
C
E

U
eT

D
C

ol
le

ct
io

n

CENTRAL EUROPEAN UNIVERSITY

Department of Mathematics and its Applications

Master of Science Thesis

in Applied Mathematics

Siarhei Charnyi

Solving maximin problem by decomposition to smooth and
nonsmooth problems

 Scientific Adviser

 Prof. Istvan Maros

 University of Pannonia

C
E

U
eT

D
C

ol
le

ct
io

n

 2

CONTENTS

ACKNOWLEDGEMENTS ..3

NOTATIONS ..4

INTRODUCTION...5

CHAPTER 1. BASIC CONCEPTS AND REVIEW OF EXISTING METHODS OF

NONSMOOTH OPTIMIZATION..9

1.1. The basic concepts of convex analysis ...9

1.2. Multivalued mappings ..14

1.3. The review of existing methods of nonsmooth optimization ...15

1.3.1. Subgradient methods ...15

1.3.2. Bundle-methods...16

1.3.3. Method of cutting hyperplanes..19

1.3.4. Efficiency of nonsmooth optimization methods..19

CHAPTER 2. DEVELOPMENT OF THE ALGORITHM FOR THE MAXIMIN PROBLEM..20

2.1. Problem statement. Decomposition of the maximin problem to smooth and nonsmooth

problems. ...20

2.2. Development of a method for solving the maximin problem...22

2.3. Finding the steepest ascent direction for the problem of unconditional maximization for

the function () x ..25

2.4. Description of the conceptual algorithm ..27

2.4.1. Finding an extremum point for the problem ()P x ..28

2.4.2. Finding the steepest ascent direction...28

2.4.3. Finding an iteration step size k ...30

2.4.4. The modified bundle method for the construction of an ascent direction...................32

CHAPTER 3. COMPUTATIONAL STUDY ...34

3.1. Description of the computational study..34

3.2. Analysis of results of the computational study...50

CONCLUSION ...51

LIST OF PUBLICATIONS...52

REFERENCES ..53

APPENDIX. CODE OF THE ALGORITHM...54

C
E

U
eT

D
C

ol
le

ct
io

n

 3

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor Professor Istvan Maros for fruitful

and helpful discussions on the topic. I would like to thank the department of Mathematics for the

financial support for traveling expenses. I had also an opportunity to order a number of books on

my topic via the department of Mathematics, which made my work on the thesis more effective.

I am also thankful to Renyi Institute of Mathematics, and to Professor Ervin Győri in particular,

who made us possible to use the electronic subscriptions together with the excellent library of the

Institute. It allowed me to collect a number of books and over 200 articles on my topic.

C
E

U
eT

D
C

ol
le

ct
io

n

 4

NOTATIONS

c, k lowercase italic letters: scalar variables

v lowercase boldface letters: vectors

A uppercase letters: matrices

n n-dimensional Euclidean space

,a b scalar product of vectors and a b

C
E

U
eT

D
C

ol
le

ct
io

n

 5

INTRODUCTION

Study of different conflict situations within operations research and game theory resulted

in various optimization problems, which are much more complex than traditional problems of

mathematical programming.

Among optimization problems, the so-called minimax (or maximin) problems occupy an

important place. Mathematical modeling of conflict situations and study of problems under

uncertainty conditions using the principle of guaranteed result lead to minimax problems [4].

Among a wide range of minimax problems, for example, one can distinguish bilinear minimax

problems with linear constraints. The necessity of studying this class of problems is justified by

its wide range of applications and practical importance [1]. As it is mentioned in [1], bilinear

minimax problems often appear in matrix game theory, within development of numerical

methods for nonlinear minimax problems, etc.

One of the first maximin problems was described by P.L. Chebyshev. It is the problem of

the best uniform approximation of a function by polynomials, and it was intensively studied by a

number of authors [4]. This problem is a special case of a maximin problem with independent

variables, namely:

find

 supinf (,)
YX

f
 yx

x y . (0.1)

A more general case is represented by the minimax problem with coupled constraints:

()

sup inf (,)
FX

f
 y xx

x y (0.2)

According to V.F. Demyanov, the above problem is the main one in the game theory of two

players with an information transfer [4]. Let the first player have a payoff function (,)f x y and

the admissible set of strategies X . The second player has a payoff function (,)g x y and the

admissible set of strategies Y . The first player informs the second player about his decision, i.e.

the strategy Xx . Then the formula (0.2) gives the best guaranteed result of the first player,

where ()F x is the mapping:

  () | (,) max (,) .
Y

F Y g g


  
z

x y x y x z

Any minimax problem can be considered as a result of the application of the principle of

the best guaranteed result (or other principle of optimality) for a game with a particular strategy

C
E

U
eT

D
C

ol
le

ct
io

n

 6

of players [4]. As there are new systems and strategies of interaction of players being developed

constantly, new minimax problems will appear.

Berc Rustem in [10] compares the minimax approach with the approach based on

expectation maximization to decisions under uncertainty. He mentions that traditionally

decisions under uncertainty are made by optimizing the expected performance of the system

approach. However, he recognizes its limitations in that such an approach does not take into

account the worst-case situation. The decisions based on expected value optimization are

acceptable in many cases, but they need to be estimated for a case of the worst-case scenario

[10]. As he shows, this is especially important if the worst case scenario may lead to a failure of

the system. But at the same time, he acknowledges, the probability of the worst-case scenario

might be so negligible that decisions based on it may result in an unnecessarily pessimistic

decision. The minimax strategy provides an estimation which gives an opportunity to compare

the performance of the worst-case with the expected value performance [10]. The performance

of the minimax decision does not decrease for any scenario. Therefore the minimax design

represents a robust strategy.

Following this line of thought, Rustem shows that minimax design is sometimes

preferable to expected value optimization approach for two reasons. First, the minimax strategy

provides the tool for analysis of the risk of the worst-case, which the expected value optimization

approach does not take into account. Second, the worst-case scenario may cause a failure of the

system, even when the expected value optimization appears to be the most suitable approach.

Therefore every decision should be based both on minimax strategy and on the expected

performance approach [10].

However Rustem highlights that the minimax strategy is a pessimistic one. Therefore it

may result in a decision with an unnecessary low performance. At the same time, he point out

that in the worst-case scenario the decision based on expected value optimization may lead to an

unacceptable decrease of performance. Therefore, the author argues, neither minimax nor

expected value optimization approaches can be taken for granted. Both of them can be used only

for analyzing the risks of uncertain effects. In the presence of uncertainty, Rustem shows, the

decision maker may desire to evaluate his optimal strategy for a worst-case realization of

uncertain parameters. Usually this leads to minimax formulations [10].

In [10] Rustem gives a detailed overview of existing algorithms for a continuous

maximin problem. He also shows there a number of applications of the minimax problem to

optimal pricing of options, optimal portfolio, decisions under uncertainty, etc.

It is necessary to say that not enough algorithms have been developed for minimax

(maximin) problems. Among different types of maximin problems the problem with two sets of

C
E

U
eT

D
C

ol
le

ct
io

n

 7

continuous variables occupies an important place. But existing algorithms can deal only with the

continuous minimax problem with independent constraints. For example, Rustem and Howe’s

book “Algorithms for Worst-Case Design and Applications to Risk Management”, which is

devoted mainly to the algorithms for minimax/maximin problem and its applications, describes

the algorithms that deal with minimax problems with independent constraints only. A number of

practical applications, for example the game of 2 players with transfer of information, lead to the

minimax/maximin problems with coupled constraints. Therefore it is important to develop an

algorithm which can handle the minimax problem with coupled constraints as well. Within the

thesis, I consider a continuous maximin problem with coupled constraints. The proposed method

is based on decomposition of the original problem to two subsequently solved problems. One of

the problems is a nonsmooth problem.

Nonsmooth optimization methods may be applied not only to problems with nonsmooth

variables, but also in many other cases. An example is a nonlinear problem which is difficult to

solve due to some properties, such as special structure of the problem, large dimension or large

number of constraints. For example, for the nonlinear problem:

(,) min

(,) 0, 1...

(,) 0, 1...
i

j

n

f

g i r

h j p

X


  
 

 

x y

x y

x y

x 

, (0.3)

(where ,n mX  y ) when dimension is high, a number of experts (A. Ben-Tal, J. Outrata, J.

Zowe) consider it reasonable to solve the problem (0.3) by decomposition to two subsequently

solved problems of low dimension. One of the problems is a nonsmooth problem. That is the

original problem is replaced with

 () : () minP  x x , (0.4)

where

 () min (,), ()f F  
y

x x y y x ,

| (,) 0, 1... ;
()

(,) 0, 1...

m
i

j

g i r
F

h j p

           

y x y
x

x y



is a multivalued mapping.

It is suggested to use so called “Bundle methods” for the nonsmooth problem (0.4).

Bundle methods are rather universal and are widely used. But one of the obvious shortcomings

of applying bundle methods to the problem (0.4) is that they do not take into account the special

properties of the problem.

C
E

U
eT

D
C

ol
le

ct
io

n

 8

Within the thesis I am considering the following continuous maximin problem with

coupled constraints:

()

max min (,)
n F

f
 y xx

x y


 (0.5)

where

| (,) 0, 1... ;
()

(,) 0, 1...

m
i

j

g i r
F

h j p

         

y x y
x

x y



is a multivalued mapping.

The goal of the present work is to develop and implement an algorithm for the case of

objective function (,)f x y linear in variable y. The method is based on obtaining the steepest

ascend direction of the minimum function () x . It is also based on the theory of optimization of

nonsmooth functions.

The proposed decomposition for problem (0.5) is promising due to the following:

1) it reduces the dimension of the original problem

2) it makes it possible to handle the maximin problem with coupled constraints

3) it allows the use of existing nonsmooth optimization methods.

The present thesis begins with an introductory chapter, followed by the 3 chapters, the

conclusion, and the references and appendix section. Chapter 1 presents basic concepts of

convex analysis and reviews existing methods of nonsmooth optimization. In chapter 2 I have

developed a method of decomposition of the maximin problem with coupled constraints, an

algorithm for the problem, and I have studied the arising problems and methods of their solution.

In chapter 2 I have also obtained and proved the necessary condition of local maximum of the

function () x . Chapter 3 contains a computational study of the developed algorithm and

analysis of obtained results. The appendix contains the code listing of the developed program in

the system of computer algebra Maple.

C
E

U
eT

D
C

ol
le

ct
io

n

 9

CHAPTER 1.
BASIC CONCEPTS AND REVIEW OF EXISTING METHODS OF

NONSMOOTH OPTIMIZATION

In the present chapter the necessary information from convex and nonsmooth analysis is

given (see [9]). For simplicity the space X is assumed to be finite-dimensional. We assume that

nX   . Let *,x x denotes the scalar product of two vectors *, , | |Xx x x is Euclidean norm

of vector x. Let B be an open unit ball with the centre at 0, i.e.  , | | 1 .B X  x x

1.1. The basic concepts of convex analysis

Convex sets.

Def A set C X is called convex, if together with any two points 1 2, x x C it contains a

segment connecting them, i.e. 1 2+ (1-) x x C   for any  0,1  . Empty set  is assumed

convex by definition. If C is a convex set then its closure clC , an interior int C and the set

 | , C x x C    

are also convex [9].

If sets 1C and 2C are convex, then their intersection 1 2C C and their algebraic sum

 1 2 1 2 1 1 2 2| ,C C x x x C x C    

are also convex [9].

Def Let M X . The intersection of all convex (convex closed) sets in X, containing M, is

called a convex hull (convex closure) of set Μ and is denoted by coΜ (coM).

Notice that соΜ and coM are convex sets. Besides, co coM M and hence cl co coM M .

Inversely, co cl coM M . Therefore co cl coM M [9].

Def Linear combination 1 1 2 2 m m    x x x is called a convex combination of points

1, , ,mx x if 1 2 1, 0, 1, .m i i m       

Theorem 1.1. [9] In the space nX   , any point from co M can be presented as a convex

combination of at most 1n  points from M .

It directly follows from the theorem 1.1 that the set Μ is convex if and only if co M M [9].

The important role in convex analysis and applications is played by the following

C
E

U
eT

D
C

ol
le

ct
io

n

 10

The separability theorem. [9] Let C1 and С2 are nonempty closed convex sets and one of

them is bounded. Then, if 1 2 ,C C  then there exists a vector *x and a number 0  such

that * *
1 2, ,  x x x x for all 1 1 2 2, .C C x x

Def A set K X is called a cone, if from x K it follows that x K  for all 0  .

The cone K is convex if and only if from 1 2, x x K it follows that 1 2+ x x K [9].

Def Let C be a nonempty convex set in X. The set

 0 | , > 0 .C x X x x C     

is called a recession cone of set C.

As 0 0 C therefore 0 C   . The recession cone 0+С is a convex cone [9] and

 0 | .C x X C x C    

A special role among convex sets is played by so-called polyhedral sets.

Def The set of points Cx is called polyhedral, if it satisfies the system of linear inequalities

 *, , 1, ,i i i m x x (1.1)

where *, , 1,i i X i m   x are fixed.

A special case of a polyhedral set is a convex polyhedron, i.e. a bounded set described by the

system (1.1). A convex polyhedron is a convex hull of a finite number of points.

Def A cone K is called polyhedral, if there is a finite set of vectors 1, , mx x , such that

i
1

| , 0, 1, .
m

i i
i

K X i m 


 
     
 

x x x

It is known that a polyhedral cone can be always described by a finite system of linear

homogeneous inequalities

 *, 0, 1, .i i m x x (1.2)

Inversely, the set of solutions of the system (1.2) is a polyhedral cone.

Among the properties of polyhedral cones it is necessary to mention the following: a

polyhedral cone is always closed, the sum and intersection of polyhedral cones are again

polyhedral cones [9].

Convex functions.

Def Let's consider a function  :f X    . One may connect the following sets with

the function f:

C
E

U
eT

D
C

ol
le

ct
io

n

 11

 
 

dom | () ,

epi (,) | () .

f x X f x

f x X f x 

   

   

They are called an effective set and a function supergraph of f accordingly. The supergraph

completely defines function f [9], i.e.

 () inf | (,) epi ,f x x f


  

Def Function f is called convex if the set epi f is convex in the space X  .

Def If dom f   and ()f x   for all х, then the function of f is called a proper function.

A proper function f is convex if and only if  1 2 1 2(1) () (1) ()f x x f x f x        for all

1 2, , [0,1]x x X   [9].

The convexity of a function (not necessarily proper function) is equivalent to the following

inequality [9]

 1 2 1 2(1) () (1) ()f x x f x f x       

for all 1 2, , [0,1]x x X   .

Examples of convex functions are:

1) affine function

*() ,f x x x   , where * , ;x X  

2) support function of a convex set C X

 * *() sup , |cS x x x x C  .

Let's consider some operations over convex functions.

The sum f g of proper convex functions of f and g is a convex function [9].

Def Function f is called closed if the set epi f is closed in X  .

The function f is closed if and only if one the following holds [9]:

1) f is lower semicontinuos

2) level sets  | ()x f x  are closed in X for all   .

Def Every function f can be assigned a function  cl inf | (,) epi f x f   called closure of

function f. As the closure of a convex set is convex, therefore the closure of a convex function is

always a convex function [9].

C
E

U
eT

D
C

ol
le

ct
io

n

 12

Def Function  () sup () |if x f x i I  is called the least upper bound of a set of functions

(),if x i I .

Def Function f is called positive homogeneous, if   ()f x f x  for all 0, x X   . A

function f is convex and positive homogeneous if and only if its supergraph epi f is a convex

cone [9].

The following statement holds.

Theorem 1.2. [9] Let f be a proper convex function. Then the following are equivalent:

1. f is bounded from above in a neighbourhood of point х;

2. f is continuous in х;

3. f is Lipschitz in a neighbourhood of х, i.e. there exists a constant 0l  such that

1 2 1 2() ()f x f x l x x   for all 1 2, x x from a neighbourhood of point х.

Def A directional derivative of function f in direction x X at point х is

1

0
(;) lim () () ,f x x f x x f x


 


     

if the limit in the right hand side of the equality exists (finite or infinite). For a proper convex

function f there exists a derivative (;)f x x in each point domx f in any direction x X . This

derivative is a convex positive homogeneous function in variable x .

Def A subdifferential of a convex function f at point 0 domx f is the following set

 * *
0 0 0() () () , .f x x X f x f x x x x x X      

A subdifferential ()f x is a convex closed set in X [9]. Its support function is (;)f x x ,

where the closure is taken with respect to x . Thus () (;0)
x

f x f x   . If f is a convex function,

continuous at point х, then ()f x is a nonempty compact set [9] and

 * *(;) max , () .f x x x x x f x  

In particular, if function f is convex and differentiable at point х, its subdifferential ()f x

contains one element - a gradient ()f x [9].

Def A function  :f X    is called concave if the function f is convex.

Def A function  :f X Y    is called convex-concave if function (,)x f x y is

convex for all y, and function (,)y f x y is concave for all х.

C
E

U
eT

D
C

ol
le

ct
io

n

 13

The following statement takes place.

The theorem of minimax [9]. Let 0X X and 0Y Y be convex closed compact sets. Let

function (,)f x y be convex-concave function on the given sets. Then

0 00 0

inf sup (,) sup inf (,)
X XY Y

f f
  


x xy y

x y x y

Also the following inequality holds

0 00 0

inf sup (,) sup inf (,)
X XY Y

f f
  


x xy y

x y x y

for arbitrary sets Х0 and Y0 and any function (,)f x y .

C
E

U
eT

D
C

ol
le

ct
io

n

 14

1.2. Multivalued mappings

In the present work we will need a concept of a multivalued mapping [9].

Def Let
nX   ,

mY   . A mapping : 2YF X  is called a multivalued mapping if for every

x X it assigns a set ()F x Y .

The following sets are associated with a multivalued mapping F

  gr , , ()F x y x X y F x  

and

 dom () ,F x X F x  

which are called the graph and effective set of mapping F respectively. It is obvious that

 () , gr ,y F x x y F  

i.e. a mapping F is completely determined by its graph.

The evaluation of different types of derivatives of minimum (maximum) functions defined on

values of multivalued mappings, is an actual problem for quasidifferential calculus, the analysis

of sensitivity of parametrical extremal problems, theory of necessary conditions of an extremum

and other branches of optimization theory. In particular, it is important to define a class of

multivalued mappings for which a minimum function is directionally differentiable [9].

C
E

U
eT

D
C

ol
le

ct
io

n

 15

1.3. The review of existing methods of nonsmooth optimization

One can solve a maximin problem by its decomposition to two optimization problems one of

which is a nonsmooth problem. Therefore the review of existing methods of nonsmooth

optimization is of interest.

The current state of optimization theory is characterized by intensive development of so-

called nonsmooth analysis, i.e. a generalized differential calculus for nondifferentiable in the

usual sense functions. The concept of a subdifferential for convex functions was the first

generalization of a classical gradient of a function in the space n . But unlike a gradient, a

subdifferential of a convex function : nf   is in general, a set ()f x in the space n . Its

element ()f x  is called a subgradient of a function f at point х. In this case the classical

Fermat theorem for a minimum point х takes the form 0 ()f x . A point х, in which the last

condition is satisfied, is called a stationary point. If a convex function f is differentiable in the

usual sense, then () ()f x f x   and Fermat’s theorem is reduced to its usual form () 0f x  .

The generalization of the notion of a subdifferential for non-convex functions has led to the

notion of generalized gradient (F. Clark). A generalized gradient for a function f is also denoted

by ()f x , and in the case of a smooth function f it coincides with its gradient.

Another direction in the development of nonsmooth analysis is connected with the use of

directional derivative and its generalizations (V.F. Demjanov [4]) and the development on its

basis of subdifferential (or quasidifferential) calculus of nonsmooth functions.

The development of generalized differential calculus for nonsmooth and nondifferentiable in

the usual sense functions makes it possible to construct methods of nonsmooth optimization.

1.3.1. Subgradient methods

Subgradient methods are among the first methods developed for optimization of nonsmooth

convex functions.

At iteration kx , these methods make a step of a given size along a negative subgradient:

1k k k kx x d   ,

where /k k kd g g  and  k kg f x .

Due to its simple structure subgradient methods are still widely used. But they have a number

of serious shortcomings. Subgradient methods do not guarantee a decrease of an objective

C
E

U
eT

D
C

ol
le

ct
io

n

 16

function at each iteration, there is no easily implementable stopping criterion, and the rate of

convergence of these methods is slow (usually it is less then linear).

1.3.2. Bundle-methods

There is a wide range of algorithms called bundle-methods. But all of them have a number of

common features. All of them collect a set of subgradients or approximated subgradients

associated with points in which they were calculated. On its basis one can obtain an interior

approximation of a subdifferential. Then these methods calculate an approximation of the

quickest descent direction. Using the obtained direction, these methods calculate the next

potential point, using a search along the direction, or a trust region method. If the obtained point

provides a sufficient decrease of an objective function, then the algorithm moves to it (serious

step). Otherwise it undertakes a so-called null step at which the current point remains the same,

and the subgradient obtained at the current iteration is added to the bundle, thus improving the

approximation of a subdifferential.

One of the essential differences of different bundle methods is the method which they use to

update a bundle of subgradients. In general they use either a convex combination of all previous

subgradients or choose only some of them (all subgradients that do not describe well the

behaviour of a function at the current point are removed from the bundle).

The first bundle methods obtained a new candidate point, using the search along the obtained

direction. Later modifications (H.Shramm, I.Tsove) use the concept of a trust region which has a

number of advantages.

Al bundle methods have the following two main properties:

 At iteration kx they use an information bundle,)),((kk gxf)),((11  kk gxf …, collected prior

to the current iteration to construct a model of a function f;

 if the model is insufficiently adequate due to the nonsmooth structure of the function, then

the additional information on subgradients in a neighbourhood of kx should be collected.

Using the collected information, an approximation of f at point kx is developed by the

method of cutting planes:

)}()({max
1

ii
T
i

ki
xfxxg 


.

The last expression is a piecewise linear approximation of a convex function f from below,

which coincides with f at every ix . Thus we obtain:

C
E

U
eT

D
C

ol
le

ct
io

n

 17

)}()({max);(
1

iik
T
i

T
i

ki
kCP xfxxgdgdxf 


,

where kd x x  , nd  .

This model poorly describes a function far from a point kx . Therefore one adds a stabilizing

term ddt T
k)2/1(for 0kt  to CPf while searching for a minimum of the model. If CPf

describes the behaviour of f in a neighbourhood of kx well enough, then the value of kd which

minimizes the expression

dd
t

dxf T

k
kCP 2

1
);( ,

is a descent direction for the function f. A search along the direction kd gives a point 1kx such

that)()(1 kk xfxf  . For a nonsmooth function f it can happen that CPf is such a bad

approximation of f , that kd is not a descent direction for f (or a search in this direction gives

only insignificant decrease of f). In this case the second part of the method should be applied.

Clearly CPf does not have the same behaviour as f on the ray 0,   kk dx . To compensate

this lack of the information, the method remains in the current point kx and adds a subgradient

from)(kk dxf  for a small 0 to the model.

Thus, the algorithm of the bundle method has the following form:

Iteration 1 kk xx :

4. Сalculate }|)
2

1
();(min{arg)(nT

k
kCPkk Rddd

t
dxftdd  .

5. Carry out a search in the direction kk dx  for 0 .

If a search gives essential decrease of function f, then make a serious step: kkkk dxx 1 ,

)(minarg 0 kkk dxf     and calculate)(11   kk xfg .

If a search leads to an insufficient decrease, then make a null step: kk xx 1 and calculate

)(1 kkk dxfg  for a small enough .0

Unlike the subgradient method, the described above procedure guarantees a decrease of an

objective function at each iteration. Furthermore, there is a stopping criterion: x is an optimum,

if kd is close enough to 0. And as the search procedure calculates a step size, the rate of

convergence of the algorithm is significantly faster.

C
E

U
eT

D
C

ol
le

ct
io

n

 18

Computing a value of an objective function and its subgradient often involves considerable

computational complexity. Therefore the following modification of a bundle-method (H.

Schramm, J. Zowe), which does not use a search along the obtained direction is of interest.

Using this approach, the expression from the first step of the previous algorithm is replaced

with

}
2

1
|);(min{arg)(k

T
kCPk dddxfd   .

Now, instead of using some chosen in advance and more or less random k (or respectively

kt) the method uses a trust region approach: that is it increases/decreases k in a systematic

way.

Such approach has the following two advantages. It provides a method of choosing t, and at

the same time there is no need to carry out a search along the obtained direction. Clearly, the

same approach can be applied also to dd
t

T

k2

1
 by adjusting kt . It allows to reduce the problem

to a problem of quadratic programming for which there is a number of reliable and effective

algorithms, and software. Thus, we obtain the following iteration scheme :

Iteration 1 kk xx :

1. Calculate
1

() arg min{ (;) () | }
2

T n
k k CP k

k

d d t f x d d d d
t

    .

2. If)(kk dxf  is "sufficiently" less than)(kxf , then

increase kt and return to (1), or

make a serious step, let kkk dxx 1 , and calculate)(11   kk xfg

3. If)(kk dxf  is "insufficiently" less than)(kxf , then

decrease kt and return to (1), or

make a Null step and let kk xx 1 and calculate)(1 kkk dxfg  .

Thus, the second algorithm uses a piecewise linear approximation of an objective function

not just to obtain a quickest descent direction, but also to calculate a candidate point for the next

iteration.

C
E

U
eT

D
C

ol
le

ct
io

n

 19

1.3.3. Method of cutting hyperplanes

These methods generate a sequence of points, which converges to a solution of the problem.

Similar to the described above method, these points together with subgradients calculated in

these points, describe a piecewise linear approximation of the problem called a localization set.

Each subsequent point defines a new cutting hyperplane and improves the localization set until a

satisfactory solution is obtained.

There are several modifications of the described method. The algorithm of choosing of a next

"test" point, which is used for construction of a new plane, is the most essential difference

between them. The most robust results are shown by so-called central methods, which calculate

the next point as a centre of points, obtained at previous iterations.

1.3.4. Efficiency of nonsmooth optimization methods

By decomposition of the initial smooth problem we obtain two optimization problems one of

which is a nonsmooth problem. Its solution often requires a lot of computations to find a value of

function and its subgradient at each iteration of an algorithm of nonsmooth optimization. A

typical example is a decomposition of maximin problem to two optimization problems one of

which is a nonsmooth problem. To compute a value of the objective function one has to solve a

number of optimization subproblems of the same type. It makes up a significant part of running

time of the algorithm.

C
E

U
eT

D
C

ol
le

ct
io

n

 20

CHAPTER 2.
DEVELOPMENT OF THE ALGORITHM FOR THE MAXIMIN

PROBLEM

2.1. Problem statement. Decomposition of the maximin problem to smooth and
nonsmooth problems.

Methods of nonsmooth optimization can be applied not only to problems with nonsmooth

functional parameters, but also in a variety of cases when a usual problem of nonlinear

programming is difficult to solve due to its properties (a special structure of the problem and a

large number of variables and constraints). Consider, for example, a nonlinear programming

problem of the following form:

(,) min

(,) 0, 1...

(,) 0, 1...
i

i

n

f

h i r

h i r p

X


  
   

 

x y

x y

x y

x 

,

where ,n mX  y  are optimized variables, and if h are smooth functions. If the dimension

of the problem is high, a number of experts (for example, A.Ben-Tal, J.Outrata, J.Zowe) consider

it reasonable in certain cases to decompose the problem to two sequentially solved problems of

lower dimension, one of which is nonsmooth. That is the original problem is replaced with the

following problems:

  
() :

() min (,), ()

P

f F  
y

x

x x y y x , (2.1)

where

 () | (,) 0, 1... ; (,) 0, 1...m
i iF h i r h i r p         x y x y x y

is a multivalued mapping.

And then, one has to solve the following problem of nonsmooth optimization

 () min, X  
x

x x . (2.2)

A number of experts in nonsmooth optimization (for example, A.Ben-Tal, J.Outrata, J.Zowe)

suggest to use so-called bundle methods for the nonsmooth problem (2.2). Indeed, bundle

methods are universal enough and are widely applied recently. On the other hand, one of the

obvious shortcomings of applying bundle methods to the problem (2.2) is that these methods do

not take into account the specificity of the problem (2.2).

C
E

U
eT

D
C

ol
le

ct
io

n

 21

 Indeed, it is known [9] that under certain regularity conditions, there exists a derivative of

the function ()x at point x in direction v in the problem (2.1), which has the following form:

() (,)

(;) min max (, ,);L
 

  xy x λ x y
x v x yλ v , (2.3)

where

  () () | (,) ()F f    x y x x y x

is a set of solutions of the problem (2.1),

 1, , p λ  ,

 (,) 1... : (,) 0ii r h   x y x y ,

is the set of active constraints,

1
(, ,) (,) (,)

p

i i
i

L f h


  x yλ x y x y

is a Lagrange function for the problem (2.1),

 (,) | (, ,) 0, 0, 1... ; 0, (,)p
i iL i r i I         yx y λ x yλ x y

is the set of Lagrange multipliers for the problem (2.1) for a fixed x at a point ()Fy x .

Def A (RLI) regularity condition is said to be satisfied at point 0 gr Fz (or that a

multivalued mapping is RLI-regular at point 0z), if the system of elements 0 0(), ()ih i I y z z is

linearly independent.

Theorem 2.1 [9].

Let mapping F be RLI-regular at point 0 gr Fz . Then the set 0() z consists of a single

point, i.e.  0() z λ .

 In particular, if the problem (2.1) has a unique solution, i.e.  () x y then the formula

(2.3) takes the following simple form:

(,)

(;) max (, ,),L


  xλ x y
x v x yλ v (2.4)

On the other hand, in any case the function

(,)

(;) max (, ,),L


  xλ x y
x v x yλ v (2.5)

is the upper convex approximation of the function  at point x for any ()y x .

C
E

U
eT

D
C

ol
le

ct
io

n

 22

A directional derivative of the function  allows to express a necessary condition of a

minimum for the problem (2.2) in the simple form:

(;) 0 x v

for any vector v from a cone of possible directions (,)K x X of set X at point x .

Thus, using formula (2.4), we can obtain a steepest descent direction v of the function ()x

and on its basis develop numerical algorithms of the quickest descent.

Consider now the following maximin problem

()

max min (,)
n F

f
 y xx

x y , (2.6)

where

  () | (,) 0, 1... ,m
iF h i p   x y x y

is a multivalued mapping, ,n m x y  are optimized variables, f and ih are smooth functions.

In the same way, the necessary condition of optimality can be expressed in the form

(;) 0 x v

And an algorithm of a steepest ascent for the given maximin problem can be developed using the

necessary condition of optimality.

In the present work an algorithm for the maximin problem with coupled variables (2.6) is

developed.

2.2. Development of a method for solving the maximin problem

In order to reduce technical difficulties at the current phase of research, I assume the problem

()P x to be linear in variable y and containing only inequality constraints, i.e.

(,) (), ,

(,) (), () 0, 1,..., ,i i i

n

f c

h a b i p

X

 
    

 

x y x y

x y x y x (2.7)

where (), (), ()i ia x b x c x are continuously differentiable functions.

It is known [9], that for the problem (2.7) 0 0 0(,) ()  x y x for all 0 0()y x . That is the

set 0 0(,) x y does not depend on 0y .

And therefore

0 0 0
0 0 0

() ()
(;) min max (, ,),L

 
  xy x λ x

x x x y λ x .

C
E

U
eT

D
C

ol
le

ct
io

n

 23

At the same time it follows from [4] that for the function () x to reach a maximum (local) at

point 0x it is necessary that

 0; 0 x x

for all x .

As functions (,)f x y and (,)ih x y are linear in variable y , therefore

1
(, ,) (,) (,)

p

i i
i

L f h


  x yλ x y x y is also linear in y . Hence 0 0(, ,)Lx x y λ is linear in y and

obviously in λ. As scalar product is linear in both arguments, therefore 0 0(, ,),Lx x y λ x is

linear in , λ x and y. Hence 0 0(, ,),Lx x y λ x is a convex-concave function and we can apply

the minimax theorem. We can show that the necessary condition of a maximum of function Ф(x)

at a point 0x has the following form:

 

 
0 0 0

0 0 0 00 0

0 0 0
()| | 1 | | 1 ()

0 0 0 0
() ()| | 1 () () | | 1

0 max ; max min max (, ,),

max max min (, ,), max max min (, ,),
y xx x

L

L L

 

  

  

    

    

   

x
y xx x x

x x
y xx x

x x x y λ x

x y λ x x y λ x

Theorem 2.2.

Let a and y be vectors and nY   be an arbitrary subset. Then the following holds

| | 1
max min , min

Y Y 


y ya
a y y

proof:

Let  denotes the angle between vectors a and y . We have

   
| | 1 | | 1

| | 1 1

max min , max min cos

max min cos max min cos

Y Y

Y Y



 

  

  

 

 
  

 
 

y ya a

y ya a

a y a y

a y y

As we can always choose vector a such that cos 1  , therefore

 1
max min cos min

Y Y


 


y ya
y y

q.e.d.

By the last theorem we have that

0 0 0 0
0 0 0 0

() ()| | 1
max min (, ,), min (, ,)L L

  
  x x

y x y xx
x y λ x x y λ

hence

C
E

U
eT

D
C

ol
le

ct
io

n

 24

 
0 0 0 00 0

0 0 0 0
() ()() | | 1 ()

0 max max min (, ,), max min (, ,)L L
    

   x x
y x y xλ x x λ x

x y λ x x y λ .

That is it is necessary, that

0 00
0 0

()()
0 max min (, ,)L


 x

y xλ x
x y λ ,

The last is equivalent to that the inequality

0 0
0 0

()
min (, ,) 0L


 x
y x

x y λ

is satisfied for every 0()λ x .

Which is equivalent to that for any 0()λ x there exists a point 0 0()y x such that

0 0(, ,) 0L x x y λ .

Obviously, the condition 0 0 (, ,) 0L x x y λ is equivalent to 0 0(, ,) 0L x x y λ .

Thus, I have proved the following result providing a necessary condition of a maximum

point.

Theorem 2.3.

The function Ф(x) has a maximum (local) at a point 0x , if the following condition is

satisfied:

for any 0 0 0() (,)  λ x x y there exists such 0 0()y x that 0 0(, ,) 0L x x y λ .

As the steepest ascent direction 0x of the function () x at point 0x must satisfy the

condition

0 0 0
| | 1

max (;) (;),


   
x

x x x x

and accordingly

0 0 0
0 0 0

()| | 1 | | 1 ()
max (;) max min max (, ,),L

  
  x

y xx x λ x
x x x y λ x .

Or if  0 0() x y then

0

0 0

0 0 0
| | 1 | | 1 ()

0 0 0 0
() | | 1 ()

max (;) max max (, ,),

max max (, ,), max (, ,)

x x L

L L

  

  

   

   

x
x x λ x

x xλ x x λ x

x y λ x

x y λ x x y λ
.

Hence

0
0 0 0 0

()
(;) max (, ,)L


  xλ x

x x x y λ .

C
E

U
eT

D
C

ol
le

ct
io

n

 25

The directional derivative will be maximal when the direction x coincides with the direction

of the steepest ascent of the function () x at point 0x . Therefore we have proved the following

statement.

Theorem 2.4

Let  0 0() x y . The steepest ascent direction of function () x at point 0x coincides with

0 0 max

0 0 max

(, ,)

(, ,)

L
x

L





x

x

x y λ
x y λ

, where maxλ is the solution of the problem
0

0 0
()

(, ,) maxL


 x
x

x y λ . The

last problem is equivalent to the problem
0()

2 , , () maxT


    

λ x
pΗλ λ ΗΗλ .

This is a difficult problem of maximization of a convex quadratic function over a convex

polyhedron (see for example [11]). However, as it will be shown further, the set 0() x consists

of a single point under quite general conditions of RLI-regularity of the problem.

2.3. Finding the steepest ascent direction for the problem of unconditional
maximization for the function () x

 Let's assume that in the main problem (2.6) functions f and ih are linear in variable y.

Thus the original problem can be presented in the following form:

 

()
max min (,),

(,) (), ,

() | (,) 0, 1... ,

(,) (), () 0, 1,..., .

n F

m
i

i i i

f

f c

F h i p

h a b i p



 

   

    





y xx
x y

x y x y

x y x y

x y x y x

 (2.8)

 We need to find the steepest ascent direction 0v v at a point 0x x given the value of

0 ()y x for the problem 0()P x . Therefore we have to solve the problem (2.9) with a normed

direction v :

 0 0
1

max max (, ,),L
 

x
v λ

x y λ v , (2.9)

where

 0 0 0 0 0, 0(,) | (, ,) 0, 0, 1... ; 0, ()r
i iL i r i I           yx y λ x y λ x y ,

 0 0 0 0(,) 1... | (,) 0iI i r h  x y x y

is the set of active constraints at the point 0 0(,)x y .

Let's transform the expression (2.9):

C
E

U
eT

D
C

ol
le

ct
io

n

 26

 

0 0 0 0 0 0
1 1

1

0 0
1 1 1

1

max max (, ,), max max ((,) (,)),

max max (,), max max , max max , , .

r

i i
i

r

i x i
i

L f h

h

 

  





   


     


    

     





x x
v v

v v v

x y λ v x y x y v

p x y v p Hλv v Hλ p v

Therefore the problem (2.9) is reduced to the problem

  
1

max max , ,
 


v

v Hλ p v , (2.10)

where the matrix

1

1 1

1

r

r

n n

h h

x x

h h

x x

  
  
 

  
   
   

H







 is evaluated at the point 0 0(,)x y , 0 0(,)f xp x y .

As scalar product reaches maximum when directions of vectors v and Hλ p coincide, and

as 1v then





Hλ p
v

Hλ p
. Therefore we obtain from (2.10)

   
1 1

max max , , max max , max max
        

      
v v

v Hλ p v Hλ p v Hλ p Hλ p .

The solution λ of the last problem, obviously, coincides with the solution of the problem

 2
max , max , 2 ,T

 
    

λ λ
Hλ p Hλ p λH Hλ p Hλ p ,

Or if we omit a constant term
2

p , it coincides with the solution of the problem

, 2 , maxT


  




λH Hλ p Hλ

λ
 (2.11)

Solving the problem of maximization of a convex quadratic function over a convex

polyhedron (2.11) we obtain λ.

In the sequel, in order to avoid this quite a difficult problem, I assume that a general enough

RLI-regularity condition holds for the problem. By the theorem 2.1, under RLI-regularity

condition, the set  consists of the single point. Therefore, it is enough to check RLI-regularity

condition for the problem and find a unique point of the set  . Thus, if we have that

0 Hλ p , then the point 0x satisfies the necessary condition of optimality and it is a point of

local maximum. The problem is solved. Its solution is 0 0(,)x y . Otherwise (if 0 Hλ p) using

the obtained  , we obtain a steepest ascent direction:

C
E

U
eT

D
C

ol
le

ct
io

n

 27

 0 0

0 0

(, ,)

(, ,)

L

L

 
 

 
x

x

Hλ p x y λ
v

Hλ p x y λ
. (2.12)

On its basis, I will obtain the next approximation of a vector 0x by maximization of the function

0() x v in  .

The proposed method has the following advantages. First, the dimension of the obtained

problem is low. Secondly, under the general enough condition of RLI-regularity (i.e. linear

independence of gradients of constraints ih), the admissible set 0() x consists of the unique

point, and the solution of the last problem is trivial.

2.4. Description of the conceptual algorithm

Input data for the problem of nonlinear programming (2.6) are: numbers r, n, m; smooth

function (,)f x y linear in variable y; smooth functions (,)ih x y also linear in y; an initial vector

0x . Let 0, 0k k x x .

Step 1. Given some fixed value kx x from nX   , we obtain a problem ()kP x . Solving it

with simplex-method, we obtain a solution ()k ky x of the problem ()kP x .

Step 2. Solving the problem of maximization of a convex quadratic function on a convex

polyhedron (2.11), we obtain a vector kλ . As it has been shown above, at this step it is enough

to check the condition of RLI-regularity for the problem and find a feasible point of the set  . It

will be the vector kλ .

Step 3. If 0k k k Hλ p , then the point 0x satisfies the necessary condition of optimality and

it is a point of local maximum. The problem is solved. Its solution is 0 0(,)x y . Otherwise, if

0k k k Hλ p we move to step 4.

Step 4. Using the obtained at step 2 vector kλ , we obtain a steepest ascent direction kv by

formula (2.12).

Step 5. Determine a step size k .

Step 6. The next approximation of a vector 0x is obtained by the formula 1k k k k  x x v .

We move to the step 1, letting 1k k  .

C
E

U
eT

D
C

ol
le

ct
io

n

 28

2.4.1. Finding an extremum point for the problem ()P x

As it was already mentioned earlier, we have to solve the problem ()kP x to find a vector ky

given vector kx at each iteration step of the problem (2.8). As functions f and ih are linear in

variable y, the problem ()kP x is a linear programming problem with respect to y, and it can be

solved with the simplex-method.

Let we are given a value kx x . The problem ()P x for nX   can be written as follows:

 

() min((,)), (),

() | (,) 0, 1...

k k k

m
k i k

f F

F h i r

  

   

y
x x y y x

x y x y
 (2.13)

Denote by () (,), () (,)k i i kf g h  y x y y x y . We can rewrite the problem (2.13) as follows:

() min

() 0, 1...i

m

g i r

 
 



y

y

y 
 (2.14)

It is a linear programming problem. Solving it, we obtain a vector ky .

2.4.2. Finding the steepest ascent direction

 In an expanded form the problem (2.11) can be written as follows:

 
0 0

0 0

, 2 , max

| (, ,) 0; 0, 1... ;

0, 1... | (,) 0

T

r
i

i i

L i r

i i r h





  


        
      

y

λH Hλ p Hλ

λ x y λ
λ

x y

 (2.15)

The problem (2.15) is the problem of maximization of a convex quadratic function on a

convex polyhedron, which in its general form can be written as follows:

1
() , , max

2

() 0

f

J

   



 



x x Dx c x

Ax b

x

,

where 1 12 , (2) ,T T T
r r r r    D H H c p H x λ. The constraints () 0J  x in our case become

0, 1...i i r   . And constraints Ax b become 0 0 0 0(, ,) 0, 0, (,)iL i I   y x y λ x y .

C
E

U
eT

D
C

ol
le

ct
io

n

 29

 Consider constraints 0 0 0 0(, ,) 0, 0, (,)iL i I   y x y λ x y ,

0 0 0 0 0 0
1

(, ,) (,) (,)
r

i y i
i

L f h


    y yx y λ x y x y .

Therefore 0 0(,)f yb x y ,

1

1 1

1

r

r

m m

h h

y y

h h

y y

  
  
 

  
   
   

A







, x λ.

Taking into account conditions 0 00, (,)i i I   x y , we obtain that for 0 0| (,) |I kx y , the

number of i satisfying the condition 0i  is at least r k . Hence, the problem of

maximisation of a convex quadratic function on a convex polyhedron (2.15) can be simplified by

reduction of its dimension.

Let  1 20, , ,...,i r ki a a a    . In this case it is possible to reduce the dimension of a vector λ

by removing from it elements  1 2, , ,...,i r ki a a a  . The dimension of the vector λ thus

becomes equal to 1k  . By removing components of the vector λ we reduce the dimensions of

matrixes A, D and a vector c. From the matrix A we delete columns which indexes are in the set

 1 2, ,..., r ka a a  . Since 2 T
r r D H H , we have to modify matrixes H and TH to reduce the

dimension of the matrix D. One should remove those columns from the matrix H , and those

rows from matrix TH , which indexes are in the set  1 2, ,..., r ka a a  . In the same way we reduce

the dimension of the vector 1 (2)T T
r c p H .

Therefore we have to solve the problem of maximization of a convex quadratic function on a

convex polyhedron of lower dimension

1
() , , max

2

0, 1...i

f

i k

   
 
  


λ λDλ c λ

Aλ b (2.16)

where , , ,D A c b are new vectors and matrixes obtained by removing redundant elements.

Thus, by obtaining a feasible point of a polyhedron we obtain a vector 1k  . Then, in order to

obtain a required vector λ it is necessary to expand a column vector 1k  by adding r k zeros

to it, which where deleted during the reduction of the dimension of the problem (2.15).

C
E

U
eT

D
C

ol
le

ct
io

n

 30

2.4.3. Finding an iteration step size k

The method of choosing a step size along the obtained direction strongly influences the rate

of convergence, as well as the convergence of the method in general.

In case of a smooth objective function, one-dimensional minimization methods show good

results. However, in case of a nonsmooth objective function, this method does not guarantee the

convergence to an optimum point at all. Another drawback of 1-dimensional minimization is the

necessity of a large amount of function value calculations. As often happens, such calculations

are quite computationally expensive as in particular in my problem.

I carried out numerical experiments with four methods of choosing a step size described

below.

Method 1. Fixed step size.

Description. In this method, a step size is set as a constant by the user. This method of

choosing a step size is the simplest one. At the same time, as it will be shown in a computational

experiment, it is the least effective one. The greater the step size, the lower the precision of the

obtained solution. If the step size is too small and the starting point is far from the solution, then

the algorithm requires hundreds and thousands of iterations.

Advantages. It is the simplest method of choosing a step size in terms of algorithmic

implementation. It does not require additional calculations of the objective function values.

Shortcomings. It requires a lot of iterations. The precision of the obtained solution depends

on the step size. Also, in general, the error of the obtained solution can be as great as the length

of the step. It is impossible to say in advance what step size will be optimal for a given function

and a given starting point. The number of required iterations strongly depends on the starting

point and the chosen step size.

Method 2. Choice of a step size using 1-dimensional maximization

If significant effort is necessary for calculating the direction v when minimizing a smooth

function, then the step size k is usually calculated by minimizing (maximizing) the function

 () k    x v . The accuracy of calculating the minimum point of function ()  needs to

be harmonized with the accuracy of calculation of values of function () x . Besides, the

C
E

U
eT

D
C

ol
le

ct
io

n

 31

accuracy of calculating the one-dimensional minimum depends on the number of calculations of

function values of () x along the direction v .

Theoretical estimations often indicate that the method is convergent at a rate for example

(1/)O m . However, even while minimizing a smooth function, it is often discovered in the

course of calculation that when the number of iterations increases, either the rate of convergence

decreases, or the process ceases to converge at all. One of the causes of this may be the loss of

precision in calculation of one-dimensional minimum. This undesirable situation can be

sometimes corrected by increasing the accuracy of one-dimensional minimization. It is usually

necessary to increase the accuracy of one-dimensional minimization or maximization in the

neighborhood of the minimum point or when the point kx is in a so-called ravine, i.e. when the

derivative in some directions is close to zero.

I implemented the dichotomy method for one-dimensional maximization.

Advantages:

 In case of a smooth function, the method converges quite fast to the required solution.

However, the minimum function

()

() min (,)
F

f


 
y x

x x y

can be nonsmooth. As I will show during the computational experiment, when an objective

function is nonsmooth, the method of one-dimensional minimization may not converge to an

optimum point at all.

Shortcomings:

 As I will show in the next chapter, the iteration process gets into an infinite loop when

the point kx nears the kink of the objective function.

 Bad convergence in an area where the function is nonsmooth.

 It requires a lot of calculations of the objective function values along the obtained

direction. This in turn requires solving a lot of problems of linear programming in my

case.

Method 3. The step size k is obtained in the following form:

k c  Hλ p ,

where c is a constant,

C
E

U
eT

D
C

ol
le

ct
io

n

 32

0 0(, ,)L  xHλ p x y λ .

Advantages:

 This method does not require additional calculation of values of the minimum

function in determining the step size.

 It does not require a large number of iterations.

 It does not get caught in an endless loop in the area where the function is nonsmooth.

 It takes into account the behavior of the objective function at the given point.

Shortcomings:

 The rate of convergence decreases in the area where the objective function is

nonsmooth.

 In order to obtain the best result, this method requires choosing the value of constant c

heuristically. Its value may depend on the objective function.

2.4.4. The modified bundle method for the construction of an ascent direction

The present method of choosing a step size and ascent direction is an improved modification

of the previous method. Here I have applied the described below modification of the bundle

method together with the developed algorithm of finding a steepest ascent direction. As it will be

shown during the computational experiment, the rate of convergence strongly decreases when

the iterative process nears a kink of the objective function. In the neighbourhood of a kink of the

objective function its gradient has a rupture. Therefore even an arbitrary small change of

argument of the objective function involves a finite change of the gradient.

In order to increase the stability of the iteration process, and hence the rate of convergence, I

applied the analogy with a physical ball having a certain mass. The main difference (for our

goal) of a physical ball from a mathematical point is that it has inertia. Therefore the physical

ball cannot change its moving direction arbitrary fast. Due to inertia the physical ball has certain

stability during its movement. In the present method of choosing a step size and ascent direction

I have applied an idea of adding inertia to a mathematical point.

In order to add inertia while choosing an ascent direction, I have used the information about

the ascent direction of two previous iterations. Namely:

C
E

U
eT

D
C

ol
le

ct
io

n

 33

1 2

1 2

1 1
2 4
1 1
2 4

k k k

k k k

 

 

 


 

v v v
v

v v v
’

where v is the desired ascent direction,

kv is an ascent direction obtained at the current step,

1kv is an ascent direction obtained at the previous iteration,

2kv is an ascent direction obtained two iteration before.

The step size is calculated as

k c  Hλ p ,

where c is a constant and

0 0(, ,)L  xHλ p x y λ .

Clearly the present modification of choosing of an ascent direction does not require

additional calculations of function values. Taking into account distances to the previous points

would further increase the rate of convergence of the iteration process. However, as it will be

shown during the computational experiment, even without it, the rate of convergence of the

present method essentially exceeds all results obtained earlier.

Advantages of the present method:

 It is stable in the area, where the objective function is nonsmooth.

 This method does not require additional calculation of values of a minimum function

in determining the step size.

 It requires a small number of iterations.

 It does not get caught in an endless loop in the area where the function is nonsmooth

 It takes the behavior of the function into account at the given point.

Shortcomings:

 In order to obtain the best result, this method requires choosing the value of constant

c heuristically. Its value may depend on the objective function.

During the computational experiment, I will investigate the efficiency and convergence of

described methods of choosing of an ascent direction and an iteration step size.

C
E

U
eT

D
C

ol
le

ct
io

n

 34

CHAPTER 3.
COMPUTATIONAL STUDY

3.1. Description of the computational study

On the basis of the described algorithm, I have implemented a program for the maximin

problem with coupled variables using the system of computer algebra Maple.

Using the developed program I have carried out a number of computational experiments. I

have drawn the graph of the minimum function   x , three-dimensional graph and level sets

and shown the iterative process.

As a test objective function, I took a function (,)f x y linear in variable y and containing

quadratic terms in x . Constraints ih are linear in x and y . That is they form a convex

polyhedron:

2 2
1 1 2 2

1 1

2 1

3 2

4 2

5 1 2 1 2

(,) ,

,

5,

,

5,

2 4,

0, 1,5.i

f x y x y

h y

h y

h y

h y

h x x y y

h i

  
 
 
 
 
    

  

x y

Let's show that under the above constraints the following inequality holds:

()
max min (,) 0

n F
f




y xx
x y


.

We have

2 2
1 1 2 2() ()

2 2 2 2
1 1 2 2 1 1 2 2() ()

min (,) min

min () max()

F y F x

y F x F

f x y x y

x y x y x y x y

 

 

     

       

y x

y x

x y
.

As 2 0ix  and 0 5iy  , 1,2i  , then 2 0i ix y  . Therefore 2 2
1 1 2 2 0x y x y  , hence it

follows that 2 2
1 1 2 2

()
max () 0

F
x y x y


 

y x
, which is equivalent to

2 2
1 1 2 2() ()

min (,) max() 0
F F

f x y x y
 

   
y x y x

x y

for any nx  . The required statement follows.

I will need this estimation to analyze a precision of solutions obtained during the numerical

experiments.

C
E

U
eT

D
C

ol
le

ct
io

n

 35

Now let's show that in a polyhedron of admissible solutions of the problem, the strict equality

is attained

()
max min (,) 0

n F
f




y xx
x y


.

Let 1 20, 0x x  . Then

2 2
1 1 2 2 1 2(,) 0 0 0f x y x y y y      x y .

The constraints for 1 20, 0x x  have the following form:

1

1

2

2

1 2

0,

5,

0, .

5,

2 4

y

y

y

y

y y


  
 

 

The last system of inequalities has a solution, for example, at 1 20, 0y y  .

Hence for 1 20, 0x x  and as  F x is not an empty set we have that:

() ()
max min (,) max min 0 0

n nF F
f

  
 

y x y xx x
x y

 
.

Thus, the point 1 20, 0x x  is a solution of the above maximin problem.

Let's check now that RLI-regularity holds. That is that the system of elements

0 0(), () ,y ih z i I z I   is lineary independent:

1 2 3 4 5

1 1 1 1 1
0

1 2 3 4 5

2 2 2 2 2

1 1 0 0 1
()

0 0 1 1 2y i

h h h h h

y y y y y
h z

h h h h h

y y y y y

     
                    
       .

Clearly, rows of the last matrix are linearly independent. Therefore RLI-regularity condition

is satisfied.

The graph of the minimum function
()

() min (,)
F

f


 
y x

x x y below illustrates the location of a

maximin point and the obtained estimation:

C
E

U
eT

D
C

ol
le

ct
io

n

 36

Fig. 1 The rear view of the function () x for 1 24.4, 4.4x x   

C
E

U
eT

D
C

ol
le

ct
io

n

 37

Fig. 2 The rear view of 3-dimensional graph of the function () x and its level sets for

1 24.4, 4.4x x   

C
E

U
eT

D
C

ol
le

ct
io

n

 38

Fig. 3 Level sets of the function () x for 1 24.4, 4.4x x   

C
E

U
eT

D
C

ol
le

ct
io

n

 39

Fig. 4 Level sets of the function () x for 1 20.5..0.5, 0.5..0.5x x   

The above graphs and level sets show that the optimum point of the function () x is in the

neighbourhood of the point 1 2(,) (0,0)x x  .

The results of numerical experiments for the specified function are shown below.

Example 1.

In the present example, I have used the following expression for calculating a step size:

0.1   v

where  is the obtained steepest ascent direction at the current point. The constant 0.1 has been

chosen heuristically.

Input data for the algorithm:

1. The required precision of solution

C
E

U
eT

D
C

ol
le

ct
io

n

 40

2. Maximum number of allowed iterations. After reaching the maximum number of

iterations, the iterative process stops even if the required precision has not been

attained.

3. Starting point for the iterative process.

In the present example:

Input data:

1. Initial starting point 1 2(,) (12,3)x x   .

2. The maximum number of allowed iterations is 50.

3. The required precision of solution 0.001  .

The obtained result:

1. The obtained solution (0.0000625, 0.0002395)x .

2. Number of iterations 28k  .

3. The obtained value of the objective function -6.39 10kf    .

Graphs below shows the iterative process of the computational experiment.

C
E

U
eT

D
C

ol
le

ct
io

n

 41

Fig. 5 Trajectory of iterations from the starting point (-12, 3)

Figure 5 shows, that after a few iterations the iterative process enters the neighbourhood of an

optimum point. However then the iterative process gets on a kink of an objective function and

the convergence decreases strongly. The iterative process in the neighbourhood of an optimum

point is shown below.

C
E

U
eT

D
C

ol
le

ct
io

n

 42

Fig. 6 Trajectory of iterations, starting from the 5th iteration

The above graphs of level sets show that the rate of convergence on a kink of a minimum

function significantly decreases. It happens due to the nonsmoothness of the minimum function.

In the place shown on the last graph, the minimum function is nonsmooth, and respectively its

gradient is a discontinuous function. That is usual methods of smooth optimization are not

suitable for the problem. Nevertheless, the algorithm has found an optimal point for a finite

number of iteration (28 iterations). And, as I will show further, this result can be significantly

improved, by application of a simple modification of a bundle method. The required precision of

solution is achieved.

C
E

U
eT

D
C

ol
le

ct
io

n

 43

Example 2 (choosing a step size by the method of one-dimensional maximization)

In the present example, I have used a method of one-dimensional maximization described in

the previous chapter (dichotomy method) for choosing a step size.

Input data:

1. Initial starting point 1 2(,) (12,3)x x  

2. Required precision 0.001  .

3. The maximum number of allowed iterations is 50.

The obtained result:

1. The obtained solution (.35007, .49507)x .

2. The number of iterations is 50.

3. The obtained value of the objective function .38662kf   .

Graphs below show the iterative process of the computational experiment.

C
E

U
eT

D
C

ol
le

ct
io

n

 44

Fig. 7 The trajectory of iterations from the starting point (-12,3)

C
E

U
eT

D
C

ol
le

ct
io

n

 45

Fig. 8 Trajectory of iterations, from 11th iteration

The above graphs show that the extremum point has not been reached. The algorithm has got

caught in an endless loop at point (.3501,.49507)x . Thus, the method of 1-dimensional

maximization is not suitable for calculating an iteration step size for nonsmooth functions.

Thus using the one-dimensional maximisation method, the iterative process has stopped on a

kink (in a place where function nonsmooth) and has got caught in an endless loop. The reason is

that on a kink, in the direction of steepest ascent, we are already in the neighbourhood of an

optimum point. Therefore the obtained step size is close to 0.

The above graphs of level sets show that convergence decreases far from an extremum point and

an iterative process gets caught in an endless loop on a kink of the minimum function. It occurs

due to the nonsmoothness of the minimum function. And respectively the gradient of the

minimum function has a rupture in the current point.

C
E

U
eT

D
C

ol
le

ct
io

n

 46

Example 3.

In the present example I have used a constant step size.

Input data:

1. Initial starting point 1 2(,) (12,3)x x  

2. Required precision = 0.001 .

3. The maximum number of allowed iterations is 50

4. Step size 0.4  .

Results of the computational experiment:

1. The obtained solution = (.074678, .098967)x .

2. The number of iterations 50k  .

3. The obtained value of the objective function .4483632057kf   .

Fig. 9 The trajectory of iterations from the starting point (-12,3)

C
E

U
eT

D
C

ol
le

ct
io

n

 47

Fig. 10 Trajectory of iterations, starting from the 11th iteration

The iterative process has stopped because it reached the maximum number of iterations.

After entering the neighbourhood of the optimum point, the iterative process has got caught in an

endless loop.

Thus, using a fixed step size method, the required precision has not been reached. In general,

a precision of solution directly depends on the step size in this method. Also the given method of

choosing a step size requires a lot of iterations, and at the same time it does not guarantee that

the required precision of a solution will be reached. However, the obvious advantage of the

given method of choosing a step size is its simplicity. Also there is no need to calculate

additional values of the objective function.

Example 4.

In the present example I have applied the modification of bundle method described in the last

chapter together with the developed algorithm of finding a steepest ascent direction. As I have

shown above, the rate of convergence strongly decreases when the iterative process nears a kink

of the objective function. In the neighbourhood of a kink, a gradient of the objective function has

C
E

U
eT

D
C

ol
le

ct
io

n

 48

a rupture. Therefore even an arbitrary small change of coordinates involves a finite change of the

gradient. The numerical experiment has shown that the given modification of choosing an ascent

direction has allowed to improve the stability of iterative process considerably.

Input data:

1. Initial starting point 1 2(,) (-12,3)x x  .

2. Required precision of solution = 0.001

3. The maximum number of allowed iterations is 50

Results of computational experiment:

1. The number of iterations 14k  .

2. The obtained solution -4 -5(.213 10 , .5485 10)  x .

3. The obtained value of the objective function -6.10602 10kf    .

Fig. 2.11 The trajectory of iterations from the starting point (-12, 3)

C
E

U
eT

D
C

ol
le

ct
io

n

 49

Fig. 2.12 The trajectory of iterations, starting from the 3rd iteration

In the present example the algorithm has stopped after 14 iterations. The required precision

has been reached.

Using the given method of choosing a step size and an ascent direction, the algorithm

required the least number of iterations (14 iterations). The above graphs show that the

application of ideas of a bundle method has allowed reaching a much better stability and rate of

convergence, than in the previous computational experiments. It is achieved by taking into

account the information of the ascent directions of two previous iterations.

The number of required iterations is 2 times less, than in the best of obtained above results

(28 iterations for a similar method without application of a bundle method). Further I intend to

implement an advanced version of this method, which will also take into account a distance to

the previous points and use the information of the previous directions of a greater number of

iterations.

C
E

U
eT

D
C

ol
le

ct
io

n

 50

3.2. Analysis of results of the computational study

In chapter 2 I developed an algorithm, and a program that implements the method described

above. The computational study in this chapter shows that the developed program allows us to

calculate a maximin point in the specified examples.

In the first method of choosing a step size the algorithm stopped after 28 iterations and the

required precision of the solution has been reached. Moreover, the value of the objective

function in the obtained optimal point differs from the optimum by less than 10-5. However, its

rate of convergence strongly decreases when the iterative process nears the kink of the objective

function.

A modification of the bundle method together with the developed algorithm of finding a

direction of the steepest ascent showed the best result. The required precision of the solution has

been reached after 14 iterations only. This result is twice as good as the best result of other

methods of choosing a step size and an ascent direction. Moreover, the value of the objective

function at the obtained point differs from the optimum only by 10-6. The computational study

has shown that the given method is stable in the area where the objective function is nonsmooth.

The iterative process with a constant step size stopped because it exceeded the maximum

number of iterations. After entering the neighbourhood of an optimum point, the iterative

process got caught in an endless loop. Thus, using this method of choosing a step size, the

required precision was not reached, even though the limit of iterations was exceeded. Moreover,

in this method the precision of the solution directly depends on the step size. The given method

of choosing a step size also requires too many iterations.

The worst result was shown by the method of one-dimensional minimization. The iterative

process got caught in an endless loop rather far from an optimum point and the allowed number

of iterations was exceeded. Thus the obtained value of the objective function significantly differs

from the optimum value of the objective function.

C
E

U
eT

D
C

ol
le

ct
io

n

 51

CONCLUSION

The goal of the present work was to develop an algorithm for the maximin problem with

coupled variables. To this end I have studied methods of nonsmooth optimization in chapter 1. In

chapter 2 I have developed a method of decomposition of the maximin problem with coupled

constraints, studied the arising problems and methods of their solution. In chapter 2 I have also

obtained and proved the necessary condition of local maximum of function () x .

The practical results of the present work are the implementation and testing of the algorithm

for the maximin problem with coupled constraints using the system of computer algebra Maple.

In the course of the computational experiment, I have shown that the developed algorithm makes

it possible to calculate maximin points with a given precision.

The obtained computational results correspond to the graph and level curves of the objective

function. I have developed several methods of choosing a step size and methods of choosing of

ascent direction. I have also analyzed and compared the advantages and shortcomings of each

method, showing that the modification of bundle method of choosing an ascent direction gives

the best result.

For most of the developed methods of choosing of a step size I have shown their efficiency

and ability to calculate maximin points with a given precision in the numerical experiment.

I have justified the necessity of using of methods of nonsmooth optimization in the numerical

experiment. I have also developed and tested an original synthesis of the developed algorithm

with a modification of bundle method. The goal of the present work is fulfilled.

In future I am going to generalize the method to an objective function f nonlinear in both

variables and nonlinear constraints. I will also apply the existing nonsmooth optimization

methods to increase the speed of convergence, such as the bundle method, and will investigate

the convergence of the algorithm for different types of functions. Another potential topic is to

generalize the method for a more general Bilevel programming problems [3].

C
E

U
eT

D
C

ol
le

ct
io

n

 52

LIST OF PUBLICATIONS

1. Charnyi, S.G. “On Maximin problem with coupled constraints”. X Belorussian mathematical

conference: Reports of international scientific conference, Minsk, November 3-7, 2008. –

Volume 3. – Institute of Mathematics of National Academy of Sciences of Belarus, 2008, p.

122.

2. Charnyi, S.G., L.I. Minchenko “Solving maximin problem by decomposition to smooth and

nonsmooth problems”. Neural Networks and Artificial Intelligence (ICNNAI-2008)

//Proceedings of the Fifth International Conference (27-30 May, 2008, Minsk, Belarus). –

Minsk: Propilei, 2008, pp. 298-301.

3. Charnyi, S.G. “Solving Maximin problem by decomposition to smooth and nonsmooth

problems”. New mathematical methods and computer techniques in design, production and

scientific research, X republic scientific conference of post-graduate students. – Gomel State

University, 2007, pp. 181-182.

4. Minchenko, L.I., S.G. Charnyi “Solving Maximin problem by decomposition to smooth and

nonsmooth problems”. Hardware for information security: reports of IV Belarusian-Russian

scientific and technical conference, BSUIR, Minsk, May 28 – June 1, 2007, pp. 39-40.

C
E

U
eT

D
C

ol
le

ct
io

n

 53

REFERENCES

[1] Astrovski, A.I. and S.K. Korzhenevich. Study of Bilinear Minimax Problems: Theory and

Computing Experiment. 1990. - 60 p. – (Preprint / Academy of Sciences, BSSR. Institute of

Mathematics; №43 (443)).

[2] Danskin, John M.. The Theory of Max-Min. Springer-Verlag New York, Inc., 1967.

[3] Dempe, S. Foundations of Bilevel Programming, Springer, 2002.

[4] Demyanov, V.F. and V.N. Malozemov. Introduction to Minimax. M.:Science, 1972.

[5] Du, Ding-Zhu and Panos M. Pardalos (editors). Minimax and Applications. Kluwer

Academic Publishers, 1995.

[6] Hiriart-Urruty, J.-B. and C. Lemarechal. Convex Analysis and Minimization Algorithms,

volume I, Springer, Berlin, Heidelberg, New York, 1993.

[7] Hiriart-Urruty, J.-B. and C. Lemarechal. Convex Analysis and Minimization Algorithms,

volume II, Springer, Berlin, Heidelberg, New York, 1993.

[8] Karmanov, V.G. Matematicheskoe programmirovanie. М: Science, 1975 (in Russian).

[9] Minchenko, L.I. O.F. Borisenko and S.P. Grishai. Multivalued Analysis and Perturbed

Problems of Nonlinear Programming. Science and Engineering, 1993. p. 197. (in Russian)

[10] Rustem, B. and M. Howe. Algorithms for Worst-Case Design and Applications to Risk

Management, Princeton University Press, 2002.

[11] Strekalovskiy, A.S. Elements of Nonconvex Optimization, Novosibirsk, 2003.

C
E

U
eT

D
C

ol
le

ct
io

n

 54

 APPENDIX. CODE OF THE ALGORITHM

> restart;

debug level

> printlevel:=1;

maximum number of iterations

> iterNum:=50;

methods of choosing a step size

1)fixed step size. Requires a lot of iterations.

2)linear search along the direction v. It converges fast, but requires a lot of computations of

function value along the direction v.

3)step = c*abs(v[k]), where с - constant (currently the best value is about 0,1)

4)step beta[k]=c*beta[k-1], where с-constant. 1<с<2

4)method of unival minimization. implemented (function univalMinimization). it is used in the

3rd case(function stepByDoubling).

> stepMethod:=3;

precision

> epsilon:=0.01;

initial step size

> beta_init:=0.1;

initial point

> xx[0] := <-12,3>;

>

> #creating bounderes for level and limit functions graphs;

> dimX:=2;#dimension of vector x

> dimY:=2;#dimension of vector y

> constrNum:=5;#number of constraints

objective function f(x,y), linear in y

> f:=-x[1]^2*y[1]-x[2]^2*y[2];

> #f:=-x[1]^4*y[1]-x[2]^4*y[2];

> #f:=-x[1]*y[1]-x[2]*y[2];

C
E

U
eT

D
C

ol
le

ct
io

n

 55

creating vectors x and y

> xvector:=seq(x[i],i=1..dimX);yvector:=seq(y[i],i=1..dimY);

constraints h_i

> h[1]:=-y[1]:h[2]:=y[1]-5:

> h[3]:=-y[2]:h[4]:=y[2]-5:

> h[5]:=x[1]+x[2]+y[1]+2*y[2]-4:

>

> if xx[0][1]>0 then leftBound:=0;rightBound:=xx[0][1] end if;

>

> with(linalg):

> with(Optimization):

> with(simplex,feasible):

Execute the commands below to declare the external subroutines from GANSO library.

> #GANSOPATH:="mwrap_ganso.dll":

> # if you need to provide full path, use

GANSOPATH:="c:/work/ganso/maple/mwrap_ganso.dll":

> #Mindfbm0 := define_external('MWRAP_MinimizeDFBM_0','MAPLE',

LIB=GANSOPATH):

> #Mindfbm := define_external('MWRAP_MinimizeDFBM','MAPLE', LIB=GANSOPATH):

> #Minecam0 := define_external('MWRAP_MinimizeECAM_0','MAPLE',

LIB=GANSOPATH):

> #Minecam := define_external('MWRAP_MinimizeECAM','MAPLE', LIB=GANSOPATH):

> #Minecamdfbm0 := define_external('MWRAP_MinimizeECAMDFBM_0','MAPLE',

LIB=GANSOPATH):

> #Minecamdfbm := define_external('MWRAP_MinimizeECAMDFBM','MAPLE',

LIB=GANSOPATH):

> #Mindfbmecam0 := define_external('MWRAP_MinimizeDFBMECAM_0','MAPLE',

LIB=GANSOPATH):

> #Mindfbmecam := define_external('MWRAP_MinimizeDFBMECAM','MAPLE',

LIB=GANSOPATH):

> #Mindso0 := define_external('MWRAP_MinimizeDSO_0','MAPLE', LIB=GANSOPATH):

> #Mindso := define_external('MWRAP_MinimizeDSO','MAPLE', LIB=GANSOPATH):

C
E

U
eT

D
C

ol
le

ct
io

n

 56

> #Minecamdso0 := define_external('MWRAP_MinimizeECAMDSO_0','MAPLE',

LIB=GANSOPATH):

> #Minecamdso := define_external('MWRAP_MinimizeECAMDSO','MAPLE',

LIB=GANSOPATH):

> #Miniterativedso0 := define_external('MWRAP_MinimizeIterativeDSO_0','MAPLE',

LIB=GANSOPATH):

> #Miniterativedso := define_external('MWRAP_MinimizeIterativeDSO','MAPLE',

LIB=GANSOPATH):

> #Minrandomstart0 := define_external('MWRAP_MinimizeRandomStart_0','MAPLE',

LIB=GANSOPATH):

> #Minrandomstart := define_external('MWRAP_MinimizeRandomStart','MAPLE',

LIB=GANSOPATH):

>

> #MindfbmHF := define_external('MWRAP_HFMinimizeDFBM','MAPLE',

LIB=GANSOPATH):

> #Minecam0HF := define_external('MWRAP_HFMinimizeECAM_0','MAPLE',

LIB=GANSOPATH):

> #MinecamHF := define_external('MWRAP_HFMinimizeECAM','MAPLE',

LIB=GANSOPATH):

> #Minecamdfbm0HF := define_external('MWRAP_HFMinimizeECAMDFBM_0','MAPLE',

LIB=GANSOPATH):

> #MinecamdfbmHF := define_external('MWRAP_HFMinimizeECAMDFBM','MAPLE',

LIB=GANSOPATH):

> #Mindfbmecam0HF := define_external('MWRAP_HFMinimizeDFBMECAM_0','MAPLE',

LIB=GANSOPATH):

> #MindfbmecamHF := define_external('MWRAP_HFMinimizeDFBMECAM','MAPLE',

LIB=GANSOPATH):

> #Mindso0HF := define_external('MWRAP_HFMinimizeDSO_0','MAPLE',

LIB=GANSOPATH):

> #MindsoHF := define_external('MWRAP_HFMinimizeDSO','MAPLE', LIB=GANSOPATH):

> #Minecamdso0HF := define_external('MWRAP_HFMinimizeECAMDSO_0','MAPLE',

LIB=GANSOPATH):

> #MinecamdsoHF := define_external('MWRAP_HFMinimizeECAMDSO','MAPLE',

LIB=GANSOPATH):

C
E

U
eT

D
C

ol
le

ct
io

n

 57

> #Miniterativedso0HF := define_external('MWRAP_HFMinimizeIterativeDSO_0','MAPLE',

LIB=GANSOPATH):

> #MiniterativedsoHF := define_external('MWRAP_HFMinimizeIterativeDSO','MAPLE',

LIB=GANSOPATH):

> #Minrandomstart0HF := define_external('MWRAP_HFMinimizeRandomStart_0','MAPLE',

LIB=GANSOPATH):

> #MinrandomstartHF := define_external('MWRAP_HFMinimizeRandomStart','MAPLE',

LIB=GANSOPATH):

>

> with(VectorCalculus):

> #generating the sequence of constraints

> constr:=seq(h[i],i=1..constrNum);

> H := Jacobian([constr],[xvector]); %?;

creating the constraints matrix of the polyhedron of Lagrange multipliers A. Its a Jacobian of

constraints in y

> A:=Jacobian([constr],[yvector]);

>

> #with(Student[MultivariateCalculus]):

> #p:=Gradient(x^2+y^2,[x,y]=[0,1])[1];

> #p:=Gradient(f,[x[1],x[2]]);

> p:=Gradient(f,[xvector]);

>

> with(LinearAlgebra):

>

creating the objective quadratic function and constraints Ax=b

> b:=-Gradient(f,[yvector]);

> Transpose(H); B := Multiply(H,Transpose(H));

> Lambda := `<,>`(seq(lambda[i],i = 1 .. constrNum)); %?;

> HX:=Multiply(Transpose(H),Lambda);

obtain the linear part of the objective quadratic function 2p*H*Lambda

> linearPart := 2*Multiply(Transpose(p), HX);

creating the maximizing quadratic function Lambda*(H*)*H*Lambda

> quadraticF := Multiply(Multiply(Transpose(Lambda), B), Lambda)+linearPart; 1;

> quadraticF;

C
E

U
eT

D
C

ol
le

ct
io

n

 58

>

The function is used for global optimization. Returns the value of the maximizing quadratic

function at point Lambda. n - dimension of vector lambda

> #ff := proc(n, lambda)

> ff := proc(lambda)

> local s;

>

> #print(`pInXY=`,pInXY);

> #creating the objective quadratic function

> HX:=Multiply(Transpose(Hsimple),Transpose(lambda));

> #print(`HX calculation passed`);

> linearPart := 2*Multiply(Transpose(pInXY), HX);

>

> #print(`linearPart calculation passed`);

>

> #quadraticFValue := Multiply(Multiply(Transpose(lambda), B), lambda)+linearPart;

> t1:=Multiply(lambda, B);

> #print(`t1 passed, t1=`,t1);

>

> #print(`lambda=`,lambda);

> t2:=Multiply(t1, Transpose(lambda));

>

> #print(`t2 passed, t2=`,t2);

> qFValue := t2+linearPart;

>

> #print(`Entering ff, lambda[1]=`,lambda[1],`lambda[2]=`,lambda[2]);

> #print(`in ff, quadraticFValue=`,qFValue);

>

> s:=eval(qFValue);

> #print(`s=`,s);

> s #this last value is what is returned

> end proc:

>

>

> #given x=(x1,x2) the function returns minimum of f in vector y

C
E

U
eT

D
C

ol
le

ct
io

n

 59

> f_min_y:= proc(x1,x2)

> f_in_X:=eval(f,{x[1]=x1,x[2]=x2});

> #print(`in f_min_y. f_in_X=`,f_in_X);

> yy:=LPSolve(f_in_X,{seq(eval(h[i],{x[1]=x1,x[2]=x2})<=0,i=1..constrNum)});

> #print(`yy[2]=`,yy[2]);

> f_k:=eval(f_in_X,{y[1]=rhs(yy[2][1]),y[2]=rhs(yy[2][2])});

> f_k:=eval(f_in_X,yy[2]);

> end proc:

>

> #auxiliary unival function used in some functions for step calculating

> #returns f(x_k+step*v, y(x_k+step*v)) given step size

> linearF := proc(step)

> #print(`in linearF, xx[k]=`,xx[k],`v[k]=`,v[k],`xx[k][2]=`,xx[k][2]);

> #x1:=xx[k][1]+v[k][1]*step;#!change to the n dimentional case here #(x:=xx[k]+v[k]*step)

> #x2:=xx[k][2]+v[k][2]*step;

> trialPoint:=xx[k]+step*v[k];

> #print(`in linearF, x1=`,x1,`x2=`,x2);

> #print(`in linearF, trialPoint=`,trialPoint);

>

> #f:=-f_min_y(x1,x2);

> f:=-f_min_y(seq(trialPoint[i],i=1..dimX));

>

> #print(`in linearF. f=`,f);

> f;

> end proc:

>

test function for unival minimizaiton procedure

> testF := proc(x)

> -x^2;

> end proc:

> testF(-1);

the function does one-dimensional maximization given the interval [a,b]. We suppost that there

is only 1 maximum point in the given interval. Implemented dichotomy algorithm. For

maximizaiton it uses the auxiliary funciton linearF(step). Returns the step size, whic maximizes

the objective function.

C
E

U
eT

D
C

ol
le

ct
io

n

 60

> univalMaximization := proc(aa,bb)

> delta:=epsilon/100;#the distance from new points to the middle of the interval

> print(`In univalMaximization a=`,aa,`b=`,bb);

> #searching for the middle of the interval

> a:=aa;b:=bb;

> i:=1; length:=abs(b-a);

> while (length>epsilon) do

> middle:=(a+b)/2; #print(`middle=`,middle);

> l[i]:=middle-delta; #print(`l[i]=`,l[i]);#point to the left of the middle of interval

> r[i]:=middle+delta; #print(`r[i]=`,r[i]);#point to the right of the middle of interval

>

> #comparing the function values in obtained point and choosing the next interval

> #print(`testF(l[i])=`,testF(l[i]),`testF(r[i])=`,testF(r[i]));

> #print(testF(l[i])>=testF(r[i]));

> #if (testF(l[i])>=testF(r[i])) then b:=r[i] else a:=l[i]; end if;#for testing

> if (linearF(l[i])<=linearF(r[i])) then b:=r[i] else a:=l[i]; end if;

>

> print(`the maximum point is inside the interval [`,a,`,`,b,`]`);

> length:= abs(b-a);

> print(`the length of the interval = `, length);

> i:=i+1;#next iteration

> end do;

> optimalPoint:=(b+a)/2; print(`optimalPoint=`,optimalPoint);

> optimalPoint;

> end proc:#end of 1-dimensional maximization

> opt:=univalMaximization(-102,111):

> opt;

> #function determines the best step size in the given direction;

> #v - is the found descent direction

> #implemented the following methods

> #1) method of 1-dimensional maximization

> #2) linear search along the direction v (implemented here)

> #3) doubling the the step size and diving by 2

C
E

U
eT

D
C

ol
le

ct
io

n

 61

> #4) step size=0,1*lenght of vector v

> stepSize := proc(v)

> currentX:=xx[k];

> initStep:=0.1;

> print(`Entering stepSize. currentX=`,currentX,`v=`,v);

> i:=0;

> #checking whether there is an increase in function value at the last iteration

> while (i<2) or (f_step[i-2]>f_step[i-1]) do

> #obtaing the next point (just for debug)

> #x_v[i]:=currentX+initStep*i*v;

> #print(`x_v[i]=`,x_v[i]);

> step:=initStep*i;#obtaining the next step size

> #print(`step=`,step);

> f_step[i]:=linearF(step);#function value given the step size

> #print(`f_step[i]=`,f_step[i],`i=`,i);

> i:=i+1;

> end do;#end of linear search

> print(`step found. i=`,i,`f_step[i-2]=`,f_step[i-2],`f_step[i-1]=`,f_step[i-1]);

>

> steps:=i-2;#number of steps till the maximum function value

> #avoiding looping

> if steps=0 then steps:=1 end if;

> beta:=initStep*steps;#obtained step size

> end proc:

> #the method of doubling a step size depending on the function value

> #multiplying the previous step size by с>1.

> #if the function value in the next point is less then currect, then try 1/2 step size etc

> #at the final step (obtained interval) we have to run 1-dimensional search

> #searching step size as beta[k]=c*beta[k-1], where с-constanst. 1<с<2

> stepSizeByDoubling := proc()

> print(`In stepSizeByDoubling`);

> #multiplying the last step size by с=const

> step:=1.5*beta[k-1]; #original.tested

> print(`just before while. linearF(0)=`,linearF(0));

> print(`linearF(step)=`,linearF(step));

C
E

U
eT

D
C

ol
le

ct
io

n

 62

>

> if k>6 then step:=univalMaximization(0,step); end if;#break;#trying 1-dimensional

maximization

>

> # if k>0 then

> # i:=0;

> #checking whether there is an increase of f(x,y) at the current step. If not, dividing the step

size by 2

> # while(linearF(0)<linearF(step)) do

> #print(`step=`,step,`linearF(step)=`,linearF(step));

> #i:=i+1;

> #step:=step/2; #instead of division by 2 we can use 1-dimensional maximization

> # end do;

> # print(`after while.`,`linearF(step)=`,linearF(step));

> print(`step=`,step,`i=`,i);

> # end if;#! here we need to run linear search!

> step;

> end proc:

>

>

> # test the objective function: declare some vector x and evaluate ff(x)

> xtest:=Vector(1..2,[5,6]):

> eval(ff(<1,4>));

> Lo:=Vector(1..2,datatype=float[8],[seq(0,i=1..2)]): # large values (greater 1e20) mean no box

constraints

> Up:=Vector(1..2,datatype=float[8],[seq(2e30,i=1..2)]):

> dim:=2; iter:=100: val:=1.0:

> basic:=Vector(1..constrNum,datatype=integer[4],[0,1]): # these are needed for constrained

optimization with

> # linear equality constraints. These values refer to "basic" variables

> # if basic is null then basic variables will be calclated automtically. They are 0 based. See

GANSO manual.

>

the main program

> k:=0;while k<iterNum+1 do

C
E

U
eT

D
C

ol
le

ct
io

n

 63

> #step 1. Solving the problem P(x_k) and obtain y_k by simplex-method

> #as the constraints and objective function are linear in y, the matrices A and b are constants

and y_k are not used currently

> print(`in step 1`);

>

> #substuting the current point x_k in the constraints

> for i from 1 to constrNum do hInXk[i]:=eval(h[i],{x=xx[k]}) end do;

> constrInXk:={seq(hInXk[i]<=0,i=1..constrNum)};

>

> #Solving the problem P(x_k) and obtain y_k by simplex-method

> yy[k]:=LPSolve(eval(f,{x=xx[k]}), constrInXk);

> yy[k]:=convert(yy[k][2],set);

> #substituting x_k and y_k into p

> pInX:=eval(p,{x=xx[k]}):

> pInXY:=eval(pInX,yy[k]):

>

> #Step 2. Solving the quadratic programming problem (10), we obtain vector lambda.

> bValue:=eval(b,{x=xx[k]}):#substituting x_k into the column of the RHS of equalities of

уравнений Lagrang set

>

> #checking for non-zero constraints. That is which constraints are active. and creating the list of

indeces of active constraints.

>

> active:=seq(i,i=1..0);#creating the empty sequence

> for i from 1 to constrNum do

> h_kValue[i]:=eval(hInXk[i],yy[k]); #print(hInXk[i],h_kValue[i]);

> if abs(h_kValue[i])<0.05 then #print(`i`,"th constrain is active");

> active:=active,i;

> end if;

> end do;

>

> #list of indeces of active constraints

> activeList:=[active];

> dimActiveConstr:=nops(activeList);#the dim-n of the quadratic programming problem

> #print(`active=`,active);

C
E

U
eT

D
C

ol
le

ct
io

n

 64

>

> #getting the rows that correspond to active constraints from matrices A, H

> Asimple:=Transpose(A[activeList,1..2]);

> Hsimple:=H[activeList,1..2];

>

> #creating the quadratic function and substituting the values x_k, y_k

> Lambda := <seq(lambda[i],i = 1 .. dimActiveConstr)>;

> B := Multiply(Hsimple, Transpose(Hsimple));

> HX:=Multiply(Transpose(Hsimple),Lambda);

> linearPart := 2*Multiply(Transpose(pInXY), HX);

> quadraticF := Multiply(Multiply(Transpose(Lambda), B), Lambda)+linearPart;

> quadraticFValue:=eval(quadraticF,{x=xx[k]});

> quadraticFValue:=eval(quadraticFValue,yy[k]);

>

> #obtaing vactor lambda (if the constraints are RLI-regular), then the allowed set of Langrange

multipliers contains only a unique point!

> #lambda:=<linsolve(Asimple, bValue)>;

>

> #using NLPSolve to obtain lambda

> lambdaMax:=Optimization[NLPSolve](dimActiveConstr, ff, [NoUserValue,

NoUserValue,Asimple,bValue])[2];

> #NLPSolve(dimActiveConstr,ff,[Asimple, bValue] , maximize);

>

> #x0:=Vector(1..dimActive,datatype=float[8],[seq(0.5,i=1..dimActive)]): # initial point for

local minimzation

> #print(`Setting up the equality constraints. The matrix of constraints and the right hand side

are`);

> #Eq:=Matrix(1..dimY,1..dimActive,datatype=float[8],Asimple):

> #RHSE:=Vector(1..dimY,datatype=float[8],bValue):

> #print(`Executing DFBM. The solution is `);

> #Mindfbm(dimActive,x0,val,ff,dimY,0,Eq,Lo,RHSE,Lo,Lo,Up,basic,300);

> x0;

> # lambda:=x0;

>

C
E

U
eT

D
C

ol
le

ct
io

n

 65

> #Step 3. If H[k]lambda[k]+p[k]=0, the the point satisfies the necessary condition of optimality

and it is the point of local minimum. And the problem is solved. If not, then going to step 4.

> #if H[k]lambda[k]+p[k]=0 then exit end if;

> #print(H);

>

> #lambda:=<0,0,0,0,bValue[1]>;#for debuging

>

> res:=Multiply(Transpose(lambdaMax),Hsimple);

> #res:=Multiply(lambda,Hsimple);

> res:=Add(Transpose(res),pInXY):

> #res:=pInXY:

> normRes:=Norm(res,2);

> print(`res=`,normRes);

> if normRes<=epsilon then print(`The solution has been found. The number of interations k=`,k,

`xx[k]=`, xx[k]); break end if;

>

>

> #Step 4. Using the obtained at step 2 direction by formula (11) we obtain the steepest ascend

direction.

> v[k]:=res/Norm(res,2);#norm of vector res

>

> #the following is something like bundle method. increses convergence greatly!

> if k>=2 then v_temp:=v[k]+v[k-1]/2+v[k-2]/4;

> v_temp:=v[k]+v[k-1]*Norm(res,2)/Norm(xx[k]-xx[k-1],2)/8+v[k-2]/8;

> v[k]:=v_temp/Norm(v_temp,2);res:=res*1.5; end if;

>

> #Step 5. Searching for a step size beta to get a decrease along the direction v.

> print(`in step 5. calculating step`,`xx[k]=`,xx[k]);

>

> #implemented the following methods of choosing a step size

> #1)fixed step size. Requires a lot of iterations

> if stepMethod=1 then beta[k]:=0.1; end if;

>

> #2)linear search along the direction v. It converges fast, but requires a lot of computations of

#function value along the direction v.

C
E

U
eT

D
C

ol
le

ct
io

n

 66

> if stepMethod=2 then beta[k]:=stepSize(v[k]); end if;

>

> #3)step = c*abs(v[k]), where с - constant (currently the best value is about 0,1)

> if stepMethod=3 then beta[k]:=beta_init*Norm(res,2); end if; #experimental

>

> #4)step beta[k]=c*beta[k-1], where с-constant. 1<с<2

> if (stepMethod=4) and (k>0) then beta[k]:=stepSizeByDoubling() else beta[0]:=beta_init end

if;

>

> #checking whether the future point is feasible. Adjusting step accordingly. If not, dividing it

by 2

> i:=0; isFeasible:=false;

> print(`checking whether the future point is feasible`);

> while not(isFeasible) do #checking whether the point is feasible

> nextPoint:=VectorAdd(xx[k],beta[k]*v[k]);#obtaning the next point

> #checking whether the obtained point is feasible

> isFeasible:=feasible({seq(eval(h[i],{x=nextPoint})<=0,i=1..constrNum)});

> #If not, then dividing the step size by 2

> if not isFeasible then beta[k]:=beta[k]/2;print(`not feasible!`) end if;

> end do;

>

> print(`the obtained step size is beta[k]=`,beta[k]);

>

> #Step 6. The next approximation of vector x we obtain by formular x_k+1=x_k+beta_k*v[k].

And going to step 1, letting k = k+1.

>

> #print(`xx[`,k,`]=`,xx[k]);

> #print(`yy[`,k,`]=`,yy[k]);

> #f_k:=eval(f,{x=xx[k]});

> #fValue[k]:=eval(f_k,yy[k]);

> #print(`f[`,k,`]=`,fValue[k]);

>

> xx[k+1]:=VectorAdd(xx[k],beta[k]*v[k]);

>

> k:=k+1;#next iteration

C
E

U
eT

D
C

ol
le

ct
io

n

 67

>

> end do;#end of the main program

>

> lambda;

> #lambda:=linsolve(Asimple, bValue);

creating the list of iteration points and its trajectory

> seq([xx[i][1],xx[i][2],fValue[i]],i=1..iterNum):

> i_0:=11;#the initial interation number for trajectory

> tempSeq1:=seq(xx[i][1],i=i_0..k):

> leftBound:=min(tempSeq1);

> rightBound:=max(tempSeq1);

> tempSeq2:=seq(xx[i][2],i=i_0..k):

> upperBound:=max(tempSeq2);

> lowerBound:=min(tempSeq2);

> with(plots):

> seq1:=[seq(xx[i],i=i_0..k)]:

> seq2:=[seq(xx[i],i=0..k)]:

> points:=pointplot(seq1, symbolsize=13, colour=green,connect=false):

> points2:=pointplot(seq1, symbolsize=23, colour=green,connect=true):

> points3:=pointplot(seq2, symbolsize=13, colour=green,connect=false):

> points4:=pointplot(seq2, symbolsize=23, colour=green,connect=true):

> points3d:=pointplot3d([seq([xx[i][1],xx[i][2],fValue[i]],i=0..k-1)], symbolsize=13,

colour=black,connect=true):

>

> f_min_y(0,0.59);

>

> #building level sets

> #p2:=contourplot(f_min_y,0.34..rightBound,0.46..upperBound,contours=40):

> #p2:=contourplot(f_min_y,leftBound..rightBound,lowerBound..upperBound,contours=40):

> p21:=contourplot(f_min_y,-12..15,-0.5..5,contours=60):

> display(p21);

> display(points,points2,p2);

> display(points3,points4,p21);

> p3:=contourplot3d(f_min_y,-4..4,-4..4,contours=40,filled=true):

C
E

U
eT

D
C

ol
le

ct
io

n

 68

> display(p3);#display(points3d,p3);

> plot3d(f_min_y,-4..4,-4..4,grid = [25, 25]);

> #display(points3d,graph);

	ACKNOWLEDGEMENTS
	NOTATIONS
	INTRODUCTION
	CHAPTER 1.BASIC CONCEPTS AND REVIEW OF EXISTING METHODS OF NONSMOOTH OPTIMIZATION
	1.1. The basic concepts of convex analysis
	1.2. Multivalued mappings
	1.3. The review of existing methods of nonsmooth optimization
	1.3.1. Subgradient methods
	1.3.2. Bundle-methods
	1.3.3. Method of cutting hyperplanes
	1.3.4. Efficiency of nonsmooth optimization methods

	CHAPTER 2.DEVELOPMENT OF THE ALGORITHM FOR THE MAXIMIN PROBLEM
	2.1. Problem statement. Decomposition of the maximin problem to smooth and nonsmooth problems.
	2.2. Development of a method for solving the maximin problem
	2.3. Finding the steepest ascent direction for the problem of unconditional maximization for the function
	2.4. Description of the conceptual algorithm
	2.4.1. Finding an extremum point for the problem
	2.4.2. Finding the steepest ascent direction
	2.4.3. Finding an iteration step size
	2.4.4. The modified bundle method for the construction of an ascent direction

	CHAPTER 3.COMPUTATIONAL STUDY
	3.1. Description of the computational study
	3.2. Analysis of results of the computational study

	CONCLUSION
	LIST OF PUBLICATIONS
	REFERENCES
	 APPENDIX. CODE OF THE ALGORITHM

