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1 Introduction

A central aim of factor analysis is the ”orderly simplification” of a number of inter-

related measures. It should be reassuring for the reader to discover that factor analysis

seeks to do precisely what man has been engaged in throughout history – to make order

out of the apparent chaos of his environment. This process of identifying and classifying

the attributes of our surroundings in an attempt to make our world intelligible is a very

familiar one.

One of the chief burdens of our research is to define a factor. However, the term

crops up so frequently beforehand that a provisional definition would not be out of place.

Intuitively, when a group of variables has, for some reason, a great deal in common a

factor may be said to exist. These related variables are discovered using the technique of

correlation. For example, if one took a group of people and correlated the lengths of their

arms, legs, and bodies one would probably find a marked relationship between all three

measures. This interconnection constitutes a factor.

Many authors (Child(1970), Kline (1994)) agree on that it was Galton, a brilliant

scientist of the 19th and early 20th centuries, who laid the foundation of factorial study.

Although he did not concern himself with the kind of mathematical analysis so familiar

to the subject nowadays, he nevertheless inspired two lines of thought which have been

essential to the development of factorial study. The first of these was the idea that general

intellectual power was spread in a continuous fashion from the very dull to the very bright.

This idea of a common casual thread running through all intelligent behavior was in

marked contrast to the pluralistic theories expounded by faculty theorists. His idea lived

on in a form of the general ability formulated, as we shall discover, using factor solutions.

He denoted this ability as g. Galton took his argument a step further by proposing the

existence of special powers, although he still believed the general intellectual power was

the overriding influence in determining the quality of a man’s responses in general. The

second major contribution made by Galton was the concept of correlation. He developed

quantitative methods to give some idea of the interdependence between two variables.

This point is worth pursuing because we shall be making extensive use of the concept of

correlation.

Karl Pearson, in a famous paper at the beginning of the 20th century, was the first to
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make explicit a procedure for a factor analysis, and he derived his formulae by considering

the geometry of multidimensional space. The earliest suggestion of an application for this

new technique came in 1902 when Macdonnell wrote a paper on the study of ”criminal

anthropometry and the identification of criminals” (Child (1970)). And finally, it was

Spearman’s report in 1904 on ’general intelligence’ which heralded the intensive study

of human ability using mathematical models. In this paper he posited the well-known

Two-Factor Theory. Of the immediate relevance to factor analysis, he states what he calls

”our general theorem” which is

”Whatever branches of intellectual activity are at all dissimilar, then their correlations

with one another appear wholly due to their being all variants wholly saturated with some

common fundamental Function (or group of Functions)...”

He distinguished this central Function from ”the specific function (which) seems in

every instance new and wholly different from that in all the others”. The simplest way

to justify this analysis is to appeal to the theory of partial correlation. The essence of

what Spearman needed is contained in the formula for the partial correlation between two

variables, i and j say, given a third variable which following Spearman we call G. Thus

ri,j|G =
rij − riGrjG√

(1− r2
iG)(1− r2

jG)
. (1)

If the correlation between i and j is wholly explained by their common dependence on

G then rij|G must be zero, or rij = riGrjG, (i, j = 1, 2, . . . , p). So, if the correlation

matrix R = {rij} can be represented in this way then we have evidence for an underlying

common factor. Thus, it was deducted (Bartholomew (2007)) that the first face of factor

analysis thus starts from the correlation matrix. At this basic level, we see that the

correlation matrix is the key to unearthing a common factor. In case of multivariate

normal distribution - that is very common due to the multivariate Central Limit Theorem -

the correlation, or covariance structure uniquely determines the interconnections between

variables.

Elaborate and refined psychological and mathematical arguments blossomed from

these early efforts of Galton, Pearson and Spearman. The range of subject areas in

which factor analysis has played an important role is now very extensive. Many applica-

tions now exist, including politics, sociology, economics, man-machine systems, accident

research, taxonomy, biology, medicine and geology. But such an extensive use of factor
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analysis is closely connected with the second face of the history of its development. The

second face of factor analysis started not with a correlation matrix, but with a model, and

it makes possible to investigate statistical hypotheses on the model fit. The use of models

in statistics, on a regular basis, seems to date from the 1950s. A statistical model is a

statement about the distribution of a set of random variables. A simple linear regression

model, for example, says that the dependent variable y is normally distributed with mean

a + bx and variance σ2, where a and b are unknown constants and x is an observable

variable. In the case of factor analysis the move to a model-based approach was gradual.

The rudimentary idea was contained in the idea that an observed test score was composed

of a common part and a specific part. However, it was in Lawley and Maxwell (1963)

that a linear model was made the starting point for developing the theory in a systematic

way. Actually, this formulation was incomplete but, in its essentials, it still holds sway

today. In modern notation, Lawley and Maxwell (1963) supposed that

xi = λi1y1 + λi2y2 + . . . + λiqyq + ei, (i = 1, 2, . . . , p), (2)

where q < p is the number of factors. In this equation the λs are constants and the xs, ys

and es are random variables. Thus if one imagines that the y-values for item i are drawn at

random from some distribution and the es are drawn similarly, then the model postulates

that, if they are combined according to the equation above, the resulting random variable

will be xi. It is usually assumed that the ys are independent with normal distribution and

(without loss of generality) unit variances; ei is assumed to be normal with variance ψi;

also eis are usually independent of each other and of ys. With a few more assumptions

we have the standard linear normal factor model in use today.

It is worth pausing to ask the justification for regarding this as another way of looking

at Spearman’s factor analysis. The answer (Bartholomew (2007)) is that the correlation

structure to which it leads is the same. But the major advantage of the model-based

approach is that it enables us to provide rigorous methods for answering the traditional

questions addressed by factor analysis.

It is a curious fact of statistical history that there has been a strong focus on methods

for continuous data. Regression and correlation analysis and then the analysis of variance

have, for the most part, pre-supposed that the variables involved were continuous. Other

multivariate methods, introduced along the way, such as discriminant analysis, principal

components analysis and canonical correlation fall into the same mould. Of course, these
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methods have been widely used on data which were not continuous. Coarsely grouped

variables, ordered categorical variables, even binary variables, have been grist to the

analysts’ mill. Indeed, much ingenuity has been exercised to treat categorical data as

if it were continuous by introducing, for example, pseudo-correlation coefficients of one

sort or another. In practice, and especially in the social sciences, much of the data

we encounter is not continuous but categorical. But in factor analysis we are asking

whether the dependencies among a set of variables can be explained by their common

dependence on one, or more, unobserved latent variables (or factors). There is nothing

in this statement which refers to the level of measurement of the variables involved.

If, therefore, we formulate the problem in sufficiently general terms we should have a

general enough framework to include variables of all sorts. There exists a certain type of

factor analysis of categorical data, which is called ’correspondence analysis’. The essential

elements of the problem are the inter-dependence of a set of observable variables and the

notion of conditional independence. Suppose we have p observable random variables

x′ = (x1, x2, . . . , xp) with joint probability distribution f(x). The question is: Do there

exist factors y1, y2, . . . , yq, where q < p such that the xs are conditionally independent?

Lazarsfeld (1968) was the pioneer of this distinct kind of ’factor analysis’ and he called

it latent structure analysis. Essentially, he allowed one or both of the sets of variables x

and y to be categorical.

In the 1950s, there seemed to be two schools of factor analysis: the psychometric school

and the statistical school. The psychometric school regarded the battery of tests as a

selection from a large domain of tests that could be developed for the same psychological

phenomenon and focused on the factors in this domain. By contrast, the statistical school

regarded the number of tests as fixed and focused on the inference from the individuals

being tested to a hypothetical population of individuals. The distinction between the

two perspectives is particularly contrasted with regard to the number of factors. In the

psychometric perspective, it was assumed that there are a small number of major factors

and possibly a large number of minor factors; whereas in the statistical perspective, the

number of factors is assumed to be small relative to the number of tests.

Whereas the factor analysis literature in the first half of the 20th century was domi-

nated by psychologists, the literature of the second half of the century was dominated by

statisticians. In fact, there has been an enormous development of the statistical method-
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ology for factor analysis in the last 50 years. This has been accompanied by an equally

enormous development of computational methods for factor analysis. During this period,

the applications of factor analysis spread from psychology to many other disciplines, for

example, international relations, economics, sociology, communications, taxonomy, biol-

ogy, physiology, medicine, geology and meteorology.

Whereas the initial approach to factor analysis was oriented to data originating from

independent, identically distributed random variables and consisted in dimension reduc-

tion in the cross-sectional dimensions (i.e. the number of variables), the idea was further

generalized to modelling of multivariate time series, thus compressing information in the

cross-sectional and time dimensions. The idea has been pursued rather independently in

a number of areas, such as signal processing or econometrics. In Dynamic factor models

(DFMs; Geweke (1977)), the comovements of the observable time series are characterized

by latent dynamic factors. Over the past decade, work on DFMs has focused on high-

dimensional systems in which very many series depend on a handful of factors (Forni et

al. (2000), Stock and Watson (2002), and many others).

In factor analysis, most authors (Child (1970), DeCoster (1998), Johnson and Wichern

(2002), Kline (1994)) address the problem of reducing the dimension of a multivariate

random variable, and we want to fix, from the start, the number of factors. Each factor

will then be interpreted as a latent characteristic of the individuals revealed by the original

variables. In a survey on household consumption, for example, the consumption levels, X,

of p different goods during one month could be observed. The variations and covariations

of the p components of X throughout the survey might in fact be explained by two or three

main social behavior factors of the household. For instance, a basic desire of comfort or the

willingness to achieve a certain social level or other social latent concepts might explain

most of the consumption behavior. These unobserved factors are much more interesting

to the social scientist than the observed quantitative measures (X) themselves, because

they give a better understanding of the behavior of households.

From a statistical point of view, the essential purpose of factor analysis is to describe, if

possible, the covariance relationships among many variables in terms of a few underlying,

but unobservable, random quantities called factors. The ultimate goal is to find underlying

reasons that explain the data variation. In achieving this goal we need to check the relation

of the factors and original variables and give them an interpretation in the framework of
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how the data were generated.

Dynamic factor models (Breitung and Eickmeier (2005), Deister and Zinner (2007),

Doz and Lenglart (2001), Forni et al. (2000), Geweke (1977)) decompose the dynamics

of observable variables yi,t, i = 1, . . . , n, t = 1, . . . , T into the sum of two unobservable

components, one that affects all yis, namely the factors Ft, and one that is idiosyncratic,

e.g. specific to each i:

yi,t = ai + biFt + εi,t, (3)

where ai is a constant, and bi is a loading of series i to the common actors. Both the factor

and idiosyncratic components are usually assumed to follow autoregressive processes of

order q and pi respectively. The model just described is the standard dynamic factor

model estimated for example in Stock and Watson (1989).

Among the very recent developments I would mention the Independent Component

Analysis (ICA), which is also a statistical and computational technique for revealing

hidden factors that underlie sets of random variables. ICA defines a generative model

for the observed multivariate data, which is typically assumed to be nongaussian. As

before, in the model, the data variables are assumed to be linear combinations of some

unknown latent variables, and the coefficients of the system are also unknown. The latent

variables are also assumed nongaussian and mutually independent, and they are called

the independent components of the observed data. These independent components, also

called sources or factors, can be found by ICA.

ICA is closely related to Principal component analysis and Factor analysis. However,

ICA is a much more powerful technique.

Before we proceed with a detailed discussion of the subject, it is important to sound

some notes of caution. There are some limitations (Child (1970)) which can be stated in

general terms. One of the first and certainly one of the most important is to avoid reading

too much into a correlation coefficient because causal relationships cannot be inferred from

correlations alone. Also the size of the sample must enter into any speculations about

errors and consequently the larger the sample the more notice we are likely to take of

large correlations. The rule should be, in applying any tests of significance, to err on the

side of rigour rather than leniency. Also in this connection, tests with low reliability, as

we shall see later, should be avoided in factor analysis. Sample selection is important too;

it often happens that a sample is homogeneous because of the special circumstances in
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selection of a parent population. Samples collected from different populations should not

be pooled when computing correlations. Factors which are specific to a population may

become obscured when pooling is applied. Another important concern is the linearity of

the correlation between two sets of data. Curved rather than straight relationships are

suspect. Anything approaching a curvilinear shape should be treated with the utmost

care. Besides, it is sometimes said that with factor analysis you only get what you put in

so that it is difficult to see how the method can be useful.

The work is organized as follows. The first part of it is devoted to the fundamental

models in the field of Factor analysis. In Section 2 we discuss the two main types of

Factor analysis and describe the performance procedures. In Section 3 we provide the

basic concepts we need for further research and mention the questions that must be

answered in any factor analytic study. In Section 4 we discover Principal component

analysis and give some connected results. Section 5 is devoted to a basic model of Factor

analysis and the most popular methods of parameter estimation. All necessary steps of

Factor analysis are also discussed in this section. In the second part of the work we study

the applications of Factor models in economics. Section 6 provides us with basic concepts

of Time series theory. The Dynamic Factor model is described in Section 7. Further, in

Section 8 our particular model is given together with the extraction algorithm. Sections

9 discusses the problem of finding optima of inhomogeneous quadratic forms, which has

to be solved while implementing the algorithm. We show the example of application of

our model in Section 10. In Section 11 some conclusions are listed, as well as the topics of

further possible research. Some figures and tables, illustrating the Example from Section

10, are shown at the end.

Part I

The Foundations of Factor Analysis

2 Classification of Factor Analyses

Typically it is accepted (DeCoster (1998), Kline (1994)), that there are two types of

factor analysis: exploratory and confirmatory. Exploratory factor analysis attempts to
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discover the nature of the constructs influencing a set of responses. Confirmatory factor

analysis tests whether a specified set of constructs is influencing responses in a predicted

way.

2.1 Exploratory factor analysis

The primary objectives of an Exploratory factor analysis are to determine the number

of common factors influencing a set of measures and to evaluate the strength of the

relationship between each factor and each observed measure. Some common uses of

Exploratory factor analysis are to

1. Identify the nature of the constructs underlying responses in a specific content area.

2. Determine what sets of items ”hang together”.

3. Demonstrate the dimensionality of a measurement scale. Researchers often wish to

develop scales that respond to a single characteristic.

4. Determine what features are most important when classifying a group of items.

5. Generate ”factor scores” representing values of the underlying constructs for use in

other analyses.

There are seven basic steps to performing an Exploratory factor analysis:

1. Collect measurements. You need to measure your variables on the same (or

matched) experimental units. That is why correlations are preferred to covariances.

2. Obtain the correlation matrix. You need to obtain the correlations (or covari-

ances) between each of your variables.

3. Select the number of factors for inclusion. Sometimes you have a specific

hypothesis that will determine the number factors you will include, while other

times you simply want your final model to account for as much of the covariance in

your data with as few factors as possible. If you have k measures, then you can at

most extract k factors. There are a number of methods to determine the ”optimal”

number of factors by examining your data, which will be discussed further in this

work.
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4. Extract the initial set of factors. You must submit your correlations or covari-

ances into a computer program to extract your factors. This step is too complex to

reasonably be done by hand. There are a number of different extraction methods,

including maximum likelihood, principal component, and principal axis extraction.

5. Rotate the factors to a final solution. For any given set of correlations and

number of factors there is actually an infinite number of ways that you can define

your factors and still account for the same amount of covariance in your measures.

Some of these definitions, however, are easier to interpret theoretically than others.

By rotating your factors you attempt to find a factor solution that is equal to that

obtained in the initial extraction but which has the simplest interpretation.

6. Interpret the factor structure. Each of your measures will be linearly related to

each of your factors. The strength of this relationship is contained in the respective

factor loading, produced by your rotation. This loading can be interpreted as a

standardized regression coefficient, regressing the factor on the measures.

7. Construct factor scores for further analysis. If you wish to perform additional

analyses using the factors as variables you will need to construct factor scores. The

score for a given factor is a linear combination of all of the measures, weighted by

the corresponding factor loading.

Exploratory factor analysis is often confused with Principal component analysis, a

similar statistical procedure. However, there are significant differences between the two

and they will provide somewhat different results when applied to the same data. The

purpose of Principal component analysis is to derive a relatively small number of compo-

nents that can account for the variability found in a relatively large number of measures.

This procedure, called data reduction, is typically performed when a researcher does not

want to include all of the original measures in analyses but still wants to work with the

information that they contain. Thus, you should use Exploratory factor analysis when

you are interested in making statements about the factors that are responsible for a set

of observed responses, and you should use Principal component analysis when you are

simply interested in performing data reduction.
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2.2 Confirmatory factor analysis

The primary objective of a Confirmatory factor analysis is to determine the ability of a

predefined factor model to fit an observed set of data. Some common uses of Confirmatory

factor analysis are to

1. Establish the validity of a single factor model.

2. Compare the ability of two different models to account for the same set of data.

3. Test the significance of a specific factor loading.

4. Test the relationship between two or more factor loadings.

5. Test whether a set of factors are correlated or uncorrelated.

6. Assess the convergent and discriminant validity of a set of measures.

There are six basic steps to performing an Confirmatory factor analysis:

1. Define the factor model. The first thing you need to do is to precisely define the

model you wish to test. This involves selecting the number of factors, and defining

the nature of the loadings between the factors and the measures. These loadings

can be fixed at zero, fixed at another constant value, allowed to vary freely, or be

allowed to vary under specified constraints (such as being equal to another loading

in the model).

2. Collect measurements. You need to measure your variables on the same (or

matched) experimental units.

3. Obtain the correlation matrix. You need to obtain the correlations (or covari-

ances) between each pair of your variables.

4. Fit the model to the data. You will need to choose a method to obtain the

estimates of factor loadings that were free to vary. The most common model-fitting

procedure is Maximum likelihood estimation, which should probably be used unless

your measures seriously lack multivariate normality. In this case you might wish to

try using Asymptotically distribution free estimation.
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5. Evaluate model adequacy. When the factor model fits to the data, the factor

loadings are chosen to minimize the discrepency between the correlation matrix

implied by the model and the actual observed matrix. The amount of discrepency

after the best parameters are chosen can be used as a measure of how consistent the

model is with the data. The most commonly used test of model adequacy is the χ2

goodness-of-fit test. The null hypothesis for this test is that the model adequately

accounts for the data, while the alternative is that there is a significant amount of

discepency. Unfortunately, this test is highly sensitive to the size of your sample,

such that tests involving large samples will generally lead to a rejection of the null

hypothesis, even when the factor model is appropriate.

6. Compare with other models. If you want to compare two models, one of which

is a reduced form of the other, you can just examine the difference between their χ2

statistics, which will also have an approximately χ2 distribution. Almost all tests

of individual factor loadings can be made as comparisons of full and reduced factor

models.

Confirmatory factor analysis has strong links to structural equation modelling, a rela-

tively nonstandard area of statistics. It is much more difficult to perform a Confirmatory

factor analysis than it is to perform an Exploratory factor analysis. The first one requires

a larger sample size than the second, basically because the Confirmatory factor analysis

produces inferential statistics. The exact sample size necessary will vary heavily with the

number of measures and factors in the model, but you can expect to require around 200

subjects for a standard model. As in Exploratory factor analysis, you should have at least

three measures for each factor in your model. However, you should choose measures that

are strongly associated with the factors in your model (rather than those that would be

a ”random sample” of potential measures).

In general, you want to use Exploratory factor analysis if you do not have strong

theory about the constructs underlying responses to your measures and Confirmatory

factor analysis if you do. It is reasonable to use an Exploratory factor analysis to generate

a theory about the constructs underlying your measures and then follow this up with a

Confirmatory factor analysis, but this must be done using separate data sets. You are

merely fitting the data (and not testing theoretical constructs) if you directly put the
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results of an Exploratory factor analysis directly into a Confirmatory factor analysis on

the same data. An acceptable procedure is to perform an Exploratory factor analysis

on one half of your data, and then test the generality of the extracted factors with a

Confirmatory factor analysis on the second half of the data.

3 Basic concepts

3.1 Concept of variance

Many of the fundamental ideas in factor analysis derive from the concept of variance

and the next step is to relate the above deductions to this concept. Variance is the square

of the standard deviation. What is the total variance of a test? There are two important

components of variance required to account for the total variance of a test. These are

common and unique variance. When a factor contains two or more tests with significant

loadings (or variance if the values are squared) it is referred to as a common factor and

the variance of the tests in that factor is known as common variance. The primary aim of

factor analysis is the discovery of those common factors. The techniques for extracting the

factors generally endeavour to take out as much common variances as possible in the first

factor. Subsequent factors are, in turn, intended to account for the maximum amount of

the remaining common variance until, hopefully, no common variance remains. Common

factors also come in two sizes: general factors, usually the first in a factor solution giving

the maximum variance in the first factor, include significant loadings from most if not

all the tests in the analysis, and group factors ; group factors, as the term implies, arise

when a few tests with significant loadings appear in the same factor. Often several group

factors occur in the same analysis.

There remains that part of the total variance of a test resulting from the unique

properties possessed by the test and as such would be entirely uncorrelated with the other

tests in a particular analysis. This is referred to as unique variance. A factor containing

only one significant loading for a particular test would be a unique factor. Unique variance

can be broken down into two further elements of specific and error variance. Each test

possesses some particular qualities which are not shared with any other test in the battery

under consideration, and the variation in scores arising from these qualities will produce

specific variance. Error variance, or unreliability, results from the imperfections of test

13



C
E

U
eT

D
C

ol
le

ct
io

n

measurement. The difference between this and the total test variance does give a measure

of the reliability of the test. In summary, we have the total variance of a test made up from

common variance and unique variance, which in turn is divided into specific and error

variance. As the variance is additive, the relationship can be expressed in its simplest

form as

VT = VC + VS + VE (4)

Strictly speaking, VC consists of VC1 +VC2 +VC3 + · · ·+VCq , where q is the total number of

common factors. If the total variance of the test was made equal to one, the contributory

variances on the right-hand side of the equation would become proportions of the total

variance. Let these proportions be C1, C2, C3, . . . , Cq for the common variance, S for the

specific variances and E for the error variance. Our equation becomes

1 = C1 + C2 + C3 + . . . + Cq + S + E (5)

This important fundamental statement is known as the factor equation. An equation of

this kind applies to each individual test in a factor analysis. On taking the square roots

of the variances we would obtain the loadings assigned to the factors.

The sum of all the common factor variance of a test is known as the communality (h2),

that is the variance shared in common with other tests. The communality will also be

the sum of the squares of common factor holdings for a test.

3.2 Basic models

There are two basic models which can be adopted in factor solutions. They are gener-

ally (Child (1970), DeCoster (1998), Johnson and Wichern (2002), Kline (1994)) known

as the factor analysis and the component analysis models. Without becoming technical,

the distinction is that in factor analysis some account is taken of the presence of unique

variance whereas in component analysis the intrusion of unique variance is ignored. The

discrimination between these models rests entirely on the assumption one makes about

the portions of the unit variances of each test which are to appear in the common fac-

tors. This is determined by the figure placed in the diagonal of the correlation matrix,

because this diagonal value defines the total common variance (communality) of a test to

be distributed amongst the common factors. If we assume the leading diagonal values to

be unity, we are saying, in effect, that the test is completely reliable and without error.
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This is the component analysis model. If we had some knowledge of the common vari-

ance of a test before commencing a factor solution and inserted this communality in the

appropriate leading diagonal for the test we would automatically build into the model an

allowance for unique variance. It is all the variance which remains after our predetermined

communality has been accounted for (1 − h2). This is the factor analysis model. One of

the dilemmas in this form of solution was finding an efficient and accurate procedure for

determining the value of the communality before the analysis began. One of the earliest

methods which is still in use is to take the largest correlation coefficient for a row of a

correlation matrix and insert the value in the leading diagonal for that row.

There is a certain distinction between components and factors. Components are real

factors as they are derived directly from the correlation matrix. Common factors of

factor analysis are hypothetical because they are estimated from the data. With principal

component analysis it is possible to take out as many components as variables, thus

exhausting all the variance in the matrix. However, since one of the aims of exploratory

factor analysis is to explain the matrix of correlations with as few factors as is possible,

it is usual to take out less than this number.

3.3 Criteria for the number of factors to be extracted

How do we decide on how many factors to extract? Essentially, only the common

factors are required and the method employed rest upon assumption as to when this has

been achieved. The following two methods are most popular among factorists.

1. A technique in considerable use at present is Kaiser’s criterion suggested by Guttman

and adapted by Kaiser (Child (1970)). The rule is that only the factors having latent

roots greater than 1 are considered as common factors. This method is particularly

suitable for principal components designs. Kaiser’s criterion is probably most re-

liable when the number of variables is between 20 and 50. When the number of

variables is less than 20, there is a tendency, not too serious, for this method to ex-

tract a conservative number of factors. When more than 50 variables are involved,

too many factors are taken out.

2. It should be mentioned that component analysis has the drawback of containing

’hybrid’ factors, particularly in the later factors to be extracted, because unique
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variance overlaps with common variance. Catelli has argued that some unique

variance creeps into all factors to be extracted is so great as to swamp the common

variance. We need to identify the optimum number of factors which can be taken

out before the intrusion of non-common variance becomes serious. An intriguing

method described by Catelli is the scree test. For this, a graph is plotted of latent

roots against the factor number and the shape of the resulting curve employed to

judge the cut-off point. Starting at the highest latent root, the plot is curved at

first then develops into a linear relationship at some point. This point at which the

curve straightens out is taken as the maximum number to be extracted.

3.4 Criteria for the significance of factor loadings

Ultimately we have to decide on which factor loadings are worth considering when it

comes to interpreting the factors. Several methods have been suggested, of which three

will be mentioned.

1. The first suggestion is not really based on any mathematical propositions, except

that it represents roughly 10 per cent of the variance. Some idea of the pattern

of significant items can be gained by underlining the loadings greater than 0.3 in

absolute value provided the sample is not too small (N = 50 at least).

2. In deriving the factor loadings it became evident that they were, in effect, correlation

coefficients. For the purpose of specifying an acceptable level of significance the

loadings could be treated in a similar fashion to correlation coefficients. For a

certain sample size one can compare the loadings with table values.

3. One distinct disadvantage in the last method is the absence of any adjustment for

the number of variables, or the factors under consideration. Burt and Banks have

shown that as one progresses from the first factor to higher factors the acceptable

value for a loading to be judged significant should increase (it should get harder for

coefficient to reach significance). These authors devised a formula (the Burt-Banks

formula) which has the merit of allowing not only for the sample size but also for

the number of tests correlated and number of factors up to and including the one
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under examination. The formula is

LoadingSE = CorrelationSE ·
(√

p

p + 1− q

)
(6)

where SE stands for ’standard error’, p is the number of variables in the analysis,

and q is the factor number, that is the position of the factor during extraction. The

correlation SE can be obtained from the tabes likewise in the previous case.

The formula, in addition to providing some assessment of the SE of a loading, can

serve to evaluate the common factors. First the SE is calculated, then doubled.

Only those factors possessing at least half the total number of variables with values

in excess of a doubled SE should be considered. The method works out to be

exceedingly stringent, especially for small samples.

3.5 Rotation of factors

The main objection to factor analysis is that there is an infinity of mathematically

correct and equivalent solutions. While this is true, it is also the case that factorists have

developed powerful methods or choosing the right solution.

The methods of analysis described so far are sometimes referred to as direct methods

because the factor matrix obtained arises directly from the correlation matrix by the

application of mathematical models. Are the reference axes from direct solutions always

in a position to give the most illuminating evaluation of the variables? Mathematically

equivalent designs can, and do, give rise to a variety of alternative and equally acceptable

solutions. Most factor analysts are now agreed that some direct solutions are not sufficient.

The process of manipulating the reference axes is known as rotation. The results of

rotation methods are sometimes referred to as derived solutions because they are obtained

as a second stage from the results of direct solutions. The term ’rotation’ applied to the

reference axes means exactly what it says, namely, the axes are turned about the origin

until some alternative position has been reached. The simplest case arises when the axes

are maintained at 90 degrees thus giving an orthogonal rotation. Further, it is quite

possible, and more popular, to rotate the axes through different angles to arrive at an

oblique rotation. The orthogonal procedure can be easily seen using a graphical approach,

an approach which is still used by a few researches in the final stage of rotation. But in

general, of course, hand rotation is a laborious technique and the broad use of computer
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facilities has encouraged most researches to rely on ’analytical’ rotation, that is, obtained

computerized solutions using mathematical approximations.

The earliest attempts at rotation came in the 1930’s when Thurstone expounded his

theory of simple structure. His primary objective was to organize the factor axes (and

hence the loadings) so that their meaning would make better sense in terms of the problem

discovered. In his particular case, he was concerned with the structure of mental abilities.

For him, direct solutions, which satisfied the principle of parsimony in reducing a large

number of related variables to a small number of independent factors, were not adequate.

In addition to parsimony, solutions should be invariant, unique and in accord with non-

factorial research findings. He believed that factor analysis was most appropriately used

as the first stage in mapping out new domains and not as an end in itself.

By invariance, Thurstone was referring to the constancy of factor content from one

analysis to the next. In an attempt to fulfil the requirements of unique and invariant

factors, Thurstone established several criteria to assist in the decision as to when rotation

should cease. The criteria were intuitive and are not rigidly adhered to nowadays, although

they still lurk in the background of most subsequent formulations. They are based on the

principle that the simplest explanation involving only a few variables is the best. The

fullest statement appears in his book on Multiple Factor Analysis in which he proposes

five conditions for the fulfilment of simple structure for an orthogonal or oblique analysis.

If we take a factor matrix from a direct evaluation, the derived matrix after rotation

should meet the following requirements.

1. Each row of the derived matrix, that is the loadings associated with one variable,

should contain at least one zero loading. A zero loading would include numerical

values which were not statistically significant.

2. If there are m common factors being used in the rotation (selected using one of the

criteria for deciding on the number of worthwhile factors as indicated above) there

should be at least m zero loadings in each factor.

3. For every pair of factors there should be several variables with zero loadings in one

factor but having at the same time significant loadings in the other.

4. For every pair of factors a large proportion of the loadings should have zero values

in both factors where there are four or more factors.
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5. For every pair of factors there should only be a small proportion of loadings with

significant values in both factors.

These criteria have the effect of maximizing the number of loadings having negligible

values whilst leaving a few with large loadings. This makes the job of interpreting a

factor very much easier than would a collection of moderately sized loadings.

3.5.1 Orthogonal rotation

As it was mentioned above, in orthogonal rotation the factors are rotated such that

they are always at right angles to each other. This means that the factors are uncorrelated.

But as Catelli has argued, in searching for factors which are fundamental dimensions for

understanding the (psychological) phenomena it is unlikely, a priori, that factors would

be uncorrelated.

3.5.2 Oblique rotation

In oblique rotation the factor axes can take any position in factor space, hence the

name. The cosine of the angle between the factor axes indicates the correlation between

them. The oblique case is rather more complex than the orthogonal. No entirely sat-

isfactory analytical rotations have been devised for oblique solutions and they are still

the subject of considerable experimentation and controversy. Cattelll (1952) is a keen

protagonist of the method and he has made a significant contribution in this direction.

3.6 How good is the solution?

One of the tests of the quality of a factor analysis is to see how accurately the cor-

relations can be reproduced from the factors. Indeed it is this ability to reproduce the

correlations which further demonstrates that factors account for variance. Even more

importantly it is this ability which makes factors useful in research. If all the principal

components of a matrix are extracted, then the correlations between the variables can be

perfectly reproduced. However, this is not a simplification or a reduction of the dimension

of a problem since there are as many components as variables. In practice, of course, only

a few components are extracted, the largest in terms of variance accounted for, and these

should be able to account for the correlations partially. A good test of the adequacy of
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an analysis is to reproduce the correlations and then subtract them from their originals.

What is left is referred to as residual matrix. If the elements of this are small then the

analysis is satisfactory.

The following equation shows how correlations are reproduced from factor loadings,

where two factors have been extracted

rxy = rx1y1 + rx2y2 (7)

where rxy is the correlation of variables x and y, rx1y1 is the cross product of the factor

loadings of variables x and y on factor1, and rx2y2 is the cross product of the factor

loadings of variables x and y on factor2.

4 Principal component analysis

4.1 Description of a model

A principal component analysis is concerned with explaining the variance-covariance

structure of a set of variables through a few linear combinations of these variables. Its

general objectives are

1. data reduction

2. interpretation

Although p components are required to reproduce the total system variability, often

much part of it can be accounted by small number k of the principal components. The k

principal components can then replace the initial p variables, and the original data set,

consisting of n measurements on p variables, is reduces to a data set consisting of n mea-

surements on k principal components. Analyses of principal components are more of a

means to an end rather than an end in themselves, because they frequently serve as inter-

mediate steps in much larger investigations. For example, principal components may be

inputs to a multiple regression or cluster analysis. Algebraically, principal components are

particular linear combinations of the p random variables X1, X2, . . . , Xp. Geometrically,

these linear combinations represent the selection of a new coordinate system obtained

by rotating the original system with X1, X2, . . . , Xp as the coordinate axes. The new
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axes represent the directions with maximum variability and provide a simpler and more

parsimonious description of the covariance structure.

Let the random vector

Xt = [X1, X2, . . . , Xp]

where t stands for ’transformed’ have the covariance matrix Σ with eigenvalues λ1 > λ2 >
. . . > λp > 0.

Consider the linear combinations

Y1 = at
1X = a11X1 + a12X2 + . . . + a1pXp

Y2 = at
2X = a21X1 + a22X2 + . . . + a2pXp (8)

...

Yp = at
pX = ap1X1 + ap2X2 + . . . + appXp

Then we have

Var(Yi) = at
iΣai, i = 1, 2, . . . , p (9)

Cov(Yi, Yk) = at
iΣak, i, k = 1, 2, . . . , p (10)

The principal components are those uncorrelated linear combinations Y1, Y2, . . . , Yp whose

variances are as large as possible. The first principal component is the linear combination

with maximum variance. That is it maximizes Var(Y1) = at
1Σa1. But it is clear that

Var(Y1) = at
1Σa1 can be increased by multiplying a1 by some constant. To eliminate this

indeterminacy, it is convenient to restrict attention to coefficient vectors of unit length.

We therefore define

1. First principal component = linear combination at
1X that maximizes Var(at

1X) sub-

ject to at
1a1 = 1

2. Second principal component = linear combination at
2X that maximizes Var(at

2X)

subject to at
2a2 = 1 and Cov(at

1X, at
2X) = 0

. . .

3. ith principal component = linear combination at
iX that maximizes Var(at

iX) subject

to at
iai = 1 and Cov(at

iX, at
kX) = 0 for k < i

We are ready now to formulate the following
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Theorem 1. Let the symmetric positive definite matrix Σ be the covariance matrix

associated with the random vector Xt = [X1, X2, . . . , Xp]. Let Σ have the eigenvalue-

eigenvector pairs (λ1, e1), (λ2, e2), . . . , (λp, ep) where λ1 > λ2 > . . . > λp > 0 and the

eigenvectors have unit norms. Then the ith principal component is given by

Yi = et
iX = ei1X1 + ei2X2 + . . . + eipXp, i = 1, . . . , p (11)

With these choices

Var(Yi) = et
iΣei = λi, i = 1, 2, . . . , p (12)

Cov(Yi, Yk) = et
iΣek, i 6= k (13)

In case of multiple eigenvalues, the choices of the corresponding coefficient vectors ei, and

hence Yi, are not unique; only the subspaces are unique.

Proof. It is known from matrix algebra that

max
a6=0

atΣa

ata
= λ1 (14)

which is attained when a = e1. But et
1e1 = 1 since the eigenvectors are normalized. Thus,

max
a 6=0

atΣa

ata
= λ1 =

et
1Σe1

et
1e1

= et
1Σe1 = Var(Y1) (15)

Similarly we get

max
a⊥e1,e2,...,ek

atΣa

ata
= λk+1, k = 1, 2, . . . , p− 1 (16)

For the choice a = ek+1, with et
k+1ei = 0, for i = 1, 2, . . . , k and k = 1, 2, . . . , p− 1,

et
k+1Σek+1

et
k+1ek+1

= et
k+1Σek+1 = Var(Yk+1) (17)

But et
k+1(Σek+1) = λk+1e

t
k+1ek+1 = λk+1 so Var(Yk+1) = λk+1. It remains to show that

et
iek = 0, i 6= k gives Cov(Yi, Yk) = 0. Now, the eigenvectors of Σ are orthogonal if all

the eigenvalues λ1, λ2, . . . , λp are distinct. If they are not, the eigenvectors correspond-

ing to multiple eigenvalues can be chosen to be orthogonal within the corresponding

eigenspaces. Therefore, for any two eigenvectors ei and ek, et
iek = 0, i 6= k. Since

Σek = λkek, premultiplication by et
i gives

Cov(Yi, Yk) = et
iΣek = et

iλkek = λke
t
iek = 0 (18)

for any i 6= k, and the proof is complete.
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Thus, according to Theorem 1, the principal components are uncorrelated and have

variances equal to the eigenvalues of Σ.

Theorem 2. Let Xt = [X1, X2, . . . , Xp] have covariance matrix Σ, with eigenvalue-

eigenvector pairs (λ1, e1), (λ2, e2), . . . , (λp, ep) where λ1 > λ2 > . . . > λp > 0. Let Y1 =

et
1X, Y2 = et

2X, . . . , Yp = et
pX be the principal components. Then the total variance of

the data is equal to the total variance of the components.

σ11 + σ22 + . . . + σpp =

p∑
i=1

Var(Yi) (19)

Proof. On one hand

p∑
i=1

Var(Xi) =

p∑
i=1

σii = trΣ = trΛ =

p∑
i=1

λi (20)

On the other hand
p∑

i=1

Var(Yi) =

p∑
i=1

λi (21)

This completes the proof.

As a consequence, the proportion of total variance due to (explained by) the kth

principal component is

λk

λ1 + λ2 + . . . + λp

k = 1, 2, . . . , p (22)

If most of the total variance, for large p, can be attributed to the first one, two, or three

components, then these components can ”replace” the original p variables without much

loss of information.

Each component of the coefficient vector et
i = [ei1, . . . , eik, . . . , eip, ] also merits inspec-

tion. The magnitude of eik is proportional to the correlation coefficient between Yi and

Xk.

Theorem 3. If Y1 = et
1X, Y2 = et

2X, . . . , Yp = et
pX are the principal components

obtained from the covariance matrix Σ, then

ρYi,Xk
=

eik

√
λi√

σkk

i, k = 1, 2, . . . , p (23)

are the correlation coefficients between the components Yi and the variables Xk.

Proof. Set at
k = [0, . . . , 0, 1, 0, . . . , 0] so that Xk = at

kX and Cov(Xk, Yi) = Cov(at
kX, et

iX) =

at
kΣei. Since Σei = λiei, Cov(Xk, Yi) = at

kλiei = λieik. Then Var(Yi) = λiandVar(Xk) =
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σkk yield

ρYi,Xk
=

Cov(Yi, Xk)√
Var(Yi)

√
Var(Xk)

=
λieik√
λi
√

σkk

=
eik

√
λi√

σkk

i, k = 1, 2, . . . , p (24)

The proof is complete.

Although the correlations of the variables with the principal components often help to

interpret the components, they measure only the univariate contribution of an individual

X to a component Y. For this reason some statisticians recommend that only the coeffi-

cients eik, and not the correlations, are used to interpret the components. But in practice,

variables with relatively large coefficients (in absolute value) tend to have relatively large

correlations, so the two measures of importance, the first multivariate and the second

univariate, frequently give similar results. We recommend that both the coefficients and

the correlations are examined to help interpret the principal components.

4.2 Number of components to extract

There is always the question of how many components to retain. There is no definitive

answer to this question. Things to consider include the amount of total sample variance

explained, the relative sizes of the eigenvalues, and the subject-matter interpretations of

the components. A useful visual aid to determining an appropriate number of principal

components is a scree plot. Recall that a scree plot is a plot of the ordered from largest

to smallest eigenvalues versus their number. To determine the appropriate number of

components, we look for an elbow (bend) in the scree plot. The number of components

is taken to be the point at which the remaining eigenvalues are relatively small and all

about the same size.

4.3 Interpreting Principal Components

Since the principal components are linear combinations of the original variables, it is

often necessary to interpret or provide a meaning to the linear combination. One can

use the loadings for interpreting the principal components. The higher the loadings of a

variable in absolute value are, the more influence it has in the formation of the principal

component score and vice versa. Therefore, one can use the loadings to determine which

variables are influential in the formation of principal components, and one can then assign

a meaning or label to the principal component.
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4.4 Use of principal component scores

The principal components scores can be plotted for further interpreting the results.

Based on a visual examination of the plot, one might argue that there are some certain

groups or clusters of variables. The scores resulting from the principal components can

also be used as input variables for further analyzing the data using other multivariate

techniques such as cluster analysis, regression, and discriminant analysis.

5 Factor analysis

5.1 Description of a model

The essential purpose of factor analysis is to describe, if possible, the covariance rela-

tionships among many variables in terms of a few underlying, but unobservable, random

quantities called factors. Basically, the factor model is motivated by the following ar-

gument. Suppose variables can be grouped by their correlations. That is, suppose all

variables within a particular group are highly correlated among themselves, but have

relatively small correlations with variables in a different group. Then it is conceivable

that each group of variables represents a single underlying construct, or factor, that is

responsible for the observed correlations.

Factor analysis can be considered as an extension of principal component analysis.

Both can be viewed as attempts to approximate the covariance matrix Σ. However,

the approximation based on the factor analysis model is more elaborate. The primary

question in factor analysis is whether the data are consistent with a prescribed structure.

5.2 The orthogonal factor model

Suppose the observable random vector X, with p components, has mean µ and corre-

lation matrix Σ. The factor model postulates that X is linearly dependent upon a few

unobservable variables F1, F2, . . . , Fq, called common factors, and p additional sources

of variation ε1, ε2, . . . , εp, called errors or, sometimes, specific factors. In particular, the
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factor analysis model is

X1 − µ1 = l11F1 + l12F2 + . . . + l1qFq + ε1

X2 − µ2 = l21F1 + l22F2 + . . . + l2qFq + ε2 (25)

. . .

Xp − µp = lp1F1 + lp2F2 + . . . + lpqFq + εp (26)

or, in matrix notation,

X− µ = LF + ε (27)

The coefficient lij is called the loading of the ith variable on the jth factor, so the matrix

L is the matrix of factor loadings. Note that the ith specific factor εi is associated only

with the ith response Xi. The p deviations X1 − µ1, X2 − µ2, ..., Xp − µp are expressed

in terms of p + q random variables F1, F2, . . . , Fq, ε1, ε2, . . . , εp which are unobservable.

Thus with so many unobservable quantities, a direct verification of the factor model from

observations on X1, X2, . . . , Xp is hopeless. However, with some additional assumptions

about the random vectors F and ε, the model implies certain covariance relationships,

which can be checked.

We assume that

E(F) = 0, Cov(F) = E[FF′] = I

E(ε) = 0, Cov(ε) = E[εε′] = Ψ =




ψ1 0 . . . 0

0 ψ2 . . . 0
...

...
. . .

...

0 0 . . . ψp




(28)

and that F and ε are independent, so

Cov(ε,F) = E(εF′) = 0. (29)

The orthogonal factor model implies a covariance structure for X. From the model we

have

(X− µ)(X− µ)′ = (LF + ε)(LF + ε)′

= LF(LF)′ + ε(LF)′ + LFε′ + εε′
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so that

Σ = Cov(X) = E(X− µ)(X− µ)′

= LE(FF′)L′ + E(εF′) + LE(Fε′) + E(εε′)

= LL′ + Ψ (30)

Also, by independence, Cov(ε,F) = E(ε,F′) = 0. Also,by the model (X− µ)F′ =

(LF+ ε)F′ = LFF′+ εF′, so Cov(X,F) = E((X−µ)F′) = LE(FF′)+E(εF′) = L. Thus,

we get the following Covariance structure for the orthogonal factor model.

1. Cov(X) = LLt + Ψ or

Var(Xi) = l2i1 + . . . + l2iq + ψi

Cov(Xi, Xk) = li1lk1 + . . . + liqlkq (31)

2.

Cov(X,F) = L (32)

or

Cov(Xi, Fj) = lij

The model X− µ = LF + ε is linear in the common factors. If the p responses of

X are, in fact, related to underlying factors, but the relationship is nonlinear, then the

covariance structure LLt + Ψ may not be adequate. The very important assumption of

linearity is inherent in the formulation of the traditional factor model.

Recall that the portion of the variance of the ith variable contributed by the m common

factors is called the ith communality. That portion of Var(Xi) = σii due to the specific

factor is often called the uniqueness, or specific variance. Denoting the ith communality

by h2
i , we see that

Var(Xi) = σii = h2
i + ψi, i = 1, 2, . . . , p (33)

where

h2
i = l2i1 + l2i2 + . . . + l2iq (34)

The factor model assumes that the p+p(p−1)/2 = p(p+1)/2 variances and covariances

for X can be reproduced from the pq factor loadings lij and the p specific variances ψi.

When q = p, any covariance matrix Σ can be reproduced exactly as LLt, so Ψ can be
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the zero matrix. However, it is when q is small relative to p that factor analysis is more

useful. In this case, the factor model provides a ”simple” explanation of the covariation in

X with fewer parameters than p(p + 1)/2 parameters in Σ. Unfortunately for the factor

analyst, most covariance matrices cannot be factored as LLt + Ψ, where the number of

factors q is much less than p. Thus, a question, for which minimal q < p, q ∈ N, p ∈ N,

could the p−dimensional vector of observations be explained by the q−dimensional vector

of factors, has to be answered. We could evaluate this number by counting the number

of parameters and the number of equations of the model. All together, there are pq + p

unknown parameters, as it was mentioned above, and (1/2)p(p + 1) equations. However,

while estimating the model parameters, we will be assuming that the matrix ∆ = LtΨ−1L

is diagonal to make L be unique (otherwise L is unique only up to an orthogonal rotation).

This condition gives us (1/2)q(q − 1) additional equations. Thus, we can expect to get a

solution of the system if the difference between those two numbers,

s = (1/2)p(p + 1) + (1/2)q(q − 1)− (pq − p) = (1/2)[(p− q)2 − (p + q)] (35)

is non-positive. Solving this quadratic equation w.r.t. q, we get the following lower bound

for the number of factors

q ≥ (2p + 1−
√

8p + 1)/2. (36)

5.3 Methods of estimation

Given observations x1, x2, . . . , xn on p generally correlated variables, factor analysis

seeks to answer the question, Does the factor model (linear in our case), with a small

number of factors, adequately represent the data? In essence, we tackle this statistical

model-building problem by trying to verify the covariance relationship (??), (??). The

sample covariance matrix S is an estimator of the unknown population covariance matrix

Σ. If the off-diagonal elements of S are small or those of the sample correlation matrix

are R essentially zero, the variables are not related, and a factor analysis will not prove

useful. In these circumstances, the specific factors play the dominant role, whereas the

major aim of factor analysis is to determine a few important common factors.

If Σ appears to deviate significantly from a diagonal matrix, then a factor model can

be entertained, and the initial problem is one of estimating the factor loadings lij and

specific variables ψi. We shall consider two of the most popular methods of parameter
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estimation, the principal component method and the maximum likelihood method. It is

always prudent to try more than one method of solution; if the factor model is appropriate

for the problem at hand, the solutions should be consistent one with another.

Current estimation methods require iterative calculations that must be done on a

computer. Several computer programs are now available for this purpose.

5.3.1 The principal component method

The name of the method follows from the fact that the factor loadings are the scaled

coefficients of the first few sample principal components discussed in the previous chapter.

Principal component solution of the factor model

The principal component factor analysis of the sample covariance matrix S is specified

in terms of its eigenvalue-eigenvector pairs (λ̂1ê1), (λ̂2, ê2), . . . , (λ̂p, êp), where λ̂1 ≥ λ̂2 ≥
. . . ≥ λ̂p. Let q < p be the number of common factors. Then the matrix of estimated

factor loadings {l̃ij} is given by

L̃ =

[√
λ̂1ê1|

√
λ̂2ê2| · · · |

√
λ̂qêq

]
. (37)

The estimated specific variances are provided by the diagonal elements of the matrix

S− L̃L̃t, so

Ψ̃ =




ψ̃1 0 . . . 0

0 ψ̃2 . . . 0
...

...
. . .

...

0 0 . . . ψ̃p




with ψ̃i = sii −
q∑

j=1

l̃2ij (38)

Communalities are estimated as

h̃2
i = l̃2i1 + l̃2i2 + . . . + l̃2iq (39)

The principal component factor analysis of the sample correlation matrix is obtained by

starting with R in place of S.

By the definition of ψ̃i, the diagonal elements of S are equal to the diagonal elements of

L̃L̃t +Ψ̃. However, the off-diagonal elements of S are not usually reproduced by L̃L̃t +Ψ̃.

How, then, do we select the number of factors q?

If the number of common factors is not determined by a priori considerations, such as

by theory or the work of other researchers, the choice of q can be based on the estimated

eigenvalues in much the same manner as with principal components.
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Consider the residual matrix

S− (L̃L̃t + Ψ̃) (40)

resulting from the approximation of S by the principal component solution. The diagonal

elements are zero, and if the other elements are also small, we may subjectively take the

q factor model to be appropriate. Analytically, we have

Sum of squared entries of (S− (L̃L̃t + Ψ̃)) ≤ λ̂2
q+1 + . . . + λ̂2

p (41)

Consequently, a small value for the sum of the squares of the neglected eigenvalues

implies a small value for the sum of the squared errors of approximation.

Ideally the contribution of the first few factors to the sample variances of the variables

should be large. In general, proportion of total sample variance due to jth factor is

λ̂j

s11 + s22 + . . . + spp

for a FA of S (42)

λ̂j

p
for a FA of R (43)

Criterion (??) is frequently used as a heuristic device for determining the appropriate

number of common factors. The number of common factors retained in the model is

increased until a ”suitable proportion” of the total sample variance has been explained.

5.3.2 The Principal Factor Solution

A modification of the principal components approach is sometimes considered. Sup-

pose that initial estimates ψ∗i of the specific variances are available. Then replacing the

ith diagonal element of R by h∗2i = 1 − ψ∗i , we obtain a ”reduced” sample correlation

matrix

Rr =




h∗21 r12 . . . r1p

r12 h∗22 . . . r2p

...
...

. . .
...

r1p r2p . . . h∗2p




All the elements of the reduced sample correlation matrix Rr should be accounted for

by the q common factors. In particular, Rr is factored as

Rr = L∗rL
∗
r
t (44)
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where L∗r =
(
l∗ij

)
. The principal factor method of FA employs the estimates

L∗r =

[√
λ̂∗1ê

∗
1|

√
λ̂∗2ê

∗
2| · · · |

√
λ̂∗q ê

∗
q

]

ψ∗i = 1−
q∑

j=1

l∗2ij (45)

where (λ̂∗1, ê
∗
1), i = 1, 2, . . . , q are the (largest) eigenvalue-eigenvector pairs determined

from Rr. In turn, the communalities would be then reestimated by

h̃∗2i =

q∑
j=1

l∗2ij (46)

The principal factor solution can be obtained iteratively, with the communality estimates

of (??) becoming the initial estimates for the next stage.

Although there are many choices for initial estimates of specific variances, the most

popular one, working with a correlation matrix, is ψ∗i = 1/rii, where rii is the ith diagonal

element of R−1.

5.3.3 The Maximum Likelihood Method

If the common factors F and the specific factors ε can be assumed to be normally dis-

tributed, then maximum likelihood estimates of the factor loadings and specific variances

may be obtained. When Fj and εj are jointly normal, the observations Xj−µ = LFj + εj

are then normal, and the likelihood is

L(µ,Σ) = (2Π)−
np
2 |Σ|−n

2 e−
1
2
tr[Σ−1(

∑n
j=1 (xj−x)(xj−x)′+n(x−µ)(x−µ)′)]

= (2Π)
−(n−1)p

2 |Σ|−n−1
2 e−

1
2
tr[Σ−1(

∑n
j=1 (xj−x)(xj−x)′)] (47)

×(2Π)−
p
2 |Σ|− 1

2 e−
n
2
(x−µ)′Σ−1(x−µ)

which depends on L and Ψ through Σ = LLt + Ψ. This model is not still well defined,

because of the multiplicity of choices for L made possible by orthogonal transformations.

It is desirable to make L well defined by imposing the computationally convenient unique-

ness condition LtΨ−1L = ∆, where ∆ is a diagonal matrix.

The maximum likelihood estimates L̂ and Ψ̂ must be obtained by numerical maxi-

mization of (??). Fortunately, efficient computer programs now exist that enable one to

get these estimates rather easily.

Here we summarize some facts about maximum likelihood estimators.
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Definition. Let X1,X1, . . . ,Xn be a random sample from Np(µ,Σ), where Σ =

LLt + Ψ is the covariance matrix for the q common factor model of (??). The maximum

likelihood estimators L̂, Ψ̂, and µ̂ = x maximize (??) subject to L̂tΨ̂−1L̂ being diagonal.

Denote

S :=
n∑

j=1

(Xj −X)(Xj −X)t, (48)

Ĉn :=
1

n
S (49)

ML-estimator of the true covariance matrix C, and

Ĉ∗
n :=

1

n− 1
S (50)

unbiased estimator of C.

Remark. The eigenvalue-eigenvector pairs are unique functions of C. The same

functions of Ĉn give ML-estimates of the factors.

Although a simple analytical expression cannot be obtained for the ML estimators L̂

and Ψ̂, they can be shown to satisfy certain equation. The conditions are stated in terms

of the ML estimator Ĉn of an unconstrained covariance matrix. Some factor analysts

employ the corrected sample covariance Ĉ∗
n, but still use the title maximum likelihood

to refer to resulting estimates. The factor analysis of R is, of course, unaffected by the

choice of Ĉn or Ĉ∗
n, since they both produce the same correlation matrix.

Theorem 4. With all the conditions above the ML estimates L̂ and Ψ̂ satisfy

(Ψ̂−1/2ĈnΨ̂
−1/2)(Ψ̂−1/2L̂) = (Ψ̂−1/2L̂)(I+∆̂) (51)

so the jth column of Ψ̂−1/2L̂ is the eigenvector of Ψ̂−1/2ĈnΨ̂
−1/2 corresponding to eigen-

value 1 + ∆̂j. Here ∆̂1 ≥ ∆̂2 ≥ . . . ∆̂q. Also, at convergence,

ψ̂i = ith diagonal element of Ĉn − L̂L̂t (52)

and

tr(Σ̂−1Ĉn) = p. (53)

Sketch of the Proof. It is evident that µ̂ = x and a consideration of the log-likelihood

leads to the maximization of

−(n/2)[ln|Σ|+ tr(Σ̂−1Ĉn)]
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over L and Ψ,as Ĉn and p are constant with respect to the maximization. Thus we have

to minimize

h(L,Ψ) = ln|Σ|+ tr(Σ̂−1Ĉn) (54)

subject to LtΨ−1L = ∆, where ∆ is a diagonal matrix.

After differentiating w.r.t. L and Ψ, and taking the derivatives equal to zero, we have

the following system of equations:

∂h

∂L
= C−1(C− Ĉn)C−1L = 0 (55)

∂h

∂Ψ
= 0, (56)

which implies

diag[C−1(C− Ĉn)C−1] = 0. (57)

Various numerical methods can be applied for solving this system of equations.

5.4 Factor rotation

When q > 1, there is always some inherent ambiguity associated with the factor model.

To see this, let T be any q× q orthogonal matrix, so that TTt = TtT = I. Thus, we can

write the model in the following form

X− µ = LF + ε = LTT′F + ε = L∗F∗ + ε (58)

where

L∗ = LT and F∗ = TtF, (59)

since

E(F∗) = T′E(F) = 0. (60)

and

Cov(F∗) = T′Cov(F) = T′T = I (61)

It is impossible, on the basis of observations on X, to distinguish the loadings L from

the loadings L∗.That is, the factors F and F∗ = TtF have the same statistical properties,

and even though the loadings L∗ are, in general, different from the loadings L, they both

generate the same covariance matrix Σ. That is

Σ = LLt + Ψ = LTTtLt + Ψ = (L∗)(L∗)t + Ψ (62)
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This ambiguity provides the rationale for ”factor rotation” since orthogonal matrices

correspond to rotations of the coordinate system for X. So we get the following rule

Factor loadings L are determined only up to an orthogonal matrix T. Thus, the load-

ings

L∗ = LT and L (63)

both give the same representations. The communalities, given by the diagonal elements of

LLt = (L∗)(L∗)t are also unaffected by the choice of T.

The analysis of the factor model proceeds by imposing conditions that allow one

to uniquely estimate L and Ψ. The loading matrix is then rotated (multiplied to an

orthogonal matrix), where the rotation is determined by some ”case-of-interpretation”

criterion. Once the loadings and specific variances are obtained, factors are identified,

and estimated values for the factors themselves (factor scores) are frequently constructed.

Since the original loadings may not be easily interpretable, it is usual practice to rotate

them until a ”simpler structure” in a sense mentioned above is achieved. The rationale is

very much similar to sharpening the focus of a microscope in order to see the detail more

clearly.

While the loadings are changed under rotation, the communality estimates remain un-

changed, since LLt = LTTtLt = L∗L∗t, and the communalities are the diagonal elements

of these matrices.

Kaiser has suggested an analytical measure of simple structure known as the varimax

criterion. Define l̃∗ij =
l̂∗ij
ĥi

to be rotated coefficients scaled by the square roots of the

communalities. The the varimax procedure selects the orthogonal transformation T that

makes

V =
1

p

q∑
j=1




p∑
i=1

l̃∗4ij −
(

p∑
i=1

l̃∗2ij

)2

/p


 (64)

as large as possible. Computing algorithms exist for maximizing V , and most popular

factor analysis computer programs (for example, the statistical software packages SAS,

SPSS, and others) provide varimax rotations.

5.5 Factor scores

In factor analysis, interest is usually centered on the parameters in the factor model.

However, the estimated values of the common factors, called factor scores, may also be
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required. These quantities are often used for diagnostic purposes, as well as inputs to a

subsequent analysis.

Factor scores are not estimates of unknown parameters in the usual sense. Rather,

they are estimates of values for the unobserved random factor vectors Fj, j = 1, 2, . . . , n.

That is, factor scores

f̂j = estimate of the values fj attained by Fj (jth case)

The estimation situation is complicated by the fact that the unobserved quantities fj

and εj outnumber the observed xj. To overcome this difficulty, some rather heuristic,

but reasoned, approaches to the problem of estimating factor values have been advanced.

Multiple regression is one of such techniques. For example, the factor score for variable i

on a given factor j can be represented as

F̂ij = β̂1xi1 + β̂2xi2 + . . . + β̂pxip (65)

The equation can be represented in matrix form as

F̂ = XB̂ (66)

where F̂ is an n× q matrix of q factor scores for the n individuals, X is an n× p matrix

of observed variables, and B̂ is a p× q matrix of estimated factor score coefficients.

5.6 Performing factor analysis

There are many decisions that must be made in any factor analytic study. Probably

the most important one is the choice of q, the number of common factors. Most often the

final choice of q is based on some combination of

1. the proportion of the sample variance explained

2. subject-matter knowledge

3. the ”reasonableness” of the results.

The choice of the solution method and type of rotation is a less crucial decision. In

fact, the most satisfactory factor analyses are those in which rotations are tried with more

than one method and all the results substantially confirm the same factor structure. One

possible option to perform factor analysis is
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1. Perform a principal component FA. This method is particularly appropriate

for a first pass through the data.

(a) Look for suspicious observations by plotting factor scores.

(b) Try a varimax rotation.

2. Perform a maximum likelihood FA, including a varimax rortation.

3. Compare the solution obtained from the two previous analyses.

(a) Do the loadings group in the same manner?

(b) Plot the factor scores obtained for principal components against scores from

the maximum likelihood analysis.

4. Repeat the first three steps for other number of common factors. Do more

factors contribute to the understanding and interpretation of the data?

5. For large data sets, split them in half and perform a FA on each part.

Compare the two results with each other and with what obtained from the complete

data set to check the stability of the solution.

5.7 Factor Analysis versus Principal Component Analysis

Although factor analysis and principal component analysis are typically labelled as

data-reduction techniques, there are significant differences between these two. The ob-

jective of principal component analysis is to reduce the number of variables to a few

components such that each component forms a new variable and the retained components

explain the maximum amount of variance in the data. The objective of factor analysis, on

the other hand, is to search or identify the underlying factor(s) or latent constructs that

can explain the intercorrelation among the variables. There are the two major differences:

1. Principal component analysis places emphasis on explaining the variance in the data;

the objective of factor analysis is to explain the correlation among the indicators;

2. In principal component analysis the variables form components; in factor analysis,

on the other hand, the variables reflect the presence of unobservable constructs or

factors.
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Part II

Factor models in economics

Most of economics is concerned with modelling dynamics. There has been an explo-

sion of research in this area in the last twenty years (Box et al. (1994), Deistler and

Hamann (2005), Deistler and Zinner (2007), Forni et al. (2002 and 2002)), as ”time series

econometrics” has practically come to be synonymous with ”empirical macroeconomics”.

Since Geweke (1977), Box and Tiano (1977) generalized the classical factor model to

a dynamic one, a lot of various dynamic factor models (Breitung and Eickmeier (2005),

Forni et al. (2000)) have been developed and studied from the point of view of param-

eter estimation. The problem of describing comovements in multivariate time series by

means of some nearly independent factors becomes more and more important when facing

economic crises and looking for predictions.

Dynamic factor models are well designed to describe data having strong comovements:

in such models, each of the series under study is supposed to depend linearly on a small

number of common latent variables which are the sources of that comovements (the com-

mon factors) and on a residual term (the idiosyncratic component).

In recent years, large-dimensional dynamic factor models have become popular in

empirical macroeconomics (Deister and Zinner (2007), Stock and Watson (2002)). They

are more advantageous than other methods in various respects. Factor models can cope

with many variables without running into scarce degrees of freedom problems often faced

in regression-based analyses. Researchers and policy makers nowadays have more data

at a more disaggregated level at their disposal than ever before. Once collected, the

data can be processed easily and rapidly owing to the now wide-spread use of high-

capacity computers. Exploiting a lot of information can lead to more precise forecasts

and macroeconomic analyses. A second advantage of factor models is that idiosyncratic

movements which possibly include measurement error and local shocks can be eliminated.

This yields a more reliable signal for policy makers and prevents them from reacting

to idiosyncratic movements. In addition, the estimation of common factors or common

shocks is of intrinsic interest in some applications. A third important advantage is that

factor modelers can remain agnostic about the structure of the economy and do not need
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to rely on overly tight assumptions as is sometimes the case in structural models. It

also represents an advantage over structural VAR models where the researcher has to

take a stance on the variables to include which, in turn, determine the outcome, and

where the number of variables determine the number of shocks. Dynamic factor models

were traditionally used to construct economic indicators and for forecasting (Bánkövi et

al. (1982), Deister and Hamann (2005)). Let us briefly discuss existing applications of

dynamic factor models in these fields.

1. Construction of economic indicators. The two most prominent examples of

monthly coincident business cycle indicators, to which policy makers and other

economic agents often refer, are the Chicago Fed National Activity Index (CFNAI)

for the US and EuroCOIN for the euro area. The CFNAI estimate, which dates

back to 1967, is simply the first static principal component of a large macro data

set. It is the most direct successor to indicators which were first developed by Stock

and Watson but retired by the end of 2003. EuroCOIN is estimated as the common

component of euro-area GDP based on dynamic principal component analysis.

2. Forecasting. Factor models are widely used in central banks and research institu-

tions as a forecasting tool. The forecasting equation typically has the form

yh
t+h = µ + a(L)yt + b(L)F̂t + εh

t+h (67)

where yt is the variable to be predicted at period t + h and εt+h denotes the h-step

ahead prediction error. Accordingly, information used to forecast yt are the past of

the variable and the common factor estimates F̂t extracted from an additional data

set. Factor models have been used to predict real and nominal variables in the US, in

the euro area, for Germany, for the UK, and for the Netherlands. The factor model

forecasts are generally compared to simple linear benchmark time series models,

such as AR models, AR models with single measurable leading indicators and VAR

models. Overall, results are quite encouraging, and factor models are often shown

to be more successful in terms of forecasting performance than smaller benchmark

models. Three remarks are, however, in order. First, the forecasting performance of

factor models apparently depends on the types of variable one wishes to forecast, the

countries/regions of interest, the underlying data sets, the benchmark models and

horizons. Unfortunately, a systematic assessment of the determinants of the relative
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forecast performance of factor models is still not available. Second, it may not be

sufficient to include just the first or the first few factors. Instead, a factor which

explains not much of the entire panel, say, the fifth or sixth principal component,

may be important for the variable one wishes to forecast. Finally, the selection of

the variables to be included in the data set is ad hoc in most applications. The

same data set is often used to predict different variables. This may, however, not be

adequate. Instead, one should only include variables which exhibit high explanatory

power with respect to the variable that one aims to forecast.

In making choices between alternative courses of action, decision makers at all struc-

tural levels often make predictions of economic variables. If time series observations are

available for a variable of interest and the data from the past contain information about

the future development of a variable, it is plausible to use as forecast some function of

the data collected in the past. Assuming that the tendency prevails in future periods,

forecasts can be based on current and past data. Let us go through some basic concepts

of time series theory in order to be able to discuss the prediction-making techniques.

6 Time series analysis

A time series is a sequence of observations taken sequentially in time. If the data set

is continuous, the time series is said to be continuous. If the set is discrete, the time series

is said to be discrete.

The time series to be analyzed may then be thought of as a particular realization

of the system under study. A statistical phenomenon that evolves in time according to

probabilistic laws is called a stochastic process. So, in other words, in analyzing a time

series we regard it as a realization of a stochastic process.

Given a particular realization such as {y(1)
t }∞t=−∞ on a time series process, consider

constructing a vector x
(1)
t associated with date t. This vector consists of the [j + 1] most

recent observations on y as of date t for that realization:

x
(1)
t =




y
(1)
t

y
(1)
t−1

...

y
(1)
t−j




(68)
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We think of each realization {y(1)
t }∞t=−∞ as generating one particular value of the vector

xt and want to calculate the probability distribution of this vector x
(i)
t across realizations

i. This distribution is the joint distribution of (Yt, Yt−1, . . . , Yt−j). From this distribution

we can calculate the following quantity:

γjt =

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
(yt − µt)(yt−j − µt−j)×

×fYt,Yt−1,...,Yt−j
(yt, yt−1, . . . , yt−j)dytdyy−1 . . . dyt−j = (69)

= E(Yt − µt)(Yt−j − µt−j).

Note that it has the form of a covariance between two variables, thus it could be described

as the covariance of Yt with its own lagged value; hence, the term autocovariance is used.

Note further that the 0th autocovariance is just the variance of Yt.

So we come to the following

Definition. The covariance between yt and its value yt+j, separated by j intervals of

time, is called the autocovariance at lag j and is defined by

γjt = cov[yt, yt+j] = E[(yt − µ)(yt+j − µ)]. (70)

If neither the mean µt, nor the autocovariance γjt depend on the date t, then the

process for Tt is said to be covariance-stationary or weakly stationary.

E(Yt) = µ

E(Yt − µ)(Yt−j − µ) = γj

for all t and any j. In this case we have the following

Definition. The autocorrelation at lag j is

ρj =
γj√

E[(yt − µ)]2E[(yt+j − µ)2]
=

γj

σ2
y

. (71)

as, obviously, the variance σ2
y = γ0 is the same at time t + j as at time t. Thus, the

autocorrelation at lag j, that is, the correlation between yt and yt+j, is

ρj =
γj

γ0

(72)

which implies that ρ0 = 1.

Many sets of data appear as time series: a monthly sequence of the quantity of goods

shipped from the factory, a weekly series of the number of road accidents, hourly observa-

tions made on the yield of a chemical process, and so on. Examples of time series abound
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in such fields as economics, business, engineering, the natural sciences, and the social

sciences. An intrinsic feature of a time series is that, typically, adjacent observations

are dependent. The nature of this dependence among observations of a time series is of

considerable practical interest. Time series analysis is concerned with techniques for the

analysis of this dependence. This required the development of stochastic and dynamic

models for time series data (Box and Tiao (1977), Box et al. (1994), Fernandez-Macho

(1997)) and the use of such models in important areas of applications. The forecasting of

future values of a time series from current and past values is probably the most important

one. The use at time t of available observations from a time series to forecast its value at

some future tie t + h can provide a basis for (1) economic and business planning, (2) pro-

duction planning, (3) inventory and production control, and (4) control and optimization

of industrial processes.

Formally, this approach to forecasting may be expressed as follows. Let yt denote the

value of the variable of interest in period t. Then a forecast for period T + h, made at

the end of period T , may have the form

ŷT+h = f(yT , yT−1, . . .), (73)

where f(·) denotes some suitable function of the past observations yT , yT−1, . . .. One

major goal of univariate time series analysis is to specify sensible forms of functions f(·).
In many applications, linear functions have been used so that, for example,

ŷT+h = ν + α1yT + α2yT−1 + . . . . (74)

Because linear functions are relatively easy to deal with, it makes sense to begin with

forecasts that are linear functions of past observations. Let us consider a univariate time

series yt and a forecast h = 1 period into the future. If f(·) is a linear function, we have

ŷT+1 = ν + α1yT + α2yT−1 + . . . . (75)

Assuming that only a finite number p, say, of past y values are used in the prediction

formula, we get

ŷT+1 = ν + α1yT + α2yT−1 + . . . + αpyT−p+1. (76)

Of course, the true value yT+1 will usually not be exactly equal to the forecast ŷT+1. Let

us denote the forecast error by uT+1 := yT+1 − ŷT+1 so that

yT+1 = ŷT+1 + uT+1 = ν + α1yT + . . . + αpyT−p+1 + uT+1. (77)
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Now, assuming that our numbers are realizations of random variables and that the same

data generation law prevails in each period T , (??) has the form of an autoregressive

process of order p,

yt = ν + α1yt−1 + α2yt−2 + . . . + αpyt−p, (78)

where the quantities yt, yt−1, . . . , yt−p, and ut are now random variables. To actually get

an autoregressive (AR(p)) process we assume that the forecast errors ut for different

periods are uncorrelated, that is, ut and us are uncorrelated for s 6= t. In other words,

we assume that all useful information in the past yts is used in the forecasts so that

there are no systematic forecast errors. Obviously such a model represents a tremendous

simplification compared with the general form. Because of its simple structure, it enjoys

great popularity in applied work.

7 Dynamic Factor model

Whenever we have a multidimensional time series, e.g., financial or economic data

observed at regular time intervals, we want to describe its components with a smaller

number of uncorrelated factors. As we stated before, the usual factor model of multivariate

analysis cannot be applied immediately as the factor process also varies in time. For this

reason, we call it ”static factor model”. Hence, there is a dynamic part, added to the usual

linear factor model, the autoregressive process of the factors. As we noted before, the main

difference between what we call ”dynamic factor model” and ”static factor model” is the

autocorrelation structure of the common factors and of the idiosyncratic components. We

still assume in the dynamic case that the factors only have a contemporaneous correlation

with the observable variables, so that the only difference between the static and dynamic

models is that the hypothesis ∀ (t, s) : t 6= s E(FtF
′
s) = 0 and ∀ (t, s) : t 6= s E(utu

′
s) = 0

are no longer maintained in the dynamic model. However, we consider here exact factor

models, so that we still assume that the processes (uit) are uncorrelated with each other

at all leads and lags.

Recall that in a classical factor analytic setting, it is assumed that a p−dimensional

random vector of observations, yt, depends linearly on a q−dimensional vector of unob-

served common factors, ft, and on individual or idiosyncratic components ut. So

yt = Lft + ut, (79)
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where yt ∈ Rp, ft ∈ Rq, L is a (p× q) matrix of factor loadings, and the components of ut

are assumed to be uncorrelated, that is, Σu is a diagonal matrix. Still the main point of the

dynamic model is that the components of the underlying multivariate stochastic process

are, apart from noise, linear functions of the same, relatively small number of dynamic

factors that can be identified with some latent driving forces of the whole process. Based

on factor loadings, factors, e.g., monetary or macroeconomic ones, can be identified by

an expert.

However, in case of time series variables, it is more reasonable to assume that the

factors are autocorrelated. Also the idiosyncratic components ut may be autocorrelated.

Assume that

ft = A1ft−1 + . . . + Apft−p + ηt (80)

and

ut = C1ut−1 + . . . + Cput−p + εt. (81)

For a time-varying dynamic factor model we consider the possibility that the factor

loadings, L, can change over time, i.e. L = Lt.

Here each idiosyncratic component is orthogonal at any lead and lag both to the

common factors and to the idiosyncratic components of the other variables. This feature

represents a serious weakness of the model. Thus, a new model, the Generalized Dynamic

Factor Model, was introduced and analyzed (Forni et al. (2000)). What differentiated

it from the dynamic factor models mentioned above, was that they were not assuming

mutual orthogonality of the idiosyncratic components. In this work we consider only the

basic model, leaving the analysis of the generalized model for further research.

Methods for estimating the models parameters were also developed. Geweke and Sin-

gleton (1981) gave maximum likelihood estimates of the factors, while Bánkövi et al.

(1981, 1983) introduced an iteration that uses regression methods and principal compo-

nents to find the factors one by one; they applied their results for Hungarian macroeco-

nomic data spanning 1953-1979. Here we consider the improved algorithm which enables

us to extract dynamic factors not only sequentially, but simultaneously. As the input of

the algorithm, we have observations for an n-dimensional random vector in equidistant

dates between t1 and t2. Here n is not necessarily larger than t2 − t1 + 1, cf. Stock and

Watson (2002). For a given positive integer k < n (k is usually much less than n) we

are looking for uncorrelated factors satisfying both a linear and an autoregressive model.
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The time lag, that is the order of the autoregressive model is the same for the factors and

is in the range [1, 4]. To estimate the model’s parameters we minimize a quadratic cost

function on conditions concerning the orthogonality of the factors, the variances of the

factors, and the weights balancing between the dynamic and the static part.

We use a linear algebraic method developed for this purpose to find a so-called com-

promise system of distinct symmetric matrices of the same size. This makes it possible to

find factors simultaneously and hence, minimize the nonnegative objective function step

by step in an outer and inner cycle. The method first introduced in Bolla et al. (1998)

for finding maxima is interesting for its own right and makes it possible to obtain the

factors by an exact compromise decomposition of several matrices, and hence, extends

the method of principal components, instead of using sophisticated numerical algorithms.

8 Our model

The input data are n−dimensional observations y(t) = (y1(t), . . . , yn(t)), where t is the

time and the process is observed at discrete instances between two limits (t = t1, . . . , t2).

For given positive integer M < n we are looking for uncorrelated factors F1(t), ..., FM(t)

such that they satisfy the following model equations:

1. As in the usual linear model,

Fm(t) =
n∑

i=1

bmiyi(t), t = t1, . . . , t2; m = 1, . . . , M.

2. The second is the dynamic equation of the factors:

F̂m(t) = cm0 +
L∑

k=1

cmkFm(t− k), t = t1 + L, . . . , t2; m = 1, . . . , M,

where the time-lag L is a given positive integer and F̂m(t) is the auto-regressive prediction

of the mth factor at date t (the white-noise term is omitted, therefore we use F̂m(t) instead

of Fm).

3. The third is the linear prediction of the variables by the factors as in the usual

factor model:

ŷi(t) = d0i +
M∑

m=1

dmiFm(t), t = t1, . . . , t2; i = 1, . . . , n.
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We want to estimate the parameters of the model: B = (bmi), C = (cmk), D =

(dmi) (m = 1, . . . ,M ; i = 1, . . . , n; k = 1, . . . , L) in matrix notation (estimates of the

parameters cm0, d0i follow from these) such that the objective function

w0

M∑
m=1

var(Fm − F̂m)L +
n∑

i=1

wivar(yi − ŷi)

is minimum on the conditions for the orthogonality and variance of the factors:

cov(Fm, Fl) = 0, m 6= l; var(Fm) = vm, m = 1, . . . ,M,

where w0, w1, . . . , wn are given non-negative constants (balancing between the dynamic

and static part), while the positive numbers vms indicate the relative importance of the

individual factors. Actually we can use the same weights vm = t2−t1+1, m = 1, . . . ,M.

First we introduce some notations

yi =
1

t2 − t1 + 1

t2∑
t=t1

yi(t) (82)

the sample mean (average with respect to the time) of the ith component,

cov(yi, yj) =
1

t2 − t1 + 1

t2∑
t=t1

(yi(t)− yi)(yj(t)− yj) (83)

the sample covariance between the ith and jth components, while

cov∗(yi, yj) =
1

t2 − t1

t2∑
t=t1

(yi(t)− yi)(yj(t)− yj) (84)

the corrected empirical covariance between them. The pairwise covariances between the

factor components are zeroes in this sense. In the i = j special case the covariance becomes

the variance of the ith component. Taking the variance of the factor components, the

superscript L above indicates that the summation with respect to the time is restricted

to dates t1 + L, . . . , t2 only.

Observe that the parameters cm0, d0i can be written in terms of other parameters:

cm0 =
1

t2 − t1 − L + 1

t2∑
t=t1+L

(Fm(t)−
L∑

k=1

cmkFm(t− k)), m = 1, . . . , M (85)

and

d0i = yi −
M∑

m=1

dmiFm, i = 1, . . . , n. (86)

45



C
E

U
eT

D
C

ol
le

ct
io

n

Thus, the parameters to be estimated are collected in the M × n matrices B,D, and

in the M × L matrix C. Let us denote by bm ∈ Rn the mth row of matrix B (we are

going to use it as a column vector), m = 1, . . . ,M . We also introduce the notation

Yij := cov(yi, yj), i, j = 1, . . . , n (87)

where Y := (Yij) is the n×n symmetric, positive semidefinite empirical covariance matrix

of the sample (sometimes it is corrected). We also define the lagged time series

zm
i (t) = yi(t)−

L∑

k=1

cmkyi(t− k), t = t1+L, . . . , t2; i = 1, . . . , n; m = 1, . . . ,M (88)

and its empirical covariance matrix of entries

Zm
ij := cov(zm

i , zm
j ) =

1

t2 − t1 − L + 1

t2∑
t=t1+L

(zm
i (t)− zm

i )(zm
j (t)− zm

j ), i, j = 1, . . . , n,

(89)

where zm
i = 1

t2−t1−L+1

∑t2
t=t1+L zm

i (t), i = 1, . . . , n; m = 1, . . . ,M . Further, let Zm = (Zm
ij )

be the ×n symmetric, positive, semidefinite covariance matrix of these variables.

To write the objective function in terms of these quantities, we make the following

argument:

Fm(t)− F̂m(t) =
n∑

j=1

bmjz
m
j (t)− cm0,

var(Fm − F̂m)L = bT
mZmbm. (90)

Because of the constraints of the model we have

var(Fm) = bT
mYbm, m = 1, . . . , M (91)

and

cov(yi, Fm) =
n∑

j=1

bmjYij, i = 1, . . . , n; m = 1, . . . , M. (92)

Further, due to the orthogonality of the factors, and due to the linear prediction of the

variables by the factors

var(yi−ŷi) = Yii−2
M∑

m=1

dmicov(Yi, Fm)+
M∑

m=1

d2
mivm = Yii−2

M∑
m=1

dmi

n∑
j=1

bmjYij+
M∑

m=1

d2
mivm.

(93)

With these, the objective function to be minimized

G(B,C,D) = w0

M∑
m=1

bT
mZmbm +

n∑
i=1

wiYii− 2
n∑

i=1

wi

M∑
m=1

dmi

n∑
j=1

bmjYij +
n∑

i=1

wi

M∑
m=1

d2
mivm,

(94)
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where the minimum is taken on the constraints

bT
mYbl = δmlvm, m, l = 1, . . . , M.

The procedure of finding the minimum is based on the following so-called outer cycle.

Choosing an initial B, satisfying all the constraints, the following two steps of an iteration

are alternated:

1. Starting with B we calculate the Fms, then we fit a linear model (solve the Gaussian

normal equations) to estimate the parameters of the autoregressive model. Hence, the

current value of C is obtained.

2. Based on this C, we take the minimum of G(B,C,D) with respect to B and D,

while keeping C fixed. Here we build in a longer inner cycle to find B. With this new B,

we return to Step 1 of the outer cycle and proceed until convergence.

In Step 2: fixing C, the part of the objective function to be minimized in B and D is

F (B,D) = w0

M∑
m=1

bT
mZmbm +

n∑
i=1

wi

M∑
m=1

d2
mivm − 2

n∑
i=1

wi

M∑
m=1

dmi

n∑
j=1

bmjYij,

that is optimized first in D, then in B. For solving the first problem, we solve the equation

∂f(B,D)

∂dmi

= 2wivmdmi − 2wi

n∑
j=1

bmjYij = 0

for D. The solution is

dopt
mi =

1

vm

n∑
j=1

bmjYij,

and it gives a local minimum. Hence

F (B,Dopt) = w0

M∑
m=1

bT
mZmbm −

n∑
i=1

wi

M∑
m=1

1

vm

(
n∑

j=1

bmjYij)
2,

from which, with the n × n symmetric matrix V = (Vjk) of entries Vjk =
∑n

i=1 wiYijYik

and with the n× n symmetric matrix

Sm = w0Z
m − 1

vm

V, 1, . . . , M

we have

F (B,Dopt) =
M∑

m=1

bT
mSmbm,
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to be minimized on the constraints for bm’s. In order to find the minimum with respect

to B, we have to transform the vectors b1, . . . ,bm into an orthonormal set. Because of

the constraints, the transformation

xm :=
1√
vm

Y1/2bm, Am := vmY−1/2SmY−1/2, m = 1, . . . ,M

will result in an orthonormal set x1, . . . ,xM ∈ Rn, further

bT
mSmbm = xT

mAmxm

and hence

F (B,Dopt) =
M∑

m=1

xT
mAmxm.

The sum of inhomogeneous quadratic forms is minimized by the algorithm of the next

section. Let xopt
1 , . . . ,xopt

M denote the orthonormal set giving the minimum. Inverting the

first transformation of xs, the vectors

bopt
m =

√
vmY/1/2xopt

m , m = 1, . . . , M (95)

will give the row vectors of Bopt, minimizing F (B,Dopt).

9 Finding optima of inhomogeneuos quadratic forms

Given the n × n symmetric matrices A1, . . . ,Ak (k < n) we are looking for an

orthonormal set of vectors x1, . . . ,xk ∈ Rn for which

k∑
i=1

xT
i Aixi

is maximum.

1. Theoretical solution: by Lagrange’s multipliers the xi’s giving the optimum sat-

isfy the system of linear equations

A(X) = XS

with some k×k symmetric matrix S (its entries are the multipliers), where the n×k

matrices X and A(X) consist of the following columns:

X = (x1, . . . , xk), A(X) = (A1x1, . . . ,Akxk). (96)
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Due to the constraints imposed on x1, . . . , xk, the non-linear system of equations

XTX = Ik (97)

must also hold. As X and the symmetric matrix S contain all together nk + k(k +

1)/2 free parameters, while the equations above the same number of equations, the

solution of the problem is expected. Transforming our system into a homogeneous

system of linear equations, a non-trivial solution of it exists, if

|A− In

⊗
S| = 0, (98)

where the nk × nk matrix A is a Kronecker-sum A = A1

⊕
. . .

⊕
Ak.

2. Numerical solution: starting with a matrix X(0) of orthonormal columns, the mth

step of the iteration based on the (m− 1)th one is as follows (m = 1, 2, . . .)). Take

the polar decomposition of A(X(m−1)) into an n× k matrix of orthonormal columns

and a k× k symmetric matrix. Let the first factor be X(m), etc., until convergence.

The polar decomposition is obtained by spectral vector decomposition.

The above iteration is easily adopted to negative semidefinite or indefinite matrices and

to minima in instead of maxima in the following way. Find the minimum of

k∑
i=1

xT
i Aixi

on constraints (link), where A1, . . . ,An are n × n symmetric matrices. Let λmax
i denote

the largest eigenvalues as A1 (i = 1, . . . , k), and set

λ := max
i∈{1,...,k}

λmax
i + ε,

where ε is an arbitrary small positive constant. The matrices

A′
i := −Ai + λIn, i = 1, . . . , k

are positive definite and

min
k∑

i=1

xT
i Aixi = −max

k∑
i=1

xT
i (−Ai)xi = max

k∑
i=1

xT
i A′

ixi + λk, (99)

further, the minimum is taken on the same xi’s as the maximum in terms of A′
is.
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10 Example

For an application of a method described above we used aggregate data of the Hun-

garian Statistical Office. We consider 10 highly correlated macroeconomic time series of

the Hungarian Republic, registered yearly, spanning 19932007. Names and mnemonics of

the components are as follows:

• Gross Domestic Product (1000 million HUF) GDP

• Number of Students in Higher Education EDU

• Number of Hospital Beds HEALTH

• Industrial Production (1000 million HUF) IND

• Agricultural Area (1000 ha) AGR

• Energy Production (petajoule) ENERGY

• Energy Import (petajoule) IMP

• Energy Export (petajoule) EXP

• National Economic Investments (1000 million HUF) INV

• Number of Publications INNOV

We extracted 3 factors out of the data, using lag length 4. As the variables were

measured in different units we normalized them such that we made adjustments, where

necessary, so as to produce numbers of comparable magnitude in the different series; later

we used the reciprocals of their standard deviations as weights w1, . . . , wn in the objective

function (??). In ....., the authors use the same weights vm = t2 − t1 + 1 (m = 1, . . . , k)

for the factors. We also used these weights; furthermore, we used the suggested choice

w0 = n/kvm ensuring the equilibrium between the dynamic and static parts.

In Figure 1, the first factor demonstrates a decrease, then an increase, and reaches its peak

in 1996 (when restrictions on goverment spendings and social benefits were introduced

and investments started). Since 1997 this factor has made slight periodic movements.

Based on Table 1, variables GDP, ENERGY, and HEALTH are mainly responsible for

this factor (in the middle of the 1990s there were also reforms in the health care system).
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In Figure 2, the second factor slowly increases, then decreases, with highest values around

the turn of the century. The variables EDU, ENERGY, and AGR have the highest

coefficients in it. Note that the number of students in higher education steadily increased

in the 1990’s, however, since the beginning of the century the interest in some areas of

study has dropped as people with higher degrees had difficulties finding jobs.

As Figure 3 demonstrates, the third factor is somewhat antipodal to the first one, with

highest absolute value coefficients in GDP, ENERGY, and HEALTH; further, it shows

smaller fluctuations. Future analysis is required to obtain a reasonable explanation for

this phenomenon. Possibly, only the first two factors are significant, while the next ones

are dampened dummies of them. We remark that in our model k is, in fact, the maximum

number of factors, which does not contradict to certain rank conditions, see e.g., Deistler

and coauthors (2005, 2007). The actual number of factors can be less, depending on the

least square errors and practical considerations; it is an expert’s job to decide how many

factors to retain.

The coefficients of matrices B, D, and C are shown in Tables 1, 2, and 3, respectively. The

relatively high constant terms in the linear prediction of the components by the factors

(see Table 2) refer to “small” communalities. However, the constant coefficients in the

autoregressive model are small (see Table 3) and the coefficient belonging to lag 2 is the

largest in all the three factors. Notice that since 1990, different governments have changed

each other in every 4 years, and lag 2 corresponds to the mid-period, when the measures

introduced by the new government probably had the higher impact on the economy.

We also made predictions for the factors for 2 years ahead by means of matrix C. The

predicted factor values for 2008 and 2009 are illustrated by dashed lines and they show

decline in all the three factors, possibly indicating the evolving economic crisis. Based

on matrix D, we predicted the variables by the factors for the period 1993-2007 and

calculated the static part of the objective function, which represents one possible source

of error in the algorithm. We also forecasted the components for 2008 and 2009 based

on the predicted values of the factors. Data for 2009 are not available yet, however, the

2008’s estimates showed a good fit to the factual data in case of most variables. We found

that the squared error 1.16 of this only year is comparable to the cumulated error 11.54

of 15 years.
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11 Conclusion

In this work we have reviewed the historical development of Factor Analysis and

theory of dimension reduction. The most important questions arising in a factorial study

were highlighted. Also we collected the most effective methods and algorithms for factor

extraction and interpretation. The second part of the work was devoted to the applications

of Factor Analysis in economics, to Dynamic factor models particularly. One model was

described precisely and a new method (Bolla et.al) was implemented for extracting of

the factors for Hungarian macroeconomic data spanning 1991-2007. Interesting relations

between the factors and economic indicators were found. We focused on the first three

factors, explained them, and made a prediction for 2 years ahead based on the matrix

of factor loadings. The future research could be done on the generalized dynamic factor

models, which was mentioned in the work, as it might better reflect the real-life economic

processes. Of course, more empirical work is necessary to assess the potentials and pitfalls

of dynamic factor models in empirical macroeconomic.
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Figure 1: Dynamic Factor 1

Factor 1 Factor 2 Factor 3

GDP 38.324 -2.541 -6.116

EDU -1.775 5.725 0.015

HEALTH 10.166 0.837 -1.650

IND -0.261 0.255 -0.107

AGR 6.146 2.919 -1.124

ENERGY 24.082 4.592 -4.054

IMP 1.560 -1.209 -0.213

EXP -3.907 -0.233 0.615

INV 2.864 0.038 -0.510

INNOV -0.608 0.197 0.089

Table 1: Factors Expressed in Terms of the Components (matrix B)
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Figure 2: Dynamic Factor 2

Figure 3: Dynamic Factor 3
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Factor 1 Factor 2 Factor 3 Constant

GDP -0.108 -0.025 -0.677 -0.670

EDU -0.142 0.145 -0.877 -8.637

HEALTH 0.115 -0.132 0.656 16.250

IND -0.898 -0.187 -5.784 -14.690

AGR 0.021 0.005 0.137 6.809

ENERGY 0.085 -0.038 0.543 10.055

IMP -0.098 -0.152 -0.868 0.311

EXP -0.516 -0.931 -1.840 109.915

INV -0.209 0.026 -1.341 -6.779

INNOV -0.061 0.121 -0.484 -9.867

Table 2: Components Estimated by the Factors (matrix D)

Lag Factor 1 Factor 2 Factor 3

0 -0.000 0.001 -0.000

1 0.069 0.283 0.117

2 0.473 1.644 0.495

3 0.205 0.229 0.141

4 0.251 -1.168 0.258

Table 3: Dynamic Equations of the Factors (matrix C)
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