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Abstract

We present recursion theory in terms of hereditarily �nite sets. We use this as a basis for

a purely model theoretic de�nition of decidability, using the notion of an end extension.

Finally we show an argument for why it is not necessary to postulate the Church-Turing

Thesis as a standalone hypothesis, by outlining a much more fundamental and paradigmatic

hyptothesis of modern mathematics and tracing back the Church-Turing Thesis to this

latter hypothesis.
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Chapter 1

Introduction

I know I'm arti�cial

But don't put the blame on me

. . .

My existence is elusive

The kind that is supported

By mechanical resources

X-Ray Spex: Art-I-Ficial

1.1 The elusiveness of computation

Mathematics begat computation. Therefore it was an immediate and natural demand to do

mathematics about computation. For this purpose, mankind needed a precise mathematical

notion of computation. However, the notion of computation � or similar notions, like that

of an algorithm or e�ective decidability � has a peculiar elusive nature: it is easy to grasp

intuitively, but there is no obvious way to translate this intuition to mathematical terms.

This led to several independent attempts to de�ne formal frameworks of computation, like

Turing machines, recursive functions, the Lambda Calculus, register machines, Markov's

normal algorithms, just to mention some. As the mathematics of computing has matured,

the following two facts have been observed:

1
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• any two of the general purpose formal frameworks for computation has been proven

to be equivalent;

• any particular algorithm or e�ective procedure invented by people was possible to

formalize within these frameworks.

Finally a consensus arose that these formal frameworks serve their purpose well, and they

are adequate formal counterparts of the intuitive notion of computation. This metamath-

ematical statement has become known as the Church-Turing Thesis.1

At this point we can observe a methodological handicap. The above summarized way

to the establishment of Church-Turing Thesis can be described in methodological terms as

a case of partial induction. Partial induction is the basic tool for natural sciences � while

there is no a priori evidence for the result of letting a piece of stone fall free, we are pretty

sure that if we perform this action once again, the stone will hit the ground once again.

We believe that the stone will hit the ground once again. This belief of the deterministic

nature of free fall is strong enough that it seems to be worth to weave a scienti�c framework

around it, which can be used for analyzing such events and predict their outcome. This

is how partial induction works, and the case of gravity is quite analogous to the case of

computing, as far as the applied methodology is concerned.

On the other hand, there is a great di�erence between the epistemological status of

natural sciences and metamathematics (or philosophy in general). Nature is external to us.

Our knowledge of nature is arti�cial: what we have at hand is a perception of nature, still

we want to discuss nature as such and not its perception. What is then nature �as such�?

Any answer to this is a construction of the one who answers. We have to construct notions

which can be the subject matter of our thoughts when we intend to think about nature.

To be able to qualify things in nature, we perform a somewhat arbitrary projection from

the realm of perceptions to the realm of notions. This gives a degree of indirection when

1Sometimes also referred to as Church Thesis.
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speaking of truth with regards to nature. Philosophy, metamathematics and mathematics

operate directly with notions � truth with regards to them is much more direct. (By this we

do not imply it would be easy or clear or unambiguous or knowable or free of paradoxical

traps.)

This indirection, manifested in partial induction seems to be an inappropriate burden

on the Church-Turing Thesis. There is a desire to �nd an adequately direct veri�cation

for it. However, the ways one can provide arguments for the Church-Turing Thesis is

deeply in�uenced by the actual approach taken when de�ning the formal counterpart of

computability.

The aim of this Thesis2 is to put down a formalization of computability which is much

better suited for such metamathematical investigations than traditional formalizations.

We will precisely verify our formalization on the mathematical side � that is, we will

prove its equivalence with the existing formal de�nitions of computability. We will also

make an attempt to articulate why our de�nition is better suited for metamathematical

purposes; we will even expose our own take on this problem and provide arguments for

the Church-Turing Thesis which go beyond partial induction. (These latter arguments

are of a metamathematical nature, therefore � unlike strictly mathematical proofs � are

appropriate subjects of �fear, uncertainty and doubt�.)

Below we will give a sketch of our approach to the problem, but let's see �rst how it

was done so far.

1.2 Coping with elusiveness: the traditional approach

Traditionally computability is formalized by de�ning an ad hoc pseudo-syntactic generative

scheme (or something quite similar to that). What do we mean by this?

Syntactic generative schemes are the usual tool for de�ning formal languages. A simple

2Thesis, as �Ph.D. Thesis�, and not a �metamathematical postulate�, as in Church-Turing Thesis.

3
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example of it is the language of propositional calculus: we �x a set of propositional variables

X, Y, Z, . . ., and we declare:

• propositional variables and the symbols T and F are propositional formulas;

• if Φ, Ψ are propositional formulas, then ¬(Φ), (Φ)∧ (Ψ), (Φ)∨ (Ψ) are also proposi-

tional formulas;

• the set of propositional formulas is the smallest set which has the above two proper-

ties.

Formal de�nitions of computation sound similar. Let's see, e.g., the de�nition of recursive

functions. Recursive functions are functions of Nn → N for some n ∈ N (we call such

functions arithmetic functions here), so that:

• projections, the characteristic function of the �less than� relation, addition and mul-

tiplication are recursive functions;

• multi-variable composition of recursive functions is a recursive function;

• the so-called µ operation performed on a recursive function yields a recursive function;

• the set of recursive functions is the smallest set which has the above properties.

Despite all resemblance, there is an essential di�erence between the above two de�nitions.

Proper syntactic generative schemes, like the one of propositional formulas, consist of

generative steps based on purely syntactic criteria (and therefore it's not hard to �nd

out an e�ective decision procedure which tells us if a given word belongs to the set of

words de�ned by the scheme). Now if we look at recursive functions. . . there must be

a catch somewhere, because it is a well known result of recursion theory that the set of

recursive functions is undecidable. The catch is the µ operation � it is a partial operation

on arithmetic functions, and the undecidable problem here is whether the µ operation is

4
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applicable to a given arithmetic function. This is why we have the �pseudo� attribute over

there � these pseudo-syntactic generative schemes specify some syntactic generative rules,

but there is always a restriction on them via which a non-trivial model theoretic condition

is hardcoded into the de�nition (and due to the above mentioned undecidability result,

such a model theoretic condition must be involved).

These schemes are also ad hoc � none of them can be positioned as natural or canonical

when compared to the others. (There might be aesthetic preferences, historical conventions

or practical arguments which make us use some of them more frequently than the others,

but from a metamathematical point of view, none is better than the others.) (Finally we

added, �or something quite similar to these�. We had to add this � for example, Turing

machines aren't strictly de�ned by a generative scheme, but the basic traits are the same:

there is an easy-to-grasp collection of �nitary objects, of which some are pointed out as

the ones which actually describe a computation with a sensible result, and the criterion

for this selection wires model theory into the de�nition (in case of Turing machines, the

so-called halting problem serves as such a criterion). And Turing machines are no less an

ad hoc choice than the others.3 )

This ad hocness � in conjunction with the above discussed partial inductive method-

3Let's also pin it down quickly, some sources make mention of machines that are of a completely di�erent

kind. They use a terminology which broadly overlaps with ours, but they are disjoint from us content-wise.

We � i.e., them and us � are speaking about di�erent things, but using similar words. This can lead to

some confusion if the reader is not careful enough. Just like friends of a girl, wanting to help her, after

she has made a bet, somewhat tipsy, that she shall get married in a day � the friends have a common case

but they might have di�erent routes. One might want to try to denounce the bet, other might want to

mobilize his very special connections, the third one might apply himself for the role of the groom.

Somewhat simplifying the situation: while we we want to argue for the Church-Turing Thesis, these

people aim to refute it. Are we then engaged in intense �ghting? Not at all. The catch is that we rely

on di�erent models of computation. My computer is. . . I don't have a computer at all, I speak about the

purely mental concept of an algorithm. Their computer is a spaceship. They want to use it to get beyond

the Church-Turing barrier, cf. [Syr08]. I hope they can get far.

5
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ological �backend� � hurts people. There are attempts to remedy this. For example, it is

enough just to read the title of [DG08] � A natural axiomatization of computability and

proof of Church's Thesis � to see such an intent. But let's see how the authors tackle

this problem. They collect some properties of a generic computational device, which are

natural and intuitive by their opinion, they de�ne yet another kind of formal machine on

this basis, called the �abstract state machine�, and they prove that it's equivalent with the

well established models of computation:

�The Abstract State Machine Theorem states that every classical algorithm is behav-

iorally equivalent to an abstract state machine. This theorem presupposes three nat-

ural postulates about algorithmic computation. Here, we show that augmenting those

postulates with an additional requirement regarding basic operations gives a natural

axiomatization of computability and a proof of Church's Thesis [. . . ]�

A similar approach is taken by [Sie02] (although by means of a di�erent computational

model):

�These investigations aim to provide a characterization of computations by machines

that is as general and convincing as that of computations by human computors given

by Turing.�

Not in lack of some malice, we can say that these two papers defeat each others' purpose by

the mere fact that they coexist. If their proposed computational models really matched as

tightly to the human intuition of computation as the respective authors claim, how could

they end up with di�erent results?

1.3 Coping with elusiveness: our take on it

As seen above, we can't get rid of model theory when we try to formalize computation.

Applying the old wisdom � if you can't kill the dragon, ride the dragon � this gives a hint

6
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for a new approach: let's detach ourselves from generative schemes and abstract machine

models, and rely only on what needs to be relied on anyway � model theory. Let's provide

a formal notion of computability purely in terms of model theory. If we are doing it well,

we succeed to get rid of something else: ad hocness.

In fact, it is easy to test how successful we are in this respect: if our formalization is not

ad hoc, then it should correspond clearly to some intuition we have about computing. So, to

prove that we are not selling a pig in a poke, let's start at the heart of the matter and unfold

what the intuition is we refer to. For the sake of simplicity we will deal with computations

which yield a truth value, that is, instead of speaking about e�ective procedures, which

can have any kind of (�nitary) object both as input and output, we will discuss decision

procedures and decidable properties.4

Better said, instead of computations or procedures, we will use another naive notion.

This notion will correspond to decision procedures by-and-large, but it will sport a non-

procedural character. We can say that it is a �de-proceduralization� of the idea of comput-

ing.

We will speak of �nitary witnesses. If we ask, �is formula ψ provable?�, then a proof of

ψ is a �nitary witness which veri�es the answer �yes�. If we ask, �can the plane be tiled

with a given tile kit?�, then an enumeration of all 2n × 2n tiling attempts (i.e., arbitrary

mappings of the unit squares within [−n, n]× [−n, n] to tile patterns of the kit), equipped

with a badly connected tile pair is a �nitary witness which veri�es the answer �no�. If we

ask, �is the graph G planar?�, then an injective mapping of vertices of G to nodes of a �nite

grid such that the line segments corresponding to edges of G don't intersect, is a �nitary

witness which veri�es that the answer is �yes�; and, referring to Kuratowski's Theorem, a

topological subgraph of G which is isomorphic with the complete graph on �ve vertices

or the complete bipartite graph on six vertices, is a �nitary witness which veri�es that

4This restriction doesn't hurt generality � an e�ective procedure P can be traced back to the following

decision problem: �Is the object in question a pair 〈i, o〉 such that P produces o if it's given i as its input?�

7
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the answer is �no�. In general, by an instance of property P we mean P , together with a

object x for which it makes sense to ask �does x have P?�; and by a �nitary witness (for an

instance of some property of �nitary objects) we mean a �nitary entity which lets us see

whether the object in question has the property, �just by looking at their shape as drawn

on paper by pencil�.

Instead speaking of a �decision procedure for property P �, we can speak of �having a

�nitary witness for each instance of P �. If we have a decision procedure for P , then surely

we also have �nitary witnesses for each instance of P : the procedure, together its run on

x, is a �nitary witness for P and x. If we happen to know that there is a �nitary witness

for each instance of P , then by enumerating �nitary witness candidates we get a decision

procedure for P . (Can such an enumeration be done? It's an interesting question to which

one feels like answering �yes�, but this naive context is too swampy to commit ourselves to

saying yes. This question can be settled by referring to 4.1.2.)

Returning to the realm of precise mathematics, the hand-wavy notion of a �nitary

witness can give us a hint for how to capture formal decidability in terms of model theory.

First of all, we decide that we work in Vω, the structure of hereditarily �nite sets, which

is considered an universal universe of discourse for �nitary objects. Properties become �rst-

order formulas of the language 〈e 〉 (we will use the e symbol for the membership relation

of the object language, as in �Vω |= ¬(xex)�, and ∈ for membership of the metalanguage,

as in �{1, 2} ∈ Vω�). So far so good.

Now think of the above example problems and �nitary witnesses. These can be for-

malized in Vω � including objects (formulas, tile patterns and partial tilings, graphs and

grids), the properties (provability, tiling problem, planarity) and witnesses (proofs, listings

of tiling attempts, graph embeddings to grids and topological subgraphs). Let P be one of

these problems (or any similar problem the reader can think of). Say by formalizing P in

Vω we get the formula ϕ(x). Pick a �nitary object of which we want to ask P , and which

8
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happens to have a �nitary witness. Say these get represented as h,w ∈ Vω, respectively.

The question is: how could we express �witness-ness� in model theoretic terms? If w is

a self-contained, full-�edged witness, then it is expected to verify/refute ϕ for h as is, no

matter if the rest of the world goes mad. But then, what is w, �as is�? Identity of sets is

given by all the things �below� them � their elements, elements of their elements, and so

on, until we get to the empty set at the bottom. So we need at least all the contents of

the transitive closure of w, and of course, of h. Let W ⊆ Vω be a transitive set containing

h and w. As w tells everything about h with respect to ϕ, we expect W |= ϕ[x/h] i�

Vω |= ϕ[x/h]. We expect even more: we expect to get the same truth value even if the rest

of the world goes mad. That is, it should be the same if we extend W with new elements,

as far as the new elements don't interfere with the identity of h and w, i.e., don't inject

elements under them. More formally, we consider those extensions E ≥ W , which have

the following property: if g ∈ W , e ∈ E and we have ee g, then e ∈ W also holds. Such

extensions are commonly called end extensions. So what we really want from W is the

following:

for any end extension E ≥ W , W |= ϕ[x/h] ⇐⇒ E |= ϕ[x/h].

Along these considerations, we can introduce our candidate for the formal counterpart

of a decision procedure:

De�nition We say that ϕ(x) is �nitely determined if for all h ∈ Vω there is a �nite

transitive subset W of Vω such that h ∈ W , and for any end extension E of W , we have

W |= ϕ[x/h] i� E |= ϕ[x/h]. �

Just to make ourselves unambiguous, we recall the following de�nition:

De�nition If X ⊆ Vω, and ϕ(x) is a formula of one free variable, we say that ϕ de�nes

X if for any h ∈ Vω, we have h ∈ X i� V |= ϕ[x/h]. �

Finally we claim that our notion is suitable for giving a model theoretic de�nition of formal

decidability:

9
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Theorem A set X ⊆ Vω is decidable i� it can be de�ned by a �nitely determined formula.

(See 3.11 for the formal exposition of this theorem.)

1.4 Closing the gap

Let's recap: we have so far introduced the naive notion of a �nitary witness, which sort of

corresponds to the (naive) notion of a decision procedure, and a model theoretic de�nition

of (formal) decidability. But what about the Church-Turing Thesis?

Our take on it is the following: we simply don't need the Church-Turing Thesis. At

least, we don't need to postulate it as a standalone metamathematical principle. It just

follows from something else � a much stronger and much more crucial metamathematical

principle. A principle on which modern mathematics is based. It's a somewhat hidden

paradigm � by an ironic accident of history, while the Church-Turing Thesis got a name

after two of the �founding fathers� of modern mathematics, logics and computer science,

and enjoys a big publicity, this other principle, despite being much more fundamental, is

not only lacking a name, there wasn't even an attempt to �nd a profound and sustainable

wording for it.

This principle is the following: set theory captures mathematics. Any naive mathe-

matical construction can be interpreted within the frame of set theory. Set theory is the

universal universe of mathematical objects. It is what lets contemporary mathematicians

not be entangled with issues about the ontology of functions like our notable predecessors

did:

�Throughout its early history, the study of trigonometric functions was linked with

the very question: what is a function? In the 18th-century, d'Alembert suggested that

a curve can only be called a function of a variable when it is governed by a single

analytical expression throughout. Euler replied that one should accept more general

functions, which may be represented by di�erent laws in di�erent intervals or even

10
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drawn freely by hand. `Continuous' meant that a function obeyed a single analytical

law, but everything points to the conclusion that both Euler and his interlocutors

presupposed continuity, in the sense of Cauchy, for all of the functions they had in

mind. The real issue was, then, whether one should admit arbitrary (continuous)

functions. Fourier, with his more sophisticated series in hand, was unequivocally for

arbitrary functions, i.e., for admitting the idea that a function is any correspondence

by which ordinates are assigned to abscissas; there was no need to assume that the

correspondence ought to follow a common law. But he, again, seems to have assumed

that one is talking about functions that are, in general, continuous in the modern

sense.

Dirichlet too was radically in favor of the conception of functions as arbitrary laws

[. . . ] here, Dirichlet is de�ning the notion of a continuous function, and it has been

discussed whether he ever seriously entertained the concept of a completely arbitrary

function. One may safely assume that he did not see the need to develop a research

program on discontinuous functions; this step would only be done after the publication

of Riemann's work. � [Fer07]

Set theory made possible to emerge those disciplines of modern mathematics which deal

with abstract structures, like topology or group theory, where the basic objects are struc-

tures over arbitrary collections, by letting us not be distracted by questions like �but what

exactly are the elements of a group?�. This is what lets us not get lost when we want

to prove such basic theorems of analysis like the equivalence of sequential continuity and

continuity (in terms of epsilons and deltas). This is what lets us not be confused upon

meeting weird phenomena like the Banach-Tarski paradox.

However, probably we were a bit cursory when we blamed it on an �ironic accident of

history� that the reliance on the possibility of a set theoretic translation of mathematical

ideas has remained apocryphal. While one can see informal references to this principle as

common sense knowledge at several places � e.g. [Fit07] mentions:

11



C
E

U
eT

D
C

ol
le

ct
io

n

�[. . . ] it is well-known that all mathematics can be developed within the framework of

set theory. In particular, �nitary mathematical objects �t within the hereditarily �nite

portion of set theory.�

� if indeed we want to make this principle explicit in way which we are willing to defend and

take responsibility for, we shall see ourselves facing major di�culties. If we say it as loosely

as above � �set theory captures mathematics� �, or as [Fit07] said, we cannot avoid the

classical paradoxes of naive set theory, like Russel's paradox. At least we have to distinguish

between di�erent kinds of mathematical entities: real numbers are not represented in set

theory in the same way as set theory itself. We don't get further even if we prohibit explicit

self-reference: the previous sentence remains true also if we replace set theory with group

theory. And if we let ourselves pulled into this game, and make careful distinctions to not

to fall into paradoxical traps, we lose the generality and the power of our statement: we

are likely to get stuck with a special case of the original idea, and an elaborate construction

of conditions and cases will not be as self-evident as a paradigm is expected to be. It will

be ad-hoc (which adjective already enjoys a status which is not far from that of a swear

word, as far as the current text is concerned).

A further problem is that there are mathematical entities for which simply there is no

way to �t into set theory, like the category of categories, or even more massively layered

constructions of category theory. Well, they don't �t, if by set theory we mean ZFC. We

can detach ourselves from ZFC � but which set theory to refer to then? NBG? Or one of

the extensions of set-theory introduced by categorists themselves to �nd a �home�, like in

[ML69]? And how could we ensure that mathematics won't grow over the chosen �avor of

set theory? And how could we argue that our choice is not ad-hoc?

At least, there is an item of the list of possible di�culties which we can cross out: the

fact that we don't know if ZFC (or other set theories) is consistent (and we will never

know it, either because it is not, or because of Gödel's second incompleteness theorem)

is de�nitely not a problem. It's not a problem, because we don't intend to set a new

12
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paradigm, what we want is to explore the current paradigm. If ZFC turned out to be

inconsistent, we could either get on with a minor adjustment or we would face a paradigm

shift, but that is a completely di�erent story. According to the current paradigm, we rely

on ZFC, and we don't intend to say it is an inappropriate base.

While we do have an idea about how to attack these di�culties, for now it will su�ce

that we sketched them. Let's just assume that we succeeded to state the idea of mathe-

matics being captured by set theory in a suitable way; moreover, our statement is �graded�,

i.e. we are not only saying that mathematics in general can be represented in set theory,

our statement also embraces the other part of [Fit07]'s thought: the mathematics of �ni-

tary entites can be represented in Vω. This is enough to establish an argument for the

Church-Turing Thesis, as follows.

Say we have a decision procedure for some problem (in the naive sense). It can also be

presented as having a �nitary witness for each instance of the problem. Due to (graded)

set-theoretic capture, the way the �nite witnesses verify/refute instances of the problem

gets represented in Vω as a �rst-order formula; because the witnesses are �nitary, this

representation shall be �nitely determined.5 And we already know that a de�nition by a

�nitely determined formula means formal decidability.

5We don't mean that a reference to the loose sketch by which we arrived to �nitely determined formlulas

from �nitary witnessess su�ces for accepting this. We will need the exposition of the set theoretic capture,

too.
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Chapter 2

Elements of recursion theory among

hereditarily �nite sets

We will expose elements of recursion theory in context of hereditarily �nite sets. Classically

this is done using arithmetic. The choice of hereditarily �nite sets is motivated by the

following considerations:

• The expressiveness of set theory. It's a natural process to represent mathematical

objects in set theory � this was the primary reason set theory was created for, after

all. (This is not a novel idea � [Fit07], [�wi03] has also chosen to use hereditarily

�nite sets for discussing recursion theory and limitation theorems, and this one was

their main motif for doing so.)

• We will rely on �nite subuniverses of our universe, so using a relational structure

(where every subset is a substructure) is more convenient than using an algebraic

structure.

• To be able to discuss the topics mentioned in 1.4, we rely on the very natural way the

universe of hereditarily �nite sets (the domain of �nitary objects) extends to general

set theory (a domain of mathematical objects in general).
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We will use the �rst-order language 〈e 〉, where e is a binary relation symbol. We will

pronounce e as �membership�, and when we discuss set theory, we will assume the e

denotes the set-theoretic membership relation.

De�nition 2.1 Vω is the �rst-order structure of language 〈e 〉 the universe of which is

the set of all hereditarily �nite sets. �

De�nition 2.2 IfG1 = 〈V1, E1〉, G2 = 〈V2, E2〉 are digraphs, we sayG2 is an end extension

of G1, or G2 end extends G1, or G1 is an initial segment of G2, if G1 is an induced subgraph

of G2 (ie. V1 ⊆ V2, E1 = E2 ∩ (V1 × V1)), moreover if v1 ∈ V1, v2 ∈ V2, 〈v2, v1〉 ∈ E2, then

v2 ∈ V1. A graph embedding is an initial embedding, if its image is an initial segment of

the target graph.

A digraph G = 〈V,E〉 is said to be extensional if each vertex of it is determined by the

set of its ingoing neighbours, that is, if u, v ∈ G, and

∀w ∈ G(〈w, u〉 ∈ E ⇐⇒ 〈w, v〉 ∈ E),

then u = v. �

Theorem 2.3 In the category of digraphs, take the diagram which consists of �nite ex-

tensional DAGs1 and initial embeddings between them. Vω is a colimit of this diagram.

2.3 is a constructive de�nition for Vω in disguise (that is, there are well-known prac-

tices for turning such categorical (co)limits to constructions), and we stated it in order to

demonstrate that the existence and identity of Vω doesn't depend on general set theory.

So we can put it like this: we have given two de�nitions for Vω, one in top-down and one

in bottom-up manner.

There is a well-known correspondence between Vω and N, due to [Ack37]. Let us recall

the cumulative hierarchy : V0 = ∅, and for each n ∈ N, Vn+1 = PVn. These are transitive

1DAG stands for �directed acyclic graph�.
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sets (their elements are also their subsets) and V0 ⊂ V1 ⊂ V2 . . ., while Vω =
⋃

n<ω Vn. A

set is said to be of rank n if it is in Vn+1 \ Vn. This gives rise to the following ordering:

De�nition 2.4 For each n, we de�ne an ordering <n on Vn inductively: let <n+1 be the

lexicographic ordering of Vn+1 with respect to <n. (In other words, if h 6= g ∈ Vn+1, then

we set h <n+1 g if the maximum of their symmetric di�erence (according to <n) is in g.)

It's easy to see that <n and <n+1 agree on Vn, therefore we can unify the <n relations,

thus getting an ordering < of Vω. We will refer to this ordering as Ackermann's ordering.�

Both the natural ordering on N and Ackermann's ordering on Vω are discrete total

orderings with a smallest element on a countably ini�te set, and thus there is a unique

isomorphism between them. This is Ackermann's correspondence ack : N → Vω. Say

h ∈ Vω; consider the characteristic function χh : N → {0, 1}, for which χh(i) = 1 if

ack(i)eh and 0 otherwise. χh can be thought of as the binary representation of some

number n, that is, n =
∑
{2i : ack(i)eh}. Set b(h) = n. This way we de�ned b : Vω → N.

We claim b is the inverse of ack. To see this, �rst of all, let's investigate the successor

function (as of Ackermann's ordering) on Vω. The successor of h ∈ Vω can be obtained

as follows: h ∪ {m} \ {x : x < m}, where m is the minimal set in Vω which is not in

h. Therefore, if g is the successor of h, the sequence χg can be obtained from χh by the

following rule: �nd the lowest index i for which χh(i) = 0, change the value at i to 1, and

for j < i change the value to 0. This is exactly the same rule we increase a number by one

in binary representation. So b(succ(h)) = succ(b(h)) (where succ refers to the respective

successor operations), moreover b(∅) = 0, which means b is the unique order-isomorphism

from Vω to N. This also gives a characterization of ack: ack(i)e ack(n) i� the i-th bit in

the binary representation of n is 1.

Ackermann's correspondence can be used for giving simple de�nitions for the usual

notions of recursion theory in Vω, most importantly for Σ1 a.k.a. recursively enumerable sets

and for ∆1 a.k.a. recursive sets. We could just say that X ⊆ Vω is recursively enumerable /
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recursive, if its inverse image by Ackermann's correspondence is a recursively enumerable

/ recursive subset of N. However, we are more ambitious than doing this: we intend to

de�ne these notions in the context of Vω, in a self-contained manner, making no reference

to their de�nition in N.

First of all, let's see the de�nition of Σ1 formulas.

De�nition 2.5 Let L be a �rst-order language which contains the binary relation symbols

�1, . . . ,�n.

If ϕ is a formula of L, we can use the following abbreviations:

(∀x �i y)ϕ for ∀x (x�i y → ϕ) (1 ≤ i ≤ n)

and

(∃x �i y)ϕ for ∃x (x�i y ∧ ϕ) (1 ≤ i ≤ n).

We will call these constructs bounded universal quanti�cation and bounded existential quan-

ti�cation, respectively (we can speak of bounded quanti�cation if we don't want to specify

which quanti�er is involved). A formula which is built up using the Boolean connectives

∧,∨,¬,→ and bounded quanti�cation is called a bounded formula.

• A formula ϕ is a Σ1 formula if it is of the form ∃x1∃x2 . . . ∃xkψ, where ψ is a bounded

formula.

• A formula ϕ is a Σ formula if it can be obtained from quanti�er free formulas by

means of ∧,∨, existential quanti�cation and bounded universal quanti�cation.

If the relations �1, . . . ,�n cannot be derived unambiguously from context, we might

use these notions with an extra annotation like �. . . wrt. �1, . . . ,�n�. When we speak of Σ

(Σ1) formulas of a language consisting of binary relations, we will mean it as Σ (Σ1) wrt.

all the relations of the language (unless stated otherwise). �
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Remark 2.6 Literally the set of Σ1 formulas and the set of Σ formulas don't include each

other. For example, if ψ is quanti�er free, then ¬(∀x �1 y)ψ is a Σ1 formula but not a

Σ formula. However, it is easy to see that Σ1 formulas are also Σ formulas up to logical

equivalence (e.g., the above example is equivalent with (∃x�1 y)¬ψ, which is a Σ formula).

The reverse is not true in general, as we will show later on (see 3.5). �

The problem is that it is not obvious if the expressive power of Σ1 formulas in Vω (wrt.

e ) and in N (wrt. <) is the same. To see that these are actually the same, we should

express < in Vω by means of a Σ1 formula (although simply Σ1 is not enough, we will

give the exact condition in 2.11), so that we can replace <-bounded quanti�ers by some

complex formula, where bounds are given in terms of e . Also there are several very natural

constucts in set theory to express ideas, which are bounded (at least concerning universal

quanti�ers), so they appear as something like a Σ or Σ1 formula, but the bounds are not

expressed in terms of e , but, say, ⊂. The theorem below is to get over these concerns.

Given theories Γ, Θ1, Θ2, we say that Θ1 is equivalent with Θ2 wrt. Γ, if for each ϑ1 ∈ Θ1

there is ϑ2 ∈ Θ2 such that Γ |= ϑ1 ↔ ϑ2 and for each ϑ2 ∈ Θ2 there is ϑ1 ∈ Θ1 such that

Γ |= ϑ1 ↔ ϑ2. If A is a �rst order structure, then we say that Θ1 is equivalent with Θ2

in A if they are equivalent wrt. ThmA. If A is a �rst-order structure, and R is a relation

symbol, then 〈A, R〉 will stand for the �rst-order structure we get from A by extending its

language with R (the interpretation of R will follow from the context in our use cases).

(The theory of) 〈A, R〉 is a conservative extension of (the theory of) A, i.e., the extension

doesn't interfere with the validity of original formulas.

Furthermore, let Tr be the following relation on Vω:

{〈x, y〉 : x is in the transitive closure of y}.

That is, Tr(a, b) holds i� there are sets a1, . . . , an ∈ Vω such that a = a1e a2e . . . e an = b.

Theorem 2.7 Take the following set of binary relations on Vω: B = {e , <,⊂,Tr}.

The following classes of formulas are equivalent in 〈Vω, <,⊂,Tr〉:
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• Σ1 formulas of the language 〈e 〉;

• Σ formulas of the language S, where S ⊆ B and e ∈ S.

This theorem can be decomposed to the following lemmas:

Lemma 2.8 Σ1 and Σ formulas are equivalent in Vω.

Lemma 2.9 Let �1, . . . ,�n be binary relations on Vω such that Σ formulas of the language

〈e ,�1, . . . ,�n〉 are equivalent with the Σ formulas of the language 〈e 〉 in Vω; and let �

be one of <,⊂,Tr.

Then Σ formulas of 〈e ,�1, . . . ,�n,�〉 are also equivalent with Σ formulas of 〈e 〉 in

Vω.

Practically we will consider only the 〈e 〉 vs. 〈e ,�〉 cases � making mention of �1, . . . ,�n

all the time would seriously degrade readability.

Proof (2.8). We have to show that if ϕ is Σ, then it can be transformed to a Σ1 formula

ϕ′ such that Vω |= ϕ↔ ϕ′ (as we noted, this is always possible in the other direction). The

transformation can be done inductively, according to the structure of formulas. The only

non-trivial case is when ϕ is of the form (∀x e y)ψ. Due to the induction, we can assume

ψ is some Σ1 formula. If ψ is bounded, then ϕ is bounded, too, therefore it is Σ1 as is.

Otherwise ψ is of the form ∃z ϑ, i.e. ϕ is (∀x e y)∃z ϑ. Let ϕ′ be ∃u (∀x e y)(∃z eu)ϑ.

We claim this ϕ′ is suitable for us. ϕ′ is surely Σ1, and ϕ′ → ϕ is a tautology, so what we

actually have to show is Vω |= ϕ→ ϕ′.

Consider an evaluation of ϕ in Vω which evaluates to �true�. There are �nitely many

members x1, . . . , xk of the value of y. For each xi there must be a zi with which ϑ holds.

Set u = {z1, . . . , zk}. This u veri�es ϕ′ for this evaluation. Because this can be done for

any positive evaluation of ϕ, we have Vω |= ϕ→ ϕ′. �
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De�nition 2.10 We say ϕ(x1, . . . , xn) de�nes X ⊆ An (in A) if for any ~u ∈ A: ~u ∈ X i�

A |= ϕ[~x/~u].

Given a class of formulas Θ (of the language 〈e 〉 or some extension of it), and X ⊆ V n
ω ,

we can simply say �X is Θ� instead of �there is a ϑ ∈ Θ such that ϑ de�nes X in Vω�.

We de�ne Π1 = {¬ϕ : ϕ ∈ Σ1}, and Π = {¬ϕ : ϕ ∈ Σ}. (They are equivalent in Vω,

because Σ1 and Σ are equivalent; hence when only equivalence is concerned, Π1 and Π can

be used interchangeably.) We say X ⊆ V n
ω is ∆1, if it is both Σ1 and Π1 (in other words,

both of X and V n
ω \X are Σ1). �

Lemma 2.11 Let � ⊆ Vω × Vω. If � is ∆1 and {〈y, {x : x � y}〉 : y ∈ Vω} is Σ wrt. e ,

then Σ formulas of the language 〈e ,�〉 are equivalent with Σ formulas of the language

〈e 〉 in Vω.

Proof. Let ϕ be a Σ formula of 〈e ,�〉. We will transform ϕ to a Σ formula of 〈e 〉

inductively according to the structure of formulas.

If ϕ is quanti�er free, we may assume negation is applied only to atomic formulas in it

(that is, if ¬ξ is a subformula of ϕ, then ξ is atomic). Let � be de�ned by σ and V 2
ω \ �

be de�ned by τ , where σ, τ are Σ1 formulas of 〈e 〉. Replace all subformulas of ϕ of the

form ¬x� y with τ(x, y), and then replace all remaining occurrences of x� y with σ(x, y).

This way we got a formula ϕ′ which is equivalent with ϕ in Vω, and is a Σ formula of 〈e 〉.

If ϕ is of the form (∀x � y)ψ, where ψ is Σ wrt. e , then let {〈y, {x : x� y}〉 : y ∈ Vω}

be de�ned by ϑ, where ϑ is Σ wrt. e . Then ∃u (ϑ(y, u) ∧ (∀x eu)ψ) is Σ wrt. e , and is

equivalent with ϕ in Vω.

If ϕ is of the form ∃x ψ, ψ1 ∨ ψ2 or ψ1 ∧ ψ2, where ψ, ψ1 and ψ2 are Σ wrt. e , then ϕ

is also Σ wrt. e , as is. �

So to see the rest of 2.9, we have to show that the relations ⊂, Tr, < ful�ll the condition

of 2.11.
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Remark 2.12 Here we digress on the legitimacy of some practical shorthands we would

like to use when writing formulas. On the one hand, sometimes we include de�ned rela-

tions in formulas, like �x is transitive�, �x ⊆ y�. These are simple to resolve: they have

a straightforward formal meaning (e.g., in the above cases (∀y ex)(∀z ∈ y)zex and

(∀z ex)ze y, respectively), so one just have to substitute these formal de�nitions to the

formula shorthand in question, with taking care to choose the auxiliary variables so that

they don't interfere with other variables in the formula (e.g., by choosing variables which

doesn't yet occur in the formula). When we use such shorthands, we will take care to

use them in a way that the formal resolution of the relations doesn't interfere with the

�status� of the formula (if it looks / is claimed to be Σ, it will be really Σ after resolving

the shorthands). Usually this fact will be straightforward to see and we don't discuss it.

(Yet in some cases we might see it necessary to discuss.)

Another abbreviation is function application: if we de�ne a function F by a formula,

we would like to use the shorthand F (x). This needs a bit more discussion. Let us assume

that the function F (~x) is de�ned by the Σ formula ψ(~x, y). Let R(u, v) be an atomic

formula or a negated atomic formula (in our case we happen to have only binary atomic

formulas, so the notation R(u, v) is �ne for us), and take the shorthand R(F (~x), v). This

can be written formally as ∃y (ψ(~x, y) ∧ R(y, v)), which is also a Σ formula (do this twice

for R(F (~x), F (~x′))). So if we have a Σ formula of the language 〈e , F 〉 wrt. e (where we

allow only variables to be the bounds in bounded quanti�ers, i.e. we do not allow bounded

quanti�ers of the form ∃y eF (~x) 2), then it can be transformed to a Σ formula of the

language 〈e 〉 like in the proof of 2.11: �rst transform it so that negation is applied only

to atomic subformulas, and then use the above formalizations to get rid of F .

There is also a variant when some variable f of the language is guaranteed to be a

2In fact, we can as well allow such function bounded quanti�ers, but it is not worth to get into this

here, as in practice we won't use function shorthands as quanti�er bounders. See 2.21 of a more formal

take on this kind of formula transformation (including function bounded quanti�ers as well).
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function (in the set theoretic sense, i.e., a set of ordered pairs with unique second entries

for each �rst entry), and we use shorthand f(x) (where x is guaranteed to be in the domain

of f). This can be traced back to the above case by replacing f(x) with Apply(f, x), where

Apply is the function which gives f(x) if f is a function and x is in its domain, and ∅

otherwise. Moreover, f(x) can be resolved by a bounded formula: Apply itself can be de�ned

with a bounded formula, and the outer existential quanti�er (as in ∃y (ψ(~x, y) ∧ R(y, v)))

can be bounded by (an ordered pair in) f .

Therefore we can use function shorthands in Σ formulas if the function in question is

Σ itself, and we can use function shorthands of the form f(x) in bounded formulas.3 �

In particular, we can state the following Lemma:

Lemma 2.13 If F ⊆ V n
ω is a function and is Σ, then it is also ∆1.

Proof. Let F be de�ned by the Σ formula ψ(x1, . . . , xn). Then, as F is a function,

Vω |= ∀x1 . . . ∀xn−1 ∃! xnψ(x1, . . . , xn), and therefore ∃x ψ(x1, . . . , x) ∧ x 6= xn is a Σ

formula which de�nes V n
ω \ F . �

We will utilize ordinals. Recall ordinals are transitive sets within which e is a total

ordering. In Vω (or in general, in founded set theories), the �ordering� part follows from

comparability, so we can de�ne ordinals by the bounded formula Ord(n)

(∀x en)(∀y ex)yen ∧ (∀x en)(∀y en)(xe y ∨ yex ∨ y = x).

3There are two usual approaches to such �shorthands�: either we take them really as shorthands, and

after some discussion we leave it to the reader to convince herself that they can be appropriately resolved

without interfering the mathematical context they occur in; or taking a more formal approach, we say

that we always write proper formulas, just in some extended language, where switching to the extended

language can be done without a�ecting the mathematical context due to the conservativeness of the

extension. Although one might think that the latter approach is cleaner and more precise, we stick with

the former one, because in our case it is not true that the latter approach doesn't a�ect the mathematical

context: introducing function symbols changes substructures, and we rely on them.
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A nice feature of ordinals is that they can be used for specifying minimums in a bounded

manner. Take, e.g., transitive closure. The transitive closure t of x is the minimal transitive

superset of x, i.e.

x ⊆ t ∧ t is transitive ∧ ∀t′ ((x ⊆ t′ ∧ t′ is transitive) → t ⊆ t′).

Here we have a boundless universal quanti�cation on t′ and there seems no way to put a

limit on it. However, if we have some property P for ordinals, we can specify the minimal

ordinal which has P simply as Ord(n)∧P (n)∧(∀y en)¬P (n). So if P can be formalized as

a Σ or bounded formula, this one will be a Σ or bounded formula, too. Using Ackermann's

ordering, this construction can be �pulled up� to sets other than ordinals (as we will see it

in 2.17).

Ordω = {n ∈ Vω : Ord(n)}, ordered by e , forms a discrete total ordering with a

smallest element on a countably in�nite set, and thus there is a unique order isomorphism

enum : 〈Ordω, e 〉 → 〈Vω, <〉. This is an ordinal indexed enumeration of Vω. How could we

describe the n-th set? Take the relation

En3 = {〈n, e, x〉 : Ord(n), e = enum � n, e(n− 1) = x}.

Utilizing the rule how the Ackermann successor operation works, En3 can be de�ned by a

bounded formula:

Lemma 2.14 If n is an ordinal, let n− denote its predecessor ordinal, i.e.

m = n− ⇐⇒ men ∧ (∀y en)¬me y

. Take the following properties of e, n and x:

• Ord(n), e is a function, the domain of e is n, e(∅) = ∅;

• for each v, wen, v 6= ∅, where w is e -minimal such that ¬e(w)e e(v−), we have:

(∀q en)(e(q)e e(v) ↔ (w = q ∨ (we q ∧ e(q)e e(v−))));
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• e(n−) = x;

Using the standard set-theoretic de�nitions of a function, its domain, etc., it is straightfor-

ward to formalize the above properties in the language 〈e 〉 by means of bounded formulas.

Let their conjunction be Enum(n, e, x). Enum(n, e, x) is a bounded de�nition of En3.

Now we can prove a practical variant of 2.11.

Lemma 2.15 Let � ⊆ <. If � is ∆1, then Σ formulas of the language 〈e ,�〉 are

equivalent with the Σ formulas of the language 〈e 〉 in Vω.

Proof. By 2.11, it is enough to show that S� = {〈y, {x : x � y}〉 : y ∈ Vω} is Σ wrt. e .

Since � is Σ,

∃n ∃e (∃u en)(Enum(n, e, y) ∧ x = e(u) ∧ x� y)

is a Σ formula as well. Since � ⊆ <, it de�nes S�. �

Proof (2.9 for ⊂). As x ⊂ y has a bounded de�nition, and Vω |= x ⊂ y → x < y, this

is an immediate consequence of 2.15. �

Lemma 2.16 Ackermann's ordering is ∆1.

Proof. It su�ces to show that Ackermann's ordering is Σ � as it is a total ordering, we

have Vω |= ¬x < y ↔ (x = y ∨ y < x), so a de�nition of < by a Σ formula also provides a

Σ de�nition for its complement.

And then ∃n ∃e (Enum(n, e, y) ∧ (∃u en)e(u) = x) is a Σ1 de�nition of <. �

Proof (2.9 for <). The equivalence immediately follows from 2.16 and 2.15. �

Now let's see how ordinals can be used for giving Σ formalizations for �minimal set such

that. . . � style constructions.
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Lemma 2.17 Let ψ(x, y) be a Σ formula, and let ϕ be the formula

ψ(x, y) ∧ ∀y′ (ψ(x, y′) → y ⊂ y′).

Then ϕ is equivalent with a Σ formula in Vω.

Proof. Given that h ⊂ g implies h < g, the Σ formula ϕ′(x, y):

∃n ∃e (Enum(n, e, y) ∧ ψ(x, y) ∧ (∀q en)(ψ(x, e(q)) → q is the predecessor ordinal of n))

is equivalent with ϕ in Vω. �

Nb. the above construction resembles the µ operation of arithmetic recursion theory.

Proof (2.9 for Tr). Take the bounded formula ψ(x, t) which says �t is transitive and

x ⊆ t�. For any x, the minimal t such that ψ(x, t) is the transitive closure of x. Hence by

applying 2.17 with ψ, we get that the relation {〈x, t〉 : t is the transitive closure of x} is

Σ. We can get Tr(x, y) by one existential quanti�cation on transitive closure, so it is Σ.

¬Tr(x, y) can be directly expressed by the Σ formula

∃t (t is transitive ∧ y ⊆ t ∧ ¬xe t).

So {〈x, y〉 : Tr(x, y)} is ∆1. In turn, Tr ful�ls the conditions of 2.11, which then provides

the equivalence we seek. �

Proof (2.9). We kindly ask the reader to look back and check that we have already shown

the equivalence for each Σ variant in question. �

Proof (2.7). This follows from 2.8 and the iterated application of 2.9. �

This, in fact, means that Σ1 formulas in Vω are as expressive as in N.

Lemma 2.18 The arithmetic operations +, · (pulled from N via ack) are ∆1 in Vω.
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Proof. By 2.13, it is enough to show that they are Σ. First take arithmetic within ordinals:

there addition and multiplication have natural de�nitions in terms of cardinal arithmetic,

i.e., addition yields the cardinality of the disjoint union, and multiplication yields the

cardinality of Cartesian product. The straightforward formalization of cardinal arithmetic

produces Σ formulas. Mapping this to Vω with enum and turn it to Σ formulas using Enum

is left to the reader. �

Theorem 2.19 Σ1, Π1, ∆1 in Vω wrt. e correspond to Σ1, Π1, ∆1 in N wrt. < by ack.

Proof. By 2.7 we can use �arithmetics style� bounds in Vω (i.e., where the bound is wrt.

Ackermann's ordering), and by 2.12, 2.18 we can also use the arithmetic operations in Σ

formulas.

For the other direction we should show that pulling e over to N via ack yields a relation

which is ∆1 in N wrt. <. As we noted, a number i will be an �element� of some other

number n i� the i-th bit of n in its binary representation is 1. So basically the problem

boils down to showing that 2 based exponentiation is ∆1. This is a very classical fact, it

is discussed in details in any textbook on the topic.

For a compact self-contained account on these cross-de�nability questions, see sections

4.2, 4.3, 4.4 in [Fit07].4 �

Now we will give a direct, pseudo-syntactic de�nition for ∆1 sets, analogously to the

de�nion of recursive functions in N.

De�nition 2.20 If ψ(~x, ~y) is a formula, by ψ-bounded quanti�cation we mean the con-

structs

∃~y (ψ(~x, ~y) ∧ ϕ)

4In the setup [Fit07] has chosen, the operator of element injection is part of the formal language of set

theory, so his results are not a drop-in replacement for our ones, however, those facts we were now just

referring to are covered in details by him.
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and

∀~y (ψ(~x, ~y) → ϕ);

we will abbreviate these as

(∃~y : ψ(~x, ~y))ϕ

and

(∀~y : ψ(~x, ~y))ϕ,

respectively.

We will say that ψ is function-like (in ~y) if Vω |= ∀~x ∃! ~yψ(~x, ~y).

We de�ne the following set RecHF of formulas of the language 〈e 〉:

• bounded formulas are in RecHF;

• if ϕ, ψ ∈ RecHF, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, are also in RecHF;

• if ψ(~x, ~y) and ϕ are in RecHF, and ψ is function-like in ~y, then (∃~y : ψ(~x, ~y))ϕ and

(∀~y : ψ(~x, ~y))ϕ are also in RecHF;

• RecHF is the smallest set of formulas which has the above two property. �

Note the following interesting property of function-like bounded quanti�ers: if ψ(~x, ~y) is

function-like in ~y, then Vω |= (∃~y : ψ(~x, ~y))ϕ ↔ (∀~y : ψ(~x, ~y))ϕ. That is, we can freely

switch between ∃ and ∀, if they occur under a function-like bound.

Theorem 2.21 The sets de�nable by RecHF formulas are exactly the ∆1 sets.

Proof. To see RecHF→ ∆1, it su�ces to show that RecHF formulas can be transformed to

Σ formulas (as RecHF is closed to negation, this also implies that they can be transformed

to Π formulas).

Perform the transformation of ϕ ∈ RecHF by the following procedure sig:

• if ϕ is bounded, then return ϕ;
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• if ϕ is of the form ψ ∗ ϑ, where ∗ is one of ∧, ∨, then return sig(ψ) ∗ sig(ϑ);

• if ϕ is of the form (Q~y : ψ)ϑ, where Q is one of ∃, ∀, then return (∃~y : sig(ψ))sig(ϑ);

• if ϕ is of the form ¬¬ψ, then return sig(ψ);

• if ϕ is of the form ¬(ψ ∧ ϑ), then return sig(¬ψ) ∨ sig(¬ϑ);

• if ϕ is of the form ¬(ψ ∨ ϑ), then return sig(¬ψ) ∧ sig(¬ϑ);

• if ϕ is of the form ¬(Q~y : ψ)ϑ, whereQ is one of ∃, ∀, then return (∃~y : sig(ψ))sig(¬ϑ).

sig �nally ends, as the number of connectives strictly decreases upon its recursive calls. A

simple formula induction shows that it returns a Σ formula, and that it performs equivalent

transformations (wrt. Vω).

Now let X be a ∆1 set, and we want to de�ne it with a RecHF formula. (We will use

the same idea as is used in N for showing that ∆1 sets are recursive.) Let X be de�ned by

the formula ∃~x σ, and Vω \X be de�ned by ∃~x τ , where σ and τ are bounded (we might

assume that they are prepended by the same set of existential quanti�ers).

If we have two variable vectors ~x, ~y, then by ~x ~<~y we mean that ~x is lesser than ~y

according to the lexicographic order derived from < (i.e., either x1 < y1, or x1 = y1 but

x2 < y2, or . . . ). We can use the notation (∀~x ~<~y)ϕ as a shorthand for (∀~x : ~x ~<~y)ϕ; it is

left to the reader to see that this can also be expressed in terms of proper single-variable

bounded quanti�ers.

So take the following formula ϑ: ∀~x (((σ ∨ τ) ∧ (∀~x ′ ~<~x)¬(σ ∨ τ)) → σ). This says

�the smallest ~x with which either of σ or τ is ful�lled happens to ful�l σ�. As σ and τ

are exclusive, this is equivalent with ∃~x σ, i.e. de�nes X. Let us use ψ to refer to the

premise of the inner part of ϑ, i.e. ϑ is ∀~x (ψ → σ). ϑ can be written as (∀~x : ψ)σ.

As the minimum condition in ψ uniquely determines the whole ~x vector, this is in fact a

multi-variable quanti�cation with a function-like bound, so ϑ is a RecHF de�nition of X.�
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Corollary 2.22 A ∆1 set can be de�ned with a formula of the form (∃~x : ψ)σ, where ψ,

σ are bounded, and ψ is function-like in ~x.

Proof. The RecHF de�nition of a ∆1 set we constructed in the proof of 2.21 is of this

particular form (except that we had there ∀ instead of ∃, but that makes no di�erence due

to function-likeness). �

Note that RecHF formulas can also be directly transformed to the above form, by using

logically equivalent transformations and the property of function-likeness, without making

a reference to Ackermann's ordering.
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Chapter 3

Recursion theory and end extensions

De�nition 3.1 Let L be a language with a binary relation symbol �, and A, B be L-

structures. We say B is an end extension of A, or B end extends A, or A is an initial

segment of B, if A < B and for any a ∈ A, b ∈ B, if B |= b � a, then b ∈ A. We will

denote it with A <e B. If X ⊆ A, we may speak of the initial segment generated by X,

i.e.
⋂
{U ⊆ A : X ⊆ U, A � U <e A}.

If ϕ(~x) is an L-formula, v : ~x → A is an evaluation, we say that A �xes ϕ in v, if for

any B, A <e B we have A |= ϕ[v] ⇐⇒ B |= ϕ[v]. We say that v is a positive evaluation

for ϕ (in A), if A |= ϕ[v] (in the other case, of course, we can say that v is a negative

evaluation for ϕ).

If ϕ(x1, . . . , xn) is an L-formula, then we use the notation [ϕ]A for the n-ary relation

de�ned by ϕ in A, that is, {~a ∈ An : A |= ϕ[~x/~a]}. We read out [ϕ]A as the extension of ϕ

in A. �

End extensions can be used to give a model theoretic description of Σ de�nability. It is

straightforward to see that a Σ formula is �xed in any structure for its positive evaluations,

that is, if ϕ(~x) is a Σ formula (wrt. �), and v : ~x→ A is a positive evaluation for ϕ, then

A �xes ϕ in v. In other words, A <e B ⇒ [ϕ]A ⊆ [ϕ]B. To be even more succinct, we can

refer to this property as �ϕ is positively preserved by end extensions�. The interesting fact
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is that the converse holds, too:

Theorem 3.2 (Feferman-Marker) Take the following two formula properties with re-

gard to some formula ϕ(~x):

1. ϕ is Σ;

2. for any v : ~x→ A positive, A �xes ϕ in v.

Then 1 ⇒ 2, and if the language L is countable, then also 2 ⇒ 1.

This theorem is usually referred to as �Feferman's Theorem�, because it was him who

has shown it in [Fef68], but I also attributed it to Marker, because he was who has given

a succinct, elegant model theoretic proof to it in [Mar84].

To getting warmed up, �rst we show characterizations of this fashion for bounded and

Σ1 formulas, then we will use these notions to redeem a debt of us: to show that Σ1

formulas and Σ formulas are not equivalent in general.

The following theorems have no central role in the current discourse, so occasionally

we allow ourselves to be sketchy.

Theorem 3.3 Take the following three formula properties with regard to some formula

ϕ(~x):

1. ϕ is bounded;

2. for any v : ~x→ A, A �xes ϕ in v.

3. for any v : ~x→ A, the initial segment generated by the range of v �xes ϕ for v.

Then 1 ⇒ 2 ⇐⇒ 3, and if the language L is relational, then also {2,3} ⇒ 1.

Proof.

2 → 3: Apply 2 with the generated initial segment instead of the original A.
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3 → 2: Fixation is preserved upwards.

1 → 2: Let B an arbitrary end extension of A. By looking at the de�nition of �the

truth value of ϕ in B�, it is straightforward to see that upon determining this truth value,

we make references only to (relations between) elements of A, as we have only bounded

quanti�ers. Hence A �xes ϕ for v.

3 → 1: The conditions imply that relativizing ϕ to its free variables � that is, replace

all occurrences of Qx in it with (Qx : x < x1 ∨ . . . ∨ x < xn) for Q = ∃, ∀ � doesn't a�ect

its truth value in v. It it left to the reader to decompose such quanti�ers to plain bounded

ones. �

Theorem 3.4 Take the following two formula properties with regard to some formula

ϕ(~x):

1. ϕ is Σ1;

2. for any v : ~x→ A positive, there is a �nitely generated initial segment of A containing

v which �xes ϕ for v.

Then 1 ⇒ 2, and if the language L is relational, then also 2 ⇒ 1.

Proof.

1 → 2: Take ϕ; say, it is of the form ∃~y ϑ(~y, ~x), with ϑ bounded. By the de�nition of

the truth value of a formula by an evaluation, A |= ∃~y ϑ(~y, ~x)[v] implies we will �nd an

evaluation v′ : ~x∪~y → A which extends v and A |= ϑ(~y, ~x)[v′]. Let I ′ be the initial segment

generated by the range of v′. By 3.3, I ′ �xes ϑ for v′, so in any B, I ′ <e B we will have

B |= ϑ(~y, ~x)[v′], and in turn B |= ∃~y ϑ(~y, ~x)[v]. That is, I ′ is a suitable �nitely generated

initial segment.

2 → 1: There will be a bound N , that for any v positive evaluation there will be an

initial segment generated by N elements which �xes ϕ in v. (We mean it as an absolute

bound, not just with respect to a particular A!): were there no such a bound, we could
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take a sequence of 〈Ai, vi〉 pairs which are counterexamples for i as a bound; and then an

by taking an ultraproduct of these, we could pick elements from there so that no �nitely

generated initial segment �xes ϕ in them, which is a contradiction.

Given N , introduce N new variables, relativize ϕ to its free variables plus the new vari-

ables, like we did it in the proof of 3.3, and pre�x this formula with existential quanti�ers

for the new variables. We got this way a Σ1 formula, and it's easy to see that it's equivalent

with ϕ. �

The di�erences in the characterizations of Σ and Σ1 sort of predict the following state-

ment. Nevertheless, we show it explicitly:

Theorem 3.5 Σ1 formulas and Σ formulas are not equivalent in general.

Proof. Let L be 〈<,Add〉, where Add is a ternary relation symbol. We will consider Σ

formulas wrt. <. Ordinals can be thought of as an L structure with < interpreted as

ordinal ordering and Add interpreted as {〈x, y, z〉 : x + y = z} (by �+� we mean ordinal

addition; note it is a partial operation if we restrict it to certain ordinals). Let ϕ be the

formula (∀x < t)∃y Add(t, x, y); it is a Σ formula. We claim it is not equivalent with any

Σ1 formula within ordinals.

ω + ω |= ϕ[t/ω]. However, for all 1 ≤ n < ω, ω + n 6|= ϕ[t/ω]. On the other hand, take

a Σ1 formula ψ for which the following also holds: ω + ω |= ψ[t/ω]. By 3.4, then it gets

�xed for t 7→ ω in some �nitely generated initial segment containing ω, ie. in ω + n for

some 1 ≤ n < ω. For such an n, ω + n |= ψ[t/ω], therefore it is an ordinal wrt. ϕ and ψ

show a di�erent behaviour. �

De�nition 3.6 Let A be an L-structure, ϕ an L-formula, and κ a cardinal.

We say that ϕ(~x) is positively κ-semidetermined in A, if for any positive evaluation

v : ~x 7→ A there is W <e A such that it includes the range of v, it �xes ϕ for v, and

|W | < κ (we might call such an initial segment a κ-witness). Similarly, ϕ(~x) is negatively
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κ-semidetermined in A, if for any negative evaluation there is a κ-witness. ϕ is κ-determined

in A if for any evaluation of its free variables there is a κ-witness.

In case of κ = ω, we can also use the expressions positively / negatively �nitely semide-

termined, �nite witness for an evaluation, �nitely determined.

These notions can also be applied to subsets of A, relations on A: a subset is positively

κ-semidetermined if it can be de�ned by a positively κ-semidetermined formula, etc. �

Remark 3.7 While it is clear that a formula is κ-determined i� it is both positively

and negatively κ-semidetermined, this coincidence vanishes if we move over to subsets: in

general, the fact that a subset of A can be de�ned both by a positively and a negatively

κ-semidetermined formula doesn't imply that it could also be de�ned by a κ-determined

formula. �

Let's turn back now to Vω.

There is an interesting trade-o� between doing recursion theory in N and in Vω: as we

have seen in the previous chapter, in Vω we had to work hard to establish a basic toolkit,

to introduce an order on it, and enable ourselves to safely de�ne functions by means of

taking the minimum of some property. These are for free in N, the total ordering is part

of the language. However, when it comes to encoding (�nitary) mathematical objects, one

has to rely on contrived number theoretical constructs in N, around which it is hard to

wrap one's mind. On the other hand, having paid our entrance fee, we can represent things

very comfortably and conveniently in Vω. We don't have to get into details when we seek

a set-theoretical representation of sequences, relations, graphs and alike. We can be both

hand-wavy and happy. We continue in this spirit.

Take an axiomatic approximation of Vω, ie. a theory S which implies for any model of

it that the model has an initial segment isomorphic to Vω, and also Vω |= S. Recall that we

have given two de�nitions to Vω � one time as a bottom of the set-theoretic universe, and

second time as the top of �nite extensional DAGs. A suitable S can be derived from both
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approaches: it can be either produced by trimming down axioms of general set theory, or

by devising axioms which ensure that building �nite sets on atop of each other never stops,

and doesn't go astray (extensionality, acyclicity, etc. is maintained on the run). Either

way, the details are left to the reader; for us it su�ces to know that S enforces Vω as an

initial segment, and that axioms of S are e�ectively known (there is an algorithm to decide

if a formula belongs to S or not), to which the least problematic way is making S �nite.

Then the machinery of predicate calculus, starting from the de�nition of the syntactic

elements and and ending at de�ning provability from S, can be described in the usual way:

appoint a set to be the set of symbols, �nd out a way for them to be indexed (we need

this in order to be able to use an in�nite collection of variables), specify syntax rules for

sequences of symbols so that we can have formulas, specify rules for sequences of formulas

by which they form a proof.

Having done with all this straightforward but tedious work, we can set up a Gödel

style encoding of sets and syntactic entities. For this, �rst choose a de�nition scheme for

hereditarily �nite sets, for example:

• let γ∅(x) be the formula (∀y0 ex)x 6= x;

• if u ∈ Vω is of rank n > 0, let γu(x) be the formula

∧
ve u

(∃yn ex)γv(yn) ∧ (∀yn ex)
∨

ve u

γv(yn).

Then for each ueVω, u is the only set which satis�es γu(x) in Vω. This de�nition can be

extended to syntactic entities: we have de�ned a way to represent variables, logical con-

stants, formulas, proofs in Vω, so for a formula ϕ let γϕ be γf , where f is the hereditarily

�nite set which represents ϕ, and so on. These γ formulas let us speak about metatheo-

retical entities within the theory. However, as the γ formulas are in fact nullary functions,

we rather use our shorthands according to 2.12, that is, we will use constant symbols like

puq, pϕq for the set u and the formula ϕ.
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So then, �nally we have a bounded formula ProofS(n, p, f) which intuitively means

�p is a proof from S of length n and the last formula of it is f �. This will be a proper

formalization of a proof, ie. S ` ϕ ⇐⇒ Vω |= ∃n ∃p ProofS(n, p, pϕq). Further constructs

of interest:

• G(x) is the function which �names of the name of a set�, i.e. u 7→ pγuq.

• If q is a variable, Subsq(f, c, g) is the following proprerty: �f is pϕq for some formula

ϕ, c is G(u) for some set u, and g is pϕ(q/puq)q�. We will rather use it also in a

functional style like Subsq(f, c) (we may assign a dummy value to f , c if they don't

happen to be the encodings of a formula and a set de�nition).

Formalizing the construction of γu and the syntactic operations on formulas, we can de�ne

these functions with Σ formulas � which then implies that they are also ∆1, by 2.13, and

that we can use them in Σ formulas, cf. 2.12.

For the interested reader, [�wi03] gives a nice account of all the hairy details, while

succeeding to remain compact.1

Theorem 3.8 The following families of formulas are equivalent in Vω:

1. positively �nitely semidetermined formulas;

2. formulas which are �xed by Vω for all their positive evaluations;

3. Σ1 formulas.

Proof.

3 → 1: This is immediate from 3.4, given that �nitely generated initial segments of Vω

are �nite.
1Just like [Fit07], [�wi03] also includes the element injection operator in the language, but that's just

a convenience and does not make a great di�erence.
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1 → 2: If a formula gets �xed on a �nite initial segment in some evaluation, then a

fortiori gets �xed in Vω.

2 → 3: The idea is as follows: for a given ϕ(x), take the formula which says �putting x

into ϕ, we get a provable formula�; this is Σ, because provability has been phrased in such

a manner; and the conditions will imply the equivalence with ϕ.

Consider the following situation (at this point we don't yet need to assume that ϕ

is �xed for all its positive evaluations): u ∈ Vω, and Vω �xes ϕ(x) in x 7→ u where

Vω |= ϕ[x/u]. Take the closed formula ϕ(puq). Then Vω |= ϕ(puq), and due to the �xation,

this will be true in all end extensions of Vω, including models of S. Therefore S |= ϕ(puq),

so by the completeness theorem, S ` ϕ(puq), then in turn, Vω |= ψu, with ψu being

∃n ∃p ProofS(n, p, pϕ(puq)q).

This can be done in the other direction, too, and this works regardless of �xation:

assume that for some u ∈ Vω Vω |= ψu. This means then that S ` ϕ(puq), then S |=

ϕ(puq), and because Vω |= S, we get that Vω |= ϕ(puq), i.e., Vω |= ϕ[x/u].

Now assume that, as in 2, Vω �xes ϕ(x) in all positive u; then we get that for all u ∈ Vω,

Vω |= ϕ[x/u] ⇐⇒ Vω |= ψu.

We can take the following tweaked form of the above construction as follows:

let ψ(x) be: ∃n∃pProofS(n, p, Subsx(pϕq,G(x))).

For any particular u, applying Subsx(pϕq,G(x)) to u will give us back pϕ(puq)q, so

Vω |= ψ[x/u] ⇐⇒ Vω |= ψu.

Putting these together: for u ∈ Vω,

Vω |= ϕ[x/u] ⇐⇒ Vω |= ψu ⇐⇒ Vω |= ψ[x/u],

ie. Vω |= ϕ↔ ψ. And ψ is Σ. �
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Remark 3.9 My original proof included �brute force� direct construction to show the 1

→ 3 implication (somewhat resembling the 2 → 3 proof given here, however, it was more

complex as it involved the encodings of �nite witnesses). It was Ali Enayat in [Ena04a]

who pointed out that positive �xation by Vω su�ces for being Σ1. �

Now, in fact, we have already a purely model theoretic characterization of decidability:

Σ1 sets and positively �nitely semidetermined sets are the same, and then, of course, Π1

sets and negatively �nitely semidetermined sets are also the same; decidable sets (∆1 sets)

are the ones which are Σ1 and Π1 at the same time, so a set is decidable i� it is both

positively �nitely semidetermined and negatively �nitely semidetermined.

However, this can be strengthened by showing that a set is decidable i� it is �nitely

determined.

Remark 3.10 (The Enayat correspondence) This result was discussed in the Foun-

dations Mathematics mailing list in June-July 2004. It was Ali Enayat who has took the

e�ort to evaluate this result. Finally his conclusion was:

[. . . ] Henk asked whether his characterization is new or not. In my judgment the

characterization is new, in the sense that it has not appeared in print before, but I also

believe that it follows from standard arguments and should therefore be considered

folklore. [Ena04b]

He claimed that the above statement can be seen by standard arguments of recursivity

theory / theoretical computer science, and he has also given a sketch (also in the mail

[Ena04b]) how he thinks it can be shown easily. I did not accept his judgement and in

subsequent postings I tried to show that his argumentation is not su�cient to show that

decidable sets are �nitely determined. However, probably I did not present my case clearly

enough, as he did not made further comments on the issue.

Here I try to reconstruct Enayat's argument and make another attempt to point out

how his simple approach is leaky. Apart from trying to settle that old debate, I would also
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like to save the reader from making the same mistake: his reasoning is quite plausible, and

the reader should see why we have to choose a more complex route.

Enayat says the following: let D be a decidable set. As it is decidable, there is a

Turing machine which outputs 1 on elements of D, and outputs 0 elsewhere. Operation of

a Turing machine can be formalized by a bounded formula, i.e., for any Turing machine T

there is a bounded formula τT (n, c, x, o), which states the following: �c is a computation

of T (i.e., a sequence of states of T where subsequent states adhere to the transition rules

of Turing machines), at the 0-th state T has (a representation of) x written on its tape,

the n-th state of T is the halting state and at that point o is written on T 's tape�. Now

let T be the machine which decides D. Then D can be de�ned by the formula δ(x):

∃n ∃c τT (n, c, x, 1). Enayat claims that this formula is �nitely determined (which then

would provide the implication we seek): for a given u, take all the objects (numbers or

sets, depending on whether we work in N or in Vω) which are referred to during the run of

T on u until the halting state, and the initial segment I generated by them will �x δ in u.

This is half-right. It might be the case that I is suitable, I is a �nitary witness in

some informal sense � just not for δ. That is, I will probably contain everything which

is needed to �x an appropriately chosen de�nition of D, but δ is not an appropriate one.

This claim sounds a bit vague, as we haven't put down explicitly how exactly δ looks like.

However, we had an intent to get to the �nitely determined de�nition of D using �standard

arguments�. What I am saying is that using the �standardish� way(s) to describe a Turing

machine are far from yielding a �nitely determined δ.

I cannot present a sharp counterexample to show why δ is not �nitely determined, for

the same reason as above: we have not given an exact de�nition of τT , and in turn, of δ. I

can just point out some fallacies involved in the �standard way� of the construction of τT .

The problematic case is, of course, the one when u is not in D (given that δ is Σ1, it is

positively �nitely semidetermined, and therefore will be �xed by I in u if u is in D). So

assume u /∈ D. Then, of course, ∃n ∃c τT (n, c, u, 0) holds, and such a c is a kind of �nitary
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witness for u not being in D, but it has little help for us � we have picked δ to de�ne D,

and we should see how the falsity of δ(u) is preserved in end extensions of I. Well, let's

try to deconstruct τ a little bit � we haven't de�ned it in details, but how can τ look like?

(At this point we choose to operate in an arithmetical context, where N is regarded as a

relational structure, i.e. addition and multiplication are thought of as ternary relations.)

We can take the formula TrT (s, s′) which de�nes the state transition of T , the formula

TpT (s, q), which says that in state s q is written on T 's tape, and the formula HT (s) which

says s is a halting state for T . Then τT (n, c, x, o) can be written along the following lines:

TpT (c(0), x) ∧ TpT (c(n), o) ∧HT (c(n)) ∧ (∀m : 0 < m ≤ n)TrT (c(m− 1), c(m)).

We can forge an end extension of I to subvert this de�nition. For example, we can add a

pseudo-number n to I which we declare to be not comparable to any other element of the

extension, then take machine states s, s′ such that TpT (s, u), andHT (s′), TpT (s′, 1), and let

c be the pseudo-computation 0 7→ s, n 7→ s′. With this c the initial and terminal conditions

are ful�lled, because c is chosen so, and the transition conditions trivially hold, as there

are no transitions at all: there is no m such that m < n. So there is a �computation� of T

starting from u where �at the end� we get 1. The falsity of δ is not preserved in this end

extension.

One can argue that a more careful de�nition of τT can prevent this trick. (Although the

usual careful de�nition: �if we take the shortest computation of T from x, which ends in a

halting state, we �nd it has 1 written on the tape at the end� has no much help here � it

protects only from that type of �forgery� which is performed via reasonably arithmetics-like

end extensions, that is, non-standard Peano models, where one can �count up to� numbers

(even to non-standard ones) in some sense.2 ) Well, yes, maybe this particular trick. But

end extensions of I can be very pathological. For an other choice of τT we can �nd out

2By the way, this particular de�nition is resistant to non-standard Peano end extensions as-is, without

having to strengthen it with the minimization technique, because T halts on each input after �nitely many

steps, and the fact that it is stuck in a halting state with no change in the content of the tape inherits
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other tricks. Not to mention the fact that the basic constructs of arithmetics and recursion

theory will become senseless: in general, induction principle is lost, < will not be an order

anymore, addition and multiplication will not be functions, constructs which we use to

uniquely de�ne some object will not be unique anymore. So a �standard� de�nition of

a computation of T will go wild, and we just cannot guarantee anything about it in an

end extension, in particular, we cannot guarantee that in a pathological end extension the

�result� (some result � uniqueness is lost!) of the computation on u is not 1.

What we can do is a systematic hardening of our toolset, of which we show that it can

resist any pathology. This can be done, and this is the actual construction which leads to

the desired �nitely determined de�nition of D. But this technique goes beyond the point

what can be called �standard recursion theoretic argumentation�. �

Theorem 3.11 ∆1 sets are the same as �nitely determined sets.

Proof. That �nitely determined sets are ∆1 is an immediate consequence of 3.8: if X ⊂ Vω

is �nitely determined, then it is both positively and negatively �nitely semidetermined, ie.

by 3.8, both Σ1 and Π1, ie., ∆1.

For the other direction we have to show how to de�ne a decidable set with a �nitely

determined formula. Let's start with introducing HEnum(n, e, x), the �hardened enum

formula�. It will be a variant of Enum (of 2.14), it will even be equivalent with Enum on

Vω.

The di�erence is that in HEnum we don't rely on any fact which was guaranteed for

us by a set theoretic context � for example, in Enum we did not include constraints like

¬ye y, in HEnum we will. Concretely, HEnum(n, e, x) states:

upwards. What I'm trying to point out is that we cannot expect in general that minimizing a Σ1 de�nition

of a ∆1 set yields a �nitely determined formula. Yet it is true that the actual construction in the proof of

3.11 can be regarded as a variant of this minimization technique � but not the one you can �nd in books,

I think.
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• n is transitive, and e on n is a discrete ordering with both a minimal and a maximal

element;

• e is a function with domain n, and here we give a full characterization of what being

a function means in terms of digraph properties;

• e(∅) = ∅, e on the maximal element of n gives x, and if k,men, with m being the

successor of k, then e(m) can be obtained from e(k) using the Ackermann successor

rule (which we pin down in details, as we speak of digraphs in general, not sets).

In any e -structure A, if we have HEnum(n, e, x) for some elements of A, then either n is

in�nite (i.e., its incoming degree is in�nite � we cannot speak of cardinality in general),

and in this case {m : men} has an initial segment isomorphic to ω, the e-image of which

is an initial segment of the range of e, isomorphic to Vω; or there is u ∈ Vω such that the

structure 〈{v : v ≤ u}, e , u〉 is isomorphic with 〈Range(e), e , x〉. As we said, we also

have Vω |= Enum(n, e, x) ↔ HEnum(n, e, x).

Using 2.22, take a de�nition ϕ of the given ∆1 set of the form (∃y0 . . . ym : ψ(x, ~y))σ(x, ~y),

where ψ, σ are bounded, and ψ is function-like in ~y. We construct a �hardened� version χ of

it as follows. Let Seqm(s) denote the property that s is a sequence of length m+1 (a func-

tion with domain 0, . . . ,m). (Again, in this context we choose a formalization of it which

fully describes this property as a digraph property; and also for function application). So
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let χ be (
∃n, e,N,E, Y : (3.1)

Seqm(Y ) ∧ (3.2)

HEnum(n, e, x) ∧ HEnum(N,E, Y ) ∧ (3.3)

(e ⊂ E ∨ E ⊂ e ∨ e = E) ∧ (3.4)

ψ(x, Y (0), . . . , Y (m)) ∧ (3.5)

∃!ken e(k) = x ∧ (3.6)

∃!K eN
(
Seqm(E(K)) ∧ ψ(x,E(K)(0), . . . , E(K)(m))

))
(3.7)

σ(x, Y (0), . . . , Y (m)). (3.8)

In χ we introduce new variables (3.1), one of them is Y which we require to be a sequence

of length m + 1 (3.2), and the others provide a hardened enumeration for x and Y (3.3),

these enumerations are comparable (i.e., one extends the other, (3.4)), and we not only

require that members of Y satisfy ψ with x (3.5), but we also require Y be minimal in

this respect (3.7). Let's refer to this hardened variant of ψ as ψ′, and let σ′(x, Y ) be

σ(x, Y (0), . . . , Y (m)), i.e. χ can be written as (∃n, e,N,E, Y : ψ′)σ′.

It is clear that ϕ and χ are equivalent in Vω: the (hardened) enumeration uniquely

exists for any hereditarily �nite set, and have the desired properties. Furthermore ψ′ is

function-like in n, e,N,E, Y , again due to the fact that the enumerations are well-de�ned.

We claim that χ is �nitely determined.

χ is positively �nitely semidetermined, being Σ1. What we should see that it's also

negatively �nitely semidetermined, that is, for an u ∈ Vω such that Vω 6|= χ[x/u], there is an

initial segment which �xes χ in x 7→ u. Take the uniquely determined sets n0, e0, N0, E0, Y0

with which Vω |= ψ′[u, n0, e0, N0, E0, Y0]. We claim that the initial segment I generated by

e and E will �x χ in u (it is clear that u ∈ I, so saying this makes sense; and of course, n,

N and Y are also in I).
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Let E be an end extension of I. We would like to show that if for some n1, e1, N1, E1, Y1

E |= ψ′[u, n1, e1, N1, E1, Y1] holds, then we have E 6|= σ′[u, Y1]. This would immediately

follow if Y1 were uniquely determined, i.e., Y1 = Y0, because we know that I 6|= σ′[u, Y0],

and due to the boundedness of σ, the rest of E would not interfere with the evaluation.

Alas, this uniqueness will not be true in general. Rather we intend to prove an isomorphism

property as follows: with I0 being the initial segment of E generated by u, Y0, and I1 being

the initial segment of E generated by u, Y1, the structures 〈I0, e , u, Y0〉 and 〈I1, e , u, Y1〉

are isomorphic. This is also su�cient for seeing that E 6|= σ′[u, Y1], as the result of an

evaluation is isomorphism invariant.

So we will show this isomorphism property. First of all, n1 and N1 are (of) �nite

(incoming degree): if n1 were in�nite, then it would have a complete ω type initial segment,

in which the �real index� n′ of u would occur (i.e., the one for which

V ′
ω |= HEnum[n′, e1�n

′, u]

holds, where V ′
ω is the e1-image of the ω-type initial segment of n1), and then the maxi-

mal elements of n′ and n1 would be two di�erent elements of n1 mapped to u by e1, which

violates (3.6). Similarly, ifN1 were in�nite, then it would have a complete ω type initial seg-

ment, which would have anN0-th elementN ′
0, and Seqm(E(K))∧ψ(x,E(K)(0), . . . , E(K)(m))

would hold with the maximal element of both of N ′
0 and N1 as K, violating (3.7).

So n1 and N1 are �nite, and then the ranges of e1 and E1 are isomorphic to some initial

segment of Vω. Their union includes I1, and by (3.4), their union is one of them � that is,

we got that an initial segment of Vω (up to isomorphism) includes I1, which then implies I1

itself is isomorphic to an initial segment of Vω. See the following properties of some I ′, Y ′:

• I ′ end extends the initial segment of Vω generated by u;

• I ′ is isomorphic to an initial segment of Vω;

• Y ′ ∈ I ′ and 〈I ′, e , u, Y ′〉 |= Seqm(Y ′) ∧ ψ(u, Y ′(0), . . . , Y ′(m));
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• I ′ is generated (as an initial segment) by u, Y ′.

Both of the pairs I0, Y0 and I1, Y1 ful�l these properties, and, because of the function-

likeness of ψ in ~y, there is exactly one initial segment of Vω with these properties (namely

I0). So the initial segment of Vω to which I1 is isomorphic turned out to be I0. We have

proved the desired isomorphism property. �
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Chapter 4

The set theoretic paradigm of

mathematics

4.1 Manifestos1

This section will feature a sort of �cultural anthropology� of modern mathematics � we will

not argue, just declare and illustrate. We just try to portray mathematics and metamath-

ematics as it is perceived through the spectacles of set theory. Can we argue about the

validity of such a portrayal on a common ground � or validity it a moot issue, as a portrayal

is valid on its own right, as an external projection of the subject who has created the it?

(In which case it still can be the submitted to aestethical investigations.) Or somewhere

in between, our portrayal is expected to be basically correct but aestethics matters, too?

We sidestep these questions.

1We suggest the reader to revisit Section 1.4, as this section relies on that material
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4.1.1 The Short Manifesto: Take it, your badge

Each mathematical concept can be formalized in some kind of set theory.

Fine, kind reader. You have read it. It is a sentence. It makes sense. It is not saying

anything unfamiliar. We have even quoted Fitting in the Introduction saying something

like this (and surely we could quote others after doing some research). What is the point

then? What is the novelty here? What made it worth to be typed out all caps? Well. . .

the point in typing out it all caps is nothing else but to have it typed out all caps. When

African American civil right movements have appeared on the scene, the novel thing was

not the fact that they acknowledged that they are black, but that they said it loud and

were proud of it.

Recall the issues related to such claims we have mentioned in the Introduction: the

worry of being paradoxical and the worry of getting stuck with ad hoc formalizations

which fail to be general. Worries which can make even great mathematicians to mumble

words in the hope of remaining unheard. When we see Fitting saying �It is well-known

that all mathematics can be developed within the framework of set theory�, we have an

impression that feels like adding �. . . but I rather leave it to those guys who are cleverer

than me, or better educated than me, or has specialized to such things, because it is a touchy

topic and it should be given a proper treatment by knowledgeable people�.

We took care to word the Manifesto in a safe way. We don't have to worry about

paradoxes and losing generality. See the slight but crucial di�erence between Fitting's

wording and ours: he speaks of the framework of set theory, we speak of some kind of set

theory. We can allow here being vague. Two centuries of Foundations behind us have left

a mark on our mathematical consciousness. We do know what a set theory is. No, we are

not going back to the era of naive set theory when people were thinking that there is a

generally understood (but not formally de�ned) concept of sets � what we say that there

is a generally understood (but not formally de�ned) concept of formal set theories.
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Here is a simple test by which the reader can test herself if she knows what a formal set

theory is in general: does the term �post-ZFC set theory� makes sense to you? Surely, there

is no such thing, but can you imagine what it could be? Imagine that someone succeeds

to �nd some inconsistency in ZFC � not a bad one, just a tiny one. Imagine that there is

a �bug� in ZFC, which renders it inconsistent, but doesn't force us to throw it away and

never look back; it just has to be �xed. Can you imagine how that amended ZFC could

look like? If yes, then you know what a set theory is.

By speaking in informal terms about formal theories we escape self-reference, the genesis

of all paradoxes. And by not sticking to a particular formal theory we don't lose generality.

So, this Manifesto is like those rectangular web badges by which people promote the

blog engine of their choice on their blogs: �Powered by WordPress�, or �I power Blogger�.

Now we can embrace �Powered by Set Theory� � quote it, spread it, blog it, shout it from

the rooftops: yes, we can.

4.1.2 The Long Manifesto: The Thing you need to hit the nail on

the head

Like the guy who gets his �rst can of Axe spray when he is just done with the shootings of

the hottest newest Axe ad, for which he was recruited to be the poster boy � let's become

familiar with that what we are selling with our shiny new badges.

1. Mathematical language states properties about objects.2

2. Formal set theories are theories of some variant of �rst-order logic which aspire to

describe an universe of mathematical objects.3

2The distinction between objects and properties lies at the linguistic level, it is not an ontological one.

What is an object and what is a property: depends on context. Consider the role of �<� in �3 < 5� and

�< is a discrete ordering with a minimal element but without a maximal element�.
3We do not require (an intent of) universality from set theories. Partial universes are �ne, too. In par-
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3. Mathematical objects can be represented in an appropriately chosen formal set theory,

as sets. De�nitions of objects are represented as bounded formulas.

4. Properties of objects can be represented in an appropriately chosen formal set theory,

as �rst-order formulas. This representation captures the intension of properties, not

just their extension.4

5. Objects are constructed as a bottom-up hierarchy of subobjects. The inner structure

of objects and their relation to their subobjects are represented as bounded formulas.

6. The formal set theories we use in our representations are hierarchical, too (but need

not to be constructive). They feature some form of the foundation principle. The

identity of sets is determined by their elements (the identity of which is determined

by their elements, and so on � but we don't get stuck in an in�nite regression).

7. The extension of the formulas 5 we use to represent properties is upward invariant

(as long as set theoretical universes are concerned): it depends only on those sets

which correspond to the objects the properties are about. It doesn't matter how the

higher levels of the hierarchy look like (or whether they exist at all)6

ticular, here we will consider Vω a set theory, too. That said, the minimal set theory, and the unambiguous

common part of all set theories.
4Intension, and extension, in the Fregeian sense. Consider planarity of graphs: the �nite graph prop-

erties �G can be embedded to R × R with no intersecting edges� and �G has no topological subgraph

isomorphic to K5 and K3,3�, have the same extension, but not the same intension. This di�erence is also

preserved in their set theoretic representation, as can be demonstrated by switching set theories: if we cut

down ourselves to Vω, the formula we have for emeddability to the plane sort of loses context and will be

identically false (as there is no such thing as R× R in Vω), while the formula with topological subgraphs

will still make sense and will denote the same class of graphs as in �big� set theory.
5�Extension�, again, in the Fregeian sense, not the result of extending something.
6. . . nevertheless, those higher levels should be worth for being addressed as �higher levels� (of a broader

universe). I.e., a mathematical concept which matches this intuition is the extension of N by non-standard
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The �rst thing we can spot that these declarations re�ect a strong preconception � a

bottom-up view of mathematics, which view extends to the non-formal part, too. Category

theorists might object: their top-down view of the world is essentially di�erent. However,

two centuries of Foundations behind us have left a mark on our mathematical consciousness.

Even category theorists sport some Pavlovian re�exes when foundational matters are on

plate: we have already made a reference to Mac Lane's work on providing a set theoretic

foundation for category theory.

Is the world really like this? Well. . . when your only tool is hammer, you will exhibit

a tendency to treat everything as if it were a nail. No problem, you can live with it � just

always keep in mind that your �ngernails are not the kind of nails your tool should be

applied to.

4.2 The Gimmick7

So then, kind reader, can we make a deal? Would you mind to sign it over there?. . . Yes,

it is the Long Manifesto, there is no �ne print, no strings attached8. . . No? Not yet?

Hesitating? Really? Then please consider our very special o�er, only for you, only now: if

you take the Long Manifesto, then you can also take the Church-Turing Thesis, for free!

Recall �nitary witnesses. We state the Church-Turing Thesis in terms of �nitary wit-

nesses: A �nitary property expressed in terms of �nitary witnesses can be formalized within

Vω as a Σ1 formula. (We have sketched in the Introduction how it is a straightforward

rephrasing of other forms of the Church-Turing Thesis � regardig the non-formal side of

the �equation�. With respect to the formal part, we can refer to recursion theory.) And we

claim we can deduce it from the Long Manifesto. This deduction, of course, will not be a

mathematical proof, as it's not dealing with mathematical entities. That said, we won't

Peano models, and not extensions by the means of arbitrary wild end extensions.
7We suggest the reader to revisit Section 1.3, as this section relies on that material
8This is, of course, a lie.
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even pretend doing a mathematical proof: we will trace back our steps to certain points

of the Manifesto only by and large. That is natural � a lot of subtle things are included

implicitly in the Manifesto. One cannot expect a Manifesto to be bothered by details. We

will speak in the spirit of the Manifesto.

Finitary objects are represented in an appropriate set theory by LM:3. Given that they

are �nitary, their representations will be hereditarily �nite sets. Take a �nitary property

P , expressed in terms of �nitary witnesses. By LM:4, it will be represented in set theory

by some formula ϕ. By LM:7, the extension of ϕ � the class of hereditarily �nite sets which

satisfy ϕ � is the same in all set theories. So we can cut down our investigations to Vω. The

fact that P is expressed in terms of �nitary witnesses means that it is worded along the

following lines: a �nitary object x has P i� there is a compound �nitary object w which

has x as its subobject, where the inner structure of w and its relation to x can be described

by some condition D. Formalization preserves intension, as LM:4 says. Therefore on the

formal side, ϕ will be of the form ∃w δ(w, x), where δ is the formalization of the description

of the witness, D. By LM:5, δ will be a bounded formula, thus ϕ, the formal counterpart

of P , is a Σ1 formula.

4.3 Objects in the Rear ViewMirror May Appear Closer

than They Are

Proper journeys are the ones which end up somewhere, but not quite there where one have

planned originally. This is what happened to me while getting here from the Introduc-

tion. Looking back, the reader can spot some di�erences between that what proposed in

the Introduction and that what is written here. However, I did not go back and adjust

the Introduction to match the actual exposition � the essence of the thoughts presented

there is not a�ected, and this di�erence provides a handy opportunity for a review with
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some historical background (of the ideas expressed here). I also use this place to provide

amendments to those parts of the Introduction which I see now di�erently.

This document now consists of two fairly independent parts, the mathematical part

(Chapters 2, 3), an exposition of recursion theory in the context of hereditarily �nite sets

which culminate in the statement and the proof of the equivalence of decidability and

de�nability with �nitely determined formulas, and the metamathematical part (Chapters

1, Chapters 4), which discusses methodological issues related to the Church-Turing Thesis

and tries to make a folklore paradigm of modern mathematics explicit. Both can be read

as self-contained texts.

Originally I planned to have this Thesis more connected. The mathematical and meta-

mathematical ideas I express have come to existence by the same train of thoughts. The

argument I wanted to use for deducing the Church-Turing Thesis from the principle of set

theoretic capture would have relied on the model theoretic de�nition of formal decidabil-

ity. I thought that the model theoretic de�nition is self-explanatory and it is the �natural�

de�nition (in some sense), and this is what can be stated of formalizations of algorithmic

properties, once we accept it as a general principle that naive concepts can formalized in

set theory. (By and large, I had the idea that evaluation of such formulas on appropriate

�nite initial segments of Vω can is what you get when you formalize algorithmic de�nitions.

This is the idea referred to at the end of 1.4.)

While possibility of converting algorithmic de�nitions to a �nitely determined form

might make us reassured that algorithmical problems have a strongly �nitistic character,

I realized that �nitely determined formulas are far from being natural � you just won't

dress in an armored diving suit for having an after-lunch seaside walk. The way we express

mathematical ideas � including algorithms � does rely on a context, a universe of discourse

which looks reasonably sane. This is fairly clearly demonstrated in 3.10.

On the other hand, I realized that Σ1 formulas are indeed very natural constructs,

and are free of the ad hocness of theoretic machine models and quasi-syntactic generative
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schemes. They clearly correspond to the naive idea of expressing properties in terms of

�nitary witnesses, which is a naive concept you can trade in for decision procedures without

having to worry that you apply too much preconception upon doing so. And, while Σ1

formulas also have their model theoretic characterization in Vω � by means of the notion of

positively �nitely semideterminacy � it is not the model theoretic notion what corresponds

to the naive concept of �nitary witnesses, but the syntactic notion. Because it is intension

is what matters, and intension is re�ected by the structure of the formula. So yet again,

fate was ironic with me and made fun from the title of my Thesis.

This is good news, in a way: this way my thoughts on Church-Turing Thesis became

much more accessible, anyone has the necessary background who is familiar with the basic

concepts of mathematical logic and theoretical computer science. It is not necessary to grok

the non-established concepts of end extensions, �xation, positive �nite semideterminacy

and �nite determinacy (end extensions are a standard concept but do not belong to the

standard curriculum, either).

Finally, a few words about that what I dubbed as the �Long Manifesto�, and the de-

duction of the Church-Turing Thesis from that. I have an idea which aspects of it are the

ones which make my readers frown. One such thing might be the style of the deduction I

use to get to the Church-Turing Thesis from the terms of the Long Manifesto. It is weird.

No matter how much emphasis I put on the fact that it is not a mathematical proof, it

does have a tone of a mathematical proof (even variables are used in it!). I can imagine

that readers of a more technical vein will think it is quackery or as Hungarian speakers

would put it, �a ferrule made of wood�. I guess there was a time when such a tone was in

fashion, when the basics of mathematical logic were laid down, back then not as a formal

mathematical theory, but as part of an analytic exploration of the perceived true nature of

mathematical concepts, as a kind of �homesteading of the Noosphere�, when formal foun-

dations were not yet laid down, or at least there was not an established consensus regarding

them. It was a wild frontier where thinkers often had to throw entire books in the dustbin
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upon realizing that what they do leads to paradoxes. Since then mathematics is considered

to be built upon a solid formal base, and similar reasonings either survived in a formal

form as mathematical theorems or were regarded vague and ended up on the midden of

the history of science. And regarding philosophy � I don't know, I am not familiar enough

with that to make statements about contemporary trends, but I suspect that philosophers

of these days do not operate via pseudo-formal reasonings. I am unsure, too, how this

deduction quali�es methodologically. Nevertheless, while I am open to discussions about

it (not just open, even curious!), at this point I do not really care about this issue � it

is a sort of take-it-or-leave-it thing, I can do nothing about this. Regarding my personal

stance: I feel it less of a quackery than those attempts to promote yet another arbitrary

contrived abstract machine model as the Real Thing. I vote for a leaky deduction, rather

than a pleasant induction, any day.

I am more concerned about the particular terms I used in that deduction. The reader

might have the impression that I imposed an arti�cial pseudo-semantics on naive concepts,

custom-made for my purposes, and then collected those premises which I needed to get

where I was aiming, rolled it out under the aegis of the Long Manifesto, and in this puppet

theatre I stage a drama entitled �The Deduction of the Church-Turing Thesis�. What I

admit is the fact that all frameworks are shaped by their applications. It is sure that the

Long Manifesto would not consist of those particular terms it actually consists of now if I

haven't had the motivation to use it as a set of premises for the Church-Turing Thesis. But

I consider this a positive feedback. Proof-reading it, I haven't �nd a term in it which would

su�er of being accidental, beyond the original accidentility of the set theoretic approach

(which, of course, proves nothing but my awareness of the issue). For example, making

mention of bounded formulas in the Manifesto were particularly suspicious for me � as

they are so closely related to Σ1 formulas, it might seem to be a quali�ed case of nepotism.

But I thought into it yet again, and it seems to be sustainable that objects are de�ned

in terms of bounded formulas. I could not recall a de�nition of something like an object
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which would not start with taking a base set and then would continue with cutting out

its shape by means of formulas relativized to the base set.9 Indeed it seems frighteningly

plausible that objects are de�ned and described by means of bounded formulas. . .

Another dangerous bend shows up when I speak of objects and their subobjects. Maybe

I could apply more successfully for being acknowledged as general if I spoke about their

inner structure? Well, I just looked back to the Manifesto upon typing the previous sentence

and I see did mention �inner stucture�, besides subobjects. So I think it is a harmless

customization that I also mention subobjects. Still � when using elaborate expressions

like �a compound �nitary object w which has x as its subobject�, do I not go as far in

arbitrariness as the perpetrators of abstract machines? After thinking it over again: I'm

sticking with no. If you are not convinced, just rewind to procedures. Remember: we

can turn a procedure p into a �nitary witness for x by taking its run px on x. Even the

notation used here suggests that x is a subobject of the run px! Read it again please: �we

can turn a procedure p into a �nitary witness for x by taking its run px on x� � do I have

add any explanation to this sentence to have it make sense to you, or you just read it

and grasp it? I can imagine an answer to this like �No problem with the sentence, as long

as I am concerned; but one who is less familiar with the topic might have problems with

objectifying the run of the procedure�. Even then, the concept of the run is organically

attached to the concept of procedure, and getting in picture is just a matter of mastering

the concepts. There is no such arbitrariness here as with Turing machines and friends.

At the end of the day, my conscience is clear with respect to calling for those kind of

bids where it is made sure I am the only one who can win a pitch.

In a sense, all these concerns are of minor importance anyway, and any kind of defect

9Yet again, category theory. However di�erent is the notion of an object in category theory, it won't

have a word here in its own right until it compiles to the machine code of set theory. (And if some day

it won't be like this anymore, then category theory shall be a separate paradigm which doesn't interfere

with set theory.)

55



C
E

U
eT

D
C

ol
le

ct
io

n

related to the deduction of the Church-Turing Thesis can be deemed accidental / technical.

How so? Imagine that your mother serves roasted turkey for dinner, stu�ed with apples.

You see her as she processes the turkey before roasting it. Later on you meet again with

the turkey by the table, roasted golden, waiting for getting sliced. What is inside the bird?

Roasted apple. Do you have to wait for the moment when the turkey is opened up and

you see it? No, you know it in advance. How so? It's so damn evident � a �ve year old can

tell you that if you roast a turkey with an apple in it, then you get a roasted turkey with a

roasted apple in it. Similarly, once you got reassured that you can formalize mathematical

properties into �rst-order formulas in general, and took a look at �nitary properties in

terms �nitary witnesses in particular, the proper question is not �what kind of formulas

can we formalize them into?�, but �how on earth could we get anything but Σ1 formulas

on Vω?�

It is true that the turkey metaphor features a good deal of oversimplication. Neverthe-

less, when we match Church-Turing Thesis against the turkey and apple story, we can see

which component of the kitchen life is missing on our side: roasting. We act like a sick

gourmand who is told away from roasted food by his doctor, and then he creeps away by

night to roast in secret.

This is the real problem. And the part of this Thesis which addresses this problem is

the Short Manifesto.

Therefore probably the Short Manifesto is the greatest achievement of this work.
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Chapter 5

Possible further directions

Here we just give a random burst of ideas and problems related to the topic of this Thesis,

which could be subject of further research.

• Can �xation, semideterminacy, determinacy be applied to/in generlized recursion

theory in a sensible way? What do get if apply these to classes of problems of various

Turing degrees?

• Where do we get if we change the κ? That is, if we investigate κ-semideterminacy,

κ-determinacy. Does it has any use in set theory? Are there non-trivial examples for

κ-determinacy at all?

• The family of theorems which establish a correspondence between formula classes

and model classes are called Birkho�-style theorems. There is a trend of unifying

such proofs in category theoretical frameworks, see eg. [NS82]. Could we reconstruct

the Feferman-Marker Theorem as a simple application of such a framework?

• Relying on 3.11 we can construct a complexity measure based on �nite determinacy:

for a �nitely determined formula ϕ(x) and u ∈ ω, let

c�xϕ(u) = min{|I| : u ∈ I, I �xes ϕ in u}.
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Now if F is a class of N −→ N functions, let CFix-F be the class of those problems

(decidable sets) which can be de�ned by some �nitely determined formula ϕ such

that c�xϕ ∈ F . For example, it can be shown that

NP∪ coNP ⊆ CFix-P ⊆ PSpace .

What else can we say about this complexity measure? And if me measure via the

rank of I, rather than its cardinality?

• Why �rst-order logic? This is a very classic question, and has been discussed by

many authors; and anyone who dips his or her �nger into mathematical logic will

have a feeling that it is a distinguished logical system. Still, a succinct, to-the-point

answer to this question has not yet been born (or at least I know of none) � one

which can help me out on the day when my child will come up to me, eyes open

wide, to ask: �Dad, why �rst-order logic?�
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