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Chapter 1

Introduction

The topic of p-groups with Abelian automorphism groups (Abelian Aut(G)) has inter-

ested researchers for years. One of the most significant fields of application and source

of questions of group theory is cryptography. The security of a cryptosystem depends on

the difficulty of the problem that the eavesdropper should solve in order to crack it, and

group theory is a good source of such problems. Nilpotent and p-groups are very attractive

for cryptographic purposes since they have nice presentation and computation in them is

fast and easy. Researchers are working on protocols using non-Abelian groups for secret

sharing or exchange of private keys over a non-secure channel.

The particular interest in the existence of a p-group with Abelian automorphism group is

motivated by a cryptographic protocol proposed in [10].

Motivational Example

The protocol that Mahalanobis proposes in article [10] uses finite non-Abelian groups based

on the Diffie-Hellman problem. It is the following: Let G = 〈g〉 be a cyclic group of order
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CHAPTER 1. INTRODUCTION

n. We know g, ga, gb, where a, b ∈ Z. Find gab. We can generalize the problem for a non-

cyclic group. Let φ, ψ : G → G φ,ψ ∈ Aut(G) such that φψ = ψφ and let a, φ(a), ψ(a)

be known. We want to find φ(ψ(a)).

Using the generalized Deffie-Hellman problem one can construct the following protocol

that can serve as a motivating example for studying p-groups and their automorphisms:

Two people - A and B - the left and the right column respectively agree on a group G.

Person A chooses a non-central element g, computes its image under the action of an

automorphism of his/her choice and sends it to person B.

g ∈ Gr Z(G), φA ∈ Aut(G)
−−−→
φA(g) φA(g)

Person B chooses another automorphism and sends the image of the received element to A.

But A knows the initial automorphism φA therefore it knows its inverse and can compute

φB(g).

φA
−1φB(φA(g)), φB(g)

←−−−−−−−
φB(φA(g)) φB ∈ Aut(G)

Person A chooses another automorphism φH and sends the image of φB(g) under it to B.

Where B computes φH(g) because they know φB and therefore its inverse.

φH ∈ Aut(G), φH(g)
−−−−−−−→
φH(φB(g)) φH(g) via φ−1

B

Note that the information they send to each other (middle column) is public so it can

be ”overheard”. The private key is φH(g) and it should not be obtainable by the public

information.

However there are cases when this problem is not difficult and the cryptosystem is not

secure. Let φA and φB be such that φ(g) = gzφ,g for zφ,g ∈ Z(G)

As we will see later in the thesis this particular kind of automorphisms, that act by multi-

plication by a central element fix the derived subgroup G′ pointwise. Thus if Z(G) = G′,

we have that φB(gzφA,g) = gzφB ,gzφA,g. Thus we can compute zφB ,g.

3
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CHAPTER 1. INTRODUCTION

Since φH(φB(g)) = gzφB ,gzφH ,g one can obtain gzφH ,g = φH(g) which is the private key.

The automorphisms we consider in the above example, given by multiplication by a central

element, constitute a subgroup of Aut(G). The protocol proposed by Mahalanobis can work

when this particular subgroup is Abelian. However the above example poses the question

of the existence of a p-group whose whole automorphism group is Abelian but the center

and the derived subgroup do not coincide.

In general very little is known about groups with Abelian automorphisms. There is no

condition that ensures that a group has Abelian Aut(G). It is well-known that apart from

cyclic groups no commutative group has Abelian automorphism group. In the literature

there are a few examples of non-Abelian p-groups with commutative Aut(G). The first

construction of such a group was given by G.A.Miller. This is why sometimes the p-groups

with Abelian automorphism groups are referred to as Miller groups. The example he gave

is listed under number 99 in the Hall-Senior tables [4] and it works only for p = 2. There

are two more examples of Miller groups in the tables - number 91 and number 92 which are

also 2-groups. There are a few generalizations of the above groups, some of which can be

found in [10] and [7] but still the groups obtained have Abelian automorphism groups only

for p = 2. Some of the most notable examples of families of Miller p-groups for arbitrary

p, are given by Morigi [11], Jonah and Konvisser [8].

The groups from the Hall Senior table have the derived subgroup properly contained in

the center. However for all known Miller groups, in the case when p is odd, the center

and the derived subgroup coincide. It has been conjectured that all groups with Abelian

automorphism groups for odd prime p have this property (G′ = Z(G)).

In this thesis we give an example of a non-Abelian p-group, of order p8, whose center

properly contains the derived subgroup and has an Abelian automorphism group.

4
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CHAPTER 1. INTRODUCTION

This thesis is structured in the following way. In chapter 2 we give some basic results

from the theory of finite groups. We look at the necessary conditions for a group to have

Abelian automorphism group focusing on both abelian and non-abelian p-groups in chapter

3 and 6 respectively. In chapter 4 we discuss the subgroup of automorphisms that act by

multiplication by a central element. The existence of an automorphism which is not of this

kind ensures that Aut(G) is not Abelian. We show in chapter 5 a few ways to check if the

group possesses such a ”bad” automorphism. In the end we arrive at the counterexample

for the conjecture proposed in [10] and investigate its minimality.

5
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Chapter 2

Preliminaries on p-groups

In this section we give some basic definitions and well-known results from the theory of

finite groups. We point out that by group we always understand a finite group.

2.1 Abelian p-groups

We will denote by Ck a cyclic group of order k. If G is an Abelian p-group there exists an

integer n ≥ 1 and integers e1, . . . , en with ei ≥ 1 such that G is isomorphic to the direct

product of the cyclic groups Cpei . Moreover, the integer n and the integers ei are uniquely

determined (up to ordering) and we say that G is of type pe1 , . . . , pen . An Abelian p-group

is homocyclic of type pe if ei = e, for all i = 1, . . . , n.

If an Abelian group G is homocyclic of type p, then G is called elementary Abelian.

A p-group G is elementary Abelian if and only if G is Abelian and has exponent p. The

exponent of a group G which we denote by exp(G), is the least common multiple of the

orders of all elements. An elementary Abelian group can always be seen as a vector space

6
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CHAPTER 2. PRELIMINARIES ON P-GROUPS

over the field Fp with p elements.

2.2 Non-Abelian p-groups

In this section we introduce some random definitions and facts concerning non-Abelian

p-groups.

If G is a group, we will denote by G′ or [G,G] its derived subgroup, the subgroup of G

generated by all commutators [x, y] = xyx−1y−1, for x, y ∈ G. If z is a central element,

z ∈ Z(G) , then [xz, y] = [x, y] = [x, yz].

We denote by Z(G) the center of G. The center of a p-group is non-trivial. Moreover if

G/Z(G) is cyclic, then G is Abelian.

Lemma 1. In a non-Abelian p-group every maximal Abelian subgroup properly contains

the center.

P-groups are nilpotent. We call a group nilpotent when it has a finite central series. A

central series is a sequence of normal subgroups

e = G0 ≤ G1 ≤ · · · ≤ Gn = G,

such that [G,Gi+1] ⊆ Gi, where [G,H] denotes the commutator subgroup. The subgroups

in a central series are always normal subgroups of G, so it makes sense to talk about

G/Gi. A sequence Gi of normal subgroups of G is a central series if and only if Gi+1/Gi ⊆

Z(G/Gi), where Z(H) denotes the center of a group H.

As we noted, the central series is finite for a nilpotent group, in particular for a p-group,

the number of steps in which it terminates is called the nilpotency class of G.

It is easy to see that the groups of nilpotency class 1 are the non-trivial Abelian groups. For

7
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CHAPTER 2. PRELIMINARIES ON P-GROUPS

these groups we have 1 = [G,G,G] = [G′, G] so that G′ ⊆ Z(G) or equivalently G/Z(G) is

Abelian.

For an arbitrary group G, the Frattini subgroup Φ(G) is defined as the intersection of

all maximal subgroups of G. If G is a p-group, then the Frattini subgroup is the smallest

normal subgroup of G with elementary Abelian quotient. This quotient is cyclic only when

the group G is cyclic.

Lemma 2. G′ ⊆ Φ(G)

Proof. Since G′ is the intersection of all normal subgroups with Abelian quotients, and

Φ(G) is the intersection of all maximal subgroups, it suffices to show that any maximal

subgroup is normal with Abelian quotient. Every maximal subgroup is normal, and hence

maximal normal. The quotient is a simple p-group, moreover it is an Abelian group. Thus,

every maximal subgroup is normal with Abelian quotient.

Lemma 3. Let G be a p-group of class two, and let G′ have exponent pe, then the exponent

of G/Z(G) divides pe. In particular if G′ is elementary Abelian then G/Z(G) is elementary

Abelian and Φ(G) ⊆ Z(G).

Proof. Since the group G is class 2, then G′ ≤ Z(G) and both G′ and G/Z(G) are Abelian.

G′ is elementary Abelian if and only if e = 1. To see that the central quotient is elementary

Abelian it is enough to show that exp(G/Z(G)) divides p, and this is the assertion of the

lemma when e = 1. Therefore since Φ(G) is the unique smallest normal subgroup having

elementary Abelian factor, the lemma follows.

Remark 1. In fact we will see later in the thesis that when G is of class 2, exp(G′) =

exp(G/Z(G)).

Definition 1. A group is called special if Z(G) = G′ = Φ(G). Furthermore if those

subgroups are of order p then the group is extra special.

8
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CHAPTER 2. PRELIMINARIES ON P-GROUPS

We call a group G purely non-Abelian (PN) if it has no non-trivial Abelian direct

factors.

We introduce the following piece of non-standard terminology, which Hegarty uses in [5].

Definition 2. Two groups G and H will be called hypomorphic if

G′ ∼= H ′, Z(G) ∼= Z(H), G/G′ ∼= H/H ′, G/Z(G) ∼= H/Z(H).

We say that two groups are hypomorphic if they belong to the same hypomorphism class.

2.3 Commutators

Before proceeding with the basic properties of commutators, observe that when G is of

class 2, all commutators are central, that is

[xy, z] = [x, z]y[y, z] = [x, z][y, z],

and thus the map [ , z] defines a homomorphism from G into G′.

Most of the computations in this thesis use the following basic properties of commutators:

Lemma 4. Let G be a group and with G′ ≤ Z(G), then

• [x1x2, y] = [x1, y][x2, y], for all x1, x2, y ∈ G;

• [x, y1y2] = [x, y1][x, y2], for all x, y1, y2 ∈ G;

Proof. By elementary computation we get:

[x1x2, y] = x1x2yx
−1
2 x−1

1 y−1 = x1(x2yx
−1
2 y−1)yx−1

1 y−1 = [x1, y][x2, y]

and analogously for the second one.

9
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CHAPTER 2. PRELIMINARIES ON P-GROUPS

Lemma 5. Let G is a group and let x, y ∈ G, such that [x, y] commutes with x and y.

Then

• [x, y]k = [xk, y] = [x, yk];

• (xy)k = xkyk[y, x]
1
2
k(k−1), for all k ∈ Z

Remark 2. Let G be a p-group of class at most 2 with p odd. If G′ is elementary Abelian,

then (xy)p = xpyp, for all x, y in G.

2.4 Automorphisms

Definition 3. We call an automorphism σ of G central if σ commutes with every auto-

morphism in Inn(G), the group of inner automorphisms of G. Equivalently g−1σ(g) lies in

Z(G), for all g ∈ G. We denote the central automorphisms by Autc(G). They fix the com-

mutator subgroup G′ of G pointwise and form a normal subgroup of the full automorphism

group Aut(G).

Proposition 1. If in a group G commutator subgroup and center coincide then every pair

of central automorphisms commutes.

Proof. Assume that the group is special. Then take φ, ψ ∈ Autc(G). Let φ(x) = xzφ,x and

ψ(x) = xzψ,x, where zφ,x and zψ,x are central elements. Then by a simple calculation we

see

ψ(φ(x)) = ψ(xzφ,x) = ψ(x)zφ,x = xzψ,xzφ,x = xzφ,xzψ,x = φ(ψ(x))

Definition 4. A group G is called Miller if Aut(G) is Abelian.

10
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CHAPTER 2. PRELIMINARIES ON P-GROUPS

Remark 3. Inn(G) / Aut(G) and G/Z(G) ' Inn(G)

Remark 4. If G is non-Abelian Miller then G is nilpotent of class 2.

(G/Z(G) ' Inn(G) and inner automorphism commute.)

11
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Chapter 3

Automorphisms of Abelian groups

In this section we try to understand how the automorphism groups of Abelian groups look.

We see that the only Abelian Miller groups are the cyclic ones. We conclude that the

non-special Miller group we are interested in has to be a non-Abelian p-group.

3.1 Automorphisms of cyclic groups

Lemma 6. If a group G is cyclic then the Aut(G) is Abelian. Furthermore if G is cyclic

of order n then Aut(G) is cyclic of order φ(n), where φ is the Euler function.

Proof. Let G = 〈x〉 and |G| = n. Take φ ∈ Aut(G), then φ(x) also has order n and

φ(x) = xk for some k such that (n, k) = 1. Conversely for every integer k, (n, k) = 1 the

map xi 7→ xik is an automorphism of G.

Furthermore, if φh, φk ∈ Aut(G) then we have φkφh(x) = (xh)k = xhk = xhk, where hk

is hk(mod n). Therefore φkφh = φhk. From this we see that Aut(G) is isomorphic to the

multiplicative group of residue classes (mod n) which is Abelian.

12
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CHAPTER 3. AUTOMORPHISMS OF ABELIAN GROUPS

In the case when n = p then Aut(G) is isomorphic to the multiplicative group of a field of

p elements, which is cyclic of order p− 1.

3.2 Automorphisms of Abelian groups

Below we give a well-known result on the automorphism group of Abelian groups:

Theorem 1. In the case when G ∼= H × K, where H and K are groups with relatively

prime orders, then Aut(G) ∼= Aut(H)× Aut(K).

Proposition 2. If G is a noncyclic Abelian group then, Aut(G) is not Abelian.

Proof. First let us assume that G has only two generators x and y. We may choose x and

y in such a way so that the order m of x divides the order n of y, because we can write G

as a direct product of cyclic groups in the form G = C1 × C2 × · · · × Cr, where the order

hi of Ci divides the order hi+1 of Ci+1 for i = 1, 2, . . .m− 1 and m is the smallest possible

number of generators for G. Once we have chosen x and y we can define three mappings

of G onto itself:

α : xsyt → xs+tyt

β : xsyt → xsy−t

γ : xsyt → xtys

Because m|n, α is always well defined, non-trivial automorphism of G. If n 6= 2, then β is

also a non-trivial automorphism of G and it does not commute with α. In the case when

n = 2 we get β to be the identity map but in this case γ is a well defined automorphism

that does not commute with α. Thus Aut(G) is not commutative.

In the general case, we may assume again that G is product of cyclic subgroups, namely

G = C1×C2×· · ·×Cr with each Ci dividing the order of the next. The Aut(G) contains a

13



C
E

U
eT

D
C

ol
le

ct
io

n

CHAPTER 3. AUTOMORPHISMS OF ABELIAN GROUPS

subgroup consisting of all automorphisms of G which leave the elements of C3×C4×· · ·×Cr

fixed. This subgroup is isomorphic to Aut(C1 × C2) which is non-Abelian by the special

case above.

Proposition 3. Let G be an Abelian group, then |Aut(G)| ≥ φ(|G|), with equality if and

only if G is (non-trivial) cyclic.

Proof. If G is Abelian group, in particular if G is Abelian p-group, then by the structure

theorem the Aut(G) acts transitively on the elements of largest order. There are at least

φ(|G|) such elements, because the elements of smaller order form a proper subgroup, of

order at most |G|/p. Moreover if g is an element of largest order then provided that G

is not cyclic, G = 〈g〉 × B, for some B subgroup of G and |Aut(G)| ≥ φ(|G|)|Aut(B)| >

φ(|G|).

Remark 5. If G is Abelian and pn divides |G|, for some prime p, then pn−1(p− 1) divides

|Aut(G)|.

3.2.1 Automorphisms of elementary Abelian groups

Proposition 4. If G is elementary Abelian p-group of order pn, then Aut(G) is isomorphic

to the multiplicative group of all non singular n × n matrices with entries in the field of

integers (mod p), in other words Aut(G) ∼= GL(n, p)

Proof. Since G is elementary Abelian then it is a direct product of n cyclic groups of order

p. If V is a vector space of dimension n over Zp - the field of integers (mod p), then V is

additive Abelian group, which is clearly isomorphic to G. Therefore Aut(G) ∼= Aut(V ). A

14
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CHAPTER 3. AUTOMORPHISMS OF ABELIAN GROUPS

mapping α of V onto itself is an automorphism if it satisfies the following:

α(u+ v) = α(u) + α(v)

α(mu) = mα(u)

for each u, v ∈ V and m integer. The two conditions above show us that α is a linear

transformation of V . Thus Aut(V ) is the group of all invertible linear transformations of

V onto itself. Therefore Aut(V ) is isomorphic to GL(n, p).

15
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Chapter 4

The group of central automorphisms

Autc(G)

As we already know the central automorphisms form a subgroup of Aut(G). This section

outlines results on how to compute the size of this subgroup and provides criteria for it to

be commutative. In the search for a non-special Miller p-group, the following results are

useful in eliminating certain hypomorphism classes of p-groups.

4.1 Criteria for central automorphisms to commute

As a subgroup of the group of automorphisms we need Autc(G) to be Abelian. In [1]

Adney and Yen give a criteria for a p-group G to have Abelian Autc(G) based only on the

hypomorphism class of G.

Let G be a purely non-Abelian group. Let σ : G → G be a central automorphism. Then

∀x ∈ G the map fσ : x 7→ x−1xσ is a homomorphism of G to Z(G). The map σ 7→ fσ is

16
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CHAPTER 4. THE GROUP OF CENTRAL AUTOMORPHISMS AUTC(G)

a one to one map of Autc(G) onto Hom(G,Z(G)). Conversely if f ∈ Hom(G,Z(G)) then

σf : x 7→ xf(x) is endomorphism of G. Since

Ker(σf ) = {x ∈ G : f(x) = x−1},

it follows that σf is automorphism if and only if f(x) 6= x−1, ∀x ∈ G, x 6= 1.

Theorem 2. (Adney and Yen) The map σ → fσ is a one to one map of Autc(G) onto

Hom(G,Z(G)), when G is purely non-Abelian (PN).

Before giving the proof we need the following definition:

Definition 5. The height of an element x in a finite Abelian p-group A is given by:

heightA(x) = n if x ∈ Apn
, but x /∈ Apn+1

.

Proof. Suppose that there exists a homomorphism f ∈ Hom(G,Z(G)), such that f(z) =

z−1, for some z ∈ G, z 6= 1. It follows that z ∈ Z(G) from the definition of f . Assume

that z is of order p, prime. Write G/G′ = Gp′/G
′ ×Gp/G

′, where Gp/G
′ is the p-primary

component of G/G′. Then zG′ ∈ Gp/G
′ and zG′ 6= G′, because G′ is in the Ker(f). Let

the height of zG′ in Gp/G
′ be pk and let z = xp

k
u, for x ∈ Gp and u ∈ G′. The we can

write

z−1 = f(z) = f(xp
k
) = f(x)p

k
.

Set y = f(x)−1. Then z = yp
k
, for y ∈ Z∩Gp and 〈y〉∩G′ = 1; Then yG′ generates a direct

factor of Gp/G
′, say Gp/G

′ = 〈yG′〉×Hp/G
′. Since 〈y〉∩G′ = 1, then G = 〈y〉× (HpGp′) is

a direct decomposition of G. Then it follows that G has an Abelian factor if the mapping

σ 7→ fσ is not onto.

For any f ∈ Hom(G,Z(G)), there is a map f ′ ∈ Hom(G/G′, Z(G)) since f(G′) = 1.

Furthermore, corresponding to f ′ ∈ Hom(G/G′, Z(G)) there is a map f : G → Z(G),

f = η ◦ f ′ where η is the natural epimorphism G→ G/G′.

17
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CHAPTER 4. THE GROUP OF CENTRAL AUTOMORPHISMS AUTC(G)

Let G be of class 2, then by the fundamental theorem of Abelian groups we can decompose

G/G′ = A1 × A2 × · · · × An where Ai = 〈ai〉

Z(G) = B1 ×B2 × · · · ×Bm where Bi = 〈bi〉.

If the cyclic component Ak = 〈ak〉 has exponent greater or equal to the exponent of

Bj = 〈bj〉, then one can define a homomorphism f : G/G′ → Z(G) in the following way:

f(ai) =


bj if i = k,

1 if i 6= k.

We can see that Im(f) of all f ∈ Hom(G,Z(G)), generates the subgroup

R(G) = 〈Im(f) | f ∈ Hom(G,Z(G))〉

= 〈z ∈ Z(G)|o(x) ≤ pd〉, wherepd = min(exp(G/G′), Z(G))

Furthermore since G is of class 2, we have that

exp(G/G′) ≥ exp(G/Z(G)) = exp(G′)

hence if pd = min(exp(G/G′), Z(G)), then pd = exp(G′) or pd > exp(G′).

Denote the exponent of G′ by pb. If height(xG′) ≥ b, then xG′ = yp
b
G′ for some y ∈ G.

Then for any F ∈ Hom(G,G′) we have F (yG′)p
b

= 1, hence xG′ ∈ Ker(F ).

Conversely let height(xG′) < b. Then from the previous discussion we know that there

is a homomorphism F ∈ Hom(G/G′, G′), such that xG′ is not in the kernel, thus ∃F ∈

Hom(G,G′) such that x /∈ Ker(F ).

Thus following [1] we define

18
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CHAPTER 4. THE GROUP OF CENTRAL AUTOMORPHISMS AUTC(G)

K =
⋂

F∈Hom(G,G′)

Ker(F ) = {x ∈ G, height(xG′) ≥ b}.

Proposition 5. K(G) ⊆ R(G).

Proof. Since b = exp(G/Z(G)) and K ⊆ Z(G), an element x ∈ K(G) has the form

x = yp
b
z, for some z ∈ G′. denote exp(G/G′) = pc Then since G is class 2, as we

remarked earlier in the section c ≥ b. Then yp
c ∈ G′ and we have that xp

c
= 1 and

o(x) ≤ min(exp(Z(G)), pc).

Proposition 6. R(G) ⊆ K(G), when G is PN and of class 2 with Abelian Autc(G).

Proof. We know from Theorem 2 that for PN group, σ, τ ∈ Autc(G) commute if the

corresponding maps fσ, fτ ∈ Hom(G,Z(G)) do. If follows that for any f ∈ Hom(G,Z(G))

and F ∈ Hom(G,G′), f ◦ F = F ◦ f = 1, as G′ is contained in the Ker(f). Thus

Im(f) ⊆ Ker(F ), for any F any f . But by definition K(G) is the intersection of Ker(F ),

for all F ∈ Hom(G,G′) and R(G) is generated by the set of all f(G), f ∈ Hom(G,Z(G)).

Thus we conclude that R ⊆ K.

From the two propositions above we conclude that if G is PN, of class 2 and has Abelian

central automorphism group, then R(G) = K(G). In [1], Adney and Yen give necessary

and sufficient condition that Autc(G) is Abelian.

Lemma 7. Let G be a class two p-group, and let G/G′ =
n∏
i=1

〈G′xi〉. Define:

K(G) = 〈x ∈ G|heightG/G′(G′x) ≥ b〉, where pb = exp(G′) and

R(G) = 〈z ∈ Z(G)|o(x) ≤ pd〉, where pd = min(exp(G/G′), exp(Z(G)))

Then Autc(G) is Abelian iff K(G) = R(G) and one of the following holds: either b = d

or b < d and R/G′ = 〈G′xpb〉, where x is chosen among x1, . . . xn such that |xpb | = pd. In

particular R/G′ is cyclic.
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CHAPTER 4. THE GROUP OF CENTRAL AUTOMORPHISMS AUTC(G)

Proof. In the above two propositions we saw that R(G) = K(G) is a necessary condition.

So assume that the conditions hold. Then as R(G) = K(G), all elements of R(G) are of

the form yp
b
z, for some z ∈ G′. We look at the two cases:

If b = d, for every f ∈ Hom(G,Z(G)), we have that f(yp
b
z) = 1. Thus for any two

homomorphisms f, f ′ ∈ Hom(G,Z(G)) we have that their composition is 1.

If b < d, Let G/G′ =
n∏
i=1

{xiG′}, then R/G′ = K/G′ =
n∏
i=1

{xip
b

G′}, then it is easy to

check that R/G′ is cyclic and is generated by x1
pb

, where the exponent of R is attained at

x1. Then we can write G/G′ = {x1G
′} ×G1/G

′, where exp(G1/G
′) ≤ pb.

Then for every x ∈ G1, and f ∈ Hom(G1/G
′, R), we have that f(x) = x1

spd
u, where

u ∈ G′ and s = b + max(0, d − o(x1G
′)). Thus we have that for any two elements f, f ′ ∈

Hom(G1/G,R) we have f ′(f(x)), for x ∈ G1. Thus Hom(G,Z(G)) = Hom(G,R(G)) is

commutative if Hom({x1G
′}, R), which is, since R/G′ is cyclic.

4.2 On the size of Autc(G)

We can make an easy observation that if a group G has commutative Aut(G) then every

automorphism is central. This follows from the fact that the central automorphisms are

by definition the the centralizer of the inner automorphisms of G. Thus if a group is Miller

Autc(G) = Aut(G).

In [14] Sanders provides a formula for computing the size of the group of central automor-

phisms. This information is useful in view of Hegarty’s result in [5], which states that a

Miller group has an automorphism group of size at least p12. We will see later in the thesis

that applying this result we can discard some hypomorphism classes for small powers of p.

That is, if the size of the groups of central automorphisms is less than p12 we know that

Aut(G) cannot be Abelian.
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CHAPTER 4. THE GROUP OF CENTRAL AUTOMORPHISMS AUTC(G)

Lemma 8. (Sanders) Let G be a group with no-Abelian direct factors (PN group). Then

|Autc(G)| =
k∏
i=1

|Ωi(Z(G))|ri ,

where pk is the exponent of G/G′, ri are the invariants (direct factors) of G/G′ and

Ωi(Z(G)) is the subgroup of elements of the center whose order divides pi.

Proof. From Theorem 2 we know that when G is PN there is a one-to-one map between

Autc(G) and Hom(G,Z(G)), given by σ 7→ fσ in the terminology of the theorem. In partic-

ular Autc(G) = Hom(G/G′, Z(G)). It is enough to compute the size of Hom(G/G′, Z(G)).

We remind that if K/G′ is a direct factor of G/G′, then any element of Hom(K/G′, Z(G))

induces element on Hom(G/G′, Z(G)) in a natural way, which is trivial on the complement

of K/G′.

We decompose G/G′ as a product of cyclic subgroups. Denote by Cpi the cyclic group of

order pi. For each direct factor of G/G′ of order pi, we have the following

Hom(Cpi , Z(G)) ∼= Ωi(Z(G)).

Since G/G′ has by definition ri direct factors of order pi, the result follows.

Theorem 3. (Hegarty) Let G be a finite non-cyclic p-group, p odd, for which Aut(G) is

Abelian. Then p12 divides |Aut(G)|.

Proof. We do not give the whole proof as it is very technical, we just give a brief sketch

of author’s approach. Hegarty looks at different hypomorphism classes of groups with

Abelian Autc(G) and p7 ≤ |G| ≤ p10. The author eliminates them one by one. We discuss

the methods and constructions that he uses in detail in the following sections.
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Chapter 5

Some constructions of non-central

automorphisms

As we remarked in the previous section when a groupG has commutativeAut(G) then every

automorphism is central. Thus we can prove that the automorphism group of G is non-

Abelian if we can construct a non-central automorphism. In the following section we present

a few ways to construct (or show one cannot construct) a non-central automorphism.

The following Lemma proven by Earnley in [2] is central to the computations in this thesis.

It gives a criterion for a group with homocyclic central quotient to posses a non-central

automorphism.

Lemma 9. Consider the extension 1 → Z → G → G/Z → 1 where G is a p-group and

G/Z is a direct product of n(n ≥ 2) copies of Cpt for some fixed t. Let T : G/Z → Z/Zpt

be the homomorphism given by (Zx)T = Zpt

xp
t

. Also let [, ] : G/Z × G/Z → Z given by

(Zx, Zy)[, ] = [x, y] and let α ∈ Aut(G/Z) and β ∈ Aut(Z). Then G has an automorphism

inducing α on G/Z and β on Z if and only if the following diagrams commute:
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CHAPTER 5. SOME CONSTRUCTIONS OF NON-CENTRAL AUTOMORPHISMS

G/Z ×G/Z

G/Z ×G/Z

Z

Z

...................................... ............
[, ]

..............................................................................................................
...
.........
...

α× α

..............................................................................................................
...
.........
...

β

...................................... ............
[, ]

G/Z

G/Z

Z/Zpt

Z/Zpt

.................................................................................................... ............
T

..............................................................................................................
...
.........
...

α

..............................................................................................................
...
.........
...

β

.................................................................................................... ............
T

where (Zpt

z)β = Zpt

(zβ).

Lemma 10. Let N be a normal subgroup of group G such that G/N is cyclic of order n.

Write G/N = 〈Ng〉. Let x ∈ Z(N) such that gn = (gx)n. Then a map α : G → G given

by:

α(n) = n for every n ∈ N

α(g) = gx

can be extended to an automorphism of G.

Proof. First note that g and gx are on the same layer, as gn = (gx)n Now we see how α ex-

tends to all elements ofG. We know that α(gn) = (gx)n, then α(gkn) = gknxg
k−1+gk−2+···+1.

It only remains to see that the extension of α is an automorphism - see that it preserves

multiplication. Consider α((gkn1)(g
ln2)), that is

α(gk+ln1n2) = (gx)k+ln1
gl
n2.

On the other hand,

α(gkn1)α(gkn1) = gkn1x
gk−1+gk−2+···+1gln2x

gl−1+gl−2+···+1 = (gx)k+ln1
(gx)l

n2.

But since x ∈ Z(N) then these two are the same.

Remark 6. In the case when x ∈ Z(N)\Z(G), α extends to a non-central automorphism.
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CHAPTER 5. SOME CONSTRUCTIONS OF NON-CENTRAL AUTOMORPHISMS

...

Z(N)

G/N
(cyclic)

N

g

gn = (gx)n

Figure 5.1: Illustration to the above lemma.

Remark 7. Let N be a group and m be a positive integer, and a ∈ N and let σ ∈ Aut(N)

such that ∀x we have aσ = a and xσ
m

= xa then exists a group G up to isomorphism, such

that N is a normal subgroup of G and with the following properties:

(i) G/N = 〈gN〉 (ii) gm = a (iii) xσ = xg

The following two results are not used in the next sections, but we mention them without

proofs for the sake of completeness.

Lemma 11. Suppose a finite group G splits over an Abelian normal subgroup A. Then G

has an automorphism of order 2, which inverts A elementwise.

Lemma 12. If Aut(G) has an element of order 2, that leaves only the identity fixed, then

G is Abelian of odd order.
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Chapter 6

Structure of a Miller group

In this section we make some final remarks on the necessary conditions for a group G to

have Abelian Aut(G). We discuss restrictions on the structure, the minimal number of

generators of Miller group. We also show why the automorphism group of our Miller group

should be a p-group.

Lemma 13. Aut(G) is non-Abelian if one of the following holds:

• Z(G) is cyclic

• exp(G) = p

• the number of elements in a minimal generating system of G/Z is 2.

Before mentioning the next results, we remind the reader that Miller groups are of class 2.

The following result of Jafari can be found in [6].

Theorem 4. (Jafari) Let p be an odd prime and let G be a finite purely non-Abelian (PN)

group of class 2,
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CHAPTER 6. STRUCTURE OF A MILLER GROUP

• Autc(G) is elementary Abelian if and only if either exp(Z(G)) = p or exp(G/G′) = p.

• Autc(G) is homocyclic of type (pn, . . . pn) if and only if one of the following holds:

either exp(Z(G)) = pn and height (xG′) ≥ pn for all x ∈ Z(G), and the invariants

(direct factors) of the Abelian groups G/G′ and Z(G) have order greater than or equal

to pn

or exp(G/G′) = pn and Ωn(Z(G)) ≤ G′ and the invariants (direct factors) of the

Abelian groups G/G′ and Z(G) have order greater than or equal to pn. Here Ωn(Z(G))

is the subgroup generated by the elements whose order is divisible by pn

The above result is important for us, because in the case when G is Miller, we know that

Aut(G) = Autc(G). Thus the lemma provides a necessary condition for a group to have

homocyclic and in particular elementary Abelian automorphism group.

Proof. It is enough to prove the homocyclic case as the first part of the theorem is just a

special case. Assume that the group G is homocyclic of type pn. Decompose Z(G) and

G/G′ into (internal) direct product of cyclic subgroups.

G/G′ = A1/G
′ × A2/G

′ × · · · × An/G′, whereAi = 〈ai〉

Z(G) = B1 ×B2 × · · · ×Bm, whereBi = 〈bi〉.

Then as we saw in Lemma 8 that |Autc(G)| =
∏

i,j |Hom(Ai/G
′, Bj)|. Each |Hom(Ai/G

′, Bj)| =

pn = gcd(|Ai/G′|, |Bj|), hence |Ai/G′| ≥ pn and |Bj| ≥ pn. This means that both G/G′ and

Z(G) have invariants of order greater than or equal pn. They can not have both exponents

exceeding pn, as otherwise we have the following contradiction pn = |Hom(Ai/G
′, Bj)| =

gcd(|Ai/G′|, |Bj|) > pn. We look at two cases

Case 1: exp(G/G′) = pn.
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CHAPTER 6. STRUCTURE OF A MILLER GROUP

We write G/G′ = A1/G
′ × A/G′, where A1/G

′ = 〈a1G
′〉, with exp(A/G′) = pn. Consider

two homomorphisms f ∈ Hom(A1/G
′, Z(G)) and g ∈ Hom(A/G′, Z(G)). We have that

gf(aiG
′) = fg(aiG

′) = 1, for every ai. Thus we conclude

Ωn(Z(G)) =
⋃
f

Im(f) ≤
⋂
g

Ker(g) = 〈a1〉G′

Ωn(Z(G)) =
⋃
g

Im(g) ≤
⋂
f

Ker(f) = A

It follows that Ωn(Z(G)) ≤ A ∩ 〈a1〉G′ = G′

Case 2: exp(Z(G)) = pn.

We again write G/G′ = A1/G
′ × A/G′ and consider the same automorphisms as in Case

1, f ∈ Hom(A1/G
′, Z(G)) and g ∈ Hom(A/G′, Z(G)).

Z(G) ≤ 〈a1〉{a ∈ A|height(aG′) ≥ pn}

Z(G) ≤ A{y ∈ 〈a1〉|height(yG′) ≥ pn}.

Hence Z(G) ≤ {u ∈ G|height(uG′) ≥ pn}.

For the reverse implication we again consider two cases:

Case 1: Assume exp(G/G′) = pn and the conditions in the theorem hold and we want to

see Autc(G) is homocyclic of type pn.

Take f ∈ Hom(G/G′, Z(G)) and observe that exp(Im(f)) ≤ exp(G/G′) = pn, as Im(f) ≤

G′. It follows that Autc(G) is Abelian. In particular it is easy to see that Autc(G) =∏
i,j

{σf |f ∈ Hom(Ai, Bj)} and |{σf |f ∈ Hom(Ai, Bj)}| = |Hom(Ai, Bj)| = pn. Thus

Autc(G) is homocyclic of type pn.

Case 2: Assume exp(G(Z)) = pn and the conditions in the theorem hold and we want to

see Autc(G) is homocyclic of type pn.
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CHAPTER 6. STRUCTURE OF A MILLER GROUP

Take f, g ∈ Hom(G/G′, Z(G)). If x ∈ G then ∃ y ∈ G such that yp
n

G′ = f(x)G′. Since

exp(G(Z)) = pn, we see that gf(xG′) = g(yp
n

G′) = g(yG′)p
n

= 1. Hence fg = gf = 0 and

thus Autc(G).

Lemma 14. Let G be a p-group of class 2. Then in the decomposition of G/Z(G) as

direct product of cyclic p-subgroups at least two factors of maximal order must occur, that

is exp(G/Z(G)) = pc, then G/Z(G) has the form Cpc ×Cpc ×C, where C is some Abelian

p-group, possibly trivial.

Proof. Let G/Z(G) be generated by {xl, . . . , xn}, then G′ is generated by {[xi, xj], i, j =

1, . . . , n}. Let G′ attain its exponent at some x. Then [x, ] has order equal to the order of

x, by definition of commutator. As the group if of class 2 then exp(G′) = exp(G/Z(G)).

It is immediate to see that there are least two factors of maximal order.

Remark 8. In the above lemma C cannot be trivial if we want G to be Miller by Lemma

[13].

We continue with a few remarks on the minimal generating system of a Miller group. First

result is found in [12].

Theorem 5. (Morigi) For p an odd prime, there exists no finite non-Abelian three genera-

tor p-group having an Abelian automorphism group; thus the minimal number of generators

for a p-group with this property is four.

A previous weaker result on the size of the minimal generating set was given by Earnley

in [2]. He claims that if the minimal generating set is 3 and G is special or has a derived

subgroup of order p, it cannot be Miller.

We should point out that Morigi in [11] constructs the smallest example of a p-group
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CHAPTER 6. STRUCTURE OF A MILLER GROUP

with Abelian automorphism group. She proves that there is no smaller non-Abelian Miller

p-group. The group is of order p7. It is special and is generated by 4 elements.

Proof. The proof of the theorem is very computational this is why we just give a brief

sketch of the approach of the author. Let exp(G) = pm and exp(G′) = pt. Define a group

F = 〈x1, x2, x3|[xi, xj, xk] = [xi, xj]
pt

= xp
m+1

i = 1〉.

Then there is a normal subgroup N / G, such that G ∼= F/N . Instead of considering

all possible groups G, Morigi takes all pairs (F,N). For each pair she gives a matrix A,

such that the corresponding automorphism of F normalizes N and induces non-central

automorphism on F/N .

The author defines the following subgroup of F , M = N ∩ Z(F ). Here Z(F ) = F ′ × F pt
.

Call the two projections be π1 and π2. Then π1(M) = V = M/M ∩ F ′ and π2(M) = U =

M/M ∩ F pt
. It is easy to see that V/M ∩F pt ∼= U/M ∩ F ′, which are Abelian groups (and

we can express their automorphisms as matrices). The proof proceeds buy case by case

analysis of cases depending on the number of direct factors of order pt in the decomposition

of V/M ∩ F pt
.

We conclude this section with a few remarks on when Aut(G) is a p-group.

An easy corollary from Lemma 8 is that if G is a p-group so is Autc(G). Therefore if G

has Abelian automorphism group, then Aut(G) is a p-group.

A simple proposition from [14] tells us that when Aut(G) a is p-group then G is PN.

Proposition 7. If G is a group, such that the automorphism group is a p-group then G is

either PN p-group Gp or G ∼= Gp × C2.

Proof. We are interested in the case when p is an odd prime. If G is Abelian then |Aut(G)|

is even, of course unless |G| ≤ 2, then |Aut(G)| = 1.
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CHAPTER 6. STRUCTURE OF A MILLER GROUP

Thus, assume that G is non-Abelian. Since Aut(G) is p-group, so is Inn(G) as a subgroup,

but Inn(G) ∼= G/Z(G), so we conclude that the central quotient is nilpotent and so is G.

Hence we can write G as product of nilpotent groups G = Gp×A, where Gp is a Sylow p-

group and A is Abelian p-group, but the order of A is not divisible by p. Thus by Theorem

1 Aut(G) ∼= Aut(Gp)× Aut(A). G has an automorphism of order 2 unless |A| ≤ 2. Thus

G = Gp or G = Gp × C2. Gp is PN, because otherwise |Aut(G)| is even and we get a

contradiction.

Remark 9. Furthermore in [5] the author shows that |G| properly divides |Aut(G)| when

G is Miller.

30



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 7

The counterexample

In this section we present a counterexample of order p8 to the conjecture in [10], by showing

that there exists a Miller p-group that is not special. In next section we would investigate

the minimality of the counterexample.

Consider a group G of order p8 and class 2 such that

Z(G) ∼= Cp × Cp × Cp × Cp

G′ ∼= Cp × Cp × Cp

G/Z(G) ∼= Cp × Cp × Cp × Cp

G/G′ ∼= Cp2 × Cp × Cp × Cp

It is generated by four elements {a, b, c, d} which satisfy the following relations:

[a, b] = [c, d] bp = 1

[b, c] = [a, d] cp = [a, b][a, c][a, d]

[b, d] = [a, c] dp = [a, c]
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We first see that this group has Abelian Autc(G) and then we prove that there are no

non-central automorphisms, concluding that Aut(G) is Abelian.

To verify that all central automorphisms commute we return to Lemma 7. We have to

check that K(G) = R(G), where

K(G) = 〈x ∈ G|heightG/G′(G′x) ≥ b〉, where pb = exp(G′) and

R(G) = 〈z ∈ Z(G)|o(x) ≤ pd〉, where pd = min(exp(G/G′), Z(G))

Here exp(G/G′) = p2 and exp(Z(G)) = p⇒ d = 1. Since the center is elementary Abelian

it is clear that R(G) = Z(G).

To calculate K(G) we look at

G/G′ ∼= Cp2 × Cp × Cp × Cp = 〈aG′〉 × 〈bG′〉 × 〈cG′〉 × 〈dG′〉.

Then K(G) = 〈x ∈ G|G′x = G′api, for some i〉 = 〈ap〉G′ = GpG′ = Φ(G). But Φ(G) =

Z(G) as the central quotient is elementary Abelian.

We also compute the size of Autc(G). By Lemma 8 we know that

|Autc(G)| =
k∏
i=1

|Ωi(Z(G))|ri = (p4)3(p4)1 = p16.

Since |Autc(G)| > p12, we know that the subgroup of central automorphisms is big enough

so that all automorphisms commute.

Since G′ is elementary Abelian we can view it as a three dimensional vector space over the

field Zp by Proposition 4. Since the three commutators [a, b], [a, c] and [a, d] are obviously

independent, without loss of generality we can choose them as basis of G′. We denote them

by x1, x2 and x3 respectively. Thus

G′ = 〈x1〉 × 〈x2〉 × 〈x3〉.
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CHAPTER 7. THE COUNTEREXAMPLE

Similarly we can regard Z(G) as a four dimensional vector space over Zp. We know that

G′ ≤ Z(G) and the hypomorphism class tells us that Z(G)/G′ = Cp. So by the choosing

x0 = ap we have

Z(G) = 〈x0〉 × 〈x1〉 × 〈x2〉 × 〈x3〉 = 〈x0〉 ×G′.

G

{e}

<Z, b>

<Z, a>
<Z, c>

<Z, d>

Z(G)=Z

G’

Figure 7.1: Part of the lattice of subgroups.

Suppose we have an automorphism σ on G. Then σ induces an automorphism α on G/Z(G)

and an automorphism β on Z(G) which satisfy the conditions of Lemma 9. We prove that

matrices associated to the automorphisms α and β are the identity matrices. Hence we

conclude that every σ ∈ Aut(G) is central.

Consider an automorphism α : G/Z(G) −→ G/Z(G). Since G/Z(G) is elementary Abelian

as before we can view it as a four dimensional vector space over the field Zp.

Similarly let β be the automorphism β : Z(G) −→ Z(G). It can also be represented as a

4× 4 matrix, as the center is elementary Abelian.

In view of Lemma 9 we are looking at α and β such that for all g, h ∈ G

[gα, hα] = [g, h]β

(xα)p = (xp)β
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CHAPTER 7. THE COUNTEREXAMPLE

Observe that (bα)p = (bp)β = 1. Thus we can write α by the following matrix

α =



i j k m

0 e 0 0

q f n r

s w t y


It is enough to see how these two automorphisms act on the four generators of G. We

calculate the images of the generators of G under the two automorphisms

[aα, bα] = [a, b]β = xβ1

= [aibjckdm, be] = [ai, be][bj, be][ck, be][dm, be] = xie1 x
−me
2 x−ke3 (7.1)

[bα, cα] = [b, c]β = xβ3

= [be, aqbfcndr] = [be, aq][be, bf ][be, cn][be, dr] = x−qe1 xer2 x
en
3 (7.2)

[bα, dα] = [b, d]β = xβ2

= x−se1 xye2 x
te
3 (7.3)

(aα)p = (ap)β = xβ0

= (aickdm)p = (ap)i(cp)k(dp)m = xi0x
k
1x

k
2x

k
3x

m
2 = xi0x

k
1x

k+m
2 xk3 (7.4)

(cα)p = (cp)β = xβ1x
β
2x

β
3

= (aqcndr)p = (ap)q(cp)n(dp)r = xq0x
n
1x

n+r
2 xn3 (7.5)

(dα)p = (dp)β = xβ2

= (asctdy)p = xs0x
t
1x

t+y
2 xt3 (7.6)
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From (3) and (6) we get

xβ2 = xs0x
t
1x

t+y
2 xt3 = x−se1 xey2 x

te
3

From here it follows that s = 0 and t = 0. We want to make a note that all computations

are mod p. Therefore by s = 0 we actually mean s ≡ 0(mod p). And since y = ey we get

that e = 1.

If we consider equations(1),(2),(3) and (5) and plug in the value we got for t, s and e we

get

xβ1x
β
2x

β
3 = xi1x

−m
2 x−k3 x−q1 xr2x

n
3x

y
2 = xq0x

n
1x

n+r
2 xn3

We can see that q = 0, k = 0 and i = n = y −m.

With these new results we see that the automorphism α looks like this

α =



i j 0 m

0 1 0 0

0 f n r

0 w 0 y


and we arrive at the following relations for β

xβ0 = xi0x
m
2 , xβ2 = xy2

xβ1 = xi1x
−m
2 , xβ3 = xr2x

y−m
3

We can rewrite these in matrix form corresponding to β

β =



i 0 m 0

0 i −m 0

0 0 i+m 0

0 0 r i
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Now we look at the remaining relations

[aα, dα] = [a, d]β = xβ3

= [aibjckdm, bwctdy] = xiw1 x
jy−mw
2 xiy3 (7.7)

[cα, dα] = [c, d]β = xβ1

= [bfcndr, bwctdy] = xny1 x
fy−rw
2 x−nw3 (7.8)

[aα, cα] = [a, c]β = xβ2

= [aibjckdm, bfcndr] = xif−mn1 xin+jr−mf
2 xir+jn3 (7.9)

From (7) we see that iw = 0 since xβ3 does not have x1 component. But i cannot be 0,

because the matrix corresponding to β has to be invertible. Therefore w = 0.

Still from (7) we see that iy = y. By the same argument as above, we cannot have a

row of zeros in the matrix corresponding to an automorphism we conclude that y 6= 0 and

i = 1⇒ n = 1.

From (8) we see that ny = i = 1 ⇒ y = 1; fy = f = −m and if −mn = f −m = 0 ⇒

f = m We can conclude that f = m = 0.

From (9) r + j = 0⇒ r = −j, but in+ jr = y = 1⇒ j2 = 0⇒ j = r = 0

When we plug these values in the matrices associated to α and β we see that both are

the identity matrix. Thus in view of Lemma 9 all automorphisms of G are central, that

is Autc(G) = Aut(G). Aut(G) is elementary Abelian, as exp(Z(G)) = p and |Aut(G)| =

p16(= |Autc(G)|).
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On the minimality of the

counter-example

8.1 On the smallest non-Abelian with cyclic Aut(G)

Before discussing the existence of a group with smaller elementary Abelian Aut(G) than

the one proposed in the previous section we look at the groups with cyclic automorphism

group. In fact we will see that the only p-groups for p odd, with cyclic Aut(G) are the

cyclic groups.

We refer to a simple observation of Flannery and MacHale in [3]:

Proposition 8. The automorphism group of G is cyclic if and only if G is cyclic of order

1, 2, 4, pr or 2pr, where p is an odd prime and r is a positive integer. In particular Aut(G)

is of prime power order if and only if G ∼= Cs, where s = 1, 2, 4, k, 2k, where k is a Fermat

prime.
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CHAPTER 8. ON THE MINIMALITY OF THE COUNTER-EXAMPLE

Proof. If Aut(G) is cyclic, then Inn(G) is cyclic and so is the central quotient as Inn(G) ∼=

G/Z(G) by Remark 3. But then G has to be Abelian. Then by Lemma 6 G is cyclic of

order n, for some n. Aut(G) has order φ(n) and since it is cyclic, there exists a primitive

root mod n. Hence n = 1, 2, 4, pr or 2pr, for p odd and r ∈ N.

So we see that there is no non-Abelian p-group, with p odd that has cyclic Aut(G).

8.2 On the smallest non-special with elementary Abelian

Aut(G)

The conditions that a group should satisfy to have an elementary Abelian Aut(G) make it

very easy to work with different hypomorphism classes of groups. For small powers of p it

is fairly easy to construct a non-central automorphism. In this section we will check if the

counterexample in the previous conjecture is indeed the smallest that has an elementary

Abelian automorphism group such that the center properly contains the derived subgroup.

We proceed by constructing a non-central automorphism for each of the hypomorphism

classes corresponding to groups of order p7.

Before going into computations we make an observation. Groups that we consider fall in

one of the two major categories:

1. In the case where G′, Z(G), G/Z(G), G/G′ are elementary Abelian we have R(G) =

Z(G) and K(G) = G′. Since we require Abelian central automorphisms by Lemma

7 we need Z(G) = K(G) = R(G) = G′. So in this case the group should be special.

Of course even if a group satisfies the above conditions it does not mean it is Miller

(see examples bellow).

2. In the case when G′, Z(G), G/Z(G) are elementary Abelian, we can have R(G) =
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Z(G) = K(G) > G′. We want to see if the group can have elementary Abelian

Aut(G) for |G| < p8.

To illustrate (1) we give the following two examples of groups from the literature, from

[11] and [5] respectively:

Example 1. Take G of order p7 with the following structure:

G′ = Z(G) = Cp × Cp × Cp

G/G′ = G/Z(G) = Cp × Cp × Cp × Cp

from the lemma b = d = 1 and R(G) = Z(G) and K(G) = G′. We have that Autc(G) is

Abelian. We also know that the group is Miller by Morigi’s paper.

Example 2. Take G of order p7 with the following structure:

G′ = Z(G) = Cp × Cp

G/G′ = G/Z(G) = Cp × Cp × Cp × Cp × Cp

from the lemma b = d = 1 and R(G) = Z(G) and K(G) = G′. We have that Autc(G) is

Abelian. We also know that the group is not Miller by Hegarty’s paper.

In general the restriction on the exponent of the center and on the quotient by the derived

subgroups gives us two hypomorphism classes:

Case 1: exp(G/G′) = p

• If G/G′ ∼= Cp then |G/G′| = p which implies that G′ is maximal Abelian group and

since G′ ⊆ Z(G) then G′ = Z(G) and we get that G/Z(G) is cyclic, hence G is

Abelian. Therefore

G/G′ ∼= Cp × · · · × Cp = Cp
k, for k > 1.

• G/Z(G) ∼= Cp × · · · × Cp = Cp
l, for l ≤ k, since G/Z(G) ∼= G/G′/Z(G)/G′
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• G′ ∼= Cp × · · · × Cp since exp(G′) = exp(G/Z(G)) = p

The restriction on the size of the central quotient, namely it needs to have at least tree

direct factors by Lemma 14, and the fact that the exponent of the derived subgroup should

be the same as the one of the central quotient, give rise to only two hypomorphism classes:

Case 1.1

G/G′ ∼= Cp × Cp × Cp × Cp

G/Z(G) ∼= Cp × Cp × Cp

G′ ∼= Cp × Cp × Cp

Z(G) ∼= Cp2 × Cp × Cp

Here |Autc(G)| =
k∏
i=1

|Ωi(Z(G))|ri = (p3)4 = p12. We discuss this case at the end of the

section.

Case 1.2

G/G′ ∼= Cp × Cp × Cp × Cp × Cp

G/Z(G) ∼= Cp × Cp × Cp × Cp

G′ ∼= Cp × Cp

Z(G) ∼= Cp2 × Cp

However here |Autc(G)| =
k∏
i=1

|Ωi(Z(G))|ri = (p2)5. By Theorem 3 we know that the

automorphism group is not Abelian.
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Case 2: exp(Z(G)) = p

• Z(G) ∼= Cp × · · · × Cp = Cp
k for k > 1, since cyclic center implies non-Abelian

automorphism group.

• G′ ∼= Cp × · · · × Cp = Cp
k−r for some r < k, since G′ ≤ Z(G)

• G/Z(G) ∼= Cp × · · · × Cp = Cp
m, for m > 2, since p = exp(G′) = exp(G/Z(G))

In this case since we need our Autc(G) group to be Abelian we have a constraint on the

way G′ and Z(G) relate to each other. We are left with two hypomorphism classes were

Autc(G) is Abelian - namely K(G) = R(G) and exp(G′) = min(exp(G/G′), Z(G)) = p and

has size p12. We will show that in both cases we can construct a non-central automorphism.

Case 2.1

The first hypomorphism class is the following:

G′ ∼= Cp × Cp × Cp

Z(G) ∼= Cp × Cp × Cp × Cp

G/G′ ∼= Cp2 × Cp × Cp

G/Z(G) ∼= Cp × Cp × Cp

Here Z(G) = Φ(G). We see that G is generated by at most 3 elements as the central

quotient has three direct factors. Thus by Theorem 5 we conclude that the Aut(G) is not

Abelian. We can also proceed here by directly constructing a non-central automorphism

using Lemma 9.

Case 2.2

The second hypomorphism class:
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G′ ∼= Cp × Cp

Z(G) ∼= Cp × Cp × Cp

G/G′ ∼= Cp2 × Cp × Cp × Cp

G/Z(G) ∼= Cp × Cp × Cp × Cp

By the same argument as in the previous case the size of the maximal Abelian group cannot

be p7 or p6. And again since A properly contains the center |A| = p4 or |A| = p5.

In the case |A| = p4, A = 〈Z(G), a〉, for some a ∈ G \ Z(G). We have

|[a,G]| ≤ |G′| = p2, in other words |G : CG(a)| ≤ p2

but we have that |G : CG(a)| = p3, so |A| 6= p4.

We conclude that |A| = p5. As |G′| = p2, then |[A, g]| ≤ p2, for all g ∈ G. Moreover

[A, g] 6= 1, for all g ∈ G \ A. Here we have to look at two cases again:

1. Assume that A is elementary Abelian, i.e A ∼= Cp × Cp × Cp × Cp × Cp.

(a) Assume that ∃ b1 ∈ G \ A such that |[A, b1]| = p. Then

|A : CA(b1)| = p, hence ∃ a1 ∈ A \ Z(G) such that [a1, b1] = 1.

We conclude that A = 〈a1, a2, Z(G)〉, where [a2, b1] 6= 1 by maximality of A and

G = 〈a1, a2, b1, b2〉.

We can construct automorphisms α and β on G/Z(G) and Z(G) respectively

such that α is not the identity. By Lemma 9 exists a non-central automorphism

of G which induces α and β. Take β to be the identity matrix and

α =



1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1
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G
A

Z(G) = Z

{e}

G’

<a1, Z>
<a1, b1, Z>

Figure 8.1: Part of the lattice of subgroups.

They satisfy the conditions of the lemma so we conclude that Aut(G) is not

Abelian.

(b) Assume that ∀b ∈ G \ A such that |[A, b]| = p2, i.e. [A, b] = G′.

Take b1 ∈ G \ A, then CG(b1) ∩ A = Z(G) and |G : CG(b1)| = p2. Note that

|CG(b1)| = p5 by the same argument as for the size of A. Then we get that

CG(b1) = 〈b1, b2, Z(G)〉 and G = 〈A, b1, b2〉.

As remarked above [A, b1] = [A, b2] = G′, therefore ∃ a1, a2 ∈ A such that

[a2, b1] = [a1, b2]. We would like to see that a2 /∈ 〈a1, Z(G)〉. Assume the

opposite, then a2 = a1z, for some central element z. Then [a2, b1] = [a1z, b1] =

[a1, b1]⇒ [a1, b1b2
−1] = 1. But this means that |[A, b1b2−1]| ≤ p, contrary to the

initial assumption. Therefore a2 /∈ 〈a1, Z(G)〉 and G = 〈a1, a2, b1, b2〉.

As in the previous case wse use Lemma 9 to construct automorphisms α and

β on G/Z(G) and Z(G) respectively induced by a non-central automorphism of

G. Take β to be the identity matrix and
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G

A<a1, a2, Z> = CG(b1)

Z(G) = Z

G’

{e}

Figure 8.2: Part of the lattice of subgroups.

α =



1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1


They satisfy the conditions of the lemma so we conclude that Aut(G) is not

Abelian.

2. Assume that A is not elementary Abelian and exp(A) ≥ p2, i.e A ∼= Cp2×Cp×Cp×Cp.

In the case when A ∼= Cp2 × Z(G), then G is generated by at most 3 elements and

thus Aut(G) is not Abelian by Theorem 5.

Otherwise Z(G) ∼= 〈ap1〉 × 〈z1〉 × 〈z2〉 and A ∼= 〈a1, a2, Z(G)〉, where o(a2) = p.

As before we look at two cases:

If |[A, b1]| = p, for some b1 ∈ G \ A, ∃ai ∈ A such that [ai, b1] = 1.

If [a2, b2] = 1, then we can construct an automorphism on G/Z(G), which by Lemma

9 is induced by a non-central automorphism on G.
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α =



1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1


In fact the same argument as for A ∼= Cp × Cp × Cp × Cp × Cp works if [b1, b2] = 1.

If [a1, b2] = 1, it is easily seen that if o(a1) = p2 then o(a2) = o(b1) = p by maximality

of A. Furthermore [a2, b1] 6= 1 by the same argument. Let [a2, b1] = u. Consider the

subgroup A′ = 〈x, y, Z(G)〉, where x, y ∈ Ω1\Z(G) and [x, y] 6= 1 and B = 〈a2, b1, u〉.

Then A′ = B × 〈z〉, for z ∈ Z and G ∼= 〈A′, a1, b2〉. Then we can choose r1, r2, s1, s2

such that bb21 = b1u
r1zs1 and ab22 = a2u

r2zs2

if s1 6= 0 we may assume s2 = 0, take s2 = s1k. Replace b1, a2 and u in the following

way b′1 = b1, a
′
2 = a2b

−k
1 and u′ = [b′1, a

′
2]. In this new basis consider β = id and

α =



1 0 0 0

0 1 0 0

0 1 1 0

0 −r2 0 1


in the case when s1 = 0 then β is the identity matrix and

α =



1 0 0 0

1 1 0 0

0 1 1 0

r1 0 0 1



|[A, g]| = p2 = |G′| In this case nothing outside the group commutes. Here like in

case 1.1 deeper understanding about the group structure is needed to present a non-
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central automorphism or show that such a construction is impossible. We note that

unlike in the cases discussed until now β is not the identity matrix.

8.3 On the smallest non-special with homocyclic Aut(G)

In the case when |G| = p7 there is one hypomorphism class that satisfies the necessary

conditions for a group to have homocyclic Autc(G).

G′ ∼= Cp

Z(G) ∼= Cp2 × Cp2

G/Z(G) ∼= Cp × Cp × Cp

G/G′ ∼= Cp2 × Cp2 × Cp2

But we will see that central automorphisms do not commute. By Lemma 7. We have to

check that K(G) 6= R(G), where

K(G) = 〈x ∈ G|heightG/G′(G′x) ≥ b〉, where pb = exp(G′) and

R(G) = 〈z ∈ Z(G)|o(x) ≤ pd〉, where pd = min(exp(G/G′), Z(G))

We see that R(G) = Z(G). However 1 = b < d = 2, so we are in the second case of

the lemma, and we have to see that R(G)/G′ is cyclic, but it’s obviously not. So we

conclude that the central automorphisms do not commute and therefore the group with

this hypomorphism class is not Miller.
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Conclusion

In this thesis we presented a counterintuitive result, by constructing an example disproving

the conjecture that for p odd every Miller group is special.

A natural direction for future research is to generalize the given example. In general there

are three different ways in which one can do this, in either of the three ”degrees of freedom”

- number of generators, exponent of center and the prime.

In [7] Jamali gives an interesting construction. He generalizes the groups n. 91 and

92 from the Hall Senior tables [4] in two directions - size of exponent and number of

generators. Other interesting generalizations can be found in [10] and [2]. The latter gives

a generalization of the result of Jonah and Konvisser to n+ 2 generators.
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