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Introduction

Let A be a finite set in an abelian group. We define

A+A = {a1 + a2 | a1, a2 ∈ A},
A−A = {a1 − a2 | a1, a2 ∈ A}

to be the sum set and difference set of A, respectively. The cardinalities of these
sets are denoted by |A|, |A+A|, and |A−A|.

Let |A| = n. It is immediate that n ≤ |A ± A| ≤ n2; it is not difficult to
show (Lemma 1.4) that

n ≤ |A+A| ≤ n(n+ 1)/2,
n ≤ |A−A| ≤ n(n− 1) + 1

and that these bounds are achieved. If n, s, and d are positive integers such
that n ≤ s ≤ n(n+ 1)/2 and n ≤ d ≤ n(n− 1) + 1, then it is an easy exercise to
construct sets A, A′ in some abelian group with |A| = |A′| = n and |A+A| = s,
|A′ − A′| = d. It is in general, however, impossible to construct a single set A
with |A| = n, |A+A| = s, |A−A| = d.

In this thesis, we are concerned with understanding what triples (n, s, d)
are attainable and generalizations of this problem. We explore the interplay
between |A+A|, |A−A|, and the cardinalities of higher sumsets, as well as the
cardinalities of sumsets involving multiple distinct sets.

Frĕıman and Pigarev [25] in 1973 showed that

|A+A|3/4 ≤ |A−A| ≤ |A+A|4/3

when A is a finite set of real vectors. In 1976, Imre Ruzsa [27] showed by
elementary means that(

|A+A|
|A|

)1/3

≤ |A−A|
|A|

≤
(
|A+A|
|A|

)2

when A is a finite set of integers. These are some of the first examples of the
non-trivial relationship between |A+A| and |A−A|. Both of these results have
since been shown to hold in arbitrary abelian groups.

Much weaker connections between |A + A| and |A − A| existed before this,
but they relied on deeper inverse theorems concerning the structure of the set A.
Frĕıman’s famous theorem from the late 1960’s, for example, gives a structural
description of sets A for which |A + A| is small. This information can be used
to get a weak upper bound on |A − A|. Understanding such inverse theorems
and their generalizations motivated the early study of sumset estimates.

Since the late 1970’s, sumset estimates have taken on a life of their own. We
briefly mention two landmarks here. In 1989, Ruzsa [28] published a simplified
version of Helmut Plünnecke’s graph theoretic method for handling the repeated
addition of an integer basis to a set of integers. Plünnecke’s method is still one
of the most important tools in estimating sumsets; see Section 1.3.4. Very
recently, Giorgis Petridis announced a simplified proof of Plünnecke’s inequality
and elementary proofs of many important corollaries to Ruzsa’s results with
Plünnecke’s method; see Section 2.2.3.
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This thesis explores many of the most important results over the last 35
years in sumset estimates. We turn now to an outline of the work and briefly
recall a few of the main results.

This thesis is divided into two main chapters. Chapter 1 is devoted to the
study of sumset estimates which involve only a single, finite set in an abelian
group. Chapter 2 is devoted to the study of those estimates with two or more
possibly distinct sets. We call the former symmetric sumset estimates and the
latter asymmetric sumset estimates.

Each chapter is divided further into two sections. The first section covers
estimates which involve only one addition or subtraction, while the second covers
estimates involving repeated addition and subtraction. We call the former lower
sumset estimates and the latter higher sumset estimates.

We mention some of the most important results here. The most important
lower sumset estimates are Theorems 2.7 and 2.8.

Theorem. For finite sets A, B, and C in an abelian group, we have

|A||B − C| ≤ |A−B||A− C|,
|A||B + C| ≤ |A+B||A+ C|.

These inequalities were shown by Ruzsa in 1976 and 1989, respectively. The
second, however, is historically much more difficult than the first; until 2011,
it depended on Plünnecke’s method. We present elementary proofs of both of
these inequalities in Sections 2.2.2 and 2.2.3.

The most important symmetric corollary to these theorems is Theorem 1.12.
Frĕıman and Pigarev’s 1973 result follows easily from these inequalities, as is
shown in Section 1.2.5.

Theorem. For a finite set A in an abelian group, we have(
|A+A|
|A|

)1/2

≤ |A−A|
|A|

≤
(
|A+A|
|A|

)2

.

For the higher estimates, the most important result is Plünnecke’s inequality,
Theorem 1.29.

Theorem. Let A,B be finite sets in an abelian group, i ≤ k be integers, |A| = n,
and |A+ iB| = αn. There exists a non-empty X ⊆ A such that

|X + kB| ≤ αk/i|X|.

This result relies on Plünnecke’s theorem which we do not prove in this thesis.
A weaker version with an elementary proof is given in Section 2.3.2. The most
important corollary is the Plünnecke-Ruzsa inequality and its generalizations
from Section 2.3.3.

Theorem. Let A, B1, . . . , Bk be finite sets in an abelian group, |A| = n,
|A+Bi| = αin. Then there exists a non-empty X ⊆ A such that

|X +B1 + · · ·+Bk| = α1 · · ·αk|X|.

2
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There are finally two appendices which are referenced throughout the the-
sis. Appendix A is concerned with the behavior of sumsets under products
and projections. Most importantly, it reduces the study of sumset estimates
in torsion-free abelian groups to sumset estimates in the integers. Appendix B
details two constructions of sets with many more differences than sums.

Besides the extended simplex examples of Hennecart, Robert, and Yudin in
Appendix B and the formalized comments from Gowers’ blog post on Petridis’
new work, there are no original results presented in this thesis. The presentation
and order of the material is, however, mostly new. The author strove to collect
and organize results in a meaningful and enlightening way and to highlight open
questions and conjectures.

Chapter 1 is intended to be especially well motivated. Many of the results are
corollaries to more general theorems from Chapter 2, and in this way Chapter
1 motivates Chapter 2. In addition to serving as a reference, this thesis was
written to serve as an introduction to the field. Section 1.3.3, for example,
exists solely to motivate the section following it.

There are many interesting questions related to sumset estimates that are
not addressed in this thesis; we briefly mention some of them here. The closest
related results which are not included are those showing that Plünnecke-type
results are not possible in various situations. These theorems generally concern
bounds on sumsets of all subsets of the set in question.

There has been much work concerning sumset estimates when something
is known about the structure of the set or the ambient group. The famous
Cauchy-Davenport theorem, for example, is the lower bound in Lemma 2.2 in
the case G = Fp. One may consider how the existence of arithmetic progressions
in, or the density of, a set of integers affects the behavior of the sumsets. For
multi-dimensional sets, the dimension of the set being considered may be used
to have better control over the cardinality of sumsets.

Sum/product estimates and problems involving infinte sets of integers are
not considered in this thesis. We do not consider minimal range type problems
(with Sidon sets, for example) or problems specifically involving sets with more
sums than differences. Beyond the theorems in Section 2.2.1, there is no fur-
ther mention of inverse theorems. We do not explore the relationship between
sumset estimates and entropy inequalities. Finally, we do not consider sumset
estimates in non-abelian groups.

The author would like to thank Dr. Gergely Harcos for his close inspection
and detailed remarks on this work. A warm thanks is also extended to Dr. Imre
Ruzsa who kindly and patiently introduced me to the subject and made this
thesis possible.
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Chapter 1: Symmetric sumset estimates

In this chapter we explore sumset estimates involving a single finite set in an
abelian group. We leave the proofs of some estimates to the next chapter since
they are just as easily shown in a more general setting. We distinguish between
torsion-free and arbitrary abelian groups when improvements are possible.

1.1 Definitions, examples, and affine equivalence

Let A be a finite set in an abelian group. We define

A+A = {a1 + a2 | a1, a2 ∈ A},
A−A = {a1 − a2 | a1, a2 ∈ A}

to be the sum set and difference set of A, respectively. We call these the lower
sumsets of A. We will be concerned primarily with the cardinalities of these
sets, denoted by |A|, |A+A|, and |A−A|.

Examples 1.1
If A = {1, 2, . . . , n}, then A+A = {2, 3, . . . , 2n}, A−A = {−n+1, . . . , n−1},

and so |A+A| = |A−A| = 2n−1. A set of the form {a, a+d, . . . , a+ (n−1)d}
with a, d ∈ Z, d 6= 0, and n ∈ N is called an arithmetic progression of length
n with base a and step d. An arithmetic progression in an abelian group G is
a set of the same form with a, d ∈ G, d 6= 0. A straight-forward calculation
gives that arithmetic progressions of length n in the integers (more generally, in
torsion-free abelian groups) have 2n− 1 sums and 2n− 1 differences.

Let A = {20, 21, . . . , 2n−1}. Because the only solutions to the equations
x1 + x2 = x3 + x4 and x1 − x2 = x3 − x4 in A are the trivial ones, one may
check that |A+ A| = n(n+ 1)/2 and |A− A| = n(n− 1) + 1 (see Lemma 1.4).
Such a set is called a Sidon set and is said to be in general position. We call a
solution to x1 +x2 = x3 +x4 a coincidence among the sums of A, and similarly
for the differences. Hence a Sidon set is a set in which there are no non-trivial
coincidences among the sums or differences.

Let A be a finite subgroup of an abelian group G. We see that A ⊆ A + A
since 0 ∈ A, and A+A ⊆ A since A is closed under addition. The same is true
for A−A, hence A+A = A−A = A. If A is a coset of a finite subgroup, then
it may be quickly verified that |A+A| = |A−A| = |A|.

Let k be a positive integer. We denote the k-fold sum A+ · · ·+A by kA, and
we extend this to all integers by defining (−k)A to be −(kA) = −A − · · · − A
and 0A = {0}. For integers k, l, we write kA− lA to mean kA+ (−l)A. When
|k|+ |l| > 2, we call these the higher sumsets of A. Again, we will be primarily
interested in the cardinality |kA− lA|.

When we write kA, we implicitly assume that k 6= 0 so that |kA| ≥ |A|.
Similarly, when we write kA− lA, we implicitly assume that k, l ≥ 0 and (k, l) 6=
(0, 0). One must exercise a bit of caution when adding and subtracting sets.
Note that kA + lA = (k + l)A is true in general only when k, and l are both
non-negative or non-positive, and that A ⊆ A+A does not imply A−A ⊆ A.

Examples 1.2
If A is an arithmetic progression of length n in a torsion-free abelian group,

then kA− lA is an arithmetic progression of length (k + l)(n− 1) + 1.

4
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We say that A is in general position with respect to a finite number of
sumsets of A if each sumset is as large as possible; that is, if there are no non-
trivial coincidences among the specified sums. Note, however, that A cannot be
in general position with respect to all higher sumsets; see Example 1.3.

For a finite subgroup A of an abelian group G, kA − lA = A by the same
reasoning as above. If A is a coset, then |kA− lA| = |A|.

If A = {a1, . . . , an} is a set of real numbers, then the translation of A by a
real number t is A + {t} = {a1 + t, . . . , an + t} and will be denoted by A + t.
The dilation of A by a real number d 6= 0 is {da1, . . . , dan} and will be denoted
by d ·A. Note that neither translation nor dilation affects the cardinality of the
sumsets of A.

We say that two finite sets of integers A, B are affinely equivalent if there
are rational numbers q 6= 0 and r such that B = q · A + r. By the comment
above, we see that |B| = |A| and |kB − lB| = |kA− lA| for all integers k, l. For
example, all arithmetic progression of length n in Z are affinely equivalent; in
particular, they are all affinely equivalent to {1, . . . , n}.

Example 1.3 A set of three integers is affinely equivalent to {0,m1,m2} for
some 0 < m1 < m2 with gcd(m1,m2) = 1. Given a set of integers A, we
can use this to show that there are non-trivial coincidences among the sums
in kA for some k. Indeed, take a three element subset of A. Represented as
{0,m1,m2}, we see that the m2-fold sum m1 + · · ·+m1 is equal to the m1-fold
sum m2 + · · ·+m2 plus m2−m1 zeros. This gives that there will be non-trivial
coincidences among the sums in m2A.

If A is a finite set in an abelian group G, then we denote the translate of A
by g ∈ G by A+ g, as above. If G = Z/mZ is a cyclic group, then the dilation
d · A has the properties above as long as (m, d) = 1. In this way, we get the
same notion of affine equivalence in cyclic groups. (A bit more care is required
to define dilation and affine equivalence in arbitrary abelian groups. We will
not have need for it here, hence we do not develop it.)

1.2 Lower estimates

In this section, we aim to understand the relationship between |A|, |A+A|,
and |A−A|. It is easy to see that |A+A| and |A−A| are individually at least
|A| and at most |A|2; it is more difficult to see how these quantities behave
together.

A non-trivial solution to the equation x1 + x2 = x3 + x4 in A can be seen
as reducing the size of A + A. Such a solution may be rearranged to form a
non-trivial solution to the equation x1 − x2 = x3 − x4, thereby reducing the
size of A − A. Thus we expect to see that |A + A| and |A − A| are positively
correlated. We are immediately concerned with making this intuition precise.

We begin with the trivial estimates; that is, bounding |A + A| and |A− A|
separately in terms of |A|. We discuss briefly sets |A| for which |A+A| > |A−A|,
and how products and projections may be used in regards to sumset estimates.
We then explore how restricting one of |A + A|, |A − A| near its minimal and
maximal values affects the other. We conclude with some miscellaneous single
set sumset estimates.

5
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1.2.1 The trivial estimates

Our first goal is to bound |A+A| and |A−A| individually in terms of |A|.

Lemma 1.4. Let A be a finite set of integers, |A| = n. Then

2n− 1 ≤ |A+A| ≤ n(n+ 1)/2,
2n− 1 ≤ |A−A| ≤ n(n− 1) + 1.

Proof. If A = {a1 < · · · < an}, then the sequences

a1 + a1 < a1 + a2 < · · · < an−1 + an < an + an,

a1 − an < a2 − an < · · · < an−1 − a1 < an − a1

exhibit 2n− 1 distinct elements of A+A and A−A, respectively.
We now consider the upper bounds. There are

(
n+1

2

)
= n(n + 1)/2 ways

to choose indices i ≤ j, and each of the corresponding sums ai + aj may be
distinct. Similarly, there are n(n − 1) ways to choose indices i 6= j, and each
of the corresponding differences ai − aj may be distinct. Combined with the
only remaining difference, namely 0, there are at most n(n − 1) + 1 possible
differences.

Corollary 1.5. The previous lemma applies to finite sets in torsion-free abelian
groups.

Proof. Let A be a finite set in a torsion-free abelian group. Corollary A.3 gives
that there is a set of integers A′ such that

|A′| = |A|, |A′ +A′| = |A+A|, |A′ −A′| = |A−A|.

Since the bounds in Lemma 1.4 apply to A′, they apply to A.

We now show the analogous result in arbitrary abelian groups, where the
potential for torsion reduces the lower bounds.

Lemma 1.6. Let A be a finite set in an abelian group, |A| = n. Then

|A| ≤ |A+A| ≤ n(n+ 1)/2,
|A| ≤ |A−A| ≤ n(n− 1) + 1.

Proof. If a ∈ A, then |A| = |A + a| ≤ |A + A|, and similarly for |A − A|. The
proof of the upper bounds is the same as in Lemma 1.4.

From Examples 1.1, we see that the lower/upper bounds in the torsion-free
case are simultaneously obtained by arithmetic progressions/Sidon sets. In the
general case, the lower bounds are simultaneously obtained by cosets of finite
subgroups of the ambient group.

6
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1.2.2 MSTD sets, products, and projections

Now that we have bounded |A+A| and |A−A| separately, we begin to explore
the relationship between the two. The following is a natural first question. Do
there exist finite sets A1, A2, A3 (in some abelian groups) such that

1. |A1 +A1| < |A1 −A1|,

2. |A2 +A2| = |A2 −A2|,

3. |A3 +A3| > |A3 −A3|?

Do there exist arbitrarily large examples of such sets?
We have seen that a set with no non-trivial coincidences between its sums

and differences satisfies 1. There are fewer sums than differences for such sets
because x1 + x2 = x2 + x1 while in general x1 − x2 6= x2 − x1. Arbitrarily large
examples of such sets are found easily; random subsets of large abelian groups,
for example, are likely to be such.

The singleton {0} trivially satisfies 2. More generally, if A is symmetric
about 0, that is A = −A, then A + A = A − A. By translating, a set which is
symmetric about any element of the ambient group satisfies 2. Note, however,
that not all sets satisfying 2. are symmetric; take, for example, {−5,−3, 1, 3, 5}.
It is again easy to find arbitrarily large examples of such sets: take any set A
and form A2 = A ∪ −A.

Call a set satisfying 3. a more sums than differences (MSTD) set. These
sets have an interesting history. The first published examples are due to Marica
[13] in 1969, and since then MSTD sets have been studied for their own sake.
Most recently, MSTD sets have been counted [6, 14, 38] and infinite families
have been constructed [7, 15, 19]; the reader is referred to [18] for a general
discussion. It is enough for us at the moment to know that there are many
MSTD sets.

Examples 1.7
The set {−7,−5,−4,−3, 0, 4, 5, 7} has 26 sums and 25 differences. It has the

smallest diameter and the fewest number of elements of all MSTD sets in the
integers, and all 8-element MSTD sets are affinely equivalent to it; see [7].

The set of sums of {0, 1, 2, 4, 5, 9} ⊆ Z/12Z is all of Z/12Z, while the class 6
is not representable as a difference. Z/12Z is the smallest cyclic group in which
an MSTD set exists.

If A3 = {0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25}, then A3∪(A3 +20) has 91
sums and 83 differences. This MSTD set gives us the largest known values of the
quantities log |A+A|

/
log |A−A|, log |A+A|

|A|

/
log |A−A||A| , and log |A+A|

|A−A|

/
log |A|

as A runs over finite sets of integers. For more on the importance of these
functions, see Sections 1.2.3 and 1.2.5. This example is due to Hegarty [7].

Unlike in 1. and 2., it is not immediately obvious how to form large exam-
ples of MSTD sets. One natural way is to consider products, which we briefly
describe here. See Appendix A for more details.

Given a finite set A in an abelian group G, we may take its cartesian product
A2 = A×A in G×G. Since the group operation works component-wise, it is not
hard to verify that |A2| = |A|2, |A2 +A2| = |A+A|2, and |A2−A2| = |A−A|2.
Thus if A3 is an MSTD set, then A2

3 will be a larger one. By iterating this, we

7
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may form arbitrarily large examples of MSTD sets, albeit in different abelian
groups. Arbitrarily large examples of MSTD sets in the integers may be found
by projecting down examples in Zd while preserving the sum and difference set
sizes. This technique actually gives us more via the following theorems.

Theorem 1.8. For finite A ⊆ Z, let F (A) = |A + A| − |A − A|. Then F is
unbounded in both the positive and negative directions as it ranges over all finite
subsets of Z.

Proof. Let A = {0, 1, 3}. We see |A+A| = 6, |A−A| = 7, so that F (A) = −1.
For d ≥ 1 an integer, Ad in Zd satisfies |Ad + Ad| = 6d, |Ad − Ad| = 7d. By
Theorem A.1 in Appendix A, there exists a set of integers with 6d sums and 7d

differences. Thus F attains 6d − 7d for every integer d ≥ 1, meaning that it is
unbounded in the negative direction. Similarly, we show that F is unbounded
in the positive direction by considering powers of an MSTD set; the first from
Examples 1.7 would do.

In exactly the same way, we have the following theorem.

Theorem 1.9. For finite A ⊆ Z, let G(A) = |A+A|/|A−A|. Then G attains
values arbitrarily close to 0 and arbitrarily large positive values as it ranges over
all finite subsets of Z.

With a bit more care, Martin and O’Bryant [14] and Hegarty [7] showed
independently that the range of F is all of Z. In the same vein, we ask the
following question.

Question 1. Given an r ∈ Q+, does there exist a finite set of integers A such
that G(A) = r?

Products, projections, and theorems like the ones above are important when
working with sumset estimates. The tensor power trick, outlined in Section A.3,
is a good example. The two theorems above tell us that bounds of the form
|A+A| ≤ |A−A|+ C1 and |A+A| ≤ C2|A−A| with C1, C2 constant are not
possible. These techniques are commonly used without any explicit reference to
them.

1.2.3 Estimates near the minimum

We now want to understand how to make the following questions precise. If
|A + A| is close it its minimal value, must |A − A| be close? If so, how close?
The intuition is that |A + A| and |A − A| are positively correlated, i.e. that
the answer to the first question is “yes.” The rest of this section is devoted to
determining to which degree this is true.

We begin by restricting |A+A| to be exactly its minimal value. In addition to
beging able to determine the exact value of |A−A|, we find detailed information
on the structure of A itself. The next two theorems are examples of inverse
theorems and are proven in greater generality in Section 2.2.1.

Corollary 1.10. Let A be a finite set in a torsion-free abelian group. The
following are equivalent:

1. A is an arithmetic progression

8
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2. |A+A| = 2|A| − 1

3. |A−A| = 2|A| − 1

There is an analogous connection in arbitrary abelian groups.

Corollary 1.11. Let A be a finite set in an abelian group. The following are
equivalent:

1. A is a coset of a subgroup

2. |A+A| = |A|

3. |A−A| = |A|

Now we want to relax this bound near the minimum; that is, understand
the freedom of one of |A + A|, |A − A| if the other is restricted to be near its
minimal value. As a first example, if we stipulate that A is a set of integers
with |A−A| ≤ 2|A|+ 1, then there are already three possibilities for |A+A|.

Saying that |A+A| ≤ α|A| is saying that |A+A| is roughly within a factor
of α of its minimal value. Therefore, bounding the quantities |A + A|/|A|,
|A−A|/|A| from above is one way to formulate |A+A|, |A−A| being near to
its minimal value.

In the late 1960’s, Frĕıman gave a structural characterization of sets of in-
teger A for which |A + A|/|A| is small. This structure implies a weak upper
bound on |A − A|/|A|. More specifically, if |A + A| ≤ α|A|, then Frĕıman’s
results show |A + A| ≤ f(α)|A| where f depends only on α. The dependence,
however, is exponential, and therefore is quite weak. Nevertheless, this shows a
positive correlation between |A+A| and |A−A| in one direction.

Much better bounds are available, however, if we do not consider the struc-
ture of A. Ruzsa [27], inspired by a question of Erdős and the weak correlation
implied by Frĕıman’s work, showed in 1976 via elementary arguments that

|A+A| ≤ α|A| =⇒ |A−A| ≤ α2|A|
|A−A| ≤ α|A| =⇒ |A+A| ≤ α3|A|

for finite sets of integers A.
Taking powers of A, we see that bounds of the form |A + A|/|A| ≤ |A −

A|/|A|+ C and |A+ A|/|A| ≤ C|A− A|/|A| with C constant are not possible.
In other words, if we assume |A + A| ≤ α|A| and we would like to have a
polynomial f(α) such that |A−A| ≤ f(α)|A|, f must be at least quadratic.

Ruzsa was able to improve α3 to α2 in the second inequality above in 1989
with Plünnecke’s method. Though this symmetrized the two results, the proof
of the second remained difficult (dependent upon Plünnecke’s theorem) until
very recently.

The following theorem records these results as easy symmetric corollaries to
Theorems 2.7 and 2.8 and Corollary 2.9.

Theorem 1.12. [Ruzsa 1976, 1989] Let A be a finite set in an abelian group
G. Then (

|A+A|
|A|

)1/2

≤ |A−A|
|A|

≤
(
|A+A|
|A|

)2

.

9
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Equivalently,

|A+A| ≤ α|A| =⇒ |A−A| ≤ α2|A|
|A−A| ≤ α|A| =⇒ |A+A| ≤ α2|A|

If G is torsion-free, then |A+A|
|A| ≤

(
|A−A|
|A|

)2

− 1 + 1
|A| .

It is a natural next question to ask whether these bounds are sharp. Consider
the quantity log |A+A|

|A|

/
log |A−A||A| as A ranges over finite sets in abelian groups.

The theorem above gives us that it is bounded between 1/2 and 2.
Hennecart, Robert, and Yudin [8] showed in 1999 that simplices in the integer

lattice have many more differences than sums. Theorem B.4 in Appendix B
uses these simplices to show that there are sets A with log |A+A|

|A|

/
log |A−A||A|

arbitrarily close to 1/2. This shows that the exponent in |A−A||A| ≤
(
|A+A|
|A|

)2

is
sharp.

The other exponent, however, is still open.

Question 2. Is the exponent 2 in |A+A|
|A| ≤

(
|A−A|
|A|

)2

sharp?

If A′ = {0, 1, 2, 4, 5, 9, 12, 13, 17, 20, 21, 22, 24, 25}, then A = A′ ∪ (A′ + 20)
has 23 elements, 91 sums, and 83 differences. It is due to Hegarty [7] and gives
us the largest known value of log |A+A|

|A|

/
log |A−A||A| at just greater than 1.0846.

1.2.4 Estimates near the maximum

We follow now the analogous train of thought with the joint behavior of
|A + A| and |A − A| near their maximal values. We seek to understand the
freedom of one of |A+A|, |A−A| if the other is near its maximum value.

Just as before, we begin by restricting one of |A+A|, |A−A| to be exactly at
its maximum. We again have exact information on the size of the other sumset,
though we do not have a structural classification. The proof is exactly as in
Lemma 2.6 and uses the counting from Lemma 1.4.

Lemma 1.13. Let A be a finite set in an abelian group, |A| = n. The following
are equivalent:

1. There are no non-trivial solutions to the equation x1 +x2 = x3 +x4 in A;
i.e. if a1 + a2 = a3 + a4 with ai ∈ A, then {a1, a2} = {a3, a4}

2. There are no non-trivial solutions to the equation x1−x2 = x3−x4 in A;
i.e. if a1 − a2 = a3 − a4 with ai ∈ A, then {a1, a4} = {a2, a3}

3. |A+A| = n(n+ 1)/2

4. |A−A| = n(n− 1) + 1

A set satisfying any of the conditions above is called a Sidon set. We see
that no non-trivial coincidences among the sums is equivalent to no non-trivial
coincidences among the differences.

10
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Just as in the previous section, we want to relax the condition of being
exactly at the maximum value. If we stipulate that A is a set of integers with
|A+A| ≥ n(n+ 1)/2− 1, then there are already three possibilities for |A−A|.

One way to formulate |A+A|, |A−A| being close to the maximum is bounding
|A+A|/|A|2, |A−A|/|A|2 from below. We might ask if |A+A| ≥ α|A|2 implies
that |A − A| ≥ f(α)|A|2 for some function f depending only on α. In marked
contrast to bounds near the minima, the answer to this question is negative.
Ruzsa [30] in 1992 was able to show the following.

Theorem 1.14. There exists a c1 > 0 and an integer n1 ≥ 1 such that for all
n ≥ n1 there is a set of integers A with |A| = n and

|A+A| ≥ n2/2− n2−c1 , |A−A| ≤ n2−c1

Similarly, there exists a c2 > 0 and an integer n2 ≥ 1 such that for all n ≥ n2

there is a set of integers A with |A| = n and

|A−A| ≥ n2 − n2−c2 , |A+A| ≤ n2−c2

Theorem 1.12 gives us that neither c1 nor c2 may be larger than 1/2. Ruzsa
[33] improved the upper bound on c2 in 2008 to 1/3 via Theorem 1.19. Ruzsa
did not compute explicit values for the constants c1, c2, and effective lower
bounds for them have not been published.

Question 3. What are effective values for the constants c1, c2 in Theorem
1.14?

In this sense of “close to the maximum”, then, we do not see a close connec-
tion between |A + A|, |A − A|. Formulating it in another way, we may simply
quantify the difference between |A+A|, |A−A| and their maximal values. For
a finite set A in an abelian group, |A| = n, we define

∆+(A) = n(n+ 1)/2− |A+A|,
∆−(A) = n(n− 1) + 1− |A−A|

to be the sum deficit and the difference deficit of A, respectively.
From the trivial estimates, we have immediately that 0 ≤ ∆+(A) ≤ n(n −

3)/2 + 1 and 0 ≤ ∆−(A) ≤ n(n − 3) + 2. Ruzsa [33] showed the following
connection.

Theorem 1.15. Let A be a finite set in an abelian group. Then

∆+(A) ≤ 1
2

∆−(A)3/2 + ∆−(A)

∆−(A) ≤ 2(∆+(A)2 + ∆+(A))

Moreover, there are arbitrarily large sets of integers A for which the second
inequality is equality.

Ruzsa conjectures in the same paper that the correct exponent on ∆−(A) in
the first inequality is 4/3.

Conjecture 1.16. Let A be a finite set in an abelian group. Then ∆+(A) ≤
c∆−(A)4/3 for some positive constant c.

11
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1.2.5 Other estimates

In this section, we formulate three other miscellaneous sumset estimates.

1. It is immediate from the trivial bounds that |A±A| ≤ |A∓A|2. Naturally,
we are led to ask what the best exponent is here. The following theorem was
first proven by Frĕıman and Pigarev in [25]. We show it as an easy corollary to
Theorems 2.7 and 2.8 from the second chapter.

Theorem 1.17. Let A be a finite set in an abelian group. Then

|A+A| ≤ |A−A|4/3

|A−A| ≤ |A+A|4/3

Proof. Setting B, C in Theorem 2.8 to −A and using the trivial bound |A+A| ≤
|A|2, we see

|A+A|3 ≤ |A|2|A+A|2 ≤ |A−A|4.

We obtain the other inequality in the same way with B, C set to A in Theorem
2.7.

It is still an open question to determine what the best exponents are here.
The theorem gives that log |A+A|

/
log |A−A| is bounded between 3/4 and 4/3

as A runs over finite sets in abelian groups.

Question 4. What are the infima of values of c1, c2 such that |A + A| ≤
|A−A|c1 , |A−A| ≤ |A+A|c2 hold for all finite sets A?

The largest known value of log |A+A|
/

log |A−A| is attained by the third ex-
ample in Examples 1.7 at just over 1.0208, which means c1 ≥ 1.0208. Theorem
B.2 uses simplices in the integer lattice to show that log |A+A|

/
log |A−A| may

be arbitrarily close to log 2

log(1+
√

2)
from above. In other words, c2 ≥ log(1+

√
2)

log 2 >

1.2715.

2. It is easy to see that neither |A+A|/|A−A| nor |A−A|/|A+A| may be
bounded from above by a constant. Both, however, are trivially bounded from
above by |A|. This leads us to ask what power of |A| can bound |A+A|/|A−A|.
To my knowledge, this estimate has not been formulated elsewhere.

Corollary 1.18. Let A be a finite set in an abelian group. Then

|A+A|
|A−A|

≤ min
(
|A−A|
|A|

, |A|1/2
)
.

The same inequality is true if all + and − signs are switched.

Proof. From Theorem 2.8, we get |A + A|/|A − A| ≤ |A − A|/|A|. If |A|1/2 ≤
|A−A|/|A|, then |A+A|/|A−A| ≤ |A+A|/|A|3/2 ≤ |A|1/2, as desired. Switching
the + and − signs, we may use Theorem 2.7 in the analogous way.

Again we may ask for lower bounds on the best exponent on |A|.

Question 5. What are the infima of values of c1, c2 such that |A+A|/|A−A| ≤
|A|c1 , |A−A|/|A+A| ≤ |A|c2 hold for all finite sets A?

12
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The third MSTD set from Examples 1.7 shows that c1 > 0.0293. Theorem
B.5 uses simplices to show that c2 > 0.4.

3. We briefly present here some recent sumset inequalities from Ruzsa in
[33]. All of the proofs are elementary. The main result is as follows.

Theorem 1.19. Let A be a finite set in an abelian group, |A| = n. Then

|A+A|
(

∆−(A)2 +
n3

6

)
≥ n5

20
.

In particular, if |A+A| < n2/10, then

|A+A|∆−(A)2 ≥ n5

30
.

A positive correlation between |A+ A| and |A− A| would mean a negative
one between |A + A| and ∆−(A). The lower bound in this theorem gives us
that |A+A| small implies ∆−(A) large and vice versa. In particular, this shows
that |A+A| is comparable with |A|2 when ∆−(A) is bounded by |A|3/2. It also
shows that the constant c2 from Theorem 1.14 cannot be greater than 1/3.

Ruzsa conjectures the analogous inequality holds for the product |A−A|∆+(A)2

in the following way.

Conjecture 1.20. There exists a c > 0 such that if |A−A| < cn2, then

|A−A|∆+(A)2 ≥ cn5.

He was able to show the following weaker version.

Theorem 1.21. If |A−A| < n2/2, then for n sufficiently large, we have

|A−A|∆+(A)2 ≥ n4

9
.

1.3 Higher estimates

In this section, we are concerned with understanding the behavior of |kA|
and more generally |kA − lA| in terms of k and l. One of the primary goals is
to understand their behavior in terms of the cardinalities |A|, |A+A|, |A−A|
studied in the last section. We want to see, for example, that if |A + A| is not
too large compared to |A|, then |kA| does not grow too quickly as a function of
k.

We begin with the trivial estimates on |kA|, |kA − lA|. After discussing
generalizations of MSTD sets, we introduce the Plünnecke-Ruzsa results by
showing how |kA − lA| may be controlled by |3A| in an elementary way. We
then give a brief description of Plünnecke’s method, one of the primary tools in
understanding higher sumset estimates.

Though we still focus on symmetric sumsets in this section, we will need
the notation for asymmetric sumsets. The reader should refer to Section 2.1.
Recall that when we write |kA − lA|, we implicitly assume that k, l ≥ 0, and
(k, l) 6= (0, 0).
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1.3.1 The trivial estimates

As with the lower sumsets, we begin by establishing the trivial estimates for
|kA| and |kA− lA| in terms of |A|.

Lemma 1.22. Let A be a finite set of integers, |A| = n. Then

k(n− 1) + 1 ≤ |kA| ≤
(
n+ k − 1

k

)
.

Proof. If A = {a1 < · · · < an}, then consider a sequence

a1 + a1 + · · ·+ a1 < a2 + a1 + · · ·+ a1 < · · · < an + an + · · ·+ an

in kA in which exactly one index is incremented by 1 at each step. Such a
sequence exhibits k(n− 1) + 1 distinct elements of kA.

For the upper bound, each ai1 +ai2 + · · ·+aik with i1 ≤ i2 ≤ · · · ≤ ik may be
distinct. There are

(
n+k−1

k

)
such non-decreasing, length k sequences of indices

from {1, 2, . . . , n}.

Corollary 1.23. The previous lemma holds for finite sets of torsion-free abelian
groups.

Lemma 1.24. Let A be a finite set in an abelian group, |A| = n. Then

n ≤ |kA| ≤
(
n+ k − 1

k

)
.

The proofs of Corollary 1.23, Lemma 1.24 follow exactly as the proofs of
Corollary 1.5, Lemma 1.6 for the lower trivial estimates.

From Examples 1.2, we see that the lower/upper bounds in the torsion-free
case are obtained by arithmetic progressions/sets in sufficiently general position.
In the general case, the lower bound is obtained by cosets of finite subgroups of
the ambient group.

The lower bounds on |kA−lA| are similar. If A is a finite set in a torsion-free
abelian group, then one can show in the same way as above that (k + l)(|A| −
1) + 1 ≤ |kA − lA|. This bound is attained if A is an arithmetic progression.
For general abelian groups, we have |A| ≤ |kA− lA|, which is attained at cosets
of finite subgroups.

Writing a closed form expression for the exact upper bound on |kA− lA| in
terms of |A| is likely difficult. Using the asymmetric trivial estimate |A+B| ≤
|A||B| (Lemma 2.2), we may write |kA − lA| ≤ |kA||lA| and then apply the
bounds in Lemma 1.22. As a polynomial in |A|, this gives the right order of
growth, but it is not sharp. We record this in the following lemma.

Lemma 1.25. Let A be a finite subset of an abelian group G, |A| = n. Then

n ≤ |kA− lA| ≤
(
n+ k − 1

k

)(
n+ l − 1

l

)
.

If G is torsion-free, then (k + l)(n− 1) + 1 ≤ |kA− lA|.

14
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1.3.2 Higher MSTD sets and generalizations

The first higher sumset cardinalities are |3A| = | − 3A| and |2A−A| = |A−
2A|. Following Section 1.2, we are naturally led to ask the following questions.
Do there exist finite sets A1, A2, A3 (in some abelian groups) such that

1. |3A1| < |2A1 −A1|

2. |3A2| = |2A2 −A2|

3. |3A3| > |2A3 −A3|

Does there exist a finite set A4 such that

4. |3A4| < |A4 −A4|

Do there exist arbitrarily large examples of such sets?
As we show in Appendix A, powers of sets satisfying any of the conditions

above will be larger examples satisfying the same conditions. The last question,
then, is equivalent to the question of existence for these sets.

Sets in general position satisfy 1. and symmetric sets satisfy 2. A set satis-
fying 3. is a sort of higher MSTD set; see Section 1.2.2. One may come across
examples by searching random sets in some interval of integers. For example,
the set

A3 = {0, 4, 5, 10, 11, 17, 23, 24, 28}
is such that |3A3| = 74 and |2A3 − A3| = 73. I do not know whether it is the
smallest or shortest of all such sets in the integers. It is interesting to note that
it is not an MSTD set: |A3 + A3| = 34 while |A3 − A3| = 35. Much more is
known about MSTD sets than their higher generalizations; that is, very little is
known about higher MSTD sets in general.

The 7-dimensional simplex of size 11, ∆7
11 = {(x1, . . . , x7) ∈ Z7 | 0 ≤

xi and
∑
xi ≤ 11}, satisfies 4. In fact,

|∆7
11| = 18564, |∆7

11 −∆7
11| = 18880961, |3∆7

11| = 18643560.

Just as with 3., virtually nothing is known about the density of such sets in an
interval of integers or how to construct them in general.

These considerations lead us very naturally to the following question.

Question 6. Given k, l, k′, l′ ≥ 0 with (k, l), (k′, l′) 6= (0, 0), does there exist a
finite set A in an abelian group such that |kA− lA| < |k′A− l′A|?

This question was asked in much greater generality and partially answered
in [20]. Question 6 is still open; in fact, given a k ≥ 1, we do not even know if
there exists an A such that |A−A| > |kA|.

1.3.3 Controlling |kA− lA| with |3A|

We now look to further generalize results from Section 1.2. We saw via
Theorem 1.12 that |A+A| is small (within a multiple of |A|) if |A−A| is small
and vice versa. We may ask if the same is true of the pair |3A|, |2A− A|. The
intuition behind the corollary (that non-trivial solutions to x1 + x2 = x3 + x4

may be arranged to form non-trivial solutions to x1− x2 = x3− x4) generalizes
to this case, leading us to expect a positive answer. We prove the following
theorem in the next section.
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Theorem 1.26. Let A be a finite set in an abelian group. Then(
|3A|
|A|

)2/3

≤ |2A−A|
|A|

≤
(
|3A|
|A|

)2

,

from which it follows that

|3A|7/9 ≤ |2A−A| ≤ |3A|3/2.

More generally, though, we seek to understand how all higher sumsets |kA−
lA| may be controlled by some manageable collection of lower sumsets. The
ratio |A+A|/|A| measures the degree to which taking sums magnifies the set A.
We may wonder whether it alone may be used to understand the growth of all
of the higher sumsets. To what degree does the growth of the first set of sums
|A+A|/|A| reflect the growth of the iterated sums |kA|/|A| and |kA− lA|/|A|?

Plünnecke’s method and the Plünnecke-Ruzsa inequalities are the standard
tools for answering such questions. We will discuss them in the next section.
The remainder of this section will be used as preparation and motivation for
the results of the next. In particular, we show how to partially answer such
questions by elementary means via the following lemma.

Lemma 1.27. Let A be a finite set in an abelian group, |A| = n, and |3A| = αn.
Then

|kA− lA| ≤ αk+ln.

This lemma is indicative of how these results are generally stated. We un-
derstand α as reflecting the growth of |3A| over |A|, and we understand the
growth of |kA− lA| over |A| by bounding |kA− lA|/|A| in terms of a function
of α. Recall that Theorem 1.12 was stated naturally in these terms: if |A| = n,
|A+A| = αn, then |A−A| ≤ α2n and vice versa.

We present a proof of the lemma based on Ruzsa’s triangle inequality, The-
orem 2.7:

|A||B − C| ≤ |A+B||A+ C|.

(Note that we have made the substitutions B → −B and C → −C.) This
inequality has an elementary proof. Lemma 1.27 was known to Ruzsa and
Turjányi [35] already in 1985, years prior to Ruzsa discovering and reformulating
Plünnecke’s work.

Proof of Lemma 1.27. We induct on k+l. We have |A| ≤ |2A| ≤ |3A| = αn. By
Ruzsa’s triangle inequality, |A||A−A| ≤ |A+A|2 ≤ α2n2, so that |A−A| ≤ α2n.
This covers the bases cases of k + l = 1, 2.

If k + l ≥ 3, then since |kA− lA| = |lA− kA|, we may assume without loss
of generality that k ≥ 2. We see

|A||kA− lA| = |A||2A− (lA− (k − 2)A)|
≤ |3A||(l + 1)A− (k − 2)A|
≤ |3A|αk+l−1n.

The last inequality follows from the inductive hypothesis. Dividing by |A| yields
the result.
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This result shows that indeed the growth of |3A| over |A| governs the growth
of the higher sumsets. Note that there was nothing particular about our choice
of |3A|; we could have used |2A−A| or any other higher sumset. Bounding the
growth of the higher sumsets by |2A|, however, cannot be achieved with Ruzsa’s
triangle inequality. This is the subject of the next section.

1.3.4 Plünnecke’s method

In 1970, Plünnecke [26] published a graph theoretic method to estimate
the density of sumsets of infinite sets of integers. Ruzsa [28, 29] published
a simplified version of Plünnecke’s results in 1989 in which he applied them
to the study of higher sumsets. There are many good accounts of Ruzsa’s
version of Plünnecke’s method; we refer the reader to [32] for a quick overview
with applications and [1, 23] for a more in-depth discussion with proofs. For
completeness, we briefly describe the method and state the main results here.

Given finite sets A,B, we model the higher sumsets A, A+B, . . . , A+ kB
with the following directed graph. If Vi = A + iB, the vertices are a disjoint
union V0∪· · ·∪Vk. There is a directed edge from x ∈ Vi to y ∈ Vi+1 if y = x+ b
for some b ∈ B. This is an example of a bridging, commutative graph.

The magnification ratio of V0 in Vi is then defined as

Di = min
{
|im(X,Vi)|
|X|

∣∣∣∣ X ⊆ V0, X 6= ∅
}

where im(X,Vi) is the image of X in Vi, the set of those vertices in Vi to which
there is a directed path from some vertex in X. Plünnecke’s main result concerns
these magnification ratios; in our limited formulation, it is the following.

Theorem 1.28. The sequence D1/i
i is decreasing.

Using the trivial bound Di ≤ |Vi|/|V0| and replacing |Vi| with |A + iB|,
|im(X,Vi)| with |X + iB| we have the following theorem.

Theorem 1.29 (Plünnecke’s inequality). Let A,B be finite sets in an abelian
group, i ≤ k be integers, |A| = n, and |A+ iB| = αn. There exists a non-empty
X ⊆ A such that

|X + kB| ≤ αk/i|X|.

To put it another way, there is a subset X of A for which |X + kB|/|X| is
bounded by a power of |A + iB|/|A|. This gives us a bound on the growth of
the higher sumset cardinality |X+kB| over |X| with information on the growth
of the lower sumset cardinality |A + iB| over |A|. We will see immediately
how this applies to symmetric sumset estimates. See Section 2.3.1 for a further
discussion.

Until very recently, the simplest proofs of Plünnecke’s theorem made use
of, among other things, Menger’s theorem and the tensor power trick applied
to products of commutative graphs. Petridis [22, 23, 24] recently gave a sim-
pler proof of Plünnecke’s theorem and, in particular, an elementary proof of
Plünnecke’s inequality in the i = 1 case. This is discussed in Sections 2.3.1 and
2.3.2.
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We are now interested in understanding what Plünnecke’s method yields
regarding single set sumset estimates. Setting B = A or B = −A in Plünnecke’s
inequality and using that |X| ≤ |A|, |kB| ≤ |X + kB|, and |X| + |kB| − 1 ≤
|X+kB| when the ambient group is torsion-free, we have the following corollary.

Corollary 1.30. Let A be a finite set in an abelian group G, i ≤ k be positive
integers, |A| = n, |A+ iA| = αn. We have

|kA| ≤ αk/in.

If G is torsion-free, then

|kA| ≤ (αk/i − 1)n+ 1.

The same conclusions are true if we define α instead by |A− iA| = αn.

More is possible when we combine Plünnecke’s inequality with Ruzsa’s tri-
angle inequality. Setting B = A in Theorem 2.17, we have the following.

Corollary 1.31. Let A be a finite set in an abelian group, i ≤ k ≤ l be positive
integers, |A| = n, |A+ iA| = αn. We have

|kA− lA| ≤ α(k+l)/in.

The same conclusion is true if we define α instead by |A− iA| = αn.

When i = 1, we achieve our goal of establishing control on the growth of
the higher sumsets with |A+A|/|A| and |A−A|/|A|. This strengthens Lemma
1.27. When i > 1, we see a scaling; we may more precisely control |kA − lA|
with information on the higher sumsets |A+ iA|, |A− iA|.

We conclude by proving Theorem 1.26, stated in the beginning of the previ-
ous section.

Proof of Theorem 1.26. If |A| = n and |2A−A| = αn, then Corollary 1.30 with
i = 2 gives that |3A| ≤ α3/2n. Using the trivial estimate |3A| ≤ n3, we have

|3A|7 ≤ n3|3A|6 ≤ |2A−A|9.

The last inequality follows from raising |3A| ≤ α3/2n to the sixth power and
rearranging. We don’t have the same sort of control on |2A − A| as we do on
|3A|. Assuming |3A| = αn and applying Theorem 2.7, we have

|A||2A−A| ≤ |3A||2A| ≤ α2|A|2.

Hence |2A−A| ≤ α3/2n. The trivial estimate |2A−A| ≤ n3 yields |2A−A| ≤
|3A|3/2.

1.3.5 Growth of |kA|

We turn our attention now to better understanding the growth of kA in
terms of k. We begin by stating a theorem of Khovanskĭı [9, 10] which shows
that the growth of |kA| for a fixed A as k → ∞ is governed by a polynomial.
Then we compare |kA| with k

k−1 |(k − 1)A| and |(k − 1)A|
k

k−1 .
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Theorem 1.32. Let A be a finite set in an abelian group. There is a polynomial
f and an integer k0 such that for k > k0, |kA| = f(k).

While |kA| my behave irregularly for small k, it eventually stabilizes into
polynomial growth. The polynomial f and threshold k0 are in general not com-
putable. Compare this with the exponential bound from Plünnecke’s inequality:
|kA| ≤ (|A+A|/|A|)k |A|. This result was generalized to multiple summands
by Nathanson [17] and Nathanson and Ruzsa [21].

There are many known proofs of the following two results. We present them
as corollaries to theorems in the second chapter, both of which have elementary
proofs. These may be interpreted as showing that the sequence |kA| exhibits
faster than linear, but slower than exponential, growth. The main reference is
[5].

Corollary 1.33. Let A be a finite set in an abelian group. Then

|kA| ≥ k|(k − 1)A| − 1
k − 1

.

Consequently, the sequence (k+1)|kA|−1
k is increasing.

Proof. The first statement is a direct application of Theorem 2.25 with all vari-
ables set to A. To prove the second, we multiply the first inequality by k + 1,
subtract 1, and divide by k to see

(k + 1)|kA| − 1
k

≥
(k + 1)k|(k−1)A|−1

k−1 − 1
k

≥ k|(k − 1)A| − 1
k − 1

.

The last inequality follows from the fact that |(k − 1)A| ≥ 1.

See [11] for an alternative proof in torsion-free abelian groups. We prove the
following as both a corollary to Theorem 2.26 and as a corollary to Theorem
1.29 using Plünnecke’s method.

Corollary 1.34. Let A be a finite set in an abelian group. Then

|kA| ≤ |(k − 1)A|
k

k−1 .

Consequently, the sequence |kA|1/k is decreasing.

Proof. Set all of the variables to A in Theorem 2.26. Alternatively, use Theorem
1.29 above with (A,B) set to ({0}, A). We get that X = {0} and hence that
|kA| ≤ |iA|k/i. We have the desired result with i = k − 1.
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Chapter 2: Asymmetric sumset estimates

In this chapter we consider sumset estimates involving two or more possibly
distinct sets. Most of the results from the first chapter are proven in much
greater generality.

2.1 Definitions and examples

For A, B finite subsets of an abelian group, we define

A+B = {a+ b | a ∈ A, b ∈ B},
A−B = {a− b | a ∈ A, b ∈ B}

to be the sum set and difference set of A and B, respectively. These are the
lower sumsets of A and B.

In the same way as in the first chapter, for k, l positive integers, kA + lB
denotes the set of sums of k elements from A with l elements from B. We define
(−k)A = −(kA), 0A = {0}, and interpret kA − lB to be kA + (−l)B. These
are examples of the higher sumsets of A and B. If C is a finite set in the same
abelian group, we define A+B + C accordingly.

As before, we are primarily interested in the relationship between the car-
dinalities |A|, |A + B|, |A − B|, |A + 2B|, |A + B + C|, and the like. Writing
kA and kA− lB, we again implicitly assume that k > 0 and k, l ≥ 0, (k, l) 6= 0,
respectively.

Examples 2.1
If A and B are arithmetic progressions of the same step size in a torsion-

free abelian group, then one can check that A+B is an arithmetic progression
with the same step size of length |A| + |B| − 1. If A and B are arithmetic
progressions of different step sizes, then A + B is an example of a generalized
arithmetic progression.

The sets A and B are said to be in general position if there are no non-trivial
solutions to the equation x+ y = x′+ y′ with x, x′ ∈ A, y, y′ ∈ B; that is, there
are no non-trivial coincidences among the sums of A and B. It is easy to see in
this case that there are no non-trivial coincidences among the differences either,
hence |A+B| = |A−B| = |A||B| (see Lemma 2.2).

If A is a finite subgroup of an abelian group and B ⊆ A, then A + B = A
since A + b = A for each b ∈ B. If A is a coset of a finite subgroup H and B
is a translate of some subset H ′ of H, then it is easy to verify that |A + B| =
|H +H ′ + g| = |H| = |A|.

Translations, dilations, and affine equivalence extend to this more general
setting, with the caveat that |A+B| is not invariant under dilations of just one of
the sets. If A′ = A+g and B′ = B+h, then |A′+B′| = |A+B+g+h| = |A+B|.
If A′ = d ·A and B′ = d ·B, then |A′ +B′| = |d · (A+B)| = |A+B|.

2.2 Lower estimates

Let A, B be finite sets in an abelian group. By rearranging solutions to the
equation x + y = x′ + y′ with x, x′ ∈ A, y, y′ ∈ B, we are led to expect the
same sort of positive correlation between |A+B| and |A−B| as we saw between
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|A+A| and |A−A| in Chapter 1. This is indeed the case, though the correlation
is not as strong.

We begin exploring asymmetric sumset estimates by establishing the trivial
estimates and some basic inverse theorems. In Sections 2.2.2 and 2.2.3, we
present two asymmetric inequalities of fundamental importance. We conclude
with some miscellaneous asymmetric sumset estimates.

2.2.1 Trivial estimates and inverse theorems

We begin studying asymmetric sumset estimates by bounding |A + B| and
|A−B| separately in terms of |A|, |B|.

Lemma 2.2. Let A, B be finite sets in an abelian group G. We have

max(|A|, |B|) ≤ |A+B| ≤ |A||B|

If G is torsion-free, then |A| + |B| − 1 ≤ |A + B|. The same bounds hold with
|A−B| in place of |A+B|.

Proof. The lower bound in the general case follows from the fact that A+ b, a+
B ⊆ A + B and |A + b| = |A|, |a + B| = |B| for all a ∈ A, b ∈ B. Since there
are |A||B| choices for a ∈ A, b ∈ B and each a + b may be distinct, we have
|A+B| ≤ |A||B|.

By Corollary A.3 in Appendix A, it is sufficient to check that |A|+ |B|−1 ≤
|A+B| holds when A and B are finite sets of integers. If A = {a1 < · · · < an}
and B = {b1 < · · · < bm}, then the sequence

a1 + b1 < a1 + b2 < · · · < an−1 + bm < an + bm

exhibits n+m− 1 distinct elements of A+B.
Finally, replacing B with −B in the results above gives us the same bounds

for A−B.

Now we are interested in relating the quantities |A+B|, |A−B|. We begin
by showing that |A+B|, |A−B| achieve their minimum and maximum values
simultaneously. In the case that they are at their minimums, we are able to
deduce structural information on A and B in the following way.

Theorem 2.3. Let A, B be finite sets of integers. The following are equivalent:

1. A, B are arithmetic progressions with the same step size

2. |A+B| = |A|+ |B| − 1

3. |A−B| = |A|+ |B| − 1

Proof. Assuming 1., it is easy to check that A + B, A − B are arithmetic pro-
gressions of length |A + B| = |A − B| = |A| + |B| − 1 with step size matching
that of A, B.

Let A = {a1 < · · · < an}, B = {b1 < · · · < bm}. Then in A + B we have
sequences of the form a1 +b1 < · · · < an+bm in which exactly one of the indices
is increased by 1 at each step. Such a sequence may begin with, for example,

a1 + b1 < a1 + b2 < a2 + b2 < a3 + b2 < · · · < an + bm.
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Each such sequence has |A| + |B| − 1 elements, and so if we assume 2., then
all of these sequences are the same. Thus we see that 2. is equivalent to the
assertion

ai + bj = ak + bl ⇐⇒ i+ j = k + l. (∗)

Similarly for A − B, we have sequences a1 − bm < · · · < an − b1 with
|A| + |B| − 1 elements in which either the first index is increased by 1 or the
second index is decreased by 1 at each step. We see, in the same way as above,
that 3. is equivalent to the assertion

ai − bj = ak − bl ⇐⇒ i− j = k − l.

This is clearly equivalent to (∗), hence 2. and 3. are equivalent.
Assuming (∗), we have, in particular, that the distance between any two

consecutive elements of A is the same as the distance between any two consecu-
tive elements of B. This gives that A and B are arithmetic progressions of the
same step size, as desired.

Corollary 2.4. The previous theorem holds for finite sets in torsion-free abelian
groups.

Proof. The map ϕM described in Appendix A is linear and hence preserves
arithmetic progressions. It is enough, then, that the claim holds for finite sets
of integers.

We have the analogous connection in arbitrary abelian groups.

Theorem 2.5. Let A, B be finite sets in an abelian group G. The following
are equivalent:

1. There exists a finite subgroup H of G such that B is contained in a coset
of H and A is a union of cosets of H

2. |A+B| = |A|

3. |A−B| = |A|

Proof. Note that all of the conditions are invariant under translating B. Thus
we may assume without loss of generality that 0 ∈ B.

Assuming 1., we have that B ⊆ H, and hence A+ b = A, A− b = A for all
b ∈ B. This yields |A+B| = |A−B| = |A|.

Since A + b ⊆ A + B, 2. implies that A + b = A + B for all b ∈ B. This
implies that A+ b = A+ b′ for all b, b′ ∈ B, which is equivalent to saying that
A− b = A− b′ for all b, b′. Since A− B is a union of A− b over b ∈ B, we get
that |A− B| = |A− b| = |A|, which is 3. The same argument in reverse shows
that 3. implies 2., hence they are equivalent to each other and to

A+ b = A+ b′ for all b, b′ ∈ B. (∗)

Now we show that (∗) implies 1. Since 0 ∈ B, (∗) gives that A + b = A for
all b ∈ B. Let H = {g ∈ G | A + g = A}; it is easy to verify that H is a finite
subgroup. From the previous comment, B ⊆ H. Finally, if a ∈ A, then the
coset H + a ⊆ A by the definition of H. This gives that A is the union of the
cosets H + a for a ∈ A, as desired.
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We no longer have the structural characterizations at the upper bounds, but
we are able to show that the bounds are attained simultaneously.

Lemma 2.6. Let A, B be a finite sets in an abelian group. The following are
equivalent:

1. There are no solutions to the equation x + y = x′ + y′ for x, x′ ∈ A,
y, y′ ∈ B

2. There are no solutions to the equation x − y = x′ − y′ for x, x′ ∈ A,
y, y′ ∈ B

3. |A+B| = |A||B|

4. |A−B| = |A||B|

Proof. By rearranging the equations, 1. and 2. are clearly equivalent. There
are |A||B| possibilities for the sums a + b with a ∈ A, b ∈ B, hence 1. and 3.
are equivalent. The analogous statement for differences shows that 2. and 4.
are equivalent.

Theorems along these lines are called inverse theorems since we use the
sumsets A+B and A−B to deduce information on A and B. There are many
more such inverse theorems, Frĕıman’s theorem perhaps being the most famous;
the reader is referred to [16, 36].

2.2.2 Ruzsa’s triangle inequality

We now present two inequalities of fundamental importance to sumset esti-
mates. For finite sets A, B, C in an abelian group, we will show

|A||B − C| ≤ |A−B||A− C|,
|A||B + C| ≤ |A+B||A+ C|.

The first is sometimes called Ruzsa’s triangle inequality, for reasons ex-
plained below. The second is a special case of the Plünnecke-Ruzsa inequality,
Theorem 2.22. Both were established by Ruzsa, but by very different means.
In particular, the first has an elementary proof while the second, until very re-
cently, relied heavily on Plünnecke’s method. We present one proof of the first
inequality and three proofs of the second in this section and the next.

Theorem 2.7 (Ruzsa, 1976). Let A, B, C be finite sets in an abelian group.
Then

|A||B − C| ≤ |A−B||A− C|.

Proof. We describe an injection ϕ of A× (B − C) into (A−B)× (A− C). To
each d ∈ B − C associate a bd ∈ B, cd ∈ C such that d = bd − cd, and let
ϕ(a, d) = (a− bd, a− cd).

To verify that ϕ is injective, suppose ϕ(a, d) = ϕ(a′, d′) for a, a′ ∈ A, d, d′ ∈
D. This yields

a− bd = a′ − bd′ ,
a− cd = a′ − cd′ .

Subtracting the first equation from the second yields bd − cd = bd′ − cd′ , or
d = d′. This in turn gives bd = bd′ , cd = cd′ , whereby a = a′, as desired.
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There are other sumset inequalities that admit an injection argument similar
to the one above. We will present a more complicated injection argument for
the second inequality in the next section.

For A, B finite sets in an abelian group G, let

d(A,B) = log
|A−B|√
|A||B|

.

We see that d is symmetric and non-negative by Lemma 2.2. Theorem 2.7 is
then equivalent to the triangle inequality

d(A,B) ≤ d(A,C) + d(B,C)

for all finite sets C in G. Note that d is not a distance function in the usual sense
because d(A,A) is not always zero; Corollary 1.11 characterize when d(A,A) is
zero. Many of the results here may be comfortably reformulated in terms of d.

2.2.3 Plünnecke-Ruzsa inequality with two summands

We now want to prove the sum version of Ruzsa’s triangle inequality. It
is not immediately clear why simple injective proofs like the one used above
fail, but they do. Ruzsa first published the inequality in 1989 as a corollary to
Theorem 2.22 which was obtained using Plünnecke’s method.

In 2011, Petridis [22] gave an elementary proof of the inequality by intro-
ducing a new theorem and a new approach to proving sumset estimates. In a
comment on Tim Gower’s blog post [2] on Petridis’ results, Christian showed
how to prove Petridis’ theorem with an injection argument. We present both of
these arguments, in addition to Ruzsa’s original one, in this section.

We begin with Ruzsa’s original argument from [28] in 1989.

Theorem 2.8 (Ruzsa, 1989). Let A, B, C be finite sets in an abelian group.
We have

|A||B + C| ≤ |A+B||A+ C|.

Proof (Ruzsa, 1989). Using Theorem 2.22, there exists a non-empty X ⊆ A
such that

|B + C| ≤ |X +B + C| ≤ |A+B|
|A|

|A+ C|
|A|

|X| ≤ |A+B|
|A|

|A+ C|.

Multiplying by |A| yields the desired inequality.

Following the same proof but using the stronger |X|+|B+C|−1 ≤ |X+B+C|
for torsion-free groups, we have the following easy corollary. This corollary will
not follow from Petridis’ arguments below.

Corollary 2.9. Let A, B, C be finite sets in a torsion-free abelian group. We
have

|A||B + C| ≤ |A+B||A+ C| − |A|(|A| − 1).

We now present Petridis’ argument from [22]. The first step is a theorem
concerning the growth of |A+B+C| when A and B are such that |A+B|

|A| ≤
|Z+B|
|Z|

for all non-empty Z ⊆ A. Isolating from the beginning a set which minimizes
the growth ratio |Z+B|

|Z| is the key to Petridis’ new arguments.
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Theorem 2.10 (Petridis, 2011). Let A and B be finite sets in an abelian group
G such that |A+B|

|A| ≤
|Z+B|
|Z| for all non-empty Z ⊆ A. Then

|A||A+B + C| ≤ |A+B||A+ C|

for all finite sets C in G.

Proof. We proceed by induction on |C|. When C = {c}, |A+B+{c}| = |A+B|
and |A+ {c}| = |A|, and the inequality is trivially satisfied.

Suppose now that the inequality is satisfied for C and that we wish to prove
it for C ′ = C ∪ {x} for some integer x /∈ C. Let Z = {a ∈ A | {a}+B + {x} ⊆
A+B + C} so that

A+B + C ′ = (A+B + C) ∪
(

(A+B + {x})
∖

(Z +B + {x})
)
.

Since Z ⊆ A, it follows that |A+ B + C ′| ≤ |A+ B + C|+ |A+ B| − |Z + B|.
(Note that if Z = ∅, then Z + B + {x} = ∅ and |Z + B| = 0.) The inductive
hypothesis |A||A+B+C| ≤ |A+B||A+C| combined with our assumption that
|A||Z +B| ≥ |Z||A+B| gives

|A||A+B + C ′| ≤ |A+B|(|A+ C|+ |A| − |Z|).

Now it is sufficient to show that |A+ C|+ |A| − |Z| ≤ |A+ C ′|.
Let W = {a ∈ A | a+ x ∈ A+ C}. Observe that

A+ C ′ = (A+ C) ∪
(

(A+ {x})
∖

(W + {x})
)

is a disjoint union, whereby |A + C ′| = |A + C| + |A| − |W |. Also, W ⊆ Z, so
that |W | ≤ |Z|. These together show that |A + C ′| ≥ |A + C| + |A| − |Z|, as
desired.

The condition on A and B may seem to be restrictive. Note, however, that
given sets A, B, there is always a subset A′ of A such that |A

′+B|
|A′| ≤

|Z+B|
|Z| for

all non-empty Z ⊆ A. Using this, Theorem 2.8 follows easily.

Proof of Theorem 2.8 (Petridis, 2011). Let A′ ⊆ A be a subset of A such that
|A′+B|
|A′| ≤

|Z+B|
|Z| for all non-empty Z ⊆ A. Then

|A||B + C| ≤ |A||A′ +B + C| ≤ |A| |A
′ +B|
|A′|

|A′ + C| ≤ |A+B||A+ C|,

where the first inequality is trivial, the second follows from Theorem 2.10, and
the third uses the assumption on |A′| above with Z = A and that A′ ⊆ A.

We show in Section 2.3.2 how to apply Petridis’ result inductively to get
bounds on higher sumsets. It is of particular interest to find out if his argu-
ments can provide elementary proofs of most or all of the results obtained by
Plünnecke’s method. As it stands, Plünnecke’s method yields slightly stronger
results; see Sections 2.3.1 and 2.3.2.

We conclude this section with a proof of Petridis’ theorem with an injection
argument given by Christian on Gowers’ blog [2]. We begin with a lemma.
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Lemma 2.11 (Christian, 2011). Let A, B be finite sets in an abelian group. A
satisfies |A+B|

|A| ≤
|Z+B|
|Z| for all non-empty Z ⊆ A if and only if there exists a

bijection ψ : A× (A+B)→ A× (A+B) such that ψ(a,A+B) ⊆ A× ({a}+B)
for all a ∈ A.

Proof. If such a ψ exists, for any Z ⊆ A it induces an injection Z × (A+B) ↪→
A× (Z +B), whereby |Z||A+B| ≤ |A||Z +B|, as desired.

Conversely, define f : A → P(A × (A + B)) by f(a) = A × ({a} + B). For
each Z ⊆ A, we have

|f(Z)| = |A× (Z +B)| = |A||Z +B| ≥ |Z||A+B|.

Hall’s marriage theorem gives us a matching in which each a ∈ A is paired with
a subset of size |A+B| of A× ({a}+B). Defining ψ according to this matching
yields the desired bijection.

Proof of Theorem 2.10 (Christian, 2011). Fix a bijection ψ as in the lemma.
We describe an injection ϕ of A× (A+B+C) into (A+B)× (A+C). Impose
a linear ordering ≤ on C. For each e ∈ A + B + C, denote by ce the smallest
element c ∈ C such that e − c ∈ A + B, and let de = e − ce. Denote ψ−1 by
(ψ−1

1 , ψ−1
2 ). Finally, define ϕ(a, e) = (ψ−1

2 (a, de), ψ−1
1 (a, de) + ce).

To show that ϕ is injective, suppose ϕ(a, e) = ϕ(a′, e′) for a, a′ ∈ A, e, e′ ∈
A+B + C. We have

ψ−1
2 (a, de) = ψ−1

2 (a′, de′),

ψ−1
1 (a, de) + ce = ψ−1

1 (a′, de′) + ce′ .

If ce = ce′ , then the fact that ψ is a bijection gives that a = a′ and de = de′ .
Then e = de + ce = de′ + ce′ = e′ shows that (a, e) = (a′, e′).

If ce 6= ce′ , we may assume without loss of generality that ce < ce′ and write

e′ = de′ + ce′ = de′ − ψ−1
1 (a′, de′) + ψ−1

1 (a′, de′) + ce′

= de′ − ψ−1
1 (a′, de′) + ψ−1

1 (a, de) + ce

= ψ−1
1 (a, de) + (de′ − ψ−1

1 (a′, de′)) + ce.

Note that ψ−1
1 (a, de) ∈ A and ce ∈ C. The equation ψ(ψ−1

1 (a′, de′), ψ−1
2 (a′, de′)) =

(a′, de′) gives that de′−ψ−1
1 (a′, de′) ∈ B (using that ψ(a,A+B) ⊆ A×({a}+B)

for all a ∈ A). Thus we have written e′ as d + c with d ∈ A + B, c ∈ C where
c = ce < ce′ , contradicting the minimality of ce′ .

2.2.4 Other estimates

We conclude this section by outlining some miscellaneous asymmetric sum-
set estimates.

1. The following is a useful corollary to Ruzsa’s triangle inequality and the
Plünnecke-Ruzsa inequality.

Corollary 2.12. Let A, B, C be finite sets in an abelian group. We have

|A||B ± C| ≤ |A±B||A± C|

for any choice of the signs.
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Proof. Using Theorems 2.7 and 2.8 and the substitutions A → −A, B → −B,
C → −C, we have

|A||B − C| ≤ |A−B||A− C|, |A||B + C| ≤ |A+B||A+ C|,
|A||B − C| ≤ |A+B||A+ C|, |A||B + C| ≤ |A−B||A− C|,
|A||B + C| ≤ |A+B||A− C|, |A||B − C| ≤ |A−B||A+ C|,
|A||B + C| ≤ |A−B||A+ C|, |A||B − C| ≤ |A+B||A− C|.

2. We discussed in Section 1.2.3 that |A + A| and |A − A| are strongly
correlated near their minimum values. More specifically, we showed that |A +
A| ≤ α|A| implies that |A−A| ≤ α2|A| and vice versa.

We are naturally led to wonder whether the corresponding statement holds
for asymmetric estimates: does there exist an f(α) such that if |A+B| ≤ α|A|,
then |A − B| ≤ f(α)|A|? The answer was shown to be negative by Ruzsa in
[31]. He shows, roughly speaking, that there exists a θ > 1 and arbitrarily large
sets of integers A and B such that |A+B| ≤ α|A| and

|A−B| ≥ f(α)|A+B|θ

where f is a function only of α. Since |A| ≤ |A+B| and the exponent on |A+B|
is greater than 1, the fact that |A| can be arbitrarily large means that the left
hand side cannot be bounded by only a function of |A| and α. See Theorem B.6
in Appendix B.

We do have, however, by the trivial bounds that |A − B| ≤ |A + B|2. We
may improve the exponent to 3/2 by the following.

Corollary 2.13. Let A, B be finite sets in an abelian group. We have

|A−B| ≤ |A+B|3/2.

Proof. We see by the trivial bounds and a double application of Corollary 2.12
that

|A−B|2 ≤ |A||B||A−B| ≤ |A||A+B||B +B| ≤ |A+B|3.

This is currently the best exponent we have on this inequality.

Question 7. What is the infimum of values of c such that |A−B| ≤ |A+B|c
holds for all finite sets A, B in an abelian group?

Simplices in the integer lattice show via Theorem B.2 that the best expo-
nent cannot be lower than log(1+

√
2)

log 2 . It is particularly interesting that the best
exponent comes from a symmetric example. Is there not a way to utilize the
asymmetry to construct better ones?

3. For finite sets A, B in an abelian group, Ruzsa’s triangle inequality and
the trivial estimates yield

|A−B| ≤ |A+B| |A+A|
|A|

≤ |A+B||2A|1/2.

Corollary 1.34 gives that the sequence |kA|1/k is decreasing, hence the following
theorem from [3] is an improvement.

27



C
E

U
eT

D
C

ol
le

ct
io

n

Theorem 2.14. For finite sets A, B in an abelian group, we have

|A−B| ≤ |A+B||3A|1/3.

Theorem B.3 in Appendix B shows that |A − B| ≤ |A + B||6A|1/6 fails to
hold for A = B = ∆2k

k when k is sufficiently large. This leads us to the following
question.

Question 8. Does the inequality |A−B| ≤ |A+B||kA|1/k hold for k = 4, 5 for
all finite sets A, B in an abelian group?

Combined with information on the growth of |A+B|, Theorem 2.14 may be
used to strengthen Corollary 2.13 when |A+B| ≤ |A|4/3 in the following way.

Corollary 2.15. Let A, B be finite sets in an abelian group, |A + B| = α|A|.
We have

|A−B| ≤ α2/3|A+B|4/3.

Proof. By Corollary 2.16, we have |3B| ≤ |A+B|3
|A|2 . It follows from Theorem 2.14

above that

|A−B| ≤ |A+B||3A|1/3 ≤ |A+B|2

|A|2/3
= α2/3|A+B|4/3.

2.3 Higher estimates

As in the symmetric case, our goal is to understand the growth of higher
asymmetric sumsets in terms of lower ones. Plünnecke’s method, introduced in
Section 1.3.4, is one of the most important tools in accomplishing this task.

We forego the trivial estimates in this section. To estimate |kA + lB| or
|A+B+C|, we use a combination of the asymmetric trivial estimates in Section
2.2.1 with the single set sumset estimates of Section 1.3.1.

Recent results by Petridis gives elementary proofs of some of the corollaries
to Plünnecke’s inequality. Sections 2.3.1 and 2.3.2 were written in such a way as
to juxtapose the results from Plünnecke’s method and from Petridis. We then
show how some Plünnecke-type results and the results from Section 1.3.5 may
be extended to different summands.

2.3.1 Corollaries to Plünnecke’s method

Here we prove a useful corollary to Plünnecke’s inequality which allows us to
bound |kB− lB| in terms of |A+ iB|. As shown in Section 1.3.4, an application
of this to symmetric estimates gives bounds on the higher sumsets of A in terms
of |A+A| or |A−A|. For convenience, we restate the main result of Plünnecke’s
method due to Ruzsa in 1989.

Theorem (Plünnecke’s inequality). Let A,B be finite sets in an abelian group,
i ≤ k be positive integers, |A| = n, and |A+iB| = αn. There exists a non-empty
X ⊆ A such that

|X + kB| ≤ αk/i|X|.
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Passing to a subset X of A is necessary for this result. To see that X cannot
always be taken to be a singleton, let A = B be an arithmetic progression of
integers length L. Then |kB| is on the order of kL while αk/i is on the order
of ik/i. The inequality fails to hold for large L. To see on the other hand
that X cannot always be taken to be A, A = B = {0, 1, 3} provides a small
counter-example.

It is important in some applications to have control over the size of the subset
X. There are results along these lines, primarily due to Ruzsa. The reader is
referred to [1].

Plünnecke’s inequality is often applied via the following corollary. The proof
follows immediately from the previous corollary using that |X| ≤ n, |kB| ≤
|X + kB|, and |X| + |kB| − 1 ≤ |X + kB| when the ambient group is torsion-
free.

Corollary 2.16. Let A, B be finite sets in an abelian group G, i ≤ k be positive
integers, |A| = n, and |A+ iB| = αn. We have

|kB| ≤ αk/in.

If G is torsion-free, then |kB| ≤ (αk/i − 1)n+ 1.

More generally, we can use a double application of this combined with
Ruzsa’s triangle inequality to handle repeated addition and subtraction of a
set B.

Theorem 2.17. Let A, B be finite sets in an abelian group, i ≤ k ≤ l be
positive integers, |A| = n, |A+ iB| = αn. Then

|kB − lB| ≤ α(k+l)/in.

Proof. By Plünnecke’s inequality, there exists a non-empty X ⊆ A such that

|X + kB| ≤ αk/i|X|.

There are now two cases. If k < l, then apply the Plünnecke’s inequality again
with X in place of A to get a non-empty X ′ ⊆ X such that

|X ′ + lB| ≤
(
αk/i

)l/k
|X ′| = αl/i|X ′|.

If k = l, then let X ′ = X and note that it satisfies the same inequality. In either
case, we may now use Ruzsa’s triangle inequality to see

|X ′||kB − lB| ≤ |X ′ + kB||X ′ + lB|
≤ |X + kB||X ′ + lB|
≤ αk/i|X|αl/i|X ′|
≤ α(k+l)/in|X ′|

Dividing by |X ′| yields the result.
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2.3.2 Corollaries to Petridis’ Theorem

Slightly different versions of the corollaries to Plünnecke’s theorem are avail-
able by inductively applying Petridis’ theorem. The results presented in this
section are simultaneously weaker and stronger: we lose the scaling feature but
have more information on the subset X of A.

Theorem 2.18. Let A, B be finite sets in an abelian group, |A| = n, and
|A + B| = αn. There exists a non-empty X ⊆ A such that for all k ≥ 1, we
have

|X + kB| ≤ αk|X|.

This is a stronger version of Plünnecke’s inequality in the i = 1 case because
the subset X is now independent of k.

Proof. Let X be a non-empty subset of A such that |X+B|
|X| ≤ |Z+B|

|Z| for all
non-empty subsets Z of A.

We induct on k. Since |X+B|
|X| ≤

|A+B|
|A| = α, we have the base case k = 1 by

|X +B| = |X +B|
|X|

|X| ≤ α|X|.

Assuming now that we have the result for k, we use Petridis’ theorem and
the inductive hypothesis to see

|X||X +B + kB| ≤ |X +B||X + kB|
≤ |X +B|αk|X|
≤ |X +B|αkn.

Dividing by |X| and using again that |X+B|
|X| ≤ α yields the inductive step.

Note that we may easily strengthen the inductive hypothesis in the proof

above to be |X + kB| ≤
(
|X+B|
|X|

)k
|X|. Using this, we strengthen the result to

the following corollary.

Corollary 2.19. Let A, B be finite sets in an abelian group and X be a non-
empty subset of A such that |X+B|

|X| ≤
|Z+B|
|Z| for all non-empty subsets Z of A.

Then for all k ≥ 1,

|X + kB| ≤
(
|X +B|
|X|

)k
|X|.

The following result is the analogue to Theorem 2.17 in the i = 1 case. It
follows easily from Theorem 2.18 or 2.19.

Theorem 2.20. Let A, B be finite sets in an abelian group, |A| = n, |A+B| =
αn. Then

|kB − lB| ≤ αk+ln.
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Proof. Let X be a non-empty subset of A such that |X+B|
|X| ≤

|Z+B|
|Z| for all non-

empty subsets Z of A. By Ruzsa’s triangle inequality and the previous theorem,
we have

|X||kB − lB| ≤ |X + kB||X + lB|
≤ αk+l|X|2

≤ αk+ln|X|.

Dividing by |X| yields the desired inequality.

Note again the we lose the scaling feature but that the subset X is the same
for all k, l. Just as before, using a stronger inductive hypothesis, we’ve actually
shown the following slightly stronger result.

Corollary 2.21. Let A, B be finite sets in an abelian group and X be a non-
empty subset of A such that |X+B|

|X| ≤
|Z+B|
|Z| for all non-empty subsets Z of A.

Then for all k, l ≥ 1,

|kB − lB| ≤
(
|X +B|
|X|

)k+l

|X|.

It is possible that similar elementary arguments may yield the scaling results
as in Plünnecke’s inequality. The reader is referred to the comments on Gowers’
blog post [2] regarding these results.

2.3.3 Plünnecke-Ruzsa inequality

We turn our attention now to higher sumset estimates involving multi-
ple, possibly distinct summands. We begin with a useful generalization of
Plünnecke’s inequality to handle multiple sets.

Theorem 2.22. Let A, B1, . . . , Bk be finite sets in an abelian group, |A| = n,
|A+Bi| = αin. Then there exists a non-empty X ⊆ A such that

|X +B1 + · · ·+Bk| = α1 · · ·αk|X|.

This is generally known as the Plünnecke-Ruzsa inequality. The proof is
a clever application of Plünnecke’s inequality and the tensor power trick; the
reader is referred to Ruzsa’s original proof in [28] from 1989.

This theorem is often applied via the following corollary. As before, the proof
follows easily from the fact that |X| ≤ |A|, |B1 + · · ·+Bk| ≤ |X+B1 + · · ·+Bk|,
and |X| + |B1 + · · · + Bk| − 1 ≤ |X + B1 + · · · + Bk| if the ambient group is
torsion-free.

Corollary 2.23. Let A, B1, . . . , Bk be finite sets in an abelian group G,
|A| = n, |A+Bi| = αin. We have

|B1 + · · ·+Bk| ≤ α1 · · ·αkn.

If G is torsion-free, then we have |B1 + · · ·+Bk| ≤ (α1 · · ·αk − 1)n+ 1.
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Note that when Bi = B in the Plünnecke-Ruzsa inequality, we recover the
i = 1 case of Plünnecke’s inequality. Gyarmati, Matolcsi, and Ruzsa [4] showed
in 2008 that the Plünnecke-Ruzsa inequality may be generalized to exhibit the
same scaling as in Plünnecke’s inequality.

Theorem 2.24. Let i ≤ k be positive integers and A, B1, . . . , Bk be finite
sets in an abelian group. Let K = {1, . . . , k}, and for J ⊆ K, let BJ denote∑
j∈J Bj. Let |A| = n, |A+BJ | = αJn, and

β =

 ∏
I⊆K,|I|=i

αI

 1/(k−1
i−1)

.

There exists a non-empty X ⊆ A such that

|X +BK | ≤ β|X|.

Note that when i = 1, we recover the Plünnecke-Ruzsa inequality, and that
when Bi = B, we recover Plünnecke’s inequality.

2.3.4 Superadditivity and submultiplicativity

Applying the trivial estimates twice to a sumset of the form A + B + C in
a torsion-free abelian group yields

|A|+ |B|+ |C| − 2 ≤ |A+B + C| ≤ |A||B||C|.

We showed a strengthening on the Plünnecke-Ruzsa inequality in the pre-
vious section by making use of more general subsums of A + B1 + · · · + Bk.
Following the same idea, we might ask whether or not |A+B+C| may be more
effectively bounded by |A+B|, |A+ C|, and |B + C|.

The answer is affirmative in much greater generality. We present the two
main theorems of [5], both of which have elementary proofs. The following result
is a subadditivity property for sumsets.

Theorem 2.25. Let A1, . . . , Ak be finite sets in a torsion-free abelian group.
We have

|A1 + · · ·+Ak| ≥
1

k − 1

(
k∑
i=1

|A1 + · · ·+Ai−1 +Ai+1 + · · ·+Ak| − 1

)
.

The following result is a supermultiplicativity property for sumsets.

Theorem 2.26. Let A1, . . . , Ak be finite sets in an abelian group. We have

|A1 + · · ·+Ak| ≤

(
k∏
i=1

|A1 + · · ·+Ai−1 +Ai+1 + · · ·+Ak|

) 1
k−1

.

The proof of Theorem 2.26 in [5] relies on a lemma which is well known
as an entropy inequality. There are many exciting connections between sumset
estimates and entropy inequalities; the reader is referred to [34]. The following
recent theorem of Madiman, Marcus, and Tetali [12] answers a question posed
in [5] utilizing this connection.
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Theorem 2.27. Let A, B1, . . . , Bk be finite subsets of an abelian group. If I is
a collection of r-elements subsets of {1, . . . , k}, then for any C ⊆ B1 + · · ·+Bk,
we have

|A+ C||I| ≤ |C||I|−r
∏
I∈I

∣∣∣A+
∑
i∈I

Bi

∣∣∣.
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Appendix A: Products and projections

One of the most natural ways to create large families of additive sets is to
form products. We begin by showing that cardinalities of sumsets behave well
under taking products. We then describe how to project sets in Zd to Z while
preserving the cardinalities of a specified set of sumsets.

Using products and projections, we show that finite sets in the integer lattice
Zd, and hence in torsion-free abelian groups, provide no new information with
regards to sumset cardinalities. We conclude by outlining two tricks common
to the field: the digit trick and the tensor power trick.

A.1 Products

Let A1, A2 be finite subsets of the abelian groups G1, G2, respectively.
We form the product A = A1 × A2 as a finite subset of the abelian group
G = G1 ×G2.

As sums and differences are computed coordinate-wise, it is easy to verify
that

|A| = |A1||A2|,
|A+A| = |A1 +A1||A2 +A2|,
|A−A| = |A1 −A1||A2 −A2|.

More generally, for integers k, l we have

|kA− lA| = |kA1 − lA1||kA2 − lA2|.

This easily generalizes to different summands. Indeed, let A1,i, A2,i be finite
collections of sets in G1, G2, respectively. Then∣∣∣∑

i

(A1,i ×A2,i)
∣∣∣ =

∣∣∣∑
i

A1,i

∣∣∣∣∣∣∑
i

A2,i

∣∣∣.
This fact underlies the multiplicative nature of many of the results in the field.

It is common to take the product of a set with itself in order to find a larger
set with similar properties. For example, suppose that we wish to find a set A
with |A+A|− |A−A| ≥ c for some integer c ≥ 1. It is sufficient to find A′ ⊆ G′
such that |A′ + A′| − |A′ − A′| ≥ 1 and then set A to be A′mc ⊆ G′mc for a
sufficiently large integer mc.

Note, however, that A in the previous example is situated in a group which
depends on mc. If we wish to find such a set in a fixed group G, then we
might look for a way to transform an example in G′mc to an example in G while
maintaining some of its additive structure. This is explained for G = Z in the
next section.

A.2 Projections

Let A be a finite set in Zd. We wish to find a set A′ in Z such that

|A′| = |A|, |A′ +A′| = |A+A|, |A′ −A′| = |A−A|.
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In other words, we wish to find a set of integers which has the same “low-level”
additive structure as our original set.

To this end, it is sufficient to describe a map ϕ : A −→ Z with the property
that

a1 + a2 = a3 + a4 ⇐⇒ ϕ(a1) + ϕ(a2) = ϕ(a3) + ϕ(a4)

for all ai ∈ A. The map ϕ : A −→ ϕ(A) is called a Frĕıman isomorphism of
order 2. If we set A′ = ϕ(A), then it is any easy exercise to verify that the
desired equations above hold. (See [36] for more on Frĕıman homomorphisms.)

For M ∈ Zd, define ϕM : Zd −→ Z by ϕM (x) = x ·M . In order for ϕM to
be a Frĕıman isomorphism of order 2 from A to ϕM (A), we need only to check
that

a1 + a2 − a3 − a4 = 0 ⇐⇒ (a1 + a2 − a3 − a4) ·M = 0

for all ai ∈ A. The “only if” implication is trivial. The “if” implication requires
that M be the normal vector to a hyperplane which avoids the set finite (A +
A−A−A)\{0} in Zd. Such a vector M exists, and ϕM is the desired projection.
We have just shown the following theorem.

Theorem A.1. Let A be a finite set in Zd. There exists a set of integers A′

such that |A′| = |A|, |A′ +A′| = |A+A|, and |A′ −A′| = |A−A|.

This can be easily generalized to higher sumsets by employing higher order
Frĕıman isomorphisms. Using ϕM as above, we need only that the hyperplane
defined by M avoids a larger, but still finite, set. We have the following corollary.

Corollary A.2. Let A be a finite set in Zd and p ≥ 1 be an integer. There
exists a set of integers A′, depending on p, such that |A′| = |A| and |kA′−lA′| =
|kA− lA| for integers k, l where |k|+ |l| ≤ p.

If A is a finite subset of a torsion-free abelian group G, then we may speak
about the subgroup 〈A〉 generated by the elements of A. It is a finitely generated,
torsion-free abelian group, hence it is isomorphic Zd for some d. Because the
set A and all of its sumsets lie in 〈A〉, we have the following corollary.

Corollary A.3. The previous corollary holds when A is a finite subset of a
torsion-free abelian group.

While the structure of sets is sometimes better understood in Zd, this re-
sult gives that cardinality questions about single set sumsets in the integers are
equivalent to cardinality questions about single set sumsets in arbitrary torsion-
free abelian groups. This is utilized often as it is usually helpful to have the
ordering of a set of integers.

This generalizes nicely to the case of different summands. Suppose, for
example, we are given finite sets A, B in Zd and wish to find finite sets of
integers A′, B′ such that

|A′| = |A|, |B′| = |B|, |A′ +B′| = |A+B|, |A′ −B′| = |A−B|.

The same ϕM : A∪B −→ Z defined above with an appropriately chosen M will
work. Note that the comments above on higher order Frĕıman isomorphisms
and torsion-free abelian groups hold more generally in this setting.
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Indeed, given a finite number of finite sets in an abelian group and a finite
collection of sumsets of those sets, we may find sets of integers which have the
same additive structure with respect to the collection of sumsets. We record
this in as a corollary, the proof of which is a combination of the comments in
this paragraph and the results above.

Corollary A.4. Let A1, . . .Am be finite sets in a torsion-free abelian group,
and let S1, . . . , Sr be sumsets involving A1, . . . , Am. (For example, S1 = A1 +
A2 − Am.) There exist finite sets of integers A′1, . . . , A

′
m such that |Si| = |S′i|

for all i, where S′i is Si with all instances of Ai replaced by A′i.

A.3 The digit and tensor power tricks

Given a finite set of integers A, it is often useful to combine the process of
taking products and projecting back to the integers. If we define ϕM as above
and let M = (1,m, . . . ,md−1), then we realize Ad in the integers with the set

A′ =

{
d∑
i=1

aim
i−1

∣∣∣∣∣ (a1, . . . , ad) ∈ Ad
}
.

The set A′ then has the desired sumset cardinalities as long as m is sufficiently
large. This is sometimes referred to as the digit trick or the base expansion
method. See Appendix B, Section B.2 for an explicit example.

We now describe the tensor power trick as it usually arises when dealing
with sumsets. Suppose that X(A) and Y (A) are products of sumsets of A.
Suppose that we want to show that X(A) ≤ Y (A) holds for all finite sets A
in any abelian group, but that we are only able to show the weaker inequality
X(A) ≤ CY (A) for some constant C ≥ 1.

Because the weaker inequality holds also for Ad and X(Ad) = X(A)d,
Y (Ad) = Y (A)d from the comments in the first section, we have X(A)d ≤
CY (A)d holds for all A, d ≥ 1. Taking d-th roots and letting d → ∞, we see
that X(A) ≤ Y (A) holds for all sets A, as we wanted to show.

This trick works for sets of integers as well by the corollaries from the previ-
ous section. More specifically, if we are able to show that X(A) ≤ CY (A) holds
when A is a finite set of integers, then X(A) ≤ Y (A) holds for all finite sets of
integers as well since we are able to realize products of sets of integers as sets
of integers.

Given that we have multiplicativity with distinct summands as well, the
tensor power trick holds in much greater generality than just described. As a
concrete example, Ruzsa shows in [31] that the inequality

|A+ 2B| ≤ 3|A+B|
√
|B +B|

holds for all finite sets A, B. The constant 3 is removed by applying the in-
equality to Ad and Bd and letting d→∞ as described above.

See [37] for a more in-depth discussion of the tensor power trick with many
more examples.
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Appendix B: Sets with many more differences
than sums

Here we are concerned with constructing sets which have many more differ-
ences than sums. As described in Appendix A, such sets are easily attained as
products; here we describe two different constructions. We begin by elaborating
on the simplex example of Hennecart, Robert, and Yudin in [8]. We then discuss
a construction of Ruzsa from [31] which shows, roughly speaking, that |A−B|
may be much larger than |A+B|.

B.1 Simplices in Zd

Simplices in the integer lattice exhibit many more differences than sums.
This was published by Hennecart, Robert, and Yudin [8] who attribute the idea
to Frĕıman and Pigarev [25]. Here we use these sets to show lower bounds for
the exponents in Theorems 1.12 and 1.17 and Corollary 1.18 as well as answer
a question related to Question 8.

Let ∆d
l = {(x1, . . . , xd) ∈ Zd | 0 ≤ xi for all i and

∑
i xi ≤ l} be the d-

dimensional simplex of size l. The following lemma will allow us to compare the
number of sums and differences of ∆d

l .

Lemma B.1.

|∆d
l | =

(
d+ l

d

)
|∆d

l1 + ∆d
l2 | =

(
d+ l1 + l2

d

)

|∆d
l1 −∆d

l2 | =
min(d,l2)∑
i=0

(
d

i

)(
l2
i

)(
d− i+ l1
d− i

)

=
min(d,l)∑
i=0

(
d

i

)2(
d− i+ l

d

)
if l1 = l2 = l

Proof. For |∆d
l |, we have l balls to put into d boxes. To count the number of

sums, note that ∆d
l1

+ ∆d
l2

= ∆d
l1+l2

and use the first remark.
To count the number of differences, we define two helper functions. Let

P : Zd → Z take a lattice point to the sum of its positive-valued coordinates,
and let N : Zd → Z take a lattice point to the sum of its negative-valued
coordinates. Let

Dd
l1,l2 = {x ∈ Zd | P(x) ≤ l1 and N (x) ≥ −l2}.

First we show that ∆d
l1
− ∆d

l2
= Dd

l1,l2
. If x = x1 − x2 where x1 ∈ ∆d

l1
,

x2 ∈ ∆d
l2

, then clearly P(x) ≤ P(x1) ≤ l1. Similarly, N (x) ≥ N (−x2) ≥ −l2.
Hence ∆d

l1
−∆d

l2
⊆ Dd

l1,l2
.

Conversely, let x be such that P(x) ≤ l1 and N (x) ≥ −l2. Define x1 to be x
with its negative-valued coordinates replaced by 0. Define x2 to be −x with its
negative-valued coordinates replaced by 0. Then x1 ∈ ∆d

l1
, x2 ∈ ∆d

l2
, such that

x = x1 − x2, and so ∆d
l1
−∆d

l2
⊇ Dd

l1,l2
.
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We wish to count Dd
l1,l2

. We may partition it according to the coordinates
at which its elements are negative. Fix N ⊆ {1, . . . , d}, and let

Dd
l1,l2,N = {x ∈ Zd | xi < 0 if and only if i ∈ N , P(x) ≤ l1, and N (x) ≥ −l2}.

Then we have the disjoint union

Dd
l1,l2 =

⋃
N⊆{1,...,d}

Dd
l1,l2,N .

Now we count Dd
l1,l2,N

. Note that we have two conditions on x ∈ Dd
l1,l2,N

:
N (x) ≥ −l2 on the |N | negative-valued coordinates, and P(x) ≤ l1 on the
|N | non-negative-valued coordinates. We have therefore a copy of ∆|N |l2−|N | in

the negative-valued coordinates and a copy of ∆|N |l1
in the non-negative-valued

coordinates. Because the two conditions are independent, we have

|Dd
l1,l2,N | = |∆

|N |
l2−|N |||∆

|N |
l1
| =

(
l2
|N |

)(
|N |+ l1

|N |

)
Note also that N ∈ {1, . . . , d} can be only as large as min(d, l2) since xi ≤ −1
for i ∈ N . We have finally that

|Dd
l1,l2 | =

min(d,l2)∑
i=0

(
d

i

)(
l2
i

)(
d− i+ l1
d− i

)
.

If l1 = l2 = l, then we may use the identity
(
l
i

)(
d−i+l
d−i

)
=
(
d
i

)(
d−i+l
d

)
to simplify

the sum.

We now give a lower bound for the exponent in Theorem 1.17. The following
theorem first appeared as part of the main theorem in [8].

Theorem B.2. If c ∈ R is such that |A − A| ≤ |A + A|c holds for all finite
A ⊆ Z, then c ≥ log(1+

√
2)

log 2 > 1.2715.

Proof. By Appendix A, it is sufficient to show a sequence of finite sets Ak ⊆ Zdk

such that log |Ak − Ak|/ log |Ak + Ak| tends to log(1+
√

2)
log 2 as k tends to infinity.

We will show that Ak = ∆2k
k works with the help of Lemma B.1.

In order to estimate the difference set |∆2k
k −∆2k

k |, let

Mk = max
0≤i≤k

(
2k
i

)2(3k − i
2k

)
.

Using Stirling’s formula, we see

log
(

2k
i

)2(3k − i
2k

)
∼ log

(
(2k)2(3k − i)3

(2k − i)4(k − i)

)k(
(2k − i)2(k − i)
i2(3k − i)

)i
as k, i → ∞. The right hand side is maximized at i = (2 −

√
2)d at which it

attains 4k log(1 +
√

2). Hence logMk ∼ 4k log(1 +
√

2) as k →∞. We see from
Lemma B.1 that Mk ≤ |∆2k

k −∆2k
k | ≤ (k + 1)Mk, from which it follows that

log |∆2k
k −∆2k

k | ∼ logMk ∼ 4k log(1 +
√

2) k →∞.
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We also have that

log |∆2k
k + ∆2k

k | = log
(

4k
2k

)
∼ 4k log 2 k →∞.

Combining these two estimates, we have

log |∆2k
k −∆2k

k |
log |∆2k

k + ∆2k
k |
∼ log(1 +

√
2)

log 2
k →∞.

Using the same ∆2k
k , we may show that the inequality |A − B| ≤ |A +

B||6A|1/6 from Question 8 fails to hold even in the case that A = B.

Theorem B.3. There exists a finite set of integers A such that

|A−A| > |A+A||6A|1/6.

Proof. Using the estimates from the previous proof and that 6∆2k
k = ∆2k

6k, we
have

log |6∆2k
k | ∼ k log(216/36),

log |∆2k
k + ∆2k

k | ∼ 4k log 2,

log |∆2k
k −∆2k

k | ∼ 4k log(1 +
√

2).

Since

4 log(1 +
√

2) > 4 log 2 +
1
6

log
216

36
,

we have that
|∆2k

k −∆2k
k | > |∆2k

k + ∆2k
k ||6∆2k

k |1/6

when k is sufficiently large. We may construct a set of integers with the same
sumset sizes by the work in Appendix A.

In the same vein, we have the following theorem. This shows, in particular,
that the exponent in Theorem 1.12 is the best possible.

Theorem B.4. If c ∈ R is such that |A−A||A| ≤
(
|A+A|
|A|

)c
holds for all finite

A ⊆ Z, then c ≥ 2.

Proof. We follow closely the steps in Theorem B.2 with ∆k
k2 . In order to control

|∆k
k2 −∆k

k2 |
/
|∆k

k2 | , we define

Mk = max
0≤i≤k

(
k

i

)2(
k + k2 − i

k

)
.

We check that log
((

k
i

)2(k+k2−i
k

)/(
k+k2

k

))
is asymptotic to

log

(
k(k + k2 − i)

(k + 1)(k − i)2

)k(
k(k + k2 − i)

(k + 1)(k2 − i)

)k2(
(k − i)2(k2 − i)
i2(k + k2 − i)

)i
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as k, i→∞. This is maximized at i = 1
2 (1+2k−

√
1 + 4k2)k at which it attains

log

(
2k +

√
1 + 4k2

k + 1

)k(
2k2 + 1 +

√
1 + 4k2

2k(k + 1)

)k2

.

This is asymptotic to 2k log 2 as k → ∞, hence log Mk

|∆k
k2 |
∼ 2k log 2. From

Mk ≤ |∆k
k2 −∆k

k2 | ≤ (k + 1)Mk, we deduce that

log
|∆k

k2 −∆k
k2 |

|∆k
k2 |

∼ log
Mk

|∆k
k2 |
∼ 2k log 2 k →∞.

We also have as k →∞ that

log
|∆k

k2 + ∆k
k2 |

|∆k
k2 |

∼ k log
(

1 +
k

k + 1

)(
1 +

1
4k2 + 4k

)k
∼ k log 2.

Combining these two estimates, we have

log
|∆k

k2 −∆k
k2 |

|∆k
k2 |

/
log
|∆k

k2 + ∆k
k2 |

|∆k
k2 |

∼ 2 k →∞.

We conclude with a lower bound on one of the exponents in Corollary 1.18.

Theorem B.5. If c ∈ R is such that |A−A||A+A| ≤ |A|
c holds for all finite A ⊆ Z,

then c ≥ log
(

3842+1066
√

13
3125

)/
log
(

256
27

)
> 0.4.

Proof. Following the same steps with ∆3d
d , we let Mk = max0≤i≤k

(
3k
i

)2(4k−i
3k

)
and find that log

((
3k
i

)2(4k−i
3k

)/(
5k
3k

))
is asymptotic to

log

 108(3k)3(4k − i)4

3125(3k − i)6(k − i)

)k(
(3k − i)2(k − i)
i2(4k − i)

i

k, i→∞.

This is maximized at i =
(

5−
√

13
2

)
k at which it attains k log 3842+1066

√
13

3125 , and

so log Mk

|∆3k
k +∆3k

k |
∼ k log 3842+1066

√
13

3125 as k → ∞. From Mk ≤ |∆3k
k − ∆3k

k | ≤
(k + 1)Mk, we deduce that

log
|∆3k

k −∆3k
k |

|∆3k
k + ∆3k

k |
∼ log

Mk

|∆3k
k + ∆3k

k |
∼ k log

3842 + 1066
√

13
3125

k →∞.

We also have as k →∞ that

log |∆3k
k | ∼ k log(256/27).

Combining these estimates, we see as k →∞ that

log
|∆3k

k −∆3k
k |

|∆3k
k + ∆3k

k |

/
log |∆3k

k | ∼ log

(
3842 + 1066

√
13

3125

)/
log
(

256
27

)
.
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B.2 An asymmetric construction of Ruzsa

We now describe a construction of Ruzsa which yields two sets A, B of
integers such that |A−B| is much larger than |A+B|. This was first published
in [31]; we take the presentation almost verbatim from [3]. We will prove the
following theorem.

Theorem B.6. Let α > 1 be a real number. Let U be a set of non-negative
integers containing 0, and set s = |U + U |, d = |U − U |, and q = 2 maxU + 1.
If d < q, then there exists pairs (A,B) of finite, non-empty sets of integers with
|B| ≤ |A|, |B| arbitrarily large such that |A+B| ≤ α|A| and

|A−B| ≥
(

2(α− 1)
3α

)5/4

|A+B|1+log(d/s)/ log q.

The idea is to take a set of integers U which has many more differences than
sums and magnify the difference by making use of asymmetric sumsets. We do
this first by magnifying U via the digit trick, then adding and subtracting this
new set with multiple copies of itself and an interval.

The set U = {0, 1, 3, 6, 13, 17, 21} gives s = 26, d = 39, and q = 43. This
will yield the exponent

1 + log(d/s)/ log q = 1 + log(39/26)/ log 43 > 1.1078.

This theorem shows that the asymmetric analogue of Theorem 1.12 is not
possible. See Section 2.2.4.

Proof. Fix k to be an arbitrarily large integer. Set

B =

{
k−1∑
i=0

uiq
i

∣∣∣∣∣ (u0, . . . , uk−1) ∈ Ud
}
.

This is a magnified copy of U via the digit trick as described in Appendix A.
Since q is large enough, we have |B +B| = sk and |B −B| = dk.

Next, set

A = {1, . . . , L} ∪
m⋃
i=1

(ai +B)

where m, L are positive integers to be specified later and the ai’s are positive
integers larger than L + qk and such that ai − aj /∈ (B − B) ∪ (B + B) when
i 6= j. (It is not difficult to find such ai’s by choosing them consecutively, one
sufficiently larger than the previous.)

Since maxB < qk and m ≥ 1, the lower bound on the ai’s gives that
|A| ≥ L+ |B|; in other words, there is no overlap between the interval and the
at least one translate of B.

Consider A+B and A−B. The condition on the ai’s guarantees that B plus
the translated copies of B in A do not overlap. If we let t = |{1, . . . , L}+B| =
|{1, . . . , L} −B|, then we see that

|A+B| = msk + t, |A−B| = mdk + t.

Since maxU < q/2, we have that maxB < qk/2. This gives that B ⊆
{0, . . . , qk/2}, and hence L ≤ t ≤ L+ qk/2.
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We choose

L =
⌊

3qk

2(α− 1)

⌋
, m =

⌊(q
s

)k⌋
.

We need to show the upper bound on |A+B| and the lower bound on |A−B|.
Note that m ≥ 1 since q ≥ s, and so |A| ≥ |B|.

By the choice of L and m, we have

|A+B| ≤ qk + t ≤ 3
2
qk + L ≤ 3αqk

2(α− 1)
≤ α(L+ 1) ≤ α|A|.

If k is so large that dk ≤ t (recall d < q), then we have

|A−B| ≥
((q

s

)k
− 1
)
dk + t ≥

(
qd

s

)k
≥
(

2(α− 1)|A+B|
3α

)1+log(d/s)/ log q

.

The last inequality follows from |A + B| ≤ 3αqk

2(α−1) by taking the logarithm of
both sides.

By Theorem 1.17 and our assumption that d < q, we have d ≤ min(q, s4/3),
and so d4 ≤ qs4. This gives that

1 +
log d− log s

log q
≤ 5

4
,

which, combined with 2(α−1)
3α < 1, yields

|A−B| ≥
(

2(α− 1)
3α

)5/4

|A+B|1+log(d/s)/ log q.
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of sums and differences, Astérisque (1999), no. 258, xiii, 173–178, Structure
theory of set addition. MR 1701195 (2000f:11024)
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