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1 Introduction
Three tourist companies in Budapest advertise “We show you the most possible sites

without showing you any site twice!” They strategically start their tours from places
where they can travel the maximum distance allowed by the streets of Budapest, and they
never retrace their steps. At the end of the day three tourists, Alice, Bob, and Charlie, who
each took a different tour find themselves in a coffee shop. They share their experiences
from the day, and they realize that they each saw some pretty different sites. They begin
to wonder, “Is there a site which we all saw?”

Alice, Bob, and Charlie take the time to compare their maps eventually realizing the
answer is “yes” they were all at Deák square at some point in time. Had their routes been
positioned in such a way that there were no common visited site, then they would have
solved an old question of graph theory. To this day, we still do not know if Alice, Bob,
and Charlie necessarily saw a common site.

The question can be rephrased mathematically: Do three longest paths in a connected
graph share a common vertex? We know that any two longest paths must intersect. We
also have a graph (due to Schmitz, [15], 1975) for which seven longest paths do not
intersect. Yet it is unknown what happens when we consider between three and six longest
paths. Zamfirescu [27] has been asking these questions and related ones since the 1980s.

Unfortunately the questions about longest paths are beyond the capabilities of com-
puting power. We have no polynomial-time algorithms determining the length of a longest
path unless P = NP. To see this, we observe that an algorithm outputting the length of
a longest path (or for the decision version “yes” if its length is ≥ k and “no” otherwise)
could also solve the Hamiltonian path problem, a well-known NP-complete task. This
shows that the problem is NP-hard, and it is in fact NP-complete.

The aim of this paper is two-fold. We will 1) survey the question of intersecting all
longest paths and cycles and 2) discuss in detail the progress on the problem of intersect-
ing three longest paths, providing some new results in the process.

In Section 2 we provide a historical overview of longest path- and cycle-intersection
problems. In particular, when is it that we have examples of k-connected graphs such
that given any j vertices we can find a longest path missing (i.e. not intersecting) those
vertices. We seek graphs of smallest possible order. At the end of the section we show
how recent developments (such as finding smaller, planar hypohamiltonian graphs) can
produce examples of smaller order.

In Section 3 we compile a list of open questions on the subject of longest path inter-
sections. In Section 4 we discuss research trends in attacking these open problems.

In Section 5 we turn our attention to the problem of whether or not three longest
paths share a common point. We conjecture the affirmative and analyze the structure
of a minimal counterexample to the conjecture. Section 5 is broken down further into
two subsections. In the first subsection we present basic structural requirements of a
minimal counterexample, and in the second subsection we present some more structural
requirements which give rise to a generalization of a theorem of Axenovich in [2].

As the topic of longest paths is basic in nature we do not provide a separate “defi-
nitions” section. We assume the reader is familiar with the basics of graph theory, and
we define more specific concepts as they appear. Knowledge of words such as k-regular
graph, k-connected, girth, Hamiltonian, chordal, or block, for example, should be enough
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to understand everything in the paper. The reader could check any elementary graph the-
ory book, e.g. [4], for unknown words or concepts.
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2 Intersecting all longest paths or cycles

Figure 1: The Petersen graph

The graph in Figure 1 is the well-known Petersen graph. It is 3-regular (or cubic),
3-connected, has girth 5, and is very symmetric (the view from any vertex is identical).
In addition to these nice properties, more important to this discussion is the fact that the
Petersen graph is hypohamiltonian, that is the graph itself is not Hamiltonian but if we
delete any vertex it becomes Hamiltonian. This is easily verified by the symmetry of the
graph. It follows that the intersection of the longest cycles of the Petersen graph is empty.
Letting C(G) and P(G) denote the set of longest cycles and the set of longest paths of a
graph, respectively, then for the Petersen graph we have

⋂
C(G) = ∅.

At a colloquim in 1966, Tibor Gallai [6] posed the analagous question for longest
paths in a graph. (Here and henceforth when we say “graph” we mean a “finite, connected
graph”).

Question 1 (Gallai 1966). Do all longest paths share a common point?

Does
⋂

P(G) , ∅ hold for all graphs G? A few years later, Walther [22] produced a
counterexample on 25 vertices. The simplest counterexample was found by both Walther
[23] and Zamfirescu [26] independently and has 12 vertices, see Figure 2.

Let G be the graph in Figure 2. To see that
⋂

P(G) = ∅, observe that by identifying the
3 degree 1 vertices we obtain the Petersen graph. Taking a longest cycle in the Petersen
graph which uses the identified vertex we obtain a path of length 10 in G. Any path in
G must miss at least one of the degree 1 vertices, and if it misses exactly one it cannot
use every other vertex in the graph, as the Petersen graph is not Hamiltonian. This proves
that no path of length 11 exists. It is easy to find a path of length 10 missing any vertex
in G simply by taking the corresponding longest cycle in the Petersen graph (here we use
hypohamiltonicity).

Zamfirescu later refined Gallai’s question. Can we find graphs such that for any j ver-
tices there exists a longest path missing those j vertices? Can we find k-connected graphs
with the same property? Can we even find planar graphs? Zamfirescu asks identical
questions with “path” replaced by “cycle”.

If there is a k-connected graph with longest paths (cycles) missing any j vertices then
we denote P j

k (C j
k) to be the minimum number of vertices of such a graph (following
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Figure 2: A graph with
⋂

P(G) = ∅ due to Walther and Zamfirescu

Figure 3: A planar graph with
⋂

P(G) = ∅ due to Schmitz

notation started by Zamfirescu). If no such graph exists then we set P j
k = ∞. We define P

j
k

(C
j
k) similarly with the restriction that the graph is planar. Since the Petersen graph is 3-

connected, the examples above show that C1
3 ≤ 10 (and hence C1

2,C
1
1 ≤ 10) and P1

1 ≤ 12.
Sometimes we write a graph “solves C j

k” to mean that the graph is k connected and its
longest cycles can miss any j vertices.

A number of people, namely Grünbaum, Hatzel, Schmitz, Thomassen, Walther, C.
Zamfirescu and T. Zamfirescu in for example [8], [9], [15], [18], [24], [25], [26], have
worked on proving the finiteness and providing better upperbounds for the P j

k’s and C j
k’s.

Zamfirescu [27] provides an overview of who has done what and a nice table is presented
in Voss’s book ([21], page 79) showing the best upper bounds as of 1991. Tables 1 and 2
show slightly more updated versions of the tables originally presented in Voss’s book.

The general P j
k’s and C j

k’s remain unchanged since the 1970s. The planar P
j
3’s and

C
j
3’s, however, have seen some recent improvements. Before discussing these recent de-

velopments, let’s look at some of the other entries.
A celebrated theorem of Tutte [20] states that any 4-connected planar graph is Hamil-

tonian, immediately implying P
j
4,C

j
4 = ∞.

We have already mentioned that Figure 2 shows P1
1 ≤ 12, however it is not planar.

Schmitz [15] presents a 17 vertex planar graph (see Figure 3) whose longest paths have
empty intersection, i.e. P

1
1 ≤ 17, improving on Zamfirescu’s previous bound of 19 (in

[26]). Skupień [17] shows P1
2 ≤ 26, also improving a bound of Zamfirescu’s. In the

same paper, Skupień generalizes the construction of Schmitz’s graph by contsructing for
all k ≥ 7 a graph with k longest paths having empty intersection while any k − 1 longest
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P j
k

j
1 2 3

1 ≤ 12 ≤ 93 ?
k 2 ≤ 26 ≤ 270 ?

3 ≤ 36 ≤ 270 ?
4 ? ? ?

C j
k

j
1 2 3

1 C j
1 = 3 j + 3

k 2 = 10 ≤ 75 ?
3 = 10 ≤ 75 ?
4 ? ? ?

Table 1

P
j
k

j
1 2 3

1 ≤ 17 ≤ 308 ?
k 2 ≤ 32 ≤ 914 ?

3 ≤ 188 ≤ 16, 926 ?
4 ∞ ∞ ∞

C
j
k

j
1 2 3

1 C
j
1 = 3 j + 3

k 2 ≤ 15 ≤ 135 ?
3 ≤ 48 ≤ 4, 277 ?
4 ∞ ∞ ∞

Table 2

paths still share a common point. Skupień’s contsruction yields Schmitz’s planar graph
for k = 7.

The C j
1 and C

j
1 cases have been completely solved. Zamfirescu [26] observed C j

1 ≤

3 j + 3 from the graph in Figure 4. It consists of j + 1 triangles, so for any j points chosen,
there is still an available triangle (i.e. longest cycle) missing those points. Zamfirescu
conjectured C j

1 = 3 j+3 for which Thomassen [18] gives an affirmative answer by showing
that the longest cycles of a graph on n vertices can be covered by at most b n

3c vertices.

Figure 4: A graph which solves C j
1

2-connectivity is a more natural requirement to impose when working with cycles
(as studying cycles of a 1-connected graph amounts to studying its 2-connected blocks
separately). Walther [22] was the first to prove the finiteness of C2

2 with a 220 vertex graph.
Grünbaum [8] gave a better bound on C2

2 and C2
3 by giving a 90 vertex, 3-connected graph

whose longest cycles can miss any 2 vertices, see Figure 5. Zamfirescu [26] contracts
some superfluous edges of Grünbaum’s graph to show C2

3,C
2
2 ≤ 75.
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2.1 A method for upperbounding C2
3 and C

2
3

Grünbaum’s idea in [8] demonstrates a method for constructing these graphs. Take
a hypohamiltonian graph F and “open it up” by splitting a degree 3 vertex into 3 open
edges (like how Figure 2 was obtained from the Petersen graph). Denote this open graph
F∗. Insert this opened up graph into a “nice” (to be explained) 3-regular hypohamiltonian
graph H at each vertex and attach the edges. We call edges originally belonging to H
attachment edges. Figure 5 depicts G when both F and H are the Petersen graph, which
is precisely the graph used by Grünbaum in [8].

We claim that the resulting graph G solves C2
3 for any hypohamiltonian F (with at least

one degree 3 vertex) and any “nice” cubic hypohamiltonian H. G will be 3-connected
because hypohamiltonian graphs are 3-connected (remove 2 vertices and there is still a
Hamiltonian path). It remains to show that any 2 vertices can be missed by some longest
cycle. If the 2 vertices in question belong to the same copy of F∗ we simply choose a
longest cycle which misses this copy of F∗ (all longest cycles in G must miss 1 copy
of F∗ since H is hypohamiltonian). Suppose now that the 2 vertices x and y belong to
different copies of F∗, denoted F∗x and F∗y. Observe that when a longest cycle C passes
through F∗x without touching x then it travels a longest path in F∗x. This may force C to
use or not use certain attachment edges adjacent to F∗x (e.g. if there is a unique longest
path in F∗ missing x). In any case at most one attachment edge is forbidden by x. The
only potential problem is that an attachment edge forbidden by x is simultaneously forced
by y. However, if H is “nice” - that is, if any 2 edges can be missed by a longest cycle -
then we can easily find a C which will avoid the (at most) two edges forbidden by x and
y.

Figure 5: Grünbaum’s graph solving C2
3

7



C
E

U
eT

D
C

ol
le

ct
io

n

Figure 6: A longest cycle in the Petersen graph

Based on the above argument, to verify Grünbaum’s graph solves C2
3 all we need to

verify is that the Petersen graph is “nice”. (We note that Grünbaum in [8] skims over
this technicality by checking only the case that the two forbidden edges are adjacent.
Fortunately, however, it is not difficult to check either case for the Petersen graph.) If the
two forbidden edges are adjacent, hypohamiltonicity immediately implies we can find a
cycle missing those two edges. The incredible amount of symmetry of the Petersen graph
actually shows that any pair of nonadjacent edges is essentially the same. Thus if the
forbidden edges are nonadjacent it is enough to check it for one given pair of edges. Figure
6 gives an example of a longest cycle missing two nonadjacent edges, so the Petersen
graph is indeed nice.

To obtain an even better upperbound for C2
3 we can contract all attachment edges

(Zamfirescu, [26]). All longest cycles use the same number of attachment edges (|V(H)| −
1) so lengths will be uniformly decreased. To check that any two vertices x and y can still
be missed by a longest cycle, one only needs to address the problem that a longest cycle
before contraction may not be a cycle after contraction, as is the case when two vertices
u and v being used by a longest cycle C are both adjacent to an unused attachment edge.
If u < F∗x then we can modify the path taken through F∗u so as to miss u which we can
do by the hypohamiltonicity of F. So we may assume both u ∈ F∗x and v ∈ F∗y. Then
the attachment edges forbidden by x and y must be adjacent (say to F∗x) since edge uv is
not used, in which case the longest cycle can be taken to entirely miss F∗x. Modifying
the cycle in this way as needed, we can miss any two vertices. Zamfirescu does this
to improve Grünbaum’s bound to C2

3 ≤ 75 by deleting the 15 attachment edges of the
Petersen graph.

Of course the same arguments can be used to construct planar graphs solving C
2
3. We

just need a planar hypohamiltonian graph F and a nice, cubic planar hypohamiltonian
graph H. Note that F need not be cubic, but that it needs to have at least one vertex of
degree 3 which can be opened up and inserted into the cubic graph H at each vertex.

Zamfirescu [26] gave the first answer to C
2
3 with a graph on 14,818 vertices. Hatzel

[9] improves this result to 6,758 using the argument mentioned above where F is a 57
vertex planar hypohamiltonian graph (found by Hatzel himself) and H is a 124 vertex
cubic planar hypohamiltonian graph (first presented by Grünbaum in [8]). Indeed, if we
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Figure 7: Petersen graph inserted into K4 shows P1
3 ≤ 36

open up a 57 vertex graph at a degree 3 vertex, insert into a 124 vertex graph, and contract
the 124 × 3/2 = 186 attachment edges we will obtain 56 × 124 − 186 = 6, 758 vertices.

As we mentioned earlier C
1
3 and C

2
3 have seen some recent improvements. In 2007,

Zamfirescu and Zamfirescu [28] presented a 48 vertex planar hypohamiltonian graph,
immediately improving C

1
3 to 48. Inserting their graph at each vertex of the 94 vertex

cubic planar hypohamiltonian graph (first presented by Thomassen in [19]), they improve
C

2
3 to 4277 (this uses the fact that Thomassen’s graph is “nice”). In fact, the table of C

j
k’s

and P
j
k’s is not entirely accurate. Just recently Araya and Wiener (in [1], to appear) have

found a 42 vertex planar hypohamiltonian graph.
Using the above arguments, either finding a planar hypohamiltonian graph smaller

than Araya and Wiener’s 42 vertex graph or finding a cubic planar hypohamiltonian
graph smaller than Thomassen’s 94 vertex graph would immediately result in better upper
bounds for the C

j
3’s. As we shall see in the next section it also results in better upper-

bounds for the P
j
3’s.

2.2 A method for upperbounding P j
3 and P

j
3

Zamfirescu [26] shows P1
3 ≤ 36 by replacing each vertex of K4 with an opened Pe-

tersen graph, see Figure 7. It is easy to see that any vertex can be missed by a longest path
as the hypohamiltonicity of the Petersen graph aids us once again.

Grünbaum [8] is the first to prove P2
3 is finite, showing P2

3 ≤ 324. He replaces every
vertex of K4 by the opened Petersen graph and then replaces every vertex again by the
opened Petersen graph. Zamfirescu [26] proceeds similarly but contracts the attachment
edges after each step, to show P2

3 ≤ 270. The idea behind these proofs is identical to that
of the previous section.

9
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As smaller planar hypohamiltonian graphs are being found, upon inserting these graphs
(opened at a degree 3 vertex) into K4 we obtain a better bound on P

1
3. To obtain a bound

on P
2
3 we replace every vertex of K4 by Thomassen’s 94 vertex graph from [19] opened

at a vertex. Then in the resulting graph replace every vertex by the opened Araya-Wiener
42 vertex planar hypohamiltonian graph. So we are inserting a graph solving C2

3 into K4

at each vertex. Similar arguments combined with Thomassen’s graph being “nice” shows
that any 2 vertices can be avoided by a longest path.

10
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3 Open problems
Perhaps the most remarkable thing about Tables 1 and 2 are the question marks. We

restate the most elementary unresolved questions here for emphasis. Some of these ques-
tions appear already in [27] and [21]. The same questions can be posed where “paths” is
replaced by “cycles” everywhere, in which case we require that the graph be 2-connected.

Question 2. Do there exists graphs whose longest paths miss any 3 prescribed vertices?

Question 3. More generally, does there exist an integer k such that every graph has a set
of k vertices covering all the longest paths? Or if the graph is planar, can we find such a
k?

Question 4. Do there exist 4-connected graphs whose intersection of longest paths or
cycles is empty?

Question 5. More generally, does there exist an integer k such that if the graph is k-
connected, then the intersection of its longest paths is nonempty?

As was mentioned before, Tutte’s theorem [20] shows that k = 4 answers the above
question for planar graphs.

We can also ask what happens when we intersect not all of the longest paths (or
cycles), but rather k of them. It is easy to show that any two longest paths share a com-
mon point, arguing by contradiction and using the connectivity of the graph to construct
a longer path. But if we consider 3 longest paths, we immediately encounter an open
problem.

Question 6. Do 3 longest paths always share a common vertex?

Schmitz’s graph in Figure 3 has 7 longest paths with empty intersection. A 2-connected
example of Jendrol and Skupień [11] has 7 longest cycles with empty intersection. But 6
paths (or cycles) still presents a challenge.

Question 7. Do 6 longest paths always share a common vertex?

Question 8. More generally, what is the maximal k such that k longest paths necessarily
share a common vertex?

Schmitz, Jendrol, and Skupień’s results imply 2 ≤ k ≤ 6.
Several attempts have been made to study Question 6 for specific types of graphs.

Balister et al. [3] determine that all longest paths in interval graphs, a special family of
chordal graphs, share a common point. However, the following question remains open.

Question 9. Do any 3 longest paths in a chordal graph share a common point?

We can also ask questions about the number of points in the intersection of longest
paths or cycles. We know that any 2 cycles meet in a 2-connected graph. It can be shown
that they meet in atleast 2 points. Similarly, for a 3-connected graph any 2 cycles meet in
3 points. More generally, we have the following question, conjectured with an affirmative
answer by Smith in 1979.

Question 10. Do any 2 cycles in a k-connected graph share k common points (k ≥ 2)?

Grötschel [7] shows this is true for k ≤ 6. Chen et al. [5] show that there are Ω(k3/5)
common points.
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4 Directions of recent research
Instead of searching for graphs whose intersection of longest paths is empty, we can

ask the question “when is it that all longest paths necessarily share a common point?” In
1990, Klavžar and Petkovšek [12] gave a characterization of graphs G with ∩P(G) , ∅.
Their characterization is useful in that it turns a global question into a local one. To find
a vertex common to all paths in P(G) it suffices to find a vertex common to those longest
paths passing through an arbitrary block B of G. Let PB(G) be the subset of paths in P(G)
which have at least 1 edge in the block B of G.

Theorem 11 (Klavžar, Petkovšek, [12]). ∩P(G) , ∅ if and only if PB(G) , ∅ for every
block B of G.

Sketch of proof. In one direction there is nothing to prove since PB(G) ⊂ P(G). Now
suppose ∩PB(G) , ∅ for all B in G.

Case 1: For every pair of paths, there is a block in which they both have an edge.
In this case we look at the tree T (G) associated with G where the vertices are blocks
and cutpoints and the edges represent intersection. (Here and in the proof of Klavžar
and Petkovšek “block” means either a maximal 2-connected subgraph of G or a bridge,
and the cutpoints are simply the points where the blocks meet). Denote by f (P) the
image of a longest path P under this reduction. Then the condition implies all pairs of
paths in { f (P)|P ∈ P(G)} intersect. A well-known Helly-type property of trees states that
a pairwise intersecting family of subtrees is completely-intersecting, i.e. there exists a
vertex v ∈

⋂
P∈P(G) f (P). If v is a cutpoint we are done. Otherwise every longest path

belongs to PB(G) for some B, and ∩P(G) = ∩PB(G) , ∅, as desired.
Case 2: There exists paths P and Q which do not have an edge in a common block.

In this case P and Q do not share an edge nor do they intersect in more than one point (as
this would create a cycle whose edges belong to P and Q, giving them a common block).
We claim that the lone vertex x ∈ P ∩ Q is common to all longest paths. If there is some
longest path R such that x < R then we can use R to construct a block in which both P and
Q have edges. To do so, consider the subgraph P ∪ Q ∪ R. Using the fact that each path
intersects pairwise we pick the closest point in this subgraph of R∩Q to x and the closest
point of R ∩ P to x. These two points combined with x form a cycle in which both P and
Q share edges, a contradiction. �

Remark 12. The Helly-type property of subtrees mentioned in the proof of Theorem 11
get its name from the mathematician Eduard Helly (1884 - 1943). Helly’s more general
theorem states that a finite family of ≥ n + 1 convex sets in Rn shares a point in common
provided that any n + 1 of them shares a common point. Statements of the type “ if for
all F ⊂ G, |F | = k,

⋂
F∈F F , ∅ then

⋂
G , ∅” are called Helly-type statements. The

Helly-type statement that a pairwise intersecting family of subtrees of a tree is completely
intersecting is most easily proved by induction on the number of vertices of the tree.

Klavžar and Petkovšsek’s characterization implies that if the blocks of G are Hamilton-
connected (for all x, y there is a hamiltonian path joining x and y), almost Hamilton-
connected (a Hamilton-connected analog for bipartite graphs), or a cycle then ∩P(G) , ∅.

Among the collection of open problems presented in the previous section, Question 8
seems to be the most popular one to attack, due to its extremely elementary nature. All

12



C
E

U
eT

D
C

ol
le

ct
io

n

we know is 2 ≤ k ≤ 6. We can chip away at this inequality from above by finding a graph
with 6 longest paths not sharing a common point. Or we may chip away at this inequality
from below by proving any 3 longest paths share a common point. Of course it makes no
sense to try to prove 6 longest paths share a common point (since 3 should be easier if it
is true) nor does it make much sense to look for a graph with 3 longest paths not sharing
a common point (since using 6 paths allows for more freedom to miss a point).

Skupień [17] works on the inequality from above, but in a different sort of way. It may
happen that in a graph G, v longest paths have empty intersection and so do v − 1. For
example, take Zamfirescu and Walther’s graph and append an edge to one of the corner
vertices of the triangle. In doing so we have created many new longest paths, however
we need not intersect all of them to achieve the empty set. Skupień examines for what
integers v can we find graphs where any v−1 longest paths share a common point but some
v of them do not, i.e. what v’s can serve as threshold values. He constructs examples for
all v ≥ 7.

How to construct a graph with 6 longest paths not sharing a point remains a chal-
lenging question. Building up a graph from other graphs whose longest path (or cycle)
behavior is well-known is a good approach. Skupień’s examples were constructed by
taking Hamiltonian graphs, subdividing some edges, and then splitting a vertex of degree
3 into 3 degree 1 vertices. The “splitting” operation cannot be emphasized enough as a
useful tool, as this technique allows us to obtain a graph solving P1

1 from a graph solving
C1

2 as in the way we obtained Zamfirescu and Walther’s graph from the Petersen graph.
To prove 3 longest paths necessarily intersect, it seems natural to start with certain

classes of graphs, as well as small graphs and very restrictive graphs. To this end Balister,
Győri, Lehel, and Schelp [3] examine longest paths in chordal graphs. They are able to
prove that all longest paths intersect in interval graphs (a subfamily of chordal graphs), but
the question of even 3 paths is still elusive for chordal graphs in general (see Question 9).
This is somewhat surprising as chordal graphs are relatively easily traversable (triangles
are everywhere). Klavžar and Petkovšek had also shown in [12] that all longest paths
intersect in a different subfamily of chordal graphs called split graphs. A split graph is a
graph which is chordal and whose complement is also chordal. A useful characterization
of a split graph is that its vertices can be partitioned into an independent set and a clique.

The approach of Balister et al. and Klavzar et al. shows a natural extension of 3 path
results. If we can show that any 3 longest paths intersect can we say the same about all
longest paths. Lehel conjectures that all longest paths in a chordal graph intersect. If
we define the path transversal number of a graph to be the minimum number of vertices
needed to cover all longest paths, then Lehel’s conjecture can be stated as “chordal graphs
have a path transversal number of 1”.

Another class of graphs for which the intersection of 3 longest paths has been exam-
ined are outerplanar graphs. An outerplanar graph is a planar graph with a distinguished
face touching every vertex, i.e. the graph can be realized by placing the vertices on a circle
and then drawing chords and arcs. Axenovich [2] succeeds in showing that any 3 longest
paths share a common point in an outerplanar graph. We will examine the method used
by Axenovich more in the next section as well as sketch a useful means of generalizing it.

We should mention that intersections of longest paths and cycles have been considered
in a variety of other contexts as well, such as digraphs. A conjecture of Laborde, Payan,
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and Xuong [13] generalizing a theorem of Gallai and Roy can be stated as “every digraph
has an independent set intersecting every longest path.” See for example [10].
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5 Examining 3 longest paths
Henceforth we will focus our attention on Question 6 and the problem of proving

that any 3 longest paths share a common vertex. Based on the difficulty of finding a
counterexample (even for 6 paths) and for the number of classes which it has been shown
to be true, I conjecture “Yes!” with optimism.

Conjecture 13. For any 3 longest paths P1, P2, P3 in a connected graph G, we have
P1 ∩ P2 ∩ P3 , ∅.

As mentioned in the previous section, some people have proven Conjecture 13 holds
for specific graphs and in most cases even the stronger result P(G) , ∅ holds. In the case
of outerplanar graphs, however, we have only the result for 3 paths.

Theorem 14 (Axenovich [2]). In a connected outerplanar graph G, any three longest
paths share a common vertex.

The methods which Axenovich uses to prove the result for outerplanar graphs is what
we will examine further. We provide tools for generalization based on Axenovich’s idea
of examining a minimal counterexample to Conjecture 13. While this will lead to a new
proof of Theorem 14 and a slight generalization, the real advantage of examining a general
minimal counterexample is that we are not restricted to one specific class of graphs and
so results can be extended more easily (just as these results are an extension of general
lemmas presented in the first half of Axenovich’s paper). Ideally we prove more and more
structure in this minimal counterexample until we reach a contradiction.

5.1 Basic structure of a minimal counterexample G

Henceforth let G be a minimal counterexample to Conjecture 13 with respect to edges.
Then the first observation (important enough to deserve its own line) is

G = P1 ∪ P2 ∪ P3

where P1, P2, P3 are longest paths of G with P1 ∩ P2 ∩ P3 = ∅. Otherwise, we can delete
edges not in P1 ∪ P2 ∪ P3, contradicting minimality. Another easy observation is that
deg x ≤ 4 for all vertices x ∈ V(G).

We have the following very useful lemma which renders Klavžar’s characterization
(see Theorem 11) somewhat useless for our purposes.

Lemma 15 (Axenovich [2]). G has exactly one nontrivial block.

Proof. If G contains no nontrivial blocks then G is a tree and the result follows imme-
diately. It is not difficult to show that all longest paths in a tree must intersect in the
“middle” vertex. See for example [14], p. 31.

If G contains ≥ 2 nontrivial blocks, then we pick a cutpoint u on a bridge between 2
blocks, B1 and B2 (this “bridge” might just be a single point). As u < P1 ∩ P2 ∩ P3 we
have that one of the paths, say P3, does not touch one of the blocks, say B1. Then we can
write G = G1 ∪G2 where G1 ∩G2 = {u} and P3 ⊂ G2, B1 ⊂ G1.

Since P1 and P2 must intersect P3, we have u ∈ P1 ∩ P2. Next observe that |P1[G1]| =
|P2[G1]|, otherwise we would have a longer path by traveling e.g. P1[G1]∪ P2[G2]. Since
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B1 ⊂ G1 the edge set of P1[G1] \ P2[G1] is nonempty. Delete P1[G1] \ P2[G1] and define
P′1 to travel P2[G1] ∪ P1[G2]. Then P′1, P2, P3 are three longest paths in P′1 ∪ P2 ∪ P3

sharing no common point, but this is a contradiction since P′1 ∪ P2 ∪ P3 has fewer edges
than G. �

We can already begin to see the advantage of working with a minimal counterexample.
Immediately we can assume that G has just one block, a serious restriction on the structure
of G.

There is a subtle point about Lemma 15 which needs to be mentioned. Suppose our
goal is to prove that 3 longest paths share a common point for a specific class of graphs,
for the sake of example let’s just say “green” graphs. We might want to argue by con-
tradiction, taking a minimal counterexample among all green graphs. To use the above
lemma, however, we must be sure that green graphs are closed under the operation of
edge/subgraph deletion. Otherwise the graph P′1 ∪ P2 ∪ P3 in the proof of Lemma 15 may
not be a green graph and thereby not contradict the minimality of P1 ∪ P2 ∪ P3. As out-
erplanar graphs are clearly closed under subgraph deletion, the minimal counterexample
from the space of outerplanar counterexamples indeed has only 1 nontrivial block. If you
remove an edge from a chordal graph, however, the resulting graph may not be chordal. A
family of graphs which is closed under subgraph deletion is sometimes called a monotone
family.

This same sort of reasoning applies to different types of reduction procedures, not just
subgraph deletion. When arguing by contradiction and taking a minimal counterexample,
we hope to reach a contradiction by finding a smaller (think “more efficient”) counterex-
ample. We may delete, contract, subdivide, add, glue, replace, etc. to obtain this smaller
graph. These arguments are only valid if the resulting graph is still from the same class
of graphs we were considering in the first place. Fortunately, as we are working with G, a
minimal counterexample from the space of all counterexamples, we are free to manipulate
G in any way we choose and we do not need to worry about this distinction.

Before presenting more proofs we make a quick note regarding notation.

Remark 16 (Regarding notation). Maintaining absolute precision when referring to ver-
tices, edges, and lengths of paths can become tedious and unnecessary. When expressing
membership we often write P instead of V(P) or E(P). The length of P, denoted l(P),
will always refer to |E(P)|, but in inequalities we may simply write P + Q to represent
|E(P)| + |E(Q)|. Concatenation PQ is the best way to represent travelling path P and then
path Q, but we may also write P ∪ Q.

Our first result concerning G shows that G has girth ≥ 4. The proof demonstrates how
we may manipulate G to form a “more edge-efficient” graph (in this case starting from a
triangle).

Lemma 17. G is triangle-free.

Proof. Suppose x, y, z ∈ V(G) form a triangle. First we claim that we can assume x, y, z ∈
P1∩P2 and so x, y, z < P3. If xy ∈ P1 then z ∈ P1 as well, otherwise P1 can travel a longer
route by travelling xz and zy instead of xy. As triangle ∆xyz has edges from atleast two of
P1, P2, P3, we can assume P1 and P2 both have edges in ∆xyz. Then x, y, z ∈ P1 ∩ P2 as
claimed.
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Figure 8: Case 1

Figure 9: Case 2

Furthermore we can assume P1 uses two edges of ∆xyz, say xy and yz. Then xz ∈ P2

and we have two cases: Case 1) P2 uses another edge, say xy, of ∆xyz or Case 2) P2 does
not use another edge of ∆xyz but just touches the triangle at y.

Case 1. Contract vertices x and y to a vertex v, then subdivide vz by adding one
vertex w between them, see Figure 8. We claim that the images of P1, P2, P3 under this
operation, which we denote P′1, P

′
2, P

′
3, are 3 longest paths in the graph P′1 ∪ P′2 ∪ P′3 and

P′1∩P′2∩P′3 = ∅, thereby contradicting the minimality of G. The fact that their intersection
is empty is immediate. We only need to prove that no path longer than l(P′1) = l(P1) exists
in P′1 ∪ P′2 ∪ P′3.

Suppose R is a path with l(R) > l(P1). R uses at least one of vw, wz otherwise R is in a
contracted subgraph of G. If R uses exactly one of vw, wz, say vw, then we can find a path
of equal length in G which travels the preimages of vertices in R \ w (i.e. we gain back
edge xy), and similarly if R uses just wz. So we can assume R uses the entire segment vz.
There are at most 4 remaining cases depending on which ‘outgoing’ edges R uses adjacent
to v and to z. But in any case, we can find a length 2 path in ∆xyz between the necessary
vertices so as to travel the same edges R uses ‘outside’ of the triangle. Hence R cannot
possibly be longer.

Case 2. Detach P1 and P2 at y into y1 ∈ P1 and y2 ∈ P2, for v a neighbor of y2 (y2

has at most 2 neighbors as deg y ≤ 4) contract edge vy2 to the point v′, then delete xz.
See Figure 9. In the resulting graph, let P′1 and P′3 travel the images of paths P1 and P3

respectively (which are essentially unchanged), and let P′2 travel the images of the edges
of P2 \ xz as well as xy1z (i.e. P2 gains one edge from the triangle and loses one outside).

We claim that the resulting graph with P′1, P
′
2, P

′
3 contradicts the minimality of G. As

it clearly has fewer edges and P′1∩P′2∩P′3 = ∅, we need only show that no longer path was
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created. Suppose R is a path with l(R) > l(P′1). R uses atleast one of xy1, y1z otherwise it
is in a contracted subgraph of G. If R uses xy1z then it must also use v′ (otherwise we can
easily find a suitable path of equal length in G), but we can find a path of equal length in
G which travels xz and the preimages of the vertices in R \ xy1z. If R uses xy1 and not y1z,
then by similar reasoning it must use both vertices v′ and z. To find a path of equal length
in G, we simply take the preimage of R \ xy1. Hence, no path longer than l(P′1) exists, as
desired. �

Corollary 18. There are no chordal graphs in the space of minimal counterexamples.

Lemma 17 does not imply that if H is chordal then any 3 of its longest paths share
a common point (see Question 9). But it says that in some sense it is not so important
to consider chordal graphs (or any graph containing a triangle), as these are not minimal
counterexamples.

It should be clear by now that the main questions we want to explore are the fol-
lowing: What does G look like? What structures/subgraphs are forbidden in G? What
structures/subgraphs must be in G? To be more specific, these questions can be asked
with varying degrees of generality.

Question 19. What structure must G have based on the fact that G is

1. the union of three longest paths?

2. the union of three longest paths with empty intersection?

3. the union of three longest paths with empty intersection and minimal edges?

Thus far we have shown that G is a triangle-free graph with precisely one nontrivial
block. Each of these results used the minimality of G. We can, however, show that certain
structures are forbidden in G without using the condition that G is minimal. Axenovich
[2] shows that the graphs in Figure 10 are forbidden as subgraphs of any graph which is
the union of three longest paths. We stick to the initial labeling of Axenovich by calling
these graphs configuration Q1 and Q2 respectively.

Lemma 20 (Axenovich, [2]). G does not contain configuration Q1 (see Figure 10a). That
is, G does not contain a cycle which is the union of internally disjoint, positive (edge)
length segments a, b, c of P1, P2, P3 respectively, such that 1) the interior vertices of a ∪ c
are disjoint from P2 and 2) the interior vertices of b ∪ c are disjoint from P1.

(a) forbidden configuration Q1 (b) forbidden configuration Q2

Figure 10
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Proof. The direction P1 travels around the cycle implies c + b ≤ a. The direction P2

travels yields a + c ≤ b. Then c = 0, a contradiction. �

Lemma 21 (Axenovich, [2]). G does not contain configuration Q2. That is, G does not
contain a segment d of positive (edge) length with the following properties:

(a) d has endpoints x ∈ P2, y ∈ P3;
(b) the internal vertices of d belong to P1 only;
(c) P2 and P3 can be oriented so that P2 = P′2P′′2 , P′2∩P′′2 = {x}, P3 = P′3P′′3 , P′3∩P′′3 =

{y}, and (P′2 ∪ P′3) ∩ (P′′2 ∪ P′′3 ) = {x, y}.

Proof. Based on the fact that P′2 does not use d to switch over to P′′3 we obtain the in-
equality P′′3 + d ≤ P′′2 . Similarly P′′2 + d ≤ P′′3 . Then d = 0, a contradiction. �

The proof strategy involved here is a common and important one. Wherever we have
a vertex of degree 3, e.g. when P1 and P2 split, we have an inequality lurking in the
background. The fact that P1, a longest path, bypassed the opportunity to travel in some
direction, must mean that the longest road down that direction is at most as long as the
remainder of P1.

Armed with this simple observation it is possible to show that if G is a small graph,
e.g. n vertices and n, n + 1, or n + 2 edges, then P1 ∩ P2 ∩ P3 , ∅. However, for n + 3
edges the number of cases to consider becomes quite large.

Using the forbidden configurations of Figure 10, we can now impose another struc-
tural requirement on G. Again we do not need the minimality of G, but we do need that
P1, P2, P3 have empty intersection.

Lemma 22 (Axenovich, [2]). Pi ∪ P j contains at least 2 cycles for 1 ≤ i < j ≤ 3.

Proof. Suppose P2 ∪ P3 has at most one cycle. Because the paths must intersect pairwise
we can take a segment d of P1 whose internal vertices belong to P1 only and whose
endpoints are x ∈ P1 ∩ P2 and y ∈ P2 ∩ P3. If P2 ∪ P3 is acyclic then we have forbidden
configuration Q2. Suppose C is the lone cycle of P2 ∪ P3. If x, y ∈ C or if x, y < C then
we have forbidden configuration Q2. If x ∈ C, y < C, then after some inspection we have
a forbidden configuration Q1 (where P2 plays the role of P3 in Figure 10a). �

5.2 More structure on G

In the previous section we showed the following basic facts concerning the structure
of G.

Lemma 15. G has one nontrivial block B.

Lemma 17. G does not contain a triangle.

Lemma 20/21. G does not contain configurations Q1 or Q2.

Lemma 22. The union of any 2 of P1, P2, P3 contains at least 2 cycles.
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We would like to know more about the fundamental structure of G. Of particular
interest would be results concerning connectivity as well as more forbidden substructures.
For example, can G contain a square? Or a pentagon? What does the block B look like?
How connected is B?

In this section our goal is to add the following main lemmas to our knowledge of G.

Lemma 23. G does not contain configuration Q3 (see Figure 11).

Lemma 24. Every cycle of G contains ≥ 3 branching points.

A branching point in G is a vertex x such that degB(x) ≥ 3. A vertex x with degG(x) ≥
3 but degB(x) = 2 is not a branching point in our notation, but rather a terminal-type
point. The name “terminal-type” point comes from the observation that some path exits
B at that point. In fact, we can say a little more. A terminal-type point is the starting point
of precisely one path outside of the block B, which we call a terminal branch.

Lemma 25. G \ B consists of ≤ 6 (vertex) disjoint paths and one endpoint of each path is
a terminal-type point.

Sketch of proof. Use minimality in a similar manner as the proof of Lemma 15. �

As a corollary of Lemma 24, we can obtain the following generalization of Axen-
ovich’s result on outerplanar graphs (Theorem 14).

Corollary 26. If H is topologically outerplanar, then any three longest paths of H share
a common point.

Proof. We can take a minimal counterexample G from the space of topologically outer-
planar counterexamples. As these graphs form a monotone family, all the results of the
previous section hold and so does Lemma 24. Observe that all branching points of G lie
on the outer circle of the outerplanar graph which G is a subdivision of.

Take a cycle C1 of G. As C1 has ≥ 3 branching points we can find a cycle C2 which
shares a (subdivided) chord with C1. Similarly we can find a cycle C3 , C1 such that C3

shares a (subdivided) chord with C2. We construct a sequence of cycles in this way such
that Ck , Ck−1. Moreover this sequence is nonrepeating for if Ck = C j for j ≤ k − 2
then there is a branching point in the interior of the circle, a contradiction. As the graph
is finite, this sequence must terminate. Yet the sequence can only terminate when a cycle
has ≤ 2 branching points, a contradiction. �

Now we can really see the advantage of analyzing a minimal counterexample G. The
results are general and do not restrict us to one specific family of graphs. On the other
hand, the results can be immediately applied to monotone families of graphs. Ideally we
can place an increasing number of restrictions on the structure of G so as to rule out wider
classes of monotone families of graphs until eventually we can rule out the most important
monotone family of graphs: all graphs. Of course a more realistic and natural next step
after outerplanar graphs would be to consider planar graphs.

We have seen now the utility of Lemma 24, but how do we prove the lemma itself?
Unfortunately it is a tedious case-by-case analysis involving repeated use of all the lem-
mas used up to now as well as some easy observations regarding the minimality of G. The
separation of cases reflects all the different ways 3 non-intersecting longest paths can be
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(a) forbidden configuration Q3 (b) forbidden configuration Q3, trivial case

Figure 11: P1 = black, P2 = red, P3 = green

situated to form a cycle C with only 2 branching points. In each case, we stare at C and
ask ourselves “why is this not an efficient way to use edges?”, then we replace the cycle
with a more edge-efficient configuration. We redefine P1, P2, P3 for the new graph, prove
that they are indeed longest paths, and then we have contradicted the minimality of G, as
desired.

In a moment we will sketch the proof, but more important than the proof itself are
the collection of lemmas and observations we use throughout. For this reason, I have
highlighted Lemma 23 as it is particularly useful in simplifying cases, and in my opinion,
it can likely be generalized to a more powerful lemma. The lemma (stated above) outlaws
the configurations in Figure 11 . To be more precise, we have a reduction technique where
if configuration Q3 appears in G then we can reduce the graph to a more edge-efficient
one.

Configuration Q3 is defined by a maximal segment b ∈ P1 ∩ P2 with the following
properties:

(a) We can write P1 = P′1P′′1 and P2 = P′2P′′2 where b is the final segment of P′i i = 1, 2,
such that (P′1 ∪ P′2) and (P′′1 ∪ P′′2 ) intersect only at the endpoint(s) of b;

(b) P3 ∩ (P′1 ∪ P′2) = ∅;
(c) E(P′1 \ P′2) and E(P′2 \ P′1) are each nonempty.

Proof of Lemma 23. If G contains configuration Q3 then it must look like one of the
graphs from Figure 11. In the trivial case removing a vertex from b disconnects G so
we can proceed in a manner similar as in the proof of Axenovich’s Lemma 15 and in the
proof of Lemma 25. Observe that P′1 and P′2 are of equal lengths, delete P′1 \ P′2, redefine
P′1 to be P′2, and we have contradicted the minimality of G.

Suppose G looks like Figure 11a. Let c = |E(P′1 \ b)| and d = |E(P′2 \ b)|. If d = c
we can replace P′1 ∪ P′2 by a segment of length d + b, redefine P′1 and P′2 to travel this
segment, and we have a smaller graph. Otherwise suppose d > c. Based on the directions
P1 and P2 travel we have the inequality d ≤ b + c. Replace P′1∪P′2 by the following graph

where x and y are identified with the endpoints of b as depicted in Figure 11a. Redefining
P′1 = wx and P′2 = wxy, we clearly have not changed the lengths of P1 and P2. The
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resulting graph has fewer edges than G with P1 ∩ P2 ∩ P3 = ∅. It remains to show that no
path longer than P1 exists. Suppose R is a longer path than P1. R uses wx otherwise it is
in a contracted subgraph of G (recall d − c ≤ b). R must also use y (o.w. l(R) ≤ l(P1)). If
R uses all of xy then it cannot be longer than P2. So R uses wx, exits at x, returns to y, and
travels all but the final edge of xy (recall deg y = 3 in G forces R to ‘reenter’ yx). Then
l(R) = d + b−1 + s where s is the length of the segment outside of P′1∪P′2. But in G there
is a path traveling d + b + s− 1 where we use the edges of P′2 and the edges of R ‘outside’
stopping one edge shy of x. Hence, no longer path exists. �

The above proof that Q3 1 G resembles the proof that G does not contain a triangle.
In each case we suppose I ⊂ G and then show that we can replace I by a more efficient
subgraph I′. It is convenient to call this subgraph I the ‘inside’ and O = G\I the ‘outside’.
Then we can say something like ‘P1 enters (or exits) at x’ to mean P1 comes inside from
the outside (or vice versa) at the vertex x ∈ O ∩ I.

We are almost ready to begin proving Lemma 24 which states that each cycle in G has
at least 3 branching points. Before jumping into the proof we make a few observations
which we leave as exercises and which are often needed in the proof.

Observation 27. Let x and y be ‘essentially adjacent’ branching points in B, i.e. there is
a segment xy whose internal vertices are not branching points. Then P1, P2, P3 cannot all
have edges on this segment. (Hint: There will be a forbidden configuration Q2.)

Observation 28. Each half of P1 intersects both P2 and P3.

Observation 29. Let u ∈ P1 ∩ P2, and let v and w be neighbors of u such that v ∈
P1 \ (P2 ∩ P3) and w ∈ P2 \ (P1 ∩ P3). Then G is not minimal. (Hint: Identify v and w.)

Observation 30. Let v be a terminal type point of P1 only (i.e. P1 exits B at v while P2

and P3 do not). All neighbors of v are either in P1 or P2 ∩ P3. If v is an endpoint of P1

then all neighbors of v are in P1. (Hint: Identify the neighbor of v on the terminal branch
with another available neighbor of v.)

Sketch of proof of Lemma 24. Suppose C ⊂ G has ≤ 2 branching points. If C has only
1 branching point then the removal of this vertex disconnects the block, a contradiction.
We may assume that C has precisely 2 branching points x and y.

Define the inside I to be the union of C and all of the terminal branches adjacent to C.
And the outside O = G \ I. In the subdivision of cases consider x and y as vertices of I
rather than O. Let an ‘arc’ of C refer to one of the two paths in C connecting x and y.

Instead of giving a detailed proof, we show how the cases can be grouped, and then we
show a more edge-efficient graph to use as a replacement graph. It is left to the ambitious
reader to verify all the details. Proving one or two of the tougher cases in detail will give
a sense of how to prove the other cases. The first thing we do is gather usable inequalities.
Then we experiment with potential replacement graphs until we have found the one which
does not produce a longer path.
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Tree of cases

Case 1 All endpoints of P1, P2, P3 are outside.

Case 2 P1 has both endpoints inside.

Case 2.1 P1 ⊆ I.

Case 2.2 P1 * I.

Case 2.2.1 Each of P1, P2, P3 has a vertex in I.
Case 2.2.2 P3 is vertex disjoint from I.

Case 2.2.2.1 P1’s terminal type points are on the same arc.
Case 2.2.2.2 P1’s terminal type points are on different arcs.

Case 3 P1 has one endpoint inside and one outside.

Case 3.1 P3 is vertex disjoint from I.

Case 3.1.1 P2 exits at x.
Case 3.1.2 P2 does not exit at x.

Case 3.2 Each of P1, P2, P3 has a vertex in I.

Case 3.2.1 P3 is edge disjoint from C.
Case 3.2.2 Each of P1, P2, P3 has at least one edge in C.

Case 1: All endpoints of P1, P2, P3 are outside.
We can assume P1 and P2 both enter at x and exit at y. If P2 travels the same arc as P1

then P3 travels the other arc and we have x ∈ P1 ∩ P2 ∩ P3. So we can assume P2 travels
the opposite arc from P1, and P3 is vertex disjoint from I. Observe that each arc must be
the same length, otherwise we can find a longer path traveling the longer arc inside and
using the other path outside. Delete the arc which P2 travels and redefine P2 to travel the
same as P1 inside. The new graph has fewer edges, no longer path, and P1, P2, P3 have no
common point, a contradiction.

Case 2.1: P1 ⊂ I.
Show that P1 ∪ P2 has at most 1 cycle, contradicting one of Axenovich’s lemmas.

Case 2.2.1: P1 has both endpoints inside, P1 1 I, and each of P1, P2, P3 has a vertex
in I.

Separate into two pictures based on which arc P1’s terminal type points are on. Show
that one of the pictures is impossible because it puts us back in Case 2.1. Show that the
other picture produces configuration Q2.

Case 2.2.2.1: P1 1 I, P3 ∩ I = ∅, P1’s terminal type points lie on the same arc
Show that I looks like one of the graphs from Figure 12.
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(a) (b)

Figure 12

Consider Figure 12a first. Use minimality to show that we can assume |c − e| ≤ 1. If
d = 0, P2 can travel the opposite direction around C. So d > 0, and by Lemma 23 we
have c = 0. Notice that E(P2 ∩ I) ≤ E(P1 ∩ I) + 1 (o.w. P2 can travel longer outside),
which gives us d = a = e = 1. Replace I by the following graph with P1 and P2 redefined
according to the colors in the picture (black = P1, red = P2), and show that the resulting
graph has no longer path.

Figure 13: Use to replace Figure 12a.

For Figure 12b, simply replace I by the following graph, proving that no longer path
exists.

Figure 14: Use to replace Figure 12b.

Case 2.2.2.2: P1 1 I, P3 ∩ I = ∅, P1’s terminal type points lie on different arcs.
We can assume P2 ∩ I is connected. Then we have one of the graphs from Figure 15.
For Figure 15a, we can assume d > 0 (o.w. P2 can travel the other direction around

C) which implies c = 0 by Lemma 23. In fact we have d > e. But the inequality
E(P2 ∩ I) ≤ E(P1 ∩ I) + 1 implies d ≤ e.

For Figure 15b, prove that we have a + 1 ≤ c + e and c + e ≤ b + 1 by comparing paths.
Replace I by the graph in Figure 16, and use these inequalities to show that no longer path
exists.
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(a) (b)

Figure 15

Figure 16: use as a replacement for Figure 15b

Case 3.1.1: P1 has one endpoint in and one out, P3 ∩ I = ∅, P2 exits at x
Replace the graph of Figure 17 by Figure 18.

Figure 17

Figure 18: Use to replace Figure 17.

25



C
E

U
eT

D
C

ol
le

ct
io

n

Case 3.1.2: P1 has one endpoint in and one out, P3 ∩ I = ∅, P2 does not exit at x.
Observe that the only case not producing a forbidden configuration Q3 is the graph in

Figure 19. In a similar manner as the proof of Lemma 23, replace Figure 19 by Figure 20.

Figure 19

Figure 20: Use to replace Figure 19.

Case 3.2.1: P1 has one endpoint in and one out, P3 just ‘touches’ I
Show that P3 can touch at only one of x or y. Delete and redefine P1 and P2 as needed

inside, using the minimality of G.
Case 3.2.2: Each of P1, P2, P3 has at least one edge in C

In any case we can readily find a forbidden configuration Q2. This concludes the
proof. �

Another way of stating Lemma 24 is that if we delete G \ B and then contract vertices
of degree 2, the resulting graph will have no multiple edges. More results on this ‘reduced
graph’ would be of interest. What can we say about its connectivity? Can we strengthen
Lemma 24 to say that any cycle in G contains ≥ 4 branching points? How traversable
is this reduced graph? What conditions on this graph would be enough to prove the
conjecture in full? Or for planar graphs? Unanswered, interesting questions abound.
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