

[
κ
]<κ is closed and hence closed

discrete in XC, and so (3) is satisfied.

Assume next that F ∈ N (XC), we want to show that F is closed discrete . By

(3) we may assume that |F | = κ and so can find ν < 2κ with F = Fν . Suppose

that at step ν of the recursion we were in case 1; then we had F ⊃ D ∩ Bν [ην ]

for some D ∈ D. But Bν [ην ] = B2κ [ην ] = C[ην ], so F would be dense in C[ην ].

This contradiction shows that, at step ν, we must have been in case 2. However,

in this case we know that F = Fν was made to be closed discrete in XBν+1 and

consequently in XC as well. So XC is NODEC, i.e. (4) holds.

It remains to check that XC is D-forced, i. e. that (2) holds. By 2.4 it suffices

to show that any somewhere dense subset E of XC includes a (D, XC)-piece. By

(3) we must have |E| = κ and hence we can pick ν < 2κ such that Fν = E. Then

at step ν of the recursion we could not be in case 2, since otherwise Fν = E would

have been made closed discrete in XBν+1 and so in XC as well. Hence at step ν of

the recursion we were in case 1, consequently ην ∈ Fn(2κ, 2) and D ∈ D could

be found such that E = Fν ⊃ D ∩Bν [ην ]. However, by the construction, we have

C[ην ] = Bν [ην ], and therefore E actually includes the (D, XC)-piece D ∩ C[ην ].

Finally, (5) trivially holds by the construction.

18
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2.3 Applications to resolvability

In this and the following part of the section we shall present a large number of

consequences of our main theorem 2.13. The key to most of these will be given

by a judicious choice of a family D of κ-dense sets in a space XB, where B ={〈
B0
ξ , B

1
ξ

〉
: ξ < 2κ

}
is a κ-independent family of 2-partitions of some cardinal

κ. In our first application, however, this choice is trivial, that is we haveD = {κ}.

In [2], the following results were proven:

(1) D(2)c does not have a dense countable maximal subspace,

(2) D(2)c has a dense countable irresolvable subspace,

(3) it is consistent that D(2)c has a dense countable submaximal subspace,

and then the following natural problem was raised ([2, Question 4.4]): Is it prov-

able in ZFC that the Cantor cube D(2)c or the Tychonov cube [0, 1]c has a dense

countable submaximal subspace? Our next result gives an affirmative answer to

this problem.

Theorem 2.14. For each infinite cardinal κ the Cantor cube D(2)2κ contains a

dense submaximal subspace X with |X| = ∆(X) = κ.

Proof. Let us start by fixing any κ-independent family of 2-partitions B = {〈B0
ξ , B

1
ξ 〉 :

ξ < 2κ} of κ, and let D =
{
κ
}

. Applying theorem 2.13 with B and D we obtain

a family of 2-partitions C of κ that satisfies 2.13 (1)–(4). The space XC is as re-

quired. Indeed, ∆(XC) = κ because of 2.13(1), XC is NODEC by 2.13(4), while
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it is OHI by lemma 2.7. But then it is submaximal. Finally, by observation 2.11,

XC embeds into D(2)2κ as a dense subspace. 2.14

That theorem 2.14 fully answers [2, Question 4.4] follows from the follow-

ing fact 2.15 that may be already known, although we have not found it in the

literature.

Fact 2.15. Any countable dense subspace of D(2)c is homeomorphic to a dense

subspace of [0, 1]c.

This fact, in turn, immediately follows from the next proposition. In it, as

usual, we denote by P the space of the irrationals.

Proposition 2.16. Assume that κ is an infinite cardinal, S ⊂ D(2)κ is dense,

moreover there is a partition {Iν : ν < κ} of κ into countably infinite sets such

that for each ν < κ the set 2Iν \ (S � Iν) is dense (in other words: S � Iν is co-

dense) in 2Iν . (The last condition is trivially satisfied if the cardinality of S is less

than continuum.) Then S is homeomorphic to a dense subspace of the irrational

cube Pκ and hence of the Tychonov cube [0, 1]κ.

Proof. For each ν < κ we may select a countable dense subset of Dν ⊂ 2Iν \ (S �

Iν). The space 2Iν \Dν is known to be homeomorphic to P for all ν < κ. Also, for

each ν < κ we have S � Iν ⊂ 2Iν \Dν and therefore S is naturally homeomorphic

to a dense subspace of the product space∏
{2Iν \Dν : ν < κ}.

This product, however, is homeomorphic to the cube Pκ.
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Let us remark that, as far as we know, the first ZFC example of a countable reg-

ular, hence 0-dimensional, submaximal space was constructed by E. van Douwen

in [34], by using an approach that is very different from and much more involved

than ours. Also, it is not clear if his example embeds densely into the Cantor or

Tychonov cube of weight c.

After proving in [1, Corollary 8.5] that every separable submaximal topolog-

ical group is countable, Arhangel’skii and Collins raised the following question

[1, Problem 8.6]: Is there a crowded uncountable separable Hausdorff (or even

Tychonov) submaximal space? As it turns out, starting from any zero-dimensional

countable submaximal space (e. g. the one obtained from the previous theorem

or van Douwen’s example from [34]) an affirmative answer can be given to this

question, at least in the T2 case. The regular or Tychonov cases of the problem,

however, remain open.

Theorem 2.17. There is a crowded, separable, submaximal T2 space Y of cardi-

nality c.

Proof. Let τ be any fixed crowded, submaximal, 0-dimensional, and T2 topology

on ω. Since τ is not compact we can easily find {Uσ : σ ∈ 2<ω}, an infinite

partition of ω into nonempty τ -clopen sets indexed by all finite 0-1 sequences σ.

The underlying set of Y will be ω ∪ ω2 and we let X = 〈ω, τ〉 be an open

subspace of Y . Next, a basic neighbourhood of a point f ∈ ω2 will be of the form

{f} ∪
⋃
{Df |̀ n : n ≥ m},

where m ∈ ω and Df |̀ n is a dense (hence, as X is submaximal, open) subset of
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Uf |̀ n for m ≤ n < ω. It is easy to see that Y is T2, and Y is separable because ω

is dense in it.

Now, assume that D ⊂ Y is dense. Then D ∩X is also dense hence open in

X , and similarlyD∩Uσ is dense open in Uσ for each σ ∈ 2<ω. So for each f ∈ D

the set {f}∪
⋃
{D∩Uf |̀ n : n ≥ 0} ⊂ D is a basic neighbourhood of f , showing

that D is open in Y.

In 1967 Ceder and Pearson, [9], raised the question whether an ω-resolvable

space is necessarily maximally resolvable? El’kin, [12], constructed a T1 coun-

terexample to this question, and then Malykhin, [28], produced a crowded hered-

itarily resolvable T1 space (that is clearly ω-resolvable) which is not maximally

resolvable. Eckertson, [11], and later Hu, [20], gave Tychonov counterexamples

but not in ZFC: Eckertson’s construction used a measurable cardinal, while Hu

applied the assumption 2ω = 2ω1 . Whether one could find a Tychonov counterex-

ample to the Ceder-Pearson problem in ZFC was repeatedly asked as recently as

in [7] and [8].

Our next theorem gives a whole class of 0-dimensional T2 (hence Tychonov)

counterexamples to the Ceder-Pearson problem in ZFC. Quite naturally, they in-

volve applications of our main theorem 2.13 where the family of dense sets D

forms a partition of the underlying set.

Recall that any application of theorem 2.13 yields a dense NODEC subspace

X of some Cantor cube D(2)2κ with the extra properties

|X| = nwd(X) = ∆(X) = κ.
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From now on, we shall call any space having all these properties a C(κ)-space. Of

course, any C(κ)-space is zero-dimensional T2 and therefore Tychonov. Finally,

with the intention to use lemma 2.8, we recall that any C(κ)-space X , being dense

in a Cantor cube, is CCC, i. e. satisfies ĉ(X) = ω1.

Theorem 2.18. For any two infinite cardinals µ < κ there is a C(κ)-space X

that is the disjoint union of µ dense submaximal subspaces but is not µ+-almost-

resolvable. (Of course, X is then µ-resolvable but not µ+-resolvable, hence not

maximally resolvable.)

Proof. Using fact 2.12 we can easily find a µ-partition 〈Di : i < µ〉 and a family

of 2-partitions B =
{〈
B0
ξ , B

1
ξ

〉
: ξ < 2κ

}
of κ such that for each i < µ and

ε ∈ Fn(2κ, 2) we have∣∣ Di ∩ B[ε]
∣∣ = κ.

We may then apply theorem 2.13 to this B and the familyD = {Di : i < µ} to get

a collection C of 2-partitions of κ satisfying 2.13(1)-(4). We claim that the space

XC is as required.

Firstly, as the members ofD partition κ andXC is NODEC, lemma 2.7 implies

that each Di ∈ D is a submaximal dense subspace of XC.

Secondly, since XC is CCC and |D| = µ ≥ ω, lemma 2.8 implies that XC is

not µ+-almost-resolvable.

Theorem 2.18 talks about infinite cardinals, and with good reason; it has been

long known that for any finite n there are say countable zero-dimensional spaces
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that are n-resolvable but not (n + 1)-resolvable. In connection with this, Eck-

ertson asked in [11, Question 4.5] the following question: Does there exist for

each infinite cardinal κ and for each natural number n ≥ 1 a Tychonov space X

with |X| = ∆(X) = κ such that X is n-resolvable but X contains no (n + 1)-

resolvable subspaces? Li Feng, [15], gave a positive answer to this question and

the following corollary of 2.18 improves his result. Our example is a C(κ)-space

that is the disjoint union of n dense submaximal subspaces.

Corollary 2.19. For each cardinal κ ≥ ω and each natural number n ≥ 1 there

is a C(κ)-space Y which is the disjoint union of n dense submaximal subspaces.

Then Y , automatically, does not contain any (n+ 1)-resolvable subspaces.

Proof. Consider the C(κ)-space X given by theorem 2.18 for any fixed pair of

cardinals µ < κ and then set Y =
⋃
{Di : i < n}. Here each subspace Di of Y is

submaximal and therefore HI. Consequently, every subspace of Y can be written

as the union of at most n HI subspaces. By [21, lemma 2], no such space can be

(n+ 1)-resolvable, hence Y contains no (n+ 1)-resolvable subspaces.

Another question that can be raised concerning theorem 2.18 is whether it

could be extended to apply to all infinite cardinals instead of just the successors

µ+. It is actually known that the answer to this question is negative.

Indeed, Illanes, and later Bashkara Rao proved the following two “compactness”-

type results on λ-resolvability, for cardinals λ of countable cofinality.
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Theorem (Illanes, [21]). If a topological space X is (< ω)-resolvable then X is

ω-resolvable.

Theorem (Bhaskara Rao, [3]). If λ is a singular cardinal with cf(λ) = ω and X

is any topological space that is (< λ)-resolvable then X is λ-resolvable.

In contrast to these, our next result, theorem 2.21, implies that no such compactness-

phenomenon is valid for uncountable regular limit (that is inaccessible) cardinals.

However, the following intriguing problem remains open.

Problem 2.20. Assume that λ is a singular cardinal with cf(λ) > ω and X is

a topological space that is (< λ)-resolvable. Is it true then that X is also λ-

resolvable?

Theorem 2.21 may be viewed as an extension of 2.18 from successors to all

uncountable regular cardinals, providing counterexamples to the Ceder-Pearson

problem in further cases. However, the spaces obtained here are quite different

from the ones constructed in 2.18 because they are hereditarily resolvable.

Theorem 2.21. For any two cardinals κ and λ with ω < cf(λ) = λ ≤ κ there is a

C(κ)-space that is not λ-almost-resolvable(and hence not λ-resolvable) and still

it is hereditarily µ-resolvable for all µ < λ.

Proof. Let us fix the sequence ~λ = 〈λζ : ζ < λ〉 by setting λζ = ρ for each ζ < λ

if λ = ρ+ is a successor and by putting λζ = ωζ for ζ < λ if λ is a limit cardinal

(note that λ = ωλ in the latter case).
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Using fact 2.12 we can find two families of partitions

D =
{〈
Di
ζ : i < λζ

〉
: ζ < λ

}
and B =

{〈
B0
ξ , B

1
ξ :
〉

: ξ < 2κ
}

of κ such that D∪B is κ-independent, i. e.
∣∣D[η]∩B[ε]

∣∣ = κwhenever η ∈ FIN(~λ)

and ε ∈ Fn(2κ, 2). Then

D = {D[η] : η ∈ FIN(~λ)}

is a family of κ-dense sets in the space XB, hence we can apply theorem 2.13 with

B and D to get a family C of 2-partitions of κ satisfying 2.13(1)–(4). We shall

show that the C(κ)-space XC is as required.

Claim 2.21.1. For every family E ∈
[
D
]λ there isF ∈

[
E
]λ such thatD∩D′ ∈ D

(and hence is dense in XC) whenever {D,D′} ∈
[
F
]2.

Proof. We can write E = {D[ηγ] : γ < λ}. Since λ = cf(λ) > ω we can find

K ∈
[
λ
]λ such that {dom(ηγ) : γ ∈ K} forms a ∆-system with kernel K∗. Then∏

i∈K∗ λi < λ, hence, as λ is regular, there are a set I ∈
[
K
]λ and a fixed finite

function η ∈
∏

i∈K∗ λi ⊂ FIN(~λ) such that ηγ � K∗ = η for each γ ∈ I .

But then F = {D[ηγ] : γ ∈ I} is as required: for any {γ, δ} ∈
[
I
]2 we have

ηγ ∪ ηδ ∈ FIN(~λ), consequently

D[ηγ] ∩ D[ηδ] = D[ηγ ∪ ηδ] ∈ D.

2.21.1

Now, since ĉ(XC) = ω1 and the above claim holds we can apply lemma 2.8 to

conclude that XC is not λ-almost-resolvable.
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Let us now fix µ < λ. We first show that every D[η] ∈ D is µ-resolvable.

Indeed, choose ζ ∈ λ \ dom η with λζ ≥ µ. Clearly, then the family {D[η ∪

{〈ζ, γ〉}] : γ < λζ} forms a partition of D[η] into λζ ≥ µ many dense subsets.

Since XC is NODEC and D-forced, any crowded subspace S of XC is some-

where dense. Consequently, lemma 2.10 implies thatXC is hereditarily µ-resolvable.

2.21

Remark . It is well-known that any dense subspace of the Cantor cube D(2)λ has

weight (even π-weight) equal to λ. Consequently, any C(κ)-space (that is, by

definition, of cardinality κ) has maximum possible weight, that is 2κ. Now, ZFC

counterexamples to the Ceder-Pearson problem are naturally expected to have this

property. Indeed, for instance the forcing axiom BACH (see e.g. [35]) implies

that every topological space X with |X| = ∆(X) = ω1 and πw(X) < 2ω1 is

ω1-resolvable. Consequently, under BACH, any ω-resolvable space X satisfying

|X| = ω1 and πw(X) < 2ω1 is maximally resolvable.

By [21, Lemma 4], any topological space that is not ω-resolvable contains a

HI somewhere dense subspace. Theorem 2.21 shows that this badly fails if ω is

replaced by an uncountable cardinal.

Again by [21, Lemma 4], if a space X can be partitioned into finitely many

dense HI subspaces, then the number of pieces is uniquely determined. It follows

from our next result, theorem 2.22 below, that this is not the case for infinite

partitions. In fact, for every infinite cardinal κ there is a C(κ)-space that can be

simultaneously partitioned into λ many dense submaximal (and so HI) subspaces
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for all infinite λ ≤ κ.

Theorem 2.22 also gives an affirmative answer to the following question of

Eckertson, raised in [11, 3.4 and 3.6]: Does there exist, for each cardinal µ, a

µ+-resolvable space that can be partitioned into µ-many dense HI subspaces?

The proof of theorem 2.22 will require an even more delicate choice of the

family of dense sets D than the one we used in the proof of 2.21.

Theorem 2.22. For each infinite cardinal κ there is a C(κ)-space that can be

simultaneously partitioned into countably many dense hereditarily κ-resolvable

subspaces and also into µ many dense submaximal (and therefore HI) subspaces

for all infinite µ ≤ κ.

Proof. Let us start by setting λ0 = ω, λ1 = κ, and ~λ = 〈λi : i < 2〉, moreover

~κ = 〈κn : n < ω〉, where κ0 = ω and κn = κ for 1 ≤ n < ω.

By fact 2.12 there are three families of partitions of κ, say

B = {
〈
Bi
ζ : i < 2

〉
: ζ < 2κ},

E = {
〈
Ej
n : j < κn

〉
: n < ω},

and

F = {
〈
F k
` : k < λ`

〉
: ` < 2},

such that B ∪ E ∪ F is κ-independent, i.e. for each ε ∈ Fn(2κ, 2), η ∈ FIN(~κ),

and ρ ∈ FIN(~λ) we have

(†)
∣∣B[ε] ∩ E[η] ∩ F[ρ]

∣∣ = κ.
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Of course, (†) implies that all sets of the form E[η] ∩ F[ρ] are κ-dense in XB,

however the family D of κ-dense sets that we need will be defined in a more

complicated way.

To start with, let us write F` = {F k
` : k < λ`} for ` < 2 and then set

DE =
{
E[η] : η ∈ FIN(~κ)

}
and

DF = F0 ∪ F1 = {F k
` : ` < 2, k < λ`}.

Next let

DE,F = {E \ ∪F : E ∈ DE, F ∈
[
DF
]<ω}

and

DF,E = {F k
` \
(
(∪E) ∪ (∪F)

)
: F k

` ∈ DF, E ∈
[
DE
]<ω

, F ∈
[
F1−`

]<ω}.
Finally, we set

D = DE,F ∪ DF,E.

Every element of D contains some (in fact, infinitely many) sets of the form

E[η] ∩ F[ρ] and so is κ-dense in XB by (†).

Now we may apply theorem 2.13 with B andD to obtain a family of partitions

C of κ that satisfies 2.13 (1) - (4). We shall show that XC is as required.

Claim 2.22.1. E ∩ F is nowhere dense in XC whenever E ∈ DE and F ∈ DF.
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Proof. According to 2.6 it suffices to show that D \ (E ∩ F ) includes an element

of D whenever D ∈ D.

Now, if D = E ′ \ ∪F ∈ DE,F then

D \ (E ∩ F ) ⊃ E ′ \ (∪(F ∪ {F})) ∈ DE,F.

If, on the other hand, D = F k
` \
(
(∪E) ∪ (∪F)

)
∈ DF,E then

D \ (E ∩ F ) ⊃ F k
` \
(
(∪(E ∪ {E})) ∪ (∪F)

)
∈ DF,E.

2.22.1

Claim 2.22.2. F ∩ F ′ is nowhere dense in XC for all {F, F ′} ∈
[
DF
]2.

Proof. Again, by 2.6, it is enough to show that D \ (F ∩ F ′) includes an element

of D for each D ∈ D.

If D = E \ ∪F ∈ DE,F then

D \ (F ∩ F ′) ⊃ E \ (∪(F ∪ {F})) ∈ DE,F.

If D = F k
` \

(
(∪E) ∪ (∪F)

)
∈ DF,E and F ∩ F ′ 6= ∅ then we can assume that

F ∈ F` and F ′ ∈ F1−`. But then we have

D \ (F ∩ F ′) ⊃ F k
` \
(
(∪E) ∪ (∪(F ∪ {F ′}))

)
∈ DF,E.

2.22.2

Claim 2.22.3. Every D ∈ DE,F is κ-resolvable.
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Proof. Let D = E \∪F . Without loss of generality we can assume that E = E[η]

with dom η = n ∈ ω \ {0}. But then D is the disjoint union of the κn = κ many

dense sets

{E[η ∪ {〈n, ζ〉}] \ ∪F : ζ < κ}.

2.22.3

Claim 2.22.4. Ei
0 is hereditarily κ-resolvable for each i < ω = κ0.

Proof. Let us note first of all that for any

D = F \ ((∪E) ∪ (∪F)) ∈ DF,E

we have Ei
0 ∩D ⊂ Ei

0 ∩ F ∈ N (XC) by claim 2.22.1.

Now, let S be any crowded subspace of Ei
0. Since XC is NODEC and D-

forced, by lemma 2.10 there is a partial (D, XC)-mosaic

M =
⋃
{V ∩DV : V ∈ V} ⊂ S

that is dense in S. By our above remark, we must have DV ∈ DE,F whenever

V ∈ V , consequently M and hence S is κ-resolvable by claim 2.22.3 and fact 2.9.

2.22.4

We have thus concluded that {Ei
0 : i < ω} partitions XC into countably many

hereditarily κ-resolvable dense subspaces.

Claim 2.22.5. F k
` ⊂ XC is submaximal for all ` < 2 and k < λ`.
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Proof. SinceXC is NODEC, so is its dense subspace F k
` , hence it suffices to show

that F k
` is OHI. By lemma 2.7, this will follow if we can show that for eachD ∈ D

either F k
` ∩D or F k

` \D is nowhere dense in XC.

Case 1. D = E \ ∪F ∈ DE,F.

Then D ∩ F k
` ⊂ E ∩ F k

` ∈ N (XC) by claim 2.22.1.

Case 2. D = F ′ \ ((∪E) ∪ (∪F)) ∈ DF,E.

If F ′ 6= F k
` then F k

` ∩D ⊂ F k
` ∩ F ′ ∈ N (XC) by claim 2.22.2. Thus we may

assume that F ′ = F k
` and hence F k

` /∈ F because F ⊂ F1−`. But then

F k
` \D = F k

` \
(
F k
` \ ((∪E) ∪ (∪F))

)
=

F k
` ∩

(
(∪E) ∪ (∪F)

)
= ∪E∈E(F k

` ∩ E) ∪ ∪F∈F(F ∩ F k
` ),

where each F k
` ∩E is nowhere dense by claim 2.22.1 and each F ∩F k

` is nowhere

dense by claim 2.22.2, i.e. F k
` \D ∈ N (XC). 2.22.5

Claim 2.22.5 implies that XC can be partitioned into µ many dense submaxi-

mal subspaces for both µ = ω and µ = κ. Since C(κ)-spaces are CCC, it follows

from theorem 2.23 below that this is also valid for all µ with ω < µ < κ. 2.22

The following result is somewhat different from the others in that it has no

relevance to D-forced spaces. Still we decided to include it here not only because

it makes the proof of theorem 2.22 simpler but also because it seems to have

independent interest.

32



C
E

U
eT

D
C

ol
le

ct
io

n

Theorem 2.23. Let ω ≤ λ < µ < κ be cardinals and X be a topological space

with c(X) ≤ µ. If X can be partitioned into both λ many and κ many dense OHI

subspaces then X can also be partitioned into µ many dense OHI subspaces.

Proof. Let 〈Yσ : σ < λ〉 and 〈Zζ : ζ < κ〉 be two partitions of X into OHI sub-

spaces. For each σ < λ let

Uσ = {U ⊂ X : U is open and there is Iσ,U ∈
[
κ
]µ such that

Yσ ∩ ∪{Zζ : ζ ∈ Iσ,U} is dense in U}.

Since c(X) ≤ µ there is U∗σ ∈
[
Uσ
]≤µ such that Uσ = ∪U∗σ is dense in ∪Uσ.

Clearly, we also have Uσ ∈ Uσ. Next we set Vσ = X \ Uσ and Qσ = X \ (Uσ ∪

Vσ) = Fr(Uσ).

Since λ < µ we can pick I ∈
[
κ
]µ with

∪{Iσ,Uσ : σ < λ} ⊂ I

and then can choose J ∈
[
κ \ I

]λ. Let Z =
⋃
{Zζ : ζ ∈ I ∪ J}.

For σ ∈ λ let Rσ = Yσ ∩ Vσ ∩ Z. Since |I ∪ J | = µ, it follows from the

definition of Uσ and Vσ = X \ ∪Uσ that

(∗) Rσ is nowhere dense in X for each σ < λ.

Let Pσ = (Yσ ∩ Uσ) \ ∪{Zζ : ζ ∈ Iσ,Uσ} for σ < λ. Then Pσ is also nowhere

dense because ∪{Zζ : ζ ∈ Iσ,Uσ} ∩ Uσ ∩ Yσ is dense in Uσ and Yσ is OHI.

Now let {σζ : ζ ∈ J} be an enumeration of λ without repetition and for each

ζ ∈ J set

Tζ = (Zζ ∩ Uσζ) ∪
(
(Yσζ ∩ Vσζ) \ Z

)
.
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Claim 2.23.1. Each Tζ is a dense OHI subspace of X .

Proof. Zζ is dense in Uσζ and

(Yσζ ∩ Vσζ) \ Z = (Yσζ ∩ Vσζ) \Rσζ

is dense in Vσζ because Yσζ is dense and Rσζ = Yσζ ∩ Vσζ ∩ Z is nowhere dense

by (∗). Hence Tζ is dense. Tζ is OHI because both Zζ and Yσζ are.

Claim 2.23.2. The family {Zξ : ξ ∈ I} ∪ {Tζ : ζ ∈ J} is disjoint.

Proof. Assume first that ξ ∈ I and ζ ∈ J . Then ξ 6= ζ and hence

Tζ ∩ Zξ =
(
(Zζ ∩ Uσζ) ∪

(
(Yσζ ∩ Vσζ) \ Z

))
∩ Zξ

⊂ (Zζ ∩ Zξ) ∪ (Zξ \ Z) = ∅.

Next if {ζ, ξ} ∈
[
J
]2, then

Tζ ∩ Tξ =(
(Zζ ∩ Uσζ) ∪

(
(Yσζ ∩ Vσζ) \ Z

))
∩
(

(Zξ ∩ Uσξ) ∪
(
(Yσξ ∩ Vσξ) \ Z

))
⊂

(Zζ ∩ Zξ) ∪ (Zζ \ Z) ∪ (Zξ \ Z) ∪ (Yσζ ∩ Yσξ) = ∅.

Thus we would be finished if we could prove that

{Zξ : ξ ∈ I} ∪ {Tζ : ζ ∈ J}

covers X . However, we can only prove the following weaker statement.
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Claim 2.23.3.

X =
⋃
{Zξ : ξ ∈ I} ∪

⋃
{Tζ : ζ ∈ J} ∪

⋃
{Pσ ∪Qσ ∪Rσ : σ < λ}.

Proof. Let x ∈ X be any point then there is a unique σ < λ with x ∈ Yσ. If

x /∈ Uσ ∪ Vσ then, by definition, x ∈ Qσ.

So assume now that x ∈ Uσ. If x /∈ ∪{Zζ : ζ ∈ Iσ,Uσ} then x ∈ Pσ. Otherwise

x ∈ Zζ for some ζ ∈ Iσ,Uσ ⊂ I .

Finally, assume that x ∈ Vσ and let ζ ∈ J with σζ = σ. Now, if x /∈ Z then

x ∈ Tζ and if x ∈ Z then x ∈ Rσ.

The pairwise disjoint dense OHI subspaces {Zξ : ξ ∈ I} ∪ {Tζ : ζ ∈ J} thus

cover X apart from the nowhere dense sets Pσ ∪ Qσ ∪ Rσ for σ < λ. But then,

using the obvious fact that the union of a dense OHI subspace with any nowhere

dense set is OHI, the latter can be simply “absorbed” by the former, and thus a

partition of X into µ many dense OHI subspaces can be produced. 2.23

2.4 Applications to extraresolvability

In [8] Comfort and Hu investigated the following question: Are maximally resolv-

able spaces (strongly) extraresolvable? They presented several counterexamples,

but the following question was left open (see [8, Discussion 1.4]): Is there a max-

imally resolvable Tychonov space X with |X| = nwd(X) such that X is not

extraresolvable? Using our main theorem 2.13 we can give an affirmative answer

to this question in ZFC. Recall that ifX is a C(κ)-space then |X| = nwd(X) = κ.
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Theorem 2.24. For every infinite cardinal κ there is a C(κ)-space that is heredi-

tarily κ-resolvable (and hence maximally resolvable) but not extraresolvable.

Proof. Let ~κ = 〈κ, κ, . . .〉 be the constant κ sequence of length ω. By fact 2.12

there are a countable family D =
{
〈Di

m : i < κ〉 : m < ω
}

of κ-partitions of κ

and a family B =
{〈
B0
ξ , B

1
ξ :
〉

: ξ < 2κ
}

of 2-partitions of κ such that B ∪ D

is κ-independent, that is for each η ∈ FIN(~κ) = Fn(ω, κ) and ε ∈ Fn(2κ, 2) we

have

∣∣ D[η] ∩ B[ε]
∣∣ = κ.

Now let

D = {D[η] : η ∈ FIN(~κ)}

and apply theorem 2.13 to B andD to get a family C of 2-partitions of κ satisfying

2.13 (1) - (4).

Since |D| = κ and ĉ(XC) = ω1, it follows from lemma 2.8 that XC is not

κ+-almost-resolvable( = almost-resolvable).

Next, if D[η] ∈ D then {D[η_ 〈ζ〉] : ζ < κ} partitions D[η] into κ many

dense sets, i.e. D[η] is κ-resolvable. Hence, by lemma 2.10, XC is hereditarily

κ-resolvable.

Our next two results are natural analogues of theorems 2.18 and 2.21 with µ-

resolvability replaced by µ-extraresolvability. Before formulating them, however,

we need a new piece of notation.
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Definition 2.25. Given a family D =
{〈
D0
ξ , D

1
ξ

〉
: ξ ∈ ρ

}
of 2-partitions of a

cardinal κ we set

I(D) = {D0
ζ \ ∪ξ∈ΞD

0
ξ : ζ ∈ ρ ∧ Ξ ∈

[
ρ \ {ζ}

]<ω}.
Theorem 2.26. For any infinite cardinals κ ≤ λ ≤ 2κ there is a λ-extraresolvable

C(κ)-space X that is not λ+-almost-resolvable. Moreover, every crowded sub-

space of X has a dense submaximal subspace.

Proof. By fact 2.12 there are families of 2-partitions of κ, say D = {
〈
D0
ζ , D

1
ζ

〉
:

ζ < λ} and B = {
〈
B0
ξ , B

1
ξ

〉
: ξ < 2κ}, such that B ∪ D is κ-independent, i. e.∣∣D[η] ∩ B[ε]

∣∣ = κ for all η ∈ Fn(λ, 2) and ε ∈ Fn(2κ, 2).

Then D = I(D) is a family of κ-dense subsets of XB, hence we can apply the

main theorem 2.13 to B and D to obtain a family of partitions C satisfying 2.13

(1) - (4). We shall show that XC is as required.

Claim 2.26.1. D0
ζ ∩D0

ξ ∈ N (XC) for each pair {ζ, ξ} ∈
[
λ
]2.

Proof. Write Y = D0
ζ ∩D0

ξ and D = D0
ν \ ∪η∈ΞD

0
η be an arbitrary member of D.

We can assume that ξ 6= ν and so

D \ Y = (D0
ν \ ∪η∈ΞD

0
η) \ (D0

ζ ∩D0
ξ) ⊃ D0

ν \ ∪η∈Ξ∪{ξ}D
0
η ∈ D,

showing that D \ Y is dense in XC. Hence, by lemma 2.6, Y is nowhere dense in

XC.

Thus the family {D0
ξ : ξ ∈ λ} witnesses that XC is λ-almost-resolvable. On

the other hand, since |D| = λ and c(XC) = ω, lemma 2.8 implies that XC is not

λ+-almost-resolvable.
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Claim 2.26.2. Every S ∈ D is a submaximal subspace of XC.

Proof. Let S = D0
ν \ ∪η∈ΞDη, moreover D = D0

µ \ ∪η∈ΨD
0
η be an arbitrary

member of D. If ν = µ then, by claim 2.26.1,

S \D = (D0
ν \ ∪η∈ΞD

0
η) \ (D0

ν \ ∪η∈ΨD
0
η) ⊂

⋃
η∈Ψ

D0
ν ∩D0

η ∈ N (XC)

and so S ⊂∗ D. If, on the other hand, ν 6= µ then we have

S ∩D = (D0
ν \ ∪η∈ΞD

0
η) ∩ (D0

ν \ ∪η∈ΨD
0
η) ⊂ D0

ν ∩D0
µ ∈ N (XC)

by claim 2.26.1 again, consequently S ∩ D =∗ ∅. Thus S is OHI by lemma 2.7,

and since XC is NODEC, S is even submaximal.

Claim 2.26.2 clearly implies that all D-pieces and hence all partial D-mosaics

are submaximal subspaces ofXC. ButXC isD-forced and NODEC, and therefore,

by lemma 1.10, every crowded subspace of XC includes a partial D-mosaic as a

dense subspace. 2.26

Let us remark that theorem 2.26 makes sense, and remains valid, for λ < κ

as well. However, in this case theorem 2.18 yields a stronger result. This is the

reason why we only formulated it for λ ≥ κ. This remark also applies to our

following result that implies an analogue of theorem 2.21 for µ-extraresolvability

instead of µ-resolvability.

Theorem 2.27. Let κ < λ = cf(λ) ≤ (2κ)+ be infinite cardinals. Then there is a

C(κ)-space that is
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1. hereditarily κ-resolvable,

2. hereditarily µ-almost-resolvable for all µ < λ,

3. not λ-almost-resolvable.

Proof. Similarly as in the proof of 2.21, let the sequence ~λ = 〈λζ : ζ < λ〉 be

given by λζ = ωζ if λ is a limit (hence inaccessible) cardinal, and let λζ = ρ for

each ζ < λ if λ = ρ+ is a successor.

Using fact 2.12 again, we can find the following two types of families of 2-

partitions of κ:

B =
{〈
B0
ξ , B

1
ξ

〉
: ξ < 2κ

}
and

Dζ =
{〈
D0
ζ,ν , D

1
ζ,ν

〉
: ν < λζ

}
for all ζ < λ, moreover a countable family

G = {
〈
Gi
n : i < κ

〉
: n < ω}

of κ-partitions of κ such that B ∪
⋃
ζ<λ Dζ ∪G is κ-independent.

Now let D be the family of all sets of the form ∩i<nEi ∩ G[η] where n < ω

and Ei ∈ I(Dζi) with all the ζi distinct, moreover η ∈ Fn(ω, ω). It is easy to see

that D is a family of κ-dense sets in XB, so we may apply theorem 2.13 with B

and D to get a family of partitions C satisfying 2.13 (1) - (4). We claim that XC

is as required.

Indeed, as we have already seen many times, the G[η] components of the ele-

ments of D can be used to show that every D ∈ D is κ-resolvable. But then, as
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XC is both D-forced and NODEC, every crowded subspace of XC is κ-resolvable

by lemma 2.10, hence (1) is proven.

To prove (2), we need the following statement.

Claim 2.27.1. Assume that ζ < λ and {ν, ν ′} ∈ [λζ ]
2. Then

Y = D0
ζ,ν ∩D0

ζ,ν′ ∈ N (XC).

Proof. Let D = ∩i<nEi ∩G be an arbitrary element of D, where n ∈ ω, {ζi : i <

n} ∈
[
λ
]n with Ei ∈ I(Dζi) for all i < n, and G = G[η] for some η ∈ Fn(ω, ω).

Our aim is to check that D \ Y is dense, hence, by shrinking D if necessary, we

may assume that ζ0 = ζ and E0 = D0
ζ,ϕ \ ∪ξ∈ΨD

0
ζ,ξ. Since ν 6= ν ′ we can assume

that ϕ 6= ν. Then

D \ Y ⊃ (∩i<nEi ∩G) \D0
ζ,ν =

= (D0
ζ,ϕ \ ∪ξ∈Ψ∪{ν}D

0
ζ,ξ) ∩

n−1⋂
i=1

Ei ∩ G ∈ D.

Hence, D \ Y is indeed dense and so, by lemma 2.6, Y is nowhere dense in

XC.

Assume now that D = ∩i<nEi ∩ G is again an arbitrary element of D with

Ei ∈ I(Dζi) for all i < n. By claim 2.27.1, for every ζ that is distinct from all the

ζi the collection

{D ∩D0
ζ,ν : ν < λζ}

consists of members of D that have pairwise nowhere dense intersections, hence

D is λζ-almost-resolvable . Clearly, this implies that D is µ-almost-resolvable for
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all µ < λ. By lemma 2.10, since XC is D-forced and NODEC it follows that XC

is hereditarily µ-extraresolvable for all µ < λ and thus (2) has been established.

Finally, a standard ∆-system and counting argument proves that for each E ∈[
D
]λ there is F ∈

[
E
]λ such that F ∩ F ′ ∈ D whenever {F, F ′} ∈

[
F
]2. Hence,

by lemma 2.8, the space XC is not λ-almost-resolvable, proving (3).

Having seen these parallels between resolvability and extraresolvability, it is

interesting to note that we do not know if the analogue of Bashkara Rao’s “com-

pactness” theorem holds for extraresolvability.

Problem 2.28. Assume that λ is a singular cardinal with cf(λ) = ω and the space

X is µ-almost-resolvable for all µ < λ. Is it true then that X is also λ-almost-

resolvable ?

3 Spaces having small spread

El’kin proved in [12] that, for any cardinal κ, every space may be written as

the disjoint union of a hereditarily κ-irresolvable open subset and a κ-resolvable

closed subset. As Pavlov observed in the introduction of [31], this statement has

the following reformulation.

Lemma 3.1. A topological space X is κ-resolvable iff every nonempty open sub-

space of X includes a nonempty κ-resolvable subset, in other words: iff X has a

π-network consisting of κ-resolvable subsets.
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For any topological spaceX we let ls(X) denote the minimum number of left-

separated subspaces needed to cover X . The following lemma is implicit in the

proof of [31, Theorem 2.8] and easily follows from the well-known fact that every

space has a dense left-separated subspace, see e. g. [22, 2.9.c].

Lemma 3.2. If for each U ∈ τ ∗(X) we have ls(U) ≥ κ, that is no nonempty

open set in X can be covered by fewer than κ many left separated sets, then X is

κ-resolvable.

Our next lemma generalizes propositions 2.3 and 3.3 from [31]. We believe

that our present approach is not only more general but also simpler than that in

[31]. To formulate the lemma, we need to introduce a piece of notation.

Given a family of sets A and a cardinal κ, we denote by Sκ(A) the collection

of all disjoint subfamilies of A of size less than κ, i. e.

Sκ(A) = {A′ ∈
[
A
]<κ

: A′ is disjoint}.

Lemma 3.3. Let us be given a topological space X , a dense set D ⊂ X , an

infinite cardinal κ ≥ |D|, moreover a family I ⊂ P(X) of subsets of X . If for

each x ∈ D and for any Y ∈ Sκ(I) there is a set Z ∈ I such that ∪Y ∩ Z = ∅

and x ∈ Z then X is κ-resolvable.

Proof. Let {xα : α < κ} = D be a κ-abundant enumeration of D, that is for any

point x ∈ D we have ax = {α : xα = x} ∈ [κ]κ. By a straightforward transfinite

recursion on α < κ we may then choose sets Zα ∈ I ∩ P(X \ ∪ν<αZν) with

xα ∈ Zα for all α < κ. (Note that we have {Zν : ν < α} ∈ Sκ(I) along the way.)
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For any ordinal i < κ and for any point x ∈ D let αxi be the ith element of the

set ax and set

Di =
⋃
{Zαxi : x ∈ D}.

Then clearly D ⊂ Di , hence {Di : i < κ} is a disjoint family of dense sets,

witnessing that X is κ-resolvable.

As an illustration, note that if |X| = ∆(X) = κ > λ and t(x,X) ≤ λ holds

for all points x ∈ D of a set D which is dense in the space X , then D, X , κ, and

I =
[
X
]≤λ satisfy the conditions of lemma 3.3 and so X is κ-resolvable. Thus

we obtain the following result as an immediate corollary of lemma 3.3.

Corollary 3.4. If ∆(X) > sup{t(x,X) : x ∈ D} for some dense setD ⊂ X then

X is maximally resolvable. In particular, if ∆(X) > t(X) then X is maximally

resolvable.

The second statement is a theorem of Pytkeev from [32].

3.1 Improving Pavlov’s result concerning spread

As was mentioned in the abstract, in [31] Pavlov defined ps(X) as the smallest

successor cardinal such that X has no discrete subset of that size. We recall from

[22, 1.22] the related definition of ŝ(X) that is the smallest uncountable cardinal

such thatX has no discrete subset of that size. Clearly, one has ŝ(X) ≤ ps(X) and

ŝ(X) = ps(X) iff ŝ(X) is a successor. Finally, let us define rs(X) as the smallest

uncountable regular cardinal such that X has no discrete subset of that size. Then

we have ŝ(X) ≤ rs(X) ≤ ps(X) and ŝ(X) = rs(X) iff ŝ(X) is regular.
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In [31] it was shown that if a space X satisfies ∆(X) > ps(X) then X is

maximally (i. e. ∆(X)) resolvable. The aim of this section is to improve this

result by showing that the assumption ∆(X) > ps(X) can be relaxed to ∆(X) ≥

rs(X).

Before doing that, however, we have to give an auxiliary result that involves

the cardinal function h(X), or more precisely its "hatted" version ĥ(X). We recall

that ĥ(X) is the smallest uncountable cardinal such that X has no right separated

subset of that size, or equivalently, the smallest uncountable cardinal κ with the

property that any family U of open sets in X has a subfamily V of size < κ such

that ∪V = ∪U , see e. g. [22, 2.9.b].

Lemma 3.5. If κ is an uncountable regular cardinal and

|X| ≥ κ ≥ ĥ(X)

then X contains a κ-resolvable subspace X∗.

Proof. We can assume without loss of generality that X = 〈κ, τ〉. Let us denote

by NS(κ) the ideal of non-stationary subsets of κ and set G = {U ∈ τ : U ∈

NS(κ)}. Since ĥ(X) ≤ κ there is G ′ ∈
[
G
]<κ with ∪G ′ = ∪G = G. Then

G ∈ NS(κ) because the ideal NS(κ) is κ-complete.

Let us now consider the set

T = {x ∈ κ : ∃Cx ⊂ κ club (∀S ⊂ Cx if S ∈ NS(κ) then x /∈ S)}.

Claim 3.5.1. T ∈ NS(κ).
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Assume, on the contrary, that T is stationary in κ. Fix for each x ∈ T a club

Cx as above. Then the diagonal intersection

C = 4{Cx : x ∈ T}

is again club and so C ∩ T is stationary in κ as well. We may then choose a set

S ∈
[
C ∩ T

]κ that is non-stationary. But then for each x ∈ S we have

S \ (x+ 1) ⊂ C \ (x+ 1) ⊂ Cx,

hence by the choice of Cx we have x /∈ S \ (x+ 1). Consequently, S is right

separated in its natural well-ordering, contradicting the assumption ĥ(X) ≤ κ,

and so our claim has been verified.

Finally, put X∗ = X \ (G∪T ) and I = NS(κ)∩P(X∗). Then lemma 3.3 can

be applied to the space X∗, with itself as a dense subspace, the cardinal κ, and the

family I. Indeed, for any point x ∈ X∗ and for any non-stationary set Y ⊂ X∗

there is a club set C ⊂ X∗\Y , and then x /∈ T implies that x ∈ Z for some

non-stationary set Z ⊂ C. (We have, of course, used here that I is κ-complete.)

This shows that X∗ is indeed κ-resolvable.

We are now ready to formulate and prove the promised improvement of Pavlov’s

theorem.

Theorem 3.6. Let X be a space and κ be a regular cardinal such that

ŝ(X) ≤ κ ≤ ∆(X),
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then X is κ-resolvable. Consequently, if ∆(X) ≥ rs(X) holds for a space X

then X is maximally resolvable. In particular, any space of countable spread and

uncountable dispersion character is maximally resolvable.

Proof. In view of lemma 4.1 it suffices to show that any non-empty open subset

G of X includes a κ-resolvable subspace. To this end, note that, trivially, for each

G ∈ τ ∗(X) we have either

(i) ls(H) ≥ κ for all H ∈ τ ∗(G),

or

(ii) ls(H) < κ for some H ∈ τ ∗(G).

In case (i)G itself is κ-resolvable by lemma 3.2. In case (ii) we claim that ĥ(H) ≤

κ holds true and therefore H (and hence G) contains a κ-resolvable subset by

lemma 3.5. Assume, on the contrary, that R ⊂ H is right-separated and has

cardinality κ. Since H =
⋃
{Lα : α < ls(H)}, where the sets Lα are all left-

separated, there is an α < ls(H) < κ such that |R∩Lα| = κ because κ is regular.

But then the subspace R ∩ Lα is both right and left separated, hence (see e. g.

[22, 2.12]) it contains a discrete subset of size |R ∩ Lα| = κ, contradicting our

assumption that ŝ(X) ≤ κ.

If ∆(X) is regular then this immediately yields that X is maximally resolv-

able, while if ∆(X) is singular then, as rs(X) is regular, we have

∆(X) > rs(X)+ ≥ ps(X),
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hence Pavlov’s result [31, 2.9] may be applied to get the second part, of which the

third is a special case.

It is natural to raise the question if theorem 3.6 could be further improved by

replacing rs(X) with ŝ(X) in it. Of course, this is really a problem only in the

case when

∆(X) = ŝ(X) = λ

is a singular cardinal. Recall now that Hajnal and Juhász proved in [19] (see also

[22, 4.2]) that ŝ(X) can not be singular strong limit for a Hausdorff space X .

Consequently, the above mentioned strengthening is valid for Hausdorff spaces

provided that all singular cardinals are strong limit, in particular if GCH holds.

Corollary 3.7. Assume that for every (infinite) cardinal κ the power 2κ is a finite

successor of κ (or equivalently, all singular cardinals are strong limit). Then every

Hausdorff space X satisfying ∆(X) ≥ ŝ(X) is maximally resolvable.

It is also known (see e. g. [22, 4.3]) that ŝ(X) can not have countable cofinality

for a strongly Hausdorff, in particular for a T3 space X . Hence the first interesting

ZFC question that is left open by theorem 3.6 is the following.

Problem 3.8. Assume that X is a T3 space satisfying

ŝ(X) = ∆(X) = ℵω1 .

Is X then (maximally) resolvable?
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It is clear that if in theorem 3.6 we have ∆(X) = λ > rs(X) then the first

part may be applied to any regular cardinal κ with rs(X) ≤ κ ≤ λ, hence if λ

is singular then we obtain that X is (< λ)-resolvable without any reference to

Pavlov’s result. This is of significance because the proof of Pavlov’s theorem in

the case when ∆(X) is singular is rather involved. However, if in addition λ has

countable cofinality then no reference to Pavlov’s proof is needed because of the

following result of Bhaskara Rao.

Theorem (Bhaskara Rao, [3]). If cf(λ) = ω and the space X is (< λ)-resolvable

then X is also λ-resolvable.

The question if the analogous result can be proved for singular cardinals of

uncountable cofinality is one of the outstanding open problems in the area of re-

solvability and was already formulated in [23]. We just repeat it here.

Problem 3.9. Assume that λ is a singular cardinal with cf(λ) > ω and the space

X is (< λ)-resolvable. Is it true then that X is also λ-resolvable?

We close this section by giving a partial affirmative answer to problem 3.9.

At the same time we shall also show how the first part of theorem 3.6 implies the

second in case ∆(X) is singular, thus making our proof of 3.6 self-contained. To

do this, we shall first fix some notation.

Definition 3.10. For any space X we let D(X) denote the family of all dense

subsets of X . Next, we set

F(X) = ∪{D(U) : U ∈ τ ∗(X)};
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we call the members of F(X), i. e. dense subsets of (non-empty) open sets, fat

sets in X .

For a subspace Y ⊂ X and a cardinal ν we let

H(Y, ν) = F(X) ∩ [Y ]≤ν ,

in other words, H(Y, ν) is the family of all fat (in X !) subsets of Y of size at

most ν. It is easy to see that if c(X) ≤ ν and H(Y, ν) is non-empty then there is

a member H(Y, ν) ∈ H(Y, ν) of maximal closure, i. e. such that

H(Y, ν) = ∪H(Y, ν).

(If H(Y, ν) is empty then we set H(Y, ν) = ∅.) Clearly, if Y ⊂ Z ⊂ X and

c(X) ≤ ν then we have

H(Y, ν) ⊂ H(Z, ν).

Finally, we define the local density d0(X) of the space X by

d0(X) = min{d(U) : U ∈ τ ∗(X)}.

Clearly, we have

d0(X) = min{|A| : A ∈ F(X)} = min{∆(D) : D ∈ D(X)}.

The following result is obvious but very useful.

Lemma 3.11. Let X be a space and λ a singular cardinal such that every D ∈

D(X) is (< λ)-resolvable. Then X is λ-resolvable.
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As an immediate consequence of lemma 3.11 and of the first part of theorem

3.6 we obtain that if λ is singular and s(X) < λ ≤ d0(X) then X is λ-resolvable.

(Of course, here s(X) < λ is equivalent with ŝ(X) < λ or with ps(X) < λ.)

The following lemma shows that, under certain simple and natural conditions,

if a space X is not µ-resolvable for some cardinal µ then some open set V ∈

τ ∗(X) satisfies a condition just slightly weaker than µ ≤ d0(V ).

Lemma 3.12. Let X and µ be such that c(X) < µ ≤ ∆(X). Then either X is

µ-resolvable or

(∗) there is V ∈ τ ∗(X) such that for each κ < µ there is T ∈
[
V
]<µ with

d0(V \T ) > κ.

If µ is regular then V ∈ τ ∗(X) and T ∈ [V ]<µ may even be chosen so that

d0(V \T ) ≥ µ.

Proof of lemma 3.12. Let us first consider the case when µ is regular and assume

that for all V ∈ τ ∗(X) and T ∈ [V ]<µ we have d0(V \T ) < µ. We define pairwise

disjoint dense sets Dα ∈ D(X) ∩ [X]<µ for α < µ by transfinite recursion as

follows.

Assume that {Dβ : β ∈ α} ⊂ D(X)∩[X]<µ have already been defined and set

T = ∪{Dβ : β ∈ α}, then |T | < µ as µ is regular. LetW be a maximal disjoint

collection of open sets W ∈ τ ∗(X) such that d(W\T ) < µ. By our assumption,

then ∪W is dense in X and hence so is ∪{W\T : W ∈ W}. So if for each

W ∈ W we fix DW ∈ D(W\T ) with |DW | < µ then Dα = ∪{DW : W ∈ W}
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is dense in X as well and clearly |Dα| < µ. The family {Dα : α < µ} witnesses

that X is µ-resolvable.

So let us assume now that µ is singular and fix a strictly increasing sequence

〈µα : α < cf(µ)〉 of regular cardinals converging to µ with c(X) · cf(µ) < µ0.

We then define a cf(µ) × µ type matrix {Aαξ : α < cf(µ), ξ < µ} of pairwise

disjoint subsets of X , column by column in cf(µ) steps, as follows:

Xα = X \
⋃
{Aβξ : β < α, ξ < µ},

Aαξ = H(Xα \ ∪{Aαζ : ζ < ξ}, µα).

Observe that we have |Aαξ | ≤ µα, moreover

(†) Aαξ ⊇ Aαη whenever α < cf(µ) and ξ ≤ η < µ.

Let us put Aξ =
⋃
{Aαξ : α < cf(µ)} for ξ < µ. The sets Aξ are pairwise

disjoint, so if they are all dense in X then X is µ-resolvable. Thus we can assume

that at least one of them is not dense in X , hence there is a nonempty open set

V ⊂ X and an ordinal ξ? < µ such that V ∩ Aξ? = ∅. Then we also have

(‡) V ∩ Aη = ∅ for each η ≥ ξ?

because of (†).

For κ < µ pick β < cf(µ) with κ ≤ µβ and put

T =
⋃
{Aαξ : α ≤ β, ξ < ξ∗}.

Then |T | ≤ µβ · |ξ∗| < µ and it is immediate from our definitions that then we

have d0(V \T ) > µβ ≥ κ. 3.12
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Before giving our next result we introduce a refined version of the family of fat

sets H(Y, ν) defined above and of the associated operator H(Y, ν). If a cardinal

% < ν is also given, then we let

H(Y, %, ν) = {A ∈ H(Y, ν) : ∆(A) ≥ %}.

Again, if c(X) ≤ ν and H(Y, % , ν) is non-empty then H(Y, %, ν) has a member

H(Y, ρ, ν) of maximal closure. IfH(Y, %, ν) is empty then we set H(Y, %, ν) = ∅.

Lemma 3.13. Assume that X is a topological space and µ is a singular cardinal

with c(X) < µ ≤ ∆(X), moreover X satisfies condition (∗) from lemma 3.12, i.

e. for every κ < µ there is a set T ∈ [X]<µ such that d0(X\T ) > κ. Then we

have either (i) or (ii) below.

(i) There is a disjoint family {Dα : α < cf(µ)} ⊂ F(X) ∩ [X]<µ such that

∆(Dα) converges to µ, moreover

∪{Dγ : γ ≥ α} ∈ D(X)

for all α < cf(µ).

(ii) There are an open set W ∈ τ ∗(X) and a set T ∈ [X]<µ with d0(W\T ) ≥ µ.

Proof of 3.13. Fix the same strictly increasing sequence 〈µα : α < cf(µ)〉 of reg-

ular cardinals converging to µ with c(X) · cf(µ) < µ0 as in the above proof. Note

that then for each α < cf(µ) we have

µ−α = sup{µβ : β < α} < µα.
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Then by a straight-forward transfinite recursion on α < cf(µ) we define disjoint

sets Dα ∈ [X]<µ as follows.

If Dβ has been defined for each β < α then set

Dα = H(X\ ∪ {Dβ : β < α}, µ−α , µα).

(Note that Dα may be empty but it is a member of F(X) if it is not.) Next, for

each α < cf(µ) we let

Eα = ∪{Dγ : γ ≥ α}.

Assume first that Eα ∈ D(X) for all α < cf(µ). In particular, then Dα 6= ∅

for cofinally many α < cf(µ), hence by re-indexing we may actually assume that

Dα 6= ∅ for all α < cf(µ). Now, ∆(Dα) > µ−α immediately implies that ∆(Dα)

converges to µ, hence (i) is satisfied.

Next, assume that some Eα is not dense, hence there is a W ∈ τ ∗(X) with

W ∩Eα = ∅. Since X satisfies (∗) there is a set S ∈ [X]<µ such that d0(X\S) >

µα. Let us set

T = ∪{Dβ : β < α} ∪ S,

then |T | < µ as well, moreover we claim that d0(W\T ) = κ ≥ µ.

Assume, indirectly, that U ∈ τ ∗(W ) and d(U\T ) = κ < µ. Since U\T ⊂

X\S we have κ > µα, hence if δ < cf(µ) is chosen so that

µ−δ ≤ κ < µδ

then α < δ. Let A be any dense subset of U\T of size κ, then clearly ∆(A) = κ

as well, moreover A ⊂ X\∪{Dβ : β < δ} holds because W ∩Eα = ∅. But then,
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by our definition, we have

A ∈ H(X\ ∪ {Dβ : β < δ}, µ−δ , µδ),

hence A ⊂ Dδ, contradicting that W ∩Dδ = ∅. 3.13

We now give one more easy result that, for a limit cardinal λ, may be used to

conclude λ-resolvability.

Lemma 3.14. Let X be a space and λ a limit cardinal and assume that {Dα :

α < cf(λ)} are disjoint subsets of X such that

∪{Dα : β ≤ α < cf(λ)} ∈ D(X)

for every β < cf(λ). Assume also that Dα is κα-resolvable for each α < cf(λ)

and the sequence 〈κα : α < cf(λ)〉 converges to λ. Then X is λ-resolvable.

Proof of 3.14. For each α < cf(λ) fix a disjoint family

{Eα
ξ : ξ < κα} ⊂ D(Dα),

then for any ξ < λ set

Eξ = ∪{Eα
ξ : ξ < κα}.

Since the κα converge to λ, for any fixed ξ < λ we eventually have ξ < κα and so

Eξ is dense in X . Consequently the disjoint family {Eξ : ξ < λ} witnesses that

X is λ-resolvable.

From the above results and the first part of theorem 3.6 we may now easily

obtain the "missing" second part. Indeed, assume that λ is singular and s(X) <
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∆(X) = λ. Reasoning inductively, we may assume that if s(Y ) < ∆(Y ) < λ

then Y is maximally, that is ∆(Y )-resolvable.

Now, by lemma 4.1, to prove that X is λ-resolvable it suffices to show that

some subspace of X is. Since c(X) ≤ s(X), from lemmas 3.12 and 3.13 it

follows that, ifX itself is not λ-resolvable, then either there are aW ∈ τ ∗(X) and

a T ∈ [W ]<λ such that d0(W\T ) ≥ λ or there is a V ∈ τ ∗(X) with disjoint sets

{Dα : α < cf(λ)} ⊂ F(V ) such that ∆(Dα) converges to λ and

∪{Dγ : α ≤ γ < cf(λ)} ∈ D(X)

for all α < cf(λ). But we have seen that in the first case W\T (and hence W ),

while in the second V is λ-resolvable.

We are now ready to present our result that, under certain conditions, enables

us to deduce λ-resolvability from (< λ)-resolvability for a singular cardinal λ.

We first recall that ĉ(X) is defined as the smallest (uncountable) cardinal such

that X has no disjoint family of open sets of that size. As was shown in [14] (see

also [22, 4.1]), ĉ(X) is always a regular cardinal. We also note that if λ is a limit

cardinal then every (< λ)-resolvable space S has dispersion character ∆(S) ≥ λ.

Theorem 3.15. Assume that X is a topological space, λ is a singular cardinal,

and ĉ(X) ≤ cf(λ) < λ ≤ ∆(X). If every dense subspace S ⊂ X satisfying

∆(S) ≥ λ is (< λ)-resolvable then X is actually λ-resolvable.

Proof of 3.15. Let us start by pointing out that if A is fat in X then S = A ∪

(X\A) ∈ D(X), moreover ∆(A) ≥ λ implies ∆(S) ≥ λ. So, every fat set
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A ∈ F(X) that satisfies ∆(A) ≥ λ is (< λ)-resolvable. It immediately follows

from this that the conditions on our space X are inherited by all non-empty open

subspaces, hence by lemma 4.1 it is again sufficient to prove that X has some

λ-resolvable subspace.

Now, if some A ∈ F(X) satisfies d0(A) ≥ λ then ∆(B) ≥ λ holds for every

B ∈ D(A), hence all dense subsets of A are (< λ)-resolvable. But then, by

lemma 3.11, A is λ-resolvable.

Therefore, from here on we may assume that d0(A) < λ for all A ∈ F(X).

Actually, we claim that then even d(A) < λ holds wheneverA ∈ F(X). Indeed, if

A ∈ D(U) for some U ∈ τ ∗(X) then letW be a maximal disjoint family of open

sets W ⊂ U such that d(A ∩W ) < λ. Then ĉ(X) ≤ cf(λ) = κ implies |W| < κ,

moreover ∪W is clearly dense in U by our assumption. But then ∪W∩A is dense

in A and so

d(A) ≤ d(∪W ∩ A) =
∑
{d(W ∩ A) : W ∈ W} < λ.

(We note that this is the only part of the proof where ĉ(X) ≤ cf(λ) is used rather

than the weaker assumption c(X) < λ.)

By lemma 3.12, if X itself is not λ-resolvable then there is a V ∈ τ ∗(X) that

satisfies condition (∗). We shall show that then V is λ-resolvable.

To see this, first fix a strictly increasing sequence 〈λα : α < κ〉 of cardinals

converging to λ and then, using (∗), fix for each α < κ a set Tα ∈ [V ]<λ with

d0(V \Tα) > λα. Having done this, we define disjoint sets Dα ∈ D(V ) ∩ [V ]<λ

by transfinite induction on α < κ as follows.
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Assume that α < κ and Dβ ∈ D(V )∩ [V ]<λ has been defined for each β < α.

Set

Zα = X \ (∪{Dβ : β < α} ∪ Tα),

then Zα is dense in V because ∆(X) ≥ λ. But then d(Zα) < λ, hence we may

pick Dα ∈ D(Zα) ⊂ D(V ) with |Dα| < λ. Note that as Dα ⊂ V \ Tα we also

have ∆(Dα) > λα.

Now consider any partition {Jξ : ξ < κ} of κ into κ many sets of size κ and

for each ξ < κ put

Eξ = ∪{Dα : α ∈ Jξ}.

Then each Eξ is dense in V and clearly ∆(Eξ) = λ, hence it is (< λ)-resolvable.

But the Eξ’s are pairwise disjoint, hence obviously V is λ-resolvable. 3.15

We do not know if the assumption ĉ(X) ≤ cf(λ) can be relaxed to c(X) < λ

in theorem 3.15, or even if it can be dropped altogether.

3.2 A simpler proof of Pavlov’s theorem concerning extent

The extent e(X) of a space X is defined as the supremum of sizes of all closed

discrete subspaces of X . (This is Archangelskiǐ’s notation, in [31] ext(X) and in

[22] p(X) is used to denote the same cardinal function.) Similarly as in the previ-

ous section for the spread s(X), we may define ê(X) as the smallest infinite (but

not necessarily uncountable) cardinal such that X has no closed discrete subset of

that size. Note that a space X is countably compact iff ê(X) = ω. Clearly, one

has ê(X) ≤ pe(X) (the latter was defined in the abstract).
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In [31] it was proved that ∆(X) > pe(X) implies the ω-resolvability of X

for any T3 space X . In this section we shall present our proof of the slightly

stronger result in which only ∆(X) > ê(X) is used. We believe that this proof

is significantly simpler than the one given in [31], although it follows the same

steps.

We start with giving our simplified proof of the following result of Pavlov

concerning spaces that are finite unions of left separated subspaces.

Theorem 3.16. (PAVLOV)[31, LEMMA 3.1] Assume that ls(X) < ω and κ ≤

|X| is an uncountable regular cardinal. Then there is a strictly increasing and

continuous sequence 〈Fα : α < κ〉 of closed subsets of X with |Fα| < κ for all

α < κ.

Proof. We prove the theorem by induction on ls(X). So assume that it is true

for ls(X) = k and consider X =
⋃

0≤i≤k Li where the Li are disjoint and left

separated, moreover ω < κ ≤ |X|. We may clearly assume that the left separating

order type of each Li is ≤ κ.

Assume that S is an initial segment of some Li with tp(S) < κ and |S| ≥ κ

(closures are always taken in X). Since S ∩ Li = S we may apply the inductive

hypothesis to S\S and find an increasing and continuous κ-sequence 〈Fα : α < κ〉

of its closed subsets of size < κ. But then the traces Fα ∩ S will stabilize and

|Fα| ≤ |Fα| + |S| < κ, hence a suitable final segment of 〈Fα : α < κ〉 is as

required. Almost the same argument shows that the inductive step can also be

completed if |Li| < κ for some i. So we may assume that tpLi = κ for each i
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and that |A| < κ whenever A ∈ [X]<κ.

Let yα denote the αth member of L0 and use the inductive assumption to find

an increasing and continuous κ-sequence 〈Fα : α < κ〉 of closed subsets of⋃
1≤i≤k Li of size < κ, and then consider the set

I = {α < κ : yα ∈ Fα}.

Assume first that |I| < κ and hence σ = sup I < κ. We claim that then the

set

J = {β > σ : Fβ 6= ∪γ<βFγ}

is non-stationary in κ. Indeed, for each β ∈ J there must be some g(β) < κ with

yg(β) ∈ Fβ \ ∪γ<βFγ . Since g(β) ≥ β > σ would imply g(β) /∈ I and hence

yg(β) /∈ Fg(β) ⊃ Fβ,

we must have g(β) < β. But the regressive function g is clearly one-to-one on J ,

hence by Fodor’s (or Neumer’s) pressing down theorem J is non-stationary. So

there is a club set C in κ with C ∩ J = ∅, and then the sequence
〈
Fα : α ∈ C\σ

〉
clearly satisfies our requirements.

So we may assume that |I| = κ. For each α < κ let us putHα = {yγ : γ ∈ I ∩ α}.

Note that we have Hα ⊂ Fα by the definition of I . Next, consider the set

J = {α < κ : α is limit and Hα 6= ∪γ<αHγ}.

We claim that this set J is again non-stationary. Indeed, for every α ∈ J we

may pick a "witness" zα ∈ Hα \ ∪γ<αHγ . Now, if zα ∈ L0 then zα = yg(α) for
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some g(α) < α because L0 is left separated. If, on the other hand, zα /∈ L0 then

zα ∈ Hα ⊂ Fα implies zα ∈ Fα because Fα is closed in X\L0. But the sequence

〈Fα : α ∈ κ〉 is continuous, hence in this case we can choose an ordinal g(α) < α

such that zα ∈ Fg(α).

In other words, this means that if g(α) = β then zα ∈ {yβ} ∪ Fβ. Now, the

sequence 〈zα : α ∈ J〉 is obviously one-to-one, hence for each β < κ we have

|g−1{β}| ≤ |Fβ| + 1 < κ, consequently, again by Fodor, J is not stationary. So

there is a club C ⊂ κ \ J and then 〈Hα : α ∈ C〉 is increasing and continuous,

however maybe it is not strictly increasing. But |I| = κ clearly implies that the

union of the Hα’s is of size κ and so an appropriate subsequence of 〈Hα : α ∈ C〉

will be both continuous and strictly increasing.

Before proceeding further, we need a simple definition.

Definition 3.17. Let X be a space and µ an infinite cardinal number. We say that

x ∈ X is a Tµ point of X if for every set A ∈ [X]<µ there is some B ∈ [X\A]<µ

such that x ∈ B. We shall use Tµ(X) to denote the set of all Tµ points of X .

For the reader familiar with Pavlov’s paper [31] we note that his trν+, ν(X) is

identical with our Tν+(X). Note also that if Y ⊂ X then trivially any Tµ point in

Y is a Tµ point in X , that is, we have Tµ(Y ) ⊂ Tµ(X). Finally, if µ is regular then

the set Tµ(X) is clearly (< µ)-closed in X , i. e. for every set A ∈ [Tµ(X)]<µ we

have A ⊂ Tµ(X).

Lemma 3.18. Assume that the space X may be written as the union of a strictly

increasing continuous chain 〈Fα : α < κ〉 of closed subsets ofX with |Fα| < κ for
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all α < κ, where κ is an uncountable regular cardinal. Then Tκ(X) = ∅ implies

that there exists a set D ⊂ X with |D| = κ such that every subset Y ∈ [D]<κ is

closed discrete in X . In particular, we have ê(X) ≥ κ.

Proof. The assumption Tκ(X) = ∅ implies that for every point x ∈ X we may

fix a set Ax ∈ [X]<κ such that x /∈ B whenever B ∈ [X\Ax]<κ. By the regularity

of κ, the set

C = {α < κ : ∀x ∈ Fα(Ax ⊂ Fα)}

is club in κ. For each α ∈ C let us pick a point xα ∈ Fα+1\Fα and then set

D = {xα : α ∈ C}.

To see that this D is as required, it remains to show that all "small" subsets of

D are closed discrete. This in turn will follow if we show that all proper initial

segments of D are. So let γ < κ and consider the set S = {xα : α ∈ C ∩ γ}. For

every point y ∈ X there is a β < κ such that y ∈ Fβ+1\Fβ . Let δ be the largest

element of C with δ ≤ β and ε the smallest element of C above β, hence we have

δ ≤ β < ε.

Then, on one hand, {xα : α < δ} ⊂ Fδ ⊂ Fβ , while on the other hand

Ay ⊂ Fε and {xα : ε ≤ α < γ} ⊂ X\Fε, which together imply that y has a

neighbourhood U such that U ∩ S ⊂ {xδ}.

We need one more result making use of the operator Tµ.

Lemma 3.19. If a space X satisfies Tµ(X) = X for a regular cardinal µ then X

is µ-resolvable.
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Proof. Clearly, Tµ(X) = X implies Tµ(U) = U for all open subsets U ⊂ X ,

hence by lemma 4.1 it suffices to show that X includes a µ-resolvable subspace

Y .

Since every point of X is a Tµ point, for any set A ∈ [X]<µ we may fix a

disjoint family B(A) ⊂ [X\A]<µ with |B(A)| = |A| < µ such that

A ⊂ ∪{B : B ∈ B(A)}.

We now define sets Aα in [X]<µ by induction on α < µ as follows. Let x ∈ X

be any point and start with A0 = {x}. Assume next that 0 < α < µ and the sets

Aβ ∈ [X]<µ have been defined for all β < α. Then we set

Bα =
⋃
B
(
∪ {Aβ : β < α}

)
and Aα = ∪{Aβ : β < α} ∪Bα.

After the induction is completed we let

Y = ∪{Aα : α < µ}.

It is clear from the construction that the Bα’s are pairwise disjoint, moreover

for every set s ∈ [µ]µ the union ∪α∈sBα is dense in Y . But then Y is obviously

µ-resolvable.

We are now ready to state and prove our promised result.

Theorem 3.20. Assume that the regular closed subsets of the space X form a

π-network in X and Tµ(X) is dense in X for some regular cardinal µ > ê(X).

Then X is ω-resolvable. In particular, any T3 space X satisfying ∆(X) > ê(X)

is ω-resolvable.
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Proof. Assume, indirectly, that X is ω-irresolvable. By lemmas 4.1 and 3.2 then

there is a regular closed subset K of X that is both hereditarily ω-irresolvable and

satisfies ls(K) < ω.

Let us now define the sequence of sets {Kn : n < ω} by the following recur-

sion: K0 = K and Kn+1 = Tµ(Kn). Since Tµ(Y ) is (< µ)-closed in Y for any

space Y , we may conclude by a simple induction that Ki is (< µ)-closed in K

and hence ê(Ki) ≤ ê(K) < µ for all i < ω.

We next claim that, for each n < ω, Kn+1 = Tµ(Kn) is dense inKn and hence

in K. For n = 0 this follows immediately from our assumption that Tµ(X) ∈

D(X).

Clearly, any neighborhood of a Tµ point in any space must have size at least µ.

Hence if our claim holds up to (and including) n then we also have ∆(Kn) ≥ µ

and since Kn ∈ D(K) the regular closed subsets of Kn form a π-network in

Kn. (The latter holds because the regular closed subsets of a dense subspace are

exactly the traces of the regular closed sets in the original space.)

Now, let U be any non-empty open subset of Kn. We show first that then

|U ∩Kn+1| ≥ µ, hence ∆(Kn+1) ≥ µ. (In other words, Kn+1 is not only dense

but even µ-dense in Kn.) To see this, let ∅ 6= F ⊂ U be regular closed in Kn,

then |F | ≥ µ and ls(F ) < ω imply, in view of theorem 3.16, the existence of a

strictly increasing continuous sequence 〈Fα : α < µ〉 of closed subsets of F (and

hence of X) with |Fα| < µ. Then we may apply lemma 3.18 to any final segment

of the sequence 〈Fα : α < µ〉 to conclude that Fα ∩ Tµ(Kn) = Fα ∩ Kn+1 6= ∅

for cofinally many α < µ, hence |U ∩Kn+1| ≥ |F ∩Kn+1| ≥ µ.
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But ∆(Kn+1) ≥ µ implies that for any non-empty regular closed set H in

Kn+1 we have |H| ≥ µ, and so, using again ls(H) < ω and ê(Kn) < µ, we obtain

from theorem 3.16 and lemma 3.18 that Tµ(H) is non-empty, i. e. Kn+2 is indeed

dense in Kn+1.

Now suppose that there is an n < ω such that Kn\Kn+1 is not dense in Kn.

This would imply that for some U ∈ τ ∗(Kn) we have U ⊂ Kn+1 and hence

Tµ(U) = U . But that would imply by lemma 3.19 that U is µ-resolvable, a

contradiction. Therefore, we must have that Kn\Kn+1 is dense in Kn and hence

in K for all n < ω. But then K would be ω-resolvable, which is again absurd.

This contradiction then completes the proof of the first part of our theorem.

To see the second part note that, by lemma 3.2 and by considering regular

closed subsets of X , it suffices to prove the ω-resolvability of X under the addi-

tional condition ls(X) < ω. But then Tµ(X) ∈ D(X) follows immediately from

theorem 3.16 and lemma 3.18 with the choice µ = ê(X)+.

Since for any crowded (i. e. dense-in-itself) countably compact T3 space X

one has ∆(X) ≥ c ≥ ω1, theorem 3.20 immediately implies the following result

of Comfort and Garcia-Ferreira.

Theorem (Comfort,Garcia-Ferreira, [7, Theorem 6.9]). Every crowded and count-

ably compact T3 space is ω-resolvable.

Note that the assumption of regularity in this theorem is essential because of

the following two results.
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Theorem (Malykhin, [27, Example 14]). There is a countably compact, irresolv-

able T2 space.

Theorem (Pavlov, [31, Example 3.9]). There is a countably compact, irresolv-

able Uryshon space.

Pytkeev has recently announced in [33] that a crowded and countably compact

T3 space is even ω1-resolvable. We haven’t seen his paper but would like to point

out that this stronger result is an immediate consequence of an old (and deep)

result of Tkačenko and of lemma 3.2.

Tkačenko proved in [36] that if X is a countably compact T3 space with

ls(X) ≤ ω then X is compact and scattered. In [16] it was shown that this state-

ment remains valid if T3 is weakened to T2, hence we get the following result.

Theorem 3.21. If X is a crowded and countably compact T2 space in which the

regular closed subsets form a π-network then X is ω1-resolvable.

Proof of theorem 3.21. By the above result from [16], every non-empty regular

closed subset F ⊂ X must satisfy ls(F ) ≥ ω1. But then X is ω1 -resolvable by

lemma 4.1. 3.21

Any crowded and countably compact T3 space has dispersion character ≥ c.

Hence the following interesting, and apparently difficult, problem is left open by

theorem 3.21.

Problem 3.22. Is a crowded and countably compact T3 space c-resolvable or even

maximally resolvable?
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4 Monotonically normal spaces

4.1 Countable resolvability

For a topological spaceX we denote byD(X) the family of all dense subsets ofX

and byN (X) the ideal of all nowhere dense sets inX . Given a cardinal κ > 1, the

space X is called κ-resolvable iff it contains κ many disjoint dense subsets. We

say that X is almost κ-resolvable if there are κ many dense sets whose pairwise

intersections are nowhere dense, that is we have {Dα : α < κ} ⊂ D(X) such that

Dα ∩Dβ ∈ N (X) if α 6= β. X is maximally resolvable iff it is ∆(X)-resolvable,

where ∆(X) = min{|G| : G 6= ∅ open} is called the dispersion character of X .

Finally, if X is not κ-resolvable then it is also called κ-irresolvable.

The following simple but useful fact, in the case of κ-resolvability, was ob-

served by El’kin in [12].

Lemma 4.1. A space X is κ-resolvable (almost κ-resolvable) iff every nonempty

open set in X includes a nonempty (and open) κ-resolvable (almost κ-resolvable)

subset.

The aim of this section is to investigate the (almost) resolvability properties of

monotonically normal spaces. Since the most important examples of monotoni-

cally normal spaces are metric and linearly ordered spaces that are all known to

be maximally resolvable, this aim seems to be both natural and justified to us. We

hope that our results, by turning out to be both surprising and non-trivial, will also

convince the reader about this.
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Let us next recall the definition of monotonically normal spaces. For any

topological space X we write

M(X) =
{
〈x, U〉 ∈ X × τ(X) : x ∈ U

}
.

The elements of M(X) will be referred to as marked open sets. The space X

is called monotonically normal iff it is T1 and it admits a monotone normality

operator, that is a function H :M(X) −→ τ(X) such that

(1) x ∈ H(x, U) ⊂ U for each 〈x, U〉 ∈ M(X),

(2) if H(x, U) ∩ H(y, V ) 6= ∅ then x ∈ V or y ∈ U .

We call a set D in a space X strongly discrete if the points in D may be

separated by pairwise disjoint neighborhoods. It is well-known that in a monoton-

ically normal space any discrete subset is strongly discrete. On the other hand, in

[10] it was proved that every non-isolated point of a monotonically normal space

is the accumulation point of a discrete subspace. Consequently, one obtains the

following result.

Theorem 4.2 ([10]). In a monotonically normal space any non-isolated point is

the accumulation point of some strongly discrete set.

Let us say that a space X is SD if it has the property described in theorem 4.2,

that is every non-isolated point of X is the accumulation point of some strongly

discrete set.

Theorem 4.3. Any crowded SD space X is ω-resolvable.

67



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. The SD property is clearly hereditary for open subspaces. Hence, by

lemma 4.1, it suffices to prove that X includes an ω-resolvable subspace.

First we show that for every strongly discrete D ⊂ X there is a strongly

discrete E ⊂ X \ D such that D ⊂ E. Indeed, fix a neighbourhood assignment

Ud on D that separates D and for each d ∈ D pick a strongly discrete set Ed ⊂

X \ {d} with d ∈ ED. Then E =
⋃
d∈D(Ed ∩ Ud) is clearly as claimed.

Now pick an arbitrary point x ∈ X and set E0 = {x}. Using the above claim,

for each n < ω we can inductively define a strongly discrete set En+1 ⊂ X \ En

such that En ⊂ En+1. Since ∪i≤nEi ⊂ En, the sets {En : n < ω} are pairwise

disjoint. Let us finally set E =
⋃
{En : n < ω}. It is clear from our construction

that if I ⊂ ω is infinite then
⋃
{En : n ∈ I} is dense in E, so the subspace E of

X is obviously ω-resolvable.

Corollary 4.4. Every crowded monotonically normal space is ω-resolvable.

4.2 H-sequences and almost resolvability

The main result of the previous section, namely that (crowded) monotonically nor-

mal spaces are ω-resolvable, used very little of the particular structure provided

by monotone normality. In this section we shall describe a procedure on monoton-

ically normal spaces that is quite specific in this respect and so, not surprisingly,

it leads to some stronger (almost) resolvability results. This procedure had been

originated (in a different form) by S. Williams and H. Zhou in [37].

Definition 4.5. Let H be a monotone normality operator on a space X . A family
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E ⊂ M(X) of marked open sets is said to be H-disjoint if for any two members

〈x, U〉, 〈y, V 〉 of E we have H(x, U) ∩ H(y, V ) = ∅. Clearly, if E is H-disjoint

then D(E) = {x : ∃U with 〈x, U〉 ∈ E} is (strongly) discrete.

By Zorn’s lemma, for every open set G in X we can fix a maximal

H-disjoint family E(G) ⊂M(G) with the additional property that U ⊂ G when-

ever 〈x, U〉 ∈ E(G). The maximality of E(G) implies that

⋃
{H(x, U) : 〈x, U〉 ∈ E(G)}

is a dense open subset of G.

With the help of the above defined operator E(G) we may now describe our

basic procedure as follows.

Definition 4.6. A sequence 〈Eα : α < δ〉 is called a completed H-sequence of X

iff

1. E0 = E(X),

2. for each α < δ we have

Eα+1 =
⋃{
E
(

H(x, U)\{x}
)

: 〈x, U〉 ∈ Eα
}
,

3. if α < δ is a limit ordinal then the family

Wα = {W ∈ τ(X) : ∀β < α ∃〈x, U〉 ∈ Eβ with W ⊂ U}

is a π-base in X (or, equivalently, its union ∪Wα is dense in X) and Eα is a

maximal H-disjoint collection of marked open sets 〈y, V 〉 with V ∈ Wα,
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4. the family

Wδ = {W ∈ τ(X) : ∀β < δ ∃〈x, U〉 ∈ Eβ with W ⊂ U}

is not a π-base in X .

The reader may convince himself by a straight-forward transfinite induction

that the following fact is valid.

Fact 4.7. Every crowded monotonically normal space X , with monotone nor-

mality operator H, admits a completed H-sequence 〈Eα : α < δ〉 where δ is

necessarily a limit ordinal.

We now fix some notation concerning a given completed H-sequence 〈Eα :

α < δ〉 of X . For any ordinal α < δ we put Dα = D(Eα) and Hα =
⋃
{H(x, U) :

〈x, U〉 ∈ Eα}. It is clear from our definitions that each Hα is dense open in X ,

moreover β < α < δ implies that Hβ ⊃ Hα and Dβ ∩Hα = ∅. If I ⊂ δ is a set

of ordinals we write D[I] =
⋃
{Dα : α ∈ I}. Finally, we set V = X \ ∪Wδ, then

V is a non-empty open set in X .

Lemma 4.8. If I is bounded in δ then D[I] is nowhere dense in X . However, if I

is unbounded in δ then D[I] is dense in V , that is we have V ⊂ D[I].

Proof. The first part is obvious because I ⊂ α < δ implies D[I] ∩Hα = ∅.

Assume now that I is cofinal in δ but, arguing indirectly, for some G ∈ τ ∗(V )

we have G ∩ D[I] = ∅. Pick any point z ∈ G, we claim that then, for all α < δ

and 〈x, U〉 ∈ Eα, H(x, U) ∩ H(z,G) 6= ∅ implies z ∈ H(x, U).
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Indeed, if β ∈ (α, δ) ∩ I then there is 〈x′, U ′〉 ∈ Eβ with

H(x′, U ′) ∩ H(x, U) ∩ H(z,G) 6= ∅

because Hβ is dense in X . It follows that U ′ ⊂ H(x, U), hence x′ /∈ G as x′ ∈ Dβ

and G ∩Dβ = ∅. But then H(x′, U ′) ∩ H(z,G) 6= ∅ implies z ∈ U ′ ⊂ H(x, U).

The sets {H(x, U) : 〈x, U〉 ∈ Eα} being pairwise disjoint, it follows that for

each α < δ there is exactly one 〈xα, Uα〉 ∈ Eα such that

H(xα, Uα)∩H(z,G) 6= ∅. But then H(z,G) ⊂ H(xα, Uα) ⊂ Uα whenever α < δ,

consequently

H(z,G) ⊂ Uα+1 ⊂ Uα

as well. This, however, would imply H(z,G) ∈ Wδ, contradicting that H(z,G) ⊂

G ⊂ V.

We may now give the main result of this section.

Theorem 4.9. Any crowded monotonically normal space X is almost min(c, ω2)-

resolvable. So X is almost ω1-resolvable, and even almost ω2-resolvable if the

continuum hypothesis (CH) fails.

Proof. By lemma 4.1 it suffices to show that some non-empty open V ⊂ X satis-

fies this property. To see this, let us consider a completed H-sequence 〈Eα : α < δ〉

of X . Let I be a cofinal subset of δ of order type cf(δ) and {Iζ : ζ < µ} be

an almost disjoint subfamily of [I]cf(δ), where µ = 2ω = c if cf(δ) = ω and

µ = cf(δ)+ ≥ ω2 if cf(δ) > ω. Then the family {D[Iζ ] : ζ < µ} witnesses that V

is almost µ-resolvable.
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Since almost ω-resolvability is clearly equivalent to ω-resolvability, theorem

4.9 provides us a new proof of 4.4.

4.3 Spaces from trees and ultrafilters

Since the prime examples of monotonically normal spaces, namely metric and

ordered spaces, are all maximally resolvable, the results of the two preceding sec-

tions seem rather modest. The main aim of this section is to show that, at least

modulo some large cardinals, nothing stronger than ω-resolvability can be ex-

pected of a monotonically normal space X , even if its dispersion character ∆(X)

is large. The examples that show this have actually been around but, as far as we

know, the fact that they are monotonically normal has not been noticed.

The underlying set of such a space is an everywhere infinitely branching tree

〈T,<〉. This simply means that for each t ∈ T the set St of all immediate succes-

sors of t in T is infinite. The height of such a tree is obviously a limit ordinal. (In

fact, nothing is lost if we only consider trees of height ω.) By a filtration on T we

mean a map F with domain T that assigns to every t ∈ T a filter F (t) on St such

that every cofinite subset of St belongs to F (t) (that is, F (t) extends the Fréchet

filter on St).

Definition 4.10. Assume that F is a filtration on an everywhere infinitely branch-

ing tree 〈T,<〉. A topology τF is then defined on T by

τF = {V ⊂ T : ∀t ∈ V
(
V ∩ St ∈ F (t)

)
},

and the space 〈T, τF 〉 is denoted by X(F ).
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Theorem 4.11. Let F be a filtration on an everywhere infinitely branching tree

〈T,<〉. Then the space X(F ) is monotonically normal.

Proof. That τF is indeed a topology that satisfies the T1 separation axiom is ob-

vious and well-known. The novelty is in showing that X(F ) is monotonically

normal.

To this end we define H(s, V ) for s ∈ V ∈ τF as follows:

H(s, V ) = {t ∈ V : s ≤ t and [s, t] ⊂ V }.

Of course, here [s, t] = {r : s ≤ r ≤ t}. Clearly, H(s, V ) ∈ τF and s ∈

H(s, V ) ⊂ V.

Next, assume that t ∈ H(s1, V1) ∩ H(s2, V2). Then s1, s2 ≤ t implies that s1

and s2 are comparable, say s1 ≤ s2. But then we have

s2 ∈ [s1, t] ⊂ V1, consequently H is indeed a monotone normality operator on

X(F ).

Of special interest are those filtrations F for which F (t) is a (free) ultrafilter

on St for all t ∈ T . Such an F will be called an ultrafiltration. In this case we

have a convenient way to determine the closures of sets in the space X(F ) that

will be put to good use later.

Definition 4.12. For every set A ⊂ T we define

C(A) = A ∪ {t ∈ T : St ∩ A ∈ F (t)}.

Then by transfinite recursion we define Cα(A) for all ordinals α by Cα+1(A) =

C(Cα(A)) for successors and Cα(A) = ∪{Cβ : β < α} for α limit.
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Lemma 4.13. Let F be an ultrafiltration on the tree T . Then a set B ⊂ T is

closed in X(F ) iff B = C(B). Consequently, for any subset A ⊂ T there is an

ordinal α < |T |+ with A = Cα(A).

Proof. First, if B = C(B) then for each t ∈ T\B we have St ∩ B /∈ F (t), hence

St\B ∈ F (t) because F (t) is an ultrafilter. Then T\B is open by the definition of

τF , hence B is closed. Conversely, if B is closed in X(F ) then for each t ∈ T\B

we have St\B ∈ F (t), hence St ∩ B /∈ F (t), that is t /∈ C(B). But this means

that B = C(B).

Next, C(A) ⊂ A is obvious, and then by induction we get Cα(A) ⊂ A for

all α. But for some α < |T |+ we must have C(Cα(A)) = Cα(A), and then

A = Cα(A) for Cα(A) is closed by the above.

Let u be an ultrafilter on a set I and λ be a cardinal. u is said to be λ-

descendingly complete iff
⋂
{Xξ : ξ < λ} ∈ u for each decreasing sequence

{Xξ : ξ < λ} ⊂ u. The ultrafilter u is called λ-descendingly incomplete iff it is

not λ-descendingly complete. For example, u is countably complete exactly if it

is ω-descendingly complete.

We shall need the following old result of Kunen and Prikry in our next irre-

solvability theorem for spaces obtained from certain ultrafiltrations.

Theorem (Kunen, Prikry, [26]). If λ is a regular cardinal and u is a λ-descendingly

complete ultrafilter (on any set) then u is also λ+-descendingly complete.

Theorem 4.14. Assume that F is an ultrafiltration on T and λ is a regular cardi-

nal such that F (t) is λ-descendingly complete for all t ∈ T . Then the spaceX(F )
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is hereditarily λ+-irresolvable (that is, no subspace of X(F ) is λ+-resolvable).

Proof. First we show that for every set A ⊂ T we have A = Cλ(A). By lemma

4.13 it suffices to show that C(Cλ(A)) = Cλ(A).

Assume, indirectly, that t ∈ C(Cλ(A))\Cλ(A), then we must have Cλ(A) ∩

St ∈ F (t). But

Cλ(A) ∩ St =
⋃
α<λ

Cα(A) ∩ St

where the right-hand side is an increasing union, hence there is an α < λ with

Cα(A) ∩ St ∈ F (t) because F (t) is λ-descendingly complete. This implies that

t ∈ Cα+1(A) ⊂ Cλ(A), a contradiction.

Let us now consider an indexed family of sets F = {Fi : i ∈ I}. We are going

to use the following notation:

ord(x,F) = |{i ∈ I : x ∈ Fi}|

and

ord(F) = sup{ord(x,F) : x ∈ ∪i∈IFi}.

Instead of the statement of the theorem we shall prove the following much

stronger claim.

Lemma 4.15. If D = {Di : i ∈ I} is any indexed family of subsets of T with

ord(D) ≤ λ then ord({Di : i ∈ I}) ≤ λ as well.

Proof. We shall prove, by induction on α ≤ λ, that ord(Dα) ≤ λ where

Dα = {Cα(Di) : i ∈ I}.
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We first show that ord(D1) ≤ λ, this will clearly take care of all the successor

steps.

Assume, indirectly, that ord(t,D1) ≥ λ+ for some t ∈ T , then we may find a

set J ∈ [I]λ
+ such that t ∈ C(Dj)\Dj , hence Dj ∩ St ∈ F (t), for each j ∈ J .

By the theorem of Kunen and Prikry the ultrafilterF (t) is also λ+-descendingly

complete. Consequently, using a standard argument, one can show that there is an

L ∈
[
J
]λ+

such that ⋂
{Dj ∩ St : j ∈ L} 6= ∅.

But this clearly contradicts ord(D) ≤ λ.

Next assume that α ≤ λ is a limit ordinal and the inductive hypothesis holds

for all β < α. But now for each index i ∈ I we have Cα(Di) =
⋃
β<αC

β(Di),

hence

ord(t,Dα) ≤
∑
β<α

ord(t,Dβ) ≤ |α| · λ = λ

whenever t ∈ T , and so ord(Dα) ≤ λ.

It follows immediately from lemma 4.15 that if {Ai : i ∈ λ+} are pairwise

disjoint non-empty subsets of T then the closures Ai cannot all be the same and

so no subspace of X(F ) can be λ+-resolvable.

Corollary 4.16. If F is an ultrafiltration on T such that F (t) is countably com-

plete for each t ∈ T then X(F ) is ω-resolvable but hereditarily ω1-irresolvable.

In particular, if κ is a measurable cardinal then there is a monotonically normal

space X with |X| = ∆(X) = κ that is hereditarily ω1-irresolvable.
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The question if ω-resolvable spaces are also maximally resolvable was raised a

long time ago by Ceder and Pearson in [9], and has just recently been settled com-

pletely in [23] (negatively). Corollary 4.16 yields a monotonically normal coun-

terexample to this problem, from a measurable cardinal. Another counterexample

from a measurable cardinal was found by Eckertson in [11], however, that exam-

ple is not monotonically normal. We present two arguments to show this. First,

Eckertson’s example contains a crowded irresolvable subspace, hence it cannot be

monotonically normal by corollary 4.4.

The second argument is based on our following observation that may have

some independent interest. First we need some notation. If κ ≤ λ are cardinals

we let τλκ denote the < κ box product topology on 2λ (generated by the base

{[f ] : f ∈ Fn(λ, 2;κ}, where [f ] = {x ∈ 2λ : f ⊂ x}), moreover we set

Cλ,κ =
〈
2λ, τλκ

〉
.

Theorem 4.17. If κ<κ = κ < λ then no dense subspace of Cλ,κ is monotonically

normal.

Proof of 4.17. Let X be dense in Cλ,κ and θ be a large enough regular cardi-

nal. Let M be an elementary submodel of 〈H(θ),∈,≺〉 (where H(θ) is the

family of sets hereditarily of size < θ and ≺ is a well-ordering of H(θ)) such

that |M| = κ and
[
M
]<κ ⊂ M, moreover X, κ, λ ∈ M. Note that then

Fn(
[
M∩ λ

]<κ
, 2;κ) ⊂M as well.

Assume that X is monotonically normal and let H ∈ M be a monotone nor-

mality operator on X . We can assume that H(x, [s] ∩ X) is the trace on X of a
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basic open set for each basic open set [s].

Let I = M∩ λ and pick α ∈ λ \ I . F = {f � I : f ∈ M ∩ X} is clearly

dense in the subspace 2I of Cλ,κ. Let Fi = {f � I : f ∈ X ∩M ∧ f(α) = i}

for i ∈ 2 then F = F0 ∪ F1 so there is i ∈ 2 and s ∈ Fn(I, 2;κ) such that Fi is

dense in 2I ∩ [s] ∩X .

Let b = s∪{〈α, 1− i〉} and pick x ∈ X∩[b]. Next, let H(x, [b]∩X) = [b′]∩X

and b′′ = b′ � I . Fix b′′′ ∈ Fn(I, 2;κ) such that b′′′ ⊃ b′′ and x /∈ [b′′′]. Since Fi

is dense in 2I ∩ [s] ∩X we can pick y ∈ X ∩M∩ [b′′′] such that y(α) = i. Let

[u] ∩X = H(y, [b′′′] ∩X). Then domu ⊂ I because H, b′′′, y ∈M.

Since x /∈ [b′′′] and y /∈ [b] it follows that H(x, [b]) ∩ H(y, [b′′′]) = [u] ∩ [b′] ∩

X = ∅. However suppu ⊂ I and u ⊃ b′′′ ⊃ b′′ = b′ � I , so u and b′ are

compatible functions of size < κ, i.e. [u]∩ [b′] is a nonempty open set in
〈
2λ, τλκ

〉
.

Since X is dense we have [u] ∩ [b′] ∩X 6= ∅, a contradiction.

Now, Eckertson’s example obtained from a measurable cardinal κ contains a

subspace homeomorphic to a dense subspace of C2κ,κ , hence it cannot be mono-

tonically normal by theorem 4.17 because κ<κ = κ.

Of course, we have a space like in corollary 4.16 iff there is a measurable

cardinal. Also, the cardinality (and dispersion character) of such a space is at least

as large as the first measurable. But can we have an example of a monotonically

normal and not maximally resolvable space that is much smaller? The answer to

this question is, consistently, affirmative but, ironically, it requires the existence

of a large cardinal that is much stronger than a measurable.
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Theorem (Magidor, [30]). It is consistent from a supercompact cardinal that

there is an ω1-descendingly complete uniform ultrafilter on ℵω.

We would like to emphasize that in [4] a slightly weaker result was given in

which ℵω is replaced with ℵω+1. However, Magidor pointed out to us that the

method of [4] yields the above stronger version as well. From Magidor’s theorem

and from theorem 4.14 we immediately obtain our promised result.

Corollary 4.18. From a supercompact cardinal it is consistent to have a monoton-

ically normal spaceX with |X| = ∆(X) = ℵω that is hereditarily ω2-irresolvable

(hence not maximally resolvable).

Of course, from [4] we could conclude the slightly weaker result in which ℵω

is replaced with ℵω+1.

But can we do even better and go below ℵω? The answer to this question

is, maybe surprisingly, negative. We are going to show that any monotonically

normal space of cardinality less than ℵω is maximally resolvable. The proof of

this result will be based on showing that all spaces of the form X(F ) with F

an ultrafiltration on the tree Seqκ = κ<ω of all finite sequences of ordinals less

than κ are maximally resolvable provided that κ < ℵω. The first result to this

effect, for constant ultrafiltrations on Seqωn, was obtained by László Hegedüs in

his Master’s Thesis [18]. Of course, by a constant ultrafiltration we mean one for

which F (t) is the "same" ultrafilter for all t ∈ T .

Now, let κ be an arbitrary infinite cardinal. A non-empty subset T of Seqκ is

called a subtree of Seqκ iff t � n ∈ T whenever t ∈ T and n < |t|. For any subset
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A of Seqκ we shall write minA to denote the set of all minimal elements of A

(with respect to the tree ordering on Seqκ, of course).

If F is a filtration on Seqκ and v ∈ Seqκ we shall denote by Fv the derived

filtration on Seqκ defined by the formula Fv(s) = F (v_s).

Assume now that S and {Tv : v ∈ Seqκ} are subtrees of Seqκ. We then

define their “sum" by

S ⊕ {Tv : v ∈ Seqκ} = S ∪ {v_t : v ∈ min(Seqκ \ S) ∧ t ∈ Tv}.

Obviously, this sum is again a subtree of Seqκ.

If moreover f and g = {gv : v ∈ Seqκ} are functions with dom f = S and

dom gv = Tv then we define f ⊕ {gv : v ∈ Seqκ} = f ⊕ g by putting

dom(f ⊕ g) = S ⊕ {Tv : v ∈ Seqκ}

and

(f ⊕ g)(x) =

 f(x) for x ∈ S

gv(t) for x = v_t with v ∈ min(Seqκ \ S), t ∈ T .

A subtree of Seqκ is called well-founded iff it does not possess any infinite

branches. Note that if S and {Tv : v ∈ Seqκ} are all well-founded then so is

S ⊕ {Tv : v ∈ Seqκ}.

Now let 0 < λ ≤ κ be cardinals and F be a filtration on Seqκ. We say

that a function f is λ-good for F iff dom f is a well-founded subtree of Seqκ,

moreover f [V ] = λ whenever V is open in X(F ) with ∅ ∈ V . As an easy (but

useful) illustration of this concept we present the following result.

80



C
E

U
eT

D
C

ol
le

ct
io

n

Lemma 4.19. For each 0 < n < ω and for any filtration F on κ there is a function

f which is n-good for F .

Proof. Let dom f = {s ∈ Seqκ : |s| < n} and f(s) = |s|.

The next result shows the relevance of these concepts to resolvability.

Theorem 4.20. Let F be an filtration on Seqκ. If there are λ-good functions fs

for Fs for all s ∈ Seqκ then X(F ) is λ-resolvable.

Proof. Define the sequence of functions g0, g1, . . . by recursion as follows: g0 =

f∅ and gn+1 = gn ⊕ {fs : s ∈ Seqκ} for n < ω. It is easy to check that then

gω =
⋃
n<ω gn maps Seqκ to λ, i. e. dom gω = Seqκ. Indeed, if s ∈ Seqκ with

|s| = n then there is a k ≤ n with s ∈ dom gk.

We show next that gω[V ] = λ holds for any non-empty open set V in X(F ).

Let n be such that V ∩ dom gn 6= ∅ and pick v ∈ V ∩ dom gn. Clearly, there is an

extension s of v with s ∈ V ∩min(Seqκ \ dom gn). Now let

W = {t ∈ Seqκ : s_t ∈ V }

then ∅ ∈ W and W is open in X(Fs), hence fs[W ] = λ because fs is λ-good

for Fs. But we clearly have gω(s_t) = fs(t) for all t ∈ dom fs, hence we have

gω[V ] = λ as well.

But then {g−1
ω (α) : α < λ} is a pairwise disjoint family of dense sets in

X(F ).

The following stepping-up type result will turn out to be very useful.
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Lemma 4.21. Assume thatF is a filtration on Seqκ such thatF (∅) is λ-descendingly

incomplete, moreover for every cardinal µ < λ and every ordinal α < κ there is

a µ-good function fαµ for F〈α〉. Then there is a λ-good function f for F .

Proof. Fix a continuously decreasing sequence {Xξ : ξ < λ} ⊂ F (∅) with empty

intersection. For any ordinal ν < λ let us put Iν = Xν\Xν+1, then we clearly

have κ =
⋃
{Iν : ν < λ}. For each 0 < ν < λ fix a map hν : |ν| onto−→ ν.

We now define the desired map f with the following stipulations:

dom f = {∅} ∪
⋃
ν<λ

{〈α〉_ t : α ∈ Iν and t ∈ dom fα|ν|} ,

and for s ∈ dom f

f(s) =

 0 if s = ∅ ,

hν(f
α
|ν|(t)) if s = 〈α〉_ t with α ∈ Iν , t ∈ dom fα|ν| .

Clearly, f is well-defined and dom f is well-founded. If V is open in X(F )

with ∅ ∈ V then we have V ∩ S∅ ∈ F (∅) and hence

sup{ν : ∃α ∈ Iν with 〈α〉 ∈ V } = λ.

But 〈α〉 ∈ V and α ∈ Iν imply fα|ν|[{s : 〈α〉_ s ∈ V }] = |ν| and so f [V ] ⊃ ν,

hence we have f [V ] = λ.

Theorem 4.22. Let F be a filtration on Seqκ and λ be an infinite cardinal such

that F (t) is µ-descendingly incomplete whenever t ∈ Seqκ and ω ≤ µ ≤ λ.

Then there are λ-good functions for all the derived filtrations Fs and hence X(F )

is λ-resolvable.
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Proof. The proof goes by a straight-forward induction on λ, using lemma 4.21

and the fact that our assumption on F is automatically valid also for all the derived

filtrations Fs. The starting case λ = ω also uses lemma 4.19. The last statement

is immediate from theorem 4.20.

A uniform ultrafilter on κ is trivially κ-descendingly incomplete. So if κ =

ωn < ℵω, then it follows by n repeated applications of the above mentioned result

of Kunen and Prikry that any uniform ultrafilter on κ is µ-descendingly incomplete

for all µ with ω ≤ µ ≤ κ. Thus we get from theorem 4.22 the following result.

Corollary 4.23. Assume that κ < ℵω and F is any uniform ultrafiltration on Seqκ

( i. e. F(t) is uniform for all t ∈ Seqκ). Then the space X(F ) is κ-resolvable.

We now recall a definition from [24], see also [31].

Definition 4.24. Let X be a space and µ be an infinite cardinal number. We

say that x ∈ X is a Tµ point of X if for every set A ∈ [X]<µ there is some

B ∈ [X\A]<µ such that x ∈ B. We shall use Tµ(X) to denote the set of all Tµ

points of X .

The following result is an easy consequence of lemma 1.3 from [24]. In the

particular case when µ is a successor cardinal it follows from proposition 2.1 of

[31].

Lemma 4.25. If |X| = µ is a regular cardinal and Tµ(X) is dense in X then X

is µ-resolvable.
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This result will enable us to transfer certain results from spaces of the form

X(F ), where F is a uniform ultrafiltration on Seqκ for some regular cardinal κ,

to monotonically normal and even more general spaces.

Let us recall from section 1 that every monotonically normal space is SD. In

fact, as monotone normality is a hereditary property, it is even hereditarily SD (in

short: HSD). We shall need below a property that is strictly between SD and HSD,

namely that all dense subspaces are SD, we shall denote this property by DSD. It

can be shown that for instance the Čech-Stone remainder ω∗ is DSD but not HSD.

Theorem 4.26. Assume that κ = cf(κ) ≥ λ. Then the following are equivalent.

1. If X is a DSD space with |X| = ∆(X) = κ then X is

λ-resolvable.

2. If X is a MN space with |X| = ∆(X) = κ then X is

λ-resolvable.

3. For every uniform ultrafiltration F on Seqκ the spaceX(F ) is λ-resolvable.

Proof. Of course, only (3) ⇒ (1) requires proof. So assume (3) and consider a

DSD space X with |X| = ∆(X) = κ. If Tκ(X) is dense in X then, by lemma

4.25 X is even κ-resolvable and we are done.

Otherwise, in view of lemma 4.1, we may assume that actually Tκ(X) = ∅. In

this case for every point x ∈ X there is a set Ax ∈ [X]<κ such that x ∈ Ax and

for Dx = X\Ax no B ∈ [Dx]
<κ has x in its closure. Note that by ∆(X) = κ each

Dx is dense in X .
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But X is DSD, hence for every x there is a strongly discrete set Sx ⊂ Dx with

x ∈ Sx. (Note that S ⊂ Dx is strongly discrete in Dx iff it is so in X for Dx is

dense.)

Next, by recursion on |t| , we define points xt and open setsUt inX as follows.

First pick any point x∅ ∈ X = U∅. If xt ∈ Ut has been defined then fix a one-to-

one enumeration of Sxt ∩Ut = {xt_α : α < κ} and choose {Ut_α : α < κ} to be

pairwise disjoint open neighbourhoods of them, all contained in Ut. Clearly, then

the map h : Seqκ −→ X that maps t to h(t) = xt is injective.

Next, for any t ∈ Seqκ extend the trace of the neighbourhood filter of xt on

Sxt ∩ Ut to an ultrafilter ut and define F (t) = h−1[ut], which is an ultrafilter on

St = {t_α : α < κ}. It follows from our assumptions that every F (t) is uniform

and therefore X(F ) is λ-resolvable. But the subspace topology on h[Seqκ] in X

is clearly coarser than the h-image of τF , hence it is also λ-resolvable. By lemma

4.1, this completes our proof.

Corollary 4.27. Let X be any DSD space of cardinality < ℵω. Then X is maxi-

mally resolvable. In particular, all MN spaces of size < ℵω are maximally resolv-

able.

Proof. Clearly, every open set U in X includes another open set V such that

|V | = ∆(V ). But every open subspace of a DSD space is again DSD, so theorem

4.26 and corollary 4.23 imply that V is |V |-resolvable. But ∆(X) ≤ |V |, hence

each such V is ∆(X)-resolvable and so, in view of lemma 4.1, X is maximally

resolvable.
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We conclude by listing a few open problems that we find especially interesting.

Problem 4.28.

1. Is there a ZFC example of a monotonically normal space that is not maxi-

mally resolvable?

2. Is it consistent to have a monotonically normal space X of cardinality less

than the first measurable such that ∆(X) > ω but X is not ω1-resolvable?

3. Is every crowded monotonically normal space almost c-resolvable?

Concerning problem (3) we have the following (very) partial result: Every

countable crowded DSD space is almost c-resolvable.
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