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Abstract

The main subject for this dissertation is statistical analysis of graphs. There are some gen-

eral methodological musings, but the work focuses mostly on a specific problem: measuring

prefential attachment in power-law degree distribution graphs and all the considerations

that are involved. Namely, developing generating models and finding likelihood values for

graphs. There is also heavy focus on uniform distribution over a class of graphs with a fixed

degree sequence, which leads to the birth of a model where a graph’s likelihood depends

solely on its degree sequence.
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Chapter 1

Introduction

Our ancestors around the turn of the 20th century put tremendous effort into formulating

mathematics as an axiomatic system of thought. The art has since then offered to anyone

who wished to cultivate it the luxury of laboratory conditions, free of the imperfections

of the surrounding world. Many of the problems mathematicians have worked on since

that time have of course been inspired by ”real-world” phenomena, but most results are

formulated in a sterile environment, and anyone who wants to apply them rigorously must

see to it that the necessary axioms are upheld.

Statistics is far less pure. True, there are beautiful statistical results in the litera-

ture, but it is by nature an applied branch of mathematics, and as soon as it is used

for investigating a non-trivial problem, several questions arise. How to take an unbiased

sample, for instance, can easily turn into a difficult problem, just as the question of what

statistics to use for finding relevant patterns in the input data set. One needs only to

think about, say, sociological studies to see how these seemingly minor questions influence

the conclusions one might draw through ”scientific” means, and might thus contribute to

misunderstandings about the world we live in.

1



C
E

U
eT

D
C

ol
le

ct
io

n

That arises most likely from the general perception that statistics is a toolkit for proving

/ disproving certain statements through numbers. In other words, its main function is

pattern matching. That is of course correct if one considers statistical work to be only

parameter estimation and hypotheses testing, as it is taught in most schools. But to the

more motivated student, it is an art of pattern finding, rather than matching, and one can

apply these methods in areas that go far beyond the realm of mathematics. That is very

broad, but that is exactly the point: we learn to learn how to find some order in chaos,

while relying as little on our (usually unreliable) perceptions as possible.

Some of the hidden patterns are easily guessed if there is some information about the

data. For example, financial stock information should likely be affected by company sector

and size. Behavioral patterns should relate to an individual’s family background, their

ability to speak foreign languages, and so on. But what other, non-trivial hidden patterns

are there that might cluster the data? How should we go about finding them? How should

we treat them? Several questions, without a universal answer. A particular set of tools

may answer a particular mathematical problem, but in practice it is often very difficult to

understand the meaning of patterns, when one gets to examine new data.

This study itself concerns investigating random graphs. Our ultimate aim would be to

set up a graph lab where all possible random graphs in the world are classified according

to some properties deemed generally important. But that is the work of a lifetime, and

goes far beyond the scope of this dissertation. We will only list a number of properties that

seem relevant for most graphs, and then proceed to a careful investigation of a relatively

narrow area.

The amount of previous statistical work on graphs pales in comparison to graph theo-

retical work, but it does exist. Aldous has been a pioneer in the field (see for instance [1],

or more on his web site), with recent results on noisy graphs by Bolla ([5]), on parameter

estimation by Bickel and Chen ([4]), on the spectral properties of graphs generated by the

2



C
E

U
eT

D
C

ol
le

ct
io

n

threshold model by Ide, Konno and Obata ([35]), and others. Tusnády is one of those who

invested considerable effort into investigating random structures through statistical lens –

on spectral properties (with Bolla, [6]), on general inference methodology (with Csiszár and

Rejtő, [22]), on biological applications – e.g. on cortical networks (with Nepusz, Négyessy

and Bazsó, [50]), or on matrix approximation applied specifically to mortality data (with

Ispány, Michaletzky, Reiczigel, P. Tusnády and Varga, [36]).

The structure of the dissertation is as follows. In the next chapter we will introduce

some earlier results on plain Erdős-Rényi and power-law graphs, then proceed to investigate

methods that are useful for the statistical analysis of graphs. Then from chapter 4 onward

we will focus on the following problem (indeed, our main problem): it has been established

that if a graph is built up via some so-called ”preferential attachment” mechanism, then

it will have a power-law degree distribution. The reverse implication is generally taken for

granted, but it is not so clear. In fact, it is so not clear that we will show in chapters 4 and

5 that it fails completely. In chapter 5 we will introduce some random graph models that

produce power-law distributions, but this work will really be crowned by chapter 6, where

we build a model that creates uniformly distributed graphs given a degree sequence.

1.1 A note on the notations

We intend to use consistent terminology and notation throughout the dissertation. For

easier reading, we will label each layer of the text as follows:

• [E] - exact results

• [H] - heuristic results

• [N] - numerical results

• [O] - other authors’ unpublished results

3
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• [S] - survey of published results

• [T] - theoretical considerations

Here is a list of all frequently used entries here, with a short explanation attached:

• A graph G with n vertices and m edges will be notated as G(n,m). A graph G with

n vertices and some parameter relevant in the given context κ will be G(n, κ).

• The vertex set of graph G will be denoted as V (G), the edge set E(G).

• The probability of an edge between vertices i and j of a graph will be pij,

• The indicator variable for an edge between vertices i and j of a graph is εij,

• The degree of vertex i will be di or deg(i). If this value cannot be assumed to be an

integer, it might be notated as fi,

• The likelihood of a graph: L(G),

• µ(G) will stand for the class of graphs with a degree sequence identical to that of G,

• κ will be used as a scaling factor for the degrees of a graph’s vertices. For most

graphs G(n,m), the relationship m = 1
2
κn will hold, but not everywhere.

• In the context of a random graph model, a nascent graph is simply a graph born out

of that model.

4
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Chapter 2

Background

[S] Random graph theory started in 1959 with a series of papers by P. Erdős and

A. Rényi ([30], [29], [31]). They introduced two models with very interesting properties,

but the graphs generated by these models were inadequate for describing some networks

observed in real life. Networks became an area of intense research in the 1990s. Watts

and Strogatz introduced a so-called ”small world” model in 1998 ([57]), which aimed to

modify the Erdős-Rényi models to better describe existing networks. In 1999, Albert and

Barabási proposed a mechanism for building graphs that closely resembled real networks

([2]), notably in the power-law degree distribution. The publication was soon followed by

another in similar vein, this time by Albert, Barabási and Jeong ([3]). The term ”scale-free

graph” was invented to describe graphs with such a distribution.

In this chapter we will introduce some of the major results in the field of random graph

theory, with special attention to Erdős-Rényi (”ER”) and Albert-Barabási (”AB”) model

graphs.

5
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2.1 The Erdős-Rényi model(s)

There are two random graph models bearing the name ”Erdős-Rényi”:

Gn,p: the set of graphs with n vertices, with each edge is present independent of the

others with probability p,

Gn,m: the set of graphs with n vertices, and m edges, the edge set picked uniformly over

all
((n2)
m

)
combinations.

Maturally, Gn,p and Gn,m are graph classes and not graphs.

Edges in Gn,p are independent and equiprobable, which makes this model more calculation-

friendly than Gn,m. In Gn,m, however, one can prescribe the number of edges the graph

should have – increasing m gradually corresponds to the evolution of the graph.

Suppose G ∈ Gn,p and p = m

(n2)
. Then by the law of large numbers, |E(G)| ≈ m

almost surely, and the two models exhibit similar behavior. There will be various occasions

throughout this work where we will not care which model generated a graph, we will simply

call it Erdős-Rényi.

2.1.1 Connectedness

Erdős and Rényi found that various properties of the model had sharp thresholds. Con-

nectedness is perhaps the most fundamental one. Here we will mention two of their results.

First, they showed in [29] that for G ∈ Gn,m, m = 1
2
n log n is a sharp threshold for

connectedness.

Namely, for graph G(n,m) with m = 1
2
n log n + cn, G(n,m) is connected with proba-

bility

lim
n→∞

P (G is connected) = e−e
−2c

. (2.1)

Depending on the value of c, the graph will be almost surely connected, or disconnected.

Second, in [30], a sharp threshold was given for the emergence of a giant connected

6
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component in the graph. More precisely, for n → ∞ and p = c
n
, the following behavior is

observed:

• For c < 1, the largest component has O(log n) vertices almost surely,

• for c > 1, there will emerge a giant component containing a positive fraction of the

vertices, while all other components will have size O(log n).

These results inspired a lot of research. The article from Janson, Knuth,  Luczak, Pittel

([37]) is just one example, there are many more.

2.1.2 Degree distribution

In Gn,p, the edges leaving a given node v are generated by n − 1 flips of a p-probability

coin, therefore:

P (d(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k.

For n→∞ and np→ λ > 0 constant, the degree distribution is Poisson:

P (d(v) = k) =
(np)ke−np

k!
.

2.1.3 Diameter

The diameter of a graph is defined as diam(G) = max{d(v, w)|v, w ∈ V (G)}, where

d(v, w) is the length of the shortest path between vertices v and w. If G is not connected,

diam(G) =∞ by definition.

The diameter is a monotone function on graphs, i.e. if G and H are graphs with

V (G) = V (H) and E(G) ⊂ E(H), then diam(G) ≥ diam(H).

7
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Bollobás shows in [7] that for a sufficiently dense graph G ∈ Gn,p

diam(G) =
log n+ log log n+ log 2 +O(1/ log n)

log pn

almost surely. Specifically, for c = n2

exp(pdnd−1)
and pn

(logn)3
→∞:

lim
n→∞

P (diam(G) = d) = e−
c
2 ,

and

lim
n→∞

P (diam(G) = d+ 1) = 1− e−
c
2 .

2.1.4 Chromatic number

A proper vertex-coloring, or, for short, ”coloring” of a graph G is a coloring on the graph’s

vertices such that any pair of adjacent vertices have a different color. The chromatic

number of G is defined as the smallest number of colors required for coloring G, and is

usually denoted as χ(G).

Regarding Gn,p, we must distinguish between dense and sparse graphs. There is a

stronger estimate available for dense graphs, but it fails for low edge densities.

First, the dense case. Suppose G ∈ Gn,p, p > n−λ ∀λ > 0 and let b = 1
1−p . McDiarmid’s

1989 result ([47]) shows that in this case

χ(G) =
n

2 logb n− 2 logb logb n+OC(1)
.

This result was an improvement upon earlier results of Shamir and Spencer ([53] and

Bollobás ([8]).

In case p tends to zero too fast, the considerations that led the above result are not

applicable. Using Frieze’s argument ([32]),  Luczak was able to provide bounds in the sparse

8
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case in his 1991 paper ([44]).

∀G ∈ Gn,p,∃C0 such that ∀p = p(n) with p enclosed in the range C0

n
≤ p ≤ log−7 n,

then asymptotically almost surely

np

2 log np− 2 log log np+ 1
≤ χ(G) ≤ np

2 log np− 40 log log np
.

Note that for higher values of p, the previous estimate gives stronger bounds.

2.1.5 Cliques

A clique in graph G is defined as a complete subgraph of G. Specifically, let Kr denote

a complete graph of order r. kr(G) will describe the number of distinct Kr-s in G. Let

ω(G) = max{r : ∃Kr ⊂ G}.

There are several reasons one might be interested in studying clique behavior of random

graphs. For instance, if Kr is a maximum-sized clique in G, then the chromatic number,

χ(G) ≥ r, and Kr corresponds to an independent set in G, the complement graph of G.

There has been a number of publications about the subject, among them Moon and

Moser ([48]), Erdős ([27]), Grimmett and McDiarmid ([34], Matula ([45], [46]), and Bol-

lobás-Erdős ([10]). Matula shows in [46] that as |V (G)| → ∞, ω(G) takes one of at most

two values with probability 1.

Let b = 1
p
, d = 2 logb n− 2 logb logb n+ 2 logb(e/2) + 1 + o(1).

Then, ∀G ∈ Gn,p, 0 < p < 1, ε > 0:

lim
n→∞

P (bd− εc ≤ ω(G) ≤ bd+ εc) = 1.

9
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2.1.6 Subgraphs

The famous 1960 paper by Erdős and Rényi ([30]) discusses the subgraph containment

problem at length. They provide threshold conditions for a random graph for containing

certain small subgraphs. Namely, they show that:

If k ≥ 2 and k − 1 ≤ l ≤
(
k
2

)
are positive integers, and βk,l is an arbitrary non-empty

class of connected graphs with k vertices and l edges, then ∀G ∈ Gn,m (or G ∈ Gn,p with

|E(G)| = m):

P (∃H ∈ βk,l : H ⊂ G) =

 0, for m = o(n2− k
l )

1, otherwise

up to isomorphism over βk,l.

Simple substitution yields that

• the threshold that G contains a tree of order k is n
k−2
k−1 ,

• the threshold that G contains a connected subgraph H with |V (H)| = |E(H)| = k

for arbitrary k ≥ 3 is n,

• the threshold that G contains a cycle of order k for any k ≥ 3 is n,

• the threshold that G contains a clique of order k for any k ≥ 3 is n
2k−4
k−1 .

2.2 The Albert-Barabási model

A quote from the 1960 Erdős-Rényi paper ([30]): ’It seems plausible that by considering the

random growth of more complicated structures (e.g. structures consisting of different sorts

of ”points” and connections of different types) one could obtain fairly reasonable models

of more complex real growth processes (e.g. the growth of a complex communication net

10
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consisting of different types of connections, and even of organic structures of living matter,

etc.).’

It seems the authors understood that the random graph models they worked with had

their limitations as far as practical applications were concerned. Over the next decades,

”real-life” networks were occasionally studied in detail, but it took until the 1990s that

research sped up dramatically.

It became clear in many of these cases that the Erdős-Rényi model cannot provide an

adequate description. The reason is instantly obvious: the degrees in the ER models have

identical expected values, with a very narrow degree distribution. Many real-life networks,

however, seem to carry a few degree-rich nodes and many degree-poor ones. So it seemed

natural to investigate broader distributions, such as

P (deg(v) = k) ∼ k−λ for some λ.

Albert, Barabási and others found that this so-called ”power-law” distribution held

well across a host of different real-life networks, for example:

• Collaboration graph for movie actors. Actors are represented by the nodes, and two

nodes are connected by an edge if the corresponding actors have collaborated in a

film. In this graph, λactor = 2.3± 0.1.

• The World Wide Web. Each vertex represents a document, with a (directed) edge

runs between them if one document has a link to the other. They found that λWWW =

2.9± 0.1.

• The electrical power grid of the western United States. The vertices are generators,

transformers, substations and the edges are the high-voltage lines between them.

λpower ≈ 4 fit well.

11
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• Scientific citations. The vertices are publications, the (directed) edges are references

between them. It was found that λcitation = 3.

• The number of sexual partners on a Swedish sample by Liljeros et al. ([43]). The

study settled for λmen ≈ 1.6 and λwomen ≈ 2.1. Their data suggests (again!) that

men have more partners than women. And here we are, writing about graphs whose

edges are supposed to have two end vertices...

All the above results are cited from Albert and Barabási ([2]) or a reference therein,

unless otherwise noted.

Albert and Barabási pointed at two observations about such networks. First, that

their vertex set generally grows over time, so any model that aims to describe them should

consider the mechanism of how a new vertex is introduced to the system. And second,

that a newly added vertex is more likely to connect to vertices that are already degree-

rich. These two considerations motivated them to develop a model that leads naturally to

a power-law distribution.

We will now describe the original Albert-Barabási model, and reproduce the authors’

heuristic computations. In the next chapters we will provide a paraphrased version and

analysis.

Consider starting graph G0(c, e). We operate in discrete time. For all t ∈ {1, 2..}, we

add a new vertex vc+t to Gt−1, which connects to exactly m (≤ c) of Gt−1’s nodes. So Gt

has c+ t nodes and e+mt edges. Denote by {w1, . . . , wm} the neighbors for vc+t+1 at time

c+ t+ 1. {w1, . . . , wm} is selected by the following method:

For picking wk (k = 1, . . . ,m):

Suppose X ∈ U(0, 1), and let Ak = {1, 2 . . . , t + c}\
⋃k−1
i=1 wi, an ordered set, with the

elements indexed Ak,1, . . . , Ak,t+c. Let F (k) =
∑

i∈Ak di, and S(j) =
∑j

i=1 deg(Ak,i)/F (k).

Then wk is the index of an element in Ak such that S(wk) < X, but S(wk+1) ≥ X. For
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X = 1, wk = |Ak|. In brief, we are picking w1, . . . , wm from the distribution defined by

{di} without replacement.

Clearly,

P (N(vi, t) = {w1, . . . wm}) =
dw1

2(e+mt)

dw2

2(e+mt)− dw1

. . .
dwm

2(e+mt)−
∑m−1

i=1 dwi
.

The paper assumes t → ∞, i.e.
∑m

i=1 dwi � e + mt, which means mt
e+mt

≈ 1 and

P (N(vi, t) = {w1, . . . , wm}) ≈
∏m

i=1

dwi
2mt

.

So P (w ∈ N(vi, t)) = 1− P (w /∈ N(vi, t)) = 1− (2mt−dw
2mt

)m ≈ m dw
2mt

= dw
2t

.

Now, for a continuous-time approximation, consider the equation

∂di
∂t

=
di
2t
.

This differential equation is solved by

di(t) = m

√
t

ti
,

where ti is the time vertex i appeared in the system, i.e. i. So

P (di(t) < k) = P (i >
tm2

k2
) = 1− m2

k2
.

To get the probability density, let us differentiate:

P (di(t) = k) =
2m2

k3
.

The above computations are very much heuristic in nature, and make some bold gener-

alizations, such as approximating the neighbor selection process with independent draws,

but the results are asymptotically correct.
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A paper by Bollobás, Riordan, Spencer and Tusnády point out some formal problems

with the above definition ([12]). Indeed, it is easy to see that the model has weak implica-

tions for microstructure. Take the case m = 2 for an example. If we were to connect vc+t

to the end vertices of a uniformly selected edge, each new vertex would add a triangle to

the graph, which is obviously not the case in the model. Such considerations might inspire

a mathematician to tighten the model.

In the next chapter we will redefine, and then modify the model such that it is easier

to use for computations, while maintaining its most prominent properties.

For the rest of this section, we will note some of the known properties of scale-free

graphs as defined by the above model. These are only a small sample of all that has been

published about scale-free graphs. Newman, Barabási and Watts compiled a collection of

important results about scale-free graphs ([51]), Dorogovtsev and Mendes wrote an early

summary of this graph class ([23]), and many other results on the subject are available on

the Internet.

2.2.1 Merits and dangers - politics

The popularity of the model inspired a lot of research, most of it outside mathematics.

It is perhaps not impolite to say that an entire industry has been built up on scale-free

networks. Numerous scale-free models have been introduced since Albert and Barabási’s

first paper on the subject, not the least by these same authors. These models are slight

modifications to the original, to explain phenomena not contained in earlier versions, like

how a late-comer might be able to attract neighbors at an exceptionally high rate, and so

on.

The existence of such broadly applicable mathematical theory provides strong guidelines

to researchers across many fields, and thus inspires work. This is welcome. True, much

of what is understood by those who apply it is just a formal version of common sense.
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One does not need highly developed theories to understand that the spread of signals in

relatively centralized real-life networks depends largely on the central nodes, which means

the Internet’s backbone hubs need to be strongly protected, information / diseases spreads

faster on them, etc. But having such models can be helpful in quantifying properties of

such networks.

The process is not without dangers, however. The models tend to work with the

assumption that scale-free distributions express something about a hidden law of nature.

In the quest of understanding and describing the world, one is often tempted to turn to

simplifications, and the existence of such universal assumptions might lead one to explain

phenomena within the scale-free framework even where it is inappropriate. E.F. Keller

([39]) and others find this worrying. It is hard to argue against some of the criticism:

forcing a scale-free uniform on too wide a range of networks should not become a world

religion. But even if some think these models are weak or irrelevant, they do describe

the growth of certain networks quite well. We will show that the model has well-defined

connection properties, and since says something meaningful about certain real networks,

its existence is justified.

Thus, it inspires the student to hammer out the model’s weaknesses, rather than to

discard it altogether.

Let us now look at some of the basic properties of scale-free graphs.

2.2.2 Connectedness

Denote the number of components of a graph G by C(G). In the AB model, the addition of

a new vertex does not increase the number of components, C(G0) ≥ C(Gt), ∀t ∈ {1, 2, . . . }.

Thus, if G0 is connected, so will be Gt.

Suppose C(G0) = k. For m = 1, ∀t ∈ {1, 2, . . . }, C(Gt) = k, since each new vertex

connects to exactly one component. For m > 1: let {Hi} denote the components with
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∑
v∈H1

dv ≥ · · · ≥
∑

v∈Hk dv ≥ 1. Let Aj(t) be the event that H1 is connected to Hj at

time t, and Aj the event that they are ever connected (j = 1, . . . , k). These two components

would be connected only if a vertex connected to them both, thus

P (Aj(t)) ≥
1

2mt
(
mt

k
· 1

2mt
)m−1 =

k

t
(2k)−m.

Denote c = 2km

k
. Then

P (Aj) ≤
∞∏
t=t0

ct− 1

ct
≤
∞∏
a=1

(
ct− 1 + a

ct+ a
)1/c → 0.

That holds for all j = 2, . . . , k, thus if the graph is large enough, it will be connected.

Indeed, an AB graph is disconnected only if m = 1 and C(G0) > 1.

2.2.3 Degree distribution

Albert and Barabási’s estimate (P (deg(v) = k) ∼ λ−3. Dorogovtsev, Mendes and Samukhin

show in [24] that for an AB graph with m edges added in each step:

P (dv = k) =
2m(m+ 1)

k(k + 1)(k + 2)
.

Bollobás, Riordan, Spencer and Tusnády have a similar, but stronger result for 0 ≥

k ≥ n1/15 in [12].

The popular notation for the above is

P (deg(v) = k) ∼ k−3,

for a randomly selected vertex.
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2.2.4 Diameter

Bollobás and Riordan introduced a model in [11] that is quite similar to the AB model,

with the exception that loops are allowed. They showed that if G is such a graph with n

vertices and m edges, then for all m ≥ 2 and 0 < ε real

(1− ε) log n

log log n
≤ diam(G) ≤ (1 + ε)

log n

log log n

almost surely.

The upper bound fails for m = 1. For m = 1, the average pairwise distance is O(log n),

see [25], p. 109.

For a collection of further results, and indeed a lot of knowledge about random graphs,

one is advised to turn to the random graphs book by Bollobás ([9]), Durrett ([25]) and/or

Janson- Luczak-Ruciński ([38]).
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Chapter 3

Methods, considerations

[T] In this chapter we will give an overview of some of the considerations for evaluating

graphs. We cannot afford to go into great detail about all of them – some of what is written

here can simply provide the basis or motivation for future work.

We will use some of these methods in the later, more numerical part of the dissertation,

here we wish to focus more on the philosophy. We believe the learning process is like

chasing butterflies: butterflies are fast and elusive. Even if we manage to catch one, we

might kill it, and what is the value of a dead butterfly? Still, we learn from the process,

and that might be more important than finding answers. Over time, the answers will start

coming...

The list we provide below is of course incomplete, but we hope the reader might find

some of it not only helpful, but also inspiring for further work.
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3.1 Models, likelihood, Neyman-Pearson

Statistics education tends to focus on two areas: parameter estimation and hypothesis test-

ing. What is often not mentioned, because it is implicit in the former, is model estimation.

Statistical data is always assumed to be generated by some model, and the parameters are

basically parameters for that model. True, for simple models this distinction may not be

necessary, but it would help students learn to be more critical with data.

So once we have settled for a model, we can look at the graph realization and try to

derive its likelihood as per the model. This can be a very difficult task, if the model is

complex (and graphs are reasonably complex), but there are great rewards if the attempt

bears fruit. First, different realizations are comparable, and second, by the Neyman-

Pearson lemma, different models are comparable. In practice, this means that we can make

perturbations on the original data, and if the likelihood function changes significantly as

a result of the perturbation, we have found something through a test of maximum power.

While this is not always achievable, it is a nice ideal to follow.

3.2 Degree distribution

The degree distribution is a property typical of every graph. There are numerous ways

of comparing the empirical distribution and theoretical distributions. In practice these

methods often aim at transforming the data in a way that a line should fit it well. For

instance, the following approach is apparent in the original Albert-Barabási paper ([2]):

Suppose P (d = k) ∼ k−λ. Then

logP (d = k) = −λ log k + b,

so logP (d = k) should form a line with slope −λ as a function of log k.
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In practice, many of the real-life graphs cited as scale-free show this linear relationship

only in mid-range, and fail to fit near the head and tail of the distribution. More seriously,

while the expected degree distribution associated with a random graph model might be

known, the probability distribution of individual vertex degrees might not be identical, so

as much as a nice picture might lead us to think we found a fitting, we should remain

skeptical. So we are tempted to find some alternative methods for fitting distributions.

[E] Below is a small lemma for the discrete version of the probability integral transform.

Lemma 1. Let D be a discrete distribution on m points, such that for X ∈ D, P (X =

i) = pi (i ∈ {1, . . . ,m}), and let ri =
∑i

j=1 pi (i ∈ {0, . . . ,m}). Let Y be a random variable

conditioned on X, with

P (Y ≤ t|X) =


0 if t < rX−1

1 if t ≥ rX

t−rX−1

rX−rX−1
otherwise

Then Y ∈ Unif(0, 1).

Proof. Define k(t) on [0, 1] as the maximal integer such that rk(t) ≤ t. Then

P (Y ≤ t|X = i) =


1 if X < k(t)

t−rX−1

rX−rX−1
if k(t) ≤ X < k(t) + 1

0 otherwise

Then

P (Y ≤ t) =
m∑
i=1

P (Y ≤ t|X = i)P (X = i) =

(

k(t)−1∑
i=1

pi) + pk(t)

t− rk(t)−1

rk(t) − rk(t)−1

= rk(t)−1 + pk(t)

t− rk(t)−1

pk(t)

= t,

20



C
E

U
eT

D
C

ol
le

ct
io

n

and the statement follows.

[T] The above lemma allows us to fit the degree distribution very easily. Given a

graph G with n degrees and m vertices, and a model M that is believed to have generated

it, one needs to simple run the model enough times in order to attain an empirical degree

distribution to each vertex. By this lemma, each of these empirical distributions can be

converted to uniform on (0, 1), so the fingerprint of the graph will be a sample of size n from

Unif(0, 1), if M is indeed the generating model, not otherwise. The uniform distribution

can then be tested by some standard probes, say, the Kolmogorov test. This is of course

not completely correct, since the degree numbers are not independent, but since their

dependence is weak, this method gives a close approximation.

3.3 Uniform sampling from the degree distribution

class

All the graph models we will look at have a degree distribution typical of them. This means

that if we are given a graph G(n,m) whose degree distribution is different from what the

hypothesized model M would allow, it is grounds for us to reject the hypothesis that the

G(n,m) ⊂M.

The other case is more interesting. Suppose G(n,m)’s degree distribution is in line

model M. Does this mean we accept the model?

We should not rush to judgment about this. True, the degree distribution test did not

distinguish the graph from the model, but that was just one test. Suppose the G(n,m) is

in fact not from M. Then there exists some statistic K that can distinguish it. If we are

very lucky, K(G(n,m)) is very different from K on a graph born out of M, and that is

enough. This, however, is rare luck, we need a more reliable method.
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Suppose µ(G(n,m)) is the set of all graphs whose degree distribution is identical to that

of G. If we can take a uniform sample H from µ(G) and find that K(H) is significantly

different from K(G), we can declare victory. This method will always work, provided G

stands out from µ(G) under K.

This opens the question of what uniform distribution on µ(G) is, i.e. what µ(G) exactly

is. It makes a difference, for instance, if we consider vertex labels. Additionally, one might

define a problem in a way that will introduce further considerations – e.g. we will define

a labeled tree in the next chapter such that for every node there is ordering between the

children. In this case, sampling uniformly could be quite a difficult task.

Another example: graphs from the Albert-Barabási process are by nature labeled, so

much so that given a labeling, one could clearly tell whether a graph is Albert-Barabási

or not. Yet, this labeling is not available when the graph is evaluated, so for all practical

purposes, the graph must be considered unlabeled.

We will give this problem thought where we need it for solving a problem. The point

we wish to make here is simply that a well-defined problem carries with it a definition of

a uniform distribution, which can be a very helpful basis of comparison for solving the

problem.

3.4 Labeling

Some graphs, like those from an AB model, evolve in time, and therefore have a natural

labeling. These models may assign edge probabilities conditionally independently in every

step, and thus reconstructing the original labeling would mean we can attain an accurate

likelihood value for the graph. This motivates us to examine the problem of labeling.

The most natural idea, to consider all possible labelings and pick one according to some

constraints, say, maximum likelihood, are computationally unrealistic. So it is clear that
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for a general degree distribution, we are helpless about this problem.

So let us consider scale-free graphs, and say our graph G(n,m) is from the AB model.

The general tendency in these graphs is that the earlier a vertex is connected, the higher

its degree. Móri shows in [49] that even as n → ∞, the maximum degree node’s identity

will change only a finite number of times with probability 1. Naturally, this must hold

true for the subgraph generated by vertices {i, . . . , n}, regardless of the choice of i. This

implies that for any fixed i and an arbitrary j > i, only O(1) of these pairings will be such

that di < dj, out of O(n) choices for j as n→∞. Thus, labeling the vertices in decreasing

order by their degree is a negligible deviation from the original labeling.

We will use this as a general method: anytime we are to examine a scale-free graph

whose nascent vertex order is not known, we will start with sorting the vertices by their

degree. Note that this method is not applicable in general, but it does work for scale-free

graphs.

3.5 Preferential attachment

[S] The term preferential attachment refers to a graph construction mechanism where

every time a new vertex is joined to the graph, its neighbors are selected by some kind of

preference function. Namely, if we wish to join vertex v to graph G to form G′, we will

have

∀w ∈ V (G) : P ((w, v) ∈ E(G′)) ∼ f(deg(w)).

This is a paraphrased form of the following urn process: let urn k (Ak) represent the

degree of vk. In step t of the process, some balls are picked from urns 1, . . . , t − 1 with

probabilities proportional to f(A1), . . . , f(At−1), and exactly as many balls are added to

urn t.

23



C
E

U
eT

D
C

ol
le

ct
io

n

Krapivsky, Redner and Leyvraz showed in [41] that for

• f(k) = ka, with a < 1: P (deg(v) = k) ≈ ck−a exp(−ck1−a),

• f(k) = ka, with a > 1: the resulting graph will have one vertex with degree of order

t, others O(1),

• f(k) = a+ k, with a > −1: P (deg(v) = k) ∼ ck(−3+a).

It is a task in itself to tell if the model that built a graph included preference consid-

erations, so estimating f might be very difficult. But without a proper estimate for f , we

might not be able to have an accurate likelihood estimate. For likelihood computations,

we will assume the simplest of preferential attachment models, namely f(k) = k, and show

that it is not too great a sacrifice. But for this reason we will be using the term ”pref-

erential attachment” loosely, pointing to a sequential model’s property that higher degree

vertices have greater strength in attracting neighbors, and not require f to be linear.

3.6 Clustering

[T] Clustering on a graph is, in the broadest sense, a partition on the vertex set. The

term ”clustering” is typically used for a partitioning where vertex groups are formed from

a set of vertices that are in some sense similar. It is important to note that this is only

one of the possible ways to approach the subject of clustering.

One can also define partitioning in terms of cross-cluster behavior. The criterion for a

vertex to belong to a cluster could be its distance to vertices in other clusters (according

to some distance metric), or by some other regularity property.

To illustrate the difference, consider a graph with some distance metric defined over it,

say, a real-world map. Clustering by geographic location is of the first type, and by the

vertex degree is of the second type.
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Let us briefly discuss these two approaches.

3.6.1 Clusters of ”similar” vertices

This approach has very rich literature, so there is no need to go into technical details. The

only consideration we can add is how to define a distance metric that is relevant for our

graph. Hamming distance is one metric that comes to mind automatically, another one is

the one implied by the process of drawing up the graph, where a metric space is set up

automatically. The list could go on.

If we do not want to make a conscious decision on the metric space, we might want to

set up some constrained process, and let the vertices find their own place, hoping there is a

stationary state. For instance, we could randomly distribute the vertices along a spherical

surface, and view edges as gravitational forces that pull the end vertices together. The

surface is automatically metric, so once the stationary state is reached, clustering becomes

a trivial problem.

There is no immediate summary of what this might do to a particular graph, it depends

on the surface and the dynamic process, but once we have applied the method to a wide

range of graphs, some of their properties might just stand out. And over time, one will

develop an intuition for the features that seem relevant.

3.6.2 Clusters by cross-cluster behavior

One automatic idea that is inspired by the gravity example is to use ”anti-gravity” instead

of gravity between the graph’s vertices. But the main point we would like to make in this

section has to do with a very famous and deep previous result.

There has been a lot of interest in Szemerédi’s regularity lemma in recent years (see

references [54], [55]), with a host of analogous results across various fields of mathematics.
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In the simplest terms, the lemma essentially states that for a given positive integer k,

every graph with a large enough number of vertices (depending on k) can be divided into

roughly identical-sized subsets such that the pairwise edge densities between the subsets

is constant, save for some small error.

Here the regularity appears between the clusters, not within them. That means the

graph could be relabeled such that its adjacency matrix would contain approximately

identically dense blocks everywhere except in blocks along the main diagonal.

Szemerédi’s result applies to dense graphs only. No analogous result of such strength

has been found for sparse graphs, but some advances have been made, for example by Y.

Kohayakawa ([40]).

3.6.3 Clustering, rank and eigenvalues

We will not spend much time with spectral theory, but let us remark here a small obser-

vation about the connection between rank, clusters and eigenstructures.

Let n and c be positive integers with c � n. Let P be the c x c matrix arising from

the principal axis transformation:

∀1 ≤ i ≤ j ≤ c : Pij =
c∑
s=1

λsvi(s)vj(s),

for some scalars λ1, . . . , λc and c-dimensional vectors v1, . . . , vc.

Then construct function α(u) such that ∀u = 1, . . . , n, 1 ≤ α(u) ≤ c. Let H be an n x

n matrix such that

Hu,v = Pα(u),α(v) =
c∑
s=1

λsvα(u)(s)vα(v)(s).

Then rank(H) ≤ rank(P ).

If Pα(u),α(v) is relatively close to 0 or 1, then H’s rows and columns can be reshuffled to
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form uniform density blocks.

There is a number of interesting articles on the subjects, like the one by Bolla and

Tusnády ([6]), Coja-Oghlan ([20]), Chung and Lu ([17], [16]), and Chung, Lu and Vu ([19],

[18]).

3.7 Edge correlations

We might consider the process of edge formation over as follows:

Let G(n,m) be a random graph, with {di} the expected degree distribution of G (i =

1, . . . , n). Let {pi} be a distribution over {1, . . . , n}:

pi =
di∑n
j=1 dj

.

Let {Ej} be a series of random variables representing the edges (j = 1, . . . ,m), with

Ej = (Xj, Yj), with Xj and Yj picked i.i.d. from the above distribution.

Then we can calculate the edge correlation as

corr(EX , EY ) =
E(EXEY )− E(EX)E(EY )√

var(EX)var(EY )
,

since E(EX) = E(EY ).

3.8 Potentials

One of the problems that we have with graphs is that there is no trivial metric for them.

We define the word ”potential” in a very broad sense. Let us define it as a monotone

measure of the graph, i.e. for potential P :
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G ⊂ G′ ⇒ P (G) ≤ P (G′).

|E(G)| is perhaps the most simple potential, but the number of paths of a given length

would also qualify as one, and so on, the possibilities are endless. Different potentials

reveal different features of the graph, they are often invented along the way of solving a

particular problem, and thus do not require our further attention.

Except for one, the S metric.

3.8.1 The S metric

[S] Li et al proposed a potential in their 2005 paper ([42]) they claimed would be very

relevant for the class of scale-free graphs. This so-called ”S metric” is defined as follows:

S(G) =
∑

i,j∈E(G)

didj

The authors go on suggesting that this metric is be helpful in defining scale-free graphs.

Namely:

Let G be a graph with a power-law degree distribution and scaling index λ. Let µ(G) be

the class of graphs with a degree sequence identical to that of G. Then define Smax(µ(G))

as:

Smax(µ(G)) = max{S(H) | H ∈ µ(G)}

.

And define:

T (G) =
S(G)

Smax(µ(G))

.
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The authors claim that the value of T (G) ≈ 1, at least if λ ≥ 2, and propose that

scale-free graphs should be defined as graphs where this T value is close to 1. We will show

in section 5.4.4 that this is not true. Nonetheless, it is still a potential easy to comprehend

and work with, and we will make heavy use of it.

3.9 Microstructures

”The devil is in the details” - the saying goes. One approach to understanding a graph

is through its small subgraphs, which are not always diabolic. These are easy to grasp

both analytically and computationally. Borgs, Chayes, Lovász, T. Sós and Vesztergombi

have two elegant papers about the subject ([14], [13]), where they introduce a notion of

convergent graph sequences based on small subgraphs.

If we are able to compute some asymptotic subgraph properties of a hypothesized graph

model, we might use this as part of a test on the graph we are examining. This so-called

”containment problem” is often an easy task, since it involves small subgraphs. Section

2.1.6 has a demonstration of some basic results for Erdős-Rényi graphs.

3.10 Distances, metrics

Given two general graphs, we might want to know how ”similar” they are. This becomes

a very difficult problem if these graphs are not labeled. There are some fast algorithms

finding isomorphism between trees, and that means one can come up with a tree-to-tree

distance metric with some effort, but the same does not hold for general graphs.

The graph isomorphism problem is known to belong to NP, but it is currently unknown

whether it is NP-complete or not. The subgraph isomorphism problem is in fact NP-

complete ([56]). That means coming up with a practical graph distance algorithm is by no

29



C
E

U
eT

D
C

ol
le

ct
io

n

means a trivial matter.

Non-trivial does not mean unsolvable: Frieze and Kannan introduced a cut or rectangle

distance in [33]. This distance satisfies all conditions for being a metric. The graph

convergence idea developed by the Borgs, Chayes, Lovász, T. Sós and Vesztergombi articles

mentioned in the previous section lay the groundwork for metricization. These ideas are

very complex computationally, but the idea of a metric appears there. That implies a small

rank graph that can be partitioned into a low number of clusters can be easily metricized

in practice.

We have now introduced some general methods for examining graphs. Let us proceed

to our main problem.
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Chapter 4

Scale-free distributions: a tree

[E] Motivating problem: it is understood that if a graph is built through linear prefer-

ential attachment, it will have a power-law degree distribution. We would like to investigate

the reverse implication. Formally, for graph G:

G was built through pref. att. ⇒ ∀v ∈ G,P (deg(v) = k) ∼ k−λ, (4.1)

for some λ. How about ⇐?

To this end, we will set up a simple scale-free model that will allow us to compute this

and other properties. Let us define a random process that yields a scale-free tree.

4.1 The model

Let G1 be a simple labeled graph consisting of two vertices (0 and 1) and one edge. For

all k = {1, 2, . . . }, graph Gk+1 is obtained from Gk via the addition of a new vertex

k + 1, connecting it to one of the end vertices of an edge selected uniformly from E(Gk).

The end vertex v is chosen with probability 1
2

each. Clearly, v is picked with probability
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proportional to its degree in Gk, so this model is equivalent to an AB model with m = 1

and G0 consisting of just an edge. See figure 4.1 for an illustration for such a tree.

Given a tree G, one might want to know how likely the above process could have created

it. To paraphrase, we wish to understand the likelihood of each graph G(n+ 1) as above.

First, let us examine the case where all vertices are strictly labeled.

Figure 4.1: An example tree, with L = 2!2!4!4!
40!!

Proposition 1. Let G(n + 1) be as above, and Λ(G(n + 1)) be the likelihood of G(n + 1)

with a fixed labeling. Then

Λ(G(n+ 1)) =
1

(2(n− 1))!!

∏
v∈V (G)

(dv − 1)!. (4.2)

Proof. Observe that when vk+1 is added to graph Gk, the choice of its neighbor is inde-

pendent of all past and future neighbor choices. The probability of choosing w ∈ Gk as the

neighbor of vk+1 is exactly dw(k)
2k

. Repeating over k = {1, 2 . . . n − 1}, the above result is

obtained for G(n+ 1).

The point of this exercise is to reconstruct the creation of an AB tree, which is not

explicitly labeled, but contains some implicit labeling restrictions. Notably, given a root,
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for any edge it is clear which of its end vertices is the parent and the child in the tree.

Moreover, the order between any two children of the same vertex matters, since an ”elder”

child - the one with the lower label - is likely to have more offsprings than its younger

siblings.

Figure 4.2: The smallest tree with multiple labelings

The likelihood of a tree G with a particular fixed labeling is as above. But that is only

half a solution. As we can see in figure 4.2, a tree in general can have multiple labelings.

Given G, we would not like to find out how many trees there are that are isomorphic to

G, have the same root and observe G’s order of siblings with respect to the root.

Definition. Let G be a tree with labeling l, and U a subtree of G, with root(U) = u. We

will call l conservative on G if ∀U ⊂ G, ∀v ∈ U\{u}: l(u) < l(v).

Definition. Let G be a tree with conservative labelings l and m, and U a subtree of G

with root(U) = u. Let v1 . . . vk be u’s children. We will call m l-preserving if and only if

∀U ⊂ G, ∀i, j ∈ {1, . . . k}, i 6= j:

l(vi) < l(vj)⇒ m(vi) < m(vj).

In other words, m preserves the older-younger sibling relationships present in l.

Definition. The offspring tree of vertex v in tree G is the subtree G′ ⊂ G such that

root(G′) = v.
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Definition. The family F of a vertex v in labeled tree G with labeling l is the offspring

tree of v and all its younger siblings, i.e.

F (V ) = {w ∈ G | w a sibling of v such that l(w) > l(v)}.

Theorem 1. Let G(n+ 1) be as above, a tree with n+ 1 vertices and n edges, and labeling

l. Let C(G, l) be the set of l-preserving labelings on G(n + 1). Denote by fi the vertex

family size of vertex i. Then

|C(G, l)| = n!

(
∏n

i=1 fi)
. (4.3)

Proof. Consider an arbitrary vertex v0 and its immediate children {v1, . . . vk}, indexed

such that l(v1) < l(v2) < · · · < l(vk). Denote by T0 . . . Tk the offspring trees of vertices

v0 . . . vk, respectively. Let Mi = |Ti|, i = {0, . . . k}, and fi the vertex family size of v1 . . . vk.

In the case k = 1, we get the recursion |C(T0, l)| = |C(T1, l)|.

For k ≥ 2: for any pair i, j ∈ {1, . . . k}, i 6= j, the number of l-preserving labelings on

Ti and Tj is an independent factor of |C(T0, l)|, which yields the recursion

|C(T0, l)| = A(T0)
k∏
i=1

|C(Ti, l)|,

with A(T0) to be determined.

l is conservative, which means for all trees T1, . . . , Tk, its root must have the smallest

label on that subtree. Moreover, l(root(T1)) < · · · < l(root(Tk)), which means:

A(T0) =

(
M0 − 2

M1 − 1

)(
M0 −M1 − 2

M2 − 1

)
. . .

(
Mk − 1

Mk − 1

)
=

(M0 − 2)!

(M1 − 1)!(M0 − 1−M1)!
. . .

(M0 − 2−
∑k−2

i=1 Mi)!

(Mk−1 − 1)!(M0 − 1−
∑k−1

i=1 Mi)!

(Mk − 1)!

(Mk − 1)!
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Observe that for all a = 1, . . . , k: M0 − 1−
∑a−1

i=1 Mi = fi. After simplification we get

A(T0) =
(M0 − 2)!∏k

i=1(Mi − 1)!
∏k

i=2 fi
=

(M0 − 1)!∏k
i=1(Mi − 1)!

∏k
i=1 fi

.

For k = 1, the above formula for A(T0) yields 1
f1

, and if T1 is a child, A(T0) = 1.

As the recursion unfolds, the factor 1
(Mi−1)!

is cancelled out by (Mi−1)! in the numerator

for vertex i’s leftmost child (i = 1, . . . , k). This leads to

|C(T0, l)| =
(M0 − 1)!∏
v∈T0\v0 fv

.

Substituting v0 = root(G), we get

|C(G, l)| = n!∏n
i=1 fi

,

confirming the statement.

Note that the inclusion of the root node would yield

|C(G, l)| = (n+ 1)!∏n
i=0 fi

,

which is identical, as f0 = n+ 1.

In summary, the likelihood that an n + 1 vertex tree T is isomorphic to T and has

proper labeling with respect to T ’s root is

L(T ) =
n!

(2(n− 1))!!
∏n

i=1 fi

n∏
i=1

(di − 1)!. (4.4)

Proposition 2. Let G(n+1) be as above with labeling l, Λ(G) be the likelihood of G(n+1)
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with a fixed labeling and C(G) = C(G, l) the set of l-preserving labelings. Then L(G) =

Λ(G)C(G) is maximal if and only if all vertices are connected to one of the initial two

vertices.

Proof. The method will be to take an arbitrary subtree of depth 2 and show that L will

increase if the tree is flattened to depth 1 (see figure 4.3).

Figure 4.3: Flattening. The old labeling, while wrong, is kept for illustration

Let T be a subtree of G with depth 2. It is clear from equations (4.2) and (4.3) that the

only arithmetic effect any rearrangement of T will have on the values Λ(G) and C(G, l)

are contained within T , as long as no vertices are added or deleted. For shorthand, we will

use the notation C(G) = C(G, l).

Suppose the root of T is v0, its k children are v1 . . . vk. Denote by Mi the size of vi’s

offspring tree (i ∈ {1 . . . k}).

Case 1: T = G.

C(T ) =
(
∑k

i=1Mi)!∏k
i=1(Mi − 1)!

∏k
i=1

∑k
j=iMj

,

and

Λ(T ) =
(k − 1)!

∏k
i=1(Mi − 1)!

(2(
∑k

i=1Mi)− 1)!!
.

Let T ′ be the ”flat” version of T , i.e. a root and
∑k

i=1 Mi children.
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C(T ′) =
(
∑k

i=1 Mi)!

(
∑k

i=1 Mi)!
= 1,

and

Λ(T ′) =
((
∑k

i=1 Mi)− 1)!

(2(
∑k

i=1Mi)− 1)!!
.

Thus,

Λ(T )C(T )

Λ(T ′)C(T ′)
=

(k − 1)!
∑k

i=1 Mi∏k
i=2

∑k
j=iMj

≤ 1,

with equality holding only if all of M2, . . . ,Mk is 1. The case when M1 ≥ 1 arbitrary, and

all other Mi-s are 1 has all leaves of the tree dangling on the end vertices of the initial

edge, as stated.

Case 2: T 6= G.

Here we will compute RΛ(T ) and RC(T ), T ’s multiplicative contribution to Λ(G) and

C(G, l), respectively. The formulas for Λ(G) and C(G, l) contain n in the denominator or

numerator, here we will ignore them.

RC(T ) =
1∏k

i=1(Mi − 1)!
∏k

i=1

∑k
j=iMj

,

and

RΛ(T ) =
k!
∏k

i=1(Mi − 1)!

(2(n− 1))!!
.

Again, let T ′ be the flattened version of T .

RC(T ′) =
n!

(
∑k

i=1Mi)!
= 1,
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and

RΛ(T ′) =
(
∑k

i=1Mi)!

(2(n− 1)!!
.

Thus,

RC(T )RΛ(T )

RC(T ′)RΛ(T ′)
=

k!∏k
i=1

∑k
j=iMj

< 1.

This is a strict inequality, as T has depth two, and thus Mj > 1 for some j. Therefore,

flattening the tree from near the leaves down to the root will always increase ΛC, all the

way until all edges vertices 2, . . . , n+ 1 are connected to the first edge.

It does not matter for the maximum of Λ(G)C(G) how the edges are distributed between

the two end vertices of the first edge. Suppose k of them are neighbors of v0, and n−k− 1

are neighbors of v1. Then

Λ(G)C(G) =
k!(n− k − 1)!

(2(n− 1))!!
· n!

(n− k − 1)!nk!
=

(n− 1)!

(2(n− 1))!!
,

independent of k.

This implies that the maximum likelihood tree will not be a typical outcome for this

scale-free tree model.

4.2 The probability distribution of the degrees

[O] We will use the urn model to compute the distribution of the tree’s vertex degrees.

Consider the following urn game: we have two urns, the initial weights of the first and sec-

ond are p and r, respectively. In each round we pick an urn with a probability proportional

to its current weight, and increase its weight by one. Regardless of the choice we make, we

also increase the second urn’s weight by one. Let Xn denote the first urn’s weight after n
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steps.

Thanks to Tamás F. Móri for the result below.

Lemma 2. Xn√
2n
→ ζ with probability 1, where all the following hold for F (ζ) ζ’s distribu-

tion:

• (a) F (ζ) ∼
√
UV , where U and V are independent and U ∼ Γ(p+1

2
, 1

2
), V ∼ β(p

2
, r

2
)

• (b) F (ζ) ∼ V
√
U , where U and V are independent and U ∼ Γ(p+r+1

2
, 1

2
), V ∼ β(p, r)

• (c) For r = 1, F (ζ) ∼
√
U , where U ∼ Γ(p

2
, 1

2
)

• (d) For r > 1, F (ζ) ∼
√
UV , where U and V are independent and U ∼ Γ(p

2
, 1

2
),

V ∼ β(p+1
2
, r−1

2
).

Proof. We will compute the moments of the limit distribution through martingales.

Let k be a particular positive integer, and let

cn =
n−1∏
i=0

(1 +
k

p+ r + 2i
) =

Γ(p+r+k
2

+ n)Γ(p+r
2

)

Γ(p+r+k
2

)Γ(p+r
2

+ n)
∼

Γ(p+r
2

)

Γ(p+r+k
2

)
n
k
2 .

Then Zn = 1
cn

(
Xn+k−1

k

)
is a martingale, since

E(Zn+1|Fn) =
1

cn+1

[(
Xn + k − 1

k

)
+

Xn

p+ r + 2n

(
Xn + k − 1

k − 1

)]
=

1

cn+1

(1 +
k

p+ r + 2n
)

(
Xn + k − 1

k

)
= Zn,

where Fn is the appropriate generated σ-algebra.

Then

E(Zn) = E(Z0) =

(
p+ k − 1

k

)
=

Γ(p+ k)

Γ(p)k!
,

and

lim
n→∞

Zn =
2
k
2 Γ(p+r+k

2
)

k!Γ(p+r
2

)
ζk.
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E(ζk) bounded for all values of k, and thus the expected value of the above martingale’s

limit is the same as that of the martingale itself, which yields

E(ζk) =
Γ(p+r

2
)Γ(p+ r)

2
k
2 Γ(p+r+k

2
)Γ(p)

.

Replacing k with 2k and using the duplication relation

Γ(2x) = (2π)−
1
2 22x− 1

2 Γ(x)Γ(x+
1

2
)

we get

E(ζ2k) =
Γ(p+1

2
+ k)

2−kΓ(a+1
2

)
·

Γ(p+r
2

)Γ(p
2

+ k)

Γ(p
2
)Γ(p+r

2
+ k)

.

The s-th moment of the distribution Γ(a, λ) is Γ(a+s)
λsΓ(a)

. The same for the distribution

β(a, b) is Γ(a+b)Γ(a+s)
Γ(a)Γ(a+b+s)

, thus the above quantity decomposes as the product of the k-th mo-

ments of a Γ(p+1
2
, 1

2
) and a β(p

2
, r

2
), which proves (a).

It also follows from the duplication relation that

Γ(p+r
2

)

Γ(p+r+k
2

)
=

Γ(p+r+k+1
2

)Γ(p+ r)2k

Γ(p+r+1
2

)Γ(p+ r + k)
,

so

E(ζk) =
Γ(p+r+k+1

2
)

2−
k
2 Γ(p+r+1

2
)
· Γ(p+ r)Γ(p+ k)

Γ(p)Γ(p+ r + k)
.

This is a product of the k
2
-th moment of the Γ(p+r+1

2
, 1

2
) and the k-th moment of the

β(p, r) distributions, proving (b).

For r = 1:

E(ζ2k) =
Γ(p

2
+ k)

2−kΓ(p
2
)
,

which is exactly the k-th moment of the Γ(p
2
, 1

2
) distribution, proving (c).
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Finally, if r > 1, we can attain the product in a slightly different form:

E(ζ2k) =
Γ(p

2
+ k)

2−kΓ(p
2
)
·

Γ(p+1
2

+ k)Γ(p+r
2

)

Γ(p+1
2

)Γ(p+r
2

+ k)
.

Here the first factor is the k-th moment of the Γ(p
2
, 1

2
) distribution, and the second is the

k-th moment of the β(p+1
2
, r−1

2
) distribution, yielding (d).

The distribution of the k-th vertex in our scale free tree is described by the case p = 1,

r = 2k − 1. Lemma statements (a), (b) and (d) are applicable.

In the case r = 1, the probability density function is

fp,1(x) =
2xp−1e−

x2

2

2
p
2 Γ(p

2
)

=
2
p+1
2 Γ(p+1

2
)

Γ(p)
.

Specifically, for p = 1, it reduces to

f1,1(x) = 2ϕ(x).

And thus the distribution of d1 is the standard normal absolute value distribution.

Lemma 3. Denote by ζp,r the limit distribution with parameters p and r. Then:

• (a) For p→∞ and r = o(
√
p),
√

2(ζp,r −
√
p)→ N(0, 1) in distribution.

• (b) For p = 1, r →∞,
√
rζp,r converges in distribution to the exponential distribution

with parameter 1 (this will be applicable to our tree model).

Proof. We will use statement (a) of the previous lemma for both statements.

(a) So we have

√
2(
√
UV −√p) =

√
2V (
√
U −√p)−

√
2p(1−

√
V ).
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√
2p(1−

√
V ) <

√
2p(1−V ). The expected value of which is p

√
2p

p+r
→ 0, so the

√
2p(1−

√
V )→ 0. Therefore, the equation implies

√
V → 1.

Furthermore, E(U) = p + 1, D2(U) = 2(p + 1), thus p−1U → 1. Then, by the central

limit theorem:
√

2V (
√
U −√p) =

2
√
V√

p−1U + 1

U − p√
2p
→ N(0, 1).

(b) The distribution of U is Γ(1, 1
2
), the distribution of V is β(1

2
, 1

2
). Let us rewrite V

as

V =
W

W + Z
,

where W and Z are independent, and W ∼ Γ(1
2
, 1

2
), and Z ∼ Γ(1

2
, r

2
). Z

r
→ 1 stochastically,

thus rV → W in distribution, and thus
√
rζ1,r →

√
UW . The probability density functions

for
√
U and

√
V are f√U(x) = 2ϕ(x), and f√W (x) = xe−x

2/2. Therefore,

f√UV (x) =

∫ ∞
0

f√U(u)f√W (
x

u
)
du

u
=

∫ ∞
0

f√W (u)f√U(
x

u
)
du

u
,

so

f√UV (x) =
2√
2π

∫ ∞
0

x

u2
exp(−1

2
(u2 +

x2

u2
))du =

2√
2π

∫ ∞
0

exp(−1

2
(u2 +

x2

u2
))du =

1√
2π

∫ ∞
0

(
x

u2
+ 1)exp(−1

2
(u2 +

x2

u2
))du.

Substitute t = u− x
u

. Then dt = ( x
u2 + 1)du and u2 + x2

u2 = t2 + 2x. Therefore,

f√UW (x) = e−x
∫ ∞
−∞

ϕ(t)dt = e−x.
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4.3 Prüfer codes and uniform sampling

[E] The Prüfer code is a unique representation for trees, published by H. Prüfer in

1918 ([52]). A tree’s Prüfer code can be easily obtained: consider a labeled tree T with n

vertices, one of which nominated as the root. Remove n − 2 of the vertices sequentially,

such that at step i the leaf with the smallest label is removed, and, concurrently, the label

of its parent is entered in i− th position in the tree’s Prüfer code. The resulting code will

be unique, with length n− 2.

Lemma 4. Suppose {di}(i = 1, . . . , n) is a sequence of positive integers, with
∑n

i=1 di−1 =

n−2, and let D be the distribution defined by {di}. Let a1, . . . , an be independent, identically

distributed variables, with P (aj = k) = dk−1
n−2

. Then the tree that is Prüfer-encoded by {aj}

is from the uniform distribution over the set of all labeled random trees whose Prüfer code

is i.i.d. from D.

Proof. Observe that {aj} is a Prüfer code on a set of n vertices. Moreover,
∑n

i=1 di− 1 =

n− 2 implies
∑n

i=1 di = 2(n− 1)− 2, which means {di} corresponds to the degree sequence

of a tree on n vertices with one edge deleted.

Suppose the tree corresponding to {aj} is T , with degree sequence f1, . . . , fn. Then

L(T ) =
n∏
i=1

(
di − 1

n− 2
)fi−1.

This formula only contains the degree sequence of the outcome, which implies the state-

ment.

Corollary. If {aj}(j = 1, . . . , n − 2) is a Prüfer code with degree sequence {fi}(i =

1, . . . , n), and π is a permutation on n − 2 elements, then π(a) corresponds to a tree

sampled uniformly from the set of all labeled trees with degree sequence {fi}.
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4.4 Measuring preferential attachment on trees

We have seen above that the set of permutations on the Prüfer code of a tree T correspond

to a uniform mixing of all labeled trees on µ(T ). In this section we will show how we can

distinguish T from µ(T ).

The statistic we will use is as follows. Suppose T is labeled with labeling l, and

root(T ) = r. For all of T ’s vertices i, let fi be the family size of vertex i, as defined

in section 4.1. Define statistic D as follows:

D = P (l(T ) conservative ) =

∑
r∈V (T )

P (labeling conservative | root(T ) = r) =
∑

r∈V (T )

∏
i∈V (T )

1

fi
.

Since for any subtree T ′, the probability over all possible labelings that its root has the

lowest label on the tree is exactly 1
|V (T ′)| , the probability that the same holds for all of T ’s

subtrees is
∏

i∈V (T )
1
fi

, and the above formula follows.

Thus, D is a likelihood. Suppose now that T is a tree nascent from our model, and

U is a Prüfer-mixed version of it, i.e. U ∈ Unif(µ(T )). Then, by the Neyman-Pearson

lemma, their likelihood ratio is a most powerful test. Thus, if D does not show a significant

difference between T and U , we no longer need search in this direction.

[N] The table of results on the comparison between D(T ) and D(U) is below. For

notation, T will be from our model, U1 and U2 represent the minimal and maximal D(U)-

values out of 250 Prüfer-mixes on T .

The test does show a significant difference already for relatively small trees. Therefore,

a tree generated by our model does indeed stand out from its degree class.

This implies a tree nascent from this model is in fact distinguishable from its degree
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Table 4.1: Prüfer mixing of a scale-free tree
|V (T )| log(D(T )) log(D(U1)) log(D(U2))

100 -40.53 -59.46 -39.83
500 -217.59 -315.69 -238.15
2000 -974.43 -1353.6 -1151.37
10000 -4825.33 -6463.91 -6068.73

sequence class, and therefore the degree sequence is insufficient in describing the model,

and the reverse implication for 4.1 fails.
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Chapter 5

General scale-free graphs

[T] The motivating problem for this chapter is the same as in the previous one: we

wish to understand whether the reverse implication of 4.1 holds.

Albert and Barabási developed a model that managed to explain a power-law distri-

bution outcome with exponent −3. Numerous models have since been introduced. In this

chapter we will generalize the original model, in part to eliminate their weaknesses, and in

part to demonstrate that it is not a difficult task.

5.1 Generalizations of the Albert-Barabási model

Since the Albert-Barabási model was introduced, numerous authors have worked on gen-

eralizing and redefining it. There seems to be general agreement that modeling it as a

blown-up tree is very helpful in learning about some of its properties – see work by Bol-

lobás, Durrett, Móri and others that we referred to earlier.

If a graph can be decomposed into a tree, we should get to a conclusion similar to

that of the previous chapter. But will not employ tree decomposition, as Prüfer-mixing
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those trees would break down the vertex order in the graph, and thus is inappropriate

for our purposes. Instead, we will examine statistics that tell us information about a

graph’s preference structure, and show their relevance by comparing a graph against its

degree sequence class. Analogous to the previous chapter, we will develop an approximate

likelihood formula for these nascent graphs and show that they are indeed distinguishable.

5.1.1 Model I - The Albert-Barabási model

First, let us reformulate the model.

Let κ be any positive integer and G0 an arbitrary labelled and directed graph, n =

|V (G)| ≥ κ. Let

W (G0, κ) = {U ⊂ G0 : |U | = κ}

For any U ⊂ W , let

π(U) =
∏

u∈V (U)

du

Let Ψ(G0, κ) =
∑

U⊂W π(U).

On W (G, κ), define the random variable X:

∀U ⊂ W : P (X = U) =
π(U)

Ψ(G0, κ)

Now let G̃ be the graph that is created from G by adding a new vertex v to the vertex

set of G and defining εv,u as the indicator function for all u ∈ V (G), where εv,u = 1

represents a directed edge from node v to u, and 0 represents no edge.

We will use the notation Gn for the graph we attain after the n-th step described as

above.

This model is perhaps a good introduction, but has numerous weaknesses, notably:
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• As the authors of the model point out, each new node connecting to the existing set

through a constant set of edges is very restrictive.

• The scaling exponent is always 3.

• We hope to have a model with independent, rather than conditionally independent

edges.

5.1.2 Model II - Independent dynamics

Let κ be any positive number and G an arbitrary labelled and directed graph, |V (G)| ≥ κ

and |E(G)| ≥ κ.

Now let G̃ be the graph that is created from G by adding a new vertex v to the vertex

set of G and let εv,u, (for all u ∈ V (G)) independent conditioned on G with

P (εv,u = 1 | G) =
κdu

2|E(G)|

This model no longer has the constraint that the outgoing degree of each node is

constant. The edges, however, are still not independent, and the scaling exponent remains

−3.

5.1.3 Model III - Independent dynamics with varied coefficients

Let {βk} be a sequence of positive numbers, k = 1, . . . , n, and G1 a graph with two vertices,

0 and 1, and one edge.

Now let Gn+1 be the graph that is created from Gn by adding a new vertex vn+1 to the

vertex set of Gn. and defining εn+1,u as above. For u = 0, . . . , n, 0 ≤ p ≤ 1

P (εn+1,u = 1 | Gn) = min(p,
βn+1du

2|E(Gn)|
).
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The construction is very similar to Model II, but is far richer. For instance:

• βi = const yields a model II graph with power law distribution,

• βi = c(i − 1), for i = 2, . . . , yields at step n a graph with E(di) = const for all

i = 1, . . . , n.

This latter case resembles an Erdős-Rényi graph in the sense that it has identical

expected degrees. But while an Erdős-Rényi graph may be sparse, this one will always be

dense.

5.1.4 Model IV - Independent edges with exponent −3

Bollobás, Riordan, Spencer and Tusnády show in [12] that in the Albert-Barabási model,

the expected degree of vertex i is

E(di) = κ

√
t

ti
,

where ti denotes the time point vertex i is connected to lower-index vertices.

If we measure time in identical, discrete intervals, we can paraphrase the above as

E(di) = κ

√
n

i
.

This yields a scaling exponent of −3, as before.

Now, for the definition: Let κ be any positive number and G an arbitrary labelled and

directed graph with n vertices. For 1 ≤ i < j ≤ n and 0 ≤ p ≤ 1, let the random variables

εj,i be independent zero-ones representing a directed edge from vertex j to i, with

P (εji = 1) = min(p,
κ

2
√
ij

).
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This model dealt with the weaknesses of the previous two, and allows for very easy

computations. It has a weakness, however. To achieve κn as the expected total degree,

we should have P (e(j, i) = 1) = κ
2
√
ij

. But that means for certain (κ, i, j) combinations we

will get probabilities greater than 1, so p is used as a cutoff, which will interfere with the

degrees of the leading vertices.

One very nice feature of this model is that it generates the graph as a diadic product,

i.e. the probability of an edge between any pair of vertices depends exclusively on the

degree sequence. In chapter 6 we will make use of this property.

5.1.5 Model IVa - Independent edges

Here we will introduce a model that will yield a scale-free distribution graph with an arbi-

trary exponent. This is just one possible model, aimed to demonstrate that the exponent

−3 is by no means a strict limitation for an independent edge model. Cleary, the −3

exponent case must be a special case for the model.

Lemma 5. Suppose G is a labeled graph with n vertices, with d1 ≥ d2 ≥ · · · ≥ dn,

and di = κ(n
i
)α, for some κ > 0 and 0 < α < 1. Then for an arbitrary v ∈ V (G),

P (deg(v) = k) ∼ k−λ, where λ = α+1
α

.

Proof.

P (deg(v) < k) = P (κ(
n

v
)α < k) = P (v >

nκ1/α

k1/α
) = 1− nκ1/α

k1/α
.

We get the probability density through differentiation:

P (deg(v) = k) =
nκ1/α

αk1+1/α
∼ k−

α+1
α .

Now, for the definition:
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Let G be a labeled graph with n vertices, and 0 < α < 1. For 1 ≤ i < j ≤ n and

0 ≤ p ≤ 1, let the εj,i be independent zero-ones representing a directed edge from vertex

j to i, with

P (εji = 1) =
κα

iαj1−α .

The expected degrees are:

E(di) =
n∑

j=1,j 6=i

P (εj,i) ≈
∫ i

1

κα

jαi1−α
dj +

∫ n

i

κα

iαj1−αdj ≈

κα

1− α
(1− 1

i1−α
) + κ(

n

i
)α − κ.

For small values of i, the second term is dominant, for i ∼ n, the 1
i1−α

term can be

neglected, so we can approximate

E(di) = κ
2α− 1

1− α
+ κ(

n

i
)α.

For α = 1
2
, this is identical to Model IV, otherwise the degrees are going to be different

from the expected κ(n
i
)α for i ≈ n.

5.2 Attaining uniform distribution

We have already considered the meaning of the term ”uniform distribution” in chapter 3.3.

In the present case, we will have to work on a labeling problem on an unlabeled graph.

We will therefore define the uniform distribution as follows:

Let G be a labelled graph with n vertices, and µ(G) the class of graph such that

∀H ∈ µ(G) : ∀i = 1, . . . , n, di(G) = di(H).
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A uniform sample from the class of G will simply be a uniform sample from µ(G).

We saw in the previous chapter that a scale-free degree distribution does not imply

preferential attachment on trees. To investigate this problem on richer graphs, we need to

introduce an operation that does not modify a graph’s degree sequence. This is the edge

swap operation, and since it is widely known, we will only provide the definition for review.

[E]

Definition. Let G be a graph with vertex set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}.

Consider two distinct edges ei = (v1, v2) and ej = (w1, w2). Then an edge swap on ei and ej

is as follows:

1. If G is directed: we set f1 = (v1, w2) and f2 = (w1, v2). If f1, f2 /∈ E, then ei and ej

are deleted, and f1, f2 are added to the edge set.

Figure 5.1: Directed swap

2. If G is not directed: with probability 1
2

each, we set (f1 = (v1, w2) and f2 = (w1, v2))

or (f1 = (v1, w1) and f2 = (v2, w2)). If f1, f2 /∈ E, then ei and ej are deleted, and

either f1, f2 are added to the edge set.

We defined swaps in a way that no double edges are created in the process.

Note: the term ”edge swap” without specifically noting it is directed will mean nondi-

rected for the rest of this paper.

Let us look at some swap properties. These are widely known, but we will provide our

own proof for revision.
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Figure 5.2: Non-directed swap

Lemma 6. Consider a set V of n vertices, and an arbitrary graphic degree sequence

{d1, . . . , dn}. Let G1(V,E1) and G2(V,E2) be labeled graphs over V with corresponding

edge sets E1 and E2, such that the degree sequence of both graphs is {di}. Then there exists

a sequence of graphs H0, H1, . . . , Hk+1, with H0 = G1 and Hk+1 = G2, with Hi exactly

one swap away from its Hi+1 for all i = 0, 1, . . . , k, and the Hamming distance d(Hi, G2)

monotone decreasing with i.

Proof. It might be helpful to think of a two-way process: we start off from G1 and G2,

and in each step perform a swap on one of them, until we get two identical graphs. This

is identical to the lemma’s claim.

Now, let E = E1

⋂
E2. Color the edges in E1\E red, and those in E2\E blue.

We ought to make two observations.

1. For any vertex vi, degred(vi) = degblue(vi), since deg(vi) = di both in G1 and G2.

2. Given four vertices v1, v2, v3, v4 with (v1, v2) and (v3, v4) red, and (v2, v3) blue, a swap

can be performed on these vertices unless (v4, v1) is red. If (v4, v1) is blue or not in

E1 ∪E2, then the solution is automatic, since the red edges do exist in G1, while the

blue do not. If (v4, v1) ∈ E, a swap can now be performed backwards from G2, since

the red edges do not exist in G2, but blue ones do. In all the above cases, a swap will
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decrease the Hamming distance. The only problematic case is then the ominous edge

is red. See figure 5.3 for illustration.

Figure 5.3: Allowed swaps

Let Hi be the graph after s1, . . . , si are performed on G1, and Ji be the graph after

sk, . . . , sk−i+1 are performed on G2. Clearly, Hi = Jk−i+1.

We will now show that we can always find an edge swap Hi → Hi+1 or Hj → Hj−1,

such that the Hamming distance between the two working graphs decrease.

Suppose, by contradiction, that we cannot, and take a vertex v with a maximal red (and

blue) degree d. Let b be a vertex with (b, v) blue, and let w be a red neighbor of b.

If w is not a red neighbor of v, then by the second observation, all of v’s red neighbors

must also be red neighbors of w, and thus dred(w) > d, a contradiction. Or, if w is a red

neighbor of v, then all of v’s other red neighbors must also be red neighbors of w, plus v

itself is a red neighbor, so dred(w) > d, a contradiction. This completes the proof.

The above lemma states that any two graphs with the same degree sequence can be

transformed into each other via swaps. Wishful thinking whispers into our ear that if

we could find a clever, randomized way of choosing swaps, we might be able to use this
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Figure 5.4: Both cases lead to contradiction: dw > dv

operation to obtain uniform distribution over the class of graphs with an identical degree

sequence.

Lemma 7. Let G(n,m) be a labeled directed graph, and µ(G) its degree sequence class. Call

Hk the graph attained from G by k directed edge swaps. As k →∞, Hk ⊂ Unif(µ(G)).

Proof. Let J be the metagraph of G with V (J) = µ(G), and ∀u, v ∈ V (J), (u, v) ∈ E(J) if

and only if u and v are exactly one swap distant from each other. Our process is a random

walk on the vertices of J along its edges.

Clearly, the regularity of J is a sufficient condition for uniform mixing. J is not regular

yet, but can be made so very easily. For all u, v ∈ V (J), if (u, v) /∈ E(J), create a loop

edge u→ u. In this construction, every vertex has degree
(
m
2

)
in J .

For u ∈ V (J), if the randomly chosen edge pair e, f ∈ E(u) are swappable, we move

from u to the neighbor marked by the swap, and stay otherwise. Every vertex in J has

degree
(
m
2

)
, and every edge in it has probability 1/

(
m
2

)
, and the statement follows.

Lemma 8. Let G(n,m) be a labeled non-directed graph, and µ(G) its degree sequence

class. Call Hk the graph attained from G by k non-directed edge swaps. As k → ∞,

Hk ⊂ Unif(µ(G)).
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Proof. The proof is analogous to the directed case, except here we will regularize the meta-

graph to have degree 2
(
m
2

)
everywhere, with each edge having probability 1/2

(
m
2

)
. This

corresponds simply to the fact that for all u ∈ V (J), there are two possible swaps that

correspond to each edge pairing.

So we have shown that properly constructed edge swaps will indeed yield uniform

mixing. Ideally, we would now need to show that the mixing time is fast enough. A

new result from P.L. Erdős, I. Miklós and L. Soukup shows polynomial mixing time for a

restricted class of graphs.

[O]

Theorem. (Erdős, Miklós, Soukup) Let G be a semi-regular bipartite graph. Then the

above-defined edge swaps will yield uniform distribution over µ(G) in polynomial time.

The proof can be found in [26]. The general case is currently unsolved.

5.3 Not all degree distributions are equal

[T] We have defined several scale-free models, some sequential, some independent.

There are several differences between them, of course. For example, in a plain AB-model

graph, each vertex has a limited number of neighbors among the earlier vertices, but its

last vertices have almost constant degree, unlike in the case of a, say, model III graph.

One more difference that is perhaps less obvious at first sight is in the degree distribution

at the head. The expected degree for vertex i is a monotone decreasing function whose

decline is steepest in the head. While independent edge models behave as expected in this

regard, sequential models are different. The maximum degree node there is not the first

node in the general case. See the figure.

Móri showed in a 2005 paper ([49]) that with probability 1, the identity of the highest

degree node changes only a finite number of times, mainly while the graph is small. This is
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Figure 5.5: The degree distribution of identically parametrized nascent model III vs. IV
graphs with βk = const for model III

the reason behind the phenomenon. The same does not apply to independent edge models,

and hence the difference in the head of the distributions.

5.4 Testing preferential attachment with the S metric

[H] We will now turn our attention to testing preferential attachment. The method

will be to take a nascent scale-free graph G, and compare it with uniform samples G′ from

its degree sequence class. As we will see, the S metric can indeed distinguish G from G′.

We will first provide the estimates, and then show some sample results.

5.4.1 S estimates: −3 exponent models

We have the task of calculating the expected value for the S metric on G(n), as generated

by our models. Observe that in terms of calculations, models I through IV are quite similar,

therefore, we will only investigate model IV. Model III can be considered similar, as far as

the βi coefficients are constant, which we may assume for this exercise.

Observe that for κ ≥
√

8, it is formally possible that κ
2
√
ij
> 1.

For κ ≤
√

8:
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E(S(G)) =
n−1∑
i=1

n∑
j=i+1

P ((i, j) ∈ E(G))didj =
n−1∑
i=1

n∑
j=i+1

κ3n

2ij
≈

1

2

∫ n

1

∫ n

1

κ3n

2xy
dxdy ≈ κ3n log2 n

4

If κ >
√

8, then for indices ≤
√

κ
2
, the probability of an edge can formally surpass 1.

However, we should expect just an O(κ) change in the total degree of the graph.

Indeed, simple calculations show that for a model IV graph G:

E(S(G)) =
κ3n log2 n

4
+O(n) ≈ κ3n log2 n

4
. (5.1)

as expected.

5.4.2 Swap analysis on −3 exponent models

We saw the table of results: the value of S drops once a sufficient number of edges are

swapped. Intuitively, this should mean that the probability of edges between degree-rich

nodes are higher in our nascent graph G than from a graph from µ(G), and simulations

confirm that. Let us now try to find an analytical explanation. Ideally, we should show

the phenomenon through determining puv for any vertex pair 1 ≤ u < v ≤ n, but our

attempts were unsuccessful. Instead, we will provide an explanation based on heuristic

approximations.

Suppose we have a graph G(n, κ) nascent from a −3 exponent model. There are several

questions we can ask:

• Which nodes’ contribution to S will drop / grow?

• What is the expected effect of swaps on S?

• What is the expected value of S over µ(G)?
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Let us see these one by one. We will be looking at the non-directed case only. First,

individual nodes’ contribution.

Let us denote by rv(G) the neighborhood index or r in G, with

rv(G) =
∑

(v,j)∈E(G)

dj.

Then a node v’s contribution to the graph’s S value is dvrv(G).

To understand the contribution of individual vertices, we can simply investigate how

the expected value for rv is affected by a swap.

Proposition 3. Suppose G(n,m) is scale-free with di ≈ κ
√

n
i

for all i = 1, . . . , n. Suppose

the graph’s edges are swapped as described before, forming G′. Then

E(ru1(G
′)− ru1(G)) :


= 0 if u1 = 4n

(logn)2

< 0 if u1 <
4n

(logn)2

> 0 otherwise

Proof. Let us pick two distinct edges, with end vertices u1, u2 and u3, u4. A swap will

remove these two edges and add either {(u1, u3), (u2, u4)} or {(u1, u4), (u2, u3)}, if no

double edges would be created by this step.

To approximate the expected effect of swaps on S as a function of u1, we need to compute

R(u1) := E(ru1(G
′)− ru1(G)) =

1

3!

1

2

1

κn

∫ n

1

∫ n

1

∫ n

1

pu1u2pu3u4

[(1− pu1u3)(1− pu2u4)(du3 − du2).

Now, pvw = dvdw
2κn

. To avoid confusion with differentials, let us denote the degree of

vertex v by tv (i.e. ti = di). We know that ∀v = 1, . . . , n : tv ≈ κ
√

n
v
, which means
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v = κ2n
tv2 , and thus

dv =
−2κ2n

tv
3

dtv.

Furthermore, since both u3 and u4 are integrated on the same interval, we do not have

to process consider both possible swaps cases. Therefore, we can assume that the newly

created edges should be (u1, u3) and (u2, u4) and leave the 1
2

factor. Thus,

R(u1) =
−8κ5n2

3!

∫ κ

κ
√
n

∫ κ

κ
√
n

∫ κ

κ
√
n

t1t2t3t4
4κ2n2

(
1− t1t3

2κn

)(
1− t2t4

2κn

)
(t3 − t2)

dt2dt3dt4
t2

3t3
3t4

3
.

Due to the symmetry of t3 and t2, this reduces to

R(u1) =
−κ2

3!n

∫ κ
√
n

κ

∫ κ
√
n

κ

∫ κ
√
n

κ

t1t2t3t4(t1t3 + t2t4)(t3 − t2)
dt2dt3dt4
t2

3t3
3t4

3
=

−κ2

3!n

∫ κ
√
n

κ

∫ κ
√
n

κ

∫ κ
√
n

κ

(
t1

2

t2
2t4

2
− t1

2

t2t3t4
2

+
t1

t2t3t4
− t1
t3

2t4

)
dt2dt3dt4.

Substituting a = κ (
√
n− 1), b = 1

κ

(
1−

√
1
n

)
, and c = log

√
n, this computes to

R(u1) = −κ
2t1

3!n
(bt1 − c)(ab− c2).

The only factor that can be negative in the above expression is bt1 − c2. R will change

its sign where this monotone expression equals 0. Solving it yields

√
n− 1
√
u1

− log
√
n = 0⇒

u1 ≈
4n

(log n)2
,

with u < u1 ⇒ R < 0, and u > u1 ⇒ R > 0, as stated.
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.

Corollary. Suppose G(n,m) is scale-free with di ≈ κ
√

n
i

for all i = 1, . . . , n. Suppose the

graph’s edges are swapped as described before, forming G′. Then

E(S(G′)− S(G)) < 0.

Proof. We will use the notation from the above proposition. Observe that in general for

graph H(n) we have

S(H) =
n∑
i=1

1

2
diri(H),

thus for graphs G and G′:

E(S(G′)− S(G)) =
1

2

n∑
u1=1

du1R(u1) ≈

−κ2n

∫ κ
√
n

κ

t1
κ2t1
3!n

(bt1 − c)(ab− c2)
dt1
t1

3
= −κ

4

3!
(ab− c2)2 < 0.

.

Corollary. For nascent scale-free graph G(n, κ) , let G′ ∈ µ(G). Then

E(S(G′)) ≈ κ3n

4

(
(log n)2 − 4κ

3

)
≈ κ3n(log n)2

4
, (5.2)

asymptotically identical to the nascent value.

Let us now compute S for model IVa graphs.
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5.4.3 S estimates: Model IVa

We defined in model IVa pij (i < j) as:

pij =
κα

iαj1−α .

Thus, for G ⊂MIV a(n):

E(S(G)) =
n−1∑
i=1

n∑
j=i+1

pijdidj ≈
∫ n

1

∫ n

i

κ3αn2α

i2αj
djdi =

κ3αn2α

∫ n

1

log n− log i

i2α

We know the result for α = 1
2
. The two other cases:

Case 1: 0 < α < 1
2
.

E(S(G)) ≈ κ3α

(1− 2α)2
n,

Case 2: α = 1
2

(also seen in previous section).

E(S(G)) ≈ κ3

4
n log2 n,

Case 3: 1
2
< α < 1.

E(S(G)) ≈ κ3α

2α− 1
n2α log n.

5.4.4 The value of Smax

[E] We have just seen what S values our models are expected to generate. How about

Smax?

Lemma 9. Let G be a graph with n vertices, labeled such that d1 ≥ d2 ≥ · · · ≥ dn. If ∃

v, w ∈ V (G) with 1 = u < v < w such that (u, v) /∈ E(G), but (u,w) ∈ E(G), then there
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exists edge swap G→ G′, such that S(G′) ≥ S(G), with equality holding only if dv = dw.

Proof. Since dv ≥ dw and u is not a neighbor of v, there must exists some node z such

that (v, z) ∈ E(G), but (w, z) /∈ E(G).

Figure 5.6: Proof illustration

Let G′ be the graph attained from G by swapping {(u,w), (v, z)} with {(u, v), (w, z)}.

Since u = 1, it is true regardless of z that

S(G′)− S(G) = dudv + dwdz − (dudw + dvdz) = (du − dz)(dv − dw) ≥ 0,

with equality only in case dv = dw.

Corollary. Let G be a graph with n vertices. There is a greedy algorithm that will locally

maximize S through edge swaps.

Proof. We will prove the existence of the algorithm by construction. Let G be a graph as

above, with d1 ≥ · · · ≥ dn. Let Gi be a subgraph of G generated by vi, . . . , vn, and let the

expression dk(Gj) refer to the degree of vk in Gj. Using the above proof ’s notation: for

step i of the algorithm, set u = i, and then by the above lemma we can make sure u is

connected to vertices i+ 1, . . . , i+ di(Gi).

Observe that since for all vertices 1, . . . , i − 1 their neighbors are also chosen greedily,

vertex z will definitely have index > u, thus step i does not interfere with any of the earlier

steps.
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Theorem 2. Let {di} be a graphic degree sequence (i ∈ {1, . . . , n}), with di = bκ(n
i
)αc.

Let G be a graph with this degree sequence that maximizes S. Then S(G) = Ω(n4α/α+1).

Proof. We want to provide a lower estimate for S(G) by construction. Let H be an empty

graph with n points. Connect v1 to v2, . . . , vd1+1. It can be done, as long as dd1+1 ≥ 1.

Then connect v2 to v3, . . . , vd2+1, which can be done as long as dd2+1 ≥ 2, and so on. For

small values of k, the k-th vertex will have k− 1 neighbors with index < k, and dk− k with

index > k, so its highest index neighbor will be vertex dk + 1. The process will terminate

when dk ≤ k. The rest of the edges can be filled in freely: since the degree-richest nodes

are heavily interconnected, the rest of the graph will be graphic (see considerations in proof

of Erdős-Gallai theorem).

Solving

dk = k,

we get

k = κ(
n

l
)α,

consequently

l = α+1
√
κnα.

That is, a complete subgraph of size O(nα/α+1). Simple calculations yield that the value

of S on this complete subgraph is Θ(n4α/α+1), which proves the statement.

This, together with the S metric calculations for model IVa allow us to conclude that

Corollary. For a nascent scale-free graph G with any 0 < α < 1, limn→∞
S(G)

Smax(µ(G))
= 0,

and thus Li et al’s claim in [42] that this ratio is close to 1 is incorrect.
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5.4.5 Results - non-directed case

[N] Our estimates for nascent the S value in (5.1) and its degree sequence class in (5.2)

are asymptotically identical, but S is lower by some smaller term. Thus, simple linear

histograms are very convenient for showing our results.

Table 5.1: S metric values in histogram, nondirected graph, 5|E(G)| edge swaps. For model
IVa, α = 0.67. The location of the nascent graph is signified by parentheses

Model n κ histogram

I 500 5 1 0 0 (1) 0 0 1 1 4 4 1 3 4 4 2 5 4 3 2 2 1 1 1 2 3
I 500 20 1 4 4 4 9 11 9 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)
I 1500 20 3 22 17 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)
I 2000 30 13 31 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)

IVa 500 5 1 1 0 0 4 3 1 2 4 3 5 4 2 0 4 (4) 3 2 1 0 2 2 2 0 1
IVa 500 20 1 0 1 0 0 1 4 3 3 1 6 7 5 5 4 3 2 2 1 1 0 0 0 0 (1)
IVa 1500 20 1 0 0 2 1 4 4 3 5 5 6 6 4 5 1 0 1 0 1 1 0 0 0 0 (1)
IVa 2000 30 1 0 0 5 3 4 5 5 4 9 5 4 2 2 1 0 0 0 0 0 0 0 0 0 (1)
III 500 5 1 0 2 0 5 2 3 1 3 4 1 4 1 1 4 2 (2) 2 3 3 4 1 1 0 1
III 500 20 4 1 12 10 7 4 8 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)
III 1500 20 2 5 10 9 13 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)
III 2000 30 8 7 20 12 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)

This is just a short illustration of the phenomenon. We found in general that for smaller

graphs and low edge densities, S did not necessarily decrease after a swapping the edges

well, but the phenomenon became clear and reproducable as the graph’s size and the edge

density grew for all models.

5.4.6 Results - directed case

Let us see the same directed scale-free graphs. If the graph’s edges are directed according

to the logic our models would suggest – say, from later to earlier vertices –, then S drops

more significantly and already at lower sizes and densities than in the undirected case.

Remember that the distribution of the incoming and outgoing degrees are significantly
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different, the outgoing degrees’ distribution is roughly constant. So edges between high-

degree vertices are far more likely to be broken up than reinstated.

The table below illustrates that S does drop more sharply in the directed case.

Table 5.2: S metric values in histogram, directed graph, 5|E(G)| edge swaps. The location
of the nascent graph is signified by brackets

Model n κ histogram

III 500 5 1 0 4 4 3 12 5 9 3 4 3 1 1 0 0 0 0 0 0 0 0 0 0 0 (1)
III 500 20 10 26 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)
III 1500 20 14 32 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)
III 2000 30 42 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1)

In conclusion to this section, we have seen both analytically and experimentally that

the S metric distinguishes nascent scale-free graphs from their degree sequence class.

5.5 An urn-based likelihood model

[T] We have seen that the S metric does a relatively good job at identifying preferential

attachment, but we know nothing about its power. One would hope to find a test that is

easier to grasp, even if it not of maximum power.

Consider the following urn representation for a sequentially built preferential attach-

ment graph.

Suppose the starting graph will have just two vertices, 0 and 1, and one edge. Starting

with k = 2, vertex k is connected to the graph at time k, with gk(k) outgoing edges and

hk(k) = 0 incoming edges. As the graph grows, hk might increase. The graph is not meant

to be directed, we only keep a sense of direction for our calculations - the degree of vertex

k at any time τ is dk(τ) = gk(τ) + hk(τ).

Denote by f the function for the preferential attachment, and consider what happens

when we add vertex t (at time t). The probability of choosing k as a neighbor is exactly
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f(dk(t))Pt
i=0 f(dk(i))

=: q(t, k).

Vertex t is meant to have gt(t) neighbors from the set of vertices with 1, . . . , t− 1. We

will choose them independently. If k is chosen more than once, we discard our pickings,

and select another group of gt(t) vertices.

Since vertex t is to have gt(t) neighbors at entry, the probability that none will connect

to k is M = q(t, k)gt(t), and

P ((t, c) ∈ E(G(t))) = 1− q(t, k)gt(t).

For an explicit urn representation:

For vertex k, consider urns A(k) and B(k). A(k, t) contains the degree number of vertex

k, while urn B(k, t) contains all other degrees of the graph (i.e. = 2|E(G(t))| − A(k, t)).

To add vertex t+ 1, we draw gt+1(t+ 1) times from the urns according to f . If we picked

from A more than once, we discard our choices and try again. Finally, we increase A by i

and B by 2gt+1(t+ 1)− i, where i is 1 if we have picked a ball from A, 0 otherwise. This

translates to a binary model with balls from A represented by 1 bits, and balls from B by

0-s.

The figure below might help our understanding.

Figure 5.7: An example graph
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The graph in the above figure has |V (G)| = 11, |E(G)| = 19. Let us first see the urn

representation of, say, vertex 4 for an illustration. All other vertices except 0 have similar

representations of length 2|E(G)|.

Table 5.3: Urn representation for vertex 4 in the above graph

code 00 0000 0000 0011 00 0100 0100 0000 10 00100000
neighbor 1 2 3 self 5 6 7 8 9 10

For graph G(n) (V (G) = {v0, . . . , vn}), we will call the n x |2E(G)| matrix thus com-

posed ”the urn matrix for G”.

Let us formalize the above, with a generalization. Suppose we hypothesize a preferential

attachment model for graph G(n,m), such that the model’s preference relation for the

neighbors of vertex τ from the vertex set i = 1, . . . , τ − 1 is given by

P (εiτ = 1) = 1− (
f(hi(τ))∑τ−1
j=1 f(hj(τ))

)gt(τ),

for some f preference function.

Then the likelihood for the graph is

L(G) =
n−1∏
i=1

n∏
j=i+1

P (εij = 1)εij(1− P (εij = 1))1−εij .

This is a quasi-likelihood value for G. The reason it cannot be called a proper likelihood

function is that there was a little bit of cheating in deriving the formula. We did not allow

multiple pickings from urn A in one round, but we did for urn B. This does not change

the result very much in practice, but we ought to be aware of it.

Our experience with the S metric shows consistenly that these nascent graphs stand out

sharply from their degree sequence class. This implies that the 0−1 urn sequence assigned
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to each vertex is close to the maximum likelihood sequence, for a well-chosen f . We saw

in section 3.5 how to make some educated guesses about f . For a good estimate for f and

a relatively good guess for the original vertex order, each line of the urn matrix should be

close to its maximum likelihood. Thus, can search for f by making perturbations on the

lines of the urn matrix.

5.5.1 Results - sequential case

[N] We can test the quasi-likelihood formula we derived above on a Model III graph.

First, by making perturbations on the urn matrix as described above, to see how the overall

likelihood changes. And second, by examining the same under edge swaps.

For notation, say M(G) is the urn matrix as derived above, M ′(G) is a perturbation of

the matrix, while G′ is a perturbation on G itself, namely edge swaps. L(G) and L(M(G))

are two ways to notate the same thing, but since we are comparing two different types of

perturbations, we will use them both.

Table 5.4: Urn quasi-likelihood, model III with β = const, 25 times 5|E(G)| matrix per-
turbations

|V (G)| 2 |E(G)|
|V (G)| logL(MG) min{logL(M ′

G} max{logL(M ′
G)}

500 5 -15529.693 -9265.851 -8329.518
500 20 -62344.23 -49018.12 -47856.084

1500 20 -222063.139 -126231.107 -114772.315
2000 30 -471715.817 -266005.082 -244089.355

The same under edge swaps:

These results confirm that the preference structure is different in the nascent graph

than over its degree class. The data obviously shows that the urn matrix perturbations

affect L much more spectacularly than edge swaps. This seems to suggest that edge swaps

have limited implications on the preference structure. That is reasonable, since the degree
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Table 5.5: Urn quasi-likelihood, model III with β = const, 50 times 5|E(G)| edge swaps

|V (G)| 2 |E(G)|
|V (G)| logL(MG) min{logL(MG′} max{logL(MG′}

500 5 -15866.891 -13122.426 -12198.573
500 20 -59664.732 -58153.909 -46070.313

1500 20 -224914.946 -177270.854 -173037.467
2000 30 -463474.606 -368972.010 -362138.322

sequence is a strong constraint on the graph. However, this matter needs to be investigated

further, we will consider it an open problem for this publication.

5.5.2 Results - nonsequential case

How about non-sequentially built graphs? Let us see the same for a model IVa graph

with α = 0.67. Note that model IVa has the same simple preferential attachment function

f(d) = cd.

Table 5.6: Urn quasi-likelihood, model IVa, 25 times 5|E(G)| matrix perturbations

|V (G)| 2 |E(G)|
|V (G)| logL(MG) min{logL(M ′

G)} max{logL(M ′
G)}

500 5 -8432.755 -4897.828 -3986.803
500 20 -30741.212 -17647.714 -16424.394

1500 20 -108165.475 -61532.483 -56539.051
2000 30 -229222.397 -129596.355 -117620.626

Edge swaps:

Table 5.7: Urn quasi-likelihood, model IVa, 50 times 5|E(G)| edge swaps

|V (G)| 2 |E(G)|
|V (G)| logL(MG) min{logL(MG′)} max{logL(MG′)}

500 5 -7873.848 -6399.312 -5796.338
500 20 -30794.981 -25163.67 -23745.459

1500 20 -108844.844 -86663.854 -84546.459
2000 30 -227471.08 -179653.628 -175017.48

The results are very similar to the ones we have just seen. This is confirmation that
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the model is a good approximation for a sequential model.

5.5.3 Results - directed case

What happens if the graph is directed? We have seen with the S metric that the swap

changes the preference structure more than in the non-directed case. We expect to see the

same phenomenon here. Note that we do not have to examine the urn matrix perturbations,

since that will be the same regardless of direction.

Table 5.8: Urn quasi-likelihood, model III with β = const, 50 times 5|E(G)| edge swaps

|V (G)| 2 |E(G)|
|V (G)| logL(MG) min{logL(MG′)} max{logL(MG′)}

500 5 -14936.768 -13096.573 -10554.247
500 20 -63585.505 -55455.498 -51094.704

1500 20 -224021.59 -192885.545 -180562.461
2000 30 -465479.328 -401647.686 -382838.769

The results show a marked difference, although it is somewhat surprising that this

difference is in general less than in the non-directed case, as it is contrary to our experience

with the S metric. This will need further investigation.

5.5.4 Results - βi and the preference function varied

A natural next step for the experiments was to vary βi and the preference function, and

look for any changes in the results. Surprisingly, nothing seemed to change – the above

quasi-likelihood model with a linear preference function was very resilient even when the

actual nascent preference functions was far from linear. Not to mention βi. This will need

to be revisited, but without proper analysis, the phenomenon does not merit more than a

paragraph, which ends here.
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5.6 Summary

[T] We have seen in this chapter that the reverse implication for 4.1 fail in the general

scale-free case as well. One noteworthy phenomenon we found was that swapping does not

have as dramatic an effect on a graph’s preference structure as perturbing the urn model bit

sequences. This is not very surprising by itself, but has far-reaching implications. Namely,

it suggests that while the degree sequence is inadequate for fully understanding a graph,

there is still a lower bound for the preference structure of the graph.
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Chapter 6

The uniform model

[E] Consider a random graph G with n vertices, with independent edge probablities

pij = P ((i, j) ∈ E(G)). The likelihood of a particular graph in this model is

L(G) =
∏

(i,j)∈E(G)

pij
∏

(i,j)/∈E(G)

(1− pij).

Let εij be the indicator of an edge between i and j, i.e. εij = 1 if (i, j) is an edge,

εij = 0 otherwise.

The above expression can be rewritten as

L(G) =
∏

i,j∈V (G),i<j

(1− pij)
∏
εij=1

pij
1− pij

.

Let qij =
pij

1−pij . Model IV expressed pij as a diadic product, now, in similar vein, say

that qij = αiαj for some {αk}, k = 1, . . . , n.

Then

L(G) = C
∏
εij=1

qij = C
∏
εij=1

αiαj = C
n∏
i=1

αi
di .
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So the likelihood of the graph depends solely on the degree sequence. Or, identically

put, the degree sequence is a sufficient statistic. This chapter will investigate a number of

properties for this model. Many of these results are published in parallel in [21].

Now, for the formal definition for this model V:

Suppose n is a positive integer, and α1, . . . , αn are arbitrary positive numbers. The

probability of an edge between vertices 1 ≤ i < j ≤ n is

pij =
αiαj

1 + αiαj
,

all independent.

By merit of the likelihood depending exclusively on the degree sequence, this model

generates graphs with uniform probability over the class of graphs with expected degree

sequence E(di) =
∑

i 6=j
αiαj

1+αiαj
.

Furthermore, the model eliminates the rather inconvenient weakness of models IV and

IVa that for certain combinations (κ, i, j) those could formally yield probabilities greater

than 1.

The price is that there is no explicit formula for αi in general. We can, however give

an iterative approximation. First, consider the likelihood equation:

L(G) =
∏
i<j

(1− pij)
∏
εij=1

qij =

∏n
i=1 αi

di∏
i<j(1 + αiαj)

.

Then logL =
∑n

i=1 di logαi−
∑

i<j log(1 +αiαj), and the maximum likelihood solution

over {αi} is at ∂ logL
∂αi

= 0 for i = 1, . . . , n. Namely,

di
αi
−
∑
i 6=j

αj
1 + αiαj

= 0, for 1 ≤ i ≤ n.
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This could be solved by the iteration

α̃i =
di∑

i 6=j
αj

1+αiαj

. (6.1)

Let us examine which {di} sequences allow for a solution for the above iteration is

solvable.

6.1 The graphs whose maximum likelihood equation

can be solved

We have just introduced a very general model. We need to do some work in order to

understand the set of graphs that allow us to solve the maximum likelihood equation, and

have a meaning for the above iteration.

First of all, the Erdős-Gallai theorem ([28]) states that the necessary and sufficient

condition that there exists a graph for degree sequence {di}, i = 1, . . . , n:

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(k, di)

for all 1 ≤ k ≤ n− 1.

Lemma 10. Let G be a graph with n vertices and degree sequence d1, . . . , dn. For all

i = 1 . . . , n, let fi = E(di) =
∑

j 6=i pij. Then the set of n-dimensional vectors {f1, . . . , fn}

is convex.

Proof. Observe that the set of pij-s (i, j ∈ {1, . . . , n}) are contained in the
(
n
2

)
-dimensional
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unit cube. For a fixed k ∈ {1, . . . , n} and u > k, define

ru =


1 if k < fu,

0 otherwise

Then we can rewrite the Erdős-Gallai inequality for vertex k as

k∑
i=1

fi ≤ k(k − 1) +
n∑

i=k+1

(ruk + (1− ru)fi),

which is linear regardless of ru, just as the expected value operation. The same holds for

all n− k inequalities, regardless of k, so overall we are performing a linear transformation

on a convex set, which will result in a convex set, as stated.

Let C denote the set of expected degree sequences for all graph realizations over n

vertices. By the above, C is convex. We will now extend the Erdős-Gallai theorem over C.

Lemma 11. Let P be an n × n symmetric matrix with 0 ≤ pij ≤ 1 for all i 6= j, and 0

entries on the diagonal. Let fi =
∑

j pij. Then ∀k = 1, . . . , n

k∑
i=1

fi ≤ k(k − 1) +
n∑

j=k+1

min(k, fj).

Proof. Fix k and denote σj =
∑k

i=1 pij. Then for j ≤ k, we have σj ≤ k − 1, and for

j > k, we have on the one hand σj ≤ k, and on the other σj ≤ fj.

We know that the boundary of C is marked by those matrices that have some 0 or 1

entries outside the diagonal. A solution may not exist on the boundary, but it does if f is

from the interior of C, as we will now show.

Theorem 3. Let f be an interior point of C. Let ν(f) be the set of n × n symmetric

probability matrices with fi =
∑n

j=1 pij. Then the random model that maximizes the graph’s
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binary entropy over the edge probabilities pij, given expected degrees f1, . . . , fn is model V,

as defined above.

Proof. For any matrix P ∈ ν(f), the graph generated from P will have an edge (i, j) with

probability pij, or no edge with probability 1− pij.

Consider the binary entropy function:

S = −
∑

1≤i<j≤n

pij log pij + (1− pij) log(1− pij).

Clearly S > 0, so it is bounded below. It will be maximized by a model that contains the

structure minimally induced by the conditions on f .

To maximize it, we will use the Lagrange multiplier method, which states that ∃{Ki}

such that

S̃ = S +
n∑
i=1

Ki(fi −
∑
j 6=i

pij)→ max .

To achieve that, we will have to solve for all i 6= j

∂S̃

∂pij
= −1− log pij + 1 + log(1− pij)−Ki −Kj = 0.

This leads to

log
pij

1− pij
= −(Ki +Kj).

Substituting for all i: Ki = − logαi, as in model V, we get

pij
1− pij

= αiαj,

exactly as defined by the model.

We do not know what happens on the boundary of C, it remains an open question.
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6.2 When will the iteration converge?

[O] We have seen some sufficient conditions for the existence of the maximum likelihood

equation. We should now study if this is sufficient for solving the iteration on the coefficient

sequence.

Thanks for the solution to T. F. Móri.

Lemma 12. Suppose G(n,m) has degree sequence d1, . . . , dn. If the model V maximum

likelihood equation has a solution for {di}, then the iteration

α̃i =
di∑

i 6=j
αj

1+αiαj

.

will converge.

Proof. First, we may assume that for all 1 < i ≤ n, 0 < di < n− 1. If di = 0, then

αdii∏
i 6=j(1 + αiαj)

is maximized by αi = 0. We may ignore this case. If, on the other hand,di = m− 1, then

the above can be rewritten as ∏
i 6=j

αi
1 + αiαj

,

which is monotone in αi, and thus is maximized by ai =∞ (i.e. pij = 1 for all i 6= j). We

may ignore this case as well.

Let us introduce a metric on Rn
+:

ρ(α, β) = max
1≥i≥n

| logαi − log βi|.

We will show that ρ(α̃, β̃) ≤ ρ(α, β). In fact, for n ≥ 3, the distance will certainly

decrease after two iterative steps.
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Let ci = αi
βi

, and c̃i = α̃i
β̃i

. Suppose that ∀1 ≤ i ≤ n, 1
K
≤ ci ≤ K. Then

c̃i =

∑
j 6=i

βj
1+βiβj∑

j 6=i
βjcj

1+βiβjcicj

≤(1) max
j 6=i

1 + βiβjcicj
cj(1 + βiβj)

= ci max
j 6=i

1
cicj

+ βiβj

1 + βiβj
≤(2)

ci max
j 6=i

max(
1

cicj
, 1) = max(

1

minj 6=i cj
, ci) ≤(3) K

Conditions for equality:

• in (2), for the j value that corresponds to the maximum, cicj = 1,

• in (3), ci = K, and

• in (1), ∀j 6= i: cj = 1
K

.

Switching α and β, we get c̃i ≥ 1
K

, with equality holding if and only if ci = 1
K

and for

j 6= i, cj = K. Thus, if n ≥ 3, then either maxi c̃i < K or mini c̃i >
1
K

, thus there is strict

inequality after another run of the iteration.

If we choose the maximum likelihood estimate for β, we can see that for an arbitrary

starting α ∈ Rn
+, the sequence logα will remain bounded. Any accumulation point of the

sequence is a fix point of the iteration, but it follows from the above that there is only one

fix point, namely the maximum likelihood estimate.

6.3 Preferential attachment tests on model V

[N] This model was created to produce uniform distribution, therefore its S value

should be invariant under edge swaps.

6.3.1 The S metric

Here are some sample results. The tests confirm our expectations, the S metric does not

distinguish nascent non-directed model V graphs.
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Table 6.1: S metric values in histogram, non-directed graph, 5|E(G)| edge swaps. The
location of the nascent graph is signified by brackets

Model n κ histogram

V 500 5 1 0 0 0 0 2 0 1 3 0 (5) 3 5 4 2 3 6 4 3 2 4 1 0 1 1
V 500 20 1 0 0 1 2 1 1 3 1 5 (6) 1 3 3 2 2 4 6 3 3 2 0 0 0 1
V 1500 20 2 0 2 0 3 3 3 2 3 2 2 2 4 2 3 (5) 3 3 0 2 2 1 1 0 1
V 2000 30 1 0 0 0 0 0 0 0 1 0 0 6 1 7 3 4 3 (10) 1 5 1 3 0 2 3

The directed case shows the same properties as the other models: swaps do decrease S,

for the same reason as discussed in .

Sadly, currently the S metric is the strongest test we have for model V. Since ∀i, j =

1, . . . , n, i 6= j

pij =
αiαj

1 + αiαj
,

which is not a function of di or dj, therefore the urn test is not applicable.

This concludes our results about this model.

6.4 Summary

In this chapter we introduced a model that produces uniformly distributed graphs given a

degree sequence. Comparing it to the previous models, this is very different in that swaps

do not alter its likelihood (if it is non-directed). Thus, if a preference statistic on a power-

law degree distribution graph, say, S does not decrease due to swapping, then we reject

the hypothesis that it came from a preferential model, and instead accept the alternative

hypothesis that it is from the uniform distribution over the degree sequence class, and can

be described by model V.
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Chapter 7

Open questions

In the process of coming up with these results, we stumbled upon some open questions,

which might be interesting subjects for further research. These are:

• Edge swap mixing times.

P.L. Erdős, I. Miklós and L. Soukup proved in [26] that graph G(n) approaches

uniform distribution on its degree sequence class under the swap operation in Poly(n)

time, if it is bipartite semi-regular. We think the statement is expandable, quite

possible to all non-directed graphs, but currently this is not proven.

• Uniform generation.

There are many publications on how to generate graphs with a specific degree se-

quence with uniform distribution. To the best of our knowledge, this all use some

branching process, or edge mixing (e.g. swaps). Now, given a graphic sequence

{d1, . . . , dn}, model V will generate all graphs with this expected degree sequence

with identical probability. This implies that it might be possible to use this model

for generatic graphs with a prescribed degree sequence from the uniform distribution
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from that degree sequence class. This might involve some iterative process that can

remove as well as add edges. Currently we do not see the distribution of the indi-

vidual degrees generated by the model, and do not have a solution for this problem,

but we find it inspiring.

• The boundaries of the convex hull.

We have stated that the maximum likelihood equation is solvable on the interior of

the convex hull identified in section 6.1. What happens on the boundary?

• Perturbation vs. edge swaps.

For models I through IV/IVa, the graphs’ likelihood changed more under urn matrix

perturbations than edge swaps. This implies that given a graph, there is a limit to

how much its preference structure can be altered by rewiring the edges, and suggests

that there is a lower bound on how much information the degree sequence contains

about the graph’s connection structure. The question requires further study.

• Urn likelihood and swaps.

Given the fact that swaps on graph G had a notably stronger effects on the value

S(G) when G was directed, one would naturally expect to see the same with the urn

likelihood. But the results begged to differ. This is counterintuitive, and should be

revisited.

• Applications.

So-called ”heavy-tail” or ”fat-tail” distributions have gained much popularity in re-

cent years, in areas as far apart as finance and biology. In some of these cases, there

is an underlying network model, but far from always. History shows that graph the-

ory was able to produce some beautiful solutions for problems that had nothing to

do with graphs. It is a natural idea to investigate whether one can devise a random
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graph mechanism for a heavy-tail distribution even in the absence of a network. Ex-

amining Zipf’s law about the frequency of words in a language might be an interesting

starting problem.
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Addendum

The text for this work was already closed, when we stumbled upon an article by Chatter-

jee, Diaconis and Sly, ”Random graphs with a given degree sequence”, which in essence

describes our model V (see [15] and references therein). Some of the results in that paper

coincide with ours:

• Uniform distribution conditioned on a degree sequence,

• Maximum likelihood equation and its solution by iteration,

• Identifying that the solution of the maximum likelihood equation is to be found on

some subset of the convex hull of all graphic sequences of a certain size.

It is pleasant to see that some of the greatest researchers in the field have come to

similar conclusions. We are proud to say, however, that our results are more accurate in

the finite case.

This is a good lesson that teaches one to publish new results as soon as they are ready.
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quence of a scale-free random graph process. Random Structures and Algorithms 18

(2001), 279–290.

[13] Borgs, C., Chayes, J., Lovász, L., T. Sós, V., and Vesztergombi, K. Con-

vergent sequences of dense graphs II: Multiway cuts and statistical physics. Preprint,

available at http: // research. microsoft. com/ ~ borgs/ Papers/ ConRight. pdf

(2007).

[14] Borgs, C., Chayes, J., Lovász, L., T. Sós, V., and Vesztergombi, K.

Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and

testing. Advances in Math. 219 (2008), 1801–1851.

[15] Chatterjee, S., Diaconis, P., and Sly, A. Random graphs with a given degree

sequence. arXiv, available at http: // arxiv. org/ PS_ cache/ arxiv/ pdf/ 1005/

1005. 1136v3. pdf (2010).

[16] Chung, F., and Lu, L. The average distance in a random graph with given expected

degrees. Internet Mathematics 1 (2002), 15879–15882.

[17] Chung, F., and Lu, L. Connected components in random graphs with given ex-

pected degree sequences. Annals of Combinatorics 6, 2 (2002), 125–145.

86

http://research.microsoft.com/~borgs/Papers/ConRight.pdf
http://arxiv.org/PS_cache/arxiv/pdf/1005/1005.1136v3.pdf
http://arxiv.org/PS_cache/arxiv/pdf/1005/1005.1136v3.pdf


C
E

U
eT

D
C

ol
le

ct
io

n

[18] Chung, F., Lu, L., and Vu, V. Eigenvalues of random power law graphs. Annals

of Combinatorics 7 (2003), 21–33.

[19] Chung, F., Lu, L., and Vu, V. The spectra of random graphs with given expected

degrees. Internet Mathematics 1, 3 (2003), 257–275.

[20] Coja-Oghlan, A. Graph partitioning via adaptive spectral techniques. Combina-

torics, Probability and Computing 19, 2 (2010), 227–284.

[21] Csiszár, V., Hussami, P., Komlós, J., Móri, T., Rejtő, L., and Tusnády,
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[54] Szemerédi, E. On the sets of integers containing no k elements in arithmetic pro-

gression. Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica 27 (1975),

199–245.
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