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Abstract

The estimation of the state of a finite quantum system is studied. It is assumed that N

identical copies of the unknown state are at hand and statistical data is obtained from

different separate measurements. Complementary (or quasi-orthogonal) measurements,

defined by an orthogonality relation, play a special role among separate measurements.

Motivated by recent results on the existence of certain complementary subalgebras, the

effect of complementarity of the measurements on the state estimation procedure is exam-

ined. For an unconstrained estimate optimality is shown for finite sample sizes, and for a

constrained estimate, that always gives approvable results, optimality is shown in the limit

of large N .
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Introduction

The probably most widely known and challenging property of quantum theory is that it

is non-deterministic. Even if complete knowledge about the state of a quantum system,

acquired by determining a certain property of the system, is at hand, there are observable

quantities that cannot be predicted with certainty from the obtained information. This

inherent stochastic nature of quantum mechanics makes the determination of the unknown

state of a quantum system a statistical problem and in general we can only estimate the

unknown state of the system. The fundamental question in quantum state estimation is

to find most efficient estimation procedure.

A scheme to estimate an unknown quantum state includes usually the following steps:

Parameterization of the set of possible true states of the system, the selection of measure-

ments to be performed on the given copies of the state and the construction of an estimate

from the results of the measurements. The main challenge, however lies in the right choice

of the measurements that are performed to obtain statistical data about the system. For

a good estimate it is necessary to collect statistical data from measurements on several

identical copies of the unknown state. In [28] separate measurements of observables with

non-degenerate spectrum on the individual available copies of the state where studied. It

was shown that in this setting complementary observables obtain asymptotically the opti-

mal information gain. A similar result was obtained in [21], where it was shown that the
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same holds true if the quality of the estimation scheme is measured by the average mean

quadratic error matrix of the estimate. Nevertheless, for the full estimation of a quantum

state a minimum number of different complementary observables is needed. A further re-

sult of [28] was the proof that in the case of quantum systems of dimension pk, where p is a

prime and k ∈ N, sufficiently many complementary observables exists. The existence in the

general case is a popular unsolved problem. From the relation of observables to Abelian

subalgebras of the observable algebra, the concept of complementarity can be extended

to subalgebras in general. Recently there were developments which showed existence and

non-existence of the maximal number of complementary subalgebras in certain quantum

systems [23, 18, 17] and their relevance in state estimation [22].

In the present work we study the role of complementary for measurement schemes that

use general separate measurements (POVMs) on the given copies of a quantum system.

We consider the following framework: The unknown state is one of the possible states of

the system and eventual a priory knowledge is reflected by a prior probability distribution

on the set of states, which is required to be invariant under unitary conjugation. We infer

about the state by a number of different measurements, each of them performed seperatly

on a certain number of identical copies of the state. From the obtained data an uncon-

strained point estimate for the state is obtained by linear inversion of the relation between

the state and the measurement probabilities. From the unconstrained estimate, that may

take values outside the set of states, a constrained estimate that always gives useful results

can be constructed. The efficiency of such an estimation scheme is evaluated by the mean

quadratic error matrix of the estimate averaged over the possible true states and different

measurement schemes can be compared by the determinant of this matrix. In this setting

a measurement scheme that applies complementary (or quasi-orthogonal) measurements

can be compared to another scheme, if their measurements are related by unitaries. The

main results of the thesis show that measurement schemes that consist of complementary

2
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measurements are optimal with respect to the applied measure of efficiency. This result can

be formulated for finite sample size for the unconstrained estimate and in an asymptotic

setting for the constrained estimate. In many important cases a measurement scheme that

uses complementary measurements can be connected to complementary subalgebras and

their importance for state estimation is discussed.

The thesis is structured in the following way: Chapter 1 contains an introduction to the

formalism of quantum probability theory. Complementarity of observables, subalgebras

and general measurements is defined and the cases where existence of complete sets of

complementary subalgebras is known are given. Chapter 2 gives an introduction to classical

and quantum estimation theory. In particular the setting of the estimation scheme under

study is explained and the different parts of the estimation schemes we apply in the thesis

are discussed in detail. The measures we use to quantify the efficiency of an estimation

scheme and additionally the measure used in [28] is introduced. In Chapter 3 the main

results of the thesis are presented and their relation to the work in [28] is examined. The

results are applied to the cases where existence of complementary subalgebras is known.

Finally for a certain unitarily invariant prior distribution on the set of true states the mean

quadratic error matrix and its average are explicitly evaluated in the case of a subclass of

von Neumann measurements. The Conclusion gives again a summary of the results of the

thesis.

3
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Chapter 1

Mathematical Description of

Finite Quantum Systems

1.1 Quantum Probability Theory

Quantum probability theory is a non-commutative generalization of classical probability

theory. In classical probability theory events are described by elements of a σ-algebra,

which has the algebraic structure of a Boolean lattice. In quantum probability theory

algebras of operators on a Hilbert space are considered. The set of projections in such an

algebra obeys a lattice structure as well and projections play the role of events in quantum

probability. Probability measures are replaced by positive linear functionals on the algebra.

Throughout the thesis we consider only finite dimensional quantum systems described by

a subalgebra of the matrix algebra Mn(C) on a Hilbert space with dim(H) = n. In the

following we give an introduction to quantum probability in the finite dimensional setting.

4
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1.1.1 The observable algebra

The finite quantum systems regarded in the thesis are described by subalgebras of the

algebra B(H) of operators on a finite dimensional Hilbert space. B(H) satisfies the axioms

of an unital ∗-algebra where the ∗-operation is given by taking adjoints. By fixing a basis

in H, the algebra B(H) can be identified with the algebra Mn(C) of n × n matrices with

complex entries.

Orthogonal projections can be characterized by the algebraic property P = P 2 = P ∗

and they obey additionally the structure of a lattice. To examine the lattice structure we

note that a projection P ∈ B(H) and the linear subspace of H that is its range can be

identified P ≡ Im(P ). The two equivalent conditions

(i) P ≤ Q if PQ = P

(ii) P ≤ Q if Im(P ) ⊂ Im(Q)

(1.1)

define a partial ordering on the set P(B) of projections in B(H). From condition (ii) it

is easy to see that P ≥ Q and Q ≥ P implies P = Q and that P ≥ Q and Q ≥ R implies

P ≥ R. A projection P is called a minimal projection if Q ≤ P implies either Q = 0 or

Q = P .

From the partial ordering (1.1) two algebraic operations ∨ and ∧ on P(B) can be

defined: The intersection Im(P ) ∩ Im(Q) is also a linear subspace of H and it contains

all linear subspaces that are smaller than Im(P ) and smaller than Im(Q). As such the

projection on Im(P )∩ Im(Q) provides the greatest upper bound of the two projections P

and Q and we denote it as P ∧Q. By definition span{Im(P )∪Im(Q)} is the smallest linear

subspace that contains Im(P ) and Im(Q). Thus the projection onto span{Im(P )∪Im(Q)}

is the smallest upper bound of the two projections P and Q and we denote it as P ∨ Q.

5
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With the operations ∨ and ∧ the set P(B) forms a complete1 lattice and ∨ and ∧ are

commutative and associative. The lattice P(B) has several further properties:

• The identity operator I is the largest element in P(B) with respect to the partial

ordering (1.1) and it acts as the identity with respect to ∧. Zero is the smallest in

P(B) with respect to the partial ordering (1.1) and it acts as the zero element with

respect to ∨.

• The projection (I − P ) fulfills P ∧ (I − P ) = 0 and P ∨ (I − P ) = I. Therefore

(I − P ) is called the complement of P and the lattice is called complemented.

• The lattice is not distributive, however modular if

P ≤ Q ⇒ P ∨ (Q ∧R) = (P ∨Q) ∧ (P ∨R) = Q ∧ (P ∨R) (1.2)

Additional to the full algebra B(H) we can consider ∗-subalgebras A ⊂ B(H) that contain

the identity I ∈ B(H). A subalgebra A induces a sublattice P(A) ⊂ P(B) as well. For

proof it is sufficient to see that the largest upper bound of a set of projections {Pi : 1 ≤

i ≤ k} is contained in the subalgebra A. The largest upper bound sup{Pi : 1 ≤ i ≤ k}

is given by the projection onto the span of the corresponding subspaces Im(Pi). Since

Ker(P + Q) = Ker(P ) ∩ Ker(Q) for positive operators, span{Im(Pi) : 1 ≤ i ≤ k}

is identical with Im
(∑

Pi

)
. Since Q :=

∑
Pi is an element of the subalgebra A, the

projection onto Im(Q), and thus the largest upper bound of the set {Pi : 1 ≤ i ≤ k} is an

element of A as well. In this sense a subalgebra of B(H) can be considered a subsystem of

B(H).

1A lattice is called complete if for every subset A ⊂ P the greatest upper bound, sup(A), and the
smallest lower bound, inf(A), exist.

6
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A lattice that is not only modular but distributive is called Boolean2. For the lattice

P(A) of a subalgebra A ⊂ B(H) this is the case if A is commutative. Then it is generated

by the minimal projections of A, which satisfy PiPj = 0 and
∑

Pi = I. In this case P(A)

is isomorphic as a lattice to the σ-algebra of subsets of the index set I = {1, . . . , k} we

used to number the minimal projections in P(A).

1.1.2 States and measurements

In analogy to a probability measure in a classical probability space, a state on the algebra

B(H) is defined as a linear functional φ : B(H) 7→ C such that

φ(A) ≥ 0 if A ≥ 0 and φ(I) = 1 (1.3)

The algebra B(H) can be equipped with the Hilbert-Schmidt inner product

〈A, B〉 =
1

n
Tr (A∗B)

(
A, B ∈ B(H)

)
. (1.4)

and with this inner product it is a Hilbert space itself. A state is an element of the dual

of B(H) and it can be represented by a density operator ρ ∈ B(H) as φ(A) = Tr (ρA).

By the properties imposed on a state the density operator ρ fulfills

ρ ≥ 0 and Tr ρ = 1. (1.5)

From (1.5) it follows that a density matrix is a self-adjoint operator with eigenvalues

{λi : 1 ≤ i ≤ n, λi ≥ 0,
∑n

i=1 λi = 1}. A state on B(H) is called pure if the density

operator is a rank one projection, i.e. it has a single non zero eigenvalue equal to one.

2A σ-algebra of sets is an example of a Boolean lattice.

7
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An important role in quantum probability theory is played by self-adjoint operators

A = A∗. By the spectral theorem a self-adjoint operator A has an orthogonal basis of

eigenvectors and therefore a decomposition

A =
∑

i

aiPi (1.6)

where the ai ∈ R are the eigenvalues of A and the Pi are orthogonal projections on the

corresponding mutually orthogonal eigenspaces.

The eigenprojections of a self-adjoint operator fulfill PiPj = 0 and
∑

i Pi = I and they

generate an Abelian subalgebra A ⊂ B(H). The lattice P(A) is Boolean and a σ-additive

map defined by MA : ai 7→ Pi gives a lattice isomorphism between the σ-algebra over the

set of eigenvalues of A and the lattice P(A) of projections in A. By linearity and the

conditions (1.3) the state φ induces a probability measure on the set of eigenvalues of A

through the map MA. We get the probabilities

Prob(ai) = φ(Pi) = Tr (ρPi) . (1.7)

Thus the operator A can be associated with a random experiment that has the eigenvalues

of A as outcomes which appear with the probabilities in (1.7). Then the expectation value

of the outcomes is given by the value of the functional φ at A:

〈A〉 =
∑

i

aiProb(ai) = φ(A) (1.8)

In the description of a physical system self-adjoint operators are associated with observable

quantities of the system and therefore called observables.

The concept of a random experiment in quantum theory can be extended to a more

general form given by positive operator valued measures (POVM). A finite discrete POVM

8
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is a σ-additive map from the σ-algebra over a finite set {a1, a2, . . . , ad} of outcomes into

the set of positive operators on B(H). It can be defined by the assignment ai → Ei such

that M := {Ei : 1 ≤ i ≤ d} is a set of #(M) = d positive operators Ei ∈ B(H) satisfying

the conditions

Ei ≥ 0 and
d∑

i=1

Ei = I. (1.9)

Again, by linearity and the conditions (1.3) the state induces a probability measure on the

set {a1, a2, . . . , ad} and φ(Ei) can be interpreted as the probability that the outcome ai

appears if the system is in the state ρ:

pi := Prob(ai) = Tr (ρEi) . (1.10)

Since in the following the values of the outcomes will not be important, we will describe

a POVM simply by the set of operators M := {Ei : 1 ≤ i ≤ d} and refer to it as

a measurement. Performance of a measurement shall simply mean the performance

of the random experiment associated with the POVM. If all operators in a POVM are

projections, it corresponds to the measurement of an observable and commonly the notion

von Neumann measurement is used.

Example 1.1.1 In the case of a qubit, i.e. dim(H) = 2, consider the operators

E1 = 1
4
I + 1

4
√

3
(σ1 + σ2 + σ3) E2 = 1

4
I + 1

4
√

3
(σ1 − σ2 − σ3)

E3 = 1
4
I + 1

4
√

3
(−σ1 + σ2 − σ3) E4 = 1

4
I + 1

4
√

3
(−σ1 − σ2 + σ3)

(1.11)

where the σi are the Pauli matrices given in (1.15). The operators in M := {Ei : 1 ≤ i ≤ 4}

fulfill
∑4

i=1 Ei = I. With the anticommutator {σi, σj} := σiσj + σjσi = 0 (i 6= j) of

the Pauli matrices it follows that E2
i = 1/2 Ei and therefore the Ei are subnormalized

projections, thus positive and the set M := {Ei : 1 ≤ i ≤ 4} forms a POVM. ♦

9
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As an important difference to classical theory, in quantum probability theory the perfor-

mance of a measurement is accompanied by the so called reduction of the state. If the

outcome ai appears after a measurement is completed, this gain of information about the

system needs to be reflected in a change of the state of the system. Therefore after a

measurement in which the outcome ai appeared, the state of the system is given by

ρ̂ =
ViρV ∗

i

Tr (ViρV ∗
i )

(1.12)

where3 Ei = ViV
∗
i . In the case of a von Neumann measurement the operators Vi are

projections and the repeated performance of the same measurement on the system will

give the same result ai with probability one.

To illustrate the difference in the measurement process in the classical and in the quan-

tum case, one may assume that the actual outcome of a measurement is not recorded,

but we know that the system is in one of the post-measurement states with the accord-

ing probability. Then the state after the measurement can be described by the convex

combination

ρ̂ =
∑

i

Prob(ai) ρ̂i (1.13)

In this situation the measurement process can be considered as a state transformation (see

e.g. [20]), i.e. a completely positive map E : B(H) 7→ B(H) that takes ρ 7→ ρ̂. The map E

can be written in the form E(ρ) =
∑

i ViρVi and in this context the Vi are called the Kraus

operators of E . The difference in observation of a classical and a quantum system becomes

obvious: In the classical case E is always the identity, observation does not influence the

state of the system. In quantum mechanics E is always different from the identity and

the system is only left unchanged for certain states, e.g. for a von Neumann measurement

3 The actual form of the Vi depends on the physical realization of the POVM.

10
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if ρ and the measured observable A commute. In this sense the order in which certain

random variables are measured does not matter in the classical case. In the quantum

case, due to the change of the state during a measurement, the outcome probabilities in

measurements depend in general on preceeding observations. In particular the outcome of

the measurement of an observable B is only predictable with certainty from the outcome

of a preceeding measurement of an observable A if A and B commute.

1.2 Complementarity

By the non-commutativity of observations as described in the preceeding section, knowl-

edge obtained from a measurement of an observable A implies uncertainty in a subsequent

measurement of observables that do not commute with A. For this reason in early quan-

tum theory non-commuting observables where said to provide complementary information

about a system. Motivated by this, two observables are are called complementary if knowl-

edge of one of them implies maximal uncertainty about the other. Complementarity of ob-

servables is related to an orthogonality relation between the Abelian subalgebras generated

by their eigenprojections and from this geometric property complementarity of observables

can be generalized to subalgebras [19] and POVMs .

Several information theoretic consequences of complementarity have been studied. Com-

plementarity leads to extremal bounds in uncertainty relations and entropic uncertainty

relations. An overview and applications can be found in [19]. In the context of state es-

timation the role of complementary observables was studied in [28]. We will examine the

role of complementary measurements in Chapter 3.

11
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1.2.1 The traceless subspace

Before we give a definition of complementarity, we examine the vector space structure

of the algebra B(H). If dim(H) = n we can choose an orthonormal basis in B(H) that

consists of self-adjoint operators of the form {σi : 0 ≤ i ≤ n2 − 1}, where σ0 ≡ I denotes

the identity. The basis elements fulfill

〈σi, σj〉 = 0 (i 6= j), 〈σi, σi〉 = 1. (1.14)

By the form (1.4) of the Hilbert Schmidt inner product the orthogonality condition in

(1.14) implies that S := span{σi : 1 ≤ i ≤ n2 − 1} is the (n2 − 1)-dimensional linear

subspace of traceless operators in B(H).

Example 1.2.1 In the case of dim(H) = 2 the Pauli matrices

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 (1.15)

together with the identity form a standard basis of M2(C). They fulfill additionally the

algebraic relations σ1σ2 = −σ2σ1 = iσ3, σ2σ3 = −σ3σ2 = iσ1 and σ3σ1 = −σ1σ3 = iσ2. A

similar basis for dim(H) > 2 is given by the so called Gell-Mann matrices (see e.g. [24]). ♦

With respect to the above basis we can expand an arbitrary operator A ∈ B(H) as

A =
Tr A

n
I + α where α ∈ S (1.16)

and we call α the Bloch vector of the operator A. This notation is in dependence

on the notation of the case of a density operator in dim(H) = 2 as described in Chapter

12
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2.2.14. Of particular interest is the case of self-adjoint operators: By Tr (A∗B) = Tr (B∗A)

the inner product 〈A, B〉 between self adjoint operators A and B takes always real values.

Thus self adjoint operators form a real vector space over the basis {σi : 0 ≤ i ≤ n2 − 1}

and α can be written as a vector with real components:

α ∈ R(n2−1) if A = A∗.

Note that self adjoint operators do not form an algebra, in particular the product of two

self adjoint operators is not self adjoint if the operators do not commute.

1.2.2 Complementary observables, algebras and measurements

As mentioned at the beginning of this chapter, complementarity arises from the fact that

two non-commuting observables of a quantum system are not jointly measurable with

arbitrary precision. As an extremal case of this, two observables A and B with eigenpro-

jections {Pi : 1 ≤ i ≤ n} and {Qi : 1 ≤ i ≤ n} and non-degenerate spectrum are called

complementary if

Tr(PiQj) =
1

n
∀i, j . (1.17)

Complementarity has the following consequence for the measurement of the observables A

and B on a quantum system: If the observable A =
∑

aiPi is determined in a measurement,

which implies that the state after the measurement is ρ̂ = Pi if the obtained value is ai, a

subsequent measurement of observable B will give any of the possible outcomes of B with

probability 1/n. In this sense exact knowledge of A implies complete uncertainty about B.

Complementarity is related to orthogonality in the traceless subspace S (see [19]). If

4Note that unlike in the case of a density operator, when Tr (ρ) = 1, the vector α does not define the
operator A completely.

13
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we are given two operators A1 and A2, their components in the traceless subspace S are

given by (Ai − Tr(Ai)
n

I) (i = 1, 2). If we look at the inner product

1

n
Tr
((

A1 −
Tr(A1)

n
I
)(

A2 −
Tr(A2)

n
I
))

=
1

n

(
Tr (A1A2)−

2

n
Tr (A1)Tr (A2) +

1

n
Tr (A1)Tr (A2)

)
=

1

n

(
Tr (A1A2)−

1

n
Tr (A1)Tr (A2)

)
(1.18)

of their traceless components we find that they are orthogonal if and only if

Tr (A1A2) =
1

n
Tr (A1)Tr (A2) . (1.19)

For rank 1 projections Pi and Qj this is equal to condition (1.17). Thus complementarity

of two observables is equivalent to the condition that the traceless components of the

maximal Abelian subalgebras A1 and A2 generated by the eigenprojections of the of A1

and A2 are orthogonal. This gives raise to the generalization of complementarity to general

subalgebras of B(H): Two subalgebras A1,A2 ⊂ B(H) are called complementary or

quasi-orthogonal, denoted as A1 ⊥0 A2, if they fulfill the equivalent conditions

(i) A1 	 CI ⊥ A2 	 CI

(ii) Tr (A1A2) =
1

n
Tr (A1)Tr (A2) ∀ A1 ∈ A1, A2 ∈ A2 .

(1.20)

Since we required a subalgebra to contain the span of the identity, quasi-orthogonality is

the maximum level of orthogonality two subalgebras can obtain.

From the viewpoint of quasi-orthogonality we can extend complementarity of observ-

ables to complementarity of POVMs. We call two measurements (POVMs) quasi-ortho-

gonal, if the linear subspaces spanned by M1 = {Ei : 1 ≤ i ≤ d1} and M2 = {Fi : 1 ≤ i ≤
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d2} are quasi-orthogonal. This can be formulated by the following equivalent conditions:

(i) span{Ei} 	 CI ⊥ span{Fi} 	 CI

(ii) Tr (EiFj) = Tr (Ei)Tr (Fj) ∀i, j .

(1.21)

While a von Neumann measurement is naturally related to a subalgebra, in the case of a

POVM this is not necessarily the case. For example, the four operators {1/4(I±σx),
1/4(I±

σy)} form a POVM. By [σx, σy] = iσz the algebra they generate is M2(C) while their span

is only a subspace of M2(C).

1.2.3 Complete sets of complementary subalgebras

An important question for the state estimation problem discussed in the thesis is whether it

is possible to find POVMs that are mutually quasi-orthogonal and at the same time span the

whole algebra B(H). In the most relevant cases this is related to the question if there exist

subalgebras Ai ⊂ Mn(C) such that Ai ⊥0 Aj (i 6= j) and span{Ai} = Mn(C). An obvious

condition for the Ai is that the dimensions of their traceless components have to sum up

to the dimension of traceless component of Mn(C). If there is a set of complementary

subalgebras such that this is the case we call it a complete set. Before we give a list of

examples where the existence of a complete set of complementary subalgebras is known,

let us describe the explicit structure of a ∗-subalgebra A of the matrix algebra Mn(C):

By fixing a basis of the Hilbert space H we can identify B(H) with the matrix algebra

Mn(C). The choice of a basis is arbitrary, nevertheless by the choice of a convenient

basis the structure of the matrices in Mn(C) representing the elements of a subalgebra

A ⊂ B(H) simplifies. A change between orthogonal bases of H corresponds to a unitary

operator U ∈ UC(n) and the representation of A in Mn(C) for two different bases, denoted
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here by A and Ã, is related by unitary conjugation:

Ã = UAU∗ (1.22)

where we define unitary conjugation of a set by unitary conjugation of its elements. The

structure of subalgebras of Mn(C) can be derived from results from non-commutative

algebra (see e.g. [5]): First let us note that Mn(C) is a central simple algebra, i.e. it has no

proper ideal and the only elements that commute with all operators A ∈ Mn(C) are scalar

multiples of the identity. Conversely any finite dimensional simple algebra is isomorphic to

a full matrix algebra. In the special case when A is a central simple subalgebra of Mn(C),

i.e. A is isomorphic to a full matrix algebra itself, by the centralizer theorem (see [5]) with

an appropriate choice of basis

Mn(C) ≡ A⊗A′ (1.23)

where A′ := {A ∈ Mn(C) : AB = BA ∀B ∈ A} is the commutant of A in Mn(C).

It can be shown that a ∗-subalgebraA is semisimple, therefore by the Artin Wedderburn

structure theorem (see e.g. [5]) it is isomorphic to the direct sum of full matrix algebras:

A '
⊕

k

Mnk
(C) (1.24)

We can choose a maximal family of minimal projections {P1, P2, . . . , Pnk
} in the Mnk

(C)

such that PiPj = 0 ∀i 6= j and ∨iPi = Ink
, where Ink

is the identity matrix in Mnk
(C).

The isomorphic images of the Pi in A correlate with bases of the underlying Hilbert space

H. In this bases the algebra A is represented by block diagonal matrices and A ≡ ⊕kA(k),

where A(k) ' Mnk
(C). In this representation the algebra A(k) is subalgebra of Mmk

(C)

isomorphic to a full matrix algebra, where mk is the size of the block corresponding to

A(k). By (1.23), in an appropriate basis A(k) ≡ Mnk
(C) ⊗ Idk

. Thus in an appropriate
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basis the subalgebra A has the form

A ≡
⊕

k

Mnk
(C)⊗ Idk

(1.25)

Let us discuss the following basic examples of ∗-subalgebras of Mn(C) that contain the

identity matrix:

• An Abelian subalgebra A of Mn(C) is isomorphic to the direct product A ' ⊕m
k=1C,

where m ≤ n, where the later is equivalent to the algebra of m×m diagonal matrices.

As shown above, with the choice of an appropriate basis A ≡ ⊕m
k=1C⊗ Idk

such that∑
k dk = n. A is called maximal Abelian if m = n and in this case the minimal

projections of A are of rank one and there are exactly n direct summands.

• If the dimension n = kl is not prime, the algebra Mn(C) is isomorphic to a tensor

product algebra Mn(C) ' Mk(C) ⊗ Ml(C). Naturally, Mk(C) ⊗ Il (respectively

Ik ⊗Ml(C)) are subalgebras of Mn(C) isomorphic to the corresponding full matrix

algebras.

• A subalgebra A is called homogenous if all minimal projections in A have the same

rank. If two homogenous subalgebras A1 and A2 of Mn(C) are isomorphic, we get in

an appropriate basis by (1.25)

⊕
k

Mnk
(C)⊗ Idk

≡ A1 ' UA2U
∗ ≡

⊕
k

Mn′k
(C)⊗ Id′k

(1.26)

with some unitary U ∈ Mn(C). Since A1 and A2 where assumed to be isomorphic we

have nk = n′k and then homogeneity implies dk = d′k = d. Therefore A1 and A2 differ

only by a choice of basis of H and there is some V ∈ U(n) such that A1 = VA2V
∗. In

particular, a subalgebra isomorphic to a full matrix algebra, and especially Mn(C),

is homogenous.
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Let us now return to complementary subalgebras. In the following we give a compre-

hensive list of the cases where the existence of a complete set of complementary subalgebras

of Mn(C) known:

Example 1.2.2 Maximal Abelian subalgebras are generated by n minimal projections of

Mn(C). The dimension of the traceless subspace of a maximal Abelian subalgebra is n−1.

The dimension of the traceless subspace of Mn(C) is n2 − 1, thus an upper bound on

the maximum number of complementary maximal Abelian subalgebras A1,A2, . . . ,Am ⊂

Mn(C) such that Ai ⊥0 Aj (i 6= j) is given by m = n + 1.

Existence of complementary maximal Abelian subalgebras is equivalent to existence

of mutually unbiased bases of the Hilbert space H: The minimal projections {Pi}n
i=1 in

some maximal Abelian subalgebra A1 and {Qj}n
i=1 in some maximal Abelian subalgebra

A2 can be identified with orthonormal bases {ei}n
i=1 and {fj}n

i=1 of H. Then the condition

of quasi-orthogonality of A1 and A2 is equivalent to

|(ei, fj)| =
1√
n

. (1.27)

Bases that fulfill this condition are called mutually unbiased. A complete set of m =

n + 1 mutually unbiased bases respectively complementary maximal Abelian subalgebras

in Mn(C) is known to exist in the cases when n = pk is the power of a prime p [28]. In any

other cases their existence is an open problem. ♦

Example 1.2.3 Now consider a system of l qubits described by B(H) = M1
2 (C)⊗M2

2 (C)⊗

· · ·⊗M l
2(C) with n = dim(H) = 2l. We can construct a orthonormal basis of M2l(C) from

the tensor product

σ(k) = σi1 ⊗ σi2 ⊗ · · · ⊗ σil where (ij = 0, 1, 2, 3) (1.28)
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of elements of a orthogonal basis of M2(C) with σ0 = I. There are 22l such operators and

by Tr(A⊗B) = Tr (A)Tr (B) they are traceless if at least one of the indices ij is different

from zero. The remaining element, let us denote it by σ(0), is the identity. Let us consider

the case when the σi are the Pauli matrices given in (1.15). The eigenvalues of the Pauli

matrices are ±1, thus each of the traceless operators in (1.28) has eigenvalues ±1 and

by induction on l it is easy to see that they have multiplicity n/2 and fulfill (σ(k))2 = I.

Consequently the operators

P
(k)
± :=

1

2
(I ± σ(k)) (1 ≤ k ≤ n2 − 1) (1.29)

have eigenvalues 0 and 1 with multiplicity n/2, hence they are projections of of rank n/2. They

correspond to the measurement of observables with two distinct eigenvalues of multiplicity

n/2. The algebrasAk generated by {P (k)
+ , P

(k)
− } are homogenous Abelian subalgebras and, by

P
(k)
+ +P

(k)
− = I, the traceless component of the Ak is one dimensional. Since the σ(k) form

an orthonormal basis of B(H), the Ak form a complete set of m = n2 − 1 complementary

subalgebras. ♦

Example 1.2.4 If the dimension of H is given as dim(H) = qk, the algebra Mn(C) is

isomorphic to the tensor product

Mqk(C) '
k⊗

i=1

Mq(C). (1.30)

Then Mn(C) contains full matrix subalgebras A ⊂ Mqk(C) isomorphic to Mq(C). The

traceless subspace of the algebra A has dimension q2 − 1 thus an upper bound to the

maximum number of such complementary subalgebras A1,A2, . . . ,Am such that Ai ⊥0 Aj

(i 6= j) is given by m = (q2k−1)/(q2−1) and in this case they span the whole algebra. In [17]

it was shown that if q = pl is a prime power with p ≥ 3 there exists a complete set of such
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subalgebras. ♦

Example 1.2.5 In the case of M4(C) = M2(C)⊗M2(C), i.e. p=2 and k=2, it was shown

in [23] that the upper bound of 5 quasi-orthogonal subalgebras A ' M2(C) cannot be

achieved. However it is possible to choose four quasi-orthogonal subalgebras Ai ' M2(C)

(1 ≤ i ≤ 4) and a maximal Abelian subalgebraA5 on the remaining orthogonal complement

in S [18]. ♦

Example 1.2.6 In the context of Example 1.2.4 when q = pl with a prime p ≥ 3 the

Ai, as the isomorphic image of Mq(C), obey a further decomposition into mutually quasi-

orthogonal Abelian subalgebras. Since q was assumed to be a prime power, we can apply

Example 1.2.2 to the algebras Mq(C). In Mq(C) we can find mM = q + 1 complementary

maximal Abelian subalgebras, and the decomposition of the algebras Ai is obtained from

the isomorphic images of this subalgebras. This subalgebras are not maximal Abelian in

Mqk(C), from (1.25) we can see that their minimal projections are of rank r = q(k−1). Thus

we obtain a decomposition of Mqk(C) into m = mMmq homogenous Abelian subalgebras.

In [17] a detailed treatise of M3 ⊗ M3 can be found. The dimension of the traceless

subspace in this case is n2 − 1 = 80. It has ten subalgebras A1, . . . ,A10 ' M3(C). In

the algebras Ai we can find complementary Abelian subalgebras A(k)
i generated by the

projections {P (k)
i }3

i=1 (1 ≤ i ≤ 4), where the P
(k)
i are isomorphic images of minimal

projections on M3(C) and have rk(P
(k)
i ) = 3. ♦

1.3 Composite Systems

The composite of two quantum systems with Hilbert spaces HA and HB, is described by

the algebra B(H) = B(HA) ⊗ B(HB) on the Hilbert space H = HA ⊗ HB. Then B(H)

contains B(HA) ⊗ IB and IA ⊗ B(HB) as subalgebras and these are associated with the
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subsystems A and B. The state of the subsystem A is described by the restriction of the

state as a linear functional on the algebra B(H) to the subalgebra B(HA)⊗ IB ' B(HA).

In this case the system A can be described by the reduced density operator ρA ∈ B(HA)

given by the partial trace:

ρA = Tr B(ρ) . (1.31)

Any subalgebra A of the composite system B(H) that is isomorphic to B(HA) can be

identified with the subsystem A after an appropriate unitary conjugation such that

B(HA)⊗ IB ≡ WAW ∗ . (1.32)

For a physical system the unitary W can be realized through the evolution of the system

under an appropriate time independent Hamilton operator H: The dynamic of the system

is described by the von Neumann equation

dρ

dt
= − i

~
[H, ρ] (1.33)

where the commutator is given by [A, B] = AB − BA. The solution to this equation is

given by the unitary evolution

ρ(t) = e−iHt/~ρ(t = 0)eiHt/~ (1.34)

and we can choose H and t such that W = e−iHt/~.
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Chapter 2

State Estimation

In classical statistics, as well as in quantum theory, observations are not always predictable

but they are distributed at random. In estimation theory one aims to guess the underlying

distribution of a random observations from statistical data. In particular, we are interested

in the situation when we can parameterize the possible true distributions by a some pa-

rameter θ from a set Θ and we try to find a single value θ̂, i.e. a point estimate, that gives

a good approximation for the true value θ. In this chapter we give a short introduction

to classical estimation theory followed by an introduction to the problem in the quantum

case. We give a brief overview of results from quantum estimation theory that can be

found in the literature. Furthermore we give a detailed description of the scheme we use

for estimation of a quantum state in the thesis.

2.1 Classical Parameter Estimation

A statistical space (X, S, P) consists of a set X together with a σ-algebra S of subsets

of X and a family of probability distributions P = {Pθ : θ ∈ Θ} that is parameterized
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by a parameter θ such that (X, S, Pθ) are probability spaces. We will assume that the

parameterization is identifiable, i.e. it is a one-to-one map between Θ and P . We will

consider Θ ⊂ Rm and we will assume that P is dominated by a finite measure µ, i.e. Pθ

is absolutely continuous with respect to µ for all values of the parameter θ. Furthermore

let us consider in this section only the case when the probability distributions in P obey

either a probability density fθ(x) or a probability mass function pθ(i). In the following we

discuss the discrete case. The formulas in the continuous case are obtained by replacing

pθ(i) by fθ(x).

In the typical case in estimation theory we look at a sequence X = (X1, X2, . . . , XN) of N

i.i.d. random variables, called a sample of size N , where the Xk are distributed according

to a distribution Pθ ∈ P . We infer about the true value θ from the realization of the

random sequence X. The outcome space of the sample is the Cartesian product ×N
k=1X.

Since the X(k) are independent and identically distributed, the probability mass function of

X is the product of the probability mass functions pθ of the X(k) and it is called likelihood

function

Lθ(x) :=
N∏

i=1

pθ(xi) .

A statistic T is a measurable function from the outcome space of the random sequences

X into the parameter space Rm. It is called sufficient if

Prob(X = x|T(x) = t) is independent of θ. (2.1)

Heuristically, in this case it contains all information about the parameter θ. By the

Neyman-Fisher factorization theorem (see e.g. [13]) this is the case if

Lθ(x) = gθ

(
T(x)

)
h(x) . (2.2)

23



C
E

U
eT

D
C

ol
le

ct
io

n

A statistic is called complete if

Eθ[g(T(X))] = 0 ∀θ ∈ Θ ⇒ Probθ

(
g
(
T(x)

)
= 0
)

= 0 ∀θ ∈ Θ (2.3)

for real valued measurable functions g.

Of particular interest is the case when the statistics T is used as an estimate of θ.

Then it is natural to require some further properties of T such that the estimate gives

values close to the true value of the parameter with high probability. An estimate is called

unbiased if its expectation equals the true value of the parameter:

Eθ[T] = θ . (2.4)

It is called asymptotically unbiased if we have a sequence of statistics TN on samples

of size N estimating θ such that limN→∞ Eθ[TN ] = θ. As a measure of efficiency of an

estimate the mean quadratic error matrix

Vθ(T) = Eθ

[
(T− θ)(T− θ)t

]
(2.5)

is used, and if the estimate is unbiased, this is identical with its variance. An estimate T1

is called more efficient than an estimate T2 if

Vθ(T1) ≤ Vθ(T2) ∀θ ∈ Θ (2.6)

where the inequality is to be understood in the matrix sense, i.e. A ≥ B if A − B ≥ 0.

An estimate with uniformly (i.e. for all θ) minimal mean quadratic error matrix does not

always exist. Nevertheless, if there exists a sufficient and complete statistics T′, then by the

Rao-Blackwell theorem (see e.g. [13]) there exists a unique unbiased estimate T of uniform
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minimal variance and it is a function of T′. For an unbiased estimate the following lower

bound on the mean quadratic error matrix can be found: Suppose that the probability

mass functions in P have common support, supp(pθ) = C for all θ ∈ Θ, where C is a

bounded set in X. Further ∇θ log pθ exists and is finite on supp(pθ), where ∇θ denotes

the gradient with respect to θ. Then the Cramer-Rao inequality (see e.g. [13])

Vθ(T) ≥
(
∂θEθ[T]

)2
I(θ)

(2.7)

holds, where the matrix I(θ) = Eθ[∇θ log Lθ(X)][∇θ log Lθ(X)]t is the Fisher information.

From the observation that the Fisher information has the form of a variance and the

observables Xk are independent, it is easy to see that it grows proportional to the sample

size: IN = NI1 where I1(θ) = Eθ[∇θ log pθ(X)][∇θ log pθ(X)]t. For the special case of an

unbiased estimate additionally (∂θEθ[T])2 = 1.

An important case are so called exponential families P whose elements have likeli-

hood functions

Lθ(x) = exp
( n∑

i=1

ηi(θ)Ti(x)−B(θ)
)
h(x) (2.8)

with respect to some common measure. Here ηi and Ti are real valued functions and the

ηi are called natural parameters of the family. An exponential family is called of full

rank if the parameter set Θ ⊂ Rm contains a open set of Rm. By the Neyman-Fisher

theorem T = (T1, T2, . . . Tn) is a sufficient statistics and if additionally the family is of full

rank, T is complete. In this case T attains the Cramer-Rao bound, and in particular if T

is unbiased it is of uniform minimal variance (see e.g. [13]).

Finally a sequence of estimates TN is called weakly consistent, if TN → θ in probabi-

lity. If the mean quadratic error matrix of a sequence of asymptotically unbiased estimates

TN goes to zero asymptotically, this implies weak consistency of TN . This follows if we

apply Chebyshev’s inequality Prob
(∣∣X −E[X]

∣∣ ≥ a
)
≤ Var(X)/a2 for a real valued random
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variable X to the components of TN .

Example 2.1.1 As an example consider a statistical space over a finite set X = {1, 2, . . . ,

m} with the family P of all discrete probability distributions with mass function pθ,

supp(pθ) = X. Let us denote p := (p1, p2, . . . , pm) as the vector containing the pro-

bability pi := Prob(i) that i appears. Then P is the interior of the probability simplex

Ωm =
{

p = (p1, p2, . . . , pm) : pi ≥ 0,
∑

pi = 1
}
⊂ Rm. (2.9)

Due to the condition
∑

i pi = 1 we can parameterize P by the first (m− 1) components of

p and the parameter set is given by

Θm =
{

θ = (p1, p2, . . . , pm−1) : pi > 0,
∑

pi < 1
}
⊂ Rm−1. (2.10)

Given a sample of length N , i.e. a sequence of N i.i.d. random variables Xk ∼ pθ

(1 ≤ k ≤ N), let us denote the number of occurrences of the value i in a outcome sequence

by ni. The likelihood functions Lθ(x) of the sample form an exponential family (see e.g.

[13]):

Lθ

(
X = (x1, x2, . . . , xN)) = exp

(m−1∑
i=1

ni

N
log

pN
i

pm

− log pN
m

)
IΩ(n1, n2, . . . , nm) (2.11)

where IΩ(n1, n2, . . . , nm) is the indicator function on the set
{
ni ∈ N :

∑m
i=1 ni = N

}
. This

family is dominated by the counting measure and it is identifiable. The natural parameter

is given by

η =
(

log
pN

1

pm

, log
pN

2

pm

, . . . , log
pN

m−1

pm

)
∈ Rm−1 . (2.12)

Since Θ contains an open set of Rm−1, it is an exponential family of full rank. Thus

ν(x1, x2, . . . , xN) := (n1

N
, n2

N
, . . . , nm−1

N
) is a complete and sufficient statistics and it is called
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the empirical distribution of the Xk. The components νi := ni

N
of ν are called relative

frequencies of the outcomes i. The vector ν is by (2.19) an unbiased estimate for θ and

it is the the uniform minimum variance unbiased estimate on the interior of the probability

simplex (2.9) as discussed in the previous section.

The numbers ni of the occurrences of the outcome i in a realization of the sample are

random variables as well, nevertheless by the condition
∑

i ni = N they are not indepen-

dent. In the following we derive the marginal distributions, expectations and variances of

the ni: The number of realizations of X that contain i exactly ni times is given by the

multinomial coefficient (
N

n1 n2 . . . nm

)
=

N

n1! n2! . . . nm!
(2.13)

and thus the ni follow a multinomial or polynomial distribution with probability mass

function

pθ(n1, n2, . . . , nm) =

(
N

n1 n2 . . . nm

)
pn1

1 pn2
2 · · · pnm

m IΩ(n1, n2, . . . , nm) . (2.14)

Let us define the Bernoulli variables B
(k)
i ∼ (pi, 1− pi) on the sample space defined by

B
(k)
i =


1 if Xk = i

0 if Xk 6= i

(2.15)

Then we can write the ni as the sum of i.i.d. random variables: ni =
∑N

k=1 B
(k)
i . It is

immediate by considering the multinomial distribution for the sequence of random variables

B
(k)
i instead of Xk that the marginal distributions of (2.14) for the ni are given by the

binomial distribution

pθ(ni) =

(
N

ni

)
pni

i (1− pi)
(N−ni) . (2.16)

27



C
E

U
eT

D
C

ol
le

ct
io

n

The binomial distribution has expectation E[ni] = Npi and variance Var(ni) = N (pi− p2
i ).

To calculate the covariances we use

ninj =

( n∑
k=1

B
(k)
i

)( N∑
l=1

B
(l)
j

)
=

( N∑
k=1

B
(k)
i B

(k)
j

)
+

( N∑
k 6=l

B
(k)
i B

(l)
j

)
(2.17)

The first sum on the right hand side of this equation is always zero by the definition of

the B
(k)
i . Since k 6= l, in the second sum we have the products of independent random

variables. Thus

Cov(ni, nj) = E[ninj]− E[ni] E[nj] =
N∑

k 6=l

E[B
(k)
i ] E[B

(l)
j ]− E[ni] E[nj]

= (N2 −N) pipj −N2 pipj = −N pipj .

(2.18)

Altogether we get

E[ni] = Npi ,

Var(ni) = N (pi − p2
i ) , (2.19)

Cov(ni, nj) = −N pipj (i 6= j).

♦

2.2 Quantum State Estimation

In quantum statistics we consider a family R = {ρθ : θ ∈ Θ} of density operators param-

eterized by a parameter from a set Θ ⊂ Rk. As in the classical case the aim of estimation

theory is to find an estimate of the parameter θ from the outcome of observations of the

system. For this purpose we consider a sample of N identical copies of an unknown state

ρθ ∈ B(H) of the quantum system. In order to obtain experimental data we need to specify
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a set of measurements we perform on the sample. From the statistical data obtained from

the outcome of the measurements we form an estimate of the true state of the system.

Thus a quantum estimation scheme consist usually from the following steps:

ρθ : θ ∈ Θ Parameterization

↓ N copies of ρθ

measurements on the copies

↓ Measurement Scheme

Data (a1, a2, . . . )

↓

Estimate θ̂ Estimate

To compare the quality of an estimation scheme a measure of quality of the estimate needs

to be chosen. Additionally to the influence factors discussed for a classical estimate the

efficiency of a quantum estimation scheme depends on the chosen set of measurements.

Quantum state estimation is an active field of research. Let us mention in the following

some results from this field: One of the main questions is the optimal choice of the mea-

surement in an estimation scheme. The measurements on the sample can be categorized

by their correlations into collective, separable and separate measurements1. For the prob-

lem discussed in the thesis the restriction to separate measurement is adequate, however,

it is known that in some situations a collective measurement on the sample is superior

to separable measurements [16, 6], and that separable, but correlated measurements in

the form of adaptive measurement schemes can perform better than comparable separated

1 A collective measurement is a POVM on the composite system of the available copies of the state. If
the operators in a measurement can be written in the form Ei =

∑
j E1

ij ⊗ E2
ij ⊗ · · · ⊗ EN

ij with Ek
ij ≥ 0

(1 ≤ k ≤ N), a measurement is called separable. Separate measurements are defined in (2.24).
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measurements [6, 11].

For the qubit case (dim(H) = 2) several estimation schemes using separate measure-

ments can be found in the literature. Besides the so called standard scheme using the spin

observables Si (see example 2.2.2), a minimal estimation scheme with the single POVM of

example 1.1.1 [11], schemes estimating the orientation and length of the Bloch vector [1]

and even continuous POVM [27] have been studied. For the construction of an estimate

from the statistical data, the procedure of inverting the linear relationship between the

state and the outcome probabilities in a measurement, as used in the present work, is con-

sidered standard [21, 1, 11]. Alternatively the concepts of maximum likelihood estimation

[10] as well as Bayesian estimation [1, 15] have been studied in the quantum setting.

As measures for the quality of the estimation scheme we use the determinant of the mean

quadratic error matrix, also known as generalized variance (see e.g [12]). This measure was

used in [21]. In [28] the average information gain was used, which is asymptotically related

to the determinant of the mean quadratic error matrix. Commonly also the trace of the

mean quadratic error matrix [11, 27] or the quantum fidelity between the estimate and the

true state is used [1]. Let us also mention that different bounds on the mean quadratic

error matrix similar to the classical Cramer-Rao bound have been derived in the quantum

case [9, 6, 7] and asymptotical attainability was shown for some of them [6, 7, 1].

In the following we discuss the setting of the state estimation schemes considered in

this thesis. In particular, the individual steps of the estimation scheme are described in

detail. .

2.2.1 State space and parameterization

Recall that a density operator or state ρ ∈ B(H) is defined by the conditions ρ ≥ 0 and

Tr ρ = 1. By the condition of unit trace the component of ρ in the span of the identity is
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constant and the state is entirely described by its component in the traceless subspace S:

ρ =
1

n
I + θ , where θ ∈ S. (2.20)

We will call the Bloch vector θ of ρ the state vector2 of the system and we will denote by

T ⊂ S the set of state vectors. As mentioned in section 1.2.1 with the choice of a selfadjoint

basis in B(H), the state vector θ can be written as a vector with real components. Thus it

can serve as a parameterization of the state and T ≡ Θ ⊂ Rn2−1 is the set of parameters.

Example 2.2.1 In the qubit case, i.e. dim(H) = 2, the Pauli matrices

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 (2.21)

together with the identity form a standard basis of M2(C). The state vector θ can be

written as a vector in R3 and up to a normalization constant it is the well-known Bloch

vector of the state. The set of state vectors is the Bloch ball T = {θ : θ ∈ R3, ‖θ‖2 ≤

(n−1)/n2} (see below). ♦

Due to the positivity condition imposed on the states, the structure of the set T is difficult

to describe in the case dim(H) > 2. In the following we summarize some of the properties

of T : The set T is a convex set and by choosing a basis of H in which a given ρ is

diagonal, it is easy to see that ρ is the convex combination of rank one projections. Thus

the extremal points of this set are the pure states. Since a self-adjoint operator is non-

positive if it has some negative eigenvalues, it follows also that the boundary of T is given

by states that have at least one eigenvalue equal to zero. This are the states that have

2 Also the notion generalized Bloch vector or coherence vector are common
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non-invertible density matrices. Conversely invertible states are in the interior of T . We

can conclude the following bounds on the set of states: The eigenvalues λi of ρ can be

written in the form λi = 1/n + ∆i where ∆i are the eigenvalues of θ and sum up to zero.

With ‖θ‖2 = 〈θ, θ〉 = 1/n
∑

i ∆
2
i it follows that

‖θ‖2 =
nTr (ρ2)− 1

n2
. (2.22)

For a pure state Tr (ρ2) = 1, thus the Bloch vector of a pure state has length ‖θ‖2 =

(n−1)/n2 . In general Tr (ρ2) is smaller than one, thus all state vectors are contained in a

ball of radius
√

n−1/n in Rn2−1. On the other hand, if all ∆i are smaller than n/2 in absolute

value, ρ will be positive. This is ensured if
∑

i ∆
2
i ≤ 1/n2 , thus a ball of radius ‖θ‖ ≤ n−

3/2

is surely contained in T .

In general the pure states form only a subset of a sphere in Rn2−1. For a description of

this subset we note that the unitary group U(n) acts on the set of states by conjugation:

(U, ρ) 7→ UρU∗ where U ∈ U(n). This action defines also an action of U(n) on the set T

by (U, θ) 7→ UθU∗. The set T can be described by the orbit manifolds under this action

of U(n). Especially, the action is transitive on the set {θ ∈ T : |θ|2 = (n−1)/n2} of pure

state vectors and this set is described by the orbit manifold of pure state vectors. It is

homeomorphic to a sphere in Rn2−1 only in the case of dim(H) = 2 [26]. In this case it is

the Bloch ball defined in Example 2.2.2.

2.2.2 Measurement

To obtain experimental data from a sample of quantum states we need to perform a

measurement. A sample of N identical copies of a quantum state is described by a density

operator

ρ⊗N
θ :=

N⊗
k=1

ρθ ∈ B(H⊗N) . (2.23)
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where H⊗N := ⊗N
i=1H. A measurement is described by a set of positive operators in

B(H⊗N) that form a partition of the identity. In the thesis we will consider only so called

separate measurements. They correspond to the situation when each copy of the sample

is measured separately without any correlations between this measurements. This is the

case if the operators Ei ∈ M in a measurement M are of the form

Ei = E1
i ⊗ E2

i ⊗ · · · ⊗ EN
i (2.24)

By Tr (ρ⊗NEi) =
∏N

k=1 Tr (ρEk
i ) we may simply forget about the tensor product structure

and instead of a measurement of the composite system we may consider M as a collection

of measurements M (k) defined on the individual systems B(H). Thus we call a set M :=

{M (k) : 1 ≤ k ≤ m} of m different measurements a measurement scheme3. In an

estimation scheme we perform the measurement M (k) on N (k) copies of the state, where∑m
k=1 N (k) = N . A measurement M (k) and the family R of states induce a classical

statistical space (X(k),P(k))M(k) on the outcome set X(k) of the measurement. Therefore

from a measurement scheme we get a collection of m different classical statistical spaces

(X(k),P(k))M(k) .

For our calculations we will use the expansion of the operators Ei in the basis {I, σi :

1 ≤ i ≤ n2 − 1}:

Ei =
Tr Ei

n
I + ui (2.25)

In the following we will use ui synonymously to Ei, if there is no ambiguity4. Condi-

tion (1.9) implies that the components of Ei in the traceless subspace S sum up to zero.

3 We collect only different measurements in M, so if the same measurement M (k) is performed on
several copies of ρ, it appears only once in M. Therfore in general m is smaller than N .

4 For example speaking about a measurement M (k) we may sometimes refer to the set {u1,u2, . . . ,ud}
instead of {E1, E2, . . . Ed} if is clear from the context what are the Ei.
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Therefore
d∑

i=1

ui = 0 and
∑

i

Tr Ei = n (2.26)

is equivalent to the second condition in (1.9). If the vectors

{
u

(k)
i = E

(k)
i − Tr E

(k)
i

n
I : E

(k)
i ∈ M (k), 1 ≤ k ≤ m

}
(2.27)

linearly span the whole space S, we call the measurement scheme informationally com-

plete. This notion is commonly also used for POVMs [25] which span the whole algebra

B(H). From (2.29) it is easy to see that informational completeness is a necessary con-

dition if we want to estimate the parameter θ: The measurement probabilities will not

depend on the component of θ in the orthogonal complement of the subspace spanned by

the operators in the measurement and we obtain no information about this component of

θ.

Example 2.2.2 For a quantum system with dim(H) = 2 the measurement of a non-

degenerate observable Ai consists of two minimal projections MAi
= {1/2I ±ui}. This two

projections are characterized completely by the Bloch vectors ui ∈ T . An informational

complete measurement scheme using such observables consists of Ai (1 ≤ i ≤ 3) such

that the vectors ui are linearly independent in R3. As a special case let us consider the

spin observables Si := σi (1 ≤ i ≤ 3), where the σi are the Pauli matrices. They have

eigenprojections MSi
= {1/2(I ± σi)} and they are mutually complementary observables

on M2(C). Since the Pauli matrices form a basis of S, the measurement scheme M =

{MS1 , MS2 , MS3} defines an informationally complete measurement scheme. ♦

Example 2.2.3 The POVM described in example (1.1.1) provides an informational com-

plete measurement scheme for a quantum system with dim(H) = 2 consisting of a single

POVM. ♦
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In general, the vectors u
(k)
i that belong to some measurement M (k) will not span the whole

space S but only a subspace S(k) = span{u(k)
i : 1 ≤ i ≤ d(k)}. Quasi-orthogonality of two

measurements M (k) and M (l), as defined in section 1.2.2, corresponds to the case when the

subspaces S(k) and S(l) are orthogonal in S with respect to the inner product (1.4).

2.2.3 Construction of the estimate

Suppose now we are given an ensemble of N identical copies of a quantum system in the

state θ which is not known to us. To estimate the state we apply the following strategy:

We choose an informationally complete measurement scheme M consisting of elements

M (k), 1 ≤ k ≤ m, which have cardinality #(M (k)) = d(k) and we require

m∑
k=1

(d(k) − 1) = n2 − 1. (2.28)

Furthermore we divide the ensemble into subensembles of size N (k). On the individual

copies in kth subensemble we perform the measurement M (k). We will find that there is a

linear relation between the probabilities p
(k)
i of the measurement outcomes and the state

vector θ. We use this relation to construct an estimate θ̂ of the state vector from a classical

estimate ν of the probabilities.

The probability of an individual outcome to appear in a particular measurement is

p
(k)
i = Tr ρE

(k)
i =

Tr E
(k)
i

n
+ n 〈u(k)

i , θ〉 (1 ≤ k ≤ m, 1 ≤ i ≤ d(k) − 1) (2.29)

and

p
(k)

d(k) = 1−
d(k)−1∑

j=1

p
(k)
j (1 ≤ k ≤ m). (2.30)

Thus the probabilities p
(k)
i and the state vector θ are related by the (n2−1) linear equations

(2.29). Let us, with the abbreviation r
(k)
i := Tr E

(k)
i , introduce the (n2−1)×(n2−1) matrix
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T and the vectors p, r as

T =


T (1)

...

T (m)

 , T (k) =


(
u

(k)
1

)
t

...(
u

(k)

d(k)−1

)
t

 , p =


p(1)

...

p(m)

 , p(k) =


p

(k)
1

...

p
(k)

d(k)−1

 ,

r =


r(1)

...

r(m)

 , r(k) =


r
(k)
1

...

r
(k)

d(k)−1


(2.31)

where
(
u

(k)
i

)
t denotes the transposed of the vector u

(k)
i . Using this notation we can

represent the system (2.29) in a matrix form

n · Tθ = p− 1

n
r . (2.32)

Since we chose the measurement scheme to be informationally complete and we required

(2.28), the rows u
(k)
i of T (k) form a set of linear independent vectors in the subspace S(k)

and the matrix T is quadratic and of full rank. Thus we can invert equation (2.32) to

θ =
1

n
T−1(p− 1

n
r) . (2.33)

Given an estimate ν for the classical probabilities in p from the measured data we obtain

an unconstrained estimate θ̂ as

θ̂ =
1

n
T−1(ν − 1

n
r) . (2.34)

The vectors p(k) parameterize discrete probability distributions as discussed in Chapter

2.1.1. They take values from the parameter set Θd(k) :=
{
p(k) : p

(k)
i ≥ 0,

∑d(k)−1
i=1 p

(k)
i ≤ 1

}
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of a probability simplex as defined in (2.10). Thus (2.32) and (2.33) define an affine

transformation that maps the set of state vectors T ⊂ S into a subset TΘ ⊂ ×m
k=1Θd(k) of

the Cartesian product of the parameter sets Θd(k) . The notion unconstrained results from

the fact, that the estimate ν of the vector p may fall outside the image TΘ of T under the

above transformation (2.32) and thus it can happen that θ̂ is not a state.

We can obtain a constrained estimate θ̂c from θ̂ that fulfills the constraint θ̂c ∈ T

by adding a appropriate correction

θ̂c(ν) = θ̂(ν) + ∆(ν) such that θ̂c ∈ T and ∆(ν) = 0 if θ̂(ν) ∈ T (2.35)

One possibility to correct the unconstrained estimate, proposed in [21], is to take the state

in T closest to the unconstrained estimate in the Hilbert Schmidt norm:

θ̂c := argminωTr
(
θ̂ − ω)2

)
. (2.36)

The minimum in (2.36) can be calculated in the eigenbasis of θ̂ by the following algorithm:

If θ̂ falls outside the set T the estimated density operator ρ̂ = 1/n I+θ̂ violates the positivity

condition imposed on states and it will have negative eigenvalues. If λ1, λ2; . . . λk ≤ 0

denote the non positive eigenvalues of ρ̂, we replace the eigenvalues λi by

λ̃i = 0 if 1 ≤ i ≤ k and λ̃i = λi +
k∑

j=1

λj

n− k
if k < i < n . (2.37)

If we repeat this procedure until λ̃i ≥ 0 for all i, the minimizer of (2.36) is obtained by

ρ̃ = 1/n I + θ̂c = Diag(λ̃1, λ̃2, . . . , λ̃n) in the eigenbasis of θ̂. An other possibility to correct

the unconstrained estimate is to consider the cases when θ̂ /∈ T as cases of error and use

a trivial correction ∆(ν) = −θ̂ if θ̂ /∈ T .

Nevertheless if the true state θ is not on the boundary of T , which is the case if it has
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strictly positive eigenvalues, the probability of the unconstraint estimate to fall outside

the set T goes exponentially to zero with increasing Nmin := mink{N (k)}. As a slight

modification of Sanov’s theorem the rate of convergence can be bounded as (see appendix)

lim sup
Nmin→∞

1

Nmin

log
(
Probθ(θ̂ /∈ T )

)
≤ −D(ν∗‖p) ≤ lim inf

Nmin→∞

1

Nmax

log
(
Probθ(θ̂ /∈ T )

)
(2.38)

where Nmax = maxk{N (k)},

D(ν‖p) =
∑

k

D
(
ν(k)‖p(k)

)

is the relative entropy D
(
ν(k)‖p(k)

)
=
∑d(k)

i=1 ν
(k)
i

(
log ν

(k)
i − log p

(k)
i

)
and

ν∗ = argminν /∈TΩ
D(ν‖p)

is the ν /∈ T closest to p in relative entropy. Note that the rate of convergence depends

on the true state θ as well as on the chosen measurements scheme M.

As a consequence of (2.38) the constrained estimate is asymptotically unbiased if

we use an unbiased estimate, Eθ[ν] = p, for the classical probabilities and the true state

is in the interior of T 5:

lim
Nmin→∞

Eθ[θ̂c] =
1

n
T−1

(
Eθ[ν]− 1

n
r
)

+ lim
Nmin→∞

Eθ[∆] = θ ∀θ ∈ Int(T ) (2.39)

where the last equality follows from the fact that ∆ is bounded and Prob
(
∆(ν) > 0

)
→ 0

5 This implies D(ν∗‖p) > 0.
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as Nmin →∞.

The most natural example of an estimate ν are the relative frequencies discussed in

Example 2.1.1:

ν =


ν(1)

...

ν(m)

 , ν(k) =


n

(k)
1 /N (k)

...

n
(k)

d(k)−1
/N (k)

 , (2.40)

where n
(k)
i is the number of times a specific outcome appears among the observed outcomes

of the measurement M (k). If the true state is in the interior of T , the p
(k)
i will be in the

interior of the sets Θd(k) . This corresponds to the situation discussed in Chapter 2.1.1 and

the relative frequencies are the minimum variance unbiased estimate for the probability

vector p if θ ∈ Int(T ).

2.2.4 Efficiency of the estimate

Mean quadratic error matrix

Given the true state θ, we describe the error of an estimate θ̃ by the mean quadratic

error matrix

Vθ(θ̂) = Eθ[(θ̂ − θ)(θ̂ − θ)t]. (2.41)

The unconstrained estimate θ̂ (2.34) as a random vector is a linear transformation of the

random vector ν and in this case the matrix Vθ(θ̂) depends on the mean quadratic error

matrix Wθ(ν) = Eθ[(ν − p)(ν − p)t] of the classical estimate ν by

Vθ(θ̂) =
1

n2
T−1Wθ(ν)(T−1)t. (2.42)

Here both Vθ and Wθ depend by (2.29) as well on the state θ as on the particular mea-

surement scheme M.
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Since the individual measurements are statistically independent, Wθ is a block diagonal

matrix where the blocks W
(k)
θ are related to the measurements M (k):

Wθ =


W (1) · · · 0

...
. . .

...

0 · · · W (m)

 (2.43)

If we use the relative frequencies (2.40) as a classical estimate, the matrix elements of W (k)

are given as (see Chapter 2.1.1)

W
(k)
(i,j) =

1

N (k)

(
δijp

(k)
i − p

(k)
i p

(k)
j

)
(1 ≤ k ≤ m ; 1 ≤ i, j ≤ d(k) − 1) . (2.44)

The mean quadratic error matrix of the constrained estimate is given by

Vθ(θ̂ + ∆) = Vθ(θ̂) + Eθ[∆∆t] + Eθ[∆(θ − θ̂)t + (θ − θ̂)∆t] (2.45)

Since θ̂ and ∆ are bounded and ∆ = 0 if θ̂ /∈ T , by (2.38) the mean quadratic error matrix

of the constrained estimate θ̂c approaches the one of the unconstrained θ̂ exponentially

fast on the interior Int(T ). Using the formula Eθ[X] = Prob(A)Eθ[X
∣∣A] + Prob(Ā)Eθ[X

∣∣Ā]

for a random variable X we get

‖Vθ(θ̂c)− Vθ(θ̂)‖ ≤ Probθ(θ̂ /∈ T ) M (2.46)

where M is a constant. If estimate ν is (weakly) consistent, i.e. limn→∞ Wθ(ν) = 0, it

follows from (2.42) that the same holds for θ̂ as well as for θ̂c.
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Information gain

An other way, used in [28], to quantify the quality of an estimation scheme can be obtained

from an information theoretic point of view: For this purpose we define the differential

entropy of a random variables X with density f(X) and support supp(f) = S as h(X) =

−
∫

S
f(x) ln f(x) dx. The entropy can be interpreted as a measure of uncertainty of a

random variable (see e.g. [4]). Assume we know that the true states θ are distributed

according to a prior probability measure µ on T with density f0(x), supp(f0) = T . Then

we can define the information gain I in an estimation scheme by the difference of the

entropy of the prior distribution, related to the uncertainty about the true state before

the estimation, and the entropy of the estimate θ̂ given θ, related to the uncertainty after

inferring about the state:

Iθ(θ̂) = h(θ)− h(θ̂|θ) (2.47)

where h(θ) = −
∫
T f0(x) ln f0(x) dx is the entropy of the prior distribution and h(θ̂|θ) =∫

T f0(x)h(θ̂|θ = x) dx is the conditional entropy of θ̂ given θ. Let us remark that this

definition requires an estimate θ̂ that has an absolutely continuous distribution. This is

not the case for the estimates we discussed in the previous section. Therefore either a

modified definition of the information gain or a modified estimate has to be used. This

problem is discussed in the remark at the end of the section. According to [28], for a

uniform prior distribution the information gain is equal to the mutual information I(θ̂ :

θ) = h(θ) − h(θ|θ̂). The mutual information measures the information that θ̂ contains

about θ [14].

The information gain can be related to the mean quadratic error matrix in the limit of

large sample sizes: For simplicity let us consider the relative frequencies ν as an estimate

for p and let us discuss the case of equal sample sizes, i.e. Nmin = Nmax only. By the

central limit theorem, for large N the distribution of the relative frequency vector νN (as
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the sum of the appearances of the specific outcomes) given p = p converges to a normal

distribution:

1√
N

(νN |p = p)
D→ N (p, Ŵ ) (2.48)

where D denotes convergence in distribution and Ŵ := WN(k)=1 is the mean quadratic

error matrix of ν for N (k) = 1. The density function of the normal distribution N (0, V )

for a r-dimensional random variable is given by

fN (x) =
1

(2π)r/2 Det(V )1/2
e−

1/2〈x,V −1x〉 . (2.49)

Since the map T is a linear transformation, the distribution of the estimates θ̂N given the

true state θ = θ converge also to a normal distribution:

1√
N

(θ̂N |θ = θ)
D→ N (θ, Vθ) . (2.50)

For a normal distributed r-dimensional random variable X ∼ N (0, V ) the differential en-

tropy depends on the covariance matrix V only and is given by

h(X) =
1

2
ln
(
(2πe)r Det(V )

)
. (2.51)

For a sequence of random variables XN that converge to X ∼ N (0, V ), their entropies

converge to h(X) if h(XN) is finite for some N [2]. If the θ̂N fulfill this condition6, the

conditional entropy tends to

h(θ̂|θ = θ) → 1

2
ln Vθ +

1

2
ln(2πe)n2−1 − 1

2
ln N (2.52)

6See the remark at the end of the section.
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in the limit of large N , where we used the formula h(aX) = h(X) + ln |a|. The uncertainty

of a normal distributed random variable can be illustrated by defining the uncertainty

volume of the distribution N (0, V ) as the volume of the set for which the density fN of

N (0, V ) exceeds 1/e times its maximum value [28]

Ve = Vol
({

x : fN (x) ≥ 1

e
(2π)n2−1|V |−1/2

})
. (2.53)

This region corresponds to the ellipsoid enclosed by the hypersurface on which the argument

of the exponential function in (2.49) is constant one. For the limiting distribution of the

estimate θ̂ this is given as

〈
(θ̂ − θ),

1

n2
T ∗W−1T (θ̂ − θ)

〉
= 1 . (2.54)

This ellipsoid is the image of a n2−1 dimensional sphere of radius n2 under the linear map

(T ∗W−1T )−
1/2 = (T−1W (T ∗)−1)

1/2 (2.55)

which is well defined as here the covariance matrix is positive definite. Denoting the volume

enclosed in this sphere by V◦, we get the uncertainty volume to be

Ve = V◦ Det
([

T−1W (T ∗)−1
]1/2) = V◦

Det(W )
1/2

Det(T )
= V◦

∏
k Det(W (k))

1/2

Det(T )
. (2.56)

In the last step we used that the error matrix W is a block diagonal matrix and thus its

determinant is the product of the determinants of the blocks W (k).

In the case that the true states of the system are distributed uniformly with respect

to the Lebesgue measure on T , the entropy h(θ) of the prior distribution is the logarithm

of the volume V0 := Vol(T ) and for large N the entropy of θ̂ given a certain value θ of θ
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tends to

h(θ̂|θ = θ) → ln

(
Ve

V0

)
+

1

2
ln(2πe)n2−1 − ln V◦ −

1

2
ln N (2.57)

From the average of (2.57) over the possible true states with respect to the prior distribution

we get for the information gain

I(θ̂) → −
〈

ln

(
Ve

V0

)〉
− 1

2
ln(2πe)n2−1 + ln V◦ +

1

2
ln N (2.58)

This expression was, up to a normalization constant, used in [28] to define the information

gain. Rewritten in terms of the mean quadratic error matrix of this reads as

I → −1

2

∑
k

〈
ln
(
Det(W (k))

)〉
+ ln

(
Det(T )

)
− 1

2
ln(2πe)n2−1 + ln (V◦V0) +

1

2
ln N (2.59)

Remark 1 Let us remark that the definition (2.47) is not proper in the case when the

distribution of θ̂N is not absolutely continuous with respect to the prior distribution. In

particular, this is the case when θ̂N is a point estimate based on the relative frequencies

ν
(k)
N , which are discrete random variables7 that take values in the set { i/N : 0 ≤ i ≤ N}.

There are two ways to resolve this problem:

Instead of (2.47) in [28] the right hand side of (2.57) was used to define the information

gain. The uncertainty volume for a discrete distribution can be defined as

Ve = Vol
({

x : Prob(x) ≥ 1

e
max

X
(Prob(x))

})
(2.60)

7 The differential entropy of a discrete random variable X is sometimes defined to be −∞, however in
this case, while X converges to a continuous normal distributed random variable X̃, the entropy h(X) does
not converge to h(X̃) [2], nor does its entropy.
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and with this definition convergence of the distribution function leads to (2.57) and (2.59).

Alternatively, instead of using a point estimate we can construct an estimate θ̂ ac
N that

obeys a density function. It can be constructed in a similar way as a histogram in the case

of a one dimensional random variable: For a given N we partition the interval [− 1/(2N), 1+

1/(2N)] into intervals [i − 1/(2N), i + 1/(2N)] (0 ≤ i ≤ N). Each of this intervals contains

exactly one possible value of the relative frequencies ν(k). This induces a set C ⊃ T in

Rn2−1 that contains the possibles estimates θ̂N and a partition of C into cells Ck of volume

∆ such that each cell contains exactly one of the possible values of θ̂N . Then an estimate

θ̂ ac
N is constructed by putting the weight equal to the probability Probθ(θ̂

(k)

i ) to the cell Ck

if Ck contains θ̂N(ν
(k)
i ). Then θ̂ ac

N has the density

f(θ̂ ac
N = x) = Probθ

(
θ̂N : θ̂N ∈ Ck and x ∈ Ck

)
∆−1 (2.61)

In this case θ̂N is a quantization of the random variable θ̂ ac
N . Under a quantization of a

random variable X we understand the following (see e.g. [4], chapter 9.3.): Let f(x) be

the density of X with supp(f) contained in some compact set C. Then we partition C of

X into N cells Ck of Volume ∆ and there is an xi in each cell such that

pi := f(xi) ∆ =

∫
Ck

f(x) dx (2.62)

and we define the quantized random variable X∆ as

X∆ = xi if X ∈ Ck (2.63)

and zero else. Then the limit of the entropy H(X∆) = −
∑

i pi ln pi as ∆ is given by

H(X∆) + ln ∆ → h(X) (2.64)
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The random variable θ̂ ac
N converges to a normal distributed random variable as its

quantization does. Its differential entropy h(θ̂ ac
N |θ = θ) given the true state θ is finite for

all N and it converges to the entropy of the limiting normal distribution.
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Chapter 3

Complementarity and State

Estimation

In this chapter we study complementarity in the context of state estimation. In the case

of an estimation scheme M = {M (k) : 1 ≤ i ≤ m} using different separated measurements

M (k) we can compare the situation when the M (k) are pairwise quasi-orthogonal measure-

ments to the case when they are not. In [28] this problem was studied for measurement

schemes that use observables with non-degenerate spectrum. It was shown that the comple-

mentary observables obtain asymptotically the maximum information gain. In the present

work we show that also for general measurements, as defined in Chapter 1.2.2, quasi-

orthogonality leads to maximal efficiency among comparable state estimation schemes. As

an efficency measure of the estimation scheme we average the mean quadratic error matrix

of the estimate with respect to a prior distribution of the unknown state. We compare

the performance of measurement schemes by means of the determinant of this average. In

case of the unconstrained estimate the obtained result applies for finite sample sizes while

for the constrained estimate quasi-orthogonal measurements are shown to be asymptotic
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optimal. Furthermore, we discuss the relation to the result in [28] and show that it can

be extended to general quasi-orthogonal measurements as well. In Chapter 3.2.4 the cases

where the existence of quasi-orthogonal measurements is known, mainly in the context of

quasi-orthogonal subalgebras of B(H), are discussed in detail.

In the end of the chapter, we give an explicit calculation of the average mean quadratic

error matrix and its determinant in the case of von Neumann measurements related to

homogenous Abelian subalgebras and a specific prior distribution of the true states. From

the result the performance of all such measurement schemes can be compared.

3.1 Preliminaries

In the following we consider the situation when the unknown state originates from the

whole set T of possible states, i.e. R = T . As described in Chapter 2.2.1 we parameterize

this set by the Bloch vector of the state. We will additionally assume that the possible

states are distributed with respect to a prior probability measure µ on T . The main

condition we impose on the measure µ is that it is unitarily invariant:

∫
A

f(ρ)dµ(ρ) =

∫
U∗AU∗

f(UρU∗)dµ (ρ) and

∫
T

dµ(ρ) = 1 (3.1)

for integrable functions f on T and measurable subsets A ⊂ T . We denote the average with

respect to µ by 〈·〉. Since unitary conjugation corresponds to an orthogonal transformation

of the state vectors θ, an example for such a measure is the normalized Lebesgue measure

on T ⊂ R(n2−1). Another example is given in Chapter 3.3.
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3.1.1 Quality of an estimation scheme

In Chapter 2.2.4 we discussed the mean quadratic error matrix as measure of efficiency of

an estimate given a certain true state ρ. To evaluate the quality of an estimation scheme

we use the average of this measure with respect to the prior distribution µ on the set T .

If we use the mean quadratic error matrix of the estimate given the true state, the

average mean quadratic error matrix is given as

〈Vθ〉 =

∫
T

Vθ dµ(θ)

=
1

n2
T−1

∫
T


W (1) · · · 0

...
. . .

...

0 · · · W (m)

 dµ(θ) (T−1)t

(3.2)

where the W (k) are the mean quadratic error matrices of the classical estimates ν(k)

and T was defined in (2.31). Since for two different measurement schemes the average

mean quadratic error matrices are not necessarily comparable by positive semi-definiteness.

Therefore we use, analog to [21],

Det
(
〈Vθ〉

)
=

1

n2
Det(〈Wθ〉) Det(T )−2 (3.3)

to compare the quality of different measurement schemes.

This quantity is similar to the generalized variance, which is defined as the determinant

of the mean quadratic error matrix. It provides single number that can be used to compare

different measurement schemes. The generalized variance can be interpreted as a volume

related to the scatter of a random variable (see e.g. [12]). Thus a smaller value of the

generalized variance (3.12) means better efficiency of the estimation scheme.
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3.1.2 Compared estimation schemes

If we want to compare measurement schemes with regard to quasi-orthogonality of the

measurements they use, we need to restrict us to certain families within this is meaningful.

For instance in the case of a qubit, from the view point of complementarity there is no

sense in comparing a measurement scheme using a single POVM, as described in Example

1.1.1, to the standard scheme that uses the measurement of the three complementary spin

observables (see Example 2.2.2). Since complementarity of two measurements is a geomet-

ric property between the subspaces their measurement operators span, we will compare

schemes which differ only in the orientation of this subspaces. For this purpose let us

consider unitarily conjugated measurements M (k) and M̂ (k)

M̂ (k) = UM (k)U∗ = {UE
(k)
i U∗ : E

(k)
i ∈ M (k)} (3.4)

where U ∈ Un(C). Unitary conjugation of the operators E
(k)
i results in an orthogonal

transformation their Bloch vectors u
(k)
i (2.25). Thus unitary conjugation of the measure-

ment M (k) results in a rotation of the subspace S(k), while the geometrical configuration

of the vectors u
(k)
i and û

(k)
i = Uu

(k)
i U∗ remains the same.

Example 3.1.1 As an example of two unitarily conjugated measurements consider two

observables A and B with non-degenerate spectrum of eigenvalues. The measurements

they define are the sets of projections {P (A)
i : 1 ≤ i ≤ n} and {P (B)

i : 1 ≤ i ≤ n} on the

one dimensional spans of their eigenvectors. The eigenbasis of A is related to the one of

B by some unitary transformation U , and {P (B)
i : 1 ≤ i ≤ n} can be obtained by unitary

conjugation of the set {P (A)
i : 1 ≤ i ≤ n} by U . ♦

We will compare measurement schemes within the following families: Given an informa-

tional complete measurement scheme M = {M (1), M (2) . . . , M (m)} we define the family
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U(M) as the set of all measurement schemes whose elements are unitarily conjugated to

the elements of M:

U(M) =
{
M′ = {U1M

(1)U∗
1 , . . . , UmM (m)U∗

m} :

M′ informationally complete and U (k) ∈ Un(C)
} (3.5)

This means that the subspaces S(k) spanned by the individual measurements M (k) are

rotated in S. In the next section we will show that if such a family contains a measurement

scheme of quasi-orthogonal measurements, it is the scheme with the highest efficiency.

3.2 Optimality of Quasi-orthogonal Measurements

In this section we compare estimation schemes as described in Chapter 2 within the families

defined in the previous section. We discuss the unconstrained and constrained estimate

and compare the estimation schemes by means of the determinant of the average mean

quadratic error matrix as well as the average information gain.

3.2.1 Unconstrained estimate

The unconstrained estimate of a state was defined in (2.34) as

θ̂ =
1

n
T−1(ν − 1

n
r) . (3.6)

where ν was an estimate for the classical measurement probabilities. For an estimation

scheme using a measurement scheme using m different separate measurements on a finite

number of N identical quantum states as described in Chapter 2.2.2, we obtain the following

theorem :

Theorem 1 Let the possible true states of the system be distributed according to a unitarily
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invariant probability measure µ on T and let M0 = {M (1)
0 , M

(2)
0 . . . , M

(m)
0 } be a measure-

ment scheme consisting of pairwise quasi-orthogonal measurements M
(k)
0 , 1 ≤ k ≤ m. Let

M1 = {U1M
(1)
0 U∗

1 , U2M
(2)
0 U∗

2 . . . , UmM
(m)
0 U∗

m} ∈ U(M0) be another measurement scheme

obtained by unitaries from M0. Then

Det(〈V M0(θ̂)〉) ≤ Det(〈V M1(θ̂)〉)

Thus M0 is optimal within the family U(M0).

Proof: For the proof we first show that the average mean quadratic error matrix 〈Wθ〉 of

the classical estimate is the same for both M0 and M1 and only the matrix T , as defined

in (2.31), depends on the particular choice of the measurement scheme. To see this we

notice, that the blocks W
(k)
θ are functions of the probabilities p

(k)
i of the kth measurement

only, and as such they are functions of ρ and M (k):

W
(k)
θ = W (k)

(
p

(k)
1 , p

(k)
2 , . . . , p

(k)

d(k)−1

)
= W (k)(ρ, M (k)). (3.7)

By our assumption every measurement M (k) := UkM
(k)
0 U∗

k in M1 is unitarily conjugated

to some M
(k)
0 . Consequently an element E

(k)
i ∈ M (k) is unitarily conjugated to the element

E
(k)
0,i ∈ M

(k)
0 . From (1.10) and the cyclic invariance of the trace we get

p
(k)
i = Tr

(
ρE

(k)
i

)
= Tr

(
ρ
(
UkE

(k)
0,i U∗

k

))
= Tr

((
U∗

kρUk

)
E

(k)
0,i

)
. (3.8)

This allows us to move the unitarily conjugation between the arguments of (3.7) and we

get the relation

W (k)(ρ, M (k)) = W (k)
(
ρ, UkM

(k)
0 U∗

k

)
= W (k)

(
U∗

kρUk, M
(k)
0

)
. (3.9)
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By our assumption on the measure µ substituting U∗
kρUk → ρ will not change the value of

the integrals of the blocks W (k):

〈W (k)
θ 〉 =

∫
T

W (k)(ρ, M (k)) dµ(ρ)

=

∫
T

W (k)((U∗
kρUk, M

(k)
0 ) dµ(ρ) =

∫
T

W (k)(ρ, M
(k)
0 ) dµ(ρ). . (3.10)

Thus for M0 and M1 the average mean quadratic error matrix 〈Wθ〉 of the estimate ν

of the classical probabilities is identical and we get for the average mean quadratic error

matrix of θ̂:

〈V Mi
θ 〉 =

1

n2
T−1
Mi
〈Wθ〉(T−1

Mi
)t =

1

n2
T−1
Mi


A(1) · · · 0

...
. . .

...

0 · · · A(m)

 (T−1
Mi

)t (3.11)

for i = 0, 1 with some constant matrices A(k) := 〈W (k)
θ 〉.

Thus for all measurement schemes from the family U(M0) the mean quadratic error

matrix 〈Vθ〉 depends on the transformation matrix T only. By

Det
(
〈Vθ〉

)
=

1

n2
Det(〈Wθ〉) Det(T )−2 (3.12)

it is enough to show that for all measurement schemes M∈ U(M0) the Det(T ) is maximal

for M0. Det(T ) corresponds to the volume of the parallelepiped Par{u(k)
i : 1 ≤ i ≤

(d(k) − 1), 1 ≤ k ≤ m} spanned by the row vectors in T . To calculate this volume for a

given T we apply the Gram-Schmidt orthogonalization method (without normalization) on

its row vectors: We can perform the orthogonalization first in the subspaces S(k) spanned

by the vectors {u(k)
i : 1 ≤ i ≤ (d(k) − 1)} independently. We start with u

(k)
1 =: ũ

(k)
1 and
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obtain recursively

ũ
(k)
i = u

(k)
i − Pi−1u

(k)
i (3.13)

where Pi−1 is the orthogonal projection on span{ũ(k)
1 , ũ

(k)
2 , . . . , ũ

(k)
i−1} in B(H). The volume

of the parallelepiped spanned by the resulting vectors remains invariant in this procedure

since (3.13) are elementary row operations on T . If the S(k) are already orthogonal, or-

thogonalization in the subspaces S(k) is sufficient and

Det(T ) = Vol
(
Par{u(k)

i : 1 ≤ i ≤ (d(k) − 1), 1 ≤ k ≤ m}
)

= Vol
(
Par{ũ(k)

i : 1 ≤ i ≤ (d(k) − 1), 1 ≤ k ≤ m}
)

=
m∏

k=1

d(k)−1∏
i=1

∥∥ ũ
(k)
i

∥∥ . (3.14)

Otherwise we have to continue the orthogonalization procedure. In this case first note that

for measurements M (k) and M̂ (k) unitarily conjugated by some U the Gram-Schmidt pro-

cedure gives a geometrically equal result in the subspaces S(k) and Ŝ(k). Orthogonalization

and unitary conjugation can be interchanged and the following diagram commutes:

M (k) :

M̂ (k) :

{u(k)
1 , u

(k)
2 , . . . ,u

(k)

d(k)−1
} G−S−−−→ {ũ(k)

1 , ũ
(k)
2 , . . . , ũ

(k)

d(k)−1
}

U

y U

y
U{u(k)

1 , u
(k)
2 , . . . ,u

(k)

d(k)−1
}U∗ G−S−−−→ U{ũ(k)

1 , ũ
(k)
2 , . . . , ũ

(k)

d(k)−1
}U∗

(3.15)

In particular, since unitary conjugation by U results in a orthogonal rotation of the Bloch

vectors u
(k)
i , we have ‖ ũ

(k)
i ‖ = ‖U ũ

(k)
i U∗‖.

If we need to continue the orthogonalization procedure, this will decrease the length

of the vectors ũ
(k)
i , and by (3.14) this results in a smaller volume of Par{u(k)

i : 1 ≤ i ≤

(d(k) − 1), 1 ≤ k ≤ m}. Thus T has maximal determinant, if (and actually only if) the
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S(k) are orthogonal. �

3.2.2 Constrained estimate

Since the unconstrained estimate may fall outside the set of states, a constrained estimate

was constructed from the classical estimate ν in (2.35) by adding a correction ∆(ν) as

θ̂c(ν) = θ̂(ν) + ∆(ν) such that θ̂c ∈ T and ∆(ν) = 0 if θ̂(ν) ∈ T . (3.16)

For the constrained estimate θ̂c already the explicit calculation of the mean quadratic

error matrix is much more complicated since θ̂c is not a simple linear transformation of the

classical estimate ν anymore. Nevertheless, we know that for large sample sizes θ̂c is with

high probability equal to θ̂. Therefore the optimality of quasi-orthogonal measurement

schemes can be shown for the constrained estimate in the limit when the number of available

copies of the unknown state tends to infinity. This is stated by the following

Theorem 2 Let the possible true states of the system be distributed according to a unitarily

invariant probability measure µ on T with µ(∂T ) = 0. Let the measurement scheme

M0 = {M (1)
0 , M

(2)
0 . . . , M

(m)
0 } consist of pairwise quasi-orthogonal measurements M (k),

1 ≤ k ≤ m, and let M1 = {U1M
(1)
0 U∗

1 , U2M
(2)
0 U∗

2 . . . , UmM
(m)
0 U∗

m} ∈ U(M0) be another

measurement scheme obtained by unitaries from M0. If θ̂c ∈ T is an estimate of the form

(3.16), then the inequality

Det
(
〈V M0(θ̂c)〉

)
≤ Det

(
〈V M1(θ̂c)〉

)
holds if Nmin = min{N (k)} is large enough.

Proof: Since the estimates of θ we constructed in the previous chapter are consistent

for any informationally complete measurement scheme, in all cases the mean quadratic
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error matrix will asymptotically go to zero. Thus for the proof of the theorem we show

that for the two measurement schemes M0 and M1 the error of the constrained estimates

approaches the error of the unconstrained ones faster than the difference between the errors

of the unconstrained estimators of the two schemes goes to zero. For this it is sufficient to

show ∣∣Det
〈
Vθ(θ̂

Mi)
〉
− Det

〈
Vθ(θ̂

Mi
c )
〉∣∣∣∣Det

〈
Vθ(θ̂M0)

〉
− Det

〈
Vθ(θ̂M1)

〉∣∣ → 0 for both i = 0, 1 (3.17)

as Nmin → ∞. To ensure that the denominator is different from zero, we need to exclude

the case when the average mean quadratic error matrix of M1 has the same determinant

as the one of M0. By the proof of Theorem 1 this implies that M1 consists of pairwise

quasi-orthogonal measurements as well and we can find a single unitary U such that M1 =

UM0U
∗. In this case, however, we obtain equality in Theorem 2.

For the proof of (3.17) let us consider closed sets Tε that are contained in the interior

of T and have probability (1− ε) with respect to the prior distribution µ:

Tε ⊂ Int(T ), Tε closed, µ(Tε) = 1− ε. (3.18)

This is possible since we assumed that µ(∂T ) = 0. Then we can evaluate the nominator

in (3.17) under the condition that the true state is from the set Tε and we show first that

∣∣Det
〈
Vθ(θ̂

Mi)
∣∣Tε

〉
− Det

〈
Vθ(θ̂

Mi
c )
∣∣Tε

〉∣∣∣∣Det
〈
Vθ(θ̂M1)

〉
− Det

〈
Vθ(θ̂M2)

〉∣∣ → 0 for both i = 0, 1 (3.19)

as Nmin → ∞. By Weyl’s Perturbation theorem (see e.g. [3]) for self-adjoint matrices

A and B of the same size, the maximum difference between the eigenvalues λ↓i (A) of A,

ordered in descending order, and the λ↓i (B) of B is smaller then the operator norm1 of their

1 For a self-adjoint operator A the operator norm is defined as ‖A‖ = max{|λi(A)| :
λi(A) is an eigenvalue of A}. Let us also note that in finite dimensions all norms are equivalent.
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difference

max
j

∣∣λ↓j(A)− λ↓j(B)
∣∣ ≤ ‖A−B‖ (3.20)

Since the determinant of a positive2 matrix is the product of the eigenvalues, Det(A) =∏
j λ↓j(A), the difference of the determinants of A and B is bounded by

Det(A)− Det(B) ≤ ‖A−B‖ c1 + ‖A−B‖2 c2 + · · ·+ ‖A−B‖n cn (3.21)

with coefficients ci depending on the spectrum of A.

We can apply the above to the average mean quadratic error matrices of the con-

strained and unconstrained estimate. Since additionally ‖〈Vθ(θ̂
Mi
c )
∣∣Tε〉 − 〈Vθ(θ̂

Mi)
∣∣Tε〉‖ ≤〈

‖Vθ(θ̂
Mi
c )− Vθ(θ̂

Mi)‖
∣∣Tε

〉
holds3, the following is sufficient for (3.19):

〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
∣∣Tε

〉∣∣Det
〈
Vθ(θ̂M1)

〉
− Det

〈
Vθ(θ̂M2)

〉∣∣ → 0 for both i = 0, 1 (3.22)

as Nmin →∞. To show (3.22) we look at the asymptotic behavior of the denominator and

nominator:

Since the Fisher information grows proportional to the sample size, by the Cramer-

Rao inequality (2.7) the elements of the mean quadratic error matrices of the optimal

classical estimate tend to zero proportional to the inverse of the sample sizes N (k): W (k) =

1
N(k) W

(k)

N(k)=1
=: 1

N(k) Ŵ
(k). Consequently, taking into account (3.12), we get for two different

2Let us assume that A and B are positive, since this is the case for the mean quadratic error matrix.
Note that a positive operator is self-adjoint.

3 The norm is a convex function and therefore this follows from Jensen’s inequality
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measurement schemes M0 and M1

∣∣Det
〈
Vθ(θ̂

M1)
〉
− Det

〈
Vθ(θ̂

M2)
〉∣∣

=
1

n2

∣∣∣Det(TM1)
−2

m∏
k=1

Det
〈
W

(k)
M1

〉
− Det(TM2)

−2

m∏
k=1

Det
〈
W

(k)
M2

〉∣∣∣
=

1

n2

∣∣∣Det(TM1)
−2

m∏
k=1

Det
〈

1
N(k) Ŵ

(k)
M1

〉
− Det(TM2)

−2

m∏
k=1

Det
〈

1
N(k) Ŵ

(k)
M2

〉∣∣∣
=

C1∏m
k=1 N (k)(d

(k)−1)

(3.23)

with some constant C1 depending on the choice of M1 and M2. For the last equality

recall that the W (k) are (d(k) − 1) × (d(k) − 1) matrices and therefore Det
(

1
N(k) 〈Ŵ (k)〉

)
=

1

N(k)(d
(k)−1)

Det〈Ŵ (k)〉.

In calculating the mean of the differences of the quadratic error matrices of in the

nominator of (3.22) only values of ν contribute where θ̂c is different from θ̂. Thus with

the formula Eθ[X] = Prob(A)Eθ[X
∣∣A] + Prob(Ā)Eθ[X

∣∣Ā] we get for the denominator

‖Vθ(θ̂c)− Vθ(θ̂)‖ =
∥∥Eθ[∆∆t + ∆(θ − θ̂)t + (θ − θ̂)∆t]

∥∥
= Prob(θ̂ 6= θ̂c)

∥∥Eθ[∆∆t + ∆(θ − θ̂)t + (θ − θ̂)∆t
∣∣θ̂ 6= θ̂c]

∥∥
≤ Prob(θ̂ /∈ T ) C2

(3.24)

where we chose some constant and finite C2 such that this holds for both M1 and M2.

According to Sanov’s theorem (2.38) the right hand side vanishes exponentially fast with

growing Nmin if θ ∈ Int(T ). Consequently, in the limit of large N we can bound the
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quotient of the left hand sides of (3.24) and (3.23) by

lim sup
Nmin→∞

‖Vθ(θ̂c)− Vθ(θ̂)‖∣∣Det
〈
Vθ(θ̂M1)

〉
− Det

〈
Vθ(θ̂M2)

〉∣∣
≤ C3 lim sup

Nmin→∞

m∏
k=1

N (k)(d
(k)−1)

Prob(θ̂ /∈ T )

≤ C3 lim sup
Nmin→∞

m∏
k=1

N (k)(d
(k)−1)

exp
(
−Nmin (D(ν∗‖p)− δ)

)
.

(3.25)

for all δ > 0 and a constant C3. On Tε we have D(ν∗‖p) ≥ Dε > 0. If additionally the

size of the largest sample does not grow in Nmin exponentially, i.e. Nmax ≤ N r
min for some

r ∈ N, the limit in the last line equals zero for all θ ∈ Tε and

‖Vθ(θ̂c)− Vθ(θ̂)‖∣∣Det
〈
Vθ(θ̂M1)

〉
− Det

〈
Vθ(θ̂M2)

〉∣∣ → 0 (3.26)

as Nmin →∞ on Tε. Since Dε > 0 convergence in (3.26) is uniform on Tε and (3.22) holds

for the average of the expression in (3.26) and for all ε > 0.

To complete the proof of the original inequality (3.17), we note that the contribution

of the set T \Tε to the average of the mean quadratic error matrix is small: Again by the

formula Eθ[X] = Prob(A)Eθ[X
∣∣A] + Prob(Ā)Eθ[X

∣∣Ā] we have

〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
〉

=
〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
∣∣Tε

〉
+ ε
(〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
∣∣T \Tε

〉
−
〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
∣∣Tε

〉)
(3.27)

and therefore

〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
〉〈

‖Vθ(θ̂
Mi
c )− Vθ(θ̂Mi)‖

∣∣Tε

〉 = 1 + ε

( ∗︷ ︸︸ ︷〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
∣∣T \Tε

〉〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂Mi)‖

∣∣Tε

〉 −1

)
(3.28)
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By the Cramer-Rao inequality the mean quadratic error matrix is proportional to the

inverse of the sample size for the unconstrained estimate as well as for the constrained

estimate. Thus the nominator and denominator of the term (∗) vanish equally fast and

this term can be bounded by a constant C4 for all N . Thus

〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
〉∣∣Det

〈
Vθ(θ̂M1)

〉
− Det

〈
Vθ(θ̂M2)

〉∣∣ =

〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
∣∣Tε

〉∣∣Det
〈
Vθ(θ̂M1)

〉
− Det

〈
Vθ(θ̂M2)

〉∣∣
+ε (C4 − 1)

〈
‖Vθ(θ̂

Mi
c )− Vθ(θ̂

Mi)‖
∣∣Tε

〉∣∣Det
〈
Vθ(θ̂M1)

〉
− Det

〈
Vθ(θ̂M2)

〉∣∣
(3.29)

and taking the limit of N in the last equation gives the desired result. �

3.2.3 Average information gain

In the previous section we studied the efficiency of measurement schemes based on the mean

quadratic error matrix. As an alternative measure of the efficiency of an estimation scheme

the information gain I(θ̂) was discussed in Chapter 2.2.4. In [28] it was shown that among

estimation schemes using observables with non-degenerate spectrum I(θ̂) is maximal in

the case when they are complementary. As discussed in Chapter 2.2.4 the information gain

is asymptotically related to the mean quadratic error matrix of θ̂. Therefore we can extend

this result to general measurements (POVMs) as well and for the unconstrained estimate

we get the following

Theorem 3 Let the possible true states of the system be distributed according to a unitarily

invariant probability measure µ on T and let M0 = {M (1)
0 , M

(2)
0 . . . , M

(m)
0 } be a measure-

ment scheme consisting of pairwise quasi-orthogonal measurements M
(k)
0 , 1 ≤ k ≤ m. Let

M1 = {U1M
(1)
0 U∗

1 , U2M
(2)
0 U∗

2 . . . , UmM
(m)
0 U∗

m} ∈ U(M0) be another measurement scheme
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obtained by unitaries from M0. Then

lim
N→∞

IM0(θ̂)− ln N ≥ lim
N→∞

IM1(θ̂)− ln N

and M0 is asymptotically optimal within the family U(M0).

The proof follows closely the reasoning of Theorem 1. In (2.52) it was shown that in the

limit of large N the average information gain tends to

I(θ̂) → −1

2

∑
k

〈
ln( Det

(
W (k))

)〉
+ ln

(
Det(T )

)
+

1

2
ln N − 1

2
ln(2πe)n2−1 + h(θ) (3.30)

The average of the information gain depends on the averages of the individual blocks of

the mean quadratic error matrix W of the classical estimate ν. In the same way as in the

proof of Theorem 1 it follows from (3.9), analog to (3.10), that for a unitarily invariant

measure µ

∫
T

ln
(
W (k)(ρ, M (k))

)
dµ(ρ) =

∫
UkT U∗

k

ln W (k)
((

ρ, UkM
(k)
0 U∗

k

))
dµ(ρ) (3.31)

and the averages
〈
ln
(
Det(W (k))

)〉
are constant within the families U(M0). Then the

theorem follows from the maximality of the determinant of T for M0. �

In case of the unconstrained estimate we draw our attention again to the modifications

of the remark in Chapter 2.2.4. In case we define the information gain I through the

uncertainty volume (2.60), it is immediate that the previous theorem holds equally true

for the constrained estimate since Prob(θ̂c 6= θ̂) tends to zero.
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3.2.4 Examples

Let us discuss some examples where the existence of quasi-orthogonal measurements is

known. These examples are mostly related to the cases where the existence of a complete set

of complementary subalgebras is known. The relation of measurements to subalgebras A ⊂

Mn(C) can be understood in the following sense: Similar to the definition of measurement

schemes on the whole algebra Mn(C) in Chapter 2.2.2, we can define them on a subalgebra

A ⊂ Mn(C) only:

MA :=
{
M (k) : 1 ≤ k ≤ m, M (k) ⊂ A

}
(3.32)

On the other hand the operators {E(k)
i : E

(k)
i ∈ M (k), M (k) ∈ MA} contained in some

MA generate a certain subalgebra A of Mn(C). If the operators used in the measurements

in MA at the same time span and generate the algebra A we can speak about a relation

between the subalgebra A and the measurement scheme MA. Then MA is also informa-

tionally complete on the subalgebra A. Furthermore we can join measurement schemes

on different subalgebras Ai as M = ∪iMAi
in order to get a measurement scheme on the

whole algebra B(H). This situation applies to the most common cases: A measurement

scheme using von Neumann measurements is related to a collection of Abelian subalgebras

of B(H). A measurement scheme built up from measurements on subsystems is related to

a collection of matrix subalgebras of B(H).

A measurement scheme MA defined on a certain subalgebra A naturally transfers to

a measurement scheme on a subalgebra UAU∗ by taking the unitary conjugate of the

measurement operators in MA as MUAU∗ := UMAU∗. To apply the above theorems in

this setting we compare estimation schemes that are related to subalgebras isomorphic to

each other by unitary conjugation. More precisely, suppose there exists a complete set of

complementary subalgebras Ai (1 ≤ i ≤ m) and measurement schemes MAi
on them such
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that M0 = ∪m
i=1MAi

is informational complete. Then we consider the family

U(M0) :=
{
M =

m⋃
i=1

UiMAi
U∗

i : M informational complete and U (i) ∈ Un(C)
}

.

Each of the measurement schemes4 M in U(M0) is related to a set of subalgebras {UkAiU
∗
k :

1 ≤ i ≤ m}. The family U(M0) is a subset of the families we defined in (3.5) as we

conjugate all the measurements in MAi
with the same unitary U (i). We can apply the

results from the previous sections: For any particular choice of measurement schemes

MAi
the estimation scheme is optimal within the family U(M0) in the sense of the above

theorems if the measurements in M are related to the complementary subalgebras Ai.

The cases where existence of a complete set of quasi-orthogonal subalgebras is known

was discussed in Chapter 1.2.3. In the following we will discuss this examples in the context

of state estimation schemes:

First we will look at commutative subalgebras: A von Neumann measurement M (k) =

{P (k)
1 , . . . , P

(k)
d } of an observable Ak is related to the Abelian subalgebra Ak generated

by its eigenprojections. Clearly M (k) is informationally compete on the subalgebra Ak.

For simplicity we shall restrict ourselves to examples of homogenous Abelian algebras

generated by projections of rank rk(P
(k)
i ) = r. This corresponds to the measurement of an

observable Ak with n
r

distinct eigenvalues of multiplicity r. The projections P
(k)
i generate

a homogenous subalgebra Ak which is isomorphic to the algebra A0 of n × n diagonal

matrices with entries of multiplicity r by unitary conjugation:

Ak = UkA0U
∗
k (3.33)

4 note again that UMAU∗ is related to the algebra UAU∗.
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for some unitary operators U (k). In this setting we need m = r(n2−1)
(n−r)

such measurements

each of them consisting of d = n
r

positive operators in order to get an informational

complete measurement scheme on B(H). We get the two extremal cases:

Example 3.2.1 The measurement of observables Ak with a non degenerate spectrum of

eigenvalues is related to maximal Abelian subalgebras Ak of Mn(C). In this case the P
(k)
i

are minimal projections of B(H) and in our measurement schemes we have m = n + 1

measurements M (k), each of which consist of d(k) = n elements of the form

P
(k)
i =

1

n
I + u

(k)
i (1 ≤ i ≤ n)

and the matrix T takes the form

T =


T (1)

...

T (n+1)

 , T (k) =


u

(k)
1

t

...

u
(k)
n−1

t

 , (3.34)

It is known in the cases where n is a prime power that a complete set of complementary

maximal Abelian subalgebras exists [28]. ♦

Example 3.2.2 In the case of n = 2j, j ∈ N, we can consider subalgebras generated

by projections of rank n/2, which corresponds to the measurement of observables with

two distinct eigenvalues of multiplicity n/2. Then every measurement gives information

about only one parameter and thus we consider measurement schemes M that consist of

m = n2 − 1 measurements M (k) = {P (k)
+ , P

(k)
− } where

P
(k)
± =

1

2
I ± u(k) (3.35)
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The matrix T takes the form

T =


u(1) t

...

u(n2−1) t

 (3.36)

♦

In the case of von Neumann measurements associated with homogenous subalgebras,

all the measurements used are unitarily conjugate to a single M0 = {P (0)
i : 1 ≤ i ≤ m}

where m = n/r and M0 is the measurement associated with the algebra A0 in (3.33).

Within the families

U =
{
M = {UiM0U

∗
i : 1 ≤ i ≤ m} : M informational complete, U (i) ∈ Un(C)

}

the case when the subalgebras related to the UiM0U
∗
i are complementary is optimal under

the condition that they exists.

Example 3.2.3 If we replace in Example 3.2.2 the Bloch vectors u(k) of the measurement

operators by Bloch vectors such that the eigenvalues of the u(k) are smaller than 1/2 we

can always obtain an informational complete set of quasi-orthogonal measurements. The

measurement operators

E
(k)
± =

1

2
I ± u

(k)
i (1 ≤ i ≤ n2 − 1)

are always positive for ‖u(k)‖ ≤ 1/4n and we can find quasi-orthogonal measurements by

choosing the vectors u(k) orthogonal. ♦

In the following we present examples that are related to measurement schemes on non-

commutative subalgebras corresponding to physical subsystems:

Let us consider the composite of k quantum systems with Hilbert spaces Hi with
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dim(Hi) = ni. It is described by the tensor product algebra

B(H) =
k⊗

i=1

B(Hi) ≡
k⊗

i=1

Mni
(C) (3.37)

in a suitable chosen basis of H = ⊗iHi. Let us consider subalgebras A ' B(Hi) that are

isomorphic to the algebra of one of the subsystems. A measurement M ⊂ A contained

in the subalgebra A can be experimentally realized by a measurement on the physical

subsystem B(Hi) in the following way: We can choose a unitary W such that WAW ∗ ≡

B(Hi) ⊗ I and W can be implemented by the time evolution of the system under some

suitable Hamiltonian H as W−1 = eiHt/~. Under this time evolution a given state ρ ∈ B(H)

evolves to W−1ρ(W−1)∗ and performing the conjugate measurement WMW ∗, contained

in B(Hi), on W−1ρ(W−1)∗ is equivalent to performing M on ρ. Suppose there is a set

of subalgebras {Ai : Ai ' B(Hji
) for some ji, 1 ≤ i ≤ m} such that span{Ai : 1 ≤

i ≤ m} = B(H). Then a measurement scheme M on the composite system can be

constructed as the union of informational complete schemes MAi
on the subalgebras Ai

where the measurements in MAi
are performed as described above with some Wi such

that WiAiW
∗
i ≡ B(Hji

) ⊗ I. The measurement scheme M corresponds to a collection

of measurement schemes on the physical subsystems B(Hji
) and unitary time evolutions

Wi = eiHiti/~. In case there exists a complete set of complementary subalgebras Ai '

B(Hji
) for some ji, we can apply the results of the previous sections to the families

U(M0) =
{
M = ∪m

i=1UiMAi
U∗

i : M informational complete, U (i) ∈ Un(C)
}

for some M0 = ∪m
i=1MAi

with informationally complete MAi
on Ai. For any particular

form of the MAi
it is optimal if we choose the measurement scheme M0 associated with

the complementary subalgebras Ai.
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Example 3.2.4 In the case of k copies of a r level system with Hilbert spaceHA, dim(HA) =

r, the algebra of the composite system is given by

B(H) ' Mrk(C) '
k⊗

i=1

Mr(C)

In the case when r = pl is the power of prime p ≥ 3 there exists a complete set of m =

(r2k−1)/(r2−1) complementary Ai ' Mr(C). We can construct informationally complete

MAi
on Ai from a single informationally complete measurement scheme MMr(C) on Mr(C)

and unitaries Wi such that WiAiW
∗
i ≡ Mr(C)⊗I. In other words in the estimation scheme

we perform the same measurements from MMr(C) on one of the subsystem after exposing

the composite system to different time evolutions Wi. Within the families

U =
{
M = ∪m

i=1WiMMr(C)W
∗
i : M informational complete, Wi ∈ Un(C)

}
(3.38)

The choice of the Wi is optimal in the sense of Chapter 3 if the subalgebras Ai =

W−1
i

(
Mr(C)⊗ I

)
(W−1

i )∗ are complementary. ♦

Example 3.2.5 In the case of two qubits, i.e. r=2 and k=2 in the previous example, it

was shown in [23] that the upper bound of 5 quasi-orthogonal subalgebras A ' M2(C)

can not be achieved. However it is possible to choose four quasi-orthogonal subalgebras

Ai ' M2(C) (1 ≤ i ≤ 4) and the remaining orthogonal complement in S together with

the identity forms a maximal Abelian subalgebra A5 of M2(C) ⊗ M2(C) [18]. Thus we

can construct a measurement scheme on B(H) from an informationally complete measure-

ment scheme MM2(C) on the subsystem M2(C) ⊗ I together with unitaries Wi such that

WiAiW
∗
i ≡ M2(C) ⊗ I for 1 ≤ i ≤ 4 and the measurement MA of a non-degenerate ob-

servables on M2(C) ⊗M2(C) related to A5. This measurement scheme is optimal within
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the family

U =
{
M = ∪4

i=1WiMM2W
∗
i ∪W5{MA}W ∗

5 : informational complete, Wi ∈ U4(C)
}

(3.39)

♦

As a last example we specify additionally the measurement schemes on the subalgebras:

Example 3.2.6 In the context of the previous two examples, we can further specify the

form of the measurement schemes MMr(C) on the subsystem B(HA). Since r was assumed

to be a prime power, there exists a complete set {Ai, 1 ≤ i ≤ r + 1} of complementary

maximal Abelian subalgebras of the subsystem B(HA), or equivalently, a complete set of

(r + 1) complementary observables on the subsystem HA. Together with optimal choice of

the Wi (where 1 ≤ i ≤ r2k−1
r2−1

) that obtained complementary subalgebras of B(H) isomorphic

to B(HA) we get a complete set of complementary subalgebras Aik = Wi(Ak⊗I)W ∗
i . Note

that this are not maximal Abelian subalgebras of B(H). The Aik are generated by the

isomorphic image of minimal projections in the algebras Mr(C)⊗ I. Since I denotes here

the rk−1 dimensional identity, this projections are not minimal projections in Mrk(C) but

they are of rank r(k−1). Thus the subalgebras Aik are homogenous Abelian subalgebras

and the correspond to von Neumann measurements MAik
of r rank r(k−1) projections. We

obtain a measurement scheme M = {MAik
: 1 ≤ i ≤ m} with m = (r + 1) r2k−1

r2−1
= r2k−1

r−1

measurements. Let us remark, that alternatively to the procedure of measuring non-

degenerate observables on the subsystem after exposing the system to some time evolution,

the measurement MAik
can be performed directly on the composite system B(H) as well.

♦

In all the examples above we can use the relative frequencies ν as a classical estimate
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for the probabilities and we estimate the state by (2.34)

θ̂ =
1

n
T−1(ν − 1

n
r) (3.40)

The mean quadratic error matrix is given by

Vθ =
1

n2
T−1W (T−1)∗ (3.41)

where W is block-diagonal with blocks of the form

W (k) =
1

N (k)


p

(k)
1 − p

(k)
1

2
· · · p

(k)
1 p

(k)
n
r
−1

...
. . .

...

p
(k)
n
r
−1p

(k)
1 · · · p

(k)
n
r
−1 − p

(k)
n
r
−1

2

 (3.42)

3.3 Evaluation of von Neumann Measurements

In this section we return to measurement schemes that use von Neumann measurements

associated with homogenous Abelian subalgebras of B(H). Such measurements correspond

to the measurement of observables with eigenvalues of multiplicity r and the measurement

operators are projections of rank r. As discussed in Chapter 3.2.4 a measurement scheme

consists of r(n2−1)
(n−r)

measurements of such observables. From the results of Chapter 3.2 for a

fixed r it is optimal to choose this observables complementary. In this section we evaluate

the average mean quadratic error matrix and its determinant for the complementary case.

In the calculations we choose a specific prior distribution for which the boundary of the

set of states has measure zero. The result allows us to show that measurement schemes

using observables with non-degenerate spectrum have maximal efficiency.

To evaluate the average we first specify the measure µ we will use on the set T of

states. Therefore note that we can generate the set T from diagonal matrices by unitary
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conjugation. Let us denote Ω = {Λ = Diag(λ1, . . . , λn) : λi ≥ 0,
∑

λi = 1} as the set of

all diagonal matrices with an n-dimensional probability vector on the diagonal. On the

Cartesian product UC(n)× Ω we can define a function

g : UC(n)× Ω → T : g(U, Λ) = UΛU∗ = UΛU∗ = ρ (3.43)

UC(n) × Ω can be equipped with the normalized product measure of the Haar measure

on UC(n) and the Lebesgue measure on Ω. The push-forward measure µ by g, denoted as

µg−1, is a unitarily invariant measure on T :

∫
T

f(ρ) dµg−1(ρ) =

∫
UC(n)×Ω

f
(
g(U, Λ)

)
dµ(U)× dµ(Λ)

∗
=

∫
UC(n)×Ω

f
(
g(V U, Λ)

)
dµ(U)× dµ(Λ) =

∫
T

f(V ρV ∗) dµg−1(ρ) (3.44)

where the equality (*) represents the invariance of the Haar measure and holds for all

V ∈ UC(n). Let us remark that this measure is different from the normalized Lebesgue

measure on T ⊂ R(n2−1) which requires a different measure on Ω.

In order to evaluate the integral of (3.42) we first calculate the explicit form of the

probabilities

p
(k)
i = Tr (ρP

(k)
i ) = Tr (UΛU∗P

(k)
i ) = Tr (ΛU∗P

(k)
i U) (3.45)

related to the projection P
(k)
i (we use the notation of Examples 3.2.1 and 3.2.2). By the

invariance condition (3.44) of the Haar measure we can assume that the P
(k)
i are diagonal

in the same basis as Λ and of block diagonal form
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P
(k)
i =



0
... 0

Ir
(i)
...

0 ...

0


(3.46)

where each block is of size r × r such that the ith block contains the r-dimensional

identity and all other blocks are zero. The matrix elements of the product U∗P
(k)
i U are

given by (
U∗P

(k)
i U

)
pq

=
n∑

s,t=1

Ūsp

(
P

(k)
i

)
st
Utq (3.47)

In the basis where Λ is diagonal left multiplication of a matrix by Λ multiplies the pth row

with λp. Evaluating the trace gives

Tr (ΛU∗P
(k)
i U) = Tr

([ n∑
s,t=1

λpŪsp

(
P

(k)
i

)
st
Utq

]n
p,q=1

)
=

n∑
p,s,t

λpŪspUtp

(
P

(k)
i

)
st

=
n∑

p,s

λp|Usp|2
(
P

(k)
i

)
ss

(3.48)

where in the last step we used the diagonal form (3.46) of the P
(k)
i . Especially in the last

sum,
(
P

(k)
i

)
ss
6= 0 only for (i − 1)r + 1 ≤ s ≤ ir. Since changing the index i is the same

than permuting the diagonal blocks of P
(k)
i in (3.46) by some unitary conjugation, it is

enough to consider i = 1, 2 and we get

p
(k)
i = p

(k)
1 =

n∑
i=1

r∑
k=1

λi|Uki|2 (3.49)

p
(k)
i p

(k)
j = p

(k)
1 p

(k)
2 =

n∑
i=1

n∑
j=1

r∑
k=1

2r∑
l=r+1

λiλj|Uki|2|Ulj|2 (i 6= j) (3.50)

All diagonal elements of the blocks 〈W (k)〉 will be identical after taking the average as well
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as all off diagonal elements and we get

〈W (k)〉 =
1

N (k)



a b · · · b

b a
. . .

...

...
. . . . . . b

b · · · b a


(3.51)

Furthermore all the blocks of 〈W 〉 will be the same since also all measurements we use

are unitarily conjugated to each other. Thus it is enough if we calculate the averages

a =
〈
p

(k)
1 − p

(k)
1

2〉
and b =

〈
− p

(k)
1 p

(k)
2

〉
. We get

a =

∫
T

p
(k)
1 − p

(k)
1

2
dµg−1(ρ) =

n∑
i=1

r∑
k=1

∫
Ω

λi dµ(Λ)

∫
UC(n)

|Uki|2 dµ(U)−
n∑

i,j=1

r∑
k,l=1

∫
Ω

λiλj dµ(Λ)

∫
UC(n)

|Uki|2|Ulj|2 dµ(U)

for the diagonal elements and

b = −
∫
T

p
(k)
1 p

(k)
2 dµg−1(ρ) = −

n∑
i,j=1

r∑
k=1

2r∑
l=r+1

∫
Ω

λiλj dµ(Λ)

∫
UC(n)

|Uki|2|Ulj|2 dµ(U)

for off diagonal elements. The appearing integrals and sums are evaluated in appendix A

and we get the result

a =

∫
T

p1 − p2
1 dµg−1(ρ) = r

(n + 2)

(n + 1)2
− r2 (n + 2)

n(n + 1)2
(3.52)

b = −
∫
T

p1p2 dµg−1(ρ) = −r2 (n + 2)

n(n + 1)2
(3.53)

To evaluate the determinant of 〈V 〉 we need to calculate the determinant of 〈W 〉 and T .

72



C
E

U
eT

D
C

ol
le

ct
io

n

We will use the following formula for our calculations: The determinant of a k × k matrix

B with elements Bij = δij(a− b) + b is obtained by

Det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b · · · b

b a · · · b

...
. . .

...

b b · · · a

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a− b)(k−1) (a + (k − 1) b) (3.54)

This formula can be derived by carrying B into upper triangular form by first subtract-

ing the last line each other ones and then canceling the off-diagonal elements in the last line:

Det(B) = Det


a−b 0 ··· ··· b−a

0 a−b 0 ··· b−a

... 0
...

...
...

... ...
...

... b−a

b b ··· b a

 = Det


a−b 0 ··· ··· b−a

0 a−b 0 ··· b−a

... 0
...

...
...

...
...

...
... b−a

0 0 ··· 0 a+(n−1)b

 (3.55)

Since the matrix on the right hand side is upper triangular, the determinant is the

product of the diagonal entries and we obtain (3.54).

In our case additionally the elements are the form a = a0 + b and (3.54) simplifies to

Det(A) = ak−1
0 (a0 + kb). Together with (3.52) and (3.53) we obtain

Det(〈W 〉) =

[
m∏

k=1

1

N (k)

](n/r−1) [
(n + 2)

(n + 1)2

](n/r−1) m

n−m r
n/r m (3.56)

To calculate the determinant of T we recall the geometrical configuration of the row

vectors of T . The inner product between two such vectors is given by

〈u(k)
i , u

(l)
j 〉 =

1

n
Tr(P

(k)
i P

(l)
j )− r2

n2
(3.57)

Thus the vectors have length |u(k)
i |2 = r

n
(1 − r

n
) and the inner product between any two
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of them is 〈u(k)
i , u

(k)
j 〉 = − r2

n2 . The product TT ∗ contains the inner products between the

vectors u
(k)
i as elements. For the optimal measurement we can assume the subspaces S(k)

to be orthogonal and T becomes block-diagonal with

(
T (k)(T (k))∗

)
ij

= 〈u(k)
i , u

(k)
j 〉 = δij

r

n
− r2

n2
(3.58)

The blocks are of size (n/(r−1))× (n/(r−1)) and again we can use formula (3.54) to evaluate

the determinant

Det
(
T (k)(T (k))∗

)
=
( r

n

)(n/r−2)
(

r

n
−
(n

r
− 1
) r2

n2

)
=
( r

n

)(n/r−2)
(

nr − (n− r)r

n2

)
=
( r

n

)n/r
(3.59)

Since the values (3.58) of the inner products are identical for all k, all blocks have the same

determinant and their product becomes

Det(T )2 = Det(TT ∗) = n−
n/r m r

n/r m . (3.60)

Putting (3.56) and (3.60) together we get

Det
(
〈Vθ〉

)
=

1

n2(n2−1)

Det(A)

Det(T )2
=

1

n2(n2−1)

[
m∏

k=1

1

N (k)

](n/r−1) [
n(n + 2)

(n + 1)2

](n2−1)

(3.61)

where
∑

k N (k) = N . For fixed r this expression becomes minimal if we choose all N (k) = N
m

.

Then

Det
(
〈Vθ〉

)
=
[m
N

](n2−1)
[

(n + 2)

n(n + 1)2

](n2−1)

(3.62)

which is minimal if we choose r = 1. The case r = 1 corresponds to the measurement

of observables with non-degenerate spectrum and measurement schemes consisting of such
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observables are optimal in the above setting.
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Conclusion

In the thesis we considered the problem of estimating an unknown quantum state by sep-

arate measurements on identical copies of the state. The following setting was considered

for the state estimation problem: It was assumed that the unknown state originates from

the set T of all possibles states of the system and a priory knowledge is reflected by a prior

probability measure on T . For the estimation of the state N identical copies of the state

are at hand and the following estimation scheme is carried out: To obtain statistical data

a set of measurements (or a measurement scheme) M = {M (1), M (2), . . . ,M (m)} is chosen.

The ensemble of the given states is divided into m subensembles and the measurements

M (k) are performed separately on the copies of the subensembles. To form a point esti-

mate for the unknown state the set T is parameterized by the generalized Bloch vector θ.

An unconstrained estimate θ̂ of θ is obtained from the empirical distribution (or relative

frequencies) of the measurement outcomes by linear inversion of the relation between the

measurement probabilities and the Bloch vector. Since the unconstrained estimate may

take values outside the set of states, additionally an estimate θ̂c constrained onto the set

T is considered. The efficiency of an estimation scheme is evaluated by the average of the

mean quadratic error matrix, where the average is taken with respect to the prior distri-

bution on the true states. To compare different measurement schemes the determinant of

this matrix is used.
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The thesis studied the role of complementary measurements in the above state estima-

tion problem. The main result showed that if a measurement scheme M0={M (1)
0 , M

(2)
0 , . . . ,

M
(m)
0 } consists of complementary measurements, it performs better than any measurement

scheme of the form M′={U1M
(1)U∗

1 , U2M
(2)U∗

2 , . . . , UmM (m)U∗
m} obtained with unitaries

Uk ∈ UC(n) (1 ≤ k ≤ m). In other words, M0 is optimal within the family U(M0) formed

by the M′. This was stated in

• Theorem 1 for the unconstrained estimate: The necessary condition for the theorem

is that the prior probability measure is invariant under unitary conjugation: µ(ρθ) =

µ(UρθU
∗) (U ∈ UC(n)). The theorem holds for finite numbers of available copies of

the unknown state.

• Theorem 2 for the constrained estimate: The main conditions for the theorem are that

the prior probability measure is unitarily invariant and vanishes on the boundary of

the set of states: µ(∂T ) = 0. Furthermore it is assumed that the constrained estimate

differs from the unconstrained only if the unconstrained estimate falls outside the set

T . The theorem is shown in the asymptotic case when the number of available states

tends to infinity.

Additionally in Theorem 3 the relation of the results to the work in [28], where a simi-

lar optimality result for complementary observables with non-degenerate spectrum with

respect to the information gain was shown, is discussed.

By means of examples where the existence of complete sets of complementary subalge-

bras is known, the relation of the families U(M0) to subalgebras is discussed: A subsystem

of a quantum system is described by a subalgebra A ⊂ B(H) and in general a measurement

M (k) is contained in a subsystem. If we are given two subsystem A and UAU∗ related by

unitary conjugation, a measurement M (k) ⊂ A performed on the subsystem A given the

true state ρ is equivalent to performing UM (k)U∗ ⊂ UAU∗ on the subsystem UAU∗ given

77



C
E

U
eT

D
C

ol
le

ct
io

n

the true state UρU∗. By the results shown in the thesis, if the true states are unitarily

invariant distributed, it is on average optimal to choose the subsystems complementary:

Measurements M (k) performed on complementary subsystems A(k) perform better than

equivalent measurements UM (k)U∗ on the subsystems UA(k)U∗.

Finally an example of a unitary invariant prior distribution on T is constructed from

the Haar measure on UC(n) and the Lebesgue measure on the probability simplex. For

this prior distribution the determinant of the average mean quadratic error matrix was

evaluated explicitly for measurement schemes using von Neumann measurements associated

with homogenous Abelian subalgebras generated by projections of the same rank r. It was

shown that the case of maximal Abelian subalgebras, which is related to measurements of

observables with non-degenerate spectrum, is optimal.
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Appendix A

Some Integrals

A.1 Integration on the Probability Simplex

The set of discrete probability distributions on a set of n different outcomes can be param-

eterized as the n− 1 dimensional simplex

Ωn−1 = {Λ = (λ1, λ2, . . . , λn) : λi ≥ 0,
∑

λi = 1} ⊂ Rn. (A.1)

which is a n − 1 dimensional manifold in Rn. We change to the cumulative probabilities

by the coordinate transformation

A : xi =
i∑

k=1

λi and A−1 : λi = xi − xi−1 (A.2)
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Since we have λn = 1 we get a chart φ : Rn−1 ⊃ U → Rn for Ωn−1 from the set U = {x :

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ 1} ⊂ Rn−1 to Rn by .

φ(x) = A−1

(
x

1

)
(A.3)

Integration of a function f : Ω → R is given by

∫
Ω

fdΩ =

∫
U

f(φ(x))
√

Det Gn(x) dx1 . . . dxn (A.4)

where Gn = (Dφ)tDφ is the measure tensor of φ and Det Gn is the Gram’s determinant.

The derivative of φ and the measure tensor are given by

Dφ =

(n−1)︷ ︸︸ ︷
1 0 ··· 0

−1 1 0
...

0 −1 1
...

...

...
...

...
... 0

... 0 −1 1

0 ··· ··· 0 −1




n, Gn =

(n−1)︷ ︸︸ ︷
2 −1 0 ··· 0

−1 2 −1
...

...

0 −1
...

...
...

...
...

... 2 −1

0 ··· ··· −1 2


 (n− 1)

By expanding the determinant along the first row we can get the recursive formula

DetGn = 2 DetG(n−1) − DetG(n−2). By induction on n it is easy to see from this formula

that DetG = n.

We will use the following integral formula

∫ a

0

∫ xk

0

. . .

∫ x3

0

∫ x2

0

dx1dx2 . . . dxk−1dxk =
1

k!
ak . (A.5)

With (A.5) the hyperarea of Ωn becomes

∫
Ω

dΩ =

∫
U

√
n dx1 . . . dxn−1 (A.6)

=

∫ 1

0

∫ xn−1

0

. . .

∫ x3

0

∫ x2

0

√
n dx1dx2 . . . dxn−2dxn−1 =

√
n

(n− 1)!
. (A.7)
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Integrating λn on Ω

∫
Ω

λndΩ =

∫
U
(1− xn−1)

√
n dx1 . . . dxn−1 (A.8)

=

∫ 1

0

(1− xn−1)

∫ xn−1

0

. . .

∫ x3

0

∫ x2

0

√
n dx1dx2 . . . dxn−2︸ ︷︷ ︸

n−2terms

dxn−1 (A.9)

=

∫ 1

0

(1− xn−1) x
(n−2)
n−1

√
n

(n− 2)!
dxn−1 (A.10)

=

∫ 1

0

x
(n−1)
n−1

√
n

(n− 1)!
dxn−1 =

√
n

(n!
(A.11)

where the last line follows from integration by parts. Similar, integration of λ2
n on Ω

∫
Ω

λ2
ndΩ =

∫
U
(1− xn−1)

2
√

n dx1 . . . dxn−1 (A.12)

=

∫ 1

0

(1− xn−1)
2 x

(n−2)
n−1

√
n

(n− 2)!
dxn−1 (A.13)

=

∫ 1

0

2xn
n−1

√
n

n!
dxn−1 =

√
n

(n + 1)!
(A.14)

Integration of mixed terms λnλn−1 on Ω becomes

∫
Ω

λndΩ =

∫
U
(1− xn−1)(xn−1 − xn−2)

√
n dx1 . . . dxn−1

=

∫ 1

0

∫ xn−1

0

(1− xn−1)(xn−1 − xn−2)

∫ xn−2

0

. . .

∫ x2

0

√
ndx1 . . . dxn−3︸ ︷︷ ︸

n−3terms

dxn−2dxn−1

=

∫ 1

0

∫ xn−1

0

(1− xn−1)(xn−1 − xn−2)x
(n−3)
n−2

√
n

(n− 3)!
dxn−1

=

√
n

(n + 1)!

where the last step follows after a lengthy calculation with integrals of the above type.

Normalizing the measure on Ω and using the symmetry of the indices finally results in the
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integrals

∫
Ω

λi dΩ =
1

n
(A.15)∫

Ω

λ2
i dΩ =

2

n(n + 1)
(A.16)∫

Ω

λiλj dΩ =
1

n(n + 1)
i 6= j . (A.17)

A.2 Integration on the Unitary Group

Consider some U = (Uij)
n
i,j=1 in the complex unitary group UC(n), and denote by µ the

normalized Haar measure on UC(n), then:

∫
UC(n)

|Uki|2 dµ(U) =
1

n
(A.18)∫

UC(n)

|Uki|4 dµ(U) =
2

n(n + 1)
(A.19)∫

UC(n)

|Uki|2|Uli|2 dµ(U) =
1

n(n + 1)
k 6= l (A.20)∫

UC(n)

|Uki|2|Ulj|2 dµ(U) =
1

(n− 1)(n + 1)
i 6= j, k 6= l (A.21)

This moments can be calculated without explicit formulation of the Haar measure and we

will replicate the proof given in [8]:

The first step in the proof is to notice that the elements of a matrix can permuted by

some unitaries V and W such that Uπ(i)σ(j) = (V UW )ij where π and σ are permutations.

Then for a measurable function f the invariance condition of the Haar measure gives

∫
f(Uπ(i)σ(j), Uπ(k)σ(l)) dµ(U) =

∫
f(Uij, Ukl) dµ(U) (A.22)
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and it is mostly enough to consider the indices i, j, k, l = 1, 2.

The first equation (A.18) follows simply from
∑n

i=1 |Uij|2 = 1 and the equality of the

integrals
∫
|Uij|2 dµ(U) for all 1 ≤ i, j ≤ n as mentioned in (A.22).

For the next step we superpose the elements U11 and U12 with help of the unitary matrix

V =


 cos θ sin θ

−sinθ cosθ

⊕ In−2

 (A.23)

Using again the invariance condition of the Haar measure we get the identity

∫
|U11|4 dµ(U) =

∫
|(V U)11|4 dµ(U) =

∫
|U11 cos θ + U21 sin θ|4 dµ(U)

=

∫ (
|U11|2 cos2 θ + |U21|2 sin2 θ + (U11U

∗
21 + U21U

∗
11) cos θ sin θ

)2

dµ(U)

=

∫
|U11|4 cos4 θ + |U21|4 sin4 θ + 4|U11|2|U21|2 cos2 θ sin2 θ

+
(
U11U

∗
21 + U∗

11U21

)(
|U11|2 cos3 θ sin θ + |U21|2 sin3 θ cos θ

)
+
(
(U11U

∗
21)

2 + (U∗
11U21)

2
)
sin2 θ cos2 θ dµ(U)

(A.24)

By multiplying U with the unitary matrix diag(eiφ, e2iφ, 1, . . . , 1) we get for terms that con-

tain products of the form U11U
∗
21 or their complex conjugate the identity

∫
U11U

∗
21 . . . dµ(U) =

e−iφ
∫

U11U
∗
21 . . . dµ(U) for all φ. Therefore the terms in the last two lines of (A.24) vanish.

Setting additionally θ = π/4 together with
∫
|U11|4 dµ(U) =

∫
|U12|4 dµ(U) gives

∫
|U11|4 dµ(U) = 2

∫
|U11|2|U21|2 dµ(U) = 2

∫
|Uij|2|Ukj|2 dµ(U) (A.25)

Using the normality condition on the rows of a unitary we get
∑

i,k |Uij|2|Ukj|2 = 1. Split-
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ting up the sum gives together with (A.25)

∫
dµ(U) =

∫ (∑
i=k

|Uij|4 +
∑
i6=k

|Uij|2|Ukj|2
)

dµ(U)

= n

∫
|U11|4 dµ(U) +

n(n− 1)

2

∫
|U11|4 dµ(U)

=
n(n + 1)

2

∫
|U11|4 dµ(U)

(A.26)

which proofs (A.19) and (A.20). Finally equation (A.21) follows in a similar way from∑
i,k |Uij|2|Ukl|2 = 1 using (A.20).

A.3 Summation

To obtain (3.52) and (3.53) we need to calculate the sums in (3.49) and (3.50):

p
(k)
1 =

n∑
i=1

r∑
k=1

∫
Ω

λi dµ(Λ)

∫
UC(n)

|Uki|2 dµ(U) = n r
1

n

1

n
=

r

n
(A.27)

The square of the probability

p
(k)
1

2
=

n∑
i=1

r∑
k=1

∫
Ω

λi dµ(Λ)

∫
UC(n)

|Uki|2 dµ(U)
n∑

j=1

r∑
l=1

∫
Ω

λj dµ(Λ)

∫
UC(n)

|Ulj|2 dµ(U)

=
n∑

i,j=1

∫
Ω

λiλj dµ(Λ)
r∑

k,l=1

∫
UC(n)

|Uki|2|Ulj|2 dµ(U)

=
n∑

i=j

∫
Ω

λ2
i dµΛ

(
r∑

k=l

∫
UC(n)

|Uki|2|Uki|2 dµU +
r∑

k 6=l

∫
UC(n)

|Uki|2|Uli|2 dµU

)

+
n∑

i6=j

∫
Ω

λiλj dµΛ

(
r∑

k=l

∫
UC(n)

|Uki|2|Ukj|2 dµU +
r∑

k 6=l

∫
UC(n)

|Uki|2|Ulj|2 dµU

)
(A.28)
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For pairs (i, j) with 1 ≤ i, j ≤ k there are k pairs where i = j and n(n − 1) pairs where

i 6= j, we get

p
(k)
1

2
= n

2

n(n + 1)

(
r

2

n(n + 1)
+ r(r − 1)

1

n(n + 1)

)
+ n(n− 1)

1

n(n + 1)

(
r

1

n(n + 1)
+ r(r − 1)

1

(n− 1)(n + 1)

)

=
2

n(n + 1)2
(r + r2) +

1

n(n + 1)2
(nr2 − r) =

r

n(n + 1)2
+

r2(n + 2)

n(n + 1)2

=
r

n

(
1 + r(n + 2)

(n + 1)2

)
(A.29)

and (A.27) minus (A.29) gives the desired result:

a =

∫
T

p1 − p2
1 dµg−1(ρ) = r

(n + 2)

(n + 1)2
− r2 (n + 2)

n(n + 1)2
(A.30)

For the off diagonal elements (3.53) we get:

p
(k)
1 p

(k)
2 =

n∑
i=1

n∑
j=1

r∑
k=1

2r∑
l=r+1

∫
Ω

λiλj dµ(Λ)

∫
UC(n)

|Uki|2|Ulj|2 dµ(U)

=
n∑

i=j=1

∫
Ω

λ2
i dµ(Λ)

r∑
k=1

2r∑
l=r+1

∫
UC(n)

|Uki|2|Uli|2 dµ(U)

+
n∑

i6=j

∫
Ω

λiλj dµ(Λ)
r∑

k=1

2r∑
l=r+1

∫
UC(n)

|Uki|2|Ulj|2 dµ(U)

= n
2

n(n + 1)
r2 1

n(n + 1)
+ n(n− 1)

1

n(n + 1)
r2 1

(n− 1)(n + 1)

= r2 n + 2

n(n + 1)2

(A.31)
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Appendix B

Sanov’s Theorem for Unequal Sample

Sizes

We consider the problem of drawing samples of sizes N (k) from m different discrete proba-

bility distributions p(k) ∈ Ωd(k) (1 ≤ k ≤ m) and derive bounds to the probability that the

relative frequency vector (or the empirical distributions) ν of the samples fall into some

set A ⊂ ×m
k=1Ωd(k) .

Theorem 4 Let X(k) ∼ p(k) be independent discrete random variables and the vectors p

and ν defined as in (2.31). Let A ⊂ ×m
k=1Ωd(k) be a set that is the closure of its interior.

Then

lim sup
Nmin→∞

1

Nmin

log
(
Prob(ν /∈ A)

)
≤

−D(ν∗‖p) ≤

lim inf
Nmin→∞

1

Nmax

log
(
Prob(ν /∈ A)

)
(B.1)
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where Nmin = mink

{
N (k)

}
, Nmax = maxk

{
N (k)

}
and

D(ν‖p) =
∑

k

D
(
ν(k)‖p(k)

)

is the relative entropy D
(
ν(k)‖p(k)

)
=
∑

i ν
(k)
i

(
log ν

(k)
i − log p

(k)
i

)
and

ν∗ = argminν /∈TΩ
D(ν‖p)

is the ν closest to p in relative entropy.

The proof of (B.1) follows similar ideas as the proof of the usual version of Sanov’s

theorem (see e.g. [4]): Let us introduce the notation of types or empirical distributions

as the set of probability vectors with rational components Pd = Ωd ∩ Qd. Let us denote

the set of distributions where all probabilities have the common denominator N as PN
d .

In the context of our estimation problem, we defined a map from the set of states into

the Cartesian product of probability simplexes p ∈ ×m
k=1Ωd(k) , while our estimates ν ∈

×m
k=1PN(k)

d(k) (Here we defined the vector p (respectively ν) similar to (2.31)).

For a sample of size N (k) drawn from a distribution p(k), the probability to get ν(k) ∈

PN(k)

d(k) for the empirical distribution of the sample is given by

1

(N (k) + 1)d(k)
2−N(k)D(ν(k)‖p(k)) ≤ Prob(ν(k)) ≤ 2−N(k)D(ν(k)‖p(k)) (B.2)

The maximum number of different empirical distributions with denominator N (k) is bounded

by

#(PN(k)

d(k) ) ≤ (N + 1)d(k)

(B.3)
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The bounds corresponding to (B.2) and (B.3) for ν and ×
k
PN(k)

d(k) follow from

Prob(ν) =
∏

k

Prob(ν(k)) and #
(
×
k
PN(k)

d(k)

)
=
∏

k

#(PN(k)

d(k) ) (B.4)

In the following we derive bounds on the probability for ν ∈ ×m
k=1PN(k)

d(k) to fall into a well

behaved set A ⊂ ×m
k=1Ωd(k)(k) if we take samples of size N (k) from the distributions p(k).

An upper bound can be derived from the upper bounds on the probability of ν and the

number of different ν in A:

Prob
(
×
k
PN(k)

d(k) ∩ A
)

=
∑

ν∈×
k
PN(k)

d(k)
∩A

Prob(ν)

≤
∑

ν∈×
k
PN(k)

d(k)
∩A

∏
k

2−N(k)D(ν(k)‖p(k))

≤
∑

ν∈×
k
PN(k)

d(k)
∩A

2−minν∈A
P

k N(k)D(ν(k)‖p(k))

∗
≤

∑
ν∈×

k
PN(k)

d(k)
∩A

2−minν∈A
P

k NminD(ν(k)‖p(k))

≤
∑

ν∈×
k
PN(k)

d(k)
∩A

2−NminD(ν∗‖p)

≤

(
m∏

k=1

(N (k) + 1)d(k)

)
2−NminD(ν∗‖p)

(B.5)

Therefore we get the limit

lim sup
Nmin→∞

1

Nmin

log Prob
(
×
k
PN(k)

d(k) ∩ A
)
≤

lim
Nmin→∞

∑
k

d(k) log(N (k) + 1)

Nmin

−D(ν∗‖p) (B.6)
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Since the bound (∗) is weak if the N (k) differ a lot, we get don’t get convergence of the

right hand side in (B.6) if Nmax grows exponentially in Nmin. However, we can establish

further bounds: For a sequences of samples sizes with Nmin → ∞ consider a subsequence

{N (k)
i }m

k=1 such that mink{N (k)
i } < mink{N (k)

i+1}. Analog to (B.5)

(∏
(N (k) + 1)d(k)

)
2−

P
k N(k)D(ν∗(k)‖p(k)) ≥ Prob

(
×
k
PN(k)

d(k) ∩ A
)

(B.7)

where ν∗i = argminν∈A

(
−
∑

k N
(k)
i D(ν(k)‖p(k))

)
. Since the Q is dense in R we can find

a sequence of ν ′i ∈ ×
k
Pmink{N

(k)
i }

d(k) ∩ A with ‖ν ′i − ν∗i ‖ → 0 if i → ∞. We obtain a lower

bound for the case when all sample sizes are equal, N
(k)
i = mink{N (k)

i } for all k, by the

probability of the single νi:

Prob

(
×
k
Pmink{N

(k)
i }

d(k) ∩ A

)
≥ 1

(Nmin + 1)md(k)
2−NminD(νi‖p) (B.8)

Already if the difference between Nmax and Nmin grows linearly, for big enough Nmin the

right hand side of (B.8) grows atop of the left hand side of equation (B.7)1 and the con-

vergence of Prob
(
×
k
Pmink{N

(k)
i }

d(k)

)
follows from ordinary Sanov’s theorem.

On the other hand, if ν∗ is an accumulation point of the set A we can find a sequence

of νi → ν∗ in A and the probability of ν to fall in A can be bounded by the probability of

1 it may happen that D(ν∗(k)
i ‖p(k)) = 0 for Nmax, however in this case one may consider N ′

max as the
maximum of the N

(k)
i with nonzero D(ν(k)‖p(k)). In the case if Nmax does not grow linearly in Nmin but

N ′
max does, (B.5) still holds.
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νi:

Prob
(
×
k
PN(k)

d(k) ∩ A
)
≥ Prob(νi)

≥ 1∏
k(N

(k) + 1)d(k)
2−

P
k N(k)D(νi‖p)

≥ 1∏
k(Nmax + 1)d(k)

2−
P

k NmaxD(νi‖p)

≥ 1

(Nmax + 1)m d
(k)
max

2NmaxD(νi‖p)

(B.9)

which gives the second inequality in (B.1) by

lim inf
Nmin→∞

1

Nmax

log Prob
(
×
k
PN(k)

d(k) ∩ A
)
≥

lim
Nmin→∞

m d(k)
max

log(Nmax + 1)

Nmax

−D(ν∗‖p) (B.10)
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estimation of qubit mixed states. Phys. Rev. A, 73:032301, 2006.

[2] A. R. Barron. Entropy and the central limit theorem. Ann. Probab., 14(1):336–342,
1986.

[3] R. Bhatia. Matrix analysis, volume 169 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1997.

[4] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley Series in
Telecommunications. John Wiley & Sons Inc., New York, 1991. A Wiley-Interscience
Publication.

[5] B. Farb and R. K. Dennis. Noncommutative algebra, volume 144 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1993.

[6] R. D. Gill and S. Massar. State estimation for large ensembles. Phys. Rev. A,
61(4):042312, Mar 2000.

[7] M. Hayashi and K. Matsumoto. Statistical model with measurement degree of freedom
and quantum physics. In Asysmptotic Theory of Quantum Statistical Inference M.
Hayashi eds., Ch. 13, World Scientific 2005.

[8] F. Hiai and D. Petz. The semicircle law, free random variables and entropy, vol-
ume 77 of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2000.

[9] A. S. Holevo. Probabilistic and statistical aspects of quantum theory, volume 1 of
North-Holland Series in Statistics and Probability. North-Holland Publishing Co.,
Amsterdam, 1982. Translated from the Russian by the author.
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