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Chapter 1

Introduction

Definability theory is a branch of model theory which has various applications in several

fields of research, e.g. in theoretical physics, theoretical computer science, algebraic logic.

As it has been pointed out in various works (e.g. [1] and [14]), definability was one of

Alfred Tarski’s favourite subjects already in the 1930’s. In the paper [15] he formulated

and started the project of bringing about a definability theory.

The fact that, before exploring logic, Tarski did research in sciences and in the method-

ology of science indicates that he might well have motivations coming from his scientific

experience. In this line it is remarkable that Hans Reichenbach, in his book [13] (already

in 1920), explains that definability is a basic factor in relativity theory . This idea appears

already in Einstein’s work, in 1905, but more implicitly than in [13].

Another source of motivation can be the pioneering paper [6], where Willem Blok and

Don Pigozzi explain that definability is a corner stone of algebraic logic. To illustrate this,

let us recall from any textbook on the subject (cf. e.g. [12], [10], [11], [2]) that the algebraic

version Cs(M) of a model M of first order logic is an algebra the universe of which is the
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collection {
ϕM : ϕ a formula

}
of all definable relations of the model; where

ϕM := {k ∈ ωM such that M |= ϕ[k]}

is the meaning of ϕ in M.

The starting point of definability theory is the following. Given a theory, how to

determine whether some property r is definable in terms of certain other notions? Suppose

that L is a first-order language and L′ is the first-order language that we get from L by

adding a new predicate symbol r. Suppose also that T is a set of formulas of L′. We have

the following definitions.

Definition 1.1. We say that the theory T defines r explicitly if and only if there is a

formula ϕ(x1, . . . , xn) of L such that in every model of T , the formulas ϕ(x1, . . . , xn) and

r(x1, . . . , xn) are satisfied exactly by the same n-tuples (a1, . . . , an) of elements that is

T |= ∀x1 . . . ∀xn(r(x1, . . . , xn)↔ ϕ(x1, . . . , xn)).

Definition 1.2. We say that the theory T defines r implicitly if and only if it is not

the case that there are two L′-models in which T holds, having the same elements and

interpreting all symbols of L in the same way but interpreting the symbol r differently.

This is also often expressed by

T, T ′ |= ∀x1 . . . ∀xn(r(x1, . . . , xn)↔ r′(x1, . . . , xn)),

where T ′ is exactly like T except that any occurrence of r is replaced by r′, a predicate
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symbol of the same arity as r but not in L.

Notice that if a relation is explicitly definable then it is implicitly definable as well.

What about the converse? The answer depends on the choice of the underlying logic. A

logical system in which the converse holds is said to have the Beth’s definability property.

In 1953, E.W. Beth [5] proved the following.

Theorem 1.3. First order logic has the Beth’s definability property.

This thesis is on Beth’s property. We will give a proof of Theorem 1.3 which is more

detailed than in [5]. We will try to understand the proof by exhibiting a logic that does

not have Beth’s property and by looking at a proposed way to fix it. We will highlight the

steps needed to achieve Beth property. In so doing, we hope to understand some of the

crucial reasons why Beth property holds in first-order logic.

This thesis is organised as follows: Section 2 sets the notation and lists basic concepts

and theorems from model theory of first order logic. Section 3 states and proves Beth

definability theorem for first-order logic. Section 4 treats quantified modal logic in which

Beth property does not hold. Section 5 looks at quantified hybrid logic, a logic devised to

fix the failure of Beth’s property in quantified modal logic.
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Chapter 2

General notation and terminology

We assume that the reader is familiar with naive set theory and the basics of first-order

logic. Throughout, we basically use the notation and terminology of [2] and [7]. To spare

the reader looking into [2] and [7], we recall some basics.

2.1 Sets, relations and functions

Throughout, we “live” in Zermelo-Fraenkel set theory with the axiom of choice (ZFC).

Right through, ∅ denotes the empty set. If x is a set, then S(x) denotes its successor

x∪{x}. Recall that, according to von Neumann, a possible coding of the natural numbers

in ZFC is:

0 = ∅, 1 = S(0), 2 = S(1), . . . , n = S(n− 1), . . . .

It is left to the reader to check that this implies that

n = {0, 1, 2, . . . , n− 1} (2.1.1)
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for every natural number n. Thus k ∈ n for every k < n (where < is the usual ordering of

natural numbers). Throughout, ω denotes the set of all natural numbers (in von Neumann’s

sense).

If a and b are sets then the ordered pair with first member a and second b is denoted

by 〈a, b〉. Recall that, in ZFC,

〈a, b〉 = 〈a1, b1〉 if and only if a = a1 and b = b1,

for every sets a, b, a1, b1.

Recall that a binary relation is defined to be a set of pairs. If R is a binary relation,

then Dom(R) and Rng(R) denote its domain and range, respectively, that is,

Dom(R)
def
= {x : 〈x, y〉 ∈ R} and Rng(R)

def
= {y : 〈x, y〉 ∈ R} .

If a binary relation f satisfies

if 〈x, y〉 ∈ f and 〈x, z〉 ∈ f then y = z

for every sets x, y, z then f is called a function. For any x ∈ Dom(f), f(x) denotes the

unique element y for which 〈x, y〉 ∈ f . Instead of f(x), we sometimes write fx or fx. For

a function f and sets A,B, “f : A −→ B” means that Dom(f) = A and Rng(f) ⊆ B. If

f : A −→ B and C ⊆ A, then the restriction of f to C is the function f � C : C −→ B

such that f � C(c) = f(c) for all c ∈ C. A function f : A −→ B is called surjective or onto

if Rng(f) = B, injective or one-to-one if

f(a) = f(b) =⇒ a = b

6
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for all a, b ∈ A; bijective if it is both surjective and injective.

Let A and B be sets. Then AB denotes the set of all functions from A into B, that is,

AB
def
= {f : f is a function with Dom(f) = A and Rng(f) ⊆ B} .

Thus ∅B = {∅} = 1 and A∅ = ∅ = 0 if A 6= ∅.

Sometimes we call functions sequences. In particular, we speak about finite sequences.

If X is a set then f is called a finite sequence over X if Dom(f) ∈ ω and Rng(f) ⊆ X.

According to (2.1.1) then

f : {0, 1, 2, . . . , n− 1} −→ X

for some n ∈ ω. In this case, the finite sequence f can also be written as 〈f0, . . . , fn−1〉. If

n = 0, then f = ∅.

For any set X, X∗ denotes the set of all finite sequences over X, defined as follows:

X∗
def
= {f : Dom(f) ∈ ω and Rng(f) ⊆ X} =

=
⋃
{nX : n ∈ ω} .

The elements of X∗ are also called words over X, suggesting that, sometimes, the

intuition behind a subset H of X∗ is that H is a language over the alphabet X.

The concatenation p_q of two words p := 〈a1, . . . , an〉 and q := 〈b1, . . . , bk〉 is just the

two words written one after the other, that is,

p_q = 〈a1, . . . , an〉_〈b1, . . . , bk〉
def
= 〈a1, . . . , an, b1, . . . , bk〉.

We often simply write pq in place of p_q, and we will use this notation extensively in the

definitions below. We will often write just a in place of 〈a〉. Using these two conventions,
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we can write a1 . . . an in place of 〈a1, . . . , an〉.

2.2 First-order logic

In this subsection we recall the definitions of formulas, models and satisfactions of first-

order logic (FOL).

First we specify the alphabet from which we will build up our formulas. This alphabet

will consist of the following parts:

• the so-called logical symbols : LS := {¬,∧,∃, .=},

• some auxiliary symbols (which could be omitted but their use makes our life easier):

parentheses ( and ),

• some parameters: non-logical symbols (function symbols and relation symbols of

Definition 2.1 below), and

• a set of variables.

Definition 2.1 (vocabulary). We call a function t a vocabulary (or signature or ranked

alphabet or similarity type) if conditions (i) and (ii) below hold.

(i) Rng(t) ⊆ ω,

(ii) Dom(t) = Fnst tRlst for some sets Fnst and Rlst (t denotes disjoint union).

The sets Fnst and Rlst are called the set of function symbols of t and the set of relation

symbols of t, respectively. For any s ∈ Dom(t), t(s) is called the rank or arity of s. If

s ∈ Fnst and t(s) = 0, then we call s a constant symbol.

The set Dom(t) is often called the set of non-logical symbols of an alphabet for FOL.

8
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From now on, unless stated otherwise, t stands for an arbitrary but fixed vocabulary.

Let V be an arbitrary set satisfying V ∩ (Dom(t) ∪ LS) = ∅ (but arbitrary otherwise).

We call V a set of variables.

Definition 2.2 (term and formula). We define the set Trmt(V) of terms of similarity type

t with variables from V to be the smallest subset H of (V ∪ Fnst)
∗ satisfying

(i) V ⊆ H and

(ii) {fτ1 . . . τn : f ∈ Fnst, t(f) = n and τ1, . . . , τn ∈ H} ⊆ H.

We define the set Fmlt(V) of formulas of similarity type t with variables from V to be

the smallest subset H of (V ∪Dom(t) ∪ LS)∗ satisfying

(i) {rτ1 . . . τn : r ∈ Rlst, t(r) = n, and τ1, . . . , τn ∈ Trmt(V )} ∪

∪ {τ .
= σ : τ, σ ∈ Trmt(V )} ⊆ H and

(ii) {¬ϕ : ϕ ∈ H} ∪ {∧ϕψ : ϕ, ψ ∈ H} ∪

∪ {∃xϕ : x ∈ V and ϕ ∈ H} ⊆ H.

The formulas belonging to the left-hand-side of “⊆” in (i) are called atomic formulas.

Definition 2.3 (free and bound variables, sentence and theory). Let ϕ ∈ Fmlt(V ). We

define the free and bound variables of ϕ inductively as follows:

• If ϕ is an atomic formula, the variable x is free in ϕ if and only if x occurs in ϕ.

There is no bound variable in any atomic formula.

• If ϕ = ¬ψ, then x is free (respectively bound) in ϕ if and only if x is free (respectively

bound)in ψ.

• If ϕ = ψ ∧ θ, then x is free (respectively bound) in ϕ if and only if x is free (respec-

tively bound) in either ψ or θ.
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• If ϕ = ∃yψ, then x is free in ϕ if and only if x is free in ψ and x and y are different

symbols. Also, x is bound in ϕ if and only if x is y or x is bound in ψ.

If no variable occurs free in ϕ, then we say that ϕ is a sentence of Fmlt(V ). A set of

sentences T such that T ⊆ Fmlt(V ) is called a t-theory.

The logical connectives ¬,∧,∃x are called, respectively, negation, conjunction and exis-

tential quantifier. For easier readability, we will often write f(τ1, . . . , τn), r(τ1, . . . , τn) and

(ϕ ∧ ψ) in place of fτ1 . . . τn, rτ1 . . . τn and (∧ϕψ), respectively. If ϕ ∈ Fmlt(V ), then we

often refer to it as a t-formula or t-sentence if it is a sentence.

We will use the following standard abbreviations:

(ϕ ∨ ψ) stands for ¬(¬ϕ ∧ ¬ψ),

(ϕ→ ψ) stands for ¬(ϕ ∧ ¬ψ),

(ϕ↔ ψ) stands for (ϕ→ ψ) ∧ (ψ → ϕ),

∀vϕ stands for ¬∃¬ϕ.

The derived logical connective ∨ is called disjunction,→ is called conditional or implication,

↔ is called biconditional or equivalence, and ∀v is called universal quantifier.

Definition 2.4 (model and structure). A t-model (or a model of similarity type t or a

t-structure) M is a pair 〈U(M),m〉 satisfying the following conditions:

(i) U(M) is a nonempty set called the universe of M,

(ii) m is a function such that

• Dom(m) = Dom(t),

• if f ∈ Fnst(V ) and t(f) = n then m(f) : U(M)n −→ U(M), and
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• if r ∈ Rlst(V ) and t(r) = n then m(r) ⊂ U(M)n. For n = 0, we have U(M)n =

{∅}.

For each symbol s ∈ Dom(t), we call m(s) the interpretation of s in M and we also denote

by sM.

Remark 2.5. In FOL, we make the notion of structure and model coincide. It will not

be the case for Quantified Modal Logic. We make the distinction since for definability we

reason in terms of models.

Definition 2.6 (valuation of variables, validity of formulas, and semantical consequence).

Let M be a t-model and let V be an arbitrary set of variables for t. A function k : V −→

U(M) is called a valuation of the variables from V in M.

Let k be an arbitrary but fixed valuation of the variables in M. We define when a

t-formula is true in M at valuation k of the variables, in symbols M � ϕ[k], by recursion,

as follows. First we define the value τM[k] of any term τ ∈ Trmt(V ) at k in M as:

• xM[k] := k(x) if x ∈ V ,

• (f(τ1, . . . , τn))M[k] :=

fM(τM
1 [k], . . . , τM

n [k]) if f ∈ Fnst, t(f) = n, τ1, . . . , τn ∈ Trmt(V ).

Now

• for atomic formulas r(τ1, . . . , τn),

M � r(τ1, . . . , τn)[k]
def⇐⇒ 〈τM

1 [k], . . . , τM
n [k]〉 ∈ rM,

for atomic formulas τ
.
= σ,

M � (τ
.
= σ)[k]

def⇐⇒ τM[k] = σM[k],

11
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• for negated formulas ¬ϕ,

M � ¬ϕ[k]
def⇐⇒ it is not the case that M � ϕ[k]( or M¬ � ϕ[k]),

• for conjunctions (ϕ ∧ ψ),

M � (ϕ ∧ ψ)[k]
def⇐⇒ M � ϕ[k] and M � ψ[k],

• for quantified formulas ∃xϕ,

M � ∃xϕ[k]
def⇐⇒ M � ϕ[k′] for some valuation k′

such that k � (V \ {x}) = k′ � (V \ {x}).

By these, M � ϕ[k] has been defined for any t-formula ϕ.

We say that ϕ is valid in M or M is a model of ϕ, in symbols

M � ϕ,

if M � ϕ[k] for every valuation k : V −→ U(M). We say that ϕ is (logically) valid, in

symbols � ϕ, if M � ϕ for every t-model M.

We say that a t-model M satisfies Σ ⊆ Fmlt(V ), in symbols M � Σ, if M � ϕ, for all

ϕ ∈ Σ.

If Σ ⊆ Fmlt(V ) and ϕ ∈ Fmlt(V ), then we say that ϕ is a semantical consequence of

Σ, in symbols

Σ � ϕ,

if for every t-model M, whenever M � Σ then M � ϕ.

12
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Notation 2.7. If M is a t-model, k : V −→ U(M), ϕ ∈ Fmlt(V ), and x1, . . . , xn are all

the variables occurring freely in ϕ and the order of these is fixed somehow, then instead

of M � ϕ[k] we sometimes write M � ϕ[k(x1), . . . , k(xn)] or M � ϕ(k(x1), . . . , k(xn)). If

a1, . . . , an ∈ U(M), then M � ϕ(a1, . . . , an) is equivalent to M � ϕ(k(x1), . . . , k(xn)) for

some valuation k such that k(xi) = ai for i = 1, . . . , n.

Convention 2.8. If ϕ(x1, . . . , xn) ∈ Fmlt(V ) and M is a t-model, we notice that

M � ϕ(x1, . . . , xn) if and only if M � ∀x1 . . . ∀xnϕ(x1, . . . , xn).

Therefore, we can always assume that whenever we write M � ϕ, ϕ is a t-sentence. In the

same manner, when we write M � T for T ⊆ Fmlt(V ), we assume that T is a t-theory.

Next we list some basic concepts and theorems from model theory of FOL that we

will refer to for our material on Beth definability property of FOL. Proofs of theorems are

available in [7].

Definition 2.9 (expansion and reduct). Let t ⊆ t′ be two vocabularies and let M be a

t-model and N a t′-model.

We say that N is an expansion of M if U(N) = U(M) and for every symbol s ∈ Dom(t),

sN = sM. If N is an expansion of M then we say that M is a reduct of N to the vocabulary

t. Observe that every t′-model N has exactly one reduct to t, which is denoted by N � t.

In the following definitions and properties, let t be a vocabulary and let M and N be

t-models. We denote Th(M) the set of all t-sentences true in M. Any sentence, formula,

and theory are to be understood as t-sentence, t-formula, and t-theory respectively.

Definition 2.10 (elementary equivalence). We say that M and N are elementary equiva-

lent, written M ≡ N, if Th(M) = Th(N).
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Definition 2.11 (embedding and isomorphism). An embedding from M into N is a func-

tion α from U(M) into U(N) such that:

(i) If c is a constant symbol in t then α(cM) = cN.

(ii) If R is an n-ary relation symbol in t then for all a1, . . . , an ∈ U(M),

(a1, . . . , an) ∈ RM if and only if (α(a1), . . . , α(an)) ∈ RN.

(iii) If f is an n-ary function symbol in t then for all a1, . . . , an ∈ U(M),

α(fM(a1, . . . , an)) = fN(α(a1), . . . , α(an)).

An embedding is always injective. If in addition α is surjective, then we say that α is an

isomorphism from M onto N and we write α : M ∼= N. We say that M is isomorphic to

N, and we write M ∼= N, if there is a an isomorphism α from M onto N.

Lemma 2.12. If M ∼= N then M ≡ N.

Definition 2.13 (submodel). We say that M is a submodel of N, and we write M ⊆ N if

the following conditions are satisfied:

(i) U(M) ⊆ U(N),

(ii) if c is a constant symbol in t then cN = cM,

(iii) if r is an n-ary relation symbol in t then rN ∩ U(M)n = rM (rN = rM if n = 0), and

(iv) if f is an n-ary function symbol in t then for all ai, . . . , an ∈ U(M), fN(a1, . . . , an) =

fM(a1, . . . , an).

14



C
E

U
eT

D
C

ol
le

ct
io

n

Definition 2.14 (elementary submodel). We say that M is an elementary submodel of N,

and we write M 4 N, if M ⊆ N and for every n < ω, for every formula ϕ(x1, . . . , xn) and

for all a1, . . . , an ∈ U(M) we have

N � ϕ(a1, . . . , an) if and only if M � ϕ(a1, . . . , an)

Lemma 2.15. If M 4 N then M ≡ N.

Lemma 2.16 (Tarski-Vaught criterion). Let M ⊆ N. Then M 4 N if and only if for

every n < ω, for every formula ϕ(x1, . . . , xn, y) and for all a1, . . . , an ∈ U(M),

if N � ∃yϕ(a1, . . . , an, y) then there is b ∈ U(M) such that M � ϕ(a1, . . . , an, b).

Theorem 2.17 (completeness theorem). Let T be a theory and let ϕ be a sentence. Then,

(i) T has a model if and only if T is consistent, and

(ii) T � ϕ if and only if T ` ϕ

Theorem 2.18 (compactness theorem). Let T be a theory and let ϕ be a sentence. Then,

(i) T has a model if and only if every finite subset of T has a model, and

(ii) if T � ϕ then U � ϕ for some U finite subset of T .

Theorem 2.19 (deduction theorem). Let T be a theory, σ be a sentence and ϕ be a

formula. Then,

T ∪ {σ} � ϕ if and only if T � σ → ϕ.

15
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Chapter 3

Beth property in First Order Logic

3.1 Beth definability theorem

We give a detailed proof of Beth’s definability theorem using Craig’s interpolation theorem.

They both are results involving amalgamation of vocabularies. The proof is based on [7].

We will need the following definition.

Definition 3.1 (separability). Let t1 and t2 be two similarity types such that t0 := t1∩ t2.

Let θ be a t0-sentence. Let T and U be a t1-theory and a t2-theory, respectively. We say

that θ separates T and U if T � θ and U � ¬θ. We say that T and U are inseparable if no

t0-sentence separates them.

Theorem 3.2 (Craig’s interpolation theorem). Let ϕ be a t1-sentence and ψ be a t2-

sentence. If ϕ � ψ then there exists a t1 ∩ t2-sentence θ such that ϕ � θ and θ � ψ.

The sentence θ is called a Craig interpolant of ϕ and ψ.

Proof. Let t1, t2, ϕ, and ψ be as in the formulation of the theorem. Assume ϕ � ψ and

16
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that there is no interpolant of ϕ and ψ. We will derive a contradiction by showing that

ϕ ∧ ¬ψ has a model.

Let t0 = t1 ∩ t2. Let C be a countable infinite set of constant symbols not occurring in

t1 ∪ t2. Let t′i = ti ∪ C, for i = 0, 1, 2.

Claim 3.2.1. The t′1-theory {ϕ} and the t′2-theory {¬ψ} are inseparable.

Proof. For the sake of contradiction, assume that there exists a t′0-sentence θ separating {ϕ}

and {¬ψ}. Then we have ϕ � θ and ¬ψ � ¬θ or equivalently θ � ψ. We may assume that

θ has the form θ′(c1, . . . , cn), where ci ∈ C, i = 1, . . . , n and θ′(x1, . . . , xn) is a t0-formula.

Since ϕ and ψ do not contain any ci for i = 1, . . . , n, ϕ � ∀x1 . . . ∀xnθ′(x1, . . . , xn) and

∀x1 . . . ∀xnθ′(x1, . . . , xn) � ψ, contradicting the fact that ϕ and ψ have no interpolant.

Let ϕi, i < ω and ψi, i < ω be enumerations of all t1-sentences and all t2-sentences

respectively. We will construct two increasing sequences of theories

{ϕ} = T0 ⊆ T1 ⊆ T2 . . .

{¬ψ} = U0 ⊆ U1 ⊆ U2 . . .

in the language of t′1 and t′2, respectively, such that conditions (1)–(3) below will be satisfied.

For all i < ω:

1. Ti and Ui are inseparable.

2. (a) if Ti ∪ {ϕi} and Ui are inseparable then ϕi ∈ Ti+1, and

(b) if Ti+1 and Ui ∪ {ψi} are inseparable then ψi ∈ Ui+1,

3. (a) if ϕi has the form ∃xσ(x) and ϕi+1 ∈ Ti then σ(c) ∈ Ti+1 for some c ∈ C, and

(b) if ψi has the form ∃xσ(x) and ψi ∈ Ui+1then σ(d) ∈ Ui+1 for some d ∈ C.
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Given Ti and Ui, Ti+1 and Ui+1 are constructed in the obvious way. We then have the

following cases:

• Ti+1 = Ti (resp. Ui+1 = Ui) if the condition in (2a) (resp. (2b)) is not satisfied,

• Ti+1 = Ti ∪ {ϕi, σ(c)} (resp. Ui+1 = Ui ∪ {ψi, σ(d)}) if both the conditions in (2a)

and (3a) (resp. (2b) and (3b)) are satisfied, and

• Ti+1 = Ti ∪ {ϕi} (resp. Ui+1 = Ui ∪ {ψi}) if only the condition in (2a) (resp. (2b)) is

satisfied.

For (3), c and d are chosen such that they did not occur in Ti, Ui, ϕi or ψi. In that

way, inseparability is preserved.

Let Tω =
⋃
i<ω Ti and Uω =

⋃
i<ω Ui. Since every Ti and Ui are finite theories for i < ω,

by the Compactness theorem, it follows that Tω and Uω are inseparable.

Claim 3.2.2. The theories Ti and Ui are consistent for every i 6 ω.

Proof. Let i 6 ω be arbitrary but fixed. The theories Ti and Ui are inseparable. Therefore,

they are both consistent. Since assume without loss of generality that Ti is not consistent.

Then Ti � ¬∀x(x = x) and Ui � ∀x(x = x), as ∀x(x = x) is a tautology. But then we

contradict the inseparability of Ti and Ui.

Claim 3.2.3. The theories Tω and Uω are maximal.

Proof. Let σ be an arbitrary t′1-sentence. We want to show that either σ ∈ Tω or ¬σ ∈ Tω.

Suppose for a contradiction that σ 6∈ Tω and ¬σ 6∈ Tω. Then for some i < ω, σ = ϕi

and Tω ∪ {ϕi} and Uω are not inseparable. Hence, there exists a t′0-sentence θ such that

Tω ∪ {ϕi} � θ and Uω � ¬θ. By a similar argument, there is a t′0-sentence θ′ such that

Tω ∪ {¬ϕi} � θ′ and Uω � ¬θ′. By the deduction theorem, we have

Tω � ϕi → θ and Uω � ¬θ
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and

Tω � ¬ϕi → θ′ and Uω � ¬θ′.

It follows that Tω � θ ∨ θ′ and Uω � ¬(θ ∨ θ′) contradicting the inseparability of Tω and

Uω. Therefore, Tω is maximal. In a similar way, one can show that Uω is maximal.

Claim 3.2.4. The t′0-theory Tω ∩ Uω is maximal consistent.

Proof. Since Tω ∩Uω ⊆ Tω, it is consistent. We want to show that for every t′0-sentence σ,

either σ ∈ Tω ∩ Uω or ¬σ ∈ Tω ∩ Uω. Let σ be a t′0-sentence. By Claim 3.2.3, σ ∈ Tω or

¬σ ∈ Tω and σ ∈ Uω or ¬σ ∈ Uω. Since Tω and Uω are inseparable, we cannot have Tω � σ

and Uω � ¬σ or vice versa. Therefore, and by maximality of Tω and Uω, either σ ∈ Tω∩Uω

or ¬σ ∈ Tω ∩ Uω.

Since Tω is consistent, let N1 be a t′1-model such that N1 � Tω. Observe that for any

constant symbol e ∈ t1, for any n-ary function symbol f ∈ t1 and any c1, . . . , cn ∈ C, N1 �

∃x(f(c1, . . . , cn) = x) and N1 � ∃x(e = x). Thus, by maximality of Tω, ∃x(f(c1, . . . , cn) =

x) ∈ Tω and ∃x(e = x) ∈ Tω. Using (3), we can then construct a submodel M1 ⊆ N1 such

that

• U(M1) =
{
cN1 : c ∈ C

}
,

• eM1 = eN1 for every constant symbol in t′1,

• RM1 = RN1 ∩ (U(M1))
n for every n-ary relation symbol R ∈ t1, and

• fM1(a1, . . . , an) = fN1(a1, . . . , an) for every n-ary function symbol in t1 and for all

a1, . . . , an ∈ U(M1).

Claim 3.2.5. We have M1 4 N1, and in particular M1 � Tω.
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Proof. We use the Tarski-Vaught criterion (Lemma 2.16). Let N1 � ∃yϕ(c1, . . . , cn, y) for

some t′1-formula ϕ(c1, . . . , cn, y), c1, . . . , cn ∈ C. By maximality of Tω, ∃yϕ(c1, . . . , cn, y) ∈

Tω and by (3), ϕ(c1, . . . , cn, c) ∈ Tω for some c ∈ C.

In the same way, let N2 be a t′2-model such that N2 � Uω. We make the following claim:

Claim 3.2.6. There exists M2 4 N2 such that U(M2) =
{
cN2 : c ∈ C

}
. In particular,

M2 � Uω.

Claim 3.2.7. We have M1 � t′0 ∼= M2 � t′0.

Proof. We have M1 � t′0 � Tω ∩ Uω and M2 � t′0 � Tω ∩ Uω. By maximality of Tω ∩ Uω, for

every t0-formula ϕ(x1, . . . , xn) and c1, . . . , cn ∈ C,

M1 � t
′
0 � ϕ(c1, ..., cn) if and only if M2 � t

′
0 � ϕ(c1, . . . , cn) (∗).

Let us denote M1 = U(M1 � t′0) = U(M1) and M2 = U(M2 � t′0) = U(M2). Let α be a

function from M1 into M2 defined by α(cM1) = cM2 . By (∗), it is immediate to see that

α is well defined and is an embedding of M1 � t′0 into M2 � t′0. Moreover, it is surjective

hence an isomorphism.

Since M1 � t′0 ∼= M2 � t′0 and M2 � Uω, we can expand M1 � t′0 into a t′2-model M′
2,

such that M′
2
∼= M2. We can then construct a t′1 ∪ t′2-model M such that it interprets t′1

in the same manner as M1 and t′2 in the same manner as M′
2. Since ϕ ∈ Tω and ¬ψ ∈ Uω,

M � ϕ ∧ ¬ψ, the contradiction we are looking for.

Definition 3.3 (implicit and explicit definition). Let t be a vocabulary. Let r, r′ 6∈ t

be two new n-ary relation symbols. Let Σ(r) be a t ∪ {r}-theory, and let Σ(r′) be the

corresponding t ∪ {r′}-theory formed by replacing r everywhere by r′.
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We say that Σ(r) defines r implicitly if

Σ(r) ∪ Σ(r′) � ∀x1 . . . ∀xn(r(x1, . . . , xn)↔ r′(x1, . . . , xn)).

We say that Σ(r) defines r explicitly if there exists a t-formula ϕ(x1, . . . , xn) such that

Σ(r) � ∀x1 . . . ∀xn(r(x1, . . . , xn)↔ ϕ(x1, . . . , xn)).

Theorem 3.4 (Beth definability theorem). Let Σ(r) be a t∪{r}-theory for some vocabulary

t and r 6∈ t. Then, Σ(r) defines r explicitly if and only if it defines r implicitly.

Proof. Suppose Σ(r) defines r explicitly. Then by definition,

Σ(r) � ∀x1 . . . ∀xn(r(x1, . . . , xn)↔ ϕ(x1, . . . , xn)),

for a t-formula ϕ(x1, . . . , xn). But this is equivalent to

Σ(r′) � ∀x1 . . . ∀xn(r′(x1, . . . , xn)↔ ϕ(x1, . . . , xn)).

Combining the two, we have

Σ(r) ∪ Σ(r′) � ∀x1 . . . ∀xn(r(x1, . . . , xn)↔ ϕ(x1, . . . , xn)↔ r′(x1, . . . , xn)).

Therefore, Σ(r) defines r implicitly.

Conversely, suppose Σ(r) defines r implicitly. Add new constants c1, . . . , cn to t. Then

Σ(r) ∪ Σ(r′) � r(c1, . . . , cn)→ r′(c1, . . . , cn).

By the compactness theorem, there exists finite subsets ∆ ⊆ Σ(r) and ∆′ ⊆ Σ(r′) such
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that

∆ ∪∆′ � r(c1, . . . , cn)→ r′(c1, . . . , cn).

Let ψ(r) be the conjunction of all t ∪ {r}-sentences in ∆ and ψ(r′) be the conjunction of

all t ∪ {r′}-sentences in ∆′. Then,

ψ(r) ∧ ψ(r′) � r(c1, . . . , cn)→ r′(c1, . . . , cn).

By the deduction theorem,

ψ(r) ∧ r(c1, . . . , cn) � ψ(r′)→ r′(c1, . . . , cn).

By Craig interpolation theorem, there exists a t-formula θ(x1, . . . , xn) such that θ(c1, . . . , cn)

is a t ∪ {c1, . . . , cn}-sentence,

ψ(r) ∧ r(c1, . . . , cn) � θ(c1, . . . , cn), (3.1.1)

and

θ(c1, . . . , cn) � ψ(r′)→ r′(c1, . . . , cn). (3.1.2)

By deduction theorem, (3.1.1) is equivalent to

ψ(r) � r(c1, . . . , cn)→ θ(c1, . . . , cn), (3.1.3)

and (3.1.2) is equivalent to

ψ(r′) � θ(c1, . . . , cn)→ r′(c1, . . . , cn)
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which is again equivalent to

ψ(r) � θ(c1, . . . , cn)→ r(c1, . . . , cn). (3.1.4)

Now (3.1.3) and (3.1.4) yield

ψ(r) � r(c1, . . . , cn)↔ θ(c1, . . . , cn).

Because c1, . . . , cn do not occur in ψ(r),

ψ(r) � ∀x1 . . . ∀xn(r(x1, . . . , xn)↔ θ(x1, . . . , xn)),

where x1, . . . , xn are variables not occurring in θ(c1, . . . , cn). Since ψ(r) is a conjunction of

sentences in Σ(r),

Σ(r) � ∀x1 . . . ∀xn(r(x1, . . . , xn)↔ θ(x1, . . . , xn)).

As θ(x1, . . . , xn) is a t-formula, Σ(r) defines r explicitly. We have proved Theorem 3.2.
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Chapter 4

Beth property in Quantified Modal

Logic

We will consider the quantified modal logic S5 with constant domains denoted by S5B in

[9].

4.1 Quantified modal logic

The language of quantified modal logic (QML) is obtained from the language of classical

FOL by adding a unary operator ♦. Unless stated otherwise, we will basically follow the

notation introduced in Section 2.

Logical symbols. The set LS of logical symbols is

LS = {¬,∧, ∃, .=,♦} .

Vocabulary. We only consider vocabularies whose function symbols are of arity zero

24



C
E

U
eT

D
C

ol
le

ct
io

n

(constants). In the following, let t be an arbitrary but fixed vocabulary.

Formulas. The set Fmlt(V ) of formulas is the smallest subset H of (V ∪ Dom(t) ∪ LS)∗

satisfying

(i) {rτ1 . . . τn : r ∈ Rlst, t(r) = n, and τ1, . . . , τn ∈ Trmt(V )} ∪

∪ {τ .
= σ : τ, σ ∈ Trmt(V )} ⊆ H,

(ii) {¬ϕ : ϕ ∈ H} ∪ {∧ϕψ : ϕ, ψ ∈ H} ∪

∪ {∃xϕ : x ∈ V and ϕ ∈ H} ⊆ H, and

(iii) {♦ϕ : ϕ ∈ H} ⊆ H.

The modal operator ♦ is usually called possibility. For a formula ϕ, �ϕ is the standard

abbreviation of ¬♦¬ϕ. The modal operator � is usually called necessity. The formula ♦ϕ

is usually read “possibly ϕ” and �ϕ is usually read “necessarily ϕ”.

Structure and Model. We define the following object over the vocabulary t: A frame

is an ordered tuple 〈W,R〉 with W a nonempty set of states (or worlds) and R a binary

relation on W . A skeleton is an ordered triple 〈W,R,D〉, with 〈W,R〉 a frame and D a

function with domain W assigning to each state w ∈ W , a nonempty set Dw. Let D̄ denote⋃
w∈W Dw.

A structure is an ordered quadruple S
def
= 〈W,R,D,m〉 satisfying the following condi-

tions:

(i) 〈W,R,D〉 is a skeleton,

(ii) m is a (interpretation) function such that

• Dom(m) = Dom(t),

• if c is a constant, then m(c) ∈ D̄, and
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• if r is a relation symbol with t(r) = n, then m(r) ⊆ W × D̄ × · · · × D̄ (n D̄’s).

We use the standard notation sS to denote m(s) for s ∈ Dom(t).

A model is a couple M
def
= 〈S, w〉 where S

def
= 〈W,R,D,m〉 is a structure and w ∈ W .

Interpretation in M is understood as interpretation in the underlying structure S, that is

sM def
= sS for s ∈ Dom(t).

We say that a skeleton has constant domains if Dw = Dv for all w, v ∈ W .

Truth. Let S
def
= 〈W,R,D,m〉 be a structure and M

def
= 〈S, w〉 be a model, where w ∈ W .

Let V be an arbitrary set of variables. A valuation k is a function defined on V such that

k : V −→ D̄. For a valuation k and a term τ , we let [k,m](τ) denote k(τ) if τ is a variable,

and m(τ) if it is a constant.

We define when a formula ϕ is true in M at valuation k of the variables, in symbols

M � ϕ[k], by recursion, with the following clauses:

• for atomic formulas r(τ1, . . . , τn),

M � r(τ1, . . . , τn)[k]
def⇐⇒ 〈w, [k,m](τ1), . . . , [k,m](τn)〉 ∈ m(r),

for atomic formulas τ1 = τ2,

M � (τ1 = τ2)[k]
def⇐⇒ [k,m](τ1) = [k,m](τ2),

• for negated formulas ¬ϕ,

M � ¬ϕ[k]
def⇐⇒ M 6� ϕ[k],

26



C
E

U
eT

D
C

ol
le

ct
io

n

• for conjunction ϕ ∧ ψ,

M � (ϕ ∧ ψ)[k]
def⇐⇒ M � ϕ[k] and M � ψ[k],

• for modal formulas ♦ϕ,

M � ♦ϕ[k]
def⇐⇒ there exists a v ∈ W

such that wRv and 〈S, v〉 � ϕ[k], and

• for quantified formulas ∃xϕ,

M � ∃xϕ[k]
def⇐⇒ M � ϕ[k′] for some valuation k′

such that k � (V \ {x}) = k′ � (V \ {x}) and Rng(k′) ⊆ Dw.

Let F be a class of skeleton, and ϕ a formula. We say that ϕ is F-valid, in symbols �F ϕ

if for every structure S on every skeleton from F, 〈S, w〉 � ϕ[k] holds for every w and k.

Validity of ϕ on the class of all skeletons is denoted by � ϕ.

Semantical consequence. We say that a model M satisfies a theory Σ, in symbols

M � Σ, if M � ϕ, for all ϕ ∈ Σ.

We say that ϕ is a semantical consequence of Σ, in symbols

Σ � ϕ,

if for every t-model M, whenever M � Σ then M � ϕ. Here we use the notion of model

not structure. This semantical consequence is often called local semantical consequence in

the literature.
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4.2 Failure of Beth property for quantified S5B

An S5-structure S = 〈W,R,D,m〉 is one in which R is W ×W . We denote a quantified

modal logic S5 with constant domains by S5B. We will give the counterexample to Beth’s

definability theorem for quantified S5B constructed in [9].

Let S = 〈W,R,D,m〉 be an S5B-structure for a vocabulary t without constant symbols

and let w ∈ W .

Define Sw to be the first-order structure 〈D̄,mw〉 such that

mw(r) =
{
〈a1, . . . , an〉 ∈ D̄n : 〈w, a1, . . . , an〉 ∈ m(r)

}
for any n-ary relation symbol r in t.

Definition 4.1 (Isomorphism in S5B). Let S = 〈W,R,D,m〉 and T = 〈V, S,E, n〉 be two

S5B-structures. We say that σ is an isomorphism from S onto T, in symbols σ : S ∼= T,

if σ is a bijection from D̄ onto Ē such that

(i) For every w ∈ W , there exists v ∈ V such that σ : Sw
∼= Tv, and

(ii) for every v ∈ V , there exists w ∈ W such that σ : Sw
∼= Tv.

Lemma 4.2. Let S = 〈W,R,D,m〉 and T = 〈V, S,E, n〉 be two S5B-structures. Suppose

that σ : S ∼= T and for w ∈ W , v ∈ V , σ : Sw
∼= Tv. Then, for any formula ϕ(x1, . . . , xn)

with free variables x1, . . . , xn and for any tuple 〈a1, . . . , an〉 ∈ D̄n,

〈S, w〉 � ϕ(a1, . . . , an) if and only if 〈T, v〉 � ϕ(σ(a1), . . . , σ(an)).

Proof. We will prove by induction on the complexity of ϕ. The cases ϕ(x1, x2) = (x1
.
= x2),

ϕ = ψ ∧ χ, and ϕ = ¬ψ are trivial. The remaining cases are as follows:
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• ϕ(x1, . . . , xn) = r(x1, . . . , xn) for r n-ary relation symbol. We have

〈S, w〉 � r(a1, . . . , an) ⇐⇒ 〈w, a1, . . . , an〉 ∈ rS [by definition]

⇐⇒ 〈a1, . . . , an〉 ∈ rSw [by definition of Sw]

⇐⇒ 〈σ(a1), . . . , σ(an)〉 ∈ rTv [σ : Sw
∼= Tv]

⇐⇒ 〈v, σ(a1), . . . , σ(an)〉 ∈ rT [by definition of Tv]

⇐⇒ 〈T, v〉 � r(σ(a1), . . . , σ(an)). [by definition]

• ϕ(x1, . . . , xn) = ♦ψ(x1, . . . , xn). Assume that 〈S, w〉 � ♦ψ(x1, . . . , xn). Then there

exists w′ ∈ W such that 〈S, w′〉 � ψ(x1, . . . , xn). Since σ : S ∼= T, there exists v′ ∈ V

such that σ : Sw′
∼= Tv′ . By induction hypothesis, 〈T, v′〉 � ψ(σ(a1), . . . , σ(an)).

Therefore 〈T, v〉 � ♦ψ(σ(a1), . . . , σ(an)). Conversely, since σ−1 : T ∼= S, 〈T, v〉 �

♦ψ(σ(a1), . . . , σ(an)) implies 〈S, w〉 � ♦ψ(a1, . . . , an).

• ϕ(x1, . . . , xn) = ∃xψ(x, x1, . . . , xn). We have

〈S, w〉 � ∃xψ(x, x1, . . . , xn) ⇐⇒ 〈S, w〉 � ψ(a, a1, . . . , an) for some a ∈ D̄

⇐⇒ 〈T, v〉 � ψ(σ(a), σ(a1), . . . , σ(an))

[by induction hypothesis]

⇐⇒ 〈T, v〉 � ∃xψ(x, σ(a1), . . . , σ(an)).

[semantics of ∃x]

Lemma 4.3. Let S = 〈W,R,D,m〉 and T = 〈V, S,E, n〉 be two S5B-structures. Let

w ∈ W and v ∈ V . Suppose that ρ : Sw
∼= Tv. Suppose also that for every finite ρ′ such

that ρ′ ⊆ ρ, there exists σ containing ρ′ such that σ : S ∼= T. Then, for any formula

29



C
E

U
eT

D
C

ol
le

ct
io

n

ϕ(x1, . . . , xn) with free variables x1, . . . , xn and for any tuple 〈a1, . . . , an〉 ∈ D̄n,

〈S, w〉 � ϕ(a1, . . . , an) if and only if 〈T, v〉 � ϕ(ρ(a1), . . . , ρ(an)).

Proof. We will prove by induction on the complexity of ϕ. Again, the cases ϕ(x1, x2) =

(x1
.
= x2), ϕ = (ψ ∧ χ), and ϕ = ¬ψ are trivial. For the other cases, we have

• ϕ(x1, . . . , xn) = r(x1, . . . , xn). Same proof as in Lemma 4.2.

• ϕ(x1, . . . , xn) = ♦ψ(x1, . . . , xn). Assume that 〈S, w〉 � ♦ψ(a1, . . . , an). Then there

exists w′ ∈ W such that 〈S, w′〉 � ψ(a1, . . . , an). By the assumption, there is σ

such that σ : S ∼= T and σ � {a1, . . . , an} = ρ′. Therefore, there exists v′ ∈ V

such that σ : Sw′
∼= Tv′ . By Lemma 4.2, 〈T, v′〉 � ψ(σ(a1), . . . , σ(an)). Since ρ

and σ agree on a1, . . . , an, we have 〈T, v′〉 � ψ(ρ(a1), . . . , ρ(an)). Hence, 〈T, v〉 �

♦ψ(ρ(a1), . . . , ρ(an)). Conversely, since ρ−1 : T ∼= S, 〈T, v〉 � ♦ψ(ρ(a1), . . . , ρ(an))

implies 〈S, w〉 � ♦ψ(a1, . . . , an).

• ϕ(x1, . . . , xn) = ∃xψ(x, x1, . . . , xn). Same proof as in Lemma 4.2.

Theorem 4.4. The quantified S5B does not have the Beth property.

Proof. We give the counterexample in [9]. Let T = {ϕ1, ϕ2} be the theory such that

ϕ1
def
= p→ ♦∀x(rx→ �(p→ ¬rx))

and

ϕ2
def
= ¬p→ �∃x(rx ∧�(¬p→ rx)).

Here p is a proposition (nullary relation symbol) and r is an unary relation symbol.
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Claim 4.4.1. The proposition p is implicitly definable in T .

Proof. Let S = 〈W,R,D,m〉 be a S5B-structure and let 〈S, w0〉 � T for some w0 ∈ W ,

that is 〈S, w0〉 � ϕi for i = 1, 2. Given any world w of W , let r̄w be

r̄w
def
=
{
a ∈ D̄ : 〈w, a〉 ∈ m(r)

}
.

We have a ∈ r̄w if and only if 〈S, w〉 � ra.

Since 〈S, w0〉 � ϕ1, 〈S, w0〉 � p implies that for some w ∈ W , r̄w is disjoint from

r̄w0 . In fact, we have 〈S, w0〉 � ♦∀x(rx → �(p → ¬rx)) which means that there exists

w ∈ W such that for all a ∈ D̄, if 〈S, w〉 � ra then 〈S, w〉 � �(p → ¬ra), in particular

〈S, w0〉 � p→ ¬ra. Thus, for all a ∈ D̄, if a ∈ r̄w, then a 6∈ r̄w0 , that is r̄w ∩ r̄w0 = ∅.

Since 〈S, w0〉 � ϕ2, 〈S, w0〉 6� p implies that for no w is r̄w disjoint from r̄w0 . In fact,

we have 〈S, w0〉 � �∃x(rx ∧�(¬p→ rx)). That means for all w ∈ W , there exists a ∈ D̄

such that a ∈ r̄w and 〈S, w〉 � �(¬p → ra), in particular 〈S, w0〉 � ¬p → ra. Thus, for

all w ∈ W , a ∈ r̄w ∩ r̄w0 .

Hence, 〈S, w0〉 � p if and only if

there exists w ∈ W such that r̄w ∩ r̄w0 = ∅, (4.2.1)

and the implicit definability of p follows.

Claim 4.4.2. The proposition p is not explicitly definable in T .

Proof. We construct an S5B-structure S = 〈W,R,D,m〉 of vocabulary {r}. Let D̄

be the set of natural numbers N. A permutation π on D̄ is called essentially finite if{
a ∈ D̄ : π(a) 6= a

}
is finite. Let W be the set

{
〈i, π〉 : i = 0, 1, 2 and π is an essentially finite permutation on D̄

}
.
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Let O be set of odd natural numbers and let E be the set of even natural numbers. Define

r̄〈0,π〉
def
= π(N), r̄〈1,π〉

def
= π(O), and r̄〈2,π〉

def
= π(E).

Let ι be the identity permutation on D̄, and write wi = 〈i, ι〉, for i = 0, 1, 2. Let ρ be

any permutation on D̄ such that ρ(N) = O. Then, ρ : Sw0
∼= Sw1 . In fact, for an arbitrary

a ∈ N,

Sw0 � ra ⇐⇒ 〈S, w0〉 � ra

⇐⇒ a ∈ N

⇐⇒ ρ(a) ∈ O

⇐⇒ 〈S, w1〉 � rρ(a)

⇐⇒ Sw1 � rρ(a).

Also for every finite ρ′ such that ρ′ ⊆ ρ, there exists σ containing ρ′ such that σ : S ∼= S.

For take any finite ρ′ ⊆ ρ. Clearly, there is an essentially finite permutation σ such that ρ′ ⊆

σ. Now, we have for i = 0, 1, 2, σ : S〈i,π〉 ∼= S〈i,σ◦π〉 since a ∈ π(X) if and only if σ(a) ∈

σ(π(X)) with X = N,O,E. Therefore σ : S ∼= S. By Lemmma 4.3, we have

〈S, w0〉 � θ if and only if 〈S, w1〉 � θ for any {r}-sentence θ. (4.2.2)

Let T0 and T1 be two expansions of S to the vocabulary {r, p} such that pT0 = W \{w0}

and pT1 = {w1}.

We have 〈T0, w0〉 � T . Firstly, since 〈T0, w0〉 6� p, 〈T0, w0〉 � ϕ1. Secondly, we show that

〈T0, w0〉 � ϕ2. Since 〈T0, w0〉 � ¬p, we need to show that 〈T0, w0〉 � �∃x(rx∧�(¬p→ rx)).

That is, for each w ∈ W , we must find an a ∈ D̄ such that (1) a ∈ r̄w and (2) whenever

w′ 6∈ pT0 then a ∈ r̄w′ . The condition of (2) gives w′ = w0. Since r̄w0 = D̄, it is always

possible to find such an a for each w. Hence, 〈T0, w0〉 � ϕ2.
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We also have 〈T1, w1〉 � T . Firstly, since 〈T1, w1〉 6� ¬p, 〈T1, w1〉 � ϕ2. Secondly, we

want to show that 〈T1, w1〉 � ϕ1. Since 〈T1, w1〉 � p, we need to show that 〈T1, w1〉 �

♦∀x(rx → �(p → ¬rx)). In other words, we have to find a world w′ ∈ W such that for

all a ∈ D̄, if a ∈ r̄w′ , then a 6∈ r̄w1 . It suffices to choose w′ to be w2, for r̄w1 = O, r̄w2 = E

and O ∩ E = ∅.

For the sake of contradiction, suppose that T � p ↔ θ for a {r}-sentence θ. Since

〈T1, w1〉 � T and 〈T1, w1〉 � p, 〈T1, w1〉 � θ. Therefore, 〈S, w1〉 � θ and by (4.2.2),

〈S, w0〉 � θ. But then, 〈T0, w0〉 � θ, and since 〈T0, w0〉 � T , 〈T0, w0〉 � p, a contradiction.

Therefore, the quantified S5B does not have the Beth property.

There is a standard translation of modal language into classical language. We give a

translation inspired from [8] for quantified modal logic.

Let t be a vocabulary. Let t∗ be a vocabulary such that it contains

• each constant of t plus a new constant w∗0,

• for each n-ary relation symbol r of t an (n+ 1)-ary relation symbol r∗,

• two new unary relation symbol D∗ and W ∗, and

• two new binary relation symbol R∗ and E∗.

Reserve one variable w∗ of t∗ and enumerate the others. If τ is the n-th variable of t, let

τ ∗ be the n-th variable of t∗ in the enumeration; and if c is a constant of t let c∗ be c. Each

formula ϕ of t may then be translated into a formula ϕ∗ of t∗ by means of the following

clauses:

(i) (a) (rτ1 . . . τn)∗ := W ∗w∗ ∧D∗τ ∗1 ∧ · · · ∧D∗τ ∗n ∧ r∗w∗τ ∗1 . . . τ ∗n

(b) (τ1 = τ2)
∗ := (τ ∗1 = τ ∗2 )
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(ii) (¬ϕ)∗ := ¬(ϕ)∗

(iii) (ϕ ∧ ψ)∗ := (ϕ∗ ∧ ψ∗)

(iv) (∃xϕ)∗ := W ∗w∗ ∧ ∃x∗(D∗x∗ ∧ E∗w∗x∗ ∧ ϕ∗)

(v) (♦ϕ)∗ := ∃w∗(W ∗w∗ ∧R∗w∗0w∗ ∧ ϕ∗).

Let w0 ∈ W and M := 〈S, w0〉 be a S5B-model.

With each S5B-model M := 〈S, w0〉, where S := 〈W,R,D,m〉 is a S5B-structure of

vocabulary t and w0 ∈ W , associate a first order model M∗ := 〈W ∪ D̄,m∗〉 of similarity

type t∗. The interpretation m∗ is defined as follows:

• if c is a constant in t, then m∗(c∗) := m(c),

• m∗(w∗0) := w0,

• if r is an n-ary relation symbol in t, then m∗(r∗) := m(r),

• m∗(D∗) := D̄,

• m∗(W ∗) := W ,

• m∗(R∗) := R, and

• m∗(E∗) :=
{
〈w, a〉 ∈ W × D̄ : a ∈ Dw

}
.

By straightforward induction and by the very definition of truth in model for QML, we

have for any t-sentence ϕ

M � ϕ ⇐⇒ M∗ � ϕ∗[w∗ ← w∗0],

where the notation [w∗ ← w∗0] means “replace every free occurrence of w∗ with w∗0”.
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In the counterexample given in the proof of Theorem 4.4, for a model 〈S, w0〉, 〈S, w0〉 �

p if and only if (4.2.1) is satisfied. But since p is not explicitly definable, there is no modal

formula to express (4.2.1). In the next section, we will consider an extension of QML,

expressive enough such that Beth property holds.

35



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 5

Beth property in Quantified Hybrid

Logic

Hybrid logics are extension of modal logics in which it is possible to reason about what

happens at particular worlds. In modal logic, one cannot name worlds nor quantify over

them. Starting with the vocabularies of QML, hybrid logic uses four tools: nominals,

satisfaction operators, the ↓-binder to name worlds and to assert that a formula is true

at a named world, and variables over worlds. Let the language of quantified hybrid logic

(QHL) be the expansion of QML with these four tools. This section is based on [3]. Hybrid

structures are expansions of modal structures.

5.1 Quantified Hybrid Logic

Nominals and satisfaction operators. Let NOM be a set of nullary relation symbols or

propositional symbols distinct from any propositional symbols already in the vocabulary.

These new symbols are called nominals. They can be compared with constants. While
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constants are name for individuals in universes, nominals are name for worlds. However, we

notice that unlike constants, nominals are formulas. We also introduce the new satisfaction

operators @n indexed by nominals. We then have two new types of formulas:

• for n ∈ NOM, n is a formula and

• if ϕ is a formula and n ∈ NOM, then @nϕ is also a formula.

The formula @nϕ is read “at n, ϕ” and intuitively it means that formula ϕ holds at the

world named n.

Let S := 〈W,R,D,m〉 be a quantified modal structure. For n ∈ NOM, m(n) ⊆ W .

We impose for a nominal n to be interpreted as a singleton, that is for every n ∈ NOM,

there exists a unique w ∈ W such that m(n) = {w}. Following the terminology of [3], the

unique state w is called the denotation of n in S.

For satisfaction in models for formula involving the satisfaction operators @n, we add

the following clause:

• 〈S, w〉 � @nϕ[k]
def⇐⇒ 〈S, n̄〉 � ϕ[k],

where n̄ is the denotation of n in S, w ∈ W and k a valuation.

The ↓-binder. Let WVAR be a set of variables disjoint from the variables we already have.

Those new variables will range over worlds. Again, unlike the already existing variables,

those new variables are formulas. The ↓-binder is the analogous of ∃. We then have the

following new types of formulas:

• every α ∈ WVAR is a formula,

• if ϕ is a formula and α ∈ WVAR, then @αϕ is a formula, and

• if ϕ is a formula and α ∈ WVAR, then ↓ α. ϕ is a formula.
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In order to define truth in a model for formulas involving the newly introduced symbols,

we extend valuation to elements of WVAR. Therefore, if α ∈ SVAR, and if k is a valuation

then k(α) ∈ W . Now, let S := 〈W,R,D,m〉 be a structure, w ∈ W , α ∈ WVAR, and k a

valuation. We have the following clauses:

• 〈S, w〉 � α[k]
def⇐⇒ k(a) = w,

• 〈S, w〉 � @αϕ[k]
def⇐⇒ 〈S, k(α)〉 � ϕ[k], and

• 〈S, w〉 �↓ α. ϕ[k]
def⇐⇒ 〈S, w〉 � ϕ[kαw],

where kαw is the assignment which differs from k only in that kαw(α) = w.

We give the additional clauses needed for a standard translation of any formula in QHL.

For that we first need to expand the vocabulary t∗ with new constants: for each nominal

n add a constant ñ in t∗. For variables, if α ∈ WVAR, then add α̃ as variable in t∗. Now,

for α ∈ WVAR and n ∈ NOM,

• (↓ α. ϕ)∗
def
= ϕ∗[α̃← w∗],

• (@nϕ)∗
def
= (ϕ∗[w∗0 ← ñ])[w∗ ← ñ],

• n∗ def
= (w∗ = ñ), and

• α∗ def
= (w∗ = α̃).

Interpretation of ñ in the corresponding first-order model is done in the obvious way,

namely,

ñM∗ = nM,

where M is a modal model. By simple induction we again have for any t-sentence ϕ

M � ϕ ⇐⇒ M∗ � ϕ∗[w∗ ← w∗0].
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By considering the translation of hybrid formulas into first-order ones, as long as no

new formulas are involved (like interpolants), we can use the completeness, compactness

and deduction theorems.

5.2 Craig’s interoplation and Beth’s definability the-

orems in QHL

Quantified Hybrid Logic repairs the failure for Beth’s property by making Craig’s interpo-

lation theorem holds. To prove Craig’s interpolation theorem we will need the following

fact.

Lemma 5.1. Let n1, . . . , nl be nominals. Let ϕ and θ(n1, . . . , nl) be quantified hybrid

formulas such none of the ni’s occur in ϕ. Let θ(α1, . . . , αl) be θ(n1, . . . , nl) in which each

ni is replaced by αi. Then,

(i) if � ϕ→ θ(n1, . . . , nl), then � ϕ→↓ α1 . . . ↓ αl. θ(α1, . . . , αl), and

(ii) if � θ(n1, . . . , nl)→ ϕ, then �↓ α1 . . . ↓ αl. θ(α1, . . . , αl)→ ϕ.

Proof. For (i), let � ϕ→ θ(n1, . . . , nl) and the ni such that they do not occur in ϕ. We want

to show that � ϕ →↓ α1 . . . ↓ αl. θ(α1, . . . , αl), that is for any structure S : 〈W,R,D,m〉

in the vocabulary of {ϕ, ↓ α1 . . . ↓ αl. θ(α1, . . . , αl)} and any w ∈ W , 〈S, w〉 � ϕ →↓

α1 . . . ↓ αl. θ(α1, . . . , αl). Assume that 〈S, w〉 � ϕ. We can expand the structure S into

a structure S′ with nominals n1, . . . , nl such that nS′
i := w for i = 1, . . . , l. Since ϕ do

not contain the ni, 〈S′, w〉 � ϕ. Therefore 〈S′, w〉 � θ(n1, . . . , nl) which is equivalent to

〈S, w〉 � ϕ→↓ α1 . . . ↓ αl. θ(α1, . . . , αl).

For (ii), if 6�↓ α1 . . . ↓ αl. θ(α1, . . . , αl) → ϕ, then there exists a structure S :=

〈W,R,D,m〉, a w ∈ W and a valuation k such that 〈S, w〉 �↓ α1 . . . ↓ αl. θ(α1, . . . , αl)[k]
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but 〈S, w〉 6� ϕ. Change (or expand) S into S′ by only changing the valuation of the

nominals n1, . . . , nl such that for all ni, n
S′
i = w. Then 〈S′, w〉 � θ(n1, . . . , nl)[k], and as

the ni do not occur in ϕ, still 〈S′, w〉 6� [k]. Thus 〈S′, w〉 6� θ(n1, . . . , nl)→ ϕ[k].

Remark 5.2. By the deduction theorem, if ϕ is a sentence, then we have

(i) if ϕ � θ(n1, . . . , nl), then ϕ �↓ α1 . . . ↓ αl. θ(α1, . . . , αl), and

(ii) if θ(n1, . . . , nl) � ϕ, then ↓ α1 . . . ↓ αl. θ(α1, . . . , αl) � ϕ.

Theorem 5.3 (Craig’s interpolation theorem). Let ϕ be a t1-sentence and ψ be a t2-

sentence. If ϕ � ψ then there exists a t1 ∩ t2-sentence θ such that ϕ � θ and θ � ϕ.

Proof. We will follow closely the proof given for theorem 3.2.

Let ϕ and ψ be quantified hybrid sentences. Without loss of generality, we may as-

sume that ϕ and ψ are boolean combination of sentences (such sentences are called closed

sentences in [3]) of the form @nθ for n ∈ NOM. In fact, suppose that ϕ and ψ are just sen-

tences. Let n be a nominal not occurring in ϕ and ψ. If ϕ � ψ, then also @nϕ � @nψ. Let

theta be an interpolant of @nϕ and @nψ. As n does not occur in ϕ nor in ψ, ↓ α. θ[n← α]

is an interpolant of ϕ and ψ by lemma 5.1. We want to deal only with closed sentences

because their first order translations are also sentences. We can then either reason on the

sentences as hybrid sentences or first order sentences. Using the first order perspective, we

can apply the basic results on completeness and compactness and the deduction theorem.

Assume that ϕ and ψ have no interpolant θ. Then, we will derive a contradiction by

showing that ϕ ∧ ¬ψ has a model.

Let t0 = t1 ∩ t2. Let C be a countable infinite set of constant symbols not occurring

in t1 ∪ t2. Let N be a countable infinite set of nominals not occurring in t1 ∪ t2. Let

t′i = ti ∪ C ∪N , for i = 0, 1, 2. Suppose that T is a t′1-theory and U is a t′2-theory.

Claim 5.3.1. The theories {ϕ} and {¬ψ} are inseparable.
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Proof. For the sake of contradiction, assume that there exists a t′0-sentence θ separating

{ϕ} and {¬ψ}. Then we have ϕ � θ and ¬ψ � ¬θ or equivalently θ � ψ. We may assume

that θ has the form θ′(c1, . . . , cl, n1, . . . , nl′), where ci ∈ C for i = 1, . . . , n, ni ∈ N for

i = 1, . . . , l′. Therefore, by lemma 5.1, ϕ �↓ α1 . . . ↓ αl′ .∀x1 . . . ∀xlθ′(x1, . . . , xl, α1, . . . , αl′)

and ↓ α1 . . . ↓ αl′ .∀x1 . . . ∀xlθ′(x1, . . . , xl, α1, . . . , αl′) � ψ, contradicting the fact that ϕ

and ψ have no interpolant.

Let ϕi, i < ω and ψi, i < ω be enumerations of all closed t1-sentences in and all closed t2-

sentences, respectively. We will construct two increasing sequences of theories (containing

only closed sentences)

{ϕ} = T0 ⊆ T1 ⊆ T2 . . .

{¬ψ} = U0 ⊆ U1 ⊆ U2 . . .

in the language of t′1 and t′2, respectively, such that for all i < ω:

1. Ti and Ui are inseparable.

2. (a) if Ti ∪ {ϕi} and Ui are inseparable then ϕi ∈ Ti+1, and

(b) if Ti+1 and Ui ∪ {ψi} are inseparable then ψi ∈ Ui+1,

3. (a) if ϕi has the form @n∃xσ(x) and ϕi+1 ∈ Ti then @nσ(c) ∈ Ti+1 for some c ∈ C,

and

(b) if ψi has the form @n∃xσ(x) and ψi ∈ Ui+1then @nσ(c) ∈ Ui+1 for some c ∈ C,

4. (a) if ϕi has the form @n♦σ and ϕi+1 ∈ Ti then @n♦n′ ∧ @n′σ ∈ Ti+1 for some

n′ ∈ N , and
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(b) if ψi has the form @n♦σ and ψi+1 ∈ Ui+1, then @n♦n′ ∧ @n′σ ∈ Ui+1 for some

n′ ∈ N .

Given Ti and Ui, Ti+1 and Ui+1 are again constructed in the obvious way.

For (3) and (4), the constant c and the nominal n′ are chosen such that they did

not occur in Ti, Ui, ϕi or ψi. In that way, inseparability is preserved. We need to be

worried only with (4). In fact, if S is a modal structure such that 〈S, w0〉 � @n♦ϕ, then

one can expand S into S′ with a vocabulary containing the new nominal n′ such that

〈S′, w0〉 � @n♦n′ ∧@n′ϕ. This is the case since

〈S′, w0〉 � @n♦n
′ ⇐⇒ nRn′.

Let Tω =
⋃
i<ω Ti and Uω =

⋃
i<ω Ui. Since every Ti and Ui are finite theories for i < ω,

by the Compactness theorem, it follows that Tω and Uω are inseparable.

We have the following claims whose proofs are exactly like in the first order case.

Claim 5.3.2. The theories Ti and Ui are consistent for every i ≤ ω.

Claim 5.3.3. The theories Tω and Uω are maximal with respect to closed sentences.

Claim 5.3.4. The t′0-theory Tω ∩ Uω is maximal consistent.

Since Tω is consistent, let N1 be a t′1-model such that N1 � Tω. Let n be a nominal in

t1. For any constant symbol e ∈ t1, N1 � @n∃x(e = x). By maximality of Tω, @n∃x(e =

x) ∈ Tω. Using (3), we can then construct a first-order submodel M∗
1 of N∗1 such that

• U(M∗
1) = C∗1 ∪ N∗1 , where C∗1 =

{
cN
∗
1 : c ∈ C

}
and N∗1 = {n̄ : n nominals in t′1}. If

we use the notation we have adopted for standard translation M∗ := 〈W ∪ D̄,m∗〉 of

a modal model M, then here C̃ plays the role of D̄ and Ñ plays the role of W ,

• eM∗1 = eN∗1 for every constant symbol in (t′1)
∗, and
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• interpretations of relation symbols in M∗
1 are their interpretations in N∗1 restricted

to U(M∗
1).

Using Tarski-Vaught criterion and (3) and (4), we have the following claim, where T ∗ω

is the theory resulting from translating every sentence of Tω.

Claim 5.3.5. We have M∗
1 4 N∗1, and in particular M∗

1 � T
∗
ω .

In the same way, let N2 be a t′2-structure such that N2 � Uω. We can also construct

a first order elementary substructure M∗
2 of N∗2 such that U(M∗

2) = C∗2 ∪N∗2 , where C∗2 ={
cN
∗
2 : c ∈ C

}
and N∗2 = {n̄ : n nominals in t′2}. In particular, M∗

2 � U
∗
ω.

Like in the first order case,

Claim 5.3.6. We have M∗
1 � (t′0)

∗ ∼= M∗
2 � (t′0)

∗.

Based on that isomorphism we can extend the model for T ∗ω to a model for U∗ω as well.

Since ϕ∗ ∈ T ∗ω and ¬ψ ∈ U∗ω, we constructed a model for ϕ∗ ∧ ¬ψ∗. But then ϕ ∧ ¬ψ has

a model also. This ends the proof of Craig’s interpolation theorem for QHL.

From Craig’s interpolation theorem, using the same definition of implicit and explicit

definition in Definition 3.3, we have the Beth’s definability theorem for QHL.

Theorem 5.4 (Beth definability theorem). Let Σ(r) be a t∪{r}-theory for some vocabulary

t and r 6∈ t. Then, Σ(r) defines R explicitly if and only if it defines R implicitly.

5.3 Discussion

Let us go back to the counterexample given in Theorem 4.4. We saw that 〈S, w0〉 � p

if and only if

there exists w ∈ W such that r̄w ∩ r̄w0 = ∅. (4.2.1)
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The condition (4.2.1) cannot be expressed in Quantified Modal Logic. In Quantified Hybrid

Logic, we have in any structure S (4.2.1) if and only if

〈S, w0〉 �↓ α.♦∀x(rx→ @α¬rx).

Here, we see that naming the current state of evaluation using ↓ α and referring back to it

with @α enables us to express (4.2.1) in the language.

Now we would like to highlight the steps needed to achieve Beth property.

Firstly, the proof relies heavily on the completeness and compactness of First Order

Logic.

Secondly, in order to prove that {ϕ} and {¬ψ} are inseparable, the ↓-binder was im-

portant. In the proof of Craig’s interpolation theorem for first order logic, we mainly rely

on the fact that we can introduce new constants to name objects and that we can go back

to the original language by using quantifiers. In modal logic, naming worlds is impossible.

Naming worlds is achieved by the use of nominals in hybrid logic. However, in order to

stay in the original language, the use of some quantifier is required. One can introduce

the use of ∀ to quantify over worlds. Unfortunately, the use such quantifier will lose the

locality of modal logic: only reachable worlds are relevant for semantic evaluations. The

use of ↓-binder keeps this local property of modal logic and allows us to go back to the

original language.

Thirdly, for the theories T ∗ω and U∗ω, there is a witness for each existential quantifier

∃x∗ such that ∃x∗σ(x∗) is in the theory. If we translate a modal formula into a first-order

one, then x∗ can refer to an individual or a world. The first case is dealt by introducing a

new constant c. The second case is dealt by introducing a new nominal n′ in the hybrid

language. Such existential formula can then be witnessed in the hybrid language by the

closed sentence @n♦n′ ∧@n′σ.
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