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Chapter 1

Introduction

1.1 History

Since its inception, cryptology has been dealing with the problem of sending a secret

message to a receiver in such a way that an eavesdropper, who can possibly intercept

the communication, does not understand what the original message(plain text) is. The

methods used in cryptology have been changing along with technological progress. Julius

Caesar is believed to have encrypted his messages with so called ”Caesar cipher”, simple

substitution cipher [19], whereby each letter is replaced by the third-next. At the beginning

of the 20th century mechanical devices became sufficiently advanced to be used for the

purposes of cryptology. The best known among them is Enigma, the electro-mechanical

rotor machine which was used by Germany in World War II. For an overview of cryptology

of that period see [13].

Modern cryptology begins with the paper ”Communication Theory of Secrecy Systems”

[21] published by Claude Shannon in 1945 for the Bell lab, in which he discussed the

subject from a mathematical point of view. This work was classified and a few papers were
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published before 1970s. The next breakthrough was made in 1976 by Whitfield Diffie and

Martin Hellman in their paper ”New Directions in Cryptography” [6], where they suggested

means to distribute privately cryptographic keys via public communication channels, the

algorithm known as ”Diffie-Hellman key exchange protocol”. This article gave an impulse

to developments in different areas of cryptology. Among them, probably one of the most

important is so called asymmetric key algorithms, when two different keys are used to

encrypt and decrypt the message.

At the same time it was noticed that some problems involve not just a sender, a

receiver and a possible eavesdropper, but a group of participants(players). For example,

some company might want its managers to be able to sign documents, while it is not

desirable to give the signing key to all of them. The solution to this problem could be the

sharing of the signing key among managers in a way that a qualified set of them is able

to reconstruct the key and sign documents, while an unqualified is not. Another example

of the same situation is the Root DNS key protection [11]. This solution is called secret

sharing.

Secret sharing could be used as part of the solution to a problem which seems to be

different, namely to multi-party computation problem. An example of such problem is the

famous Yao’s millionaire problem[24], when a group of millionaires wants to determine who

is the richest among them without revealing how much money each of them has. More

generally, in multi-party computation(MPC) problem a group of players wants to compute

a function on their inputs while preserving these inputs’ privacy.

We will discuss secret sharing and its applications to MPC in the following sections.
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1.2 Secret sharing

Secret sharing was first introduced by Adi Shamir [20] and George Blakley [3] independently

in 1979 as one possible way of protecting data from leaking. Informally it allows a so called

dealer to distribute the secret among the other participants of the protocol in a way that

qualified sets of players can reconstruct it, while unqualified sets get no information about

it. Both schemes by Shamir and Blakley are so called threshold schemes, when the set of

players is qualified if and only if it is big enough. If k over n players are required, then the

scheme is called (k, n)-threshold scheme.

The set of participants, who receive a share will be denoted by P . We always assume

that P is not empty, and to avoid certain trivialities, we assume further that is has at least

two members. During this thesis we allow P to be infinite as well; for the time being the

reader may assume that P is finite. Certain subsets of participants who are expected to

recover the secret, are called qualified sets of players, while all the other subsets are called

unqualified. The collection of qualified subsets is A ⊂ 2P .

Definition 1.1. Let P , |P | = n be a set of players and A ⊆ 2P - the set of qualified subsets

of players. A is called an access structure if it satisfies the following conditions:

1. (Monotonicity) If A ∈ A and A ⊂ A′ ⊆ P , then A′ ∈ A. Intuitively, if a set is

allowed to recover the secret, then adding further members to this set should not take

away this property.

2. (Non-triviality) There is at least one qualified set (and thus P ∈ A), furthermore no

singleton set is in A (in particular, the empty set is never qualified).

Here we will give a definition of perfect secret sharing scheme(PSSS) in case when the

set of possible secrets to be shared is finite.
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Definition 1.2. Let S0 be a finite set of secrets s0 with some distribution on it and for

i ∈ P let Si be a set of shares si which could belong to ith player. Perfect secret sharing

scheme(PSSS) is a probability mapping from the set of secrets S0 to the product set of

shares
∏n

i=1 Si such that:

1. (Correctness) If a set of players A is qualified, then they can reconstruct the secret:

∀A = {a1, . . . , a|A|} ∈ A : ∃fA(x1, . . . , x|A|) s.t. fA(sa1 , . . . , sa|A|) = s0

2. (Security) If a set of players A is unqualified, then the secret s is independent from

the set of shares which belongs to players in A.

Remark 1.1. In case of finite set of players we can equally define a PSSS as a distribution

on the product space of secrets and shares
∏|P |

i=0 Si.

Here we supposed the set of secrets to be finite, but later we will allow it to have bigger

cardinality. Sometimes (although not necessarily) some of domains Si can be equipped

with an algebraic structure. The basic and one of the most elegant examples of secret

sharing scheme is Shamir secret sharing scheme [20].

Let P = {1, . . . , n}, A = {A ⊆ P | |A| ≥ k} for some fixed k, let S0 be some finite field

F, |F | > n with uniform distribution on it and Si be equal to F for i =∈ P .

Scheme 1.1.

1. Let F k−1
s [x] ⊂ F [x] be the set of polynomials of degree k− 1 with coefficients from F

and the constant term equal to the secret s0. f(x) ∈ F k−1
s [x] is picked up uniformly

from F k−1
s [x].

2. The share of the ith player is the value of the polynomial f(x) in a point ai, where
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all ai are distinct, non zero and known by every player.

si = f(ai)

To reconstruct the secret, a qualified set of players simply has to reconstruct the poly-

nomial using any type of interpolation and take its constant term. It’s easy to see that

if the set of players is unqualified, then the set of shares is independent from the secret.

Indeed, suppose t − 1 points (ai, si), i ≤ t − 1, are known by the players. These points

together with (0, s0) point determine the polynomial, which means that there is a bijection

between the set of polynomials and the set of secrets. Which means that from the players’

point of view the secret has the same distribution as the polynomial chosen by the dealer.

As mentioned above this is an (n, k)-threshold scheme, while this restriction is not

necessary. Ito, Saito and Nishizeki in [14] presented a generalization of the Shamir scheme

which allows to share a secret for any access structure. Benaloh and Leichter in [2] showed

how to construct a secret sharing scheme using a monotone function and an (n, n)-threshold

scheme for any given access structure.

Shamir scheme requires the set of secrets S0 to be a field. A huge research for possibility

of secret sharing(as well as MPC ) over a ring or an Abelian group was done during past

fifteen years. See for example [8]. In this thesis we discus the secret sharing over more

general structures, particularly for countable and continuum domains, as well as for infinite

number of players.

If we allow players not only to collect information but to be corrupted by an adversary

and misbehave in arbitrary way or even ignore the communication, we will face a so called

verifiable secret sharing (VSS) problem. Informally it can be defined as follows:

Definition 1.3. VSS is a protocol between the dealer and players, part of whom can be

corrupted by an adversary, such that:
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• If the dealer is honest, then he can distribute the secret in a way that qualified(honest)

sets of players can reconstruct the secret independently from the corrupted players’

behavior, while adversary doesn’t get any information about the secret.

• If the dealer is corrupted(and thus the secret is already known by the adversary),

then either honest players understand it and escape the protocol or some value is

distributed and can be reconstructed by honest players.

For an overview of VSS see [5] and [9].

1.3 Applications to other cryptographic protocols

There are two main applications of secret sharing: Multi-party computation [24] and Zero-

Knowledge Proofs [18].

The problem of MPC is to enable a set of players to evaluate some type of functions

on their private inputs. The correctness of the obtained value should be guaranteed, as

well as the privacy of the inputs. Depending on a model, some sets of players can only

collect information in an attempt to break the privacy of other players or be corrupted and

misbehave in arbitrary way. For an overview see [10].

Here we present a simple example which shows how secret sharing schemes could be

used as a building block in a construction of an MPC protocol.

The first useful observation is that any function over finite set F can be represented as

a polynomial, which means that it is enough to be able to add and multiply values from

F .

Now suppose that we have a secret sharing scheme such that if players have shares

for two different secrets s and s′, they can securely(without revealing any information)

compute shares for s+ s′ and s · s′. To see how Shamir scheme can be modified to be such

a scheme and required conditions on an access structure see [5]. Also suppose that players
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can not be corrupted and they follow the protocol correctly. The function is presented as

a circuit with two operations: addition and multiplication. The algorithm is as follows:

1. Each player distributes his secret value among all players(including himself) using

the secret sharing scheme.

2. Players evaluate the circuit step by step repeating the following operations:

• If the next step is multiplication of two shared values, the multiplication protocol

of the secret sharing scheme starts and each player obtains a share for the

product.

• If the next step is addition of two shared values, the addition protocol of the

secret sharing scheme starts and each player obtains a share for the sum.

3. When shares for the final value are obtained, the reconstruction protocol of secret

sharing scheme starts.

If the set of players is unqualified, they do not have at least one share for each intermediate

value and thus the privacy is guarantied by security of the secret sharing scheme.

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff in [18]. In

this protocol we have two entities, Prover and Verifier, and a language L. Prover tries to

convince Verifier that some element l belongs to L. It is required that:

1. If l ∈ L, Prover should be able to convince honest Verifier of this fact.

2. If l 6∈ L, no cheating Prover can convince honest Verifier with probability greater

then 1
2
.

3. If l ∈ L, no cheating Verifier gets any information except this fact.

For an example of how secret sharing can be used in ZKP see [1].
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1.4 Thesis structure and contribution

This thesis is organized as follows. In chapter 2 we present a definition of secret sharing over

countable domains suggested by Chor and Kushilevits [4], then we present our negative

result, which is slightly more general than the result by Chor and Kushilevits. Finally,

we show several counterexamples which demonstrate an importance of different conditions

of our theorem. In chapter 3 we discuss possible definitions of continuum secret sharing

and show by a counterintuitive example that the definition by Chor and Kushilevitz [4]

should be modified to fit an intuitive idea of secret sharing. Later we present the result

by Chor and Cushilevitz which shows the existence of perfect secret sharing over the real

line. We also give a short introduction to the theory of Lebesgue-Rokhlin probability spaces

[17] and suggest how it can be used for secret sharing over more general secret domains.

In chapter 4 we present a nice scheme which allows to share a branch of possibly infinite

binary tree. In our scheme several primitives could be computed by players locally without

any communication. Finally, in chapter 5 we introduce a new concept of Perfect uniform

non-probabilistic secret sharing in which we totally avoid the usage of probability. We

show an existence of such scheme for arbitrary(infinite) access structure and arbitrary

secret domain.
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Chapter 2

Countable set of secrets

Secret sharing started with two schemes which are appropriate for a secret chosen from

a finite field. A lot of work was done to investigate the possibility of secret sharing over

other types of domains. For instance, it is desirable to be able to share a secret from less

restrictive algebraic structures such as finite ring or an Abelian group. So called black-

box secret sharing schemes allow to share a secret from arbitrary finite field(ring, Abelian

group)[8]. Nevertheless, most of this work is done for finite case, while infinite structures

are poorly understood. The main result for the infinite secret domains is by Chor and

Kushilevitz [4]. We think that research in infinite secret sharing could help to construct

efficient schemes for finite case and understand the nature of the secret itself. In this

chapter we suppose the set of participants to be finite.

When we want to leave finiteness the first step is to deal with countable sets. In this

chapter we revisit the classical result of Chor and Kushilevitz [4]. Roughly speaking it

states that a secret sharing scheme which distributes infinitely many secrets cannot have

atomic shares. A share is atomic if one of its values is received with positive probability.

One consequence of the Chor–Kushilevitz theorem is that no perfect secret sharing scheme
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exists on countably many secrets and shares, i.e. when all the sets S0 and Si are countable.

2.1 Definition

When the set of possible secrets is finite we usually have a discrete probability measure

on it. Chor and Kushilevitz in [4] suggest a different approach to secret sharing in infinite

case and renounce the usage of distribution on the set of secrets. Instead, they look on

the secret s0 as on a given value which has to be shared, and the dealer picks up shares

according to a corresponding distribution Ps0 . In case of countable set of secrets they use

the following definition[4]:

Definition 2.1. Let S0 be a countable set of possible secrets, let A be an access structure

on a set of n players, and α ≥ 1 be a constant. An (A, α) secret sharing scheme over S0

is a probabilistic mapping Π : S0 → S =
∏
i∈P

Si from the set of secrets to the set of n-tuples

(shares) such that:

1. (Correctness) If a set of players A is qualified, then the secret can be reconstructed.

That is, for any subset A ∈ A there exists a function fA :
∏

i∈A Si → S0 such

that, for every possible set of shares (s1, . . . , sn) = Π(s0), the secret can be found by

fA({si}i∈A) = s0.

2. (Security) No unqualified set of shares reveals ”too much” partial information about

the secret. Formally, for any A 6∈ A, for every two values of the secret a1, a2 ∈ S0

and for every possible shares {si}i∈A:

1

α
· Pr({si}i∈A|s0 = a1) ≤ Pr({si}i∈A|s0 = a2) ≤ α · Pr({si}i∈A|s0 = a1)

In the definition above the parameter α tells us what ”too much information” is. If α = 1,

then the scheme is a perfect secret sharing scheme.
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We will use a less restrictive definition. Namely, we do not require α to be unique for

all unqualified sets of players and we replace the property 2 by the following:

2′ (Security) For every A 6∈ A there exists a positive constant αA ≥ 1, such that for

every two values of the secret a1, a2 ∈ S0 and for every possible shares {si}i∈A:

1

αA

· Pr({si}i∈A|s0 = a1) ≤ Pr({si}i∈A|s0 = a2) ≤ αA · Pr({si}i∈A|s0 = a1)

We call such schemes closely perfect secret sharing schemes.

2.2 Impossibility of countable secret sharing

In the same paper Chor and Kushilevitz showed that if we require the set of possible shares

to be countable as well, then there is no secret sharing scheme scheme. The proof of this

statement is based on impossibility of uniform distribution on a countable set. In chapter 5

we will particularly show that such schemes exist in non-probabilistic secret sharing, when

we completely avoid the probability. We show that almost the same proof as the one by

Chor and Kushilevitz works for closely perfect secret sharing schemes.

Theorem 2.1. If we consider a set of possible shares Si to be countable for every player

i ∈ P , then there is no closely perfect secret sharing scheme(independently from a chosen

access structure A).

Proof. First we will show that it is enough to consider just two players, provided that both

are required to reconstruct the secret.

Lemma 2.1. If there exists a scheme Fn for an access structure A on n players and a

secret s0 picked up from a set S0, then there exists a scheme F2 for just two participants

when both are required to reconstruct the secret and a secret is picked up from the same set

S0.
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Proof. Let A be any minimal qualified set of players, ∅ 6= A1 ( A and ∅ 6= A2 = A−A1(here

we suppose that no player can reconstruct the secret alone, otherwise he can simply be

excluded from the scheme). Clearly, both A1 and A2 are unqualified. First the new scheme

F2 runs the scheme Fn, then the first player gets all shares which in scheme Fn belong

to players in A1 (si, i ∈ A1) and the second player gets shares from A2 (si, i ∈ A2).

A1 ∪ A2 = A and A is qualified, thus two players can reconstruct the secret together. On

the other hand, from scheme Fn(and from A1 6∈ A) we have that for every two values of

the secret a1, a2 ∈ S0:

1

αA1

· Pr({si}i∈A1|s0 = a1) ≤ Pr({si}i∈A1 |s0 = a2) ≤ αA1 · Pr({si}i∈A1|s0 = a1)

It implies that the first player does not have ”too much information” about the secret.

The same holds for A2 and the second player, and it ends the proof.

Now it is enough to prove the theorem for two players. Suppose, such scheme exists

and let f(x1, x2) be a function which reconstructs the secret according to two given shares.

For every value of the secret s0 and pair of shares s1, s2 we have a probability that secret s0

will be distributed as s1 and s2. We will denote it Pr(s1, s2|s0). This probability satisfies

the following conditions:

1. If f(s1, s2) 6= s0 then Pr(s1, s2|s0) = 0. This means that the function f gives the

right value.

2. For any secrets s0, s
′
0 ∈ S0 and share s1 ∈ S1:

Pr(s1|s0) =
∑
s2∈S2

Pr(s1, s2|s0) ≤
∑
s2∈S2

α1 · Pr(s1, s2|s′0) = α1 · Pr(s1|s′0)

13
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3. For any secrets s0, s
′
0 ∈ S0 and share s2 ∈ S2:

Pr(s2|s0) =
∑
s1∈S1

Pr(s1, s2|s0) ≤
∑
s1∈S1

α2 · Pr(s1, s2|s′0) = α2 · Pr(s2|s′0)

For any fixed secret s′0 there exists a pair of shares (s′1, s
′
2) such that Pr(s′1, s

′
2|s′0) > 0

(otherwise by σ-additivity of the probability measure Pr the total probability will be zero,

and hence the secret s′0 could not be shared). Let ε = Pr(s′1|s′0) and let Ss0
2 ⊂ S2 be the

set of shares s2 such that f(s′1, s2) = s′0, then:

∑
s2∈S

s0
2

Pr(s2|s0) =
∑

s2∈S
s0
2

∑
s1∈S1

Pr(s1, s2|s0) ≥
∑

s2∈S
s0
2

Pr(s′1, s2|s0) = Pr(s′1|s0) ≥
ε

α1

The last inequality is by (2). Now note that sets Ss0
2 are disjoint and

⋃
s0∈S0

Ss0
2 = S2. Thus

by σ-additivity:

1 =
∑
s2∈S2

Pr(s2|s′0) =
∑
s0∈S0

∑
s2∈S

s0
2

Pr(s2|s′0) ≥
∑
s0∈S0

∑
s2∈S

s0
2

1

α2

· Pr(s2|s0) =

∑
s0∈S0

1

α2

∑
s2∈S

s0
2

Pr(s2|s0) ≥
∑
s0∈S0

ε

α1 · α2

=∞

This gives a contradiction.

The theorem is interesting by itself and as a consequence we get an important corollary:

Corollary 2.1. Suppose that a closely perfect secret sharing scheme distributes a secret

from an infinite domain. Then some participant i ∈ P must have more than countably

many possible shares.

Proof. If the set of secrets S0 is infinite, then it can be restricted to a countable set(the

dealer can simply forget about other values). Now if we suppose that every player gets a
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share from a countable set, then it fits the conditions of theorem 2.1, which says that such

scheme does not exist.

2.3 Counterexamples

In this section we show the importance of conditions in theorem 2.1 and corollary 2.1 by

providing some counterexamples.

In contrast to the corollary 2.1, if we allow at least one player to have a share from a

continuum set, then such scheme exists.

In this example there are only two participants, a and b. The set S0 of the secrets is

Z, the set of all integers (positive and negative). The share of a is a uniformly distributed

random real from the [0, 1] interval. The share of b is an element of Z, such that j ∈ Z is

chosen with probability pj > 0, where
∑

j∈Z pj = 1.

Scheme 2.1. First we split [0, 1] into countably many disjoint sets indexed by Z as

[0, 1] =
⋃∗

k∈Z

Ek

so that each Ek has an outer measure 1.

Suppose that the share of a is α ∈ [0, 1], and the share of b is β ∈ Z. Then the secret

is k + β ∈ Z, where k ∈ Z is the index of the part of the unit interval in which α is.

In the access structure a and b are unqualified, but {a, b} is qualified. It is clear that

a and b together can determine the secret. Given any secret s0 ∈ Z, the share of the first

player a is distributed uniformly on zero-one interval, and the share of the second player

has a discrete distribution on Z where the probability of j is pj. Hence this is a perfect

secret sharing scheme.
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Remember that in this chapter we suppose that the set of players is finite. To show the

importance of this assumption we provide the following example:

In this scheme participants are indexed by positive natural numbers and an access

structure consists of all infinite sets of players. The set of secrets S0 is N+ the set of

positive natural numbers and each Si is finite.

Scheme 2.2. The dealer chooses the secret s0 ≥ 1, say with probability 1
2s

and a threshold

t > s0, so that t is chosen with probability 1
2t−s0

. Then he computes the share of participant

j as follows: If j < t then j’s share is a random number between 1 and j (chosen with

equal probability). If j ≥ t, then j’s share is s0.

We claim that this is a closely perfect secret sharing scheme.

Proof. Condition 1 of Definition 2.1 is immediate. If A ∈ A then members of A can recover

the secret as the limit of their shares.

To check condition 2′ we first notice that the participant j gets his share from the set

Sj = {1, . . . , j}. If the secret is s0 ≥ j, then j receives every value with probability 1
j
. If

s0 < j, then with probability 1/2j−s0 the threshold is bigger then j. This implies that j

gets every value with probability at least j−1 · 2−(j−s0).

Next, we consider the joint distribution of shares of the first b participants. Denoting

{1, . . . , b} by [b], the shares are elements of S[b] =
∏

j∈[b] Sj. If the secret s0 is at least b, then

every element of S[b] is equally probable (as shares are chosen uniformly and randomly). If

the bth share is chosen uniformly(which means that j < t), then all smaller shares 1, . . . , b−1

are chosen uniformly as well, hence if s0 < b, then with probability at least 2−(b−s0) every

share up to b is chosen uniformly. It means that choosing any particular element from S[b]

has probability at least cb = |SB|−1 · 2−(b−s0) and at most 1, independently of the value of

the secret. Therefore for any s ∈ S[b] and secrets s0 and s′0,
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cb · Pr(s|s0) ≤ Pr(s|s′0) ≤
1

cb
· Pr(s|s0) (2.1)

Now let A 6∈ A be an unqualified set of players. Then A is finite and consequently A ⊆ [b]

for some natural number b. Then by (2.1) property 2’ of definition 2.1 is satisfied.

It is easy to see that the example above does not work for the ”classical” definition 2.1

by Chor and Kushilevitz, as the constants cb are different and tend to zero.
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Chapter 3

Continuum set of secrets

3.1 Definition

It appears that it is not an easy question what is an appropriate definition of secret sharing

in case of continuum set of secrets. In this section we show that the idea to apply the same

definition 1.2, as in finite case, in some sense fails, as well as the definition suggested by

Chor and Kushilevitz [4]. Also, we suggest a modification of definition 1.2 to be used for

continuum perfect secret sharing.

It is a trivial idea to apply the definition of finite perfect secret sharing to infinite case,

namely:

Definition 3.1. Let S0 be an infinite set of secrets s0 with some sigma-algebra and prob-

ability measure on it, and for i ∈ P let Si be the set of shares si which could belong to

ith player. Perfect secret sharing scheme(PSSS) is a probability mapping from the set of

secrets S0 to the product set of shares
∏n

i=1 Si such that:

18



C
E

U
eT

D
C

ol
le

ct
io

n

1. (Correctness) If the set of players A is qualified, then they can reconstruct the secret:

∀A = {a1, . . . , a|A|} ∈ A : ∃fA(x1, . . . , x|A|) s.t. fA(sa1 , . . . , sa|A|) = s0

2. (Privacy) If the set of players A is unqualified, then the secret s is independent from

the set of shares which belongs to players in A.

Unfortunately, this definition fails. In finite case independence of set of shares from the

secret implies that, knowing them, one can not reconstruct the value of the secret(which

is a natural requirement for the secret sharing), while this does not hold in general for a

secret distributed continuously. The reason for this is a complex behavior of not measurable

functions.

We show an example for a scheme which satisfies definition 3.1, while an unqualified

set of players still can reconstruct the correct value of the secret. The idea which is used

in this scheme is by G. Tardos [22].

Let the set of players consist of just two entities, and both are required to reconstruct

the secret. The secret and first player’s domains are zero-one intervals, while a share of

the second player is always equal to 1. Finally, let the secret be distributed uniformly.

P = {1, 2}, A = {P}, S0 = S1 = [0, 1], S2 = {1}, s0 ∈u [0, 1]

Scheme 3.1. Let f(x) be a bijection of [0, 1] interval, such that the outer measure of

G = {x, f(x)} is equal to 1(existence of such bijection follows from the axiom of choice).

For any measurable subset of the unit square U ⊆ [0, 1]2 let Pr(U ∩G) = Pr(U).

1. To pick up the secret s0, we first generate a point in G and take the secret equal to

the value of the first coordinate of this point.

2. s1 = f(s0) or, in other words, the second coordinate of the point.
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3. s2 = 1

Independence of s0 and s2 is obvious as s2 is a constant. The construction gives us

independence between uniformly distributed s0 and s1 = f(s0):

Pr(s0 ∈ U0, s1 ∈ U1) = Pr((s0, f(s0)) ∈ U0 × U1) = |U0 × U1| = |U0||U1| =

Pr(s0 ∈ U0)Pr(s1 ∈ U1)

for any measurable U0, U1 ∈ [0, 1]. The second requirement in definition 3.1 is satisfied. To

show that the first player still can reconstruct the secret alone, observe that applying the

inverse of the bijection f to his share he gets the secret: s0 = f−1(s1). We will call such

definitions of secret sharing ”intuitively wrong”.

As mentioned above, existence of such an example is based on properties of unmeasur-

able functions. Indeed, in Scheme 3.1 function f−1, which reconstructs the secret given

the share of the first player, is unmeasurable. At the same time, if we require the recovery

function in the definition of secret sharing scheme for continuous domain to be measurable,

the definition will become ”intuitively right”.

Proof. Let A be an unqualified set of players and S be the set of shares they know, and

let the secret s0 be independent from S i.e.

Pr(s0 = a, S = B) = Pr(s0 = a)Pr(S = B)

for any a ∈ S0 and B ∈
∏

i∈A Si. Suppose, there is a measurable function fA, which given

the set of shares reconstructs the secret. Then

Pr(s0 = a)Pr(S = B) = Pr(s0 = a, S = B) = Pr(f(B) = a, S = B)
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which is equal to Pr(S = B) if f(B) = a and to 0 otherwise. This gives us a contradiction.

For continuum case in [4] Chor and Kushilevitz replace the second property in definition

2.1 of countable secret sharing scheme by the following:

2′ No unqualified set of shares reveals ”too much” partial information about the secret.

Formally, for any A 6∈ A, for every two values of the secret a1, a2 ∈ S0, and for any

|A|-tuple of measurable sets {Ci}, Ci ⊂ Si:

Pr(∀i ∈ A : si ∈ Ci| s0 = a1) = Pr(∀i ∈ A : si ∈ Ci| s0 = a2)

Using the same idea like in Scheme 3.1, we can show that this definition is ”intuitively

wrong”.

Let the set of players consist of three entities and all of them are required to reconstruct

the secret. Let the set of secrets and the sets of shares for the first and the second player

be zero-one intervals, while the share of the third player is always equal to 1. Finally let

the shares for the first two players be distributed uniformly for any value of the secret.

P = {1, 2, 3}, A = {P}, Si = [0, 1], i ∈ 0, 1, 2, S3 = {1}, s1, s2 ∈u [0, 1] for all s0

Scheme 3.2. For any secret s0 let fs0(x) be a bijection of [0, 1] interval, such that the outer

measure of Gs0 = {x, fs0(x)} is equal to 1 and for any s′0 6= s0 Gs0 ∩Gs′0
= ∅(existence of

such family of bijection follows from an axiom of choice). For any measurable subset of

the unit square U ⊆ [0, 1]2 and any secret s0 let Pr(U ∩Gs0) = Pr(U).

1. Given the secret s0, we pick up a point s from Gs0

2. The ith share si is ith coordinate of the point s, i = 1, 2.
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3. The 3rd share is equal to 1.

By the construction, all the shares si are independent and have the same uniform distri-

bution for every value of the secret s0. It means that the requirement (2′) is satisfied. Sets

Gs0 are disjoint, which implies that three players together can reconstruct the secret(just

by determining for which index the point s0 (s1, s2, 1) is in Gs0), i.e. the first property is

satisfied. In the same time it means that the first and the second players can reconstruct

the secret as well, while they form an unqualified set of players. This shows us that this

definition is intuitively wrong.

To construct this example, as well as in Scheme 3.1, we used unmeasurability. Namely,

the set to which the secret is mapped is unmeasurable, while in all examples by Chor and

Kushilevitz in [4] these sets are measurable.

In this thesis later on we will use corrected definition 3.1 for continuum secret sharing,

namely:

Definition 3.2. Suppose, P = {1, . . . , n} and A is some access structure on it. Let S0 be

an infinite set of secrets s0 with some sigma-algebra and probability measure on it, and for

i =∈ P let Si be the set of all possible shares si which could belong to ith player. Perfect

secret sharing scheme(PSSS) is a probability mapping from the set of secrets S0 to the

product set of shares
∏n

i=1 Si, such that:

1. (Correctness) if the set of players A is qualified, then they can reconstruct the secret

using a measurable function:

∀A = {a1, . . . , a|A|} ∈ A : ∃fA(x1, . . . , x|A|) s.t. fA(sa1 , . . . , sa|A|) = s0

Where fA is measurable.
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2. (Security) if the set of players A is unqualified, then the secret s is independent from

the union of shares which belongs to players in A.

3.2 Existence over the real line

To show an existence of secret sharing scheme over continuum set, Chor and Kushile-

vitz presented [4] a (n, n)-threshold scheme for secret picked up uniformly from zero-one

interval.

Let the set of players P = {1, . . . , n}, access structure A = {P}. Let the set of secrets,

as well as sets of shares for any player Si, i = 0, 1, . . . , n be equal to zero-one interval and

let the secret s0 be distributed uniformly.

Scheme 3.3.

1. First n− 1 shares si, i ≤ n− 1 are picked up uniformly from [0, 1].

2. The last share sn = s0 −
∑

i≤n−1
si (mod 1)

All together n players can add up their shares modulo one and obtain the value of the

secret, while if at least one of them is missed, then the secret is independent from the set

of known shares.

As it was pointed out in the same paper by Chor and Kushilevitz, this scheme can

be used like a building block to construct a scheme for arbitrary access structures on

n players. There are three common ways to do it: using monotone functions [2], using

minimal qualified sets [14], or using maximal unqualified subsets(which is in some sense a

dual to the second approach) [16].We present the last one.

Theorem 3.1. For any access structure on n players there exists a perfect secret sharing

scheme over zero-one interval.
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Proof. Let U = {U1, . . . , Uk} be the set of all maximal unqualified sets of players. Using

scheme 3.3 for k players, the dealer distributes the secret into k shares si. Each of them

corresponds to an element of U . For every player p if p 6∈ Ui, p gets si as a part of its

share.

If the set of players A is qualified, then for any Ui ∈ U there is a player pi such

that pi ∈ A, but pi 6∈ Ui. Thus A knows all shares si and can reconstruct the secret

s0 =
∑
i≤k

si (mod 1). If the set of players A is unqualified, then there is at least one V ∈ U ,

such that A ⊆ V . Thus players in A do not know at least one share. The rest follows from

security of (n, n)-threshold scheme.

As we mentioned in the introduction, it is important to be able to compute shares for

the sum of two secrets locally. It is easy to see that this scheme gives such opportunity:

to obtain a share for a sum of secrets, one simply has to add up corresponding shares.

To show the existence of perfect secret sharing over the real line with any strictly

monotone continuous distribution function F on it, we observe that, after the secret is

picked up according to this distribution, one can apply F to the secret and distribute it as

a secret distributed uniformly on zero-one interval. To reconstruct the secret, the qualified

set of players first reconstructs its image and applies F−1 to it. Security is guaranteed by

”zero-one” scheme. Namely:

Theorem 3.2. Let A be any access structure on a set of n players. Let the set of secrets

S0 be a real line with distribution function F on it. Suppose that F is continuous and

strictly monotone, then there is a perfect secret sharing scheme for an access structure A

and a secret picked up from S0.

Proof. For secret s0 let s′0 = F(s0). F is a continuous distribution function, hence s′0 is

distributed uniformly. Now one can apply a scheme for an access structure A and a secret

distributed uniformly(such scheme exists by theorem 3.1). Let s′i be a share which belongs
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to ith player in the ”subscheme”, then si = s′i.

1. If A is a qualified set of players, let f ′A be their reconstruction function from the ”sub-

scheme”. Then s0 = F−1(f ′A(si, i ∈ A)), and hence the secret can be reconstructed

by A.

2. If A is unqualified, then {si, i ∈ A} is independent from s′0, and hence is independent

from s0 = F−1(s′0).

To prove a theorem for a wider class of probability spaces, we have to introduce some

elements of Lebesgue-Rokhlin probability space theory.

3.3 Lebesgue probability space

The theory of Lebesgue-Rokhlin probablity space(or Standard probability space) was started

by von Neuman [23] and Rokhlin [17] in 40s. Informally, a probability space is Lebesgue-

Rokhlin if it is isomorphic modulo zero set to zero-one interval with Lebesgue measure on

it. Most of basic probability spaces has this property[12]. If such isomorphism f exists,

one can apply it to the secret and use a secret sharing scheme in zero-one interval, like it

was done in theorem 3.2.

In this section we give a formal definition of Lebesgue-Rokhlin probablity space, like it

is used in [17], and give a criterion of standardness. Finally, we state a theorem about

existence of perfect secret sharing over Lebesgue-Rokhlin probability spaces.

Definition 3.3. Probability space (S,F , P ) is separable if there exists a countable set of

measurable sets Γ (we will denote the set generated by them as ΓB, all its elements are

obviously measurable), such that:
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1. For any measurable A ⊂ S there exists a set B, A ⊂ B ⊂ S such that P (∆(A,B)) =

0, where ∆ is a symmetric difference, and B ∈ ΓB.

2. For any two points x, y ∈ S there exists a measurable set G ∈ Γ, such that x ∈ G, y 6∈

G or y ∈ G, x 6∈ G.

Such Γ is called a basis of probability space.

Now let the space be separable and let Γ = {Gi} be its basis. Let Ai be either Gi of

Gi, and for any point a ∈ S let Ai(a) be that of Gi and Gi which contains a. By the

second property of definition 3.3
⋂
all i

Ai can not contain more than one point and hence⋂
all i

Ai = {a}

Definition 3.4. If in notations as above all
⋂
all i

Ai are not empty, then the space is called

complete with basis Γ.

As it usually happens in measure theory, we are interested in definition 3.4 only modulo

zero.

Definition 3.5. Probability space (S,F , P ) is called complete modulo 0 with basis Γ =

{Gi} if there exists a complete probability space (S ′,F ′, P ′) with basis Γ′ = {G′i} and

an embedding E : S → S ′, such that the image of S is measurable (i.e. E(S) ∈ F ′),

P ′(S ′ − E(S)) = 0 and Gi = E−1(G′i).

It is known that, if a space is complete modulo 0 with one of its basis, then it is complete

modulo 0 with any basis. For the proof of this statement see [17] or [15]. So, we will call

them just complete modulo 0 spaces.

Now we are ready to define a Lebesgue-Rokhlin probability space.

Definition 3.6. Separable, complete modulo 0 probability spaces are called Lebesgue-Rokhlin

spaces.
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As we are interested in using zero-one interval instead of Lebesgue-Rokhlin space in a

secret sharing scheme, we need a definition of an isomorphism between probability spaces.

Definition 3.7. Two probability spaces (S,F , P ) and (S ′,F ′, P ′) are isomorphic(or iso-

morphic modulo 0) if there exist sets A ⊂ S and A′ ⊂ S ′ of measure zero and an iso-

morphism F between S − A and S ′ − A′. I.e. for any measurable B ⊆ S − A F (B) is

measurable and P (B) = P ′(F (B)). As well as for any measurable B′ ⊆ S ′ − A′ F−1(B′)

is measurable and P (F−1(B′)) = P ′(B′).

We state the following theorem by Rokhlin and suggest [17] to the reader for a proof.

Theorem 3.3. Suppose that a Lebesgue-Rokhlin space (S,F , P ) has atoms {mi}, then it is

isomorphic modulo 0 to an interval of length 1−
∑

i P (mi) with Lebesgue measure on it and

a set of atoms with measures P (mi)(obviously this set can not be bigger than countable).

Unfortunately, theorem 3.3 gives us isomorphism modulo 0 only. To use this theorem

we have to give up the ability of qualified sets of players to reconstruct the secret picked

up from some set of measure zero.

Definition 3.8. Suppose P = {1, . . . , n} and A is some access structure on it. Let S0

be an infinite set of secrets s0 with some sigma-algebra and probability measure on it, and

for i ∈ P let Si be the set of shares si which could belong to ith player. Perfect secret

sharing scheme(PSSS) is a probability mapping from the set of secrets S0 to the product

set of shares
∏n

i=1 Si such that:

1. (Correctness) If the set of players A is qualified, then with probability one they can

reconstruct the secret using a measurable function:

∀A = {a1, . . . , a|A|} ∈ A : ∃fA(x1, . . . , x|A|) s.t. Pr(fA(sa1 , . . . , sa|A|) = s0) = 1

Where fA is measurable.

27



C
E

U
eT

D
C

ol
le

ct
io

n

2. (Security) If the set of players A is unqualified, then the secret s is independent from

the union of shares which belongs to players in A.

Theorem 3.4. Let A be any access structure on a set of n players. Let S0 be the set

of secrets and the probability space (S0,F , P ) be a Lebesgue-Rokhlin probability space then

there is a perfect secret sharing scheme for an access structure A and a secret picked up

from S0.

Proof. By theorem 3.3 there is an isomorphism f between S0 − A and [0, 1] − B, where

A and B have corresponding measure zero. If the secret appeared to be in A, the dealer

gives each player a share(or multiple shares if it is required by the corresponding zero-one

scheme) distributed uniformly on zero-one interval independently from the secret. If the

secret s0 6∈ A, then the dealer computes s′0 = f(s0) ∈ ([0, 1]−B), B has Lebesgue measure

zero, hence s′0 is distributed uniformly on [0, 1] and the dealer may use a zero-one scheme

to distribute it.

With probability one the secret did not get into A, and acting like in scheme 3.3 a

qualified set of players can reconstruct s′0 = f(s0), apply the inverse of f to it(remember

that f is an isomorphism) and get the real value of the secret. Hence the correctness

property of definition 3.8 is satisfied. If the set of players is unqualified, then, independently

from where the secret is, the shares are independent from the secret. Either because of the

security of zero-one scheme, if the secret is in S0−A, or because the shares are distributed

uniformly on [0, 1] and independent from the secret, if the secret is in A.

It seems that the converse is true as well.

Conjecture 3.1. Suppose that there exists a secret sharing scheme(see definition 3.8) for

some access structure and a secret picked up from some probability space, then this space

is Lebesgue-Rokhlin.
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We suggest this question as a possible direction for further research.
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Chapter 4

Binary trees

Binary tree is an important construction as it is widely used in computer science, par-

ticularly in compression and coding theory(for example, the Fano code [7]), as well as in

probability theory in order to understand the nature of randomness. We think that it is

important to be able to share a branch(possibly infinite) of a rooted binary tree.

In this section we present a secret sharing scheme which shares a branch of a rooted

binary tree for any access structure on finite set of players. This scheme allows players to

compute several primitives securely, namely vertex-wise XOR and alternation merging of

two shared branches.

Let G be a rooted binary tree. We will consider it to have all branches of equal(possibly

infinite) length and identify every branch with a zero-one string {0, 1}L, where L is the

length of a branch. Finally, let S0 be the set of all G’s branches.

Definition 4.1. Let r be a zero-one string of any length l ≤ L. A cone Cr is a set of all

branches in S0 which has r as a prefix(if L = l =∞, then the cone in just one branch).

In case of infinite branches let F ⊂ 2S0 consist of all cones Cr ⊆ S0 and their countable
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unions. Also, let the probability Pr(Cr) be equal to 1
2l

, where l is a length of a prefix r.

Claim 4.1. F is a sigma-algebra.

Proof. The claim is an easy consequence of two lemmas.

Lemma 4.1. Let C1 and C2 be two cones, then C1

⋂
C2 ∈ {C1, C2, ∅}

Proof. Let r1 and r2 be prefixes of the corresponding cones. Suppose, C1

⋂
C2 is not empty,

then there exists a branch s ∈ C1

⋂
C2. It means that, without loss of generality, r1 is a

prefix of r2, and both of them are prefixes of s. If |r1| = |r2|, then the cones C1 and C2 are

equal and hence C1

⋂
C2 = C1 = C2. If |r1| < |r2|, then C2 ⊂ C1 and C1

⋂
C2 = C1

As a corollary of the lemma we derive that the countable intersection of elements of F

is still in F .

Lemma 4.2. The complement of any cone C is in F

Proof. Let C be an empty set and r be an empty string(already passed part of the prefix).

We will go from the root of the tree down along the prefix till its end. On every step, when

we chose between x1 and x2, suppose we chose x1. Then we do the following:

1. Let r′ be equal to r with x2 added in the end, then put C := C
⋃
Cr′

2. Put r equal to r with x1 added in the end.

The length of the prefix is at most countable, hence C is a countable union of cones and

it is easy to see that C
⋃
C = S0.

Now, to prove that F is indeed a sigma-algebra, it is enough to show that the com-

plement of any f ∈ F is in F . For all f ∈ F , f =
⋃

i∈NCi, the countable union of

cones.

f =
⋃
i∈N

Ci =
⋂
i∈N

Ci
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By lemmas 4.1 and 4.2, it is in F and hence F is a sigma-algebra.

Now we present a scheme for a secret from (S0,F , P r). The same idea applies for finite

case. As usual, we start with an (n, n)-threshold scheme. In this scheme shares as well as

a secret are branches of the tree.

Scheme 4.1. 1. The first n− 1 shares are picked up with the same distribution as the

secret and independent from it.

2. The last share is taken in a way that bitwise sum modulo two of all shares is equal to

the secret.

To reconstruct the secret, n players together may add up all their shares bitwise and

modulo two. First n− 1 shares are independent from the secret by construction, hence if

the last player is missed, then the set of shares known by the players is independent from

the secret. Now, without loss of generality, suppose that the first player is missed. Then,

for any bit of the secret b0, suppose
∑

i≥2 bi (mod 2) = b, where bi is the corresponding bit

of i’s share. Then

Pr(b0 = j|bi, i ≥ 2) = Pr(XOR(b1, b) = j)

And hence the conditional distribution of the secret, given shares si, i ≥ 2, is the same as

distribution of s1, which by construction is distributed as the secret s0.

This scheme can be used as a building block for a scheme working with arbitrary access

structure. In fact, all solutions from [2][14][16] can be used here.

Most of results presented in this thesis work with infinity, and hence are more theoretical

than practical. As it was mentioned above, scheme 4.1 can be used for finite trees as well.

The restriction of equal branch length can be avoided by adding some extra vertexes with a

blank symbol and replacing all modulo two operations by modulo three(to deal with a new
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symbol). In the following part of the section we show that several operations on secrets

could be computed by players locally, without any communication, which can be useful for

the practical MPC purpose.

Namely, suppose that the secrets s0 and s′0 are shared using scheme 4.1 into shares {si}

and {s′i}. It is easy to see that to compute shares for the bitwise sum modulo two of the

secrets s0 and s′0, player i can simply compute the bitwise sum modulo two of his shares

si and s′i.

Another primitive which can be computed locally is ”alternation”, when bits from two

secrets alternate to become a double length string. We show an example to make it more

clear:

Suppose that the first string s1 is equal to ”abc” and the second s2 is ”xyz”, then the

alternation of s1 and s2 is equal to ”axbycz”.

Now it should be obvious that, to get a share for the alternation of two secrets, a player

should simply compute the alternation for his shares.
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Chapter 5

Non-probabilistic Secret Sharing

In this chapter we discuss how to generalize secret sharing schemes to the infinite case

without introducing probability measures at all. First we take a look at how traditional

secret sharing can be rephrased without referring to probabilities at all, which will then

motivate our general definition.

5.1 Definitions

A (traditional) secret sharing scheme can be identified with the collection of the possible

choices of the dealer. Namely, the dealer simply picks one of these possibilities, which

determines what the secret is, and what each participant will receive as a share. Even the

more customary setting can be rephrased in this language when the dealer first chooses

the secret to be distributed, and then chooses one of the possible set of shares for this

particular secret value: merge the two choices into a single one.

As usual, the secret is a value from the domain S0, and the share of participant i ∈ P

is an element of Si. Thus the elements of the product space D̃ = S0 ×
∏

i∈P Si describe
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exactly the dealer’s possible choices. A secret sharing scheme is determined by giving the

collection D ⊆ D̃, the allowed choices of the dealer. Given the scheme D, the dealer

simply picks an element d ∈ D, and determines the secret as the d0 ∈ S0, and the share

of participant i ∈ P will be di, the i-th coordinate of d (we will start the numeration of

coordinates from zero).

This definition falls short in one respect: it cannot accommodate the situation when

different choices should happen with different frequency. This happens, for example, when

there is a predetermined distribution on the secrets and the scheme must be secure even if

that distribution is known to unqualified subsets. To remedy the situation (which works

at least when all probabilities are rational numbers) we allow the set D of choices to be

a multiset, i.e., a set in which multiple membership is allowed. When the dealer chooses

one element from D, he chooses it uniformly (that is, all elements are chosen equally).

Consequently, elements in D with high multiplicity will be chosen more frequently than

those with low multiplicity.

Now it is quite easy to translate the usual properties of a secret sharing scheme. The

multiset D ⊆ D̃ distributes all secrets uniformly if for each value of the secret s0 ∈ S0 the

multiset of those d ∈ D which distributes s0 has the same cardinality independently of the

secret s0:

|{d ∈ D : d0 = s0}| = |{d ∈ D : d0 = s′0}| for each s0, s
′
0 ∈ S0.

Given any choice d ∈ D of the dealer, the set A of participants see the projection of d into

the subspace determined by A. We will denote this projection(as a multiset) by d � A. It is

clear that the subset A cannot distinguish between d and d′ ∈ D whenever their projection

onto A are the same, i.e., if d � A = d′ � A. Now A ⊆ P can determine the secret if for

any d, d′ ∈ D, such that members of A receive the same shares from d and from d′, the
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secrets determined by d and d′ are the same. The subset A ⊆ P has no information on

a (uniformly distributed) secret if for any d ∈ D the collection of shares they see, namely

d � A, allows every possible secret with the same cardinality.

In ramp schemes we are concerned with subsets which have some, but not full informa-

tion on the secret. There are several candidate definitions with different strength between

determining the secret and having no information on it:

1. There exists a pair d, d′ ∈ D of the dealer’s choices, such that

d � A = d′ � A and d � S0 6= d′ � S0

i.e. the subset A does not determine the secret;

2. For any choice d of the dealer there exists a choice d′, such that

d � A = d′ � A, and d � S0 6= d′ � S0

i.e. for no choice of the dealer A can determine the secret uniquely;

3. For some d ∈ D, not all secrets occur with the same cardinality in the multiset

{d′0 : d′ ∈ D, d′ � A = d � A};

4. There exists no d ∈ D for which the multiset {d′0 : d′ ∈ D, d′ � A = d � A} would

contain every secret with the same cardinality.

Observe that 1 and 2 imply that members of A cannot determine the secret, and might

have no information of the secret at all. Definitions 3 and 4, on the other hand, imply that

A necessarily has some information on the secret, but they also allow that members of A

could always determine the secret.

After this discussion, the next definition should be straightforward.
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Definition 5.1 (Perfect uniform non-probabilistic secret sharing scheme). Let P be the

set of players, and A be an access structure on P . Let S0 be the set of possible secrets and

Si be the set of possible shares of player i ∈ P . The multiset D ⊆ S0×
∏

i∈P Si is a perfect

uniform non-probabilistic secret sharing scheme if

1. (uniformity) Fixing s0 ∈ S0, the multiset {d ∈ D : d0 = s0} has the same cardinality

independently from the secret.

2. (qualified subsets determine the secret) If the set A of the players is qualified, i.e.

A ∈ A, then for any d, d′ ∈ D, such that d � A = d′ � A, the shared secret is the

same: d0 = d′0.

3. (unqualified subsets have no information) If A 6∈ A, then for any d ∈ D the multiset

{d′0 : d′ ∈ D, d′ � A = d � A} contains every element of S0 at the same cardinality.

5.2 Existence for the general case

In this section we show that, in contrast to the results of other chapters of this thesis,

perfect non-probabilistic secret sharing schemes do exist for every access structure A,

independently from the cardinality of the participants and from A. In fact, we will show

that both general constructions from [14] and from [16] for finite access structures generalize

to our case. In both constructions the secret space will have two elements (one bit); the

share of each participant will be an appropriately chosen (possibly infinitely long) 0–1

sequence.

By executing the same scheme independently κ times, where κ is some (infinite) cardi-

nal, both the length of the secret and the length of shares will be multiplied by κ. Choosing

κ infinite and bigger than the longest share of any of the participants, both the secret and

all shares will be exactly κ long 0–1 sequences.
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The scheme is called ideal if the set of secrets and all sets of shares have the same

cardinality. Thus, we get the following consequence of our construction:

Corollary 5.1. Every access structure can be realized by an (infinite) ideal perfect uniform

non-probabilistic secret sharing scheme.

Before stating and proving our main result, we state two lemmas which generalize the

XOR function for infinitely many arguments. Using these lemmas, the standard construc-

tions can easily be generalized as well.

Lemma 5.1. For each (possibly infinite) set J there is an XOR-like function XOR :

{0, 1}J → {0, 1}, so that changing the argument at any index changes the value of the

function as well.

Proof. For any two zero-one sequences a and b of length J let L(a, b) denote the number

of indexes where they are different. We say that the sequences a and b are equivalent and

write a ∼ b if L(a, b) is finite. It is easy to check that ∼ is an equivalence relation, for

example, transitivity follows from L(a, c) ≤ L(a, b) + L(b, c).

Now {0, 1}J splits into disjoint equivalence classes. Pick a representative element from

each equivalence class and define XOR arbitrarily on that element. From these values XOR

can be computed uniquely on other elements of the equivalence class.

Lemma 5.2. The XOR function defined above is balanced in the sense that for any zero-one

sequence σ ∈ {0, 1}J and set A ( J the sets of zero-one sequences

Ei = {σ′ ∈ {0, 1}J : σ′ � A = σ � A, XOR(σ) = i}

where i = 0, 1 have the same cardinality.

Proof. Pick any index i ∈ J −A and let f be the function defined on {0, 1}J , which swaps
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the value of its argument at the i-th position. By Lemma 5.1 this f is a bijection between

E0 and E1.

During the proof of Lemma 5.1 we relied on the Axiom of Choice when we choose

representatives from each equivalence class. We could avoid the usage of the axiom of

choice by restricting the domain of the XOR function to zero-one sequences which have

only finitely many 1’s, and then the value of XOR will be the parity the sum of the digits

ot its argument. The proof of Theorem 5.1 goes through with this modification. Therefore

it does not rely on the axiom of choice.

Lemmas 5.1 and 5.2 actually claim that the scheme where each player gets zero or one

and the secret is the XOR of these values is, in fact, a perfect uniform non-probabilistic

secret sharing scheme realizing the “all out of P” threshold access structure.

Theorem 5.1. Let A be an access structure on a set P of participants. There is a uniform

non-probabilistic secret sharing scheme realizing A with the set of secrets as {0, 1}.

Proof. We give two proofs for this theorem. In fact, we show that both known constructions

from [14] and from [16] generalize to our case as well.

Proof 1. In [14], Ito et al. used the following idea: the secret is a single bit, and for each

qualified set A ∈ A the secret is distributed independently among the members of A as

follows: each i ∈ A receives a random bit such that the (modulo 2) sum these bits is equal

to the secret. Then each participant receives as many bits as many qualified subsets he is

in. When P is finite, it is enough to consider minimal qualified subsets only. When P is

infinite, however, there might be qualified subsets which contain no minimal ones. This is

the case, for example, when A consists of all infinite subsets of P .

For each A ∈ A let XORA be an XOR-like function on the set {0, 1}A, as guaranteed

by Lemma 5.1. The set of possible shares for player i ∈ P will be Si = {0, 1}Ai , where
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Ai = {A ∈ A : i ∈ A}, and let the set of the possible choices of the dealer be

D = {d ∈ {0, 1} ×
∏
i∈P

Si : for each A ∈ A, XORA(〈(di)A : i ∈ A〉) = d0} (5.1)

taking each element in this set with multiplicity one. As di is an element of Si, it is a

vector whose elements are indexed by those qualified subsets which i is a member of. Thus

XORA is applied to a zero-one vector indexed by the elements of A, as required.

We claim that D is a perfect uniform non-probabilistic secret sharing scheme realizing

A as defined in 5.1. First, it is uniform. Choose a designated player from each qualified

subset A ∈ A. For every d ∈ D define f(d) as follows: flip the value of the secret (i.e., d0),

moreover for each i ∈ P , flip the A-th value in di if and only if i was the player designated

to the subset A. As for each A ∈ A exactly one element of 〈(di)A : i ∈ A〉 was swapped,

the condition in (5.1) holds for f(d). Thus f is a bijection between elements in D yielding

the secret 0 and elements yielding the secret 1.

Second, qualified subsets can determine the secret: members of A ∈ A can recover all

elements of the vector 〈(di)A : i ∈ A〉. Applying XORA to this vector gives the secret,

independently of the other shares.

Third, suppose B ⊂ P is an unqualified subset. Then, as above, for each qualified subset

A ∈ A designate a player in A but not in B. As B is unqualified, such a player always exists.

Define the bijection f : D → D exactly as above, and observe that f does not touch shares

of players in B. Consequently, f is also a bijection of the set {d′ ∈ D : d′ � B = d � B} for

any d ∈ D swapping the value of the secret.

Proof 2. The second construction described in [16] is, in a certain sense, dual to the

first one. We distribute the secret into shares indexed by the non-qualified subsets, and

each participant receives shares belonging to those subsets he is not a member of. In this

construction an unqualified subset will miss the share which belongs to that particular
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subset.

Let the set of the secrets be S0 = {0, 1}, and H ⊆ S0 ×
∏

A 6∈A{0, 1} be just the set of

sequences 〈XOR(σ), σ〉 when σ runs over
∏

A 6∈A{0, 1}. We define the scheme by mapping

H to the set of shares as follows. If h ∈ H, then d0 (i.e., the secret) is h0, and the share

of i ∈ P is di = h � {A 6∈ A : i 6∈ A}. This is again a perfect uniform secret sharing

scheme. Uniformity follows from the fact that there is a bijection between H0 and H1,

where Hi = {h ∈ H : h0 = i}.

Second, if A ∈ A is a qualified set, then for every unqualified set B some member of A

should not be in B (otherwise A would be a subset of B). Consequently, the value of hB

is known by some member of A, and then they can determine the secret as

s0 = XOR(〈hB : B /∈ A〉)

Third, if B is unqualified, then the bijection of H, which swaps h0 and hB, extends

to a bijection of D, which swaps the secret, but keeps the share of every member of B

intact.
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Chapter 6

Conclusion

In this thesis we discussed secret sharing for infinite secret domains. The first part of the

thesis is devoted to the result by Chor and Kushilevitz[4]. We proved an impossibility of

secret sharing over countable set of secrets and shares. Our result is slightly more general

the the one by Chor and Kushilevitz. Also we gave several counterexamples which show an

importance of assumptions in our theorem. Later we discussed possible definition of secret

sharing over continuum set of secrets. Particularly, using the idea by Gabor Tardos, we

constructed a scheme that shows that the definition by Chor and Kushilevitz is ”intuitively

incorrect”. Namely, it is possible that an unqualified set of players can reconstruct the

secret. We suggested a modified definition and showed that the positive result by Chor and

Kushilevitz [4] holds for the new definition. Finally we gave an introduction to Lebesgue-

Rokhlin probability spaces and showed that a secret from such spaces can be shared. We

suggest a further research in this direction. It seems that the converse is true. Namely,

if a secret sharing scheme exists for a secret picked up from a probability space, then this

space is Lebesgue-Rokhlin.

As a short digression we presented a nice scheme for the situation when a secret is a
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branch of a binary tree(possible infinite). This scheme seems to be useful as it allows to

compute several primitives on a secret without any communication between participants.

In the last part of the thesis we presented our concept of perfect uniform non-probabilistic

secret sharing, in which we avoid the idea of probability and concentrate on cardinalities.

We showed that there exists a perfect uniform non-probabilistic secret sharing scheme for

any secret domain and any access structure(possibly infinite).
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