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External Examiner: Dr József Gáll, University of Debrecen, Hungary
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Abstract

In the present thesis I consider models of financial markets where the price process of

the risky asset follows a Markov chain taking values in a subinterval of R. In particular,

we deal with time-discretizations of stochastic differential equations, a model class often

ocurring in practice.

Motivated by recent articles, I investigate the possibility of realizing arbitrage as the

time horizon of trading, T , tends to infinity.

Under suitable hypotheses we construct explicit trading strategies which provide lin-

ear/exponential growth of wealth as T →∞ with a probability converging to 1. Using the

theory of Large Deviations, we refine this result showing that the probability in question

tends to 1 geometrically fast, under suitable hypotheses.

Finally, we consider arbitrage in the sense that the expected utility of investors tends

to the maximal achievable utility. I investigate how our previously constructed strategies

perform in this sense.

A.M.S Class. Code: 91G80 (Stochastic Control in Finance)
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Introduction

Arbitrage (riskless profit) is the cornerstone concept of modern mathematical finance.

Several version of the so-called “fundamental theorem of asset pricing” have been proved

over the past two decades, see [6] for an overview. This theorem states that absence

of arbitrage is equivalent to the existence of “suitable” pricing functionals for derivative

securities (such as options).

It is quite clear that short-term arbitrage shouldn’t exist: it would immediately be

exploited by traders and hence their activity would move the prices, making the aribtrage

opportunities disappear. It can be argued, however, that one may generate long-term

riskless profit (mathematically speaking, when the time horizon T tends to infinity), this

is indeed observed in most models of financial markets.

The existence and nature of such infinite horizon asymptotic arbitrage opportunities

have been studied in a number of papers treating various models, we mention for example

[1], [9], [16], [14], [21], [22], [48]. One convenient framework for studying asymptotic

arbitrage is the theory of “large financial markets”, initiated in [20], then developed in

[27], [28], [25], [26], [5], [21], [41], [42], [43] and [48].

In the present thesis I am dealing with Markovian models of financial markets. The

specific structure of these allows us to define rather strong forms of arbitrage, peculiar

to the Markovian setting, and prove their existence under appropriate hypotheses. We

introduce two types of arbitrage: almost sure (trajectoriwise) and utility-based. The

first one guarantees that our portfolio grows exponentially outside a set of probability

converging to 0 as time goes on. Indeed, we outline the thesis presentation as follows.

First, to make the presentation as more self-contained as possible, in Chapter 1, we

collect essential tools of Avanced Probability that we need to handle and use in the sequel

chapters of the thesis.

In Chapter 2, after discussing an inspiring “toy model”, we consider discretizations of

stochastic differential equations and we derive in Section 2.2 the existence of asymptotic

arbitrage such that investor’s wealth tends linearly to infinity with probability tending to

1 at a geometric rate.

1
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Introduction

Chapter 3 is the core part in this thesis. We were motivated first by the work of [14]

and found all the research developments that we present in the whole thesis while trying

to settle questions raised there. Hence we quickly sketch the setting of that [14].

The authors of [14] considered a d-dimensional diffusion process

dSt = Σ(St)(dWt + φ(St)dt), (1)

on a suitable filtered probability space (Ω,F,Ft,P), where Wt, t ≥ 0 is an N -dimensional

standard Brownian motion. St is thought to represent the price evolution of d risky assets

such as stocks, Σ : Rd → Rd×N is the volatility matrix that determines the correlations

between the assets, φ : Rd → RN is the so-called market price of risk function.

The latter has a straightforward interpretation when d = N = 1: it is the stock’s rate

of return per unit volatility. In other words, the drift Σφ represesents the rate(s) of return

on the stock(s).

We recall their,

Definition 0.0.1. (Definition 1.3 of [14])

They said that St has a non-trivial market price of risk if there is c > 0 such that

lim
T→∞

P
(

1

T

∫ T

0

|φ(St)|2dt < c

)
= 0. (2)

Intuitively, in such a market even if T → ∞ there is still a nonvanishing “drift nor-

malized by the volatility” (that is, φ(St)) which, in some sense, means that market op-

portunities do not “run dry” as time goes on. As pointed out in [14], (2) holds whenever

St is “ergodic” (it satisfies a suitable law of large numbers) and has an invariant measure

ϕ such that φ is non-zero ϕ-almost surely.

From this, they derived a first result, Theorem 1.4 of [14], which we restate below.

Theorem 0.0.2.

If St has a nontrivial market price of risk then there exists b > 0 and for each ε > 0

there exists Tε such that for all T > Tε

P(XT ≥ ebT ) ≥ 1− ε (3)

for some XT ≥ −e−bT , where XT is the outcome of an “admissible” trading strategy on

[0, T ] starting from 0 initial capital.

Since this result serves only as a motivation for our work we do not provide a definition

of “admissibility” here but rather underline the essential content of Theorem 0.0.2: it says

that for any tolerance level ε one may find T large enough such that an exponentially

2
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Introduction

growing profit can be obtained on [0, T ] with an exponentially decreasing potential loss

and with a probability of failure below ε. This can be considered as a rather strong form

of long-term arbitrage.

Nevertheless, there are unsettling features of Theorem 0.0.2: the relationship between

ε and Tε is not clarified (one may need to wait for a very long time to achieve a desired

tolerance level) and the trading strategies are not explicitly given (indeed, the proof is

non-constructive).

Next, considering the special case St := exp(Xt), for t ∈ [0,∞], where Xt is the

Ornstein-Uhlenbeck process

dXt = −ρXtdt+ σdWt, X0 = x ∈ R, (4)

for some constants ρ > 0, σ > 0, the authors of [14] formulated another condition on the

market price of risk that is stronger than (2). We recall it as below,

Definition 0.0.3. (Definition 1.3 in [14])

The market price of risk satisfies a large deviation estimate if there are c1, c2 > 0 such

that

lim sup
T→∞

1

T
log P

(
1

T

∫ T

0

|φ(St)|2dt ≤ c1

)
≤ −c2. (5)

It is an appealing conjecture that when (5) holds, a strengthening of Theorem 0.0.2

should hold true: the existence of constants b1, b2, C > 0 such that

P(XT < eb1T ) ≤ Ce−b2T (6)

for all time T large enough and for suitable outcomes XT ≥ −e−b1T of admissible trading

strategies. Noting that (6) is equivalent to

P(XT ≥ eb1T ) ≥ 1− e−b3T , (7)

for some constant c3 > 0. Such a result would establish an explicit relationship between a

preset tolerance level ε and the time necessary to reach that tolerance level. In particular,

the probability of having a loss (that is, P(XT < 0)) could be controlled.

At the end of section 3 in [14] the authors sketch how large deviations theory could

be applied to show (6) from (5), but they do not carry out this programme: it seems that

some of the necessary theoretical tools are still lacking. They only study the concrete case

of the Ornstein-Uhlenbeck process, where explicit b1, b2 are given, together with an array

of convergence rates for related optimization problems.

Hence in Chapter 3, in a discrete-time version of the model (1), we will derive results

implying a discrete-time version of Theorem 0.0.2 (see Corollary 3.2.7, Theorem 3.3.6 and

3
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Theorem 3.3.8). Next, still in our discrete-time setting, we will show that (5) implies (6)

or (7) (see Theorem 3.2.6 and Theorem 3.3.11). And we provide in Theorem 3.3.12 easily

verifiable conditions that guarantee a discrete-time version of (5). An important novelty

is that the strategies we use will be explicitly constructed.

Finally in Chapter 4, we introduce and discuss “utility-based” asymptotic arbitrage

that uses the concept of von Neumann-Morgenstern utilities (see Chapter 2 of [13]): a

concave increasing function U is considered such that U(x) is thought to represent the

subjective value of x dollars for a given investor. The monotonicity property is natural:

investors prefer more to less. Concavity is related to the risk-averse behaviour which is

typical for agents in the market. An optimal investment for an agent with utility U is

the available portfolio with (random) payoff X for which the expected utility EU(X) is

maximal.

In the present thesis we do not focus on the construction of optimal strategies but

rather on ones that provide (rapidly) increasing expected utilities for the agents, i.e.

his/her satisfaction will tend to the highest available utility (finite or infinite, depending

on whether U is bounded or not from above) as the time horizon T tends to infinity.

We will see that, surprisingly, almost sure asymptotic arbitrage strategies may perform

poorly in the expected utility sense, showing that different performance criteria require

different strategies, there is no “robustness” in general.

4
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Chapter 1

Review of Advanced Probability

In this preliminary chapter, I briefly review techniques and results of Large Deviations

Theory, related articles, and those of Markov chains Theory which will be used in the

main chapters of my present thesis. As a review, I may not reprove all these results, and I

assume well known tools from Real Analysis, Basic Probability and Stochastic Calculus.

1.1 Large Deviations Theory

Large Deviations is a theory of rare events, based on the analysis of tails of probability

distributions. Its applications lie in various subfields of Probability. In this thesis, we

present Control Theory as one of its unusual applications, see however for instance [40].

Before recalling concepts and results of this theory, we begin with a,

1.1.1 Preliminary Convex Analysis

Let d be a positive integer, then,

Definition 1.1.1.

A function f : Rd → R∪{+∞} is convex if, f(αx+ (1−α)y) ≤ αf(x) + (1−α)f(y),

for all x, y ∈ Rd and all α ∈ (0, 1).

A function f : Rd → R ∪ {−∞} is concave if, −f is convex in the sense above.

If f is finitely valued and the inequality above is strict for all x 6= y and all α ∈ (0, 1),

then we say that f is strictly convex and strictly concave respectively.

The result below shows the use of convex and concave functions in Optimal Control.

Proposition 1.1.2.

If a function f : Rd → (−∞,+∞] is convex (or concave), then a local minimum is

global. And if f is strictly convex (or strictly concave), any such minimum is unique.

5
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Chapter 1. Review of Advanced Probability

Proof. Let f be convex and x a local minimum, then f(x) ≤ f(z) for all z in a

neighborhood V of x. For all y ∈ Rd, we have αx + (1− α)y ∈ V for any α < 1 close to

1. Letting α→ 1, we get by convexity that, f(x) ≤ f(y). Hence x is a global minimum.

Moreover, if f is strictly convex, the unicity is straightforward, as required, �

Definition 1.1.3.

Let f : Rd → [−∞,+∞) be any function which is not necessarily convex. The conju-

gate (or dual) of f is the function f ∗ : Rd → [−∞,∞] defined for all θ ∈ Rd by,

f ∗(θ) := sup
x∈Rd
{θ · x− f(x)}, where θ · x denotes the inner product of θ and x in Rd.

Remark 1.1.4.

As the supremum of affine functions, f ∗ is always convex even if f is not. f ∗ is

therefore called the convex conjugate of f . Moreover, for d = 1, we have,

Proposition 1.1.5.

If a function f : R → R is differentiable, then f ∗ is strictly convex on its effective

domain Df∗ := {θ ∈ R : f ∗(θ) <∞}.

Proof. Suppose by contradiction that, there are θ1 < θ2 < θ3, and α ∈ (0, 1) such

that, θ2 = αθ1 + (1 − α)θ3 and f ∗(θ2) = αf ∗(θ1) + (1 − α)f ∗(θ3). Consider the linear

functions gi(x) := θix− f ∗(θi), i = 1, 2, 3, for x ∈ R. Then we have f ≥ max{g1, g2, g3}.
Next, set x∗ := f∗(θ3)−f∗(θ1)

θ3−θ1 , then g1(x∗) = g3(x∗). Since g2(x∗) = αg1(x∗) + (1−α)g3(x∗),

then g1(x∗) = g2(x∗) = g3(x∗). On the other hand, there is a sequence xn ∈ R such

that θ2xn − f(xn) → f ∗(θ2). Since θ2x − f(x) ≤ θ2x − g3(x) → −∞ as x → ∞, and

θ2x − f(x) ≤ θ2x − g1(x) → −∞ as x → −∞, then xn is bounded. Let a be an

accumulation point of xn, we may suppose a = limxn. Then θ2a − f(a) = f ∗(θ2) by

continuity of f . This implies f(a) = g2(a). Since θ1 < θ2 < θ3 and g1(x∗) = g2(x∗) =

g3(x∗), then we get g1(x) > g2(x) > g3(x) for x < x∗ and, g1(x) < g2(x) < g3(x) for

x > x∗. Hence, max{g1(x), g3(x)} > g2(x), for x 6= x∗. So f(x) > g2(x) for all x 6= x∗.

As we got f(a) = g2(a), this implies a = x∗, and f(x∗) = g1(x∗) = g2(x∗) = g3(x∗). Since

f(x) ≥ max{g1(x), g3(x)} = g1(x) or g3(x) as whether x ≤ x∗ or x ≥ x∗, then we get

f ′(x∗−) ≤ g′1(x∗) = θ1 < θ3 = g′3(x∗) ≤ f ′(x∗+), contradicting the differentiability of f , �

Finally for this preliminary subsection, we recall without proof, that,

Proposition 1.1.6.

If a function f : Rd → [−∞,+∞) is differentiable and convex, then,

f ∗(f ′(x)) = f ′(x) · x− f(x), for all x ∈ Rd. (1.1)

Proof. Cf. Lemma 2.4 in [15] for details, �

6
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Chapter 1. Review of Advanced Probability

1.1.2 An Introduction to Large Deviations

Let (Xt)t∈N be a sequence of independent and identically distributed (i.i.d) random

variables on a probability space (Ω,F,P), with values in R, and with finite expectation µ

and variance σ2.

Throughout the whole thesis, Xt which denotes a single random variable, may also

denote, when there is no ambiguity, the whole sequence (Xt)t∈N.

For t ≥ 1, set St := X1 + · · ·+Xt. The Strong Law of Large numbers says that,

St
t
→ µ, as t→∞ almost surely1 (a.s.).

The Central Limit Theorem gives fluctuations of St
t

from µ of size O(1/
√
t) by stating

that,

lim
t→∞

P
(√t
σ

(St
t
− µ

)
≤ c
)

=
1√
2π

∫ c

−∞
e−

1
2
x2

dx,

for any real constant c.

The theory of Large Deviations then deals with larger size fluctuations, that is, fluc-

tuations far from the mean µ. Just like extensions of Strong Law of Large Numbers

and Central Limit Theorem, there are versions of Large Deviations that apply to various

sequences of random variables, not necessarily i.i.d.

Before formally discussing the foundation of this theory, we have

Definition 1.1.7.

Let f : Rd → [−∞,∞] be a function defined at x0 ∈ Rd.

i) We say that f is lower semicontinuous at x0 if, for all α ∈ R satisfying α < f(x0),

there exists a neighborhood V of x0 such that α < f(x) for all x ∈ V .

ii) We say that f is lower semicontinuous if, f is lower semincontinuous at every

point x0 in Rd as above.

iii) f is upper semicontinuous on Rd if, −f is lower semincontinuous on Rd.

From this, we recall that,

Proposition 1.1.8.

A function f : Rd → [−∞,∞] is lower semicontinuous if and only if the level sets

{x : f(x) ≤ α} are all closed, for α ∈ R.

Proof. Straightforward, �

Then, we review the foundation, that is, the basic principle and results of this theory

in the next subsection.

1a.s. means that P(limt→∞(St

t ) = µ) = 1.

7
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Chapter 1. Review of Advanced Probability

1.1.3 LDP in Rd and the Gärtner-Ellis Theorem

First,

Definition 1.1.9.

A function I : Rd → [−∞,∞] is a rate function if,

i) I(x) ≥ 0 for all x ∈ Rd,

ii) and I is lower semicontinuous.

We say that I is a good rate function if in addition, the level sets are all compact.

Then, we have,

Definition 1.1.10. Large Deviations Principle (LDP ).

Let (Xt)t∈N be a sequence of random variables taking values in Rd. We say that the

sequence Xt satisfies an LDP (or a large deviations principle) in Rd with rate function I

if, I is a rate function, and if for every measurable set B ∈ B(Rd), we have

− inf
x∈B◦

I(x) ≤ lim inf
t→∞

1

t
log P(Xt ∈ B) ≤ lim sup

t→∞

1

t
log P(Xt ∈ B) ≤ − inf

x∈B̄
I(x), (1.2)

where B(Rd) denotes the Borel σ-algebra on Rd, B◦ is the interior of B, and B̄ its closure.

We interprete the one-sided LDP lim supt
1
t

log P(Xt ∈ B) ≤ − infx∈B̄ I(x) by saying

that the probability that a process Xt lies in any Borel set B decays exponentially in time

at rate infx∈B̄ I(x).

In the case Xt is sum of i.i.d random variables, we have the Cramér’s Theorem below,

Theorem 1.1.11.

Let (Xt)t≥1 be an i.i.d sequence of random variables in Rd, set St := X1 + · · ·Xt. Let

Λ(θ) := log Eeθ·X1, for θ ∈ Rd, be the common log moment generating function of the

Xt’s, where E denotes the expectation with respect to the probability measure P.

If Λ is finite in a neighborhood of zero, then the average sequence St/t satisfies an

LDP in Rd with good rate function Λ∗, the convex conjugate of Λ.

Proof. For d = 1 see Theorem 2.8 in [15] or Theorem 2.2.3 in [8], and for d > 1 see

Theorem 2.2.30 in [8] for details, �

In this result, as St is sum of i.i.d random variables, one observes that for all θ ∈ Rd,

we have Λ(θ) = 1
t

log Eeθ·St . But this is not true for any sequence of random variables.

Hence, for a standard generalization of Cramér’s Theorem, consider any sequence St

of random variables in Rd, and consider the limit below, when it exists,

Λ(θ) := lim
t→∞

1

t
log Eeθ·St , for θ ∈ Rd. (1.3)

Recalling first the,

8
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Chapter 1. Review of Advanced Probability

Definition 1.1.12.

A function f : Rd → [−∞,∞] is essentially smooth if,

i) the interior of its effective domain Df is non-empty,

ii) f is differentiable in the interior of its such effective domain Df ,

iii) and f is steep; that is, limt→∞ |f ′(θt)| = ∞ for any sequence θt converging to a

boundary point of the effective domain Df .

For example, for d := 1, if Df = R, and f is analytic and not linear, then f is

essentially smooth.

Then, we state the following more general result, known as Gärtner-Ellis’

Theorem 1.1.13.

Let St be any sequence of random variables in Rd. Suppose for each θ ∈ Rd, that the

limit Λ(θ) in (1.3) exists as an extended real number.

If Λ is finite in a neighborhood of θ = 0, and is essentially smooth and lower semi-

continuous, then the sequence of random variables St/t satisfies an LDP in Rd with good

convex rate function Λ∗.

Proof. Cf. Theorem 2.3.6 in [8], �

Finally for this first section, we also recall the,

1.1.4 Law of Large Numbers for Martingale Differences

In this subsection, we review some useful results by stating a law of large number for

typical discrete-time stochastic processes.

Let (Mt)t≥0 be a discrete-time stochastic process on a probability space (Ω,P,F),

equipped with a filtration F := (Ft)t≥0. Assume that the process Mt is adapted to this

filtration; that is, Mt is Ft-measurable for all time t. Then,

Definition 1.1.14.

We say that the process Mt is a P-martingale with respect to F if,

i) Mt is P-integrable; that is, E(|Mt|) <∞ for all time t,

ii) and E(Mt+1|Ft) = Mt for all time t ≥ 0.

And we say that Mt is a martingale difference sequence if it is integrable and if we

have E(Mt+1|Ft) = 0, for all time t.

For examples, if Nt is a martingale with respect to Ft, then Mt := Nt − Nt−1 is a

martingale difference sequence. And if Nt is an integrable adapted process to a filtration

Ft, then Mt := Nt − E(Nt|Ft−1) is also a martingale difference sequence.

9



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 1. Review of Advanced Probability

We state the almost sure convergence result for martingales below,

Proposition 1.1.15.

Let Mt be a martingale with respect to a filtration Ft, and Yt := Mt − Mt−1 the

corresponding martingale difference sequence.

If
∑∞

t=1 E(Y 2
t |Ft−1) <∞ a.s., then Mt converges to a finite limit M∞ almost surely.

Proof. It is an immediate corollary of Theorem 2.15 in [18], �

Next, before proving the version of law of large numbers as announced, we recall the

following Kronecker’s

Lemma 1.1.16.

Let xn be a real sequence such that the series
∑∞

i=1 xi converges. For any sequence of

real numbers an →∞, we have

1

an

n∑
i=1

aixi → 0, as n→∞.

Proof. See p. 31, in [18], �

Hence, we get,

Theorem 1.1.17.

Consider the martingale difference sequence Mt := Nt − E(Nt|Ft−1), where Nt is an

integrable adapted process to some filtration Ft.

If there is a constant K <∞ such that EM2
t ≤ K for all time t ≥ 1, then,

1

t

t∑
i=1

Mi → 0, as t→∞ almost surely. (1.4)

Proof. For t ≥ 1, set Yt := Mt/t, and consider Xt :=
∑t

i=1 Yi. Clearly Xt is a

martingale with respect to the filtration Ft. By Monotone Convergence Theorem and the

tower property of conditional expectation, it follows that

E
( ∞∑
t=1

E(Y 2
t |Ft−1)

)
=
∞∑
t=1

E
(
E(Y 2

t |Ft−1)
)

=
∞∑
t=1

EY 2
t ≤ K

∞∑
t=1

1

t2
<∞.

So, the random variable
∑∞

t=1 E(Y 2
t |Ft−1) has finite first moment, hence it is finite

almost surely. By Proposition 1.1.15 above, it follows that the martingale Xt converges

almost surely. Now, applying Kronecker’s Lemma 1.1.16 above, with the choice an := n

and xn := Mn for all integer n ≥ 1, we get that,

1

t

t∑
i=1

iYi =
1

t

t∑
i=1

Mi → 0, as t→∞ a.s.,

showing the theorem, �
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Chapter 1. Review of Advanced Probability

1.2 Theory of Markov Chains

In this second section, I do not intend to give an extensive account of Markov processes,

which are widely studied in the literature and are classified according to whether the

state space is countable or uncountable, and whether the time index set is countable or

uncountable. For the purpose of my research works presented in this thesis, I confine

myself in reviewing useful techniques and results of discrete-time Markov processes in

uncountable state spaces S ⊆ R as presented in textbooks such as [36].

1.2.1 Preliminary Definitions and Concepts

Consider a discrete-time stochastic process (Xt)t∈N on a probability space (Ω,F,P),

and valued in an interval S ⊆ R. Let B(S) denote the Borel σ-algebra on S, and η a

probability distribution of the random variable X0.

Definition 1.2.1.

i) We say that Xt is a Markov process (or Markov chain) in the state space S, with

initial distribution η if, for all time t ≥ 1, for all Borel set A ∈ B(S) and all states

x0, x1, ..., xt := x ∈ S, the Markov property below is satisfied,

P
(
Xt+1 ∈ A|Xt = x, ..., X1 = x1, X0 = x0

)
= P

(
Xt+1 ∈ A|Xt = x

)
. (1.5)

ii) A Markov chain Xt is stationary or time-homogeneous if for all time t, for x ∈ S
and all A ∈ B(S), we have P

(
Xt+1 ∈ A|Xt = x

)
= P

(
Xt ∈ A|Xt−1 = x

)
.

We interprete (1.5) by saying that the probability of a future behavior of the process

depends only on its current state and not on its past behavior. In other words, a Markov

chain is a memoryless process in the sense that it forgets its past when evolving.

An immediate consequence of this definition is,

Proposition 1.2.2.

Let Xt be a Markov chain in S. There exists a regular version of the probabilities

{P (x,A) : x ∈ S,A ∈ B(S)}, such that for all time t,

i) If x ∈ S is fixed, then the map P (x, ·) defined by P (x,A) := P
(
Xt+1 ∈ A|Xt = x

)
,

for A ∈ B(S), is a probability measure on B(S).

ii) For A ∈ B(S) fixed, the map x 7→ P (x,A) is a measurable function on S.

Proof. This follows from the fact that S is a Borel subset of a Polish space2 and

hence these regular versions exist, see [7], �

2A Polish space is a separable completely metrizable topoligical space; that is, a space homeomorphic
to a complete metric space that has a countable dense subset.

11



C
E

U
eT

D
C

ol
le

ct
io

n
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In vertue of the Markov property (1.5), the whole dynamic of the process Xt can be

determined by choosing an initial distribution η and specifying the probabilities P (x,A)

of reaching any Borel set from one state in a single transition.

Hence,

Definition 1.2.3.

Let Xt be a Markov chain.

i) The operator P := {P (x,A) : x ∈ S,A ∈ B(S)}, also denoted by P (x,A), is called

the one-step transition probability kernel of the Markov chain Xt.

ii) More generally, the t-step transition probability kernel of the Markov chain Xt is

the operator P t ≡ P t(x,A) := P(Xt ∈ A|X0 = x), for t ≥ 1 and P 0(x,A) := δx(A), where

δx(A) is the Dirac measure on B(S) concentrated at x.

From any state, if one needs to reach any Borel set by choosing an arbitrary number

of intermediary transitions, this is possible through the celebrated Chapman-Kolmogorov

equations below,

Theorem 1.2.4.

If Xt is a Markov chain in the state space S and with t-step transition kernel P t, then

for all 0 ≤ s ≤ t, we have

P t(x,A) :=

∫
S

P s(x, dy)P t−s(y, A), for all x ∈ S,A ∈ B(S). (1.6)

Proof. Cf. Theorem 3.4.2 in [36] for details, �

The result below gives an equivalent definition of Markov chains in the form we will

handle them in the next chapters.

Theorem 1.2.5.

A discrete-time stochastic process Xt is a Markov chain with state space S if and only

if, starting from an initial state X0 with some distribution η, the process evolves in time

according to a stochastic recursion of the form,

Xt+1 = f(Xt, εt+1), for t ≥ 0, (1.7)

where (εt)t is a “driving” sequence of i.i.d random variables independent from X0, valued

in some measurable space S ′ ⊆ R, and f : S × S ′ → S is a measurable function.

Proof. The first implication follows from Exercise 1, p. 211 in [2]. For the reverse

implication, since the state space S is Polish, see p. 228 in the same book, �

12
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1.2.2 ψ-Irreducibility and Cyclic Behavior

For countable state space Markov chains, the concept of irreducibility requires that

a chain moves from any state x ∈ C to another state y ∈ C with positive transition

probability P t(x, y), where C is a subset of the state space S called, an irreducible subclass.

In our present framework of uncountable state space S ⊆ R, given any measure ϕ on

B(S), we look at whether from any state x, the chain ever reachs, at a future time t, any

positive ϕ-measure Borel set A with positive probability P t(x,A). More formally,

Let Xt be a Markov chain in the state space S. For x ∈ S and A ∈ B(S), define the

first return time3 on A, τA := min{t ≥ 1 : Xt ∈ A}, and the return time probabilities

L(x,A) := Px(τA <∞) = Px(Xt ever enters A), where Px(·) := P( · |X0 = x). Then,

Definition 1.2.6.

We say that the Markov chain Xt is ϕ-irreducible if there exists a measure ϕ on B(S)

such that, if ϕ(A) > 0, then L(x,A) > 0 for all A ∈ B(S) and all x ∈ S.

Proposition 1.2.7.

Let Xt be a Markov chain in the state space S. The following conditions are equivalent:

i) Xt is ϕ-irreducible,

ii) For all x ∈ S and all A ∈ B(S), if ϕ(A) > 0, then there exists some time t > 0,

possibly depending on x and A, such that P t(x,A) > 0.

Proof. See Proposition 4.2.1 in [36], �

Proposition 1.2.8.

If a Markov chain Xt is ϕ-irreducible for some measure ϕ, then there exists a proba-

bility measure ψ on B(S) such that,

i) Xt is ψ-irreducible,

ii) ψ is maximal in the sense that, for any other measure ϕ′, the chain is ϕ′-irreducible

if and only if ψ dominates ϕ′.

Proof. Also, see Propisition 4.2.2 in [36], �

Hence, when we say that Xt is ψ-irreducible, we mean that it is φ-irreducible for some

measure φ, hence it is ψ-irreducible for the maximal measure ψ.

Next, we review the concepts of smallness and petitness as below. For any Markov

chain Xt with probability kernel P , let a := {a(t)} be a probability measure on N. Define

the sampled chain Xa,t whose probability kernel is Pa(x,A) :=
∑∞

t=0 P
t(x,A)a(t), for all

x ∈ S and all A ∈ B(S). Then, we have the next,

3τA is actually a stopping time with respect to the natural filtration Ft := σ(Xs, s ≤ t) of Xt; that is,
it is a random variable τA : Ω→ N satisfying {τA ≤ t} ∈ Ft for all time t.
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Definition 1.2.9.

Let Xt be a Markov chain in the state space S, with transition kernel P .

i) A set C ∈ B(S) is called a small set for Xt if there exists a positive time n > 0,

and a non-trivial measure νn on B(S), such that for all x ∈ C, A ∈ B(S), we have

P n(x,A) ≥ νn(A). When this holds, we say that C is νn-small for the chain Xt.

ii) A set C ∈ B(S) is said νa-petite for Xt if there exist a probability measure a on N
and a non-trivial measure νa on B(S) such that the sampled chain Xa,t satisfies the bound

Pa(x,B) ≥ νa(B) for all x ∈ C and all B ∈ B(S).

The result below guarantees existence of small sets.

Proposition 1.2.10.

Let Xt be a ψ-irreducible Markov chain. Then there exists a countable collection Cn

of small sets in B(S) such that the state space splits as,

S =
∞⋃
n=0

Cn.

Proof. See Proposition 5.2.4 in [36], �

In practice, the use of small sets can be understood as follows. If C is a small set, and

if νn(C) > 0, then for all x ∈ C, we have P n(x,C) > 0. This means, if the chain starts in

C, then there is a positive probability that the chain will return to C at time t = n.

Moreover, given a small set for an irreducible Markov chain, one gets in the result

below a decomposition (up to a null set) of the whole state space S into a cycle of subsets

reachable from each other in a single transition with probability one. Indeed,

Let C be a fixed νM -small set for a ψ-irreducible chain Xt, for some M . Define the set

EC := {t ≥ 1 : the set C is νt − small, with νt = αtνM for some αt > 0}, (1.8)

and let B+(S) := {A ∈ B(S) : ψ(A) > 0}. Then we have,

Theorem 1.2.11.

Let Xt be a ψ-irreducible Markov chain and C ∈ B+(S) a νM -small set for Xt.

If d := gcd(EC) is the greatest common divisor of the set EC, then there exist disjoint

sets D1, ..., Dd ∈ B(S) (an “d-cycle”) such that,

i) for all x ∈ Di, we have P (x,Di+1) = 1, for i=0,...,d-1 (mod d),

ii) the set N :=
(⋃d

i=1 Di

)c
is ψ-null, that is, ψ(N) = 0.

The d-cycle of sets {Di} is maximal in the sense that, for any other collection {d′, D′k, k =

1, ..., d′} satisfying i) and ii), we have d′ deviding d; whilst if d = d′, then by reordering

the indices if necessary, D′i = Di ψ-a.e.
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Proof. See Theorem 5.4.4 in [36] for details, �

This yields the following

Definition 1.2.12.

Let Xt be a ψ-irreducible Markov chain. Then,

i) the largest time d for which an d-cycle occurs for Xt is called the period of Xt,

ii) if d = 1, then we say that the chain Xt is aperiodic.

iii) When there exists a ν1-small set C with ν1(C) > 0, then we say that the chain Xt

is strongly aperiodic.

Finally in this subsection, we illustrate the connection between the concepts of small-

ness and petiteness in the

Proposition 1.2.13.

Let Xt be any Markov chain in the state space S. Then,

i) If C ∈ B(S) is νn-small for some n ≥ 1, then C is νδn-petite, where δn is the Dirac

measure on N concentrated at n. But conversely,

ii) If the chain Xt is ψ-irreducible and aperiodic, then every petite set is small.

Proof. i) is straightforward. For ii), see Theorem 5.5.7 in [36] for details, �

1.2.3 Invariance and Ergodicity of ψ-Irreducible Chains

Given a Markov chain Xt, the t-step transition probability kernel P t may converge in

various senses to a “stable measure” ϕ, that is, a measure which is preserved under the

action of P (x,A). Such a measure ϕ is said invariant. In this last subsection, we review

the useful modes of convergence known in [36] as ergodicity, geometrical ergodicity and

uniform ergodicity.

Definition 1.2.14.

Let Xt be a Markov chain in the state space S, with transition probability kernel P .

And consider any σ-finite measure ϕ on B(S).

We say that ϕ is an invariant (or stationary, or limitting) measure for Xt if,

ϕ(A) =

∫
S

P (x,A)ϕ(dx), for all A ∈ B(S). (1.9)

Next, for any set A ∈ B(S), consider the occupation time ιA, that is, the number of

visits by the chain Xt to A after time zero, which is defined by ιA :=
∑∞

t=1 1{Xt∈A}, where

1B denotes the indicator function on any set B. And from any state x ∈ S, consider the

expected number of such visits defined by U(x,A) :=
∑∞

t=1 P
t(x,A) = Ex(ιA).
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Definition 1.2.15.

i) A Markov chain Xt is said recurrent if it is ψ-irreducible and U(x,A) ≡ ∞ for all

x ∈ S and all A ∈ B+(S).

ii) A positive chain is a ψ-irreducible chain Xt having an invariant probability measure.

Proposition 1.2.16.

i) Every positive chain Xt is recurrent.

ii) If a Markov chain Xt is recurrent, then it admits a unique (up to constant multiples)

invariant (probability) measure ϕ equivalent to ψ.

Proof. Cf. Proposition 10.1.1 and Theorem 10.4.9 in [36], �

Next, we define the concept of ergodicity as follows. For any signed measure ν on

B(S), define the total variation norm

‖ν‖ := sup
f :|f |≤1

|ν(f)|,

where ν(f) :=
∫
S
f(x)ν(dx), and f runs over the set of all R-valued measurable functions

on S. For any such f : S → R, define P t(x, f) :=
∫
S
f(y)P t(x, dy), x ∈ S, t ≥ 1. Then,

Definition 1.2.17.

i) A Markov chain Xt is said ergodic if there exists a (probability) measure ϕ on B(S)

such that

lim
t→∞
‖P t(x, ·)− ϕ‖ = 2 lim

t→∞
sup

A∈B(S)

|P t(x,A)− ϕ(A)| = 0, for all x ∈ S.

ii) A Markov chain Xt is geometrically ergodic if there is a (probability) measure ϕ on

B(S), and for some constants r > 1, R <∞ we have,

‖P t(x, ·)− ϕ‖ ≤ Rr−t, for all x ∈ S and for all time t.

iii) A chain Xt is uniformly ergodic if there is a (probability) measure ϕ such that,

sup
x∈S
‖P t(x, ·)− ϕ‖ → 0, as t→∞.

Remark 1.2.18.

i) Although non-trivial, uniform ergodicity implies geometric ergodicity (see Theorem

16.0.1 in [36]), which clearly implies ergodicity.

ii) If a Markov chain Xt is ergodic, then from i) of Definition 1.2.17 above we have

limt→∞ P
t(x,A) = ϕ(A) for all x ∈ S and all A ∈ B(S). It follows by Chapman-

Kolmogorov Theorem 1.2.4, that the measure ϕ satisfies the invariance property (1.9).

iii) By uniqueness of limits for sequences of real numbers, i), ii) or iii) of the same

definition implies that such an invariant measure is necessarily unique. �
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One may hence understand the stationarity (or limitting) property in Definition 1.2.12

above as follows. If a Markov chain Xt is ergodic with invariant measure ϕ, the conver-

gence limt supA |P t(x,A)−ϕ(A)| = 0 means that, after the chain has been in operation for

a long duration of time, the probability of finding it in any set A ∈ B(S) is approximately

ϕ(A) no matter the state in which the chain began at time zero.

The result below characterizes geometrical and uniform ergodicities respectively. More-

over it enables in practice, to get ergodicity and hence existence of a unique invariant

measure, by checking appropriately condition ii) or iv). Indeed,

Theorem 1.2.19.

Let Xt be any ψ-irreducible Markov chain in the state space S.

The following conditions two are equivalent:

i) Xt is geometrically ergodic.

ii) The chain is aperiodic and satisfies the following drift condition: there are a small

set C, a function V : S → [1,∞], and constants δ > 0, b <∞ such that

PV (x) ≤ (1− δ)V (x) + b1C(x), for all x ∈ S, (1.10)

where PV (x) ≡ P (x, V ) :=
∫
S
V (y)P (x, dy).

The two conditions below are also equivalent:

iii) Xt is uniformly ergodic.

iv) The whole state space S is νn-small for some n.

Proof. See Theorem 15.0.1 and Theorem 16.0.2 in [36], and Proposition 1.2.13, �

As a conclusion of this preliminary chapter, let us notice that the drift condition

(1.10) above, known as the geometric condition (V 4) on p. 376 in [36] or on p. 11 in

[30], is weaker than other known (stronger) drift conditions such as (DV 4) on p. 12, or

(DV 3+)(i) with V = W on p. 4, in [30]. We state this latter here, as it will be important

in the sequel:

(DV3+)(i): there are functions V,W : R → [1,∞), a small set C for the chain Xt

and constants δ > 0, b <∞ such that the following inequality holds,

log
(
e−V P eV

)
(x) ≤ −δW (x) + b1C(x), for allx ∈ R, (1.11)

where P eV (x) :=
∫
eV (y)P (x, dy), similarly to PV (x) defined above.

It is this drift condition, also mentioned as LDP condition imposed by Donsker and

Varadhan in [10], which I will be checking in the next chapters, in order to apply LDP

theory and ergodic results from [30]. We stress that (DV 3+)(i) implies (1.10) for ψ-

irreducible and aperiodic chains, see Proposition 2.1 of [29].
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Chapter 2

Asymptotic Linear Arbitrage in

Markovian Financial Markets

In this first main chapter of my present thesis, I discuss the asymptotic behavior

of the wealth of an economic agent investing in a stock within two different Markovian

settings. I introduce a new concept of arbitrage opportunities producing an asymptotic

linear growth for the investor’s wealth and prove that (under suitable assumptions) one

can produce this kind of arbitrage in both model classes. In the first setting it is assumed

that the price process evolves in a compact interval and strong, less-realistic hypotheses

are imposed. This serves rather as a motivating “toy model” to explain the basic ideas

underlying the results of the whole thesis. The second setting is more realistic: I consider

discretizations of stochastic differential equations. The arguments will be based on Large

Deviations techniques for Markov processes. For these purposes, let us discuss first the,

2.1 Markovian Modeling and Introduction to ALA

Consider a Markovian financial market consisting of a discrete-time Markov chain

(Xt)t∈N evolving in the state space S where S ⊆ R is assumed to be an interval. The

process Xt represents the (discounted) prices of some risky asset such as stock1. “Dis-

counted” means, we assume the existence of a bank account (or risk-free bond2) and, for

simplicity, we assume that its interest rate is 0; that is, its price is Bt = 1, for all time t.

We assume that the Markov chain Xt starts from some constant X0 ∈ S, and is

1An asset is any possession that yields value in an exchange. And a stock is any ownership in a
company indicated by shares and that yields value in an exchange.

2A bond is a security (i.e., a piece of paper) promising the holder an interest payment in the future.
Here we assume that it is riskless and will not default.
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an adapted process on a filtered probability space (Ω,F,F,P), where F := (Ft)t is the

natural filtration of Xt: Ft := σ(Xs, s ≤ t) models the history of the stock prices up to

(and including) each time t.

In the whole chapter, λ, λ2 denote the Lebesgue measure on R,R2 respectively.

A trading strategy in this model is, as usual, a discrete-time stochastic process (πt)t∈N,

where πt denotes the number of units of the stock an economic agent holds at time t. The

investment decision for time t is assumed to be taken before the price Xt is revealed, hence

we assume πt to be predictable, which means that πt is Ft−1-measurable for all t ≥ 1.

Due to the Markovian structure of the prices process Xt, it is reasonable and natural

to restrict ourselves to the following class of predictable strategies.

Definition 2.1.1.

A Markovian strategy in this stock prices model is any trading strategy πt of the form

πt := π(Xt−1), for all time t ≥ 0, where π : S → R is a measurable function.

This means, the amount to invest in the stock at time t depends on the only knowledge

of the previous price Xt−1 of such a stock.

Next, given any such strategy πt, we model the corresponding wealth V π
t of an investor

to allocate in the stock as a process obeying the following stochastic difference equation,

Model I:

{
V π
t = V π

t−1 + π(Xt−1)(Xt −Xt−1) for all time t ≥ 1,

V0 = v ∈ R+ is the investor’s initial capital.
(2.1)

We notice that V π
t = v +

∑t
n=1 Z

π
n where Zπ

n := π(Xn−1)(Xn − Xn−1) is the wealth

increment at time n. This is the discrete-time version of the stochastic integral modeling

the wealth of an investor in the time horizon [0, t]; see Definition 1.1 of [14].

Then, my main purpose in this chapter is to discuss the asymptotic behavior of the

wealth V π
t under a new concept of asymptotic arbitrage strategies. Indeed, motivated by

similar (but slightly different) concepts in [14], [21], I introduce this concept as follows.

In classical Arbitrage Theory, on a finite time horizon [0, T ] where T is fixed, we know

that a trading strategy πt is an arbitrage if V0 = 0 and V π
T > 0 a.s. with P(V π

T > 0) > 0.

This means that an arbitrageur gets a gain with no initial risk (at time t = 0). It is

a principle generally accepted in the literature that such opportunities should not exist

in reasonable models of an economy. The standard argument is that when an arbitrage

would occur, all investors rush to exploit it and their activity moves the prices and makes

the arbitrage disappear. Indeed, in most models used in practice there is absence of

arbitrage in the previous sense.

However, it may still be the case that at the end of each finite trading period (at each

time horizon T ) the wealth grows linearly (or even exponentially, see Chapter 3) with
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

strictly positive probability; that is: P(V π
T ≥ cT ) > 0 for some real constant c > 0. If we

are fortunate, this probability may tend to 1 as T → ∞. When this is the case, we may

naturally interpret it by saying that the strategy πt produces a long-term or asymptotic

linear arbitrage. It has been observed, see for example [9] and [14], that most models

used in practice are arbitrage-free on finite intervals [0, T ] but produce riskless profit in

the limit as T →∞.

Knowing P(V π
T ≥ cT ) → 1 is not enough for real-life applications as the convergence

may be too slow and one has to wait indefinitely long for realizing the desired profit with

a desired probability (close to 1). It would thus be important to control the probability

of failing to achieve such a linear arbitrage in the long-run by requiring that, it decays

exponentially as: P(V π
T < cT ) ≤ e−c

′T as time T gets large, for another constant c′ > 0.

Hence, we formally define this new concept as below,

Definition 2.1.2.

Let πt be any Markovian strategy in the wealth Model I. We say that πt produces

an asymptotic linear arbitrage (ALA) with geometrically decaying probability (GDP ) of

failure if, starting with V0 = 0, there are real constants b > 0 and c > 0 such that,

P(V π
t ≥ bt) ≥ 1− e−ct, for large time t. (2.2)

This means that, if a strategy πt is an ALA with GDP of failure, then outside a set

whose probability decreases geometrically fast to 0, the wealth V π
t of an investor taking

such a strategy grows linearly as t goes to infinity.

To investigate such strategies, first we consider a less realistic case, serving as a moti-

vation and starting point, in the section below.

2.2 ALA for Stock Prices in a Compact State Space

We assume that the state space of the Markov chain Xt is a non-empty compact

interval S, and λ(S) > 0. I will apply the classical Gärtner-Ellis LDP Theorem to derive

existence of ALA in the wealth Model I. But first, we set the,

2.2.1 Structural Assumptions on the Stock Process

Let B(S) denote, as usual, the Borel σ-algebra on S. For x ∈ S and A ∈ B(S), we

assume that the one-step transition probability kernel P (x,A) := P(Xt+1 ∈ A|Xt = x),

t ≥ 0, of the Markov chain Xt has a positive density p(x, ·) : S → R+ with respect to the
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

Lebesgue measure λ. Denote again P t(x,A) := P(Xt ∈ A|X0 = x) the t-step transition

probability kernel of the chain Xt.

Next, we impose the following structural conditions:

(A1) The kernel density p(x, ·) is uniformly positive and bounded, that is, there are

constants c, d ∈ R such that 0 < c ≤ p(x, y) ≤ d <∞, for all x, y ∈ S.

(A2) The Markovian strategies πt are (uniformly) bounded; that is, the π’s are bounded

functions.

Then, first we have,

Proposition 2.2.1.

i) The t-step transition probability kernel P t(x,A) has density pt(x, ·) : S → R+ with

respect to the Lebesgue measure λ.

ii) For all t ≥ 1, the law of Xt also has density pt : S → R+ with respect to λ.

Proof. We prove i) by induction. Indeed, for t = 1, P 1(x,A) = P (x,A) has density

p(x, ·) by hypothesis. Suppose for t > 1 that P t(x,A) has density, say pt(x, ·), then by

Chapman-Kolmogorov Theorem 1.2.4, we have

P t+1(x,A) =

∫
S

P (x, dy)P t(y, A) =

∫
S

P (x, dy)

∫
A

pt(y, u)λ(du),

by induction hypothesis.

So if λ(A) = 0, then P t+1(x,A) = 0, which means P t+1 is dominated by the Lebesgue

measure λ. Hence by Radon-Nikodym Theorem, P t+1 also has a density pt+1(x, ·). We

therefore conclude that for all t ≥ 1, P t(x,A) has a density pt(x, ·).
For ii), we derive it from i). Indeed, for all t ≥ 1, and all A ∈ B(S) we have,

P (Xt ∈ A) = P t(X0, A)

=
∫
A
pt(X0, y)λ(dy).

(2.3)

Hence pt(y) := pt(X0, y); y ∈ S, is the density of Xt, as required, �

Next, we have,

Proposition 2.2.2.

The Markov chain Xt is ψ-irreducible and aperiodic.

Proof. First, to get the irreducibility, we have to show that if A ∈ B(S) such that

λ(A) > 0, then there is an integer t ≥ 1 such that P t(x,A) > 0 for all x ∈ S. Indeed, set

t := 1, then we have

P (x,A) =
∫
A
p(x, y)λ(dy)

≥
∫
A
cλ(dy) by Assumption (A2)

= cλ(A).

(2.4)
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

Since λ(A) > 0 and c > 0, it follows that P (x,A) > 0 and, by Proposition 1.2.7 hence by

Proposition 1.2.8, that the chain Xt is ψ-irreducible.

For the aperiodicity property, in equations (2.4) above, setting ν1 := cλ, we obtain

that the whole compact state space S is a ν1-small set for the chain Xt. So we have

1 ∈ ES := {t ≥ 1 : S is νt-small with νt = δtν1, for some δt > 0}. Which implies that

d := g.c.d(ES) = 1. Moreover since λ(S) > 0, that is S ∈ B+(S), we get by Theorem

1.2.11 and Definition 1.2.12, that the Markov chain Xt is aperiodic, as required �

After getting the setup and these initial results, let us move to the key part of this

section, leading to the first main result of the present thesis.

2.2.2 The Asymptotic Linear Arbitrage Theorem

First, we state and prove the following,

Lemma 2.2.3.

There is a unique invariant measure ϕ of the chain Xt, having a stationary positive

density φ : S → R+ with respect to λ, such that the following limit holds,

lim
t→∞

P(Xt ∈ A) = ϕ(A) =

∫
A

φ(x)λ(dx), for all A ∈ B(S). (2.5)

Proof. We proved in Proposition 2.2.2 above that the whole compact state space S

is ν1-small for the chain Xt, hence by Theorem 1.2.19, the Markov chain Xt is uniformly

ergodic, hence ergodic. So, there is a unique invariant measure ϕ for the chain Xt such

that ‖P t(x, ·) − ϕ‖ → 0 as t → ∞ for all x ∈ S. In particular for the initial constant

X0 ∈ S, we obtain that

sup
f :|f |≤1

|P t(X0, f)− ϕ(f)| → 0 as t→∞,

where f runs over the set of real measurable functions on S. In other words, we have

sup
f :|f |≤1

∣∣∣ ∫
S

f(y)P t(x, dy)−
∫
S

f(y)ϕ(dy)
∣∣∣→ 0 as t→∞.

Setting f := 1A for any A ∈ B(S), we have in particular that |P t(x,A) − ϕ(A)| → 0 as

t→∞. Since P t(x,A) = P(Xt ∈ A), hence P(Xt ∈ A)→ ϕ(A), as t→∞.

To show that ϕ has a density, we have by the invariance property that for all A ∈ B(S),

ϕ(A) =

∫
S

P (x,A)ϕ(dx) =

∫
S

∫
A

p(x, y)λ(dy)ϕ(dx) =

∫
A

(∫
S

p(x, y)ϕ(dx)
)
λ(dy),

by Fubini Theorem. Hence, ϕ has density φ(y) :=
∫
S
p(x, y)ϕ(dx), as required, �

From this lemma, we get,
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

Proposition 2.2.4.

Let πt be any Markovian strategy in the wealth Model I. Then, there exists zπ ∈ R
such that the sequence of expected wealth increments E(Zπ

t ) converges to zπ.

We call this real number zπ, the asymptotic expectation of the wealth increment Zπ
t .

Proof. We know by Proposition 2.2.1 that for all time t, Xt has density pt. So for all

A,B ∈ B(S), we have for t ≥ 1,

P(Xt−1 ∈ A,Xt ∈ B) =

∫
A

P(Xt ∈ B|Xt−1 = x)pt−1(x)λ(dx)

=

∫
A

∫
B

p(x, y)λ(dy)pt−1(x)λ(dx)

=

∫
A

∫
B

p(x, y)pt−1(x)λ2(dx, dy),

This means that for t ≥ 1, (Xt−1, Xt) has density p(x, y)pt−1(x), for x, y ∈ S. Next by

Lemma 2.2.3 above, since π(x)(y − x)p(x, y) is bounded on S2 (and is measurable), we

get,

E(Zπ
t ) =

∫
S2

π(x)(y − x)p(x, y)pt−1(x)λ2(dx, dy)

→
∫
S2

π(x)(y − x)p(x, y)φ(x)λ2(dx, dy) as t→∞.

The later integral finite since p(x, ·) and φ are probability densities, and π(x)(y − x) is

bounded on S2. It is now enough to take zπ :=
∫
S2 π(x)(y − x)p(x, y)φ(x)λ2(dx, dy), �

Next, we derive the key LDP result below, whose arguments follow from [17] and [23].

Proposition 2.2.5.

Let πt be any Markovian strategy in the wealth Model I such that {x : π(x) 6= 0} has

positive Lebesgue measure. Then, there is a positive analytic function β(θ), θ ∈ R such

that the average wealth (V π
t − v)/t satisfies an LDP with good convex rate function Λ∗;

that is, the convex conjugate function of Λ(θ) := log
(
β(θ)

)
.

Proof. For θ ∈ R, consider the scaled kernels Kθ(x, y) := eθα(x,y)p(x, y), where

α(x, y) := π(x)(y − x), for all x, y ∈ S. Since, by Assumption (A2), α(Xn−1, Xn) is

bounded for all n, it follows by (A2) again and by (A1) that Kθ satisfies the conditions

of Theorem 10.1 in [17], for all θ. So Kθ has a positive eigenvalue3 β(θ). It hence follows

by Theorem 1 in [23] that limt→∞
(
E
(
eθ(V

π
t −v)

))1/t
= β(θ), and that, β(θ) is analytic in

3As defined in [17], there are two functions f, g 6= 0 on S, the left and right eigenfunctions associated
to β(θ), such that β(θ)f(y) =

∫
S
f(x)Kθ(x, y)λ(dx) and β(θ)g(x) =

∫
S
Kθ(x, y)g(y)λ(dy), for all x, y ∈ S.
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

θ. This implies by continuity of Logarithm that 1
t

log E
(
eθ(V

π
t −v)

)
→ log(β(θ)) as t→∞.

Set Λ(θ) := log
(
β(θ)

)
, for all θ ∈ R. First we consider the case where the asymptotic

variance is nonzero; that is,

Λ′′(0) = β′′(0)− z2
π = lim

t→∞
(1/t)var[V π

t − v] > 0.

Then Λ satisfies the conditions of Gärtner-Ellis Theorem 1.1.13 (see the remark following

Definition 1.1.12). Hence (V π
t − v)/t satisfies a large deviations principle in R with good

convex rate function Λ∗.

One can check, as in Proposition 2.2.4, that

Λ′′(0) =

∫
S2

π2(x)(y−x)2p(x, y)φ(x)λ2(dx, dy)−
(∫

S2

π(x)(y − x)p(x, y)φ(x)λ2(dx, dy)

)2

and this can be 0 only if π(x)(y − x) is λ2-a.e constant which happens only if π(x) = 0

λ-a.e., a case we exclude in the statement of this Proposition. As we required, �

At last, before stating the first main result in this thesis, we prove first the following

technical,

Lemma 2.2.6.

For every Markovian strategy πt as in Proposition 2.2.5, the corresponding asymptotic

expectation zπ is the unique minimizer of the convex rate function Λ∗. Moreover, we have

Λ∗(x) > 0 for all x 6= zπ.

Proof. In the proof of Proposition 2.2.5 above, we obtained the following limit,

limt→∞
(
E
(
eθ(V

π
t −v)

))1/t
= β(θ). Setting θ := 0, then we get that β(0) = 1. Thus,

Λ(0) = log(β(0)) = 0. So, for all x ∈ R, we have Λ∗(x) ≥ 0 × x − Λ(0) = 0. Hence in

particular we have Λ∗(zπ) ≥ 0. Conversely, let us also show that Λ∗(zπ) ≤ 0 and conclude

that Λ∗(zπ) = 0 ≤ Λ∗(x) for all x ∈ R. Indeed, for all θ ∈ R, we have,

θzπ − Λ(θ) = θzπ + limt→∞
1
t

(
− log E

(
eθ

Pt
n=1 Z

π
n
))

≤ θzπ + limt→∞
1
t

(
E(−θ

∑t
n=1 Z

π
n )
)

by Jensen-inequality

= θzπ − θ limt→∞
1
t

(∑t
n=1 E(Zπ

n )
)

= θzπ − θzπ since limn→∞ E(Zπ
n ) = zπ

= θ(zπ − zπ)

= 0.

Taking the supremum over all θ ∈ R we get that Λ∗(zπ) ≤ 0.

Hence, we have proved that Λ∗(zπ) = 0 ≤ Λ∗(x) for all x ∈ R. This implies that zπ is

a global minimun for Λ∗.
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

On the other hand, β is analytic hence differentiable on R; and since β(θ) > 0 for all

θ ∈ R, it follows that Λ = log β is also differentiable on R. Thus, by Proposition 1.1.5,

Λ∗ is strictly convex on its effective domain. We conclude by Proposition 1.1.2 that zπ is

the unique minimizer of Λ∗.

Moreover, let x0 6= zπ such that Λ∗(x0) ≤ 0, then Λ∗(x0) ≤ Λ∗(x) for all x ∈ R. This

means, x0 is a different global minimum for Λ∗, contradicting the unicity of zπ. This

completes the proof, as required, �

Finally we state and prove the first main result as below,

Theorem 2.2.7.

For every Markovian strategy πt in Model I such that λ({x : π(x) 6= 0}) > 0, and

arbitrarily small ε > 0, the wealth process V π
t satisfies the following estimate,

P
(
V π
t ≥ v + (zπ − ε)t

)
≥ 1− e−tΛ∗(zπ−ε) for large time t. (2.6)

Proof. By Proposition 2.2.5, (V π
t − v)/t satisfies an LDP with good rate function

Λ∗, so for any arbitrary small ε > 0 we have from Gärtner-Ellis Theorem 1.1.13 that,

lim sup
t→∞

1

t
log P

(V π
t − v
t

< zπ − ε
)
≤ − inf

x∈(−∞,zπ−ε]
Λ∗(x).

In the proof of Lemma 2.2.6, we obtained that Λ∗ is strictly convex, so it is nonin-

creasing on (−∞, zπ]. It follows by this lemma that,

inf
x∈(−∞,zπ−ε]

Λ∗(x) = Λ∗(zπ − ε) > 0.

Hence, P
(
V π
t ≥ v + (zπ − ε)t

)
≥ 1− e−tΛ∗(zπ−ε) for large time t. As we required, �

In this result, one may not get a straight linear growth of the wealth V π
t in the long-

run, if zπ = 0 for all strategies πt. In the result below, using Martingale Theory, we show

that in the wealth Model I, there is always Markovian strategy πt with zπ 6= 0, hence

there is always ALA with GDP of failure. Indeed,

Proposition 2.2.8.

In the wealth Model I,

i) If there is a Markovian strategy πt with λ({x : π(x) 6= 0}) > 0, such that zπ 6= 0,

then πt is an ALA with GDP of failure.

ii) There is no Markovian strategy πt such that zπ 6= 0 if and only if, for λ-almost all

x ∈ S, the Markov chain Xt starting from X0 = x, with transition density p(x, ·), is a

martingale with respect to the natural filtration Ft. However,

iii) Under assumption (A1), Xt cannot be a martingale for almost all X0 = x. Hence

under the condition of Theorem 2.2.7, there is always ALA with GDP of failure.
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Proof. i) Let πt be a Markovian strategy such that zπ 6= 0. Then if zπ > 0, we choose

ε small enough such that zπ− ε > 0, hence we get an asymptotic linear arbitrage by (2.6).

Similarly if zπ < 0, we choose the “opposite” strategy −π for which z−π = −zπ which

is strictly positive. So, with a similar choice of ε, one also gets an ALA with GDP of

failure.

ii) Let πt be any Markovian strategy. If Xt is a martingale with respect to Ft for

λ-a.e. starting point x, then for all time t, E(Xt|Ft−1) = Xt−1. This holds whatever the

law of Xt−1 is. By a property of Conditional Expection, we get

E
(
π(Xt−1)(Xt −Xt−1)|Xt−1

)
= 0.

Hence E(Zt) = 0 for all time t, implying that zπ = 0.

Conversely, suppose that for some A ∈ B(S) with λ(A) > 0 and for all x ∈ A we have

for example,

E(X1 −X0|X0 = x) =

∫
S

p(x, y)(y − x)λ(dy) > 0.

Then consider the Markovian strategy π(x) := 1A(x) for all x ∈ S. From the proof of

Proposition 2.2.4, we have

zπ =
∫
S2 π(x)(y − x)p(x, y)φ(x)λ2(dx, dy)

=
∫
A

∫
S
(y − x)p(x, y)λ(dy)φ(x)λ(dx) > 0.

(2.7)

Since
∫
S
(y − x)p(x, y)λ(dy) > 0, λ(A) > 0 and φ is positive on S, it follows that zπ > 0.

iii) Finally, without loss of generality, we may suppose that the state space is S = [0, 1].

If Xt were a martingale for almost all X0 = x then there would be a sequence xn → 1

such that

E[X1|X0 = xn] = xn → 1, n→∞.

On the other hand, let M > 1 be an upper bound for p(x, y),

E[X1|X0 = xn] =

∫
[0,1]

yp(xn, y)dy ≤
∫

[1−1/M,1]

yMdy < 1,

a contradiction. We may hence conclude, as required. �

Although the result above is new in its nature, it can only be used under the restrictive

conditions (A1) and (A2), where one models a stock’s evolution within a chosen bounded

interval. This limits the scope of its applications since, in practice, stock prices in financial

modeling are usually specified by stochastic difference/differential equations.

This observation forces us to move to a more realistic class of models in the following,

last part of this chapter.
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2.3 ALA for Stock Prices in a General State Space

In this section, using more advanced (and more recent) tools from Large Deviations

Theory, I prove again the existence of ALA in the wealth Model I under a more satisfac-

tory set of Markovian modeling conditions. The proofs heavily rely on the ergodic results

for functions of Markov chains presented in the article [30]. For that, let us set out and

get the,

2.3.1 New Modeling Conditions and Preliminary Results

We relax the strong condition (A1) of Section 2.2, and we now assume that the stock

prices are modeled by a stochastic difference equation evolving (possibly) in the whole

real line as,

Xt+1 = Xt + µ(Xt) + σ(Xt)εt+1, for all t ∈ N, (2.8)

where µ, σ : R → R are given measurable functions, the so-called drift and volatility of

the stock, and (εt) is an i.i.d sequence of random variables in R, with common strictly

positive density γ with respect to the Lebesgue measure λ on R. X0 is assumed constant.

It is clear by Theorem 1.2.5, that Xt is a Markov chain in the whole state space S = R.

We notice that the process evolution (2.8) can be thought as the time-discretization

of a stochastic differential equation. Similar models were considered in the asymptotic

arbitrage context in the article [14], but in continuous time. Note that, in particular,

if µ(x) := −αx with 0 < α < 1 and σ(x) := 1, for all x ∈ R, then we get the usual

discrete-time Ornstein-Uhlenbeck process (or AR(1) process).

Let B(R) denote the Borel σ-algebra on R. We assume that the chain Xt starts from

some constant X0 = x in R. Next, we set the following conditions:

(A2) We keep the boundedness assumption on Markovian strategies πt in the wealth

Model I.

(A3) We suppose that the drift µ is locally bounded; that is, bounded on each compact,

and the volatility σ is bounded away from zero on each compact.

(A4) We impose the bounded volatility and mean-reverting drift conditions below,

(i)∃M > 0 such that σ(x) < M for all x, and (ii) lim sup
|x|→∞

|x+ µ(x)|
|x|

< 1 (2.9)

(A5) Next, we assume the following integrability property for the law of the εt,

∃κ > 0 such that E
(
eκε

2)
=: I <∞ (2.10)

where the distribution of ε is the same as that of the εi, i ∈ N. We also assume that γ is

(a.s.) bounded away from 0 on compacts and that it is (a.s.) bounded on each compact.
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We remark that (A4) implies, in particular, that µ(x) has at most linear growth.

Observing the dynamics of the investor’s wealth process in equation (2.1) in the wealth

Model I, we express it in the form V π
t = V0 +

∑t
n=1 g(Φn), for all time t ≥ 1, where

Φn := (Xn−1, Xn) is the process of the two consecutive values of the stock prices process,

and g is the function defined on R2 by g(x, y) := π(x)(y − x).

Let P (x,A), with x ∈ R and A ∈ B(R), be the usual transition probability kernel of

the chain Xt, and P t(x,A) its t-step transition kernel. Then, we prove the large set of

technical initial results below. Some of them consist of checking suitable conditions for

results in the paper [30], which we extensively apply to derive ours. In most cases this is

done first for the one-dimensional chain Xt, then for the two-dimensional chain Φt we are

more interested in. Indeed, we have,

Proposition 2.3.1.

The Markov chain Xt is ψ-irreducible.

Proof. We have to prove that if A ∈ B(R) such tha λ(A) > 0, then, there is an

integer t ≥ 1 such that P t(x,A) > 0 for all x ∈ R. Indeed, for t := 1, we have

P (x,A) := P
(
Xt+1 ∈ A | Xt = x

)
= P

(
x+ µ(x) + σ(x)εt+1 ∈ A

)
=

∫
(A−x−µ(x))/σ(x)

γ(y)λ(dy)

Note that in Assumption (A3), the assumption “σ is bounded away from zero on each

compact” clearly implies that σ is strictly positive everywhere. So if λ(A) > 0, then for

every x ∈ R, λ
(
(A−x−µ(x))/σ(x)

)
= λ(A)/σ(x) by the translation invariance property

of λ, which is strictly positive. Since γ is strictly positive, we conclude that the later

integral is also strictly positive. It follows by Proposition 1.2.7, that the chain Xt is

λ-irreducible, and then by Proposition 1.2.8, that Xt is ψ-irreducible. As required, �

Proposition 2.3.2.

All compact sets in R are ν1-small sets for the chain Xt.

Proof. Let C be any compact subset in R, then C is included in some closed interval

[−b, b], b ∈ R. For all x ∈ C and for all A ∈ B(R), we got from the preceeding proof that,

P (x,A) =

∫
(A−x−µ(x))/σ(x)

γ(y)λ(dy) (2.11)

Since by assumption, µ and σ are respectively bounded and bounded away from zero

on the compact C, then, there are strictly positive constants a, c1, c2 such that |µ(x)| < a,

and 0 < c1 < σ(x) < c2, for all x ∈ C. So, if x ∈ C, then we have
(
C − x− µ(x)

)
/σ(x) ⊆
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[(−2b− a)/c1, (2b+ a)/c1] =: B. This implies that
⋃
x∈C

(
(C − x− µ(x))/σ(x)

)
⊆ B. B

is bounded, so γ(x) ≥ c′ for some c′ > 0 for x ∈ B.

Now, if A ⊆ C, then (A− x− µ(x))/σ(x) ⊆ B, for all x ∈ C. So we have from (2.11)

that P (x,A) ≥ c′λ(A).

Suppose now that, A is any Borel set, then we have

P (x,A) ≥ P (x,A ∩ C)

≥ c′λ(A ∩ C) from the preceeding case

=: ν1(A), where ν1 := c′λ1C .

Hence, we conclude from Definition 1.2.9, that the compact set C is a ν1-small set for

the chain Xt, as required, �

Proposition 2.3.3.

The Markov chain Xt is aperiodic.

Proof. Consider any compact set C in R such that λ(C) > 0. Then, since the chain

Xt is ψ-irreducible, it follows by Proposition 1.2.8, that ψ(C) > 0; that is, C ∈ B+(R).

From the proof of the preceeding proposition, C is a ν1-small set for the chain Xt. So,

we obtain that 1 ∈ EC := {t ≥ 1; C is νt-small with νt = δtν1, for some δt > 0}. Hence

d := g.c.d(EC) = 1. Applying Theorem 1.2.11, we conclude using Definition 1.2.12, that

the irreducible chain Xt is aperiodic, as required, �

Proposition 2.3.4.

The process Φt := (Xt−1, Xt) is also a Markov chain in the state space R2.

Proof. Using Theorem 1.2.5 which also holds as in [2] even for a general Polish state

space, in particular for R2, let us show that Φt is of the form Φt+1 = Γt + Σt · Et+1, where

Et is a sequence of i.i.d random variables in R2 and Γt = Γ(Φt), Σt = Σ(Φt) for some

Γ : R2 → R2 and Σ : R2 → R2×2. Indeed, using (2.8), we have for all time t ≥ 1,

Φt+1 = (Xt, Xt+1)

=
(
Xt, Xt + µ(Xt) + σ(Xt)εt+1

)
=

(
Xt, Xt + µ(Xt)

)
+ diag

(
0, σ(Xt)

)(
0, εt+1

)
=: Γt + Σt · Et+1

where Γt := (Xt, Xt + µ(Xt)), Σt := diag(0, σ(Xt)) and Et+1 := (0, εt+1). Because the εt’s

are i.i.d, the Et’s are also i.i.d. This shows that, the next state Φt+1 of the process is

generated from the previous state Φt, plus an independent noise Et+1. Which means that

Φt is a Markov chain in R2, as required, �
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

Proposition 2.3.5.

The Markov chain Φt is ψ-irreducible.

Proof. Let Q denote the transition probability kernel of the chain Φt, and λ2 denote

again the Lebesgue measure on R2. By the assumptions on the εi, for all y ∈ R the random

variable y + µ(y) + σ(y)ε1 has a λ-a.e. positive density, p1(w). By the same argument,

for all w ∈ R the random variable y+ µ(y+ µ(y) + σ(y)w) + σ(y+ µ(y) + σ(y)w)ε2 has a

λ-a.e. positive density p2(w, u) which can be chosen jointly measurable in (w, u). Hence,

by independence of ε1, ε2, when Φ0 = (x, y), the density of

Φ2 = (y + µ(y) + σ(y)ε1, y + µ(y + µ(y) + σ(y)ε1) + σ(y + µ(y) + σ(y)ε1)ε2)

with respect to λ2 equals p1(u)p2(w, u) and this is λ2-a.e. positive. In particular, for all

A ⊂ R2 with λ2(A) > 0 we have

P(Φ2 ∈ A) =

∫
A

p1(w)p2(w, u)λ2(dw, du) > 0,

showing λ2-irreducibility and hence ψ-irreducibility of Φt by Propositions 1.2.7, 1.2.8, �

Proposition 2.3.6.

If C1 and C2 are two compact subsets in R, then the compact rectangle C := C1 × C2

is a ν2-small set for the chain Φt.

Proof. The argument of Proposition 2.3.2 shows that p1(w) ≤ c1 and p2(w, u) ≥ c2

for all (w, u) ∈ C1 × C2 for suitable c1, c2 > 0. This implies that C is a ν2-small set for

the chain Φt, with ν2 := 1C1×C2c1c2λ2. �

Proposition 2.3.7.

The Markov chain Φt is also aperiodic.

Proof. One can easily extend the previous argument to show that, for compact

intervals C1 and C2 in R such that λ2(C) > 0 where C := C1 × C2; we have that C is a

ν3-small set (actually, a νk-small set for all k ≥ 2). Then, it follows that the ν2-small set C

belongs to B+(R2). Next we have d := g.c.d
(
EC
)

= 1 since 2, 3 ∈ EC . Applying Theorem

1.2.11 and Definition 1.2.12, we obtain that the ψ-irreducible chain Φt is aperiodic, as

required, �

Next, in order to check the remaining conditions to be satisfied by the chain Φt in [30],

we prove first the following,
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Lemma 2.3.8.

Let ε be a random variable in R satisfying (2.10) in Condition (A5). Then for every

real number a > 0 large enough, we have,

E
(
ea|ε|

)
≤ eca

2

for some fixed constant c > 0.

Proof. Set ξ := |ε|. Then we have

P
(
eaξ > x

)
= P

(
exp

(
κ
[

log(eaξ)
a

]2)
> exp

(
κ
[

log x
a

]2))
≤ I exp

(
− κ
(

log(x)/a
)2
)

by Markov Inequality

= I(1/x)(κ/a2) log x,

recall I from (A5).

Because the exponent (κ/a2) log x > 2 if and only if x > e2a2/κ, so we have,

E
(
eaξ
)

=

∫ ∞
0

P
(
eaξ > x

)
dx ≤ e2a2/κ + I

∫ ∞
exp(2a2/κ)

1/x2dx

.

Since the last integral is less than
∫∞

1
1/x2dx which is finite, we conclude the proof by

taking for example c = 1 + (2/κ), for a large enough. �

After this, we move forward the recipe of preliminary results by showing,

Proposition 2.3.9.

The Markov chain Xt satisfies the drift condition (DV 3+) (i) of [30] restated below.

Proof. As recalled in the concluding remark of Chapter 1, this condition says that:

there are functions V,W : R → [1,∞), a small set C for the chain Xt and constants

δ > 0, b <∞ such that the following inequality holds,

log
(
e−V P eV

)
(x) ≤ −δW (x) + b1C(x), for allx ∈ R, (2.12)

where P eV (x) :=
∫
eV (y)P (x, dy)

This is equivalent to requiring that,

P eV (x) ≤ eV (x)−δW (x)+b1C(x) for all x ∈ R, (2.13)

for some such functions and constants.

Define V (x) = W (x) := 1 + qx2, x ∈ R, where q > 0 is a small number to be chosen

later. And consider some compact set C := [−K,K] for a large positive constant K. This

is a small set for the chain Xt by Proposition 2.3.2.
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Since PeV (x) = E
(
eV (X1) | X0 = x

)
= E

(
eV (x+µ(x)+σ(x)ε)

)
, it follows from (2.13) that

we need to show that,

E
(
e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2

)
≤ e(1−δ)V (x)+b1C(x) for all x ∈ R (2.14)

To get this, it is sufficient to prove the following two conditions:

Condition 1: for |x| large enough such that x lies outside C, we have

E
(
e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2

)
≤ e(1−δ)V (x) (2.15)

Condition 2: for small |x| that is, x in the suitable compact C = [−K,K], we have

sup
x∈C

E
(
e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2

)
< G(K) (2.16)

for some positive constant G(K) <∞ and then take b := logG(K) with any δ ≤ 1.

For that, we have,

Proof of Condition 1. Using Condition (A4) (ii), for |x| large enough, there is a

small δ > 0 such that (x+ µ(x))2 ≤ (1− 4δ)x2. And since 1 ≤ δ(1 + qx2) for |x| large, it

follows that e1+q(x+µ(x))2 ≤ e(1−3δ)(1+qx2).

Moreover, if we choose q using Condition (A4) (i), such that qσ2(x) < κ/2 for all x,

then it is enough to show that,

E
(
e2q|x+µ(x)|M |ε|+(κ/2)ε2

)
≤ e2δqx2

By Cauchy-Schwarz Inequality, this requires to prove that,√
E
(
e4q|x+µ(x)|M |ε|

)√
E
(
eκε2
)
≤ e2δqx2

(2.17)

By (2.10), the second term on the left-hand side of (2.17) is the constant
√
I. This

is smaller than eδqx
2

which tends to infinity as |x| → ∞. So, since again by Condition

(A4) (ii), 4q|x + µ(x)|M ≤ 4qM |x| for |x| large, it follows that we finally have to show

that, √
E
(
e4qM |x||ε|

)
≤ eδqx

2

for large |x|

or equivalently that,

E
(
e4qM |x||ε|) ≤ e2δqx2

for large |x| (2.18)

But by Lemma 2.3.8, the left-hand side of (2.18) is smaller than e16cq2M2|x|2 for some

fixed constant c > 0. Hence, in addition to the first requirement on q, if one chooses q

small enough such that 16q2M2c < 2δq that is, qσ2(x) < κ/2 for all x and 8qcM2 < δ.

Hence the statement of the condition follows.
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Proof of Condition 2. By assumption (A3), µ is bounded above on the compact

C = [−K,K] by some positive constant A. Since µ is bounded on C, the function

x 7→ (x+ µ(x))2 is also bounded on C. We assume it bounded above on that C by some

positive constant B. So, with the later choice of q, we have the following estimate by

Cauchy-Schwarz Inequality and by (2.10),

E
(
e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2

)
≤ E

(
e1+qB+2q(K+A)M |ε|+(κ/2)ε2

)
≤ e(1+qB)

√
E
(
e4q(K+A)M |ε|

)√
E
(
eκε2
)

= e(1+qB)
√
I
√

E
(
e4q(K+A)M |ε|

) (2.19)

We then choose K large enough such that 4q(K + A)M is also large, and we get by

Lemma 2.3.8 that for all x ∈ C = [−K,K],

E
(
e1+q(x+µ(x))2+2q(x+µ(x))σ(x)ε+qσ2(x)ε2

)
≤ e(1+qB)

√
I
√
e16c′q2(K+A)2M2 ,

for a fixed constant c′ > 0. This holds for all x ∈ C, hence Condition 2 holds true by

taking the supremum over C of the left-hand side of this later inequality. This completes

the proof of the whole result, as required, �

Proposition 2.3.10.

The Markov chain Φt also satisfies the drift condition (DV 3+) (i) of [30].

Proof. Similar to (2.13), for apropriate functions V,W : R2 → [1,∞), a small set C

in R2 and some constants δ > 0, b <∞, we need to show that,

QeV (x, y) ≤ eV (x,y)−δW (x,y)+b1C(x,y) for all x, y ∈ R. (2.20)

Define here V (x, y) = W (x, y) := 1 + q(x2 + y2), where q > 0 is again a small number

to be chosen later. Consider a compact rectangle C := [−K,K]× [−K,K] where K > 0

is also an appropriate large constant. Observing that the chain Φt starts at time t = 1

since the chain Xt starts at time t = 0, we have,

QeV (x, y) = E
(
eV (Φ2) | Φ1 = (x, y)

)
= E

(
eV
(
x+µ(x)+σ(x)ε, y+µ(y)+σ(y)ε

))
(2.21)

With the choice of V and W , it turns out one needs to show that,

E
(
e1+q[(x+µ(x))2+(y+µ(y))2]+2q[(x+µ(x))σ(x)+(y+µ(y))σ(y)]ε+q[σ2(x)+σ2(y)]ε2

)
≤ e∆, (2.22)

for all x, y ∈ R, where ∆ := (1− δ)(1 + q(x2 + y2)) + b1C(x, y).

Similar to what we did in (2.15) and (2.16) with the chain Xt, the proof will be

completed if we prove Condition 3 and Condition 4 below,
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Condition 3: For |x| and |y| large enough such that (x, y) lies outside C, we have,

E
(
e1+q[(x+µ(x))2+(y+µ(y))2]+2q[(x+µ(x))σ(x)+(y+µ(y))σ(y)]ε+q[σ2(x)+σ2(y)]ε2

)
≤ e(1−δ)V (x,y) (2.23)

Indeed, again by (2.9) (ii), there is δ > 0 small enough such that,

e1+q[(x+µ(x))2+(y+µ(y))2] ≤ e(1−3δ)(1+q(x2+y2)) for |x|, |y| large enough.

Using (A4) (i), let choose first q small enough such that q(σ2(x) + σ2(y)) < κ/2 for all

x, y. Then, showing (2.23) is sufficient to prove the inequality,

E
(
e2q(|x+µ(x)|+|y+µ(y)|)M |ε|+(κ/2)ε2

)
≤ e2δq(x2+y2) for large |x|, |y|,

which, by Cauchy-Schwarz Inequality, we can get by showing that,√
E
(
e4qM(|x+µ(x)|+|y+µ(y)|)|ε|

)√
E
(
eκε2
)
≤ e2δq(x2+y2) for large |x|, |y| (2.24)

Here, by (2.10) the second factor in the left-hand side of this inequality is just
√
I which

is finite, and so less than eδq(x
2+y2) which tends to +∞ when |x|, |y| → +∞. Therefore,

getting Condition 3 remains to show that,√
E
(
e4qM(|x+µ(x)|+|y+µ(y)|)|ε|

)
≤ eδq(x

2+y2) for large |x|, |y|

or equivalently that,

E
(
e4qM(|x+µ(x)|+|y+µ(y)|)|ε|) ≤ e2δq(x2+y2) for large |x|, |y|

Finally, using (2.9) (ii), it follows again by Cauchy-Schwarz Inequality that it is enough

to prove both

E
(
e8qM |x|ε|) ≤ e2δqx2

and E
(
e8qM |y|ε|) ≤ e2δqy2 for large |x|, |y| (2.25)

Which follows by Lemma 2.3.8 for some constants c1, c2 > 0 and choosing also q small

enough such that 64q2M2c1 < 2δq and 64q2M2c2 < 2δq.

Condition 4: For |x|, |y| small such that (x, y) belongs to the suitable compact

C = [−K,K]× [−K,K], we shall have,

sup
(x,y)∈C

E
(
e1+q[(x+µ(x))2+(y+µ(y))2]+2q[(x+µ(x))σ(x)+(y+µ(y))σ(y)]ε+q[σ2(x)+σ2(y)]ε2

)
≤ H(K),

(2.26)

for some positive constant H(K) <∞ and then take b := logH(K) with any δ ≤ 1.

Indeed, we use again arguments similar to those used in Condition 2. By hypothesis,

suppose µ is bounded above on [−K,K] by a positive constant A. Since the function
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x 7→ (x+µ(x))2 is also bounded on [−K,K], we also assume it bounded above on [−K,K]

by a positive constant B. And with the choice of q such that q(σ2(x) + σ2(y)) < κ/2 for

all x, y, we have by Cauchy-Schwarz Inequality and by (2.10) that,

E
(
eY
)
≤ e(1+2qB)E

(
e4q(K+A)M |ε|+(κ/2)ε2

)
≤ e(1+2qB)

√
E
(
e8q(K+A)M |ε|

)√
E
(
eκε2
)

= e(1+2qB)
√
I
√

E
(
e8q(K+A)M |ε|

)
where Y (x, y) := 1 + q[(x+µ(x))2 + (y+µ(y))2] + 2q[(x+µ(x))σ(x) + (y+µ(y))σ(y)]ε+

q[σ2(x) + σ2(y)]ε2, for all (x, y) ∈ C.

Let choose K large such that 8q(K + A)M is also large, we get by Lemma 2.3.8 that

for all (x, y) ∈ C,

E
(
eY
)
≤ e(1+2qB)

√
I
√
e64cq2(K+A)2M2 , (2.27)

for some constant c > 0.

This holds for all (x, y) ∈ C. So Condition 4 also holds by taking the supremum over

C of the left-hand side of (2.27). Hence the whole result follows, as required �

An immediate consequence of this is,

Corollary 2.3.11.

The Markov chain Φt has an invariant probability measure ν ∼ λ2.

Proof. We have proved in the preceding proposition that the chain Φt satisfies the

drift condition (DV 3+) (i) on page 6 of [30] with V = W . This means, we have verified

Condition (DV 4) on page 12 of the same article. But by Proposition 2.1 of that article,

(DV 4) implies the drift condition (V 4) on that page 12; which is the inequality (1.10) in

Theorem 1.2.19 of our previous chapter. Since the chain Φt is ψ-irreducible and aperiodic,

it follows by this latter theorem that, Φt is geometrically ergodic, hence ergodic. We then

conclude by Remark 1.2.18, ii) that Φt has a unique invariant probability measure, say ν.

Furthermore, from the proof of Proposition 2.3.5, P(Φ2 ∈ ·|Φ0 = (x, y)) is λ2-absolutely

continuous for each (x, y), we easily get ν � λ2. Finally, since the chain Φt is λ2-

irreducible with ν as its invariant probability measure, it follows from Definition 1.2.15

ii) and Proposition 1.2.16 that ν ∼ λ2, showing the result, �

Next, we have,

Proposition 2.3.12.

The Markov chain Xt satisfies Condition (DV 3+) (ii) of [30] restated below.
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Proof. As stated in [30], this conditions says that:

For functions V,W : R→ R, there is a time t0 > 0 such that for all r < ‖W‖∞ =∞,

there exists a measure βr on B(R) such that we have both

βr(e
V ) <∞ and Px

(
Xt0 ∈ A, τCcW (r) > t0

)
≤ βr(A), ∀x ∈ CW (r), A ∈ B(R), (2.28)

where τCcW (r) is the first return time to Cc
W (r), defined in Subsection 1.2.2.

To show this, consider the same choice of V (x) = W (x) = 1+qx2, x ∈ R for Condition

(DV 3+) (i) that we proved in Proposition 2.3.9. Set t0 = 1 and let r <∞, then we have

CW (r) = {x ∈ R : 1 + qx2 ≤ r}.
If 0 ≤ r < 1, then CW (r) = ∅, and τ cW (r) = τR; hence (2.28) holds trivially.

Suppose now that r ≥ 1, then we have CW (r) =
[
−
√

r−1
q
,
√

r−1
q

]
, which is compact.

By Assumption (A3), σ is bounded from below and µ is bounded on every compact.

Let us consider then the bounded set

H :=
⋃

x∈CW (r)

(CW (r)− x− µ(x)

σ(x)

)
,

then, by assumption (A5), γ is bounded from above on H by some constant Dr > 0. For

all x ∈ CW (r) and all A ∈ B(R), A ⊂ CW (r) we have,

Px
(
X1 ∈ A, τCcW (r) > 1

)
= P

(
X1 ∈ A,X1 ∈ CW (r) | X0 = x

)
= P

(
X1 ∈ A | X0 = x

)
= P

(
x+ µ(x) + σ(x)ε1 ∈ A

)
≤

∫
A−x−µ(x)

σ(x)

γ(y)λ(dy)

≤ Drλ(A).

(2.29)

Hence we define the required measure βr by

βr(A) := Drλ(A ∩ CW (r)), for all A ∈ B(R).

Now, to complete the proof, it remains to show with this choice of βr, that βr(e
V ) <∞.

Indeed, eV is locally bounded and βr has compact support, �

As the last in this set of preliminary results, we have,

Proposition 2.3.13.

The Markov chain Φt also verifies Condition (DV 3+) (ii) of [30].

Proof. It follows exactly like Proposition 2.3.12, �

Now, we proceed to the key part of this section, the last in this first main chapter.
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2.3.2 ALA Theorem under more General LDP Conditions

In the previous propositions, we have checked that the Markov chain Φt satisfies all

sufficient conditions for the use of results in [30]. In this subsection, we begin with proving

specific results attached with the wealth Model I itself using those ergodic results in [30].

Then, finally we state and prove the another ALA theorem using again the Gärtner-Ellis

LDP theorem for the new modeling conditions that we set in Subection 2.3.1.

For that, recall first that for any bounded Markovian strategy πt = π(Xt−1), the wealth

process in Model I is expressed as V π
t = V0 +

∑t
n=1 g(Φn) at each time t ≥ 1, where g

is the function defined on R2 by g(x, y) := π(x)(y − x), and Φn = (Xn−1, Xn) is also a

Markov chain starting at time t = 0; assuming X−1 and X0 are given fixed constants.

Next, to use Gärtner-Ellis Theorem, we need to insure first that the average sum

(V π
t − V0)/t satisfies an LDP ; that is, the limit Λg(θ) := limt→∞

1
t

log E(eθ
Pt
n=1 g(Φn)) for

each θ ∈ R, exists with Λg satisfying the remaining conditions in Gärtner-Ellis Theorem.

By now we have established that Φt is ψ-irreducible, aperiodic and satisfies the (DV3+)

condition of [30]. Under the conditions established, all results I cite from [30] do hold,

hence we will simply refer to them in the proofs below. Indeed,

For all θ ∈ R, we observe that θ
∑t

n=1 g(Φn) =
∑t

n=1Gθ(Φn) where Gθ = θg. Next,

consider the two functions V (x, y) = W (x, y) := 1 + q(x2 + y2) in Propositions 2.3.10

and 2.3.12 such that the Markov chain Φt verifies Condition (DV 3+) in [30] with the

unbounded W . And define W0(x, y) := 1 + q(|x|+ |y|), for x, y ∈ R. We see immediately

that if W (x, y) > r and r →∞, then W (x, y)→∞ faster than W0(x, y). Hence,

lim
r→∞

sup
x,y∈R

(W0(x, y)

W (x, y)
1W (x,y)>r

)
= 0. (2.30)

So Condition (6) on p. 7, in [30] is satisfied. We now consider the Banach space LW0
∞

defined in that paper as LW0
∞ := {h : R2 → C : supx,y

|h(x,y)|
W0(x,y)

< ∞}. We equip this space

with the norm ‖h‖W0 := supx,y |h(x, y)|/W0(x, y).

Then, we have,

Lemma 2.3.14.

For all θ ∈ R, the function Gθ belongs to the space LW0
∞ .

Proof. It is enough to show this for θ = 1. Indeed, by Assumption (A2), π is

bounded, so for some constant c > 0, we have |π(x)| ≤ c for all x ∈ R. If follows that

|G1(x, y)| ≤ c|y − x| for all x, y ∈ R. Since clearly |y − x| ≤ 1 + |x|+ |y|, then we obtain

that |G1(x, y)| ≤ c(1 + |x| + |y|), for all x, y ∈ R. Hence, taking the supremum over

(x, y) ∈ R2, we get supx,y |G1(x, y)|/W0(x, y) <∞; that is G1 ∈ LW0
∞ , as required, �
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

Next, consider the sequence of non-linear operators Γt : LW0
∞ → LV∞ defined as in [30],

by setting for all F ∈ LW0
∞ and all (x, y) ∈ R2,

Γt(F )(x, y) :=
1

t
log Ex,y

(
exp

( t∑
n=1

F (Φn)
))
. (2.31)

where Ex,y means that we have started the chain from Φ0 := (x, y) and we compute the

expectation accordingly. Then we get,

Proposition 2.3.15.

Let πt be any bounded Markovian strategy in the wealth Model I with λ({x : π(x) 6=
0}) > 0. Then there is an analytic function Λg(θ) := limt→∞

1
t

log E(X−1,X0)

(
eθ(V

π
t −V0)

)
,

defined for all θ ∈ R, such that the average sum (V π
t − V0)/t satisfies an LDP with good

convex rate function Λ∗g.

Proof. Proposition 3.6, [30] says, there exists a non-linear operator Γ : LW0
∞ → LV∞

such that the following uniform convergence holds over balls in LW0
∞ ,

sup
‖F−F0‖W0

≤δ
‖Γt(F )− Γ(F )‖V → 0 as t→∞,

for each F0 and each δ > 0. For every θ ∈ R, set F := Gθ = θg and F0 := 0. Since V π
t

depends on g, it follows that for all θ ∈ R, the limit

Λg(θ) := Γ(Gθ)(X−1, X0) = limt→∞
1
t

log E(X−1,X0)

(
exp

(∑t
n=1 θg(Φn)

))
= limt→∞

1
t

log E(X−1,X0)

(
eθ(V

π
t −V0)

)
,

(2.32)

exists in R. Moreover, by Proposition 4.3 (ii) in [30], Λg is an analytic function of θ.

Again from (ii) of Proposition 4.3, [30], we deduce the second-order Taylor expansion

about zero as, Λg(θ) = Λg(0)+θν(g)+ 1
2
θ2vg+O(θ3) for all θ ∈ R, where, ν is the invariant

measure of Φt in Corollary 2.3.11, the expectation ν(g) :=
∫

R2 g(x, y)ν(dx, dy) is finite,

and vg := limt→∞ Eν

∑t
n=1

(
g(Φn)− ν(g)

)2
is the asymptotic variance given in (37), p. 24

of [30].

As in Proposition 2.2.5, one may check that vg = 0 implies π(x) = 0 for λ-almost all

x, hence vg 6= 0 under our assumptions and hence Λg(θ) is essentially smooth.

So, applying Gärtner-Ellis Theorem 1.1.13, we conclude that (V π
t − V0)/t satisfies a

large deviations principle with good convex rate function Λ∗g. As we required, �

Remark 2.3.16.

Hence we obtain from the Taylor expansion above that, Λ′g(0) = ν(g). �

Next, we have the following useful result,
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

Proposition 2.3.17.

ν(g) is the unique minimizer of Λ∗g; and we have Λ∗g(x) > 0 for all x 6= ν(g).

Proof. Using (2.32), we see that Λg(0) = 0. And from the preceding remark, we

have Λ′g(0) = ν(g), so we get by Proposition 1.1.6 that Λ∗g(ν(g)) = ν(g)× 0− Λg(0) = 0.

On the other hand, we always have Λ∗g(x) ≥ 0 × x − Λg(0) = 0 for all x ∈ R. It follows

that ν(g) is a global minimum for Λ∗g. Since by Proposition 2.3.15, Λg is analytic, hence,

from Proposition 1.1.5, Λ∗g is strictly convex on its effective domain (which is, in fact, R).

Applying Proposition 1.1.2, we obtain that ν(g) is the only minimum for Λ∗g.

Finally, by unicity of ν(g), it is immediate that Λ∗g(x) > 0 for all x 6= ν(g), �

Before proceeding to the main result, recall the stock prices governed by equation (2.8)

in the form: Xt+1 −Xt = µ(Xt) + σ(Xt)εt+1 = σ(Xt)
(
µ(Xt)/σ(Xt) + εt+1

)
. Hence,

Definition 2.3.18.

The market price of risk for the stock prices Xt, is the function ρ(x) := µ(x)/σ(x),

defined for all x ∈ R.

Indeed, since µ(Xt) represents the average one-step return of the stock price while

σ(Xt) measures the one-step deviation of this stock price as driven by the random “noise”

εt, then ρ(Xt) represents the one-step return of the stock per unit volatility.

Next, let m := E(ε), recalling that ε is a random variable having the same distribition

as the εt’s. Then, as the final and key assumption to the ALA theorem, we suppose that

the market price of risk function ρ satisfies the following risk-condition below,

(RC): the set Rm := {x ∈ R | ρ(x) 6= −m} satisfies λ(Rm) > 0. (2.33)

We interpret the set Rm as representing all states of the stock prices Xt whose market

price of risk is different from the value m, the expectation of the driving noise εt. Then,

Lemma 2.3.19.

Suppose that the market price of risk function ρ satisties the risk-condition (RC) in

(2.33) above. Then there is a bounded Markovian strategy π0 such that,

ν(g) = E
(
π0(X̃0)(X̃1 − X̃0)

)
> 0, (2.34)

where (X̃0, X̃1) has distribution ν, the invariant probability measure of Φt.

Proof. Set R+
m := {x ∈ R | ρ(x) > −m}, R−m := {x ∈ R | ρ(x) < −m}. Since ν

is a probability measure on B(R2), then it is well known that, there is a pair of random

variables (X̃0, X̃1) on Ω, valued in R, and with distribution ν. Since g(x, y) = π(x)(y−x)
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Chapter 2. Asymptotic Linear Arbitrage in Markovian Financial Markets

for all (x, y) ∈ R2, and ν(g) =
∫

R2 g(x, y)ν(dx, dy) by definition (see Remark 2.3.16 i)), it

follows that ν(g) = E
(
π(X̃0)(X̃1 − X̃0)

)
.

Next, for all x ∈ R, we have

E
(
X̃1 | X̃0 = x

)
= E

(
x+ µ(x) + σ(x)ε0 | X̃0 = x

)
= x+ µ(x) + σ(x)E(ε0 | X̃0 = x)

= x+ µ(x) + σ(x)E(ε0)

= x+ σ(x)(ρ(x) +m).

with ε0 independent of X̃0 and of the same law as the εt. So, if x ∈ Rm, then, as σ > 0,

we have E(X̃1 | X̃0 = x) 6= x.

Consider now the bounded Markovian strategy π0(x) := 1R+
m

(x) − 1R−m , that is, we

invest all our money in the stock whenever its market price of risk remains above −m,

we sell the stock short when the market price of risk is below −m, otherwise we put

everything into the bank account. By Corollary 2.3.11, ν has a λ2-a.e. positive density

with respect to λ2, hence its X̃0-marginal, denoted by η, has a λ-a.e. positive density `(x).

Therefore,

ν(g) =
∫

R E
(
π0(x)(X̃1 − x) | X̃0 = x

)
η(dx)

=
∫
Rm

E
(
X̃1 − x | X̃0 = x

)
`(x)λ(dx)

=
∫
Rm

sgn(E
(
X̃1 − x | X̃0 = x

)
)E
(
X̃1 − x | X̃0 = x

)
`(x)λ(dx) > 0.

We conclude that ν(g) > 0, as required �

We finally derive the ALA result below,

Theorem 2.3.20.

Suppose that the market price of risk function ρ satisfies the risk-condition (RC) as

in (2.33).

Then the Markovian strategy π0 produces an ALA with GDP of failure; that is,

P
(
V π0

t ≥ V0 + ν(g)t/2
)
≥ 1− e−tΛ∗g(ν(g)/2) for large time t. (2.35)

Proof. Consider the Markovian strategy π0 above. Proposition 2.3.15 says that

(V π0

t −V0)/t satisfies an LDP with good rate function Λ∗g. By the lemma above ν(g) > 0,

by Proposition 2.3.17, ν(g) is the unique minimizer of Λ∗g, and by strict convexity, Λ∗g is

decreasing on (−∞, ν(g)]. Hence applying Gärtner-Ellis Theorem 1.1.13, we get,

lim sup
t→∞

1

t
log P

(V π0

t − V0

t
< ν(g)/2

)
≤ − inf

x∈(−∞,ν(g)/2]
Λ∗g(x) = −Λ∗g(ν(g)/2).

This clearly implies that P
(
V π0

t ≥ V0 + ν(g)t/2
)
≥ 1− e−tΛ∗g(ν(g)/2) for large time t.
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To complete the proof, it remains to check that Λ∗g(ν(g)/2) > 0, this follows again by

Proposition 2.3.17 since ν(g)/2 6= ν(g), �

Remark 2.3.21.

Compare to the previous ALA result, we observe in the theorem that the bounded

Markovian strategy producing the ALA is known explicitly; which is of economic interest

to investors.

Next, we end this section and hence this chapter by discussing a practical,

Example 2.3.22. The Ornstein-Uhlenbeck process.

Consider the (discrete-time) auto-regressive process AR(1),

Xt+1 = αXt + εt+1, for all time t ≥ 1, (2.36)

where |α| < 1, X0 are constants and εt are standard i.i.d normal N(0, 1).

Here, the drift and volatility functions are identified as µ(x) = (α− 1)x and σ(x) = 1,

for all x ∈ R, and are clearly measurable. Also, the market price of risk function is

ρ(x) = (α − 1)x. All the assumptions of the present section trivially hold. Here m = 0

and hence Rm = R \ {0}, obviously λ(Rm) > 0. It follows that there is ALA with GDP

of failure for this model of financial market.

One may construct other µ, σ which satisfy our conditions and hence the correspod-

ing models admit asymptotic linear arbitrage with geometrically decaying probability of

failure, �
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Chapter 3

Asymptotic Exponential Arbitrage

in Markovian Financial Markets

The results of this Chapter are directly inspired by those of [14] which were reviewed

in the Introduction. Now I’ll discuss a new concept of asymptotic exponential arbitrage

within a new wealth model (Model II) under two different sets of conditions. First,

keeping the conditions imposed on the process Xt in Subsection 2.3.1, we show existence of

asymptotic exponential arbitrage with GDP of failure in Model II. Next, under different

conditions (neither stronger, nor weaker than the preceding ones), using a suitable LDP

result in [32] we prove two more results on asymptotic exponential arbitrage, with no

GDP of failure and with GDP of failure respectively. Before that, we begin with,

3.1 Log-Markovian Modeling and Definition of AEA

We now consider a log-Markovian financial model for which, the stock prices evolution

is expressed in the exponential form

St := exp(Xt), for all time t ∈ N, (3.1)

that is, where

log(St) := Xt = Xt−1 + µ(Xt−1) + σ(Xt−1)εt (3.2)

is the discrete-time R-valued Markov chain evolving as in (2.8), and X0 is assumed to be

a constant. Hence it is then an adapted process on the probability space (Ω,F,F,P) of

Section 2.1, where F is the natural filtration of Xt. We consider again an accompanying

riskless bond normalized to Bt = 1 at all t. λ again denotes the Lebesgue measure on R
and P (x,A), with x ∈ R, A ∈ B(R), is the same one-step transition probability kernel of

the chain Xt.
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Chapter 3. Asymptotic Exponential Arbitrage in Markovian Financial Markets

We make some natural restrictions on trading that are absent in [14]. We assume

that investors are prohibited from short selling the stock and from borrowing from the

bank account. This means that at each time t, they invest a proportion πt ∈ [0, 1] of

their overall wealth into the stock while the rest remains in the bank account. Again, we

assume that the interest of the latter is set to zero.

Formally, trading strategies are now (Ft)t≥0-predictable [0, 1]-valued processes πt, t ≥ 1

(that is, πt is Ft−1-measurable). πt represents the proportion of wealth allocated to the

risky asset at time t. This has to be chosen before the price St is revealed, that’s why

predictability is imposed on the strategy. Again, due to the Markovian structure on Xt

and hence on St, we are mostly considering Markovian strategies; that is strategies where

πt = π(Xt−1) for all time t ≥ 1, for some measurable π : R→ [0, 1].

Next, given any such strategy πt, the corresponding wealth of an investor is therefore

modeled as a process V π
t obeying the dynamics,

Model II: V π
t = V π

t−1

(
(1− πt) + πt(St/St−1)

)
, for all time t ≥ 1, (3.3)

and V π
0 = V0 > 0 is an investor’s initial capital.

Then, similar to the introduction to asymptotic linear arbitrage (ALA) discussed in

Section 2.1, we define two types of asymptotic exponential arbitrage as below,

Definition 3.1.1.

A Markovian strategy πt is an asymptotic exponential arbitrage (AEA) in Model II if

there is a constant b > 0 such that, for all ε > 0, there is tε ∈ N satisfying

P(V π
t ≥ ebt) ≥ 1− ε, for all time t ≥ tε. (3.4)

We point out that Definition 3.1.1 is seemingly quite different from the conclusion of

Theorem 0.0.2 of [14] that we recalled in the thesis introduction. Indeed, AEA is about

the existence of a single trading strategy πt producing arbitrage in the long-run while

Theorem 0.0.2 (translated into our setting) gives for each ε and t > tε (possibly different)

πt(ε, t) satisfying both (3.4) and a geometrically decreasing (in t) loss bound on V π
t .

It turns out, however, that AEA implies this latter kind of arbitrage. Indeed,

Proposition 3.1.2.

If there is AEA in Model II, then for each ε > 0, there exist tε and trading strategies

πt(ε, t), t ≥ 1, t ≥ tε satisfying V
π(ε,t)
t ≥ V0 − e−bt/2 and

P(V
π(ε,t)
t ≥ ebt/2) ≥ 1− ε, for all time t ≥ tε. (3.5)
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Proof. We may and will assume V0 = 1 for the portfolio realizing AEA as well as for

the portfolio we are about to construct. Fix ε > 0, take πt and tε as in Definition 3.1.1,

fix also t ≥ tε and define recursively

π̃t :=
V π
t−1e

−bt/2πt
V π̃
t−1

, t ≥ 1.

One can check that V π̃
t = V π

t e
−bt/2 + 1 − e−bt/2, hence V π̃

t ≥ 1 − e−bt/2 indeed holds and

we also have

P(V π̃
t ≥ ebt/2) ≥ 1− ε, (3.6)

showing (3.5) for π(ε, t) := π̃, as required, �

Next, we have more importantly,

Definition 3.1.3.

We say that a Markovian strategy πt in Model II realizes an asymptotic exponential

arbitrage (AEA) with geometrically decaying probability (GDP ) of failure if there are

constants b > 0, and c > 0 such that,

P(V π
t ≥ ebt) ≥ 1− e−ct, for all time t ≥ 1. (3.7)

Similarly to Definition 2.1.2 on ALA, we interprete this by saying that, an investor

may achieve exponential growth of his/her wealth in the long-run while controlling at a

geometric rate the probability of failing to achieve this.

The main goal in this chapter is to prove existence of explicit AEA strategies in this

wealth model under two different sets of conditions on the modeling process Xt. First,

3.2 AEA Theorems under Previous µ, σ, ε -Conditions

In this section, we assume that the Markov chain Xt evolving as in (3.2) still satisfies

the conditions (A3), (A4), and (A5), imposed in Subsection 2.3.1. This implies that all

results we proved in that subsection under these assumptions are still valid here for the

two Markov chains Xt and Φt := (Xt−1, Xt). Our purpose here is to use these results,

combined again with those in [30], and apply the Gärtner-Ellis LDP theorem in order to

get a first AEA theorem in the Model II.

For that, we use the same technique as in Subsection 2.3.2 by observing that, for any

relative Markovian strategy πt, the wealth in Model II can be expressed in the form

V π
t = V0 exp

( t∑
n=1

f(Φn)
)

= V0 exp
(
t

∑t
n=1 f(Φn)

t

)
, (3.8)
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where the function f is defined as, f(x, y) := log
(
(1 − π(x)) + π(x) exp(y − x)

)
for

x, y ∈ R, and Φt = (Xt−1, Xt) is the preceding Markov chain starting at time zero,

assuming given two initial fixed constants X−1 and X0. Hence we need to show that the

sequence log(V π
t /V0) =

∑t
n=1 f(Φn) satisfies the conditions of Theorem 1.1.13 with any

strategy πt. To get this, it is sufficient to show that for all θ ∈ R, the limit Λf (θ) :=

limt→∞
1
t

log E(eθ
Pt
n=1 f(Φn)) exists and is analytic in θ.

We use again the recipe of Subsection 2.3.1 and the results of the article [30] as follows.

For all θ ∈ R, we observe that θ
∑t

n=1 f(Φn) =
∑t

n=1 Fθ(Φn) where Fθ := θf . We consider

again the two functions V (x, y) = W (x, y) := 1 + q(x2 + y2), x, y ∈ R, for the suitable

q > 0 as in Propositions 2.3.10 and 2.3.12 such that Condition (DV 3+) of [30] is satisfied.

And we also take again the function W0(x, y) := 1 + q(|x| + |y|), for x, y ∈ R, such that

(2.30) (Condition (6) of the same paper) is met. Hence, considering the same Banach

space
(
LW0
∞ , ‖ · ‖W0

)
as in Subsection 2.3.2, we get

Lemma 3.2.1.

For all θ ∈ R, the function Fθ belongs to the space LW0
∞ .

Proof. Similarly to Lemma 2.3.14, it is sufficient to show it for θ = 1. Indeed, for all

x, y ∈ R, since π(x) ∈ [0, 1], we have 1 − π(x) + π(x) exp(y − x) ≤ 1 + exp(y − x). It

follows that F1(x, y) ≤ |x|+ |y|+ 1.

On the other hand, for 0 ≤ a ≤ 1/2, we have 1 − a + a exp(y − x) ≥ 1/2. And for

a > 1/2, we have 1 − a + a exp(y − x) ≥ (1/2) exp(y − x). To sum up, we get that

F1(x, y) ≥ log(1/2)− |x| − |y|.
We conclude that |F1(x, y)| ≤ c(1 + |x| + |y|), for some constant c > 0. Taking the

supremum over all (x, y) ∈ R2, we get that sup(x,y) |F1(x, y)|/W0(x, y) < ∞, hence the

claim follows as required, �

Next, recalling the sequence of operators defined in (2.31), we obtain,

Proposition 3.2.2.

Let πt be a relative Markovian strategy in the wealth Model II such that λ({x : π(x) 6=
0}) > 0. Then, there is an analytic function Λf (θ) := limt→∞

1
t

log E(X−1,X0)

(
eθ

Pt
n=1 f(Φn)

)
,

for all θ ∈ R, such that the average sum 1
t

log(V π
t /V0) = 1

t

∑t
n=1 f(Φn) satisfies a large

deviations principle with good convex rate function Λ∗f .

Proof. Just like Proposition 2.3.15. �

Remark 3.2.3.

Similar to Remark 2.3.16, we get also from Proposition 4.3, [30] that, ν(f) < ∞ and

Λ′f (0) = ν(f), where ν is the invariant measure of the chain Φt in Corollary 2.3.11, �
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This leads to the following useful,

Proposition 3.2.4.

If λ({x : π(x) 6= 0}) > 0, then ν(f) is the unique minimizer of Λ∗f , and we have

Λ∗f (x) > 0 for all x 6= ν(f).

Proof. Similar to the proof of Proposition 2.3.17, �

Consider the function ρ as in Definition 2.3.18. This time it is more appropriate to call

it log-market price of risk function. As in our present setting no short-selling is allowed,

when ρ < −m there is no hope to realize profit. Hence we slightly modify the (RC)

condition in (2.33), and define

R+
m := {x ∈ R : ρ(x) > −m}. (3.9)

We say that (RC+) holds if λ(R+
m) > 0. We remark that this is the case wherever ρ is

lower semicontinuous and R+
m is nonempty. Hence,

Lemma 3.2.5.

If the log-market price of risk function ρ satisfies the risk-condition (RC+), then there

is a Markovian strategy π0 such that

ν(f) = E
(

log
(
(1− π0(X̃0)) + π0(X̃0) exp(X̃1 − X̃0)

))
> 0, (3.10)

where (X̃0, X̃1) has distribution ν, the invariant measure of Φt in Corollary 2.3.11.

Proof. Similar to the proof of Lemma 2.3.19, next, if x ∈ R+
m, then we easily obtain

that E(X̃1 | X̃0 = x) > x. Consider the explicitly defined relative Markovian strategy

π0(x) := 1R+
m

(x) for x ∈ R, consisting again of investing all current wealth in the stock

if the log-market price of risk for that stock is above −m, and putting everything in the

bank account otherwise. Then we get,

ν(f) =
∫

R E
(

log((1− π0(x)) + π0(x) exp(X1 − x)) | X0 = x
)
η(dx)

≥
∫
R+
m

E
(

log exp(X1 − x) | X0 = x
)
η(dx)

=
∫
R+
m

E
(
X1 − x | X0 = x

)
`(x)λ(dx) > 0,

(3.11)

where η and ` are as in the proof of Lemma 2.3.19, as we required, �

Given this lemma, we derive the AEA with GDP result as below,

Theorem 3.2.6.

Suppose that the log-market price of risk function ρ satisfies the risk-condition (RC+).

Then the Markovian strategy π0
t produces an AEA with GDP of failure, indeed,

P
(
V π0

t ≥ elog(V0)+ν(f)t/2
)
≥ 1− e−tΛ∗(ν(f)/2) for large time t. (3.12)
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Proof. By Proposition 3.2.2, the sequence 1
t

log(V π0

t /V0) satisfies a large deviations

principle with good rate function Λ∗f . Since ν(f) > 0 by the lemma above, ν(f) is the

unique minimizer of Λ∗f by Proposition 3.2.4, and by strict convexity Λ∗f is decreasing on

(−∞, ν(f)], then Gärtner-Ellis Theorem 1.1.13 implies that,

lim sup
t→∞

1

t
log P

(Σt

t
< ν(f)/2

)
≤ − inf

{x∈(−∞,ν(f)/2]}
Λ∗(x) = −Λ∗(ν(f)/2).

On the other hand, ν(f)/2 6= ν(f), implies by Proposition 3.2.4 that Λ∗f (ν(f)/2) > 0.

Hence, we conclude from all these that the inequality,

P
(
V π0

t ≥ elog(V0)+ν(f)t/2
)
≥ 1− e−tΛ∗(ν(f)/2), for large time t,

achieving the proof, as required, �

This gives below the precise analogue of Theorem 0.0.2 in the present context,

Corollary 3.2.7.

Under the conditions of Theorem 3.2.6, for all ε > 0, there exist b > 0, tε ∈ N such

that for all t ≥ tε there are trading strategies πt(ε, t), t ≥ 1 satisfying V
π(ε,t)
t ≥ V0 − e−bt/2

and

P(V
π(ε,t)
t ≥ ebt/2) ≥ 1− ε. (3.13)

Proof. This is clear from Proposition 3.1.2, �

3.3 AEA Theorems under Different µ, σ, ε -Conditions

This section is based on our works in [35] submitted recently. Our purpose is to

establish AEA (respectively, AEA with GDP of failure), using techiniques different from

the ergodic results in [30], that we handled in Chapter 2 and Section 3.2 of the present

chapter. For that, we keep wealth Model II of the preceding section, but we modify the

conditions on µ, σ and ε there by assuming, instead of A3, A4, A5, that,

(B1) The drift and the volatility are bounded and the latter is nonzero; that is,

∃N,M ∈ R : |µ(x)| < N and 0 < σ(x) < M for all x ∈ R. (3.14)

(B2) The εt’s, still i.i.d. with the same law as an R-valued random variable ε, are

assumed independent of Xt and have in absolute value all exponential moments; that is,

for all time t and for all κ ∈ R, E(eκ|ε|) <∞. (3.15)
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Next, given any strategy πt in the Model II, recall the corresponding wealth of an

investor expressed in (3.8) as,

V π
t = V0 exp

( t∑
n=1

log
(
(1− πn + πne

Xn−Xn−1
))
, for all time t ≥ 1. (3.16)

Again, we will mostly deal with Markovian strategies πt := π(Xt−1) for some measur-

able π : R→ [0, 1].

Then, we display the new investigating technique as follows. For a fixed x ∈ R, set

Y := x + µ(x) + σ(x)ε, that is, at each one-step period of time, the random variable

Y plays the role of the log-price of stock Xt in (3.1) conditional to Xt−1 = x. Hence

any Markovian strategy π(Xt−1) in this model becomes π(x) at that time t. Since x is

assumed fixed, then for simplicity we omit for the moment the dependence of π on x and

we use π to denote the number π(x) running over the interval [0, 1].

Next, we discuss the behavior of the function vx(π) := E log
(
1 − π + π exp(Y − x)

)
through its random integrand Lx(π) := log

(
1−π+π exp(Y −x)

)
for π ∈ [0, 1]. For that,

since Lx is clearly twice almost surely differentiable, we have for all π ∈ [0, 1],

L′x(π) =
−1 + eY−x

1− π + πeY−x
and L′′x(π) =

−
(
eY−x − 1

)2(
1− π + πeY−x

)2 . (3.17)

Hence we obtain first,

Proposition 3.3.1.

There are measurable functions J1 and J2 such that,

max
π
|L′x(π)| < J1 and max

π
|L′′x(π)| < J2 a.s., with E(Ji) =: Di <∞, i = 1, 2.

Proof. We have |L′x(π)| ≤ |eY−x−1|
1/2

if π < 1/2 and |L′x(π)| ≤ |eY−x−1|
1
2
eY−x

for π ≥ 1/2.

It follows that |L′x(π)| ≤ 2 max{ex−Y , eY−x} + 1 a.s., for all π ∈ [0, 1]. Since we have

E(e±(Y−x)) = E(e±(µ(x)+σ(x)ε)) < ∞ by assumptions (B1) and (B2), then if follows by

setting J1 := 2 max{ex−Y , eY−x}+ 2, that maxπ |L′x(π)| < J1 a.s. with EJ1 <∞.

Similarly, because |L′′x(π)| = |L′x(π)|2 ≤ (2 max{ex−Y , eY−x}+ 1)2 for all π ∈ [0, 1], we

also get maxπ |L′′x(π)| < (2 max{ex−Y , eY−x}+ 1)2 + 1 =: J2 a.s. Moreover we clearly have

EJ2 <∞ again by assumptions (3.14) and (3.15). This completes the proof, �

An immediate consequence of this proposition is,

Corollary 3.3.2.

The derivatives v′x(π) = EL′x(π) and v′′x(π) = EL′′x(π) exist for all π ∈ [0, 1].
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Proof. Let π ∈ [0, 1], then by Lagrange Mean Value Theorem, for each small h > 0,

there is ξ(h) ∈ (π, π + h) such that Lx(π+h)−Lx(π)
h

= L′x(ξ(h)). This implies by the almost

sure differentiability of Lx that Lx(π+h)−Lx(π)
h

→ L′x(π) a.s. as h→ 0.

On the other hand we have |Lx(π+h)−Lx(π)
h

| = |L′x(ξ(h))| ≤ J1 which is integrable by

Proposition 3.3.1. It follows by Lebesgue Dominated Convergence Theorem that,

vx(π + h)− vx(π)

h
= E

(Lx(π + h)− Lx(π)

h

)
→ EL′x(π) as h→ 0.

Hence vx is differentiable and v′x(π) = EL′x(π) for all π ∈ [0, 1].

Similar arguments also give the existence of the second derivative, as required �

Next, the key quantity for our asymptotic exponential arbitrage investigation is the

function

r(x) := v′x(0) = E
(
eY−x − 1

)
= E

(
eµ(x)+σ(x)ε − 1

)
for all x ∈ R, (3.18)

which is clearly measurable (even continuous) in x.

Remark 3.3.3.

i) The function r has the following economic interpretation. When the current log-

price of the stock is Xt = x, then the expected value of the return on one unit of stock (at

the next time step) is E(St+1/St) = E
(
eY−x

)
= E

(
eµ(x)+σ(x)ε

)
. Recalling that the price of

the risk-free bond (or bank account) is assumed to be 1 all the time and thus has constant

1 expected rate of return. Hence r(x) shows how much the (one-step) future return on

one unit of stock exceeds the return on one unit of bond when the current log-price is x.

Therefore, a natural investment strategy consists in buying stock at time t only if

r(Xt) > 0; that is, if the expected return of the stock is better than that of the bond.

ii) Moreover, by Jensen’s inequiality, for x ∈ R, then r(x) ≥ eσ(x)(ρ(x)+m) − 1, where

m = Eε and ρ = µ/σ is the log-market price of risk as in the preceding section. Hence,

since σ > 0, a sufficient condition to have r(Xt) > 0 is that, ρ(Xt) > −m; that is the

log-price Xt of the stock belong to the “risk-condition” set R+
m defined in (3.9).

So, this remark shows that, it is reasonable and natural to investigate AEA with GDP

of failure in the wealth Model II, tracking the condition that r(Xt) > 0 for some stock

prices Xt. For this purpose, we state first the following,

Lemma 3.3.4.

There is a measurable function s : R→ R such that, for any x ∈ R, if r(x) > 0, then

vx(s(x)) ≥ r2(x)/4D, where D := D2 = EJ2 as in Proposition 3.3.1.

Proof. Define s(x) := max{0, r(x)/2D}, for all x ∈ R. s is clearly measurable. We

notice that r(x) ≤ D, thus s(x) ≤ 1/2. Next, let x ∈ R such that r(x) > 0, then, by
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Proposition 3.3.1, we have |v′′x(π)| ≤ D for all π ∈ [0, 1]. It follows by the Mean Value

Theorem that for all y ∈ [0, 1], we have |v′x(y)− v′x(0)| ≤ Dy. Since v′x(0) = r(x) > 0, we

get v′x(y) ≥ r(x)/2 for all y ∈ [0, s(x)]. Furthermore, for all a > 0, we have vx(a) = vx(0)+∫ a
0
v′x(y)dy. So, noting vx(0) = 0, we conclude that vx(s(x)) ≥ s(x)r(x)/2 ≥ r2(x)/4D,

showing the lemma, �

Next, consider the natural filtration Ft := σ(Xs, s ≤ t), t ≥ 0, of the log-stock prices

process Xt. From (3.3), the following equality holds, for all time t ≥ 1,

1

t
log V π

t =
1

t
log V0 +

1

t

t∑
i=1

log
(
1− π(Xi−1) + π(Xi−1)eXi−Xi−1

)
=

1

t
log V0 +

1

t

t∑
i=1

Mi +
1

t

t∑
i=1

E
(

log
(
1− π(Xi−1) + π(Xi−1)eXi−Xi−1

)
|Fi−1

)
, (3.19)

whereMi := log
(
1−π(Xi−1)+π(Xi−1)eXi−Xi−1

)
−E
(

log
(
1−π(Xi−1)+π(Xi−1)eXi−Xi−1

)
|Fi−1

)
.

From this, we get,

Proposition 3.3.5.

For every relative Markovian strategy πt in the wealth Model II,

i) The process Mt is a martingale difference with respect to the filtration Ft.

ii) And the average sequence
∑t

i=1 Mi/t is a martingale converging to 0 almost surely.

Proof. i) is straightforward from the Tower Property of Conditional Expection and

using Definition 1.1.14.

For ii), using Theorem 1.1.17, it remains to show that there is a constant K <∞ such

that EM2
t ≤ K, for all time t ≥ 1. By the tower property of Conditional Expection, it is

enough to show that E(M2
t |Ft−1) ≤ K a.s. for all t ≥ 1. For that, set Bt := E(At|Ft−1),

where At := log
(
1−π(Xt−1)+π(Xt−1)eXt−Xt−1

)
. Since (a−b)2 ≤ 2(a2+b2) for all a, b ∈ R,

then we have E(M2
t |Ft−1) ≤ 2E(A2

t |Ft−1)+2E(B2
t |Ft−1). By Jensen Inequality and Tower

Property, we have E(B2
t |Ft−1) ≤ E

(
E(A2

t |Ft−1)|Ft−1

)
= E(A2

t |Ft−1). This implies that

E(M2
t |Ft−1) ≤ 4E(A2

t |Ft−1).

Now, similarly to the proof of Lemma 3.2.1, since π(Xt−1) ∈ [0, 1], then we have

min{1

2
eXt−Xt−1 , 1/2} ≤ At ≤ 1 + eXt−Xt−1 .

Noting that Xt − Xt−1 = µ(Xt−1) + σ(Xt−1)ε, hence |At| ≤ c|µ(Xt−1) + σ(Xt−1)ε| + 1

for some constant c > 0. This implies by (3.14) in Assumption (B1) that, for some

constants K1, K2, we have |At| ≤ K1 +K2|ε|. And since K1 +K2|ε| ≤ eK1+K2|ε|, we get by

Assumption (B2) that E(A2
t |Ft−1) ≤ K3 a.s. for some constant K3 < ∞. And the result

follows from this, as required, �
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We resume the dependence notation of π on the variable x or on Xt−1 at each time t.

Then in vertue of Remark 3.3.3 and Lemma 3.3.4, consider now the relative Markovian

strategy

πa(Xt−1) := s(Xt−1), defined for all time t ≥ 1. (3.20)

Next, we assume that the function r satisfies the following estimate,

∃ c > 0 such that lim
t→∞

P
(1

t

t∑
i=1

r2(Xi−1)1{r(Xi−1>0} < c
)

= 0, (3.21)

which will be regarded in Remark 3.3.10 as a discrete-time analogue of the market price

of risk estimate recalled in (2), in the thesis introduction. Hence we obtain the following

first result,

Theorem 3.3.6.

Suppose that r satisfies the estimate (3.21), and consider the trading strategy πa above.

Then there is a constant b > 0, such that for all ε > 0, there is a time Tε > 0 satisfying,

P(V πa

t ≥ ebt) ≥ 1− ε, for all time t ≥ Tε, (3.22)

that is, there is AEA.

Proof. The proof goes technically as follows. In the equality (3.19), the first term
1
t

log V0 goes to 0 as t→∞. By Proposition 3.3.5, the second term 1
t

∑t
i=1 Mi converges

to 0 almost surely, hence in probability; that is, for all ε > 0,

lim
t→∞

P
(∣∣1
t

t∑
i=1

Mi

∣∣ ≥ ε
)

= 0, and so lim
t→∞

P
(1

t

t∑
i=1

Mi ≥ ε
)

= 0. (3.23)

Next, the estimate the third term in (3.19) as below. Using Lemma 3.3.4 and the Markov

property of the log-stock prices process Xt, we have for all i = 1, ...t,

E
(

log(1− πa(Xi−1) + πa(Xi−1)eXi−Xi−1)|Fi−1

)
=

E
(

log(1− πa(Xi−1) + πa(Xi−1)eXi−Xi−1)|Xi−1

)
= vXi−1

(πai )

≥ r2(Xi−1)
4C

1{r(Xi−1)>0},

(3.24)

applying Lemma 3.3.4. Hence,

1

t

t∑
i=1

E
(

log(1−πa(Xi−1)+πa(Xi−1)eXi−Xi−1)|Fi−1

)
≥ 1

t

t∑
i=1

r2(Xi−1)

4D
1{r(Xi−1)>0}, (3.25)

51



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 3. Asymptotic Exponential Arbitrage in Markovian Financial Markets

for all time t ≥ 1. Using (3.23) and recalling limt→∞
1
t

log V0 = 0, this implies by the

estimate (3.21) that,

lim
t→∞

P
(1

t
log V πa

t ≥
c

4D

)
= 1.

Taking b := c/4D, the result follows, as required, �

Example 3.3.7.

When ε ∼ N(0, 1); the standard normal random variable, we have

r(x) = eµ(x)+
σ2(x)

2 − 1 ≥ µ(x) +
σ2(x)

2

whenever this latter is ≥ 0 (using eu ≥ 1 + u for u ≥ 0). It follows that if for some c > 0

lim
T→∞

P

(
1

T

T∑
i=1

(
µ(Xi−1) +

σ2(Xi−1)

2

)2

1
{µ(Xi−1)+

σ2(Xi−1)

2
>0}

< c

)
= 0, (3.26)

one has AEA.

Further, we sharpen this case in the result below,

Theorem 3.3.8.

Assume the conditions on µ, σ, namely σ > 0, and assume ε is standard Gaussian. If

for some c > 0,

lim
T→∞

P

(
1

T

T∑
i=1

(
µ(Xi−1)

σ(Xi−1)
+
σ(Xi−1)

2

)2

1
{µ(Xi−1)

σ(Xi−1)
+
σ(Xi−1)

2
>0}

< c

)
= 0. (3.27)

Then there is AEA.

Note that, as σ is bounded, (3.27) is a weaker condition than (3.26).

Lemma 3.3.9.

If ε1 is standard Gaussian then |u′′x(π)| ≤ Gσ2(x) for some G > 0, for all x ∈ R and

for all 0 ≤ π ≤ 1/2.

Proof. For 0 ≤ π ≤ 1/2 we have |u′′x(π)| ≤ 4E[eµ(x)+σ(x)ε1 − 1]2, as directly verifiable.

One can compute

E[eµ(x)+σ(x)ε − 1]2 = e2µ(x)+2σ2(x) − 2eµ(x)+σ2(x)/2 + 1 =

(e2µ(x)+2σ2(x) − 1)− 2(eµ(x)+σ2(x)/2 − 1).
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Fix 0 ≤ m ≤ 2K where K is a bound for both |µ(x)| and |σ(x)|. We consider a

Taylor-expansion of em+s − 1 in 0 ≤ s < 1:

em+s − 1 = m+ s+R(s)

where the remainder term R(s) satisfies

|R(s)| ≤ s2

2
sup

0≤t≤1
em+t.

Hence

|R(s)| ≤ V s2 ≤ V s,

for some constant V := (1/2)e2K+1 <∞ and for 0 ≤ s < 1.

It follows that for 0 ≤ σ(x) < 1,

E[eµ(x)+σ(x)ε − 1]2 ≤ |2µ(x) + 2σ2(x)− 2(µ(x) + σ2(x)/2)|+ V σ2(x) = σ2(x) + V σ2(x).

If σ(x) ≥ 1 then

E[eµ(x)+σ(x)ε − 1]2 ≤ E[eK+K|ε| + 1]2 =: H <∞

by (B2). Obviously, H ≤ Hσ2(x) for σ(x) ≥ 1.

It follows that, for all x,

E[eµ(x)+σ(x)ε − 1]2 ≤ max{1 + V,H}σ2(x),

showing the Lemma.

Proof (of Theorem 3.3.8). Using Lemma 3.3.9 we may repeat the same proof as for

Theorem 3.3.6, but defining s(x) := min{max{r(x)/(2Gσ2(x)), 0}, 1/2}. We get that

lim
T→∞

P

(
1

T

T∑
i=1

r2(Xi−1)

σ2(Xi−1)
1{r(Xi−1)>0} < c

)
= 0

for some c > 0 implies AEA. As

r(x) ≥ µ(x) +
σ2(x)

2

whenever r(x) ≥ 0, so (3.27) indeed implies AEA and we may conclude, �

Remark 3.3.10.

Let us summarize what we have discussed so far in the present section. We should

compare Theorem 3.3.8 to the results of [14] that we recalled in the introduction, in

particular to Theorem 0.0.2. First notice in Theorem 3.3.8 that, the particular estimate
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(3.27) may be regarded as a discrete-time analogue of (2). Next, since Brownian mo-

tion has Gaussian increments, when ε is Gaussian, (3.2) can be regarded as a standard

discretization of the stochastic differential equation for logSt where St is positive and

satisfies (1).

To make a reasonable comparison we should consider a typical case of (1), where

St = exp(Xt), t ∈ [0,∞) for some Xt satisfying

dXt = µ(Xt)dt+ σ(Xt)dWt.

Ito’s formula gives us

dSt = Stµ(logSt)dt+ Stσ(logSt)dWt +
1

2
Stσ

2(logSt)dt.

From this we get that the market price of risk is

φ(St) =
µ(logSt)

σ(logSt)
+
σ(logSt)

2
.

We can write φ as a function of Xt and get

φ(Xt) =
µ(Xt)

σ(Xt)
+
σ(Xt)

2
,

hence market price of risk estimate (2) takes the form:

lim
T→∞

P

(
1

T

∫ T

0

(
µ(Xt)

σ(Xt)
+
σ(Xt)

2

)2

dt < c

)
= 0. (3.28)

Now the analogy with (3.27) is straightforward, we only need to account for the indi-

cators 1
{µ(Xi−1)

σ(Xi−1)
+
σ(Xi−1)

2
>0}

; which comes from the prohibition of short-selling, �

Further, in the statement of the AEA Theorem 3.3.6 and its special case Theorem

3.3.8, there is no relationship between ε and the time t, an investor using the trading

strategy πat may wait very long before reaching the time threshold tε from which s/he

may then perform an exponential growth in his/her wealth. And s/he cannot control

efficiently the probability of failing to perform such a wealth growth. Hence, we seek in

the present µ, σ, ε-conditions, a new AEA result where the probability of failing to produce

such an exponential growth in the wealth depends on time t and decays geometrically fast

to 0; that is, as in Theorem 3.2.6 of the preceding section.

In order to achieve this goal, we construct our own large deviations estimate by as-

suming that,

∃ c1 > 0, c2 > 0 : lim sup
t→∞

1

t
log
(
P
(1

t

t∑
i=1

r2(Xi−1)1{r(Xi−1)>0} < c1

))
< −c2. (3.29)

Then we obtain the required main result below,
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Theorem 3.3.11.

If the function r satisfied the LDP estimate (3.29) above, then the Markovian strategy

πat generates in the wealth Model II an AEA with GDP of failure.

Proof. We use a different technique by applying an LDP result for martingale differ-

ences in [32] as follows. Reconsider the martingale difference Mt = At+E(At|Ft−1) where

At := log
(
1 − π(Xt−1) + π(Xt−1)eXt−Xt−1

)
as in the proof of Proposition 3.3.5. And let

us show that there is a constant K < 0 such that E(e|Mt||Ft−1) ≤ K a.s. for all t ≥ 1.

Indeed, we have

E(eMt|Ft−1) = E(eAt−E(At|Ft−1)|Ft−1)

= e−E(At|Ft−1)E(eAt |Ft−1) by Ft−1-measurability

≤ E(e−At |Ft−1)E(eAt |Ft−1) by Jensen Inequality

≤ E(e|At||Ft−1)E(e|At||Ft−1)

=
(
E(e|At||Ft−1)

)2

=
(
E(e|At||Xt−1

)2
by Markov Property.

In that proof of Proposition 3.3.5, we obtained that |At| ≤ K1 +K2ε for constants K1, K2.

It follows by Assumption (B2) that E(e|At||Xt−1

)
< ∞ a.s, hence E(eMt |Ft−1) < ∞ a.s.

Similarly, we also get E(e−Mt |Ft−1) < ∞ a.s. Hence we have E(e|Mt||Ft−1) ≤ K a.s. for

some constant K <∞. It follows by Theorem 1.1 in [32] that, for some constant c3 > 0,

we have

P
(∣∣∣∑t

i=1 Mi

t

∣∣∣ ≥ c1

4D

)
≤ e−c3t, for large time t. (3.30)

Using the LDP estimate (3.29) and again the inequality (3.24), then setting c := min{c2, c3}
and b := c1/4D, we obtain from (3.19) and by (3.30) above that,

lim sup
t→∞

1

t
log P

(1

t
log V πa

t −
1

t
log V0 ≤ b

)
≤ −c. (3.31)

Hence,

P
(
V πa

t ≥ elog V0+bt
)
≥ 1− ect, for large time t; (3.32)

which shows that the trading strategy πat yields an AEA with GDP of failure, �

Next, we now give easily verifiable sufficient conditions for (3.29).

Theorem 3.3.12.

In addition to conditions (B1) and (B2), let us assume that the law of ε is absolutely

continuous with respect to the Lebesgue measure with a density γ(u), u ∈ R that is bounded

away from 0 on compacts. Assume further again that σ(x) is bounded away from 0 on
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compacts and {x ∈ R : r(x) > 0} has positive Lebesgue-measure. If there is a measurable

function V : R→ [1,∞) such that for all x ∈ R,

E[V (X1)|X0 = x] ≤ (1− δ)V (x)1{x/∈C} + b1{x∈Γ} (3.33)

for a bounded interval C := [c, d], c < d and for some 0 < δ < 1, b > 0,

then (3.29) holds true and hence there is AEA with GDP of failure.

Lemma 3.3.13.

Under the conditions of Theorem 3.3.12, the Markov chain Xt is λ-irreducible and

aperiodic; intervals [c, d] with c < d are small sets and Xt is geometrically ergodic.

Proof. Irreducibility and aperiodicity follows just like in Chapter 2 together with the

fact that compact sets are small. The drift condition (3.33) implies geometric ergodicity,

see Theorem 1.2.19, since C is a small set. �

Proof. (of Theorem 3.3.12). One can show as in Corollary 2.3.11 that the chain Xt

also has an invariant probability measure ν1 ∼ λ. Define F (u) := r2(u)1{r(u)>0}, this is

bounded and measurable. Then ν1 ∼ λ implies that z =
∫

R F (u)ν1(du) > 0. The chain

Xt is Lebesgue-irreducible, aperiodic and geometrically ergodic by Lemma 3.3.13 above.

One may always assume that
∫

R V
2(x)ν1(dx) <∞, see Theorem 14.0.1 and Lemma 15.2.9

of [36]. Hence

v2 := lim
t→∞

1

t
var[F (X0) + . . .+ F (Xt−1)]

is well defined, see p. 317 of [29]. If v2 = 0 then (i) of Proposition 2.4 in [29] shows that

F is Lebesgue a.s. constant. In this case Theorem 3.3.12 follows trivially. Hence we may

and will assume v2 > 0.

Theorem 4.1 and P4 on page 343 from [29] show that there is θ > 0 and an analytic

function Λ(α), α ∈ (z − θ, z + θ). such that

lim
t→∞

1

t
ln Eeα(F (X0)+...+F (Xt−1)) = Λ(α)

and Λ′′(α) = ρ2 > 0. We may assume that θ is so small that Λ′′(α) > 0 for α ∈ (z−θ, z+θ),

hence I(β) := (Λ′)−1(β) is well-defined for β ∈ (Λ′(z − θ),Λ′(z + θ)) =: (b, b). Then the

Legendre-transform

Λ∗(β) := sup
α∈(z−θ,z+θ)

[βα− Λ(α)]

can be written as Λ∗(β) = βI(β) − Λ(I(β)) for β ∈ (b, b) and one may check that

(Λ∗)′′(β) = 1/Λ′′(I(β)) > 0 for β ∈ (b, b) showing the strict convexity of Λ∗. As easily

seen, Λ∗(β) ≥ 0 for all β ∈ (b, b) and Λ∗(z) = 0 hence for all κ ∈ (z − θ, z), Λ∗(κ) > 0.
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Chapter 3. Asymptotic Exponential Arbitrage in Markovian Financial Markets

Theorem 4.1 of [29] and the Gärtner-Ellis Theorem 1.1.13 guarantee that the following

large deviation principle holds:

P
(∑t

i=1 F (Xi−1)

t
< κ

)
≤ ce−tΛ

∗(κ),

for some c > 0. This shows that (3.29) holds true and then Theorem 3.3.11 allows us to

conclude, �

We end this chapter by showing that the log-stock prices process Xt satisfies (3.33)

provided that the drift µ(x) is “mean-reverting enough”. Indeed,

Proposition 3.3.14.

If there are constants N+, N− > 0 such that

µ(x) ≤ −M for x ≥ N+ and µ(x) ≥M for x ≤ −N−,

then there exists M > 0, depending on σ, ε1 such that Xt satisfies (3.33).

Proof. Let Kσ, Kµ denote bounds for |σ|, |µ|, respectively. Let us take the Lyapunov

function V (x) := e|x| and note

E[V (X1)|X0 = x] ≤ e|x+µ(x)|L1 = ex+µ(x)L1

for x ≥ Kµ with L1 := EeKσ |ε1|. Similarly,

E[V (X1)|X0 = x] ≥ e|x+µ(x)|L2 = ex+µ(x)L2

for x ≤ −Kµ with L2 = Ee−Kσ |ε1|. Let M := 1 + max{lnL2,− lnL1}, take N−, N+ as in

the hypothesis. Define

C := [min{−N−,−Kµ},max{N+, Kµ}].

We can see that for x /∈ C,

E[V (X1)|X0 = x] ≤ (1− δ)V (x)

for some δ > 0. It is clear that for all x ∈ C,

E[V (X1)|X0 = x] ≤ c

for a suitable c > 0, hence (3.33) holds, as required, �

We remark that the condition of the above Proposition is much weaker than (A4) (ii)

of the previous Chapter. This shows that, though we put more stringent conditions on µ, σ

in the present section than in section 3.2, in exchange we may relax the mean-reverting

condition imposed there.
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Chapter 4

Utility-Based AEA Strategies in

Discrete -Time Financial Markets

In this last chapter, after reviewing the concept of expected utility, I discuss the link

between the previously constructed AEA strategies and the corresponding expected utility

performance in the long-run for suitable subclass of investors’ utility functions. Indeed,

4.1 Introductory Review of Expected Utility

In economic theory agents are assumed to act according to their preferences. Prefer-

ences express agents’ attitude towards risk. One way of representing these preferences in

a quantitative way is to use utility functions. Such a utility U is defined on (a subinterval

of) the real line and U(x) is interpreted as the subjective value of holding x dollars for the

given agent. In other words, U(x) expresses a level of satisfaction for an agent holding x

dollars in an investement.

The most widely used utility functions go back to von Neumann and Morgenstern,

these are the ones we are dealing with here. Formally, as discussed in the textbook [13],

we have,

Definition 4.1.1.

A function U : (0,∞) → R is called a utility function if it is strictly increasing and

strictly concave.

As one can see fron from Theorem 10.1 of [46], concave functions are contituous.

We interpret this definition as follows. Utility functions are assumed increasing because

investors usually prefer more money than less. Let us assume that an agent pursues

strategy πt (in the wealth model II from Chapter 3). The concavity of U expresses the
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Chapter 4. Utility-Based AEA Strategies in Discrete -Time Financial Markets

fact that investors are “risk-averse”; that is, by Jensen’s inequality, U(EV π
t ) ≥ EU(V π

t ).

This means that their satisfaction U(EV π
t ) from the deterministic amount EV π

t (their

expected future wealth) is higher than the expected value EU(V π
t ) of their satisfaction

from the (uncertain) random amount V π
t . Hence they assume a risk-averse attitude, by

preferring, in a certain sense, deterministic to the uncertain. Another interpretation of

concavity is that U ′(x) expresses how a “small” amount added to x increases the agent’s

satisfaction and that this increases as x decreases; that is, the investor becomes more and

more sensitive to losses. This again corresponds to a risk-averse behaviour.

Let a risk averse investor with initial capital V0 = x ∈ R express her/his preference

over a risky investment in the market in term of a utility criterion U . Then,

Definition 4.1.2.

An optimal investment problem or utility maximization problem for this investor on a

finite time horizon [0, T ] consists of finding an optimal strategy (π∗t )0≤t≤T that maximizes

the expected utility EU(V πt
T ) of her/his terminal wealth over all strategies admissible in

some sense; that is, s/he seeks both the maximal expected utility,

u(x) = sup
πt

ExU(V πt
T ), (4.1)

and a trading strategy (π∗t )
∗
0≤t≤T such that u(x) = EU(V

π∗t
T ) for all initial capital x ∈ R.

Under appropriate settings finite horizon optimal investment problems are well dis-

cussed in the literature, see for intance [44]. This study depends more on the choice of

the risk-aversion utility function.

As presented in [13], there are two important classes of risk aversion utility functions.

The class of Constant Absolute Risk Aversion (CARA) utilities U(x) := 1− e−αx, x ∈ R,

with α > 0, defined on the whole real line and the class of Hyperbolic Absolute Risk

Aversion (HARA) utilities U(x) = log x, U(x) = xα, with 0 < α < 1, and U(x) = −xα,

with α < 0, for all x ∈ (0,∞). We concentrate on these latter. α is a risk-aversion

parameter here; the larger −α is, the more afraid the agents become of losses.

In this last chapter, we do not intend to solve the utility maximization problem (4.1),

but instead, we analyse the relationship between asymptotic exponential arbitrage dis-

cussed in the previous wealth Model II and utility maximization problems (4.1). More

precisely, using asymptotic exponential arbitrage strategies, will the expected utility of

the investor tend to U(∞) (the maximal utilty, which can be finite or ∞)? How fast this

convergence will take place?

Finally, there is another related question: investors are thought to trade in such a way

that they maximize their expected utility on the given trading period [0, T ]. Pursuing
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Chapter 4. Utility-Based AEA Strategies in Discrete -Time Financial Markets

such a trading strategy, will they have asymptotic exponential arbitrage in the sense of the

previous chapter (that is, AEA or AEA with GDP of failure )? In the main section below,

we provide some answers to theses questions for the above subclass of power utilities and

under suitable assumptions.

4.2 AEA versus HARA Expected Utility

As the unique main section of this chapter, we consider trading in the wealth Model II

of Chapter 3. All modeling objets, the log-stock prices process Xt, Markovian strategies

πt and the corresponding wealth process V π
t are still assumed relative to the same filtered

probability space (Ω,F,F,P) of the preceding chapters.

Next, condider first the subclass of power utility functions U(x) := xα, with 0 < α < 1,

for x ∈ (0,∞). Then we derive the following result,

Proposition 4.2.1.

If a trading strategy πt realizes an AEA as in Definition 3.1.1, in the wealth Model

II, then there is a constant b > 0 such that,

EU(V π
t ) ≥ eαbt, for large enough time t; (4.2)

that is, the expected utility of the corresponding wealth grows exponentially fast.

Proof. By definition, there are constants b > 0 and t0 such that P(V π
t ≥ ea+bt) ≥ 1/2

for t ≥ t0.

We have EU(V π
t ) ≥ EU(ebt)1{V πt ≥ebt} = U(ebt)P(V π

t ≥ ebt) ≥ (1/2)eαbt ≥ eαb
′t for any

b′ < b and for large time t. Hence we have an exponential growth in the expected utility,

as we required, �

More generally, if we do not stick to having a convergence rate, consider the following

larger class of utility functions U : (0,∞) → R satisfying U(0) := limx→ 0 U(x) is finite.

Then one may prove the following easy statement for AEA strategies,

Proposition 4.2.2.

If a trading strategy πt is an AEA in the wealth Model II in the sense of Definition

3.1.1, then

EU(V π
t )→ U(∞), as t→∞; (4.3)

meaning that, the expected utility of the corresponding wealth converges to the maximal

utility.
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Proof. If (4.3) did not hold, there would be a subsequence such that V π
tk
→∞ almost

surely, k →∞ and limk→∞ EU(V π
tk

)→ G < U(∞). This would contradict Fatou Lemma,

since U(V π
tk

) ≥ U(0) > −∞ and hence lim infk→∞ EU(V π
tk

) ≥ U(∞). Hence the result

follows, as required, �

Consider now that investor trading in the Model II choosing their utility in the the

second subclass of power utility functions U(x) := −xα, with α < 0, for all x ∈ (0,∞).

These functions express larger risk-aversion and are thought to be more realistic. We

derive the first key result of the chapter as below. We remark that, despite of the short

proof, this Theorem relies on all the heavy machinery of the paper [30] as well as on our

preliminary work in Section 2.3 and it is, in fact, highly non-trivial. Indeed,

Theorem 4.2.3.

Suppose the log-stock prices process Xt in (2.8) satisfies all the conditions of Section

3.2 in the preceding chapter. Let πt be any Markovian strategy in Model II. Then there

is α0 < 0 such that for any risk-aversion coefficient 0 > α > α0 in the subclass above, the

expected utility of the corresponding wealth converges to 0 at an exponential rate; that is,

with the power utility U(x) := −xα, we have,

|EU(V π
t )| ≤ Ke−ct, for large time t, (4.4)

for some constants K = K(α), c = c(α) > 0.

Proof. Under the Assumptions of section 3.2 and using the notation there, Λf (0) = 0,

Λ′f (0) = ν(f) > 0, and Λ′ being continuous, there exists α0 < 0 such that Λ(α) < 0 for

α ∈ (α0, 0). Theorem 3.1 of [30] implies that for some (positive) constant cα,

−Eeα(f(Φ1)+...+f(Φn))

enΛ(α)
=

EU(V π
n )/V α

0

enΛ(α)
→ cα, n→∞, (4.5)

showing the statement, �

It seems that in general we should not expect more than Theorem 4.2.3 (i.e. the same

result for all α < 0). To see this, we construct an example as below, such that there is

AEA with GDP of failure but for some α < 0, we have EU(V π
t )→ −∞.

Example 4.2.4.

Consider the log-stock prices process Xt governed by the equation Xt+1 = Xt + εt+1,

t ∈ N, with X0 = 0, where εt are i.i.d random variables in R with common distribution

chosen such that Ee−ε1 > 1 and Eε1 > 0. For example ε1 ∼ N(1/4, 1) will do. We identify

the drift and volatility as µ ≡ 0 and σ ≡ 1.
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Choose the trading strategy πt ≡ 1 for all time t and let let V0 = 1. Then we have

Vt := exp(ε1 + · · · + εt) for all time t ≥ 1. As 1/5 < 1/4 = Eε1, by Theorem 1.1.11 , for

each ε > 0, there is c, t0 > 0 such that for all t ≥ t0, we have P(Vt ≥ et/5) ≥ 1 − e−ct.
Hence there is AEA with GDP of failure.

However, for α = −1, we have by independence

EU(Vt) = E(−V −1
t ) = −E exp{−(ε1 + · · ·+ εt)} = −(Ee−ε1)t → −∞

as t→∞, surprisingly ! �

Finally we investigate what happens if a risk-averse agent produces expected utility

tending to 0 = U(∞) exponentially fast as t → ∞. It turns out that his/her strategy

produces AEA with GDP of failure; that is arbitrage in the almost sure sense. This is a

kind of converse to Theorem 4.2.3 above, inspired by Proposition 2.2 of [14]. Indeed,

Proposition 4.2.5.

Consider the power utility U(x) = −xα for some α < 0.

Let πt be a trading strategy in the wealth Model II such that |EU(V π
t )| ≤ Ke−ct for large

enough time t, for some constants c,K > 0. Then πt gives an AEA with geometrically

decaying probability of failure.

Proof. We may assume K = 1, then we need to find constants b > 0, c′ > 0 such

that P(V π
t ≥ ebt) ≥ 1− e−c′t for large time t.

Let any b > 0 such that c+ αb > 0, then we have

P(V π
t < ebt) ≤ P

(
|U(V π

t )| ≥ |U(ebt)|
)

≤ E|U(V πt )|
|U(ebt)| by Markov Inequality.

(4.6)

But E|U(V π
t )| = |EU(V π

t )| ≤ e−ct and also since |U(ebt)| = | − eαbt| = eαbt, then we

have P(V π
t < ebt) ≤ e−cte−αbt = e−(c+αb)t. Which implies that P(V π

t ≥ ebt) ≥ 1− e−(c+αb)t

for large t. Hence taking c′ := c+ αb, the result follows as required, �

To summarize, if a HARA utility maximizer with α < 0 achieves a utility that con-

verges exponentially fast to 0, then his/her strategy provides AEA with GDP of failure,

too. Conversely, under the stringent conditions of Section 3.2, one is able to construct

strategies producing AEA with GDP of failure which also give a utility tending to 0

exponentially fast for α large enough (that is, for not too risk-averse investors).
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[14] H. Föllmer and W. Schachermayer; Asymptotic Arbitrage and Large Deviations,

Math. Financ. Econ., Vol. 1, 213-249, 2007.

[15] A. Ganesh, N. O’Connell and D. Wischik; Big Queues, Lecture Notes in Mathematics,

Springer, 2004.

[16] L. Györfi and I. Vajda; Growth Optimal Portfolio Selection Stratefies with Transac-

tion Costs, Inc: Algorithmic Learning Theory, ed. Y. Freund, L. Györfi, G. Turán,

Th. Zeugmann, Lecture Notes in Computer Science, Vol. 5254, 108-122, Springer,

2010.

[17] T.E. Harris; The Theory of Branching Processes, Springer, 1963.

[18] P. Hall and C.C. Heyde; Martingale Limit Theory and its Application, Academic

Press, 1980.

[19] O. Hernández-Lerma and J.B. Lassere; Discrete-Time Markov Control Processes:

Basic Optimality Criteria, Springer, 1996.

[20] Y.M. Kabanov and D.O. Kramkov; Large Financial Markets: Asymptotic Arbitrage

and Contiguity, Theory Probab. Appl., Vol. 39, (1994), No. 1, 182-187 (1995).

[21] Y.M. Kabanov and D.O. Kramkov; Asymptotic Arbitrage in Large Financial Mar-

kets, Finance Stochast., Vol. 2, 143-172, 1998.
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