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Abstract

The purpose of the present thesis is to study economic optimization
problems within a non-linear, geometrical framework, motivated by var-
ious examples occuring in our daily life. In order to describe and explain
such phenomena, we exploit elements from Riemann-Finsler geometry.

In the first chapter we recall notions and results from Riemann-Finsler
geometry which will be used in the thesis. We also present new material
on Busemann NPC spaces on Finsler manifolds which solves partially a
fifty-year-old open problem of Busemann and Pedersen.

In the second chapter we study a general Weber location problem
with unit weights on Finsler manifolds, i.e., to minimize the sum of dis-
tances (the cost of transportation) to the sample points situated on a not
necessarily reversible Finsler manifold. Some existence, uniqueness and
multiplicity results are presented in various geometrical contexts together
with some practical examples.

In the third chapter existence and location of Nash-type equilibrium
points are studied for a large class of finite families of payoff functions
whose domains are not necessarily convex in the usual sense. The geomet-
ric idea is to embed these non-convex domains into suitable Riemannian
manifolds, thus regaining certain geodesic convexity properties of them.
By using variational inequalities, set-valued analysis, dynamical systems,
and non-smooth calculus on Riemannian manifolds, various existence, lo-
cation and stability results of Nash-type equilibrium points are derived.
Some of the results can be obtained only on Hadamard manifolds as a
curvature rigidity result shows.
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Preface

It is common knowledge that the problem of minimization of func-
tionals has always been present in the real world. Much attention has
been paid over centuries to understanding and resolving such problems.
The interest is to find those objects/points that make a functional to
attain a local (or global) minimum value. One of the most known ex-
amples of a variational problem is to find the curve of minimal length
that connects two given points among all curves which lie on a given
surface and connect the two points; such a curve is called a geodesic. A
physical phenomenon is the so-called Fermat’s principle which says that
light follows the shortest optical length between two given points.

The main purpose of the present thesis is to study economic optimiza-
tion/minimization problems within a non-linear, geometrical framework.
More explicitly, we are focusing to two classes of variational economics
problems which are treated via Riemann-Finsler geometry: (a) Weber-
type problems, and (b) Nash equilibrium problems. Although Riemann-
Finsler geometry has not been and is still not as popular as Euclidean
geometry, Riemann-Finsler geometry describes our world more precisely
than any other reasonable geometry. Therefore, such developments are
highly motivated from a practical point of view supported by various
examples coming from our daily life.

The thesis contains three chapters; we roughly present them.

Chapter 1 (Foundational Material). We recall those notions and
results from Riemann-Finsler geometry which will be used throughout
the thesis, such as geodesics, flag curvature, properties of the metric
projection operator, elements of non-smooth analysis on manifolds, and
variational inequalities. Most of these results are well-known for special-
ists; however, we also present new material on Busemann NPC spaces on
Finsler manifolds (see §1.2) which solves partially a more than fifty years
old open problem formulated by H. Busemann and F. Pedersen. These
results are based on the paper of Kristály and Kozma [22].

Chapter 2 (Weber-type problems on manifolds). We deal with a
general Weber location problem with unit weights on Finsler manifolds,
i.e., to minimize the sum of distances (the cost of transportation) to the



C
E

U
eT

D
C

ol
le

ct
io

n

ii

sample points situated on a not necessarily reversible Finsler manifold.
Therefore, Finsler distances are used to measure the cost of travel be-
tween some fixed markets and a central deposit which is going to be con-
structed. Some existence, uniqueness and multiplicity results are proved
in various geometrical contexts (non-positively curved Berwald spaces,
Minkowski spaces, Hadamard manifolds). We also present some concrete
examples involving the slope metric of a hillside (thus, the transportation
cost depends on the direction of travel due to the gravity) as well as the
’gravitational’ Finslerian-Poincaré disc. The results of this chapter are
based on the paper of Kristály, Moroşanu and Róth [24].

Chapter 3 (Nash-type equilibria on manifolds). The Nash equilib-
rium problem involves n players such that each player knows the equi-
librium strategies of the partners, but moving away from his/her own
strategy alone a player has nothing to gain. In this chapter we study the
existence and location of Nash equilibrium points in a non-linear setting
where the strategy sets of the players are not necessarily convex in the
usual sense. The geometric idea is to embed these non-convex domains
into suitable Riemannian manifolds regaining certain geodesic convexity
properties of them. First, we guarantee the existence of Nash equilibrium
points via McClendon-type variational inequalities in ANRs. Then, we
introduce the concept of Nash-Stampacchia equilibrium points for a fi-
nite family of non-smooth functions defined on geodesic convex sets of
certain Riemannian manifolds. Characterization, existence, and stability
of Nash-Stampacchia equilibria are studied when the strategy sets are
subsets of certain Hadamard manifolds, exploiting two well-known geo-
metrical features of these spaces; namely, the obtuse-angle property and
non-expansiveness of the metric projection operator for geodesic convex
sets. These two properties actually characterize the non-positivity of
the sectional curvature of complete and simply connected Riemannian
spaces, delimiting the Hadamard manifolds as the optimal geometrical
framework of Nash-Stampacchia equilibrium problems. Our analytical
approach exploits various elements from set-valued analysis, dynamical
systems, and non-smooth calculus on Riemannian manifolds. The results
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of this chapter are based on the author’s papers [20], [21].
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for his kind support and professional advice during my PhD studies at
the Central European University. I have also benefited from his kind
assistance in solving real life problems.
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Chapter 1

Foundational Material

What is now proved was once
only imagined.

William Blake (1757-1827)

1.1 Metrics, geodesics, flag curvature

1.1.1 Finsler manifolds

Let M be a connected m-dimensional C∞ manifold and let TM =⋃
p∈M TpM be its tangent bundle. If the continuous function F : TM →

[0,∞) satisfies the conditions that it is C∞ on TM \ {0}; F (tu) = tF (u)
for all t ≥ 0 and u ∈ TM, i.e., F is positively homogeneous of de-
gree one; and the matrix gij(u) := [1

2
F 2]yiyj (u) is positive definite for all

u ∈ TM \ {0}, then we say that (M,F ) is a Finsler manifold. If F is
absolutely homogeneous, then (M,F ) is said to be reversible.

Let π∗TM be the pull-back of the tangent bundle TM by π : TM \
{0} →M. Unlike the Levi-Civita connection in Riemann geometry, there
is no unique natural connection in the Finsler case. Among these con-
nections on π∗TM, we choose the Chern connection whose coefficients
are denoted by Γkij; see Bao, Chern and Shen [3, p.38]). This connection
induces the curvature tensor, denoted by R; see [3, Chapter 3]. The

1
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2 CHAPTER 1. FOUNDATIONAL MATERIAL

Chern connection defines the covariant derivative DVU of a vector field
U in the direction V ∈ TpM. Since, in general, the Chern connection
coefficients Γijk in natural coordinates have a directional dependence, we
must say explicitly that DVU is defined with a fixed reference vector.
In particular, let σ : [0, r] → M be a smooth curve with velocity field
T = T (t) = σ̇(t). Suppose that U and W are vector fields defined along
σ. We define DTU with reference vector W as

DTU =

[
dU i

dt
+ U jT k(Γijk)(σ,W )

]
∂

∂pi |σ(t)

,

where
{

∂
∂pi |σ(t)

}
i=1,m

is a basis of Tσ(t)M. A C∞ curve σ : [0, r] → M,

with velocity T = σ̇ is a (Finslerian) geodesic if

DT

[
T

F (T )

]
= 0 with reference vector T . (1.1)

If the Finslerian velocity of the geodesic σ is constant, then (1.1) becomes

d2σi

dt2
+
dσj

dt

dσk

dt
(Γijk)(σ,T ) = 0, i = 1, ...,m = dimM. (1.2)

For any p ∈ M and y ∈ TpM we may define the exponential map
expp : TpM → M , expp(y) = σ(1, p, y), where σ(t, p, y) is the unique
solution (geodesic) of the second order differential equation (1.1) (or,
(1.2)) which passes through p at t = 0 with velocity y. Moreover,

d expp(0) = idTpM . (1.3)

If U, V and W are vector fields along a curve σ, which has velocity
T = σ̇, we have the derivative rule

d

dt
gW (U, V ) = gW (DTU, V ) + gW (U,DTV ) (1.4)

whenever DTU and DTV are with reference vector W and one of the
following conditions holds:

• U or V is proportional to W, or
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1.1. METRICS, GEODESICS, FLAG CURVATURE 3

• W = T and σ is a geodesic.
A vector field J along a geodesic σ : [0, r] → M (with velocity field

T ) is said to be a Jacobi field if it satisfies the equation

DTDTJ +R(J, T )T = 0, (1.5)

where R is the curvature tensor. Here, the covariant derivative DT is
defined with reference vector T.

We say that q is conjugate to p along the geodesic σ if there exists a
nonzero Jacobi field J along σ which vanishes at p and q.

Let γ : [0, r] → M be a piecewise C∞ curve. Its integral length is
defined as

LF (γ) =

∫ r

0

F (γ(t), γ̇(t)) dt.

Let Σ : [0, r] × [−ε, ε] → M (ε > 0) be a piecewise C1 variation
of a geodesic γ : [0, r] → M with Σ(·, 0) = γ. Let T = T (t, u) = ∂Σ

∂t
,

U = U(t, u) = ∂Σ
∂u

the velocities of the t-curves and u-curves, respectively.
For p, q ∈ M , denote by Γ(p, q) the set of all piecewise C∞ curves

γ : [0, r] → M such that γ(0) = p and γ(r) = q. Define the map
dF : M ×M → [0,∞) by

dF (p, q) = inf
γ∈Γ(p,q)

LF (γ). (1.6)

Of course, we have dF (p, q) ≥ 0, where equality holds if and only if
p = q, and the triangle inequality holds, i.e., dF (p0, p2) ≤ dF (p0, p1) +
dF (p1, p2) for every p0, p1, p2 ∈ M. In general, since F is only a positive
homogeneous function, dF (p, q) 6= dF (q, p); thus, (M,dF ) is only a quasi-
metric space. The geodesic segment γ : [0, r] → M is called minimizing
if its integral length LF (γ) is not larger than the integral length of any
other piecewise differentiable curve joining γ(0) and γ(r), i.e., LF (γ) =
dF (γ(0), γ(r)).

If (M, g) is a Riemannian manifold, we will use the notation dg instead
of dF which becomes a usual metric function.

For p ∈M, r > 0, we define the forward and backward Finsler-metric
ball s, respectively, with center p ∈M and radius r > 0, by

B+
F (p, r) = {q ∈M : dF (p, q) < r} and B−F (p, r) = {q ∈M : dF (q, p) < r}.
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4 CHAPTER 1. FOUNDATIONAL MATERIAL

We denote by B(p, r) := {y ∈ TpM : F (p, y) < r} the open tangent
ball at p ∈ M with radius r > 0. It is well-known that the topology
generated by the forward (resp. backward) metric balls coincide with the
underlying manifold topology, respectively.

By Whitehead’s theorem (see [3, Exercise 6.4.3, p. 164]) and [3,
Lemma 6.2.1, p. 146] we can derive the following useful local result (see
also [23]).

Proposition 1.1.1 Let (M,F ) be a Finsler manifold, where F is posi-
tively (but perhaps not absolutely) homogeneous of degree one. For every
point p ∈M there exist a small ρp > 0 and cp > 1 (depending only on p)
such that for every pair of points q0, q1 in B+

F (p, ρp) we have

1

cp
dF (q1, q0) ≤ dF (q0, q1) ≤ cpdF (q1, q0). (1.7)

Moreover, for every real number k ≥ 1 and q ∈ B+
F (p, ρp/k) the mapping

expq is C1-diffeomorphism from B(q, 2ρp/k) onto B+
F (q, 2ρp/k) and every

pair of points q0, q1 in B+
F (p, ρp/k) can be joined by a unique minimal

geodesic from q0 to q1 lying entirely in B+
F (p, ρp/k).

A set M0 ⊆ M is forward bounded if there exist p ∈ M and r > 0
such that M0 ⊆ B+

F (p, r). Similarly, M0 ⊆M is backward bounded if there
exist p ∈M and r > 0 such that M0 ⊆ B−F (p, r).

A set M0 ⊆ M is geodesic convex if for any two points of M0 there
exists a unique geodesic joining them which belongs entirely to M0.

Let (p, y) ∈ TM \ 0 and let V be a section of the pulled-back bundle
π∗TM . Then,

Kp(y, V ) =
g(p,y)(R(V, y)y, V )

g(p,y)(y, y)g(p,y)(V, V )− [g(p,y)(y, V )]2
(1.8)

is the flag curvature with flag y and transverse edge V . Here,

g(p,y) := gij(p,y)dp
i ⊗ dpj := [

1

2
F 2]yiyjdpi ⊗ dpj, p ∈M, y ∈ TpM, (1.9)

is the Riemannian metric on the pulled-back bundle π∗TM . In particular,
when the Finsler structure F arises from a Riemannian metric g (i.e., the
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1.1. METRICS, GEODESICS, FLAG CURVATURE 5

fundamental tensor gij = [1
2
F 2]yiyj

does not depend on the direction y),
the flag curvature coincides with the usual sectional curvature.

If Kp(V,W ) ≤ 0 for every 0 6= V,W ∈ TpM, and p ∈ M , with V and
W not collinear, we say that the flag curvature of (M,F ) is non-positive.

A Finsler manifold (M,F ) is said to be forward (resp. backward)
geodesically complete if every geodesic σ : [0, 1] → M parameterized to
have constant Finslerian speed, can be extended to a geodesic defined on
[0,∞) (resp. (−∞, 1]). (M,F ) is geodesically complete if every geodesic
σ : [0, 1] → M can be extended to a geodesic defined on (−∞,∞). In
the Riemannian case, instead of geodesically complete we simply say
complete Riemannian manifold.

Theorem 1.1.1 (Theorem of Hopf-Rinow, [3, p. 168]) Let (M,F ) be
a connected Finsler manifold, where F is positively (but perhaps not
absolutely) homogeneous of degree one. The following two criteria are
equivalent:

(a) (M,F ) is forward (backward) geodesically complete;

(b) Every closed and forward (backward) bounded subset of (M,dF ) is
compact.

Moreover, if any of the above holds, then every pair of points in M can
be joined by a minimizing geodesic.

Theorem 1.1.2 (Theorem of Cartan-Hadamard, [3, p. 238]) Let (M,F )
be a forward/backward geodesically complete, simply connected Finsler
manifold of non-positive flag curvature. Then:

(a) Geodesics in (M,F ) do not contain conjugate points.

(b) The exponential map expp : TpM → M is a C1 diffeomorphism
from the tangent space TpM onto the manifold M .

A Finsler manifold (M,F ) is a Minkowski space if M is a vector
space and F is a Minkowski norm inducing a Finsler structure on M by
translation; its flag curvature is identically zero, the geodesics are straight
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lines, and for any two points p, q ∈ M , we have F (q − p) = dF (p, q), see
Bao, Chern and Shen [3, Chapter 14]. In particular, (M,F ) is both
forward and backward geodesically complete.

A Finsler manifold is of Berwald type if the Chern connection coeffi-
cients Γkij in natural coordinates depend only on the base point. Special
Berwald spaces are the (locally) Minkowski spaces and the Riemannian
manifolds. In the latter case, the Chern connection coefficients Γkij coin-
cide the usual Christofel symbols

Γ
k

ij(p) =
1

2

[(
∂gmj
∂pj

)
p

+

(
∂gmi
∂pj

)
p

−
(
∂gij
∂pm

)
p

]
gmk(p)

where the gij’s are such that gimg
mj = δij.

1.1.2 Riemannian manifolds

Since every Riemannian manifold is a Finsler manifold, the results from
the previous subsection are valid also for Riemannian manifolds. In this
subsection we recall further elements from Riemannian geometry which
will be used in the sequel and they are mainly typical features of Rie-
mannian manifolds. We follow Cartan [9] and do Carmo [15].

Let (M, g) be a connectedm-dimensional Riemannian manifold, TM =
∪p∈M(p, TpM) and T ∗M = ∪p∈M(p, T ∗pM) be the tangent and cotangent
bundles to M. For every p ∈M , the Riemannian metric induces a natu-
ral Riesz-type isomorphism between the tangent space TpM and its dual
T ∗pM ; in particular, if ξ ∈ T ∗pM then there exists a unique Wξ ∈ TpM
such that

〈ξ, V 〉g,p = gp(Wξ, V ) for all V ∈ TpM. (1.10)

Instead of gp(Wξ, V ) and 〈ξ, V 〉g,p we shall write simply g(Wξ, V ) and
〈ξ, V 〉g when no confusion arises. Due to (1.10), the elements ξ and Wξ

are identified. With the above notations, the norms on TpM and T ∗pM
are defined by

‖ξ‖g = ‖Wξ‖g =
√
g(Wξ,Wξ).
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1.1. METRICS, GEODESICS, FLAG CURVATURE 7

Moreover, the generalized Cauchy-Schwartz inequality is also valid, say-
ing that for every V ∈ TpM and ξ ∈ T ∗pM ,

|〈ξ, V 〉g| ≤ ‖ξ‖g‖V ‖g. (1.11)

Let ξk ∈ T ∗pk
M , k ∈ N, and ξ ∈ T ∗pM . The sequence {ξk} converges to ξ,

denoted by limk ξk = ξ, when pk → p and 〈ξk,W (pk)〉g → 〈ξ,W (p)〉g as
k →∞, for every C∞ vector field W on M .

Let h : M → R be a C1 functional at p ∈ M ; the differential of h at
p, denoted by dh(p), belongs to T ∗pM and is defined by

〈dh(p), V 〉g = g(gradh(p), V ) for all V ∈ TpM.

If (x1, ..., xm) is the local coordinate system on a coordinate neighborhood
(Up, ψ) of p ∈ M , and the local components of dh are denoted hi = ∂h

∂xi
,

then the local components of gradh are hi = gijhj. Here, gij are the local
components of g−1.

For every p ∈ M and r > 0, we define the open ball of center p ∈ M
and radius r > 0 by Bg(p, r) = {q ∈M : dg(p, q) < r}.

Let us denote by ∇ the unique natural covariant derivative on (M, g),
also called the Levi-Civita connection. A vector field W along a C1 path
γ is called parallel when ∇γ̇W = 0. A C∞ parameterized path γ is a
geodesic in (M, g) if its tangent γ̇ is parallel along itself, i.e., ∇γ̇ γ̇ = 0.

A similar reason as in Proposition 1.1.1 shows that there exists an
open (starlike) neighborhood U of the zero vectors in TM and an open
neighborhood V of the diagonal M ×M such that the exponential map
V 7→ expπ(V )(V ) is smooth and the map π× exp : U → V is a diffeomor-
phism, where π is the canonical projection of TM onto M. Moreover,
for every p ∈ M there exists a number rp > 0 and a neighborhood Ũp
such that for every q ∈ Ũp, the map expq is a C∞ diffeomorphism on

B(0, rp) ⊂ TqM and Ũp ⊂ expq(B(0, rp)); the set Ũp is called a totally
normal neighborhood of p ∈ M . In particular, it follows that every two
points q1, q2 ∈ Ũp can be joined by a minimizing geodesic of length less
than rp. Moreover, for every q1, q2 ∈ Ũp we have

‖ exp−1
q1

(q2)‖g = dg(q1, q2). (1.12)



C
E

U
eT

D
C

ol
le

ct
io

n
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We conclude this subsection by recalling a less used form of the sec-
tional curvature by the so-called Levi-Civita parallelogramoid. Let p ∈M
and V0,W0 ∈ TpM two vectors with g(V0,W0) = 0. Let σ : [−δ, 2δ]→M
be the geodesic segment σ(t) = expp(tV0) and W be the unique paral-
lel vector field along σ with the initial data W (0) = W0, the number
δ > 0 being small enough. For any t ∈ [0, δ], let γt : [0, δ] → M be
the geodesic γt(u) = expσ(t)(uW (t)). Then, the sectional curvature of the
two-dimensional subspace S =span{W0, V0} ⊂ TpM at the point p ∈ M
is given by

Kp(S) = lim
u,t→0

d2
g(p, σ(t))− d2

g(γ0(u), γt(u))

dg(p, γ0(u)) · dg(p, σ(t))
,

see Cartan [9, p. 244-245]. The infinitesimal geometrical object deter-
mined by the four points p, σ(t), γ0(u), γt(u) (with t, u small enough) is
called the parallelogramoid of Levi-Civita.

A Riemannian manifold (M, g) is a Hadamard manifold if it is com-
plete, simply connected and its sectional curvature is non-positive. In
particular, on every Hadamard manifold (M, g), relation (1.12) is ful-
filled for every q1, q2 ∈M.

Theorem 1.1.3 [15, Lemma 3.1] Let (M, g) be a Hadamard manifold
and consider the geodesic triangle determined by vertices a, b, c ∈ M . If
ĉ is the angle belonging to vertex c and if A = dg(b, c), B = dg(a, c),
C = dg(a, b), then

A2 +B2 − 2AB cos ĉ ≤ C2.

1.2 Metric relations on NPC spaces:

Busemann-type inequalities on Finsler

manifolds

In the fourties, Busemann developed a synthetic geometry on metric
spaces. In particular, he axiomatically elaborated a whole theory of non-
positively curved metric spaces which have no differential structure a
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priori and they possess the essential qualitative geometric properties of
Finsler manifolds. This notion of non-positive curvature requires that in
small geodesic triangles the length of a side is at least the twice of the
geodesic distance of the mid-points of the other two sides, see Busemann
[7, p. 237].

To formulate in a precise way this notion, let (M,d) be a quasi-metric
space and for every p ∈ M and radius r > 0, we introduce the forward
and backward metric ball s

B+
d (p, r) = {q ∈M : d(p, q) < r} and B−d (p, r) = {q ∈M : d(q, p) < r}.

A continuous curve γ : [a, b] → M with γ(a) = x, γ(b) = y is a shortest
geodesic, if l(γ) = d(x, y), where l(γ) denotes the generalized length of γ
and it is defined by

l(γ) = sup{
n∑
i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < ... < tn = b, n ∈ N}.

In the sequel, we always assume that the shortest geodesics are paramet-
rized proportionally to arclength, i.e., l(γ|[0,t]) = tl(γ).

Remark 1.2.1 A famous result of Busemann and Meyer [8, Theorem 2,
p. 186] from Calculus of Variations shows that the generalized length l(γ)
and the integral length LF (γ) of any (piecewise) C1 curves coincide for
Finsler manifolds. Therefore, the minimal Finsler geodesic and shortest
geodesic notions coincide.

We say that (M,d) is a locally geodesic (length) space if for every point
p ∈ M there is a ρp > 0 such that for every two points x, y ∈ B+

d (p, ρp)
there exists a shortest geodesic joining them.

Definition 1.2.1 A locally geodesic space (M,d) is said to be a Buse-
mann non-positive curvature space (shortly, Busemann NPC space), if
for every p ∈ M there exists ρp > 0 such that for any two shortest
geodesics γ1, γ2 : [0, 1]→M with γ1(0) = γ2(0) = x ∈ B+

d (p, ρp) and with
endpoints γ1(1), γ2(1) ∈ B+

d (p, ρp) we have

2d(γ1(
1

2
), γ2(

1

2
)) ≤ d(γ1(1), γ2(1)).
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(We shall say that γ1 and γ2 satisfy the Busemann NPC inequality).

Let (M, g) be a Riemannian manifold and (M,dg) the metric space
induced by itself. In this context, the Busemann NPC inequality is well-
known. Namely, we have

Proposition 1.2.1 [7, Theorem (41.6)] (M,dg) is a Busemann non-
positive curvature space if and only if the sectional curvature of (M, g) is
non-positive.

However, the picture for Finsler spaces is not so nice as in Proposition
1.2.1 for Riemannian manifolds. To see this, we consider the Hilbert
metric of the interior of a simple, closed and convex curve C in the
Euclidean plane. In order to describe this metric, let MC ⊂ R2 be the
region defined by the interior of the curve C and fix x1, x2 ∈ Int(MC).
Assume first that x1 6= x2. Since C is a convex curve, the straight
line passing to the points x1, x2 intersects the curve C in two point;
denote them by u1, u2 ∈ C. Then, there are τ1, τ2 ∈ (0, 1) such that
xi = τiu1 + (1− τi)u2 (i = 1, 2). The Hilbert distance between x1 and x2

is

dH(x1, x2) =

∣∣∣∣log

(
1− τ1

1− τ2

· τ2

τ1

)∣∣∣∣ .
We complete this definition by dH(x, x) = 0 for every x ∈ Int(MC). One
can easily prove that (Int(MC), dH) is a metric space and it is a projective
Finsler metric with constant flag curvature −1. However, due to Kelly
and Straus, we have

Proposition 1.2.2 [19] The metric space (Int(MC), dH) is a Busemann
non-positive curvature space if and only if the curve C ⊂ R2 is an ellipse.

This means that, although for Riemannian spaces the non-positivity
of the sectional curvature and Busemann’s curvature conditions are mu-
tually equivalent, the non-positivity of the flag curvature of a generic
Finsler manifold is not enough to guarantee Busemann’s property. See
also Figure 1.1.

Therefore, in order to obtain a characterization of Busemann’s cur-
vature condition for Finsler spaces, we have two possibilities:
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Figure 1.1: The closed convex curve is constructed by Bézier curves of degree 3,
using 4 control points for each of its differentiable portions. In the geodesic triangle we
have L(γ3) = dH(γ1(1), γ2(1)) ≈ 3.8692 while L(c3) = dH(γ1(1/2), γ2(1/2)) ≈ 1.9432.
Thus, Busemann NPC inequality for γ1 and γ2 is not valid.

(I) To find a new notion of curvature in Finsler geometry such that for
an arbitrary Finsler manifold the non-positivity of this curvature
is equivalent with the Busemann non-positive curvature condition,
as it was proposed by Shen [34, Open Problem 41]; or,

(II) To keep the flag curvature, but put some restrictive condition on
the Finsler metric.

In spite of the fact that (reversible) Finsler manifolds are included in
G-spaces, only few results are known which establish a link between the
differential invariants of a Finsler manifold and the metric properties of
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the induced metric space. The main result of this section is due Kristály
and Kozma [22] (see also Kristály, Kozma and Varga [23]), which makes a
strong connection between an analytical property and a synthetic concept
of non-positively curved metric spaces. Namely, we have

Theorem 1.2.1 ([22], [23]) Let (M,F ) be a Berwald space with non-
positive flag curvature, where F is positively (but perhaps not absolutely)
homogeneous of degree one. Then (M,dF ) is a Busemann NPC space.

In view of Theorem 1.2.1, Berwald spaces seem to be the first class of
Finsler metrics that are non-positively curved in the sense of Busemann
and which are neither flat nor Riemannian. Moreover, the above result
suggests a full characterization of the Busemann curvature notion for
Berwald spaces. Indeed, we refer the reader to Kristály and Kozma
[22] where the converse of Theorem 1.2.1 is also proved; here we omit
this technical part since only the above result is applied for Economical
problems.

Note that Theorem 1.2.1 includes a partial answer to the open ques-
tion of Busemann [7] (see also Pederden [33, p. 87]), i.e., every reversible
Berwald space of non-positive flag curvature has convex capsules (i.e.,
the loci equidistant to geodesic segments).

In the fifties, Aleksandrov introduced independently another notion
of curvature in metric spaces, based on the convexity of the distance
function. It is well-known that the condition of Busemann curvature is
weaker than the Aleksandrov one, see Jost [17, Corollary 2.3.1]. Never-
theless, in Riemannian spaces the Aleksandrov curvature condition holds
if and only if the sectional curvature is non-positive, see Bridson and
Haefliger [6, Theorem 1A.6]), but in the Finsler case the picture is quite
rigid. Namely, if on a reversible Finsler manifold (M,F ) the Aleksandrov
curvature condition holds (on the induced metric space by (M,F )) then
(M,F ) it must be Riemannian, see [6, Proposition 1.14].

It would be interesting to examine whether or not Theorem 1.2.1
works for a larger class of Finsler spaces than the Berwald ones, work-
ing in the (II) context. As far as the Busemann curvature condition is
concerned, we believe that, as in the Aleksandrov case, we face a rigidity
result. Namely:
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Conjecture. Let (M,F ) be a Finsler manifold such that (M,dF )
is a Busemann NPC space. Then (M,F ) is a Berwald space.

Proof of Theorem 1.2.1. Let us fix p ∈ M and consider ρp > 0,
cp > 1 from Proposition 1.1.1. We will prove that ρ′p = ρp

cp
is an ap-

propriate choice in Definition 1.2.1. To do this, let γ1, γ2 : [0, 1] → M
be two (minimal) geodesics with γ1(0) = γ2(0) = x ∈ B+

F (p, ρ′p) and
γ1(1), γ2(1) ∈ B+

F (p, ρ′p). By Proposition 1.1.1, we can construct a unique
geodesic γ : [0, 1] → M joining γ1(1) with γ2(1) and dF (γ1(1), γ2(1)) =
L(γ). Clearly, γ(s) ∈ B+

F (p, ρ′p) for all s ∈ [0, 1] (we applied Proposition
1.1.1 for k = cp). Moreover, x ∈ B+

F (γ(s), 2ρp). Indeed, by (1.7), we
obtain

dF (γ(s), x) ≤ dF (γ(s), p)+dF (p, x) ≤ cpdF (p, γ(s))+ρ′p ≤ (cp+1)ρ′p < 2ρp.

Therefore, we can define Σ : [0, 1]× [0, 1]→M by

Σ(t, s) = expγ(s)((1− t) · exp−1
γ(s)(x)).

The curve t 7→ Σ(1 − t, s) is a radial geodesic which joins γ(s) with
x. Taking into account that (M,F ) is of Berwald type, the reverse of
t 7→ Σ(1 − t, s), i.e. t 7→ Σ(t, s) is a geodesic too (see [3, Exercise 5.3.3,
p. 128]) for all s ∈ [0, 1]. Moreover, Σ(0, 0) = x = γ1(0), Σ(1, 0) =
γ(0) = γ1(1). From the uniqueness of the geodesic between x and γ1(1),
we have Σ(· , 0) = γ1. Analogously, we have Σ(· , 1) = γ2. Since Σ is a
geodesic variation (of the curves γ1 and γ2), the vector field Js, defined
by

Js(t) =
∂

∂s
Σ(t, s) ∈ TΣ(t,s)M

is a Jacobi field along Σ(· , s), s ∈ [0, 1] (see [3, p. 130]). In particular,
we have Σ(1, s) = γ(s), Js(0) = 0, Js(1) = ∂

∂s
Σ(1, s) = dγ

ds
and Js(

1
2
) =

∂
∂s

Σ(1
2
, s).

Now, we fix s ∈ [0, 1]. Since Js(0) = 0 and the flag curvature in non-
positive, then the geodesic Σ(·, s) has no conjugated points, see Theorem
1.1.2. Therefore,

Js(t) 6= 0 for all t ∈ (0, 1].
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Hence gJs(Js, Js)(t) is well defined for every t ∈ (0, 1]. Moreover,

F (Js)(t) := F (Σ(t, s), Js(t)) = [gJs(Js, Js)]
1
2 (t) 6= 0 ∀ t ∈ (0, 1]. (1.13)

Let Ts the velocity field of Σ(·, s). Applying twice formula (1.4), we
obtain

d2

dt2
[gJs(Js, Js)]

1
2 (t) =

d2

dt2
F (Js)(t) =

d

dt

[
gJs(DTsJs, Js)

F (Js)

]
(t)

=
[gJs(DTsDTsJs, Js) + gJs(DTsJs, DTsJs)] · F (Js)− g2

Js
(DTsJs, Js) · F (Js)−1

F 2(Js)
(t)

=
gJs(DTsDTsJs, Js) · F 2(Js) + gJs(DTsJs, DTsJs) · F 2(Js)− g2

Js
(DTsJs, Js)

F 3(Js)
(t),

where the covariant derivatives (for generic Finsler manifolds) are with
reference vector Js. Since (M,F ) is a Berwald space, the Chern con-
nection coefficients do not depend on the direction, i.e., the notion of
reference vector becomes irrelevant. Therefore, we can use the Jacobi
equation (1.5), concluding that

gJs(DTsDTsJs, Js) = −gJs(R(Js, Ts)Ts, Js).

Using the symmetry property of the curvature tensor, the formula of the
flag curvature, and the Schwarz inequality we have

−gJs(R(Js, Ts)Ts, Js) = −gJs(R(Ts, Js)Js, Ts)
= −K(Js, Ts) · [gJs(Js, Js)gJs(Ts, Ts)− g2

Js
(Js, Ts)] ≥ 0.

For the last two terms of the numerator we apply again the Schwarz
inequality and we conclude that

d2

dt2
F (Js)(t) ≥ 0 for all t ∈ (0, 1].

Since Js(t) 6= 0 for t ∈ (0, 1], the mapping t 7→ F (Js)(t) is C∞ on (0, 1].
From the above inequality and the second order Taylor expansion about
v ∈ (0, 1], we obtain

F (Js)(v) + (t− v)
d

dt
F (Js)(v) ≤ F (Js)(t) for all t ∈ (0, 1]. (1.14)



C
E

U
eT

D
C

ol
le

ct
io

n

1.2. METRIC RELATIONS ON NPC SPACES 15

Letting t→ 0 and v = 1/2 in (1.14), by the continuity of F, we obtain

F (Js)(
1

2
)− 1

2

d

dt
F (Js)(

1

2
) ≤ 0.

Let v = 1/2 and t = 1 in (1.14), and adding the obtained inequality with
the above one, we conclude that

2F (Σ(
1

2
, s),

∂

∂s
Σ(

1

2
, s)) = 2F (Js)(

1

2
) ≤ F (Js)(1) = F (γ(s),

dγ

ds
).

Integrating the last inequality with respect to s from 0 to 1, we obtain

2LF (Σ(
1

2
, ·)) = 2

∫ 1

0

F (Σ(
1

2
, s),

∂

∂s
Σ(

1

2
, s)) ds

≤
∫ 1

0

F (γ(s),
dγ

ds
) ds

= LF (γ)

= dF (γ1(1), γ2(1)).

Since Σ(1
2
, 0) = γ1(1

2
),Σ(1

2
, 1) = γ2(1

2
) and Σ(1

2
, ·) is a C∞ curve, by the

definition of the metric function dF , we conclude that γ1 and γ2 satisfy
the Busemann NPC inequality. This concludes the proof of Theorem
1.2.1. �

A direct consequence of Theorem 1.2.1 is

Corollary 1.2.1 Let (M,F ) be a forward/backward geodesically com-
plete, simply connected Berwald space with non-positive flag curvature,
where F is positively (but perhaps not absolutely) homogeneous of degree
one. Then (M,dF ) is a global Busemann NPC space, i.e., the Busemann
NPC inequality holds for any pair of geodesics.

The following result is crucial in Chapter 2.

Proposition 1.2.3 Let (M,F ) be a forward/backward geodesically com-
plete, simply connected Berwald space with non-positive flag curvature,
where F is positively (but perhaps not absolutely) homogeneous of de-
gree one. Fix two geodesics γ1, γ2 : [0, 1] → M . Then, the function
t 7→ dF (γ1(t), γ2(t)) is convex.
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Proof. Due to Hopf-Rinow theorem (see Theorem 1.1.1), there exists
a geodesic γ3 : [0, 1] → M joining γ1(0) and γ2(1). Moreover, due to
Cartan-Hadamard theorem (see Theorem 1.1.2), γ3 is unique. Applying
Corollary 1.2.1 first to the pair γ1, γ3 and then to the pair γ3, γ2 (with
opposite orientation), we obtain

dF (γ1(
1

2
), γ3(

1

2
)) ≤ 1

2
dF (γ1(1), γ3(1));

dF (γ3(
1

2
), γ2(

1

2
)) ≤ 1

2
dF (γ3(0), γ2(0)).

Note that the opposite of γ3 and γ2 are also geodesics, since (M,F ) is of
Berwald type, see [3, Example 5.3.3]. Now, using the triangle inequality,
we obtain

dF (γ1(
1

2
), γ2(

1

2
)) ≤ 1

2
dF (γ1(1), γ2(1)) +

1

2
dF (γ1(0), γ2(0)),

which means actually the 1
2
-convexity of the function t 7→ dF (γ1(t), γ2(t)).

The continuity and 1
2
-convexity of the function t 7→ dF (γ1(t), γ2(t)) yield

its convexity on [0, 1]. �

1.3 Metric projections on Riemannian man-

ifolds

Let (M, g) be an m-dimensional Riemannian manifold (m ≥ 2), K ⊂M
be a non-empty set. Let

PK(q) = {p ∈ K : dg(q, p) = inf
z∈K

dg(q, z)}

be the set of metric projections of the point q ∈ M to the set K. Due
to the theorem of Hopf-Rinow, if (M, g) is complete, then any closed set
K ⊂ M is proximinal, i.e., PK(q) 6= ∅ for all q ∈ M . In general, PK is a
set-valued map. When PK(q) is a singleton for every q ∈M, we say that
K is a Chebyshev set. The map PK is non-expansive if

dg(PK(q1), PK(q2)) ≤ dg(q1, q2) for all q1, q2 ∈M.
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In particular, K is a Chebyshev set whenever the map PK is non-expansive.
The set K ⊂ M is geodesic convex if every two points q1, q2 ∈ K

can be joined by a unique geodesic whose image belongs to K. Note that
(1.12) is also valid for every q1, q2 ∈ K in a geodesic convex set K since
exp−1

qi
is well-defined on K, i ∈ {1, 2}. The function f : K → R is

convex, if f ◦γ : [0, 1]→ R is convex in the usual sense for every geodesic
γ : [0, 1]→ K provided that K ⊂M is a geodesic convex set.

A non-empty closed set K ⊂ M verifies the obtuse-angle property if
for fixed q ∈M and p ∈ K the following two statements are equivalent:

(OA1) p ∈ PK(q);

(OA2) If γ : [0, 1] → M is the unique minimal geodesic from γ(0) = p ∈
K to γ(1) = q, then for every geodesic σ : [0, δ] → K (δ ≥ 0)
emanating from the point p, we have g(γ̇(0), σ̇(0)) ≤ 0.

Remark 1.3.1 (a) The first variational formula of Riemannian geome-
try shows that (OA1) implies (OA2) for every closed set K ⊂ M in a
complete Riemannian manifold (M, g).

(b) In the Euclidean case (Rm, 〈·, ·〉Rm), (here, 〈·, ·〉Rm is the standard
inner product in Rm), every non-empty closed convex set K ⊂ Rm verifies
the obtuse-angle property, see Moskovitz and Dines [28], which reduces
to the well-known geometric form:

p ∈ PK(q)⇔ 〈q − p, z − p〉Rm ≤ 0 for all z ∈ K.

A Riemannian manifold (M, g) is a Hadamard manifold if it is com-
plete, simply connected and its sectional curvature is non-positive. It is
well-known that on a Hadamard manifold (M, g) every geodesic convex
set is a Chebyshev set. Moreover, we have

Proposition 1.3.1 Let (M, g) be a finite-dimensional Hadamard mani-
fold, K ⊂M be a closed set. The following statements hold true:

(i) (Walter [38]) If K ⊂ M is geodesic convex, it verifies the obtuse-
angle property;

(ii) (Grognet [16]) PK is non-expansive if and only if K ⊂M is geodesic
convex.
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1.4 Non-smooth calculus on manifolds

We first recall some basic notions and results from the subdifferential
calculus on Riemannian manifolds, developed by Azagra, Ferrera and
López-Mesas [1], Ledyaev and Zhu [25]. Then, we establish an analyti-
cal characterization of the limiting/Fréchet normal cone on Riemannian
manifolds (see Theorem 1.4.1) which plays a crucial role in the study of
Nash-Stampacchia equilibrium points.

Let (M, g) be an m-dimensional Riemannian manifold and let f :
M → R ∪ {+∞} be a lower semicontinuous function with dom(f) 6= ∅.
The Fréchet-subdifferential of f at p ∈ dom(f) is the set

∂Ff(p) = {dh(p) : h ∈ C1(M) and f − h attains a local minimum at p}.

Proposition 1.4.1 [1, Theorem 4.3] Let (M, g) be an m-dimensional
Riemannian manifold and let f : M → R∪{+∞} be a lower semicontin-
uous function, p ∈dom(f) 6= ∅ and ξ ∈ T ∗pM. The following statements
are equivalent:

(i) ξ ∈ ∂Ff(p);

(ii) For every chart ψ : Up ⊂ M → Rm with p ∈ Up, if ζ = ξ ◦
dψ−1(ψ(p)), we have that

lim inf
v→0

(f ◦ ψ−1)(ψ(p) + v)− f(p)− 〈ζ, v〉g
‖v‖

≥ 0;

(iii) There exists a chart ψ : Up ⊂ M → Rm with p ∈ Up, if ζ =
ξ ◦ dψ−1(ψ(p)), then

lim inf
v→0

(f ◦ ψ−1)(ψ(p) + v)− f(p)− 〈ζ, v〉g
‖v‖

≥ 0.

In addition, if f is locally bounded from below, i.e., for every q ∈M there
exists a neighborhood Uq of q such that f is bounded from below on Uq,
the above conditions are also equivalent to
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(iv) There exists a function h ∈ C1(M) such that f − h attains a global
minimum at p and ξ = dh(p).

Now, we recall two further notions of subdifferential. Let f : M →
R∪{+∞} be a lower semicontinuous function; the limiting subdifferential
and singular subdifferential of f at p ∈M are the sets

∂Lf(p) = {lim
k
ξk : ξk ∈ ∂Ff(pk), (pk, f(pk))→ (p, f(p))}

and

∂∞f(p) = {lim
k
tkξk : ξk ∈ ∂Ff(pk), (pk, f(pk))→ (p, f(p)), tk → 0+}.

Proposition 1.4.2 [25] Let (M, g) be a finite-dimensional Riemannian
manifold and let f : M → R∪{+∞} be a lower semicontinuous function.
Then, we have

(i) ∂Ff(p) ⊂ ∂Lf(p), p ∈ dom(f);

(ii) 0 ∈ ∂∞f(p), p ∈M ;

(iii) If p ∈dom(f) is a local minimum of f , then 0 ∈ ∂Ff(p) ⊂ ∂Lf(p).

Let K ⊂ M be a closed set. Following [25], the Fréchet-normal cone
and limiting normal cone of K at p ∈ K are the sets

NF (p;K) = ∂F δK(p)

and

NL(p;K) = ∂LδK(p),

where δK is the indicator function of the set K, i.e., δK(q) = 0 if q ∈ K
and δK(q) = +∞ if q /∈ K. The following result - which is one of our
key tools to study Nash-Stampacchia equilibrium points on manifolds -
is probably known, but since we have not found an explicit reference, we
give its complete proof.
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Theorem 1.4.1 Let (M, g) be an m-dimensional Riemannian manifold.
For any closed, geodesic convex set K ⊂M and p ∈ K, we have

NF (p;K) = NL(p;K) = {ξ ∈ T ∗pM : 〈ξ, exp−1
p (q)〉g ≤ 0 for all q ∈ K}.

Proof. We first prove that

NF (p;K) ⊂ {ξ ∈ T ∗pM : 〈ξ, exp−1
p (q)〉g ≤ 0 for all q ∈ K}. (1.15)

To see this, let us fix ξ ∈ NF (p;K) = ∂F δK(p), i.e., on account of Propo-
sition 1.4.1 (i)⇔ (iv), there exists h ∈ C1(M) such that ξ = dh(p) and
δK − h attains a global minimum at p. In particular, the latter fact
implies that

h(q) ≤ h(p) for all q ∈ K. (1.16)

Fix q ∈ K. Since K is geodesic convex, the unique geodesic γ : [0, 1] →
M joining the points p and q, defined by γ(t) = expp(t exp−1

p (q)), belongs
entirely to K. Therefore, in view of (1.16), we have that (h ◦ γ)(t) ≤
(h ◦ γ)(0) = h(p) for every t ∈ [0, 1]. Consequently,

(h ◦ γ)′(0) = lim
t→0+

(h ◦ γ)(t)− (h ◦ γ)(0)

t
≤ 0.

On the other hand, we have that

(h ◦ γ)′(0) = 〈dh(γ(0)), γ̇(0)〉g = 〈ξ, exp−1
p (q)〉g,

which concludes the proof of relation (1.15).
Now, we prove that

NL(p;K) ⊂ {ξ ∈ T ∗pM : 〈ξ, exp−1
p (q)〉g ≤ 0 for all q ∈ K}. (1.17)

Indeed, let ξ ∈ NL(p;K) = ∂LδK(p). Thus, there exists a sequence {pk} ⊂
M such that (pk, δK(pk))→ (p, δK(p)) with ξk ∈ ∂F δK(pk) and limk ξk =
ξ. Note that δK(p) = 0, thus we necessarily have {pk} ⊂ K. By relation
(1.15) and ξk ∈ ∂F δK(pk) = NF (pk;K) we have that 〈ξk, exp−1

pk
(q)〉g ≤ 0

for all q ∈ K and k ∈ N. Letting k →∞ in the last inequality and taking
into account that limk ξk = ξ, we conclude that 〈ξ, exp−1

p (q)〉g ≤ 0 for all
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q ∈ K, i.e., (1.17) is proved. Now, according to Proposition 1.4.2 (i) and
relation (1.17), we have that

NF (p;K) ⊂ NL(p;K) ⊂ {ξ ∈ T ∗pM : 〈ξ, exp−1
p (q)〉g ≤ 0 for all q ∈ K}.

To conclude the proof, it remains to show that

{ξ ∈ T ∗pM : 〈ξ, exp−1
p (q)〉g ≤ 0 for all q ∈ K} ⊂ NF (p;K).

Let us fix ξ ∈ T ∗pM with

〈ξ, exp−1
p (q)〉g ≤ 0 for all q ∈ K. (1.18)

We show that (iii) from Proposition 1.4.1 holds true with the choices
f = δK and ψ = exp−1

p : Ũp → TpM = Rm where Ũp ⊂ M is a totally
normal ball centered at p. Due to these choices, the inequality from
Proposition 1.4.1 (iii) reduces to

lim inf
v→0

δK(expp(v))− 〈ξ, v〉g
‖v‖

≥ 0, (1.19)

since we have δK(p) = 0, ψ(p) = 0 and dψ−1(ψ(p)) = d expp(0) = idTpM ,
see (1.3). To verify (1.19), two subcases are considered (‖v‖ is assumed
to be small enough):

(a) expp(v) /∈ K. Then δK(expp(v)) = +∞, thus the inequality (1.19)
is proved.

(b) expp(v) ∈ K. Then δK(expp(v)) = 0 and there exists a unique

q ∈ K ∩ Ũp such that v = exp−1
p (q). Thus, (1.19) follows at once

from (1.18).

Consequently, from Proposition 1.4.1 (i)⇔ (iii), we have that ξ ∈ ∂F δK(p),
i.e., ξ ∈ NF (p;K). �

Proposition 1.4.3 [25, Theorem 4.13 (Sum rule)] Let (M, g) be an m-
dimensional Riemannian manifold and let f1, ..., fH : M → R∪{+∞} be
lower semicontinuous functions. Then, for every p ∈ M we have either
∂L(
∑H

l=1 fl)(p) ⊂
∑H

l=1 ∂Lfl(p), or there exist ξ∞l ∈ ∂∞fl(p), l = 1, ..., H,

not all zero such that
∑H

l=1 ξ
∞
l = 0.
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Let U ⊂ M be an open subset of the Riemannian manifold (M, g).
We say that a function f : U → R is locally Lipschitz at p ∈ U if there
exist an open neighborhood Up ⊂ U of p and a number Cp > 0 such that
for every q1, q2 ∈ Up,

|f(q1)− f(q2)| ≤ Cpdg(q1, q2).

The function f : U → R is locally Lipschitz on (U, g) if it is locally
Lipschitz at every p ∈ U.

Fix p ∈ U , v ∈ TpM , and let Ũp ⊂ U be a totally normal neighbor-
hood of p. If q ∈ Ũp, following [1, Section 5], for small values of |t|, we
may introduce

σq,v(t) = expq(tw), w = d(exp−1
q ◦ expp)exp−1

p (q)v.

If the function f : U → R is locally Lipschitz on (U, g), then

f 0(p, v) = lim sup
q→p, t→0+

f(σq,v(t))− f(q)

t

is called the Clarke generalized derivative of f at p ∈ U in direction
v ∈ TpM , and

∂Cf(p) = co(∂Lf(p))

is the Clarke subdifferential of f at p ∈ U, where ’co’ stands for the
convex hull. When f : U → R is a C1 functional at p ∈ U then ∂Cf(p) =
∂Lf(p) = ∂Ff(p) = {df(p)}, see [1, Proposition 4.6]. Moreover, when
(M, g) is the standard Euclidean space, the Clarke subdifferential and
the Clarke generalized gradient do coincide, see Clarke [14].

One can easily prove that the function f 0(·, ·) is upper-semicontinuous
on TU = ∪p∈UTpM and f 0(p, ·) is positive homogeneous. In addition, if
U ⊂M is geodesic convex and f : U → R is convex, then

f 0(p, v) = lim
t→0+

f(expp(tv))− f(p)

t
, (1.20)

see Claim 5.4 and the first relation on p. 341 of [1].
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Proposition 1.4.4 [25, Corollary 5.3] Let (M, g) be a complete Rieman-
nian manifold and let f : M → R ∪ {+∞} be a lower semicontinuous
function. Then the following statements are equivalent:

(i) f is locally Lipschitz at p ∈M ;

(ii) ∂Cf is bounded in a neighborhood of p ∈M ;

(iii) ∂∞f(p) = {0}.

1.5 Dynamical systems on manifolds

In this subsection we recall the existence of a local solution for a Cauchy-
type problem defined on Riemannian manifolds and its viability relative
to a closed set.

Let (M, g) be a finite-dimensional Riemannian manifold andG : M →
TM be a vector field on M, i.e., G(p) ∈ TpM for every p ∈ M . We
assume in the sequel that G : M → TM is a C1−0 vector field (i.e.,
locally Lipschitz); then the dynamical system

(DS)G

{
η̇(t) = G(η(t)),
η(0) = p0,

has a unique maximal semiflow η : [0, T )→M , see Chang [11, p. 15]. In
particular, η is an absolutely continuous function such that [0, T ) 3 t 7→
η̇(t) ∈ Tη(t)M and it verifies (DS)G for a.e. t ∈ [0, T ).

A set K ⊂M is invariant with respect to the solutions of (DS)G if for
every initial point p0 ∈ K the unique maximal semiflow/orbit η : [0, T )→
M of (DS)G fulfills the property that η(t) ∈ K for every t ∈ [0, T ). We
introduce the Hamiltonian function as

HG(p, ξ) = 〈ξ,G(p)〉g, (p, ξ) ∈M × T ∗pM.

Note that HG(p, dh(p)) <∞ for every p ∈M and h ∈ C1(M). Therefore,
after a suitable adaptation of the results from Ledyaev and Zhu [25,
Subsection 6.2] we may state
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Proposition 1.5.1 Let G : M → TM be a C1−0 vector field and K ⊂M
be a non-empty closed set. The following statements are equivalent:

(i) K is invariant with respect to the solutions of (DS)G;

(ii) HG(p, ξ) ≤ 0 for any p ∈ K and ξ ∈ NF (p;K).

1.6 Variational inequalities on ANRs

Existence results for Nash equilibria are often derived from intersec-
tion theorems (KKM theorems) or fixed point theorems. For instance,
the original proof of Nash concerning equilibrium point is based on the
Brouwer fixed point theorem. These theorems are actually equivalent to
minimax theorems or variational inequalities, as Ky Fan minimax the-
orem, etc. In this section we recall some results which will be used in
Chapter 3.

A nonempty set X is acyclic if it is connected and its C̆ech homology
(coefficients in a fixed field) is zero in dimensions greater than zero. Note
that every contractible set is acyclic (but the converse need not holds in
general).

The following two results are the main tools in the proof of the ex-
istence of Nash-type equilibria in compact settings; the first being a
McClendon-type minimax result while the second is the so-called Begle’s
fixed point theorem for set-valued maps.

Proposition 1.6.1 [27, Theorem 3.1] Suppose that X is a compact acyclic
finite-dimensional ANR. Suppose h : X × X → R is a function such
that {(x, y) : h(y, y) > h(x, y)} is open and {x : h(y, y) > h(x, y)}
is contractible or empty for all y ∈ X. Then there is a y0 ∈ X with
h(y0, y0) ≤ h(x, y0) for all x ∈ X.

Proposition 1.6.2 [27, Proposition 1.1] Let X be a compact acyclic
finite-dimensional ANR. Suppose that F : X → 2X is a set-valued map
with closed graph having nonempty and acyclic values. The F has a fixed
point, i.e., there exists x ∈ X such that x ∈ F (x).
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The following result is probably know, but since we have not found
an explicit reference, we give its proof.

Proposition 1.6.3 Let (M, g) be a complete, finite-dimensional Rie-
mannian manifold. Then any geodesic convex set K ⊂M is contractible.

Proof. Let us fix p ∈ K arbitrarily. Since K is geodesic convex, every
point q ∈ K can be connected to p uniquely by the geodesic segment
γq : [0, 1] → K, i.e., γq(0) = p, γq(1) = q. Moreover, the map K 3
q 7→ exp−1

p (q) ∈ TpM is well-defined and continuous. Note actually
that γq(t) = expp(t exp−1

p (q)). We define the map G : [0, 1] × K → K
by G(t, q) = γq(t). It is clear that G is continuous, G(1, q) = q and
G(0, q) = p for all q ∈ K, i.e., the identity map idK is homotopic to the
constant map p. �

1.7 Comments

In this chapter we have recalled those elements from Finsler and Rie-
mannian geometry which will be used throughout the thesis: geodesics,
flag curvature, metric projections, non-smooth analysis and dynamical
systems on manifolds, and variational inequalities. The main part of
this chapter is standard and can be found in any reasonable textbook
on Riemann-Finsler geometry, for example in Bao, Chern and Shen [3].
However, based on the paper of Kristály and Kozma [22], we also pre-
sented new material on non-positively curved Berwald spaces as well as
a conjecture regarding the rigidity of Finsler manifolds under the Buse-
mann curvature condition (see §1.2) which could be of interest for the
community of Geometers.
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Chapter 2

Weber-type problems:
Minimization of
cost-functions on manifolds

Geography has made us
neighbors. History has made us
friends. Economics has made us
partners, and necessity has
made us allies. Those whom
God has so joined together, let
no man put asunder.

John F. Kennedy (1917–1963)

2.1 Introduction

Let us consider three markets P1, P2, P3 placed on an inclined plane
(slope) with an angle α to the horizontal plane, denoted by (Sα). Assume
that three cars transport products from (resp. to) deposit P ∈ (Sα) to
(resp. from) markets P1, P2, P3 ∈ (Sα) such that

• they move always in (Sα) along straight roads;

27
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28 CHAPTER 2. WEBER-TYPE PROBLEMS ON MANIFOLDS

• the Earth gravity acts on them (we omit other physical perturba-
tions such as friction, air resistance, etc.);

• the transport costs coincide with the distance (measuring actually
the time elapsed to arrive) from (resp. to) deposit P to (resp. from)
markets Pi (i = 1, 2, 3).

We emphasize that usually the two distances, i.e., from the deposit to
the markets and conversely, are not the same. The point here is that
the travel speed depends heavily on both the slope of the terrain and the
direction of travel. More precisely, if a car moves with a constant speed
v [m/s] on a horizontal plane, it goes lt = vt + g

2
t2 sinα cos θ meters in

t seconds on (Sα), where θ is the angle between the straight road and
the direct downhill road (θ is measured in clockwise direction). The law
of the above phenomenon can be described relatively to the horizontal
plane by means of the parametrized function

Fα(y1, y2) =
y2

1 + y2
2

v
√
y2

1 + y2
2 + g

2
y1 sinα

, (y1, y2) ∈ R2 \ {(0, 0)}. (2.1)

Here, g ≈ 9.81m/s2. Since (M,Fα) is a (non-reversible) Minkowski space,
the distance (measuring the time to arrive) from P = (P 1, P 2) to Pi =
(P 1

i , P
2
i ) is

dα(P, Pi) = Fα(P 1
i − P 1, P 2

i − P 2),

and for the converse it is

dα(Pi, P ) = Fα(P 1 − P 1
i , P

2 − P 2
i ).

Consequently, we have to minimize the functions

Cf (P ) =
3∑
i=1

dα(P, Pi) and Cb(P ) =
3∑
i=1

dα(Pi, P ), (2.2)

when P moves on (Sα), i.e., we have two Weber-type problems defined in
a highly non-reversible setting. The function Cf (resp. Cb) denotes the
total forward (resp. backward) cost between the deposit P ∈ (Sα) and
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Figure 2.1: We fix P1 = (−250,−50), P2 = (0,−100) and P3 = (−50, 100) on
the slope (Sα) with angle α = 35o. If v = 10, the minimum of the total for-
ward cost on the slope is Cf ≈ 40.3265; the corresponding deposit is located at
Tf ≈ (−226.11,−39.4995) ∈ (Sα). However, the minimum of the total backward
cost on the slope is Cb ≈ 38.4143; the corresponding deposit has the coordinates
Tb ≈ (−25.1332,−35.097) ∈ (Sα).

markets P1, P2, P3 ∈ (Sα). The minimum points of Cf and Cb, respec-
tively, may be far from each other (see Figure 2.1), due to the fact that Fα
(and dα) is not symmetric unless α = 0, i.e., Fα(−y1,−y2) 6= Fα(y1, y2)
for each (y1, y2) ∈ R2 \ {(0, 0)}.

We will use in general Tf (resp. Tb) to denote a minimum point of
Cf (resp. Cb), which corresponds to the position of a deposit when we
measure costs in forward (resp. backward) manner, see (2.2).

In the case α = 0 (when (Sα) is a horizontal plane), the functions Cf
and Cb coincide (the same is true for Tf and Tb). The minimum point
T = Tf = Tb is the well-known Torricelli point corresponding to the
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triangle P1P2P3∆. Note that F0(y1, y2) =
√
y2

1 + y2
2/v corresponds to the

standard Euclidean metric; indeed,

d0(P, Pi) = d0(Pi, P ) =
√

(P 1
i − P 1)2 + (P 2

i − P 2)2/v

measures the time, which is needed to arrive from P to Pi (and vice-versa)
with constant velocity v.

Unfortunately, finding critical points as possible minima does not
yield any result: either the minimization function is not smooth enough
(usually, it is only a locally Lipschitz function) or the system, which
would give the critical points, becomes very complicated even in quite
simple cases (see (2.5) below). Consequently, the main purpose of the
present chapter is to study the set of these minima (existence, location)
in various geometrical settings.

The chapter is divided as follows. In §2.2 we deal with a necessary con-
dition while in §2.3 some existence, uniqueness and multiplicity results
are demonstrated for a general Weber problem on non-positively curved
Berwald space which model various real life phenomena. In §2.4, rele-
vant numerical examples and counterexamples are constructed by means
of evolutionary methods and computational geometry tools, emphasizing
the applicability and sharpness of our results.

2.2 A necessary condition

Let (M,F ) be an m-dimensional connected Finsler manifold, where F is
positively (but perhaps not absolutely) homogeneous of degree one.

In this section we prove some results concerning the set of minima for
functions

Cf (Pi, n, s)(P ) =
n∑
i=1

dsF (P, Pi) and Cb(Pi, n, s)(P ) =
n∑
i=1

dsF (Pi, P ),

where s ≥ 1 and Pi ∈M, i = 1, . . . , n, correspond to n ∈ N markets. The
value Cf (Pi, n, s)(P ) (resp. Cb(Pi, n, s)(P )) denotes the total s-forward
(resp. s-backward) cost between the deposit P ∈ M and the markets
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Pi ∈ M, i = 1, ..., n. When s = 1, we simply say total forward (resp.
backward) cost, and the minimization problems are the non-reversible
counterparts of the well-known Weber problem.

By using the triangle inequality, for every x0, x1, x2 ∈M we have

|dF (x1, x0)− dF (x2, x0)| ≤ max{dF (x1, x2), dF (x2, x1)}. (2.3)

Given any point P ∈M , there exists a coordinate map ϕP defined on the
closure of some precompact open subset U containing P such that ϕP
maps the set U diffeomorphically onto the open Euclidean ball Bm(r),
r > 0, with ϕP (P ) = 0Rm . Moreover, there is a constant c > 1, depending
only on P and U such that

c−1‖ϕP (x1)− ϕP (x2)‖ ≤ dF (x1, x2) ≤ c‖ϕP (x1)− ϕP (x2)‖ (2.4)

for every x1, x2 ∈ U ; see [3, p. 149]. Here, ‖·‖ denotes the Euclidean norm
on Rm. We claim that for every Q ∈ M, the function dF (ϕ−1

P (·), Q) is a
Lipschitz function on ϕP (U) = Bm(r). Indeed, for every yi = ϕP (xi) ∈
ϕP (U), i = 1, 2, due to (2.3) and (2.4), one has

|dF (ϕ−1
P (y1), Q)− dF (ϕ−1

P (y2), Q)| = |dF (x1, Q)− dF (x2, Q)| ≤

≤ max{dF (x1, x2), dF (x2, x1)} ≤ c‖y1 − y2‖.

Consequently, for every Q ∈ M, there exists the generalized gradient
of the locally Lipschitz function dF (ϕ−1

P (·), Q) on ϕP (U) = Bm(r), see
Clarke [14, p. 27], i.e., for every y ∈ ϕP (U) = Bm(r) we have

∂dF (ϕ−1
P (·), Q)(y) = {ξ ∈ Rm : d0

F (ϕ−1
P (·), Q)(y;h) ≥ 〈ξ, h〉 for all h ∈ Rm},

where 〈·, ·〉 denotes the standard inner product on Rm and

d0
F (ϕ−1

P (·), Q)(y;h) = lim sup
z→y, t→0+

dF (ϕ−1
P (z + th), Q)− dF (ϕ−1

P (z), Q)

t

is the generalized directional derivative.



C
E

U
eT

D
C

ol
le

ct
io

n

32 CHAPTER 2. WEBER-TYPE PROBLEMS ON MANIFOLDS

Theorem 2.2.1 [24] Assume that Tf ∈ M is a minimum point for
Cf (Pi, n, s) and ϕTf

is a map as above. Then

0Rm ∈
n∑
i=1

ds−1
F (Tf , Pi)∂dF (ϕ−1

Tf
(·), Pi)(ϕTf

(Tf )). (2.5)

Proof. Since Tf ∈M is a minimum point of the locally Lipschitz function
Cf (Pi, n, s), then

0Rm ∈ ∂

(
n∑
i=1

dsF (ϕ−1
Tf

(·), Pi)

)
(ϕTf

(Tf )),

see [14, Proposition 2.3.2]. Now, using the basic properties of the gener-
alized gradient, see [14, Proposition 2.3.3] and [14, Theorem 2.3.10], we
conclude the proof. �

Remark 2.2.1 A result similar to Theorem 2.2.1 can also be obtained
for Cb(Pi, n, s).

Example 2.2.1 Let M = Rm, m ≥ 2, be endowed with the natural
Euclidean metric. Taking into account (2.5), a simple computation shows
that the unique minimum point Tf = Tb (i.e., the place of the deposit) for
Cf (Pi, n, 2) = Cb(Pi, n, 2) is the centre of gravity of markets {P1, ..., Pn},
i.e., 1

n

∑n
i=1 Pi. In this case, ϕTf

can be the identity map on Rm.

Remark 2.2.2 The system (2.5) may become very complicated even
for simple cases; it is enough to consider the Matsumoto metric given
by (2.1). In such cases, we are not able to give an explicit formula for
minimal points. In fact, even in the Euclidean case when the points are
not situated on a straight line, Bajaj [4] has shown via Galois theory that
the Torricelli point(s) in the Weber problem cannot be expressed using
radicals (arithmetical operations and kth roots).
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2.3 Existence and uniqueness results

The next result gives an alternative concerning the number of minimum
points of the function Cf (Pi, n, s) in a general geometrical framework.
(Similar result can be obtained for Cb(Pi, n, s).) Namely, we have the
following theorem.

Theorem 2.3.1 [24] Let (M,F ) be a simply connected, geodesically com-
plete Berwald manifold of non-positive flag curvature, where F is posi-
tively (but perhaps not absolutely) homogeneous of degree one. Then

(a) there exists either a unique or infinitely many minimum points for
Cf (Pi, n, 1);

(b) there exists a unique minimum point for Cf (Pi, n, s) whenever s >
1.

Proof. First of all, we observe that M is not a backward bounded set.
Indeed, if we assume that it is, thenM is compact due to Hopf-Rinow the-
orem, see Theorem 1.1.1. On the other hand, due Cartan-Hadamard the-
orem, see Theorem 1.1.2, the exponential map expp : TpM →M is a dif-
feomorphism for every p ∈M. Thus, the tangent space TpM = exp−1

p (M)
is compact, a contradiction. Since M is not backward bounded, in par-
ticular, for every i = 1, ..., n, we have that

sup
P∈M

dF (P, Pi) =∞.

Consequently, outside of a large backward bounded subset of M , denoted
by M0, the value of Cf (Pi, n, s) is large. But, M0 being compact, the
continuous function Cf (Pi, n, s) attains its infimum, i.e., the set of the
minima for Cf (Pi, n, s) is always nonempty.

On the other hand, due to Proposition 1.2.3 for every nonconstant
geodesic σ : [0, 1] → M and p ∈ M , the function t 7→ dF (σ(t), p) is
convex and t 7→ dsF (σ(t), p) is strictly convex, whenever s > 1 (see also
Jost [17, Corollary 2.2.6]).

(a) Let us assume that there are at least two minimum points for
Cf (Pi, n, 1), denoting them by T 0

f and T 1
f . Let σ : [0, 1] → M be a
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geodesic with constant Finslerian speed such that σ(0) = T 0
f and σ(1) =

T 1
f . Then, for every t ∈ (0, 1) we have

Cf (Pi, n, 1)(σ(t)) =
n∑
i=1

dF (σ(t), Pi)

≤ (1− t)
n∑
i=1

dF (σ(0), Pi) + t
n∑
i=1

dF (σ(1), Pi) (2.6)

= (1− t) minCf (Pi, n, 1) + tminCf (Pi, n, 1)
= minCf (Pi, n, 1).

Consequently, for every t ∈ [0, 1], σ(t) ∈ M is a minimum point for
Cf (Pi, n, 1).

(b) It follows directly from the strict convexity of the function t 7→
dsF (σ(t), p), whenever s > 1; indeed, in (2.6) we have strict inequality
instead of ” ≤ ” which shows we cannot have more then one minimum
point for Cf (Pi, n, s). �

Example 2.3.1 Let F be the Finsler metric introduced in (2.1). One
can see that (R2, F ) is a typical non-reversible Finsler manifold. Actually,
it is a (locally) Minkowski space, so a Berwald space as well; its Chern
connection vanishes, see [3, p. 384]. According to (1.2) and (1.8), the
geodesics are straight lines (hence (R2, F ) is geodesically complete in
both sense) and the flag curvature is identically 0. Thus, we can apply
Theorem 2.3.1. For instance, if we consider the points P1 = (a,−b) ∈ R2

and P2 = (a, b) ∈ R2 with b 6= 0, the minimum points of the function
Cf (Pi, 2, 1) form the segment [P1, P2], independently of the value of α.
The same is true for Cb(Pi, 2, 1). However, considering more complicated
constellations, the situation changes dramatically, see Figure 2.2.

It would be interesting to study in similar cases the precise orbit of
the (Torricelli) points Tαf and Tαb when α varies from 0 to π/2. Several
numerical experiments show that Tαf tends to a top point of the convex
polygon (as in the Figure 2.2).

In the sequel, we want to study our problem in a special constellation:
we assume the markets are situated on a common ”straight line”, i.e.,
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Figure 2.2: A hexagon with vertices P1, P2, ..., P6 in the Matsumoto space. In-
creasing the slope’s angle α from 0 to π/2, points Tαf and Tαb are wandering in the
presented directions. Orbits of points Tαf and Tαb were generated by natural cubic
spline curve interpolation.

on a geodesic which is in a Riemannian manifold. Note that, in the
Riemannian context, the forward and backward costs coincide, i.e.,

Cf (Pi, n, 1) = Cb(Pi, n, 1),

while finding the minimum point(s) of the above function leads to the
well-known Weber problem on Riemannian manifolds. We denote this
common value by C(Pi, n, 1).
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Theorem 2.3.2 [24] Let (M, g) be a Hadamard manifold. Assume the
points Pi ∈ M, i = 1, ..., n, (n ≥ 2), belong to a geodesic σ : [0, 1] → M
such that Pi = σ(ti) with 0 ≤ t1 < ... < tn ≤ 1. Then

(a) the unique minimum point for C(Pi, n, 1) is P[n/2] whenever n is
odd;

(b) the minimum points for C(Pi, n, 1) is the whole geodesic segment
situated on σ between Pn/2 and Pn/2+1 whenever n is even.

Proof. Since (M, g) is complete, we extend σ to (−∞,∞), keeping the
same notation. First, we prove that the minimum point(s) for C(Pi, n, 1)
belong to the geodesic σ. We assume the contrary, i.e., let T ∈ M \
Image(σ) be a minimum point of C(Pi, n, 1). Let T⊥ ∈ Image(σ) be the
projection of T on the geodesic σ, i.e.

dg(T, T⊥) = min
t∈R

dg(T, σ(t)).

It is clear that the (unique) geodesic lying between T and T⊥ is perpen-
dicular to σ with respect to the Riemannian metric g.

Let i0 ∈ {1, ..., n} such that Pi0 6= T⊥. Applying the cosine inequality,

see Theorem 1.1.3, for the triangle with vertices Pi0 , T and T⊥ (so, T̂⊥ =
π/2), we have

d2
g(T⊥, T ) + d2

g(T⊥, Pi0) ≤ d2
g(T, Pi0).

Since
dg(T⊥, T ) > 0,

we have
dg(T⊥, Pi0) < dg(T, Pi0).

Consequently,

C(Pi, n, 1)(T⊥) =
n∑
i=1

dg(T⊥, Pi) <
n∑
i=1

dg(T, Pi) = minC(Pi, n, 1),

a contradiction. Now, conclusions (a) and (b) follow easily by using
simple arithmetical reasons. �
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2.4 Examples

We emphasize that Theorem 2.3.2 is sharp in the following sense: neither
the non-positivity of the sectional curvature (see Example 2.4.1) nor the
Riemannian structure (see Example 2.4.2) can be omitted.

Example 2.4.1 (Sphere) Let us consider the 2-dimensional unit sphere
S2 ⊂ R3 endowed with its natural Riemannian metric h inherited by R3.
We know that it has constant curvature 1. Let us fix P1, P2 ∈ S2 (P1 6= P2)
and their antipodals P3 = −P1, P4 = −P2. There exists a unique great
circle (geodesic) connecting Pi, i = 1, ..., 4. However, we observe that the
function C(Pi, 4, 1) is constant on S2; its value is 2π. Consequently, every
point on S2 is a minimum for the function C(Pi, 4, 1).

Example 2.4.2 (Finslerian-Poincaré disc) Let us consider the disc

M = {(x, y) ∈ R2 : x2 + y2 < 4}.

Introducing the polar coordinates (r, θ) onM , i.e., x = r cos θ, y = r sin θ,
we define the non-reversible Finsler metric on M by

F ((r, θ), V ) =
1

1− r2

4

√
p2 + r2q2 +

pr

1− r4

16

,

where

V = p
∂

∂r
+ q

∂

∂θ
∈ T(r,θ)M.

The pair (M,F ) is the so-called Finslerian-Poincaré disc. Within the
classification of Finsler manifolds, (M,F ) is a Randers space, see [3,
Section 12.6], which has the following properties:

(p1) it has constant negative flag curvature −1/4;

(p2) the geodesics have the following trajectories: Euclidean circular
arcs that intersect the boundary ∂M of M at Euclidean right an-
gles; Euclidean straight rays that emanate from the origin; and
Euclidean straight rays that aim to the origin;
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Figure 2.3:
Step 1: The minimum of the total backward (resp. forward) cost function Cb(Pi, 2, 1)
(resp. Cf (Pi, 2, 1)) is restricted to the geodesic determined by P1(1.6, 170◦) and
P2(1.3, 250◦). The point which minimizes Cb(Pi, 2, 1) (resp. Cf (Pi, 2, 1)) is approxi-
mated by Pb(0.8541, 212.2545◦) (resp. Pf = P1); in this case Cb(Pi, 2, 1)(Pb) ≈ 1.26
(resp. Cf (Pi, 2, 1)(Pf ) ≈ 2.32507).
Step 2: The minimum of the total backward (resp. forward) cost function
Cb(Pi, 2, 1) (resp. Cf (Pi, 2, 1)) is on the whole Randers space M . The mini-
mum point of total backward (resp. forward) cost function is approximated by
Tb(0.4472, 212.5589◦) (resp. Tf (1.9999, 171.5237◦)), which gives Cb(Pi, 2, 1)(Tb) ≈
0.950825 < Cb(Pi, 2, 1)(Pb) (resp. Cf (Pi, 2, 1)(Tf ) ≈ 2.32079 < Cf (Pi, 2, 1)(Pf )).

(p3) distF ((0, 0), ∂M) =∞, while distF (∂M, (0, 0)) = log 2.

Although (M,F ) is forward geodesically complete (but not backward
geodesically complete), it has constant negative flag curvature −1

4
and

it is contractible (thus, simply connected), the conclusion of Theorem
2.3.2 may be false. Indeed, one can find points in M (belonging to the
same geodesic) such that the minimum point for the total forward (resp.
backward) cost function is not situated on the geodesic, see Figure 2.3.

Remark 2.4.1 Note that Example 2.4.2 (Finslerian-Poincaré disc) may
give a model of a gravitational field whose centre of gravity is located
at the origin O = (0, 0), while the boundary ∂M means the ”infinity”.
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Suppose that in this gravitational field, we have several spaceships, which
are delivering some cargo to certain bases or to another spacecraft. Also,
assume that these spaceships are of the same type and they consume k
liter/second fuel (k > 0). Note that the expression F (dσ) denotes the
physical time elapsed to traverse a short portion dσ of the spaceship orbit.
Consequently, traversing a short path dσ, a spaceship consumes kF (dσ)

liter of fuel. In this way, the number k
∫ 1

0
F (σ(t), dσ(t))dt expresses the

quantity of fuel used up by a spaceship traversing an orbit σ : [0, 1]→M.

Suppose that two spaceships have to meet each other (for logistical
reasons) starting their trip from bases P1 and P2, respectively. Con-
suming as low total quantity of fuel as possible, they will choose Tb as
a meeting point and not Pb on the geodesic determined by P1 and P2.
Thus, the point Tb could be a position for an optimal deposit-base.

Now, suppose that we have two damaged spacecraft (e.g., without
fuel) at positions P1 and P2. Two rescue spaceships consuming as low
total quantity of fuel as possible, will blastoff from base Tf and not from
Pf = P1 on the geodesic determined by P1 and P2. In this case, the point
Tf is the position for an optimal rescue-base. If the spaceships in trouble
are close to the center of the gravitational field M , then any rescue-base
located closely also to the center O , implies the consumption of a great
amount of energy (fuel) by the rescue spaceships in order to reach their
destinations (namely, P1 and P2). Indeed, they have to overcome the
strong gravitational force near the centre O . Consequently, this is the
reason why the point Tf is so far from O, as Figure 2.3 shows. Note
that further numerical experiments support this observation. However,
there are certain special cases when the position of the optimal rescue-
base is either P1 or P2: from these two points, the farthest one from the
gravitational center O will be the position of the rescue-base. In such
case, the orbit of the (single) rescue spaceship is exactly the geodesic
determined by points P1 and P2.
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2.5 Comments

The results of this chapter are based on the paper of Kristály and Kozma
[22], and Kristály, Moroşanu and Róth [24]. As we emphasized in the
text, real life phenomena may be well described by using Finsler metrics
representing external force as current or gravitation (as the slope metric
of a hillside or the gravitational Finslerian-Poincaré ball). In this chap-
ter we studied not necessarily reversible Weber-type problems within the
framework of Riemann-Finsler geometry taking into account the curva-
ture and geometric structure of the ambient space.
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Chapter 3

Nash-type equilibria on
manifolds

I did have strange ideas during
certain periods of time.

John F. Nash (b. 1928)

3.1 Introduction

After the seminal papers of Nash [29], [30] there has been considerable
interest in the theory of Nash equilibria due to its applicability in various
real-life phenomena (game theory, price theory, networks, etc). Appreci-
ating Nash’s contributions, R. B. Myerson states that ”Nash’s theory of
noncooperative games should now be recognized as one of the outstanding
intellectual advances of the twentieth century”. The Nash equilibrium
problem involves n players such that each player knows the equilibrium
strategies of the partners, but moving away from his/her own strategy
alone a player has nothing to gain. Formally, if the sets Ki denote the
strategies of the players and fi : K1×...×Kn → R are their loss-functions,
i ∈ {1, ..., n}, the problem is to find an n-tuple p = (p1, ..., pn) ∈ K =
K1×...×Kn such that fi(p) ≤ fi(p; qi) for every qi ∈ Ki and i ∈ {1, ..., n},

41
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42 CHAPTER 3. NASH-TYPE EQUILIBRIA ON MANIFOLDS

where (p; qi) = (p1, ..., pi−1, qi, pi+1, ..., pn) ∈ K. Such point p is called a
Nash equilibrium point for (f ,K) = (f1, ..., fn;K1, ..., Kn), the set of these
points being denoted in the sequel by SNE(f ,K).

While most of the known developments in the Nash equilibrium the-
ory deeply exploit the usual convexity of the sets Ki together with the
vector space structure of their ambient spaces Mi (i.e., Ki ⊂ Mi), it is
nevertheless true that these results are in large part geometrical in nature.
The main purpose of this chapter is to enhance those geometrical and
analytical structures which serve as a basis of a systematic study of Nash-
type equilibrium problems in a general setting as possible. In the light
of these facts our contribution to the Nash equilibrium theory should be
considered rather intrinsical and analytical than game-theoretical. For
the sake of completeness, we mention some works where Nash equilibrium
problems were studied in a non-standard case; however, these results are
weakly connected only to our results; the convexity/regularity of the pay-
off functions fi are relaxed (see for instance Kassay, Kolumbán and Páles
[18], and Ziad [36]), or the convexity of the strategy sets Ki are weakened
(see Nessah and Kerstens [31], and Tala and Marchi [35]).

We assume a priori that the strategy sets Ki are geodesic convex
subsets of certain finite-dimensional Riemannian manifolds (Mi, gi). This
approach can be widely applied when the strategy sets are ’curved’; note
that the choice of such Riemannian structures does not influence the
Nash equilibrium points for (f ,K). The first step into this direction was
made recently in [20], guaranteeing the existence of at least one Nash
equilibrium point for (f ,K) whenever Ki ⊂Mi are compact and geodesic
convex sets of certain finite-dimensional Riemannian manifolds (Mi, gi)
while the functions fi have certain regularity properties, i ∈ {1, ..., n}.

In [20] we introduced and studied for a wide class of non-smooth
functions the set of Nash-Clarke points for (f ,K), denoted in the sequel
as SNC(f ,K); for details, see §3.2. Note that SNC(f ,K) is larger than
SNE(f ,K); thus, a promising way to find the elements of SNE(f ,K) is to
determine the set SNC(f ,K). In spite of the naturalness of this approach,
we already pointed out its limited applicability due to the involved struc-
ture of SNC(f ,K), conjecturing a more appropriate concept in order to
locate the elements of SNE(f ,K).
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Motivated by the latter problem, we observe that the Fréchet and lim-
iting subdifferential calculus of lower semicontinuous functions on Rie-
mannian manifolds developed by Ledyaev and Zhu [25] and Azagra, Fer-
rera and López-Mesas [1] provides a very satisfactory approach. The idea
is to consider the following system of variational inequalities: find p ∈ K
and ξiC ∈ ∂iCfi(p) such that

〈ξiC , exp−1
pi

(qi)〉gi
≥ 0 for all qi ∈ Ki, i ∈ {1, ..., n},

where ∂iCfi(p) denotes the Clarke subdifferential of the locally Lipschitz
function fi(p; ·) at the point pi ∈ Ki; for details, see §3.2. The solutions
of this system form the set of Nash-Stampacchia equilibrium points for
(f ,K), denoted by SNS(f ,K), which is the main concept of the third
chapter.

One of the advantages of the new concept is that the set SNS(f ,K)
is ’closer’ to SNE(f ,K) than SNC(f ,K). More precisely, we state that
SNE(f ,K) ⊂ SNS(f ,K) ⊂ SNC(f ,K) for the same class of non-smooth
functions f = (f1, ..., fn) as in [20] (see Theorem 3.2.3 (i)-(ii)). Moreover,
if f = (f1, ..., fn) verifies a suitable convexity assumption then the three
Nash-type equilibria coincide (see Theorem 3.2.3 (iii)).

The main purpose of this chapter is to establish existence, location
and stability of Nash-Stampacchia equilibrium points for (f ,K) in differ-
ent settings. While a Nash equilibrium point is obtained precisely as the
fixed point of a suitable function (see Nash’s original proof via Kakutani
fixed-point theorem), Nash-Stampacchia equilibrium points are expected
to be characterized in a similar way as fixed points of a special map
defined on the product Riemannian manifold M = M1 × ... ×Mn en-
dowed with its natural Riemannian metric g inherited from the metrics
gi, i ∈ {1, ..., n}. In order to achieve this aim, certain curvature and
topological restrictions are needed on the manifolds (Mi, gi). By as-
suming that the ambient Riemannian manifolds (Mi, gi) for the geodesic
convex strategy sets Ki are Hadamard manifolds, the key observation
(see Theorem 3.3.1) is that p ∈ K is a Nash-Stampacchia equilibrium
point for (f ,K) if and only if p is a fixed point of the set-valued map
Af
α : K→ 2K defined by

Af
α(p) = PK(expp(−α∂∆

C f(p))).
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Here, PK is the metric projection operator associated to the geodesic
convex set K ⊂M, α > 0 is a fixed number, and ∂∆

C f(p) is the diagonal
Clarke subdifferential at point p of f = (f1, ..., fn); see §3.2.

Within this geometrical framework, two cases are discussed. First,
when K ⊂M is compact, one can prove via the Begle’s fixed point theo-
rem for set-valued maps the existence of at least one Nash-Stampacchia
equilibrium point for (f ,K) (see Theorem 3.3.2). Second, we consider the
case when K ⊂M is not necessarily compact. By requiring more regu-
larity on f in order to avoid technicalities, we consider two dynamical
systems; a discrete one

(DDS)α pk+1 = Af
α(PK(pk)), p0 ∈M; ,

and a continuous one

(CDS)α

{
η̇(t) = exp−1

η(t)(A
f
α(PK(η(t))))

η(0) = p0 ∈M.

The main result (see Theorem 3.3.3) proves that the set of Nash-Stam-
pacchia equilibrium points for (f ,K) is a singleton and the orbits of both
dynamical systems exponentially converge to this unique point whenever
a Lipschitz-type condition holds on ∂∆

C f . It is clear by construction that
the orbit of (DDS)α is viable relative to the set K, i.e., pk ∈ K for every
k ≥ 1. By using a recent result of Ledyaev and Zhu [25], one can also
prove an invariance property of the set K with respect to the orbit of
(CDS)α. Note that the aforementioned results concerning the ’projected’
dynamical system (CDS)α are new even in the Euclidean setting studied
by Cavazzuti, Pappalardo and Passacantando [10], Xia and Wang [39].

Since the manifolds (Mi, gi) are assumed to be of Hadamard type (see
Theorems 3.3.1-3.3.3), so is the product manifold (M,g). Our analytical
arguments concerning Nash-Stampacchia equilibrium problems deeply
exploit two geometrical features of closed, geodesic convex sets of the
product Hadamard manifold (M,g):

(A) Validity of the obtuse-angle property, see Proposition 1.3.1 (i). This
fact is exploited in the characterization of Nash-Stampacchia equi-
librium points for (f ,K) via the fixed points of the map Af

α, see
Theorem 3.3.1.
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(B) Non-expansiveness of the projection operator, see Proposition 1.3.1
(ii). This property is applied several times in the proof of Theorems
3.3.2-3.3.3.

It is natural to ask to what extent the Riemannian structures of (Mi, gi)
are determined when the properties (A) and (B) simultaneously hold on
the product manifold (M,g). A constructive proof combined with the
parallelogramoid of Levi-Civita and a result of Chen [13] shows that if
(Mi, gi) are complete, simply connected Riemannian manifolds then (A)
and (B) are both verified on (M,g) if and only if (Mi, gi) are Hadamard
manifolds (see Theorem 3.4.1). Thus, we may assert that Hadamard
manifolds are the optimal geometrical framework to elaborate a fruitful
theory of Nash-Stampacchia equilibrium problems on manifolds.

The chapter is divided as follows. In §3.2 we compare the three Nash-
type equilibria. In §3.3, we prove the main results of this paper. First,
we are dealing with the existence of Nash-Stampacchia points for (f ,K)
in the compact case. Then, the uniqueness and exponential stability of
Nash-Stampacchia equilibrium points for (f ,K) is proved whenever K is
not necessarily compact in the Hadamard manifold (M,g). We present
an example in both cases. In §3.4 we characterize the geometric proper-
ties (A) and (B) on (M,g) by the Hadamard structures of the complete
and simply connected Riemannian manifolds (Mi, gi), i ∈ {1, ..., n}. Fi-
nally, in Section §3.5 some model examples are presented showing the
applicability of our results.

In the sequel, the following notations are used:

• K = K1 × ...×Kn;

• f = (f1, ..., fn);

• (f ,K) = (f1, ..., fn;K1, ..., Kn);

• p = (p1, ..., pn);

• (p; qi) = (p1, ..., pi−1, qi, pi+1, ..., pn);

• (K;Ui) = K1× ...×Ki−1×Ui×Ki+1× ...×Kn, for some Ui ⊃ Ki.
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3.2 Nash-type equilibria on Riemannian

manifolds: basic existence and com-

parison results

Let K1, ..., Kn (n ≥ 2) be non-empty sets, corresponding to the strategies
of n players and fi : K1 × ... × Kn → R (i ∈ {1, ..., n}) be the payoff
functions, respectively.

Definition 3.2.1 The set of Nash equilibrium points for (f ,K) is

SNE(f ,K) = {p ∈ K : fi(p; qi) ≥ fi(p) for all qi ∈ Ki, i ∈ {1, ..., n}}.

The main result of the paper [20] states that in a quite general framework
the set of Nash equilibrium points for (f ,K) is not empty. More precisely,
we have

Theorem 3.2.1 [20] Let (Mi, gi) be finite-dimensional Riemannian man-
ifolds; Ki ⊂ Mi be non-empty, compact, geodesic convex sets; and fi :
K → R be continuous functions such that Ki 3 qi 7→ fi(p; qi) is convex
on Ki for every p ∈ K, i ∈ {1, ..., n}. Then there exists at least one Nash
equilibrium point for (f ,K), i.e., SNE(f ,K) 6= ∅.

Proof. We apply Proposition 1.6.1 by choosing X = K = Πn
i=1Ki and

h : X ×X → R defined by h(q,p) =
∑n

i=1[fi(p; qi)− fi(p)]. First of all,
note that the sets Ki are ANRs, being closed subsets of finite-dimensional
manifolds (thus, locally contractible spaces). Moreover, since a product
of a finite family of ANRs is an ANR (see Bessage and Pelczyński [5,
p. 69]), it follows that X is an ANR. Due to Proposition 1.6.3, X is
contractible, thus acyclic.

Note that the function h is continuous, and h(p,p) = 0 for every
p ∈ X. Consequently, the set {(q,p) ∈ X ×X : 0 > h(q,p)} is open.

It remains to prove that Sp = {q ∈ X : 0 > h(q,p)} is contractible
or empty for all p ∈ X. Assume that Sp 6= ∅ for some p ∈ X. Then, there
exists i0 ∈ {1, ..., n} such that fi0(p; qi0)− fi0(p) < 0 for some qi0 ∈ Ki0 .
Therefore, q = (p; qi0) ∈ Sp, i.e., priSp 6= ∅ for every i ∈ {1, ..., n}. Now,
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we fix qj = (qj1, ..., q
j
n) ∈ Sp, j ∈ {1, 2} and let γi : [0, 1] → Ki be the

unique geodesic joining the points q1
i ∈ Ki and q2

i ∈ Ki (note that Ki

is geodesic convex), i ∈ {1, ..., n}. Let γ : [0, 1] → K defined by γ(t) =
(γ1(t), ..., γn(t)). Due to the convexity of the function Ki 3 qi 7→ fi(p; qi),
for every t ∈ [0, 1], we have

h(γ(t),p) =
n∑
i=1

[fi(p; γi(t))− fi(p)]

≤
n∑
i=1

[tfi(p; γi(1)) + (1− t)fi(p; γi(0))− fi(p)]

= th(q2,p) + (1− t)h(q1,p)

< 0.

Consequently, γ(t) ∈ Sp for every t ∈ [0, 1], i.e., Sp is a geodesic con-
vex set in the product manifold M = M1 × ... ×Mn endowed with its
natural (warped-)product metric (with the constant weight functions 1),
see O’Neill [32, p. 208]. Now, Proposition 1.6.3 implies that Sp is con-
tractible. Alternatively, we may exploit the fact that the projections
priSp are geodesic convex, thus contractible sets, i ∈ {1, ..., n}.

On account of Proposition 1.6.1, there exists p ∈ K such that 0 =
h(p,p) ≤ h(q,p) for every q ∈ K. In particular, putting q = (p; qi),
qi ∈ Ki fixed, we obtain that fi(p; qi)− fi(p) ≥ 0 for every i ∈ {1, ..., n},
i.e., p is a Nash equilibrium point for (f ,K). �

Similarly to Theorem 3.2.1, let us assume that for every i ∈ {1, ..., n},
one can find a finite-dimensional Riemannian manifold (Mi, gi) such that
the strategy set Ki is closed and geodesic convex in (Mi, gi). Let M =
M1 × ... ×Mn be the product manifold with its standard Riemannian
product metric

g(V,W) =
n∑
i=1

gi(Vi,Wi)

for every V = (V1, ..., Vn),W = (W1, ...,Wn) ∈ Tp1M1 × ... × TpnMn =
TpM. Let U = U1 × ...× Un ⊂M be an open set such that K ⊂ U; we
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always mean that Ui inherits the Riemannian structure of (Mi, gi). Let

L(K,U,M) = {f ∈ C0(K,Rn) : fi : (K;Ui)→ R is continuous and
fi(p; ·) is locally Lipschitz on (Ui, gi)
for all p ∈ K, i ∈ {1, ..., n}}.

The next notion has been introduced in [20].

Definition 3.2.2 Let f ∈ L(K,U,M). The set of Nash-Clarke points for
(f ,K) is

SNC(f ,K) = {p ∈ K : f 0
i (p, exp−1

pi
(qi)) ≥ 0 for all qi ∈ Ki, i ∈ {1, ..., n}}.

Here, f 0
i (p, exp−1

pi
(qi)) denotes the Clarke generalized derivative of fi(p; ·)

at point pi ∈ Ki in direction exp−1
pi

(qi) ∈ Tpi
Mi. More precisely,

f 0
i (p, exp−1

pi
(qi)) = lim sup

q→pi,q∈Ui, t→0+

fi(p;σq,exp−1
pi

(qi)
(t))− fi(p; q)

t
, (3.1)

where σq,v(t) = expq(tw), and w = d(exp−1
q ◦ exppi

)exp−1
pi

(q)v for v ∈
Tpi
Mi, and |t| is small enough. The following existence result is available

concerning the Nash-Clarke points for (f ,K).

Theorem 3.2.2 [20] Let (Mi, gi) be complete finite-dimensional Rieman-
nian manifolds; Ki ⊂ Mi be non-empty, compact, geodesic convex sets;
and f ∈ L(K,U,M) such that for every p ∈ K, i ∈ {1, ..., n}, Ki 3 qi 7→
f 0
i (p, exp−1

pi
(qi)) is convex and f 0

i is upper semicontinuous on its domain
of definition. Then there exists at least one Nash-Clarke point for (f ,K),
i.e., SNC(f ,K) 6= ∅.

Proof. The proof is similar to that of Theorem 3.2.1; we show only
the differences. Let X = K = Πn

i=1Ki and h : X × X → R defined by
h(q,p) =

∑n
i=1 f

0
i (p; exp−1

pi
(qi)). It is clear that h(p,p) = 0 for every

p ∈ X.
First of all, the upper-semicontinuity of h(·, ·) on X ×X implies the

fact that the set {(q,p) ∈ X ×X : 0 > h(q,p)} is open.
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Now, let p ∈ X such that Sp = {q ∈ X : 0 > h(q,p)} is not empty.
Then, there exists i0 ∈ {1, ..., n} such that f 0

i (p; exp−1
pi

(qi0)) < 0 for some
qi0 ∈ Ki0 . Consequently, q = (p; qi0) ∈ Sp, i.e., priSp 6= ∅ for every
i ∈ {1, ..., n}. Now, we fix qj = (qj1, ..., q

j
n) ∈ Sp, j ∈ {1, 2}, and let

γi : [0, 1] → Ki be the unique geodesic joining the points q1
i ∈ Ki and

q2
i ∈ Ki. Let also γ : [0, 1] → K defined by γ(t) = (γ1(t), ..., γn(t)).

Since Ki 3 qi 7→ f 0
i (p, exp−1

pi
(qi)) is convex, the convexity of the function

[0, 1] 3 t 7→ h(γ(t),p), t ∈ [0, 1] easily follows. Therefore, γ(t) ∈ Sp for
every t ∈ [0, 1], i.e., Sp is a geodesic convex set, thus contractible.

Thus, Proposition 1.6.1 implies the existence of p ∈ K such that
0 = h(p,p) ≤ h(q,p) for every q ∈ K. In particular, if q = (p; qi),
qi ∈ Ki fixed, we obtain that f 0

i (p; exp−1
pi

(qi)) ≥ 0 for every i ∈ {1, ..., n},
i.e., p is a Nash-Clarke point for (f ,K). The proof is complete. �

Remark 3.2.1 Although Theorem 3.2.2 gives a possible approach to lo-
cate Nash equilibrium points on Riemannian manifolds, its applicability
is quite reduced. As far as we know, only two special cases can be de-
scribed which imply the convexity of Ki 3 qi 7→ f 0

i (p, exp−1
pi

(qi)); namely,

(a) (Mi, gi) is Euclidean, i ∈ I1;

(b) Ki = Imγi where γi : [0, 1] → Mi is a minimal geodesic and
f 0
i (p, γ̇i(ti)) ≥ −f 0

i (p,−γ̇i(ti)), i ∈ I2 for every p ∈ K with pi = γi(ti)
(0 ≤ ti ≤ 1). Note that the sets I1, I2 ⊂ {1, ..., n} are such that I1 ∪ I2 =
{1, ..., n}.
Let us discuss in the sequel these items.

(a) The problem reduces to the property that the Clarke generalized
derivative Ki 3 qi 7→ f 0

i (p; qi) is subadditive and positively homogeneous,
thus convex, see Clarke [14, Proposition 2.1.1]. Note that in this case
exppi

= pi + idRdim Mi .

(b) If σi : [0, 1] → Mi is a geodesic segment joining the points
σi(0) = γi(t̃0) with σi(1) = γi(t̃1) (0 ≤ t̃0 < t̃1 ≤ 1), then Imσi ⊆
Imγi = Ki. Fix pi = γi(ti) ∈ Ki (0 ≤ t̃i ≤ 1). Let a0, a1 ∈ R
(a0 < a1) such that exppi

(a0γ̇i(ti)) = γi(t̃0) and exppi
(a1γ̇i(ti)) = γi(t̃1).

Then, σi(t) = exppi
((a0 + (a1 − a0)t)γ̇i(ti)). The claim follows if t 7→

f 0
i (p, exp−1

pi
(σi(t))) = f 0

i (p, (a0 + (a1 − a0)t)γ̇i(ti)) := g(t) is convex. If
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a0 ≥ 0 or a1 ≤ 0, then g is affine. If a0 < 0 < a1, then

g(t) =

{
−(a0 + (a1 − a0)t)f 0

i (p,−γ̇i(ti)), t ∈ [0,−a0/(a1 − a0)],
(a0 + (a1 − a0)t)f 0

i (p, γ̇i(ti)), t ∈ (−a0/(a1 − a0), 1].

Therefore, g is convex if and only if −f 0
i (p,−γ̇i(ti)) ≤ f 0

i (p, γ̇i(ti)).
(c) We finally emphasize that the inequality in the second case holds

automatically whenever Di 3 qi 7→ fi(p; qi) is either convex (see Udrişte
[37, Theorem 4.2, p. 71-72]), or it is of class C1, for every p ∈ K, i ∈ I2.

The limited applicability of Theorem 3.2.2 motivates the introduction
and study of the following concept which plays the central role in the
present chapter.

Definition 3.2.3 Let f ∈ L(K,U,M). The set of Nash-Stampacchia equi-
librium points for (f ,K) is

SNS(f ,K) = {p ∈ K : ∃ξiC ∈ ∂iCfi(p) such that 〈ξiC , exp−1
pi

(qi)〉gi
≥ 0,

for all qi ∈ Ki, i ∈ {1, ..., n}}.

Here, ∂iCfi(p) denotes the Clarke subdifferential of the function fi(p; ·)
at point pi ∈ Ki, i.e., ∂Cfi(p; ·)(pi) = co(∂Lfi(p; ·)(pi)).

Our first aim is to compare the three Nash-type points introduced in
Definitions 3.2.1-3.2.3. Before to do that, we introduce another class of
functions. If Ui ⊂ Mi is geodesic convex for every i ∈ {1, ..., n}, we may
define

K(K,U,M) = {f ∈ C0(K,Rn) : fi : (K;Ui)→ R is continuous and fi(p; ·) is
convex on (Ui, gi) for all p ∈ K, i ∈ {1, ..., n}}.

Remark 3.2.2 Due to Azagra, Ferrera and López-Mesas [1, Proposition
5.2], one has K(K,U,M) ⊂ L(K,U,M) whenever Ui ⊂ Mi is geodesic convex
for every i ∈ {1, ..., n}.

The main result of this section reads as follows.
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Theorem 3.2.3 [21] Let (Mi, gi) be finite-dimensional Riemannian man-
ifolds; Ki ⊂ Mi be non-empty, closed, geodesic convex sets; Ui ⊂ Mi be
open sets containing Ki; and fi : K→ R be some functions, i ∈ {1, ..., n}.
Then, we have

(i) SNE(f ,K) ⊂ SNS(f ,K) whenever f ∈ L(K,U,M);

(ii) SNS(f ,K) ⊂ SNC(f ,K) whenever f ∈ L(K,U,M) and Ui ⊂ Mi are
geodesic convex for every i ∈ {1, ..., n};

(iii) SNE(f ,K) = SNS(f ,K) = SNC(f ,K) whenever f ∈ K(K,U,M).

Proof. (i) Let p ∈ SNE(f ,K) and fix i ∈ {1, ..., n}. Since fi(p; qi) ≥
fi(p) for all qi ∈ Ki, then

fi(p; qi) + δKi
(qi)− fi(p)− δKi

(pi) ≥ 0 for all qi ∈ Ui,

which means that pi ∈ Ki is a global minimum of fi(p; ·) + δKi
on Ui.

According to Proposition 1.4.2 (iii), one has 0 ∈ ∂L(fi(p; ·) + δKi
)(pi).

Since f ∈ L(K,U,M), conform Proposition 1.4.4 (i)⇔(iii), we have that
∂∞fi(p; ·)(pi) = {0}. Thus, considering the functions fi(p; ·) and δKi

in
Proposition 1.4.3, we may exclude its second alternative, obtaining

0 ∈ ∂Lfi(p; ·)(pi) + ∂LδKi
(pi) = ∂Lfi(p; ·)(pi) +NL(pi;Ki)

⊂ ∂Cfi(p; ·)(pi) +NL(pi;Ki) = ∂iCfi(p) +NL(pi;Ki).

Consequently, there exists ξiC ∈ ∂iCfi(p) with −ξiC ∈ NL(pi;Ki). On
account of Theorem 1.4.1, we obtain 〈ξiC , exp−1

pi
(qi)〉gi

≥ 0 for all qi ∈ Ki,
i.e., p ∈ SNS(f ,K).

(ii) Let p ∈ SNS(f ,K). Fix also arbitrarily i ∈ {1, ..., n} and qi ∈ Ki.
It follows that there exists ξiC ∈ ∂iCfi(p) = ∂Cfi(p; ·)(pi) such that

〈ξiC , exp−1
pi

(qi)〉gi
≥ 0. (3.2)

By definition, there exist some λl ≥ 0, l ∈ J , with cardJ < ∞ and∑
l∈J λl = 1 such that ξiL,l ∈ ∂Lfi(p; ·)(pi) and ξiC =

∑
l λlξ

i
L,l. Conse-

quently, for each l ∈ J , there exists a sequence {pki,l} ⊂ Ui and ξki,l ∈
∂Ffi(p; ·)(pki,l) with

lim
k
pki,l = pi, lim

k
ξki,l = ξiL,l. (3.3)
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We may assume that pki,l 6= qi for each k ∈ N and l ∈ J . In view of
Proposition 1.4.1 (i)⇔(ii), we have in particular that

lim inf
t→0+

fi(p; exppk
i,l

(t exp−1
pk

i,l

(qi)))− fi(p; pki,l)− 〈ξki,l, t exp−1
pk

i,l

(qi)〉gi

tdgi(pki,l, qi)
≥ 0. (3.4)

Indeed, since Ui ⊂ Mi is convex, we may choose ψ = exp−1
pk

i,l

: Ui →
Tpk

i,l
Mi = RdimMi and v = t exp−1

pk
i,l

(qi) with t→ 0+; consequently, ψ(pki,l) =

0, dψ−1(ψ(pki,l)) = d exppk
i,l

(0) = idT
pk
i,l
Mi
, and ‖ exp−1

pk
i,l

(qi)‖gi
= dgi

(pki,l, qi).

Now, by (3.1) and (3.4) it follows that for every k ∈ N,

f 0
i ((p; pki,l), exp−1

pk
i,l

(qi)) ≥ 〈ξki,l, exp−1
pk

i,l

(qi)〉gi
.

By the upper-semicontinuity of f 0
i ((p; ·), ·) and relation (3.3), we have

that

f 0
i (p, exp−1

pi
(qi)) = f 0

i ((p; pi), exp−1
pi

(qi))

≥ lim sup
k

f 0
i ((p; pki,l), exp−1

pk
i,l

(qi))

≥ lim sup
k
〈ξki,l, exp−1

pk
i,l

(qi)〉gi

= 〈ξiL,l, exp−1
pi

(qi)〉gi
.

Multiplying by λl the above inequality and adding them for each l ∈ J ,
from relation (3.2) we obtain that

f 0
i (p, exp−1

pi
(qi)) ≥ 〈

∑
l∈J

λlξ
i
L,l, exp−1

pi
(qi)〉gi

= 〈ξiC , exp−1
pi

(qi)〉gi
≥ 0.

In conclusion, we have that p ∈ SNC(f ,K).

(iii) Due to (i)-(ii) and Remark 3.2.2, it is enough to prove that
SNC(f ,K) ⊂ SNE(f ,K). Let p ∈ SNC(f ,K), i.e., for every i ∈ {1, ..., n}
and qi ∈ Ki,

f 0
i (p, exp−1

pi
(qi)) ≥ 0. (3.5)
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Fix i ∈ {1, ..., n} and qi ∈ Ki arbitrary. Since fi(p; ·) is convex on (Ui, gi),
on account of (1.20), we have

f 0
i (p, exp−1

pi
(qi)) = lim

t→0+

fi(p; exppi
(t exp−1

pi
(qi)))− fi(p)

t
. (3.6)

Note that the function

R(t) =
fi(p; exppi

(t exp−1
pi

(qi)))− fi(p)

t

is well-defined on the whole interval (0, 1]; indeed, t 7→ exppi
(t exp−1

pi
(qi))

is the minimal geodesic joining the points pi ∈ Ki and qi ∈ Ki which
belongs to Ki ⊂ Ui. Moreover, it is well-known that t 7→ R(t) is non-
decreasing on (0, 1]. Consequently,

fi(p; qi)− fi(p) = fi(p; exppi
(exp−1

pi
(qi)))− fi(p) = R(1) ≥ lim

t→0+
R(t).

On the other hand, (3.5) and (3.6) give that limt→0+ R(t) ≥ 0, which
concludes the proof. �

Remark 3.2.3 In [20] we considered the sets SNE(f ,K) and SNC(f ,K).
Note however that the set of Nash-Stampacchia equilibrium points, i.e.
SNS(f ,K), which is between the former ones, seems to be the most appro-
priate concept to find Nash equilibrium points in very general contexts:
(a) the set of Nash-Stampacchia equilibria is larger than those of Nash
equilibrium points; (b) an efficient theory of Nash-Stampacchia equilib-
ria can be developed whenever the sets Ki, i ∈ {1, ..., n}, are subsets of
certain Hadamard manifolds. In the next section we fully develop this
theory.

3.3 Nash-Stampacchia equilibria on Hada-

mard manifolds: existence, uniqueness

and exponential stability

Let (Mi, gi) be finite-dimensional Hadamard manifolds, i ∈ {1, ..., n}.
Standard arguments show that (M,g) is also a Hadamard manifold,
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see Ballmann [2, Example 4, p.147] and O’Neill [32, Lemma 40, p.
209]. Moreover, on account of the characterization of (warped) prod-
uct geodesics, see O’Neill [32, Proposition 38, p. 208], if expp denotes
the usual exponential map on (M,g) at p ∈ M, then for every V =
(V1, ..., Vn) ∈ TpM, we have

expp(V) = (expp1(V1), ..., exppn
(Vn)).

We consider that Ki ⊂ Mi are non-empty, closed, geodesic convex sets
and Ui ⊂Mi are open sets containing Ki, i ∈ {1, ..., n}.

Let f ∈ L(K,U,M). The diagonal Clarke subdifferential of f = (f1, ..., fn)
at p ∈ K is

∂∆
C f(p) = (∂1

Cf1(p), ..., ∂nCfn(p)).

From the definition of the metric g, for every p ∈ K and q ∈M it turns
out that

〈ξ∆
C , exp−1

p (q)〉g =
n∑
i=1

〈ξiC , exp−1
pi

(qi)〉gi , ξ∆
C = (ξ1

C , ..., ξ
n
C) ∈ ∂∆

C f(p). (3.7)

For each α > 0 and f ∈ L(K,U,M), we define the set-valued map Af
α :

K→ 2K by

Af
α(p) = PK(expp(−α∂∆

C f(p))), p ∈ K.

Note that for each p ∈ K, the set Af
α(p) is non-empty and compact. The

following result plays a crucial role in our further investigations.

Theorem 3.3.1 [21] Let (Mi, gi) be finite-dimensional Hadamard man-
ifolds; Ki ⊂ Mi be non-empty, closed, geodesic convex sets; Ui ⊂ Mi

be open sets containing Ki, i ∈ {1, ..., n}; and f ∈ L(K,U,M). Then the
following statements are equivalent:

(i) p ∈ SNS(f ,K);

(ii) p ∈ Af
α(p) for all α > 0;

(iii) p ∈ Af
α(p) for some α > 0.
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Proof. In view of relation (3.7) and the identification between TpM
and T ∗pM, see (1.10), we have that

p ∈ SNS(f ,K) ⇔ ∃ξ∆
C = (ξ1

C , ..., ξ
n
C) ∈ ∂∆

C f(p) such that (3.8)

〈ξ∆
C , exp−1

p (q)〉g ≥ 0 for all q ∈ K

⇔ ∃ξ∆
C = (ξ1

C , ..., ξ
n
C) ∈ ∂∆

C f(p) such that

g(−αξ∆
C , exp−1

p (q)) ≤ 0 for all q ∈ K and

for all/some α > 0.

On the other hand, let γ, σ : [0, 1]→M be the unique minimal geodesics
defined by γ(t) = expp(−tαξ∆

C ) and σ(t) = expp(t exp−1
p (q)) for any fixed

α > 0 and q ∈ K. Since K is geodesic convex in (M,g), then Imσ ⊂ K
and

g(γ̇(0), σ̇(0)) = g(−αξ∆
C , exp−1

p (q)). (3.9)

Taking into account relation (3.9) and Proposition 1.3.1 (i), i.e., the
validity of the obtuse-angle property on the Hadamard manifold (M,g),
(3.8) is equivalent to

p = γ(0) = PK(γ(1)) = PK(expp(−αξ∆
C )),

which is nothing but p ∈ Af
α(p). �

Remark 3.3.1 Note that the implications (ii)⇒ (i) and (iii)⇒ (i) hold
for arbitrarily Riemannian manifolds, see Remark 1.3.1 (a). These im-
plications are enough to find Nash-Stampacchia equilibrium points for
(f ,K) via fixed points of the map Af

α. However, in the sequel we exploit
further aspects of the Hadamard manifolds as non-expansiveness of the
projection operator of geodesic convex sets and a Rauch-type compari-
son property. Moreover, in the spirit of Nash’s original idea that Nash
equilibria appear exactly as fixed points of a specific map, Theorem 3.3.1
provides a full characterization of Nash-Stampacchia equilibrium points
for (f ,K) via the fixed points of the set-valued map Af

α when (Mi, gi) are
Hadamard manifolds.

In the sequel, two cases will be considered to guarantee Nash-Stam-
pacchia equilibrium points for (f ,K), depending on the compactness of
the strategy sets Ki.
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3.3.1 Nash-Stampacchia equilibria; compact case

Our first result guarantees the existence of a Nash-Stampacchia equi-
librium point for (f ,K) whenever the sets Ki are compact; the proof is
based on Begle’s fixed point theorem for set-valued maps. More precisely,
we have

Theorem 3.3.2 [21] Let (Mi, gi) be finite-dimensional Hadamard mani-
folds; Ki ⊂Mi be non-empty, compact, geodesic convex sets; and Ui ⊂Mi

be open sets containing Ki, i ∈ {1, ..., n}. Assume that f ∈ L(K,U,M) and
K 3 p 7→ ∂∆

C f(p) is upper semicontinuous. Then there exists at least one
Nash-Stampacchia equilibrium point for (f ,K), i.e., SNS(f ,K) 6= ∅.

Proof. Fix α > 0 arbitrary. We prove that the set-valued map Af
α

has closed graph. Let (p,q) ∈ K×K and the sequences {pk}, {qk} ⊂ K
such that qk ∈ Af

α(pk) and (pk,qk)→ (p,q) as k →∞. Then, for every
k ∈ N, there exists ξ∆

C,k ∈ ∂∆
C f(pk) such that qk = PK(exppk

(−αξ∆
C,k)).

On account of Proposition 1.4.4 (i)⇔(ii), the sequence {ξ∆
C,k} is bounded

on the cotangent bundle T ∗M. Using the identification between elements
of the tangent and cotangent fibers, up to a subsequence, we may assume
that {ξ∆

C,k} converges to an element ξ∆
C ∈ T ∗pM. Since the set-valued map

∂∆
C f is upper semicontinuous on K and pk → p as k →∞, we have that
ξ∆
C ∈ ∂∆

C f(p). The non-expansiveness of PK (see Proposition 1.3.1 (ii))
gives that

dg(q, PK(expp(−αξ∆
C ))) ≤

≤ dg(q,qk) + dg(qk, PK(expp(−αξ∆
C )))

= dg(q,qk) + dg(PK(exppk
(−αξ∆

C,k)), PK(expp(−αξ∆
C )))

≤ dg(q,qk) + dg(exppk
(−αξ∆

C,k), expp(−αξ∆
C ))

Letting k → ∞, both terms in the last expression tend to zero. Indeed,
the former follows from the fact that qk → q as k →∞, while the latter
is a simple consequence of the local behaviour of the exponential map.
Thus,

q = PK(expp(−αξ∆
C )) ∈ PK(expp(−α∂∆

C f(p))) = Af
α(p),
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i.e., the graph of Af
α is closed.

By definition, for each p ∈ K the set ∂∆
C f(p) is convex, so con-

tractible. Since both PK and the exponential map are continuous, Af
α(p)

is contractible as well for each p ∈ K, so acyclic.
Now, we are in position to apply Begle’s fixed point theorem, see

Proposition 1.6.2. Consequently, there exists p ∈ K such that p ∈ Af
α(p).

On account of Theorem 3.3.1, p ∈ SNS(f ,K). �

3.3.2 Nash-Stampacchia equilibria; non-compact case

In the sequel, we are focusing to the location of Nash-Stampacchia equi-
librium points for (f ,K) in the case when Ki are not necessarily compact
on the Hadamard manifolds (Mi, gi). In order to avoid technicalities in
our further calculations, we introduce the class of functions

C(K,U,M) = {f ∈ C0(K,Rn) : fi : (K;Ui)→ R is continuous and fi(p; ·) is of

class C1 on (Ui, gi) for all p ∈ K, i ∈ {1, ..., n}}.

If is clear that C(K,U,M) ⊂ L(K,U,M). Moreover, when f ∈ C(K,U,M) then
∂∆
C f(p) and Af

α(p) are singletons for every p ∈ K and α > 0.
Let f ∈ C(K,U,M), α > 0 and 0 < ρ < 1. We assume the Lipschitz-type

condition: for all p,q ∈ K the following is fulfilled

(Hα,ρ
K ) dg(expp(−α∂∆

C f(p)), expq(−α∂∆
C f(q))) ≤ (1− ρ)dg(p,q).

Finding fixed points for Af
α, one could expect to apply dynamical systems;

we consider both discrete and continuous ones. First, for some α > 0 and
p0 ∈M fixed, we consider the discrete dynamical system

(DDS)α pk+1 = Af
α(PK(pk)).

Second, according to Theorem 3.3.1, we clearly have that

p ∈ SNS(f ,K)⇔ 0 = exp−1
p (Af

α(p)) for all/some α > 0.

Consequently, for some α > 0 and p0 ∈M fixed, the above equivalence
motivates the study of the continuous dynamical system

(CDS)α

{
η̇(t) = exp−1

η(t)(A
f
α(PK(η(t))))

η(0) = p0.
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The next result describes the stability of the orbits in both cases.

Theorem 3.3.3 [21] Let (Mi, gi) be finite-dimensional Hadamard man-
ifolds; Ki ⊂ Mi be non-empty, closed geodesics convex sets; Ui ⊂ Mi be
open sets containing Ki; and fi : K → R be functions, i ∈ {1, ..., n}
such that f ∈ C(K,U,M). Assume that (Hα,ρ

K ) holds true for some α > 0
and 0 < ρ < 1. Then the set of Nash-Stampacchia equilibrium points for
(f ,K) is a singleton, i.e., SNS(f ,K) = {p̃}. Moreover, for each p0 ∈M,

(i) the orbit {pk} of (DDS)α converges exponentially to p̃ ∈ K and

dg(pk, p̃) ≤ (1− ρ)k

ρ
dg(p1,p0) for all k ∈ N;

(ii) the orbit η of (CDS)α is globally defined on [0,∞) and it converges
exponentially to p̃ ∈ K and

dg(η(t), p̃) ≤ e−ρtdg(p0, p̃) for all t ≥ 0.

Proof. Let p,q ∈M be arbitrarily fixed. On account of the non-
expansiveness of the projection PK (see Proposition 1.3.1 (ii)) and hy-
pothesis (Hα,ρ

K ), we have that

dg((Af
α ◦ PK)(p), (Af

α ◦ PK)(q))

= dg(PK(expPK(p)(−α∂∆
C f(PK(p)))), PK(expPK(q)(−α∂∆

C f(PK(q)))))

≤ dg(expPK(p)(−α∂∆
C f(PK(p))), expPK(q)(−α∂∆

C f(PK(q))))

≤ (1− ρ)dg(PK(p), PK(q))

≤ (1− ρ)dg(p,q),

which means that Af
α ◦ PK : M→M is a (1− ρ)-contraction on M.

(i) Since (M,dg) is a complete metric space, a standard Banach fixed
point argument shows that Af

α ◦ PK has a unique fixed point p̃ ∈ M.
Since ImAf

α ⊂ K, then p̃ ∈ K. Therefore, we have that Af
α(p̃) = p̃. Due

to Theorem 3.3.1, SNS(f ,K) = {p̃} and the estimate for dg(pk, p̃) yields
in a usual manner.
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(ii) Since Af
α ◦ PK : M→M is a (1 − ρ)-contraction on M (thus

locally Lipschitz in particular), the map

M 3 p 7→ G(p) := exp−1
p (Af

α(PK(p)))

is of class C1−0. Now, due to the arguments from §1.5, we may guarantee
the existence of a unique maximal orbit η : [0, Tmax)→M of (CDS)α.

We assume that Tmax < ∞. Let us define the continuous function
h : [0, Tmax)→ R by

h(t) =
1

2
d2

g(η(t), p̃).

The function h is differentiable for a.e. t ∈ [0, Tmax) and in the differen-
tiable points of η we have

h′(t) = −g(η̇(t), exp−1
η(t)(p̃))

= −g(exp−1
η(t)(A

f
α(PK(η(t)))), exp−1

η(t)(p̃)) (see (CDS)α)

= −g(exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃), exp−1
η(t)(p̃))

−g(exp−1
η(t)(p̃), exp−1

η(t)(p̃))

≤ ‖ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)‖g · ‖ exp−1
η(t)(p̃))‖g

−‖ exp−1
η(t)(p̃))‖2

g.

In the last estimate we used the Cauchy-Schwartz inequality (1.11). From
(1.12) we have that

‖ exp−1
η(t)(p̃))‖g = dg(η(t), p̃). (3.10)

We claim that for every t ∈ [0, Tmax) one has

‖ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)‖g ≤ dg(Af
α(PK(η(t))), p̃). (3.11)

To see this, fix a differentiable point t ∈ [0, Tmax) of η, and let γ : [0, 1]→
M, γ̃ : [0, 1]→ Tη(t)M and γ : [0, 1]→ Tη(t)M be three curves such that

• γ is the unique minimal geodesic joining the two points γ(0) = p̃ ∈
K and γ(1) = Af

α(PK(η(t)));
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• γ̃(s) = exp−1
η(t)(γ(s)), s ∈ [0, 1];

• γ(s) = (1− s) exp−1
η(t)(p̃) + s exp−1

η(t)(A
f
α(PK(η(t)))), s ∈ [0, 1].

By the definition of γ, we have that

Lg(γ) = dg(Af
α(PK(η(t))), p̃). (3.12)

Moreover, since γ is a segment of the straight line in Tη(t)M that joins
the endpoints of γ̃, we have that

l(γ) ≤ l(γ̃). (3.13)

Here, l denotes the length function on Tη(t)M. Moreover, since the cur-
vature of (M,g) is non-positive, we may apply a Rauch-type comparison
result for the lengths of γ and γ̃, see do Carmo [15, Proposition 2.5,
p.218], obtaining that

l(γ̃) ≤ Lg(γ). (3.14)

Combining relations (3.12), (3.13) and (3.14) with the fact that

l(γ) = ‖ exp−1
η(t)(A

f
α(PK(η(t))))− exp−1

η(t)(p̃)‖g,

relation (3.11) holds true.
Coming back to h′(t), in view of (3.10) and (3.11), it turns out that

h′(t) ≤ dg(Af
α(PK(η(t))), p̃) · dg(η(t), p̃)− d2

g(η(t), p̃). (3.15)

On the other hand, note that p̃ ∈ SNS(f ,K), i.e., Af
α(p̃) = p̃. By exploit-

ing the non-expansiveness of the projection operator PK, see Proposition
1.3.1 (ii) and (Hα,ρ

K ), we have that

dg(Af
α(PK(η(t))), p̃) =

= dg(Af
α(PK(η(t))), Af

α(p̃))

= dg(PK(expPK(η(t))(−α∂∆
C f(PK(η(t))))), PK(expp̃(−α∂∆

C f(p̃))))

≤ dg(expPK(η(t))(−α∂∆
C f(PK(η(t)))), expp̃(−α∂∆

C f(p̃)))

≤ (1− ρ)dg(PK(η(t)), p̃)

= (1− ρ)dg(PK(η(t)), PK(p̃))

≤ (1− ρ)dg(η(t), p̃).
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Combining the above relation with (3.15), for a.e. t ∈ [0, Tmax) it yields

h′(t) ≤ (1− ρ)d2
g(η(t), p̃)− d2

g(η(t), p̃) = −ρd2
g(η(t), p̃),

which is nothing but

h′(t) ≤ −2ρh(t) for a.e. t ∈ [0, Tmax).

Due to the latter inequality, we have that

d

dt
[h(t)e2ρt] = [h′(t) + 2ρh(t)]e2ρt ≤ 0 for a.e. t ∈ [0, Tmax).

After integration, one gets

h(t)e2ρt ≤ h(0) for all t ∈ [0, Tmax). (3.16)

According to (3.16), the function h is bounded on [0, Tmax); thus, there
exists p ∈M such that limt↗Tmax η(t) = p. The last limit means that η
can be extended toward the value Tmax, which contradicts the maximality
of Tmax. Thus, Tmax =∞.

Now, relation (3.16) leads to the required estimate; indeed, we have

dg(η(t), p̃) ≤ e−ρtdg(η(0), p̃) = e−ρtdg(p0, p̃) for all t ∈ [0,∞),

which concludes our proof. �

Remark 3.3.2 We assume the hypotheses of Theorem 3.3.3 are still
verified and p0 ∈ K.

(i) Discrete case. Since ImAf
α ⊂ K, then the orbit of (DDS)α belongs

to the set K, i.e., pk ∈ K for every k ∈ N.
(ii) Continuous case. We shall prove that K is invariant with re-

spect to the solutions of (CDS)α, i.e., the image of the global solu-
tion η : [0,∞) → M of (CDS)α with η(0) = p0 ∈ K, entirely be-
longs to the set K. To show the latter fact, we are going to apply
Proposition 1.5.1 by choosing M := M and G : M → TM defined by
G(p) := exp−1

p (Af
α(PK(p))).

Fix p ∈ K and ξ ∈ NF (p; K). Since K is geodesic convex in (M,g),
on account of Theorem 1.4.1, we have that 〈ξ, exp−1

p (q)〉g ≤ 0 for all
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q ∈ K. In particular, if we choose q0 = Af
α(PK(p)) ∈ K, it turns out

that

HG(p, ξ) = 〈ξ,G(p)〉g = 〈ξ, exp−1
p (Af

α(PK(p)))〉g
= 〈ξ, exp−1

p (q0)〉g
≤ 0,

thus, our claim is proved by applying Proposition 1.5.1.

3.4 Curvature rigidity: Metric projections

vs Hadamard manifolds

The obtuse-angle property and the non-expansiveness of PK for the closed,
geodesic convex set K ⊂M played indispensable roles in the proof of
Theorems 3.3.1-3.3.3, which are well-known features of Hadamard mani-
folds (see Proposition 1.3.1). In §3.3 the product manifold (M,g) is con-
sidered to be a Hadamard one due to the fact that (Mi, gi) are Hadamard
manifolds themselves for each i ∈ {1, ..., n}. We actually have the fol-
lowing characterization which is also of geometric interests in its own
right and entitles us to assert that Hadamard manifolds are the natu-
ral framework to develop the theory of Nash-Stampacchia equilibria on
manifolds.

Theorem 3.4.1 [21] Let (Mi, gi) be complete, simply connected Rieman-
nian manifolds, i ∈ {1, ..., n}, and (M,g) their product manifold. The
following statements are equivalent:

(i) Any non-empty, closed, geodesic convex set K ⊂M verifies the
obtuse-angle property and PK is non-expansive;

(ii) (Mi, gi) are Hadamard manifolds for every i ∈ {1, ..., n}.

Proof. (ii)⇒(i). As mentioned before, if (Mi, gi) are Hadamard man-
ifolds for every i ∈ {1, ..., n}, then (M,g) is also a Hadamard manifold,
see Ballmann [2, Example 4, p.147] and O’Neill [32, Lemma 40, p. 209].
We apply Proposition 1.3.1 for (M,g).
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(i)⇒(ii). We first prove that (M,g) is a Hadamard manifold. Since
(Mi, gi) are complete and simply connected Riemannian manifolds for
every i ∈ {1, ..., n}, the same is true for (M,g). We now show that
the sectional curvature of (M,g) is non-positive. To see this, let p ∈M
and W0,V0 ∈ TpM \ {0}. We claim that the sectional curvature of the
two-dimensional subspace S =span{W0,V0} ⊂ TpM at the point p is
non-positive, i.e., Kp(S) ≤ 0. We assume without loosing the generality
that V0 and W0 are g-perpendicular, i.e., g(W0,V0) = 0.

Let us fix rp > 0 and δ > 0 such that Bg(p, rp) is a totally normal
ball of p and

δ (‖W0‖g + 2‖V0‖g) < rp. (3.17)

Let σ : [−δ, 2δ]→M be the geodesic segment σ(t) = expp(tV0) and W
be the unique parallel vector field along σ with the initial data W(0) =
W0. For any t ∈ [0, δ], let γt : [0, δ] → M be the geodesic segment
γt(u) = expσ(t)(uW(t)).

Let us fix t, u ∈ [0, δ] arbitrarily, u 6= 0. Due to (3.17), the geodesic
segment γt|[0,u] belongs to the totally normal ball Bg(p, rp) of p; thus,
γt|[0,u] is the unique minimal geodesic joining the point γt(0) = σ(t) to
γt(u). Moreover, since W is the parallel transport of W(0) = W0 along
σ, we have g(W(t), σ̇(t)) = g(W(0), σ̇(0)) = g(W0,V0) = 0; therefore,

g(γ̇t(0), σ̇(t)) = g(W(t), σ̇(t)) = 0.

Consequently, the minimal geodesic segment γt|[0,u] joining γt(0) = σ(t)
to γt(u), and the set K = Imσ = {σ(t) : t ∈ [−δ, 2δ]} fulfill hypothesis
(OA2). Note that Imσ is a closed, geodesic convex set in M; thus, from
hypothesis (i) it follows the set Imσ verifies the obtuse-angle property
and the map PImσ is non-expansive. Therefore, (OA2) implies (OA1),
i.e., for every t, u ∈ [0, δ], we have σ(t) ∈ PImσ(γt(u)). Since Imσ is a
Chebyshev set (cf. the non-expansiveness of PImσ), for every t, u ∈ [0, δ],
we have

PImσ(γt(u)) = {σ(t)}. (3.18)

In particular, for every t, u ∈ [0, δ], relation (3.18) and the non-expansiveness
of PImσ imply

dg(p, σ(t)) = dg(σ(0), σ(t)) (3.19)
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= dg(PImσ(γ0(u)), PImσ(γt(u)))

≤ dg(γ0(u), γt(u)).

The above construction (i.e., the parallel transport of W(0) = W0 along
σ) and the formula of the sectional curvature in the parallelogramoid of
Levi-Civita defined by the points p, σ(t), γ0(u), γt(u), see §1.1.2, give

Kp(S) = lim
u,t→0

d2
g(p, σ(t))− d2

g(γ0(u), γt(u))

dg(p, γ0(u)) · dg(p, σ(t))
.

According to (3.19), the latter limit is non-positive, so Kp(S) ≤ 0, which
concludes the first part, namely, (M,g) is a Hadamard manifold.

Now, the main result of Chen [13, Theorem 1] implies that the metric
spaces (Mi, dgi

) are Aleksandrov NPC spaces for every i ∈ {1, ..., n}.
Consequently, for each i ∈ {1, ..., n}, the Riemannian manifolds (Mi, gi)
have non-positive sectional curvature, thus they are Hadamard manifolds.
The proof is complete. �

Remark 3.4.1 The last result entitles us to assert that the Hadamard
manifolds are the natural framework to develop a powerful theory of
Nash-Stampacchia equilibrium points on Riemannian manifolds.

3.5 Examples

In this section we present some examples which show the applicability
of the results from the previous section in order to localize Nash-type
equilibrium points in a non-convex framework.

Example 3.5.1 Let K1 = [−1, 1], K2 = {(cos t, sin t) : t ∈ [π/4, 3π/4]},
and f1, f2 : K1 ×K2 → R defined for every x ∈ K1, (y1, y2) ∈ K2 by

f1(x, (y1, y2)) = |x|y2
1 − y2, f2(x, (y1, y2)) = (1− |x|)(y2

1 − y2
2).

Note that K1 ⊂ R is convex in the usual sense, but K2 ⊂ R2 is not.
However, if we consider the Poincaré upper-plane model (H2, gH), the
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set K2 ⊂ H2 is geodesic convex with respect to the metric gH, be-
ing the image of a geodesic segment from (H2, gH). It is clear that
f1(·, (y1, y2)) is a convex function on K1 in the usual sense for every
(y1, y2) ∈ K2. Moreover, f2(x, ·) is also a convex function on K2 ⊂ H2

for every x ∈ K1. Indeed, the latter fact reduces to the convexity of
the function t 7→ (1 − |x|) cos(2t), t ∈ [π/4, 3π/4]. Therefore, The-
orem 3.2.1 guarantees the existence of at least one Nash equilibrium
point for (f ,K) = (f1, f2;K1, K2). Using Theorem 3.2.3 (iii), a simple
calculation shows that the set of Nash equilibrium (as well as Nash-
Clarke equilibrium and Nash-Stampacchia equilibrium) points for (f ,K)
is K1 × {(0, 1)}.

Example 3.5.2 Let K1 = [−1, 1]2, K2 = {(y1, y2) : y2 = y2
1, y1 ∈ [0, 1]},

and f1, f2 : K1 ×K2 → R defined for every (x1, x2) ∈ K1, (y1, y2) ∈ K2

by

f1((x1, x2), (y1, y2)) = −x2
1y2 + x2y1, f2((x1, x2), (y1, y2)) = x1y

2
2 + x2y

2
1.

The set K1 ⊂ R2 is convex, but K2 ⊂ R2 is not in the usual sense.
However, K2 may be considered as the image of a geodesic segment on
the paraboloid of revolution prev(u, v) = (v cosu, v sinu, v2) endowed with
its natural Riemannian structure having the coefficients

g11(u, v) = v2, g12(u, v) = g21(u, v) = 0, g22(u, v) = 1 + 4v2. (3.20)

More precisely, K2 becomes geodesic convex on Imprev, being actually
identified with {(y, 0, y2) : y ∈ [0, 1]} ⊂ Imprev. Note that neither
f1(·, (y1, y2)) nor f2((x1, x2), ·) is convex (the convexity of the latter func-
tion being considered on K2 ⊂Imprev); thus, Theorem 3.2.1 is not appli-
cable. In view of Remark 3.2.1 (c), Theorem 3.2.2 can be applied in order
to determine the set of Nash-Clarke equilibrium points. This set is noth-
ing but the set of solutions in the form ((x̃1, x̃2), (ỹ, ỹ2)) ∈ K1 ×K2 = K
of the system{

−2x̃1ỹ
2(x1 − x̃1) + ỹ(x2 − x̃2) ≥ 0, ∀(x1, x2) ∈ K1,

ỹ(2ỹ2x̃1 + x̃2)(y − ỹ) ≥ 0, ∀y ∈ [0, 1].
(S1)
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Note that the second inequality is obtained by (3.20) and relations

∂2f2((x1, x2), (y1, y2)) =
(
2x2y1y

−2
2 , 2x1y2(1 + 4y2

2)−1
)
,

exp−1
(ỹ,0,ỹ2)(y, 0, y

2) = (y − ỹ, 2ỹ(y − ỹ)), ỹ, y ∈ [0, 1].

We distinguish three cases: (a) ỹ = 0; (b) ỹ = 1; and (c) 0 < ỹ < 1.
(a) ỹ = 0. Then, any ((x̃1, x̃2), (0, 0)) ∈ K solves (S1).
(b) ỹ = 1. After an easy computation, we obtain that the points

((−1,−1), (1, 1)) ∈ K and ((0,−1), (1, 1)) ∈ K solve (S1).
(c) 0 < ỹ < 1. The unique situation when (S1) is solvable is ỹ =

√
2/2.

In this case, (S1) has a unique solution ((1,−1), (
√

2/2, 1/2)) ∈ K. Con-
sequently, the set of Nash-Clarke points for (f ,K) = (f1, f2;K1, K2), i.e.
SNC(f ,K), is the union of the points from (a), (b) and (c), respectively.

Due to Theorem 3.2.3 (i), we may select the elements of SNE(f ,K)
from SNC(f ,K). Therefore, the elements of SNE(f ,K) are the solutions
((x̃1, x̃2), (ỹ, ỹ2)) ∈ SNC(f ,K) of the system{

−x2
1ỹ

2 + x2ỹ ≥ −x̃2
1ỹ

2 + x̃2ỹ, ∀(x1, x2) ∈ K1,
x̃1y

4 + x̃2y
2 ≥ x̃1ỹ

4 + x̃2ỹ
2, ∀y ∈ [0, 1].

(S2)

We consider again the above three cases.
(a) ỹ = 0. Among the elements ((x̃1, x̃2), (0, 0)) ∈ K which solve

(S1), only those are solutions for (S2) which fulfill the condition x̃2 ≥
max{−x̃1, 0}.

(b) ỹ = 1. On one hand, we have ((−1,−1), (1, 1)) ∈ SNE(f ,K).
However, ((0,−1), (1, 1)) /∈ SNE(f ,K).

(c) 0 < ỹ < 1. We have ((1,−1), (
√

2/2, 1/2)) ∈ SNE(f ,K).

Example 3.5.3 Let

K1 = {(x1, x2) ∈ R2
+ : x2

1 + x2
2 ≤ 4 ≤ (x1 − 1)2 + x2

2}, K2 = [−1, 1],

and the functions f1, f2 : K1 × K2 → R defined for (x1, x2) ∈ K1 and
y ∈ K2 by

f1((x1, x2), y) = y(x3
1 +y(1−x2)3); f2((x1, x2), y) = −y2x2 +4|y|(x1 +1).
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It is clear that K1 ⊂ R2 is not convex in the usual sense while K2 ⊂ R
is. However, if we consider the Poincaré upper-plane model (H2, gH), the
set K1 ⊂ H2 is geodesic convex (and compact) with respect to the metric

gH = (
δij
x2
2
). Therefore, we embed the set K1 into the Hadamard manifold

(H2, gH), and K2 into the standard Euclidean space (R, g0). After natural
extensions of f1(·, y) and f2((x1, x2), ·) to the whole U1 = H2 and U2 = R,
respectively, we clear have that f1(·, y) is a C1 function on H2 for every
y ∈ K2, while f2((x1, x2), ·) is a locally Lipschitz function on R for every
(x1, x2) ∈ K1. Therefore, f = (f1, f2) ∈ L(K1×K2,H2×R,H2×R) and for every
((x1, x2), y) ∈ K = K1 ×K2, we have

∂1
Cf1((x1, x2), y) = gradf1(·, y)(x1, x2) = (gijH

∂f1(·, y)

∂xj
)i

= 3yx2
2(x2

1,−y(1− x2)2);

∂2
Cf2((x1, x2), y) =


−2yx2 − 4(x1 + 1) if y < 0,
4(x1 + 1)[−1, 1] if y = 0,
−2yx2 + 4(x1 + 1) if y > 0.

It is now clear that the map K 3 ((x1, x2), y) 7→ ∂∆
C f(((x1, x2), y))

is upper semicontinuous. Consequently, on account of Theorem 3.3.2,
SNS(f ,K) 6= ∅, and its elements are precisely the solutions ((x̃1, x̃2), ỹ) ∈
K of the system{

〈∂1
Cf1((x̃1, x̃2), ỹ), exp−1

(x̃1,x̃2)(q1, q2)〉gH ≥ 0 ∀(q1, q2) ∈ K1,

ξ2
C(q − ỹ) ≥ 0 for some ξ2

C ∈ ∂2
Cf2((x̃1, x̃2), ỹ) ∀q ∈ K2.

(S3)

In order to solve (S3) we first observe that

K1 ⊂ {(x1, x2) ∈ R2 :
√

3 ≤ x2 ≤ 2(x1 + 1)}. (3.21)

We distinguish some cases:
(a) If ỹ = 0 then both inequalities of (S3) hold for every (x̃1, x̃2) ∈ K1

by choosing ξ2
C = 0 ∈ ∂2

Cf2((x̃1, x̃2), 0) in the second relation. Thus,
((x̃1, x̃2), 0) ∈ SNS(f ,K) for every (x̃1, x̃2) ∈ K.

(b) Let 0 < ỹ < 1. The second inequality of (S3) gives that −2ỹx̃2 +
4(x̃1 + 1) = 0; together with (3.21) it yields 0 = ỹx̃2 − 2(x̃1 + 1) <
x̃2 − 2(x̃1 + 1) ≤ 0, a contradiction.
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(c) Let ỹ = 1. The second inequality of (S3) is true if and only if
−2x̃2 + 4(x̃1 + 1) ≤ 0. Due to (3.21), we necessarily have x̃2 = 2(x̃1 + 1);
this Euclidean line intersects the set K1 in the unique point (x̃1, x̃2) =
(0, 2) ∈ K1. By the geometrical meaning of the exponential map one can
conclude that

{t exp−1
(0,2)(q1, q2) : (q1, q2) ∈ K1, t ≥ 0} = {(x,−y) ∈ R2 : x, y ≥ 0}.

Taking into account this relation and ∂1
Cf1((0, 2), 1) = (0,−12), the first

inequality of (S3) holds true as well. Therefore, ((0, 2), 1) ∈ SNS(f ,K).
(d) Similar reason as in (b) (for −1 < ỹ < 0) and (c) (for ỹ = −1)

gives that ((0, 2),−1) ∈ SNS(f ,K).
Thus, from (a)-(d) we have that

SNS(f ,K) = (K1 × {0}) ∪ {((0, 2), 1), ((0, 2),−1)}.

Now, on account of Theorem 3.2.3 (i) we may choose the Nash equilib-
rium points for (f ,K) among the elements of SNS(f ,K) obtaining that
SNE(f ,K) = K1 × {0}.

Example 3.5.4 (a) Assume that Ki is closed and convex in the Eu-
clidean space (Mi, gi) = (Rmi , 〈·, ·〉Rmi ), i ∈ {1, ..., n}, and let f ∈ C(K,U,Rm)

where m =
∑n

i=1mi. If ∂∆
C f is L−globally Lipschitz and κ-strictly mono-

tone on K ⊂ Rm, then the function f verifies (Hα,ρ
K ) with α = κ

L2 and

ρ = κ2

2L2 . (Note that the above facts imply that κ ≤ L, thus 0 < ρ < 1.)
Indeed, for every p,q ∈ K we have that

d2
g(expp(−α∂∆

C f(p)), expq(−α∂∆
C f(q)))

= ‖p− α∂∆
C f(p)− (q− α∂∆

C f(q))‖2Rm = ‖p− q− (α∂∆
C f(p)− α∂∆

C f(q))‖2Rm

= ‖p− q‖2Rm − 2α〈p− q, ∂∆
C f(p)− ∂∆

C f(q)〉Rm + α2‖∂∆
C f(p)− α∂∆

C f(q)‖2Rm

≤ (1− 2ακ+ α2L2)‖p− q‖2Rm = (1− κ2

L2
)d2

g(p,q)

≤ (1− ρ)2d2
g(p,q).
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(b) Let K = K1 = K2 = R2
+ and for x = (x1, x2) ∈ K and y =

(y1, y2) ∈ K, we consider the functions f1, f2 : K ×K → R defined by

f1(x, y) = (c11x1 − h11(y))2 + (c12x2 − h12(y))2;

f2(x, y) = (c21y1 − h21(x))2 + (c22y2 − h22(x))2,

where cij > 0 are fixed numbers and hij : K → R are Lij-globally
Lipschitz functions, i, j ∈ {1, 2}. Assume that

2 min
i,j

cij > 3 max
i,j

Lij.

We may prove that there exists a unique Nash equilibrium point for
(f ,K) = (f1, f2;K,K). Indeed, we first consider Nash-Stampacchia equi-
librium points for (f ,K). Extending in a natural way f1(·, y) and f2(x, ·)
to the whole U1 = U2 = R2 for every x, y ∈ K, it yields that f ∈ C(K,R4,R4).
Moreover, for every (x, y) ∈ K, we have

∂∆
C f(x, y) = 2(c11x1−h11(y), c12x2−h12(y), c21y1−h21(x), c22y2−h22(x)).

A simple calculation shows that ∂∆
C f is L−globally Lipschitz and κ-

strictly monotone on K ⊂ R4 with

L = 2
√

3 max
i,j

cij > 0; κ = 2 min
i,j

cij − 3 max
i,j

Lij > 0.

According to (a), f verifies (Hα,ρ
K ) with α = κ

L2 and ρ = κ2

2L2 . On account
of Theorem 3.3.3, the set of Nash-Stampacchia equilibrium points for
(f ,K) contains exactly one point, i.e., the system{

(c1ix̃i − h1i(ỹ))(x− x̃i) ≥ 0 for all x ∈ [0,∞), i ∈ {1, 2},
(c2j ỹj − h2j(x̃))(y − ỹj) ≥ 0 for all y ∈ [0,∞), j ∈ {1, 2}, (S4)

has a unique solution (x̃, ỹ) ∈ K. Moreover, the orbits of both dynamical
systems (DDS)α and (CDS)α exponentially converge to (x̃, ỹ). Since
f1(·, y) and f2(x, ·) are convex functions on K for every x, y ∈ K, then f ∈
K(K,R4,R4) as well. Due to Theorem 3.2.3 (iii), we have that SNE(f ,K) =
SNS(f ,K) = {(x̃, ỹ)}.
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3.6 Comments

The results of this chapter are based on the author’s papers [20], [21]
where Nash-type equilibrium points are studied in a non-standard ge-
ometric framework. First, existence and location of Nash equilibrium
points are obtained via McClendon-type minimax inequalities for a large
class of finite families of payoff functions whose domains are not neces-
sarily convex in the usual sense. To overcome this difficulty, we assumed
that these domains can be embedded into suitable Riemannian manifolds
regaining certain geodesic convexity property of them. Then, characteri-
zation, existence, and stability of Nash-Stampacchia equilibria are guar-
anteed whenever the strategy sets are compact or noncompact subsets
of certain Hadamard manifolds. Here, we exploited non-smooth and set-
valued analysis on manifolds, and two well-known geometrical features of
Hadamard spaces. We have also shown that the latter properties charac-
terize the non-positivity of the sectional curvature of complete and sim-
ply connected Riemannian spaces, delimiting the Hadamard manifolds
as the optimal geometrical framework of Nash-Stampacchia equilibrium
problems.
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