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2 Terminology

In this section we introduce the most important terminology for the thesis.

We denote the set {1, 2, . . . , n} by [n]. We will use the word collection or

family when referring to a set whose elements are sets. We denote the set

of its r-elements subset of [n] by
(
[n]
r

)
. For a set X, we denote the power

set of X by 2X . A collection A is said to be intersecting if every two sets

A ∈ A share at least one element. Two or more collections are said to be

cross-intersecting if for every two collections A and B and for every A ∈ A

and B ∈ B, A and B have at least one common point. A chain refers to a

collection of sets {A1, A2, . . . , At} such that Ai ⊂ Ai+1. A chain of subsets of

[n] is said to be maximal if it contains a set of all n+1 possible cardinalities.

A collection A is said to be Sperner or an antichain if there do not exist

elements A, B ∈ A such that A ⊂ B.

Two important objects we will use are permutations and cyclic permu-

tations. By a permutation of X we simply mean a word of length |X| with

each element of X occurring exactly once. We will use π as our notation for a

permutation in this thesis. Formally, a cyclic permutation is an equivalence

class of permutations under the equivalence relation on words that a ∼ b

if a=xy and b=yx for some words x, y where the product is concatenation.

Intuitively, we think of a cyclic permutation of X simply as the elements of

X arranged in a circle. We will say a set A is an interval in the cyclic permu-

tation σ if its elements occur consecutively in some word in the equivalence
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class. Informally, A is an interval if it forms an arc viewing σ as the elements

arranged in a circle.

We will also need some basic concepts in graph theory. A clique is a set

of vertices for which there exists an edge joining each pair. An independent

set is a set of vertices with no edge between any pair. The complete graph

on k vertices is the graph on k vertices containing every edge. A bipartite

graph is a graph in which the vertices can be partitioned into two classes,

such that the only edges join vertices of distinct classes. A bipartite graph

containing every possible edge is called a complete bipartite graph. A blown-

up complete graph is a graph consisting multiple independent sets of vertices

with possibly different sizes and every possible edge between two different

independent sets.

Finally we introduce the basic concepts of order theory. A partially or-

dered set (or poset) is a pair (S,≤) where ≤ is a relation on S which such

that: (1) for all x ∈ S, x ≤ x (2) x ≤ y and y ≤ x implies x = y (3) x ≤ y

and y ≤ z implies x ≤ z. Observe that (2[n],⊂) forms a partially ordered set;

we will sometimes refer to this set as the boolean lattice. The containment

graph of a partially ordered set is the graph whose vertices are the elements

of the set and with an edge between any two related elements. The Hasse di-

agram of a partially ordered set is the graph whose vertices are the elements

of the partially ordered set with an edge between x and y if x ≤ y and there

is no z such that x ≤ z ≤ y.
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3 Introduction

The purpose of this thesis is to discuss some ideas for generalizing classical

results in extremal set theory. We emphasize that the majority of the ideas

are joint work with David Malec at UW Madison. To be specific everything

except the last two research sections of the thesis was done in collaboration.

Any errors, on the other hand, are likely my own and should be interpreted

as such.

The first few sections of the thesis will discuss some alternate proofs of

Hilton’s generalization of the Erdős-Ko-Rado theorem. We then further gen-

eralize Hlton’s theorem in multiple directions. In particular we optimize over

more general classes of functions of the set sizes, and we consider less restric-

tive cross-intersection problems. Next we consider some very easy proofs of

the Erdős-Ko-Rado theorem and Hilton’s theorem for the special case where

r divides n. The next short section is a discussion of some attempts to gener-

alize Sperner’s theorem and intersection theorems to an infinite setting. The

following section introduces a generalization of chains of subsets allowing us

to generalize Sperner’s theorem. The final section discusses a new variant of

multipart Sperner problems and a slight simplification of an old result.

We begin with a brief review of the classical extremal set theory theorems

which are relevant to our thesis. We do not intend to provide an extensive

survey of the field. Such surveys already exist, and we refer the reader to

the excellent books of Anderson[1], Bollobás[3], and Engel[6]. For reference,
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and to motivate the rest of the thesis, we will recall the results of Erdős-

Ko-Rado[14] and Sperner[15]. We begin with Lubell’s elegant proof[13] of

Sperner’s theorem,

Theorem 1. Let A be an antichain of subsets of [n], then

|A| ≤
(

n

%n
2 &

)
,

and this bound is sharp.

Proof. The collection of all subsets of size %n
2 & is an antichain and acheives

the bound. We double count pairs (C, A) where C is a maximal chain of

subsets, A ∈ A, and A occurs in the chain C. First observe for a fixed set A

there are exactly |A|!(n− |A|)!. We first add each element of A one at a time;

there are |A|! ways to do this. Next we can add the the remaining n − |A|

elements one a time in (n− |A|)! ways. It follows the number of pairs (C, A)

is exactly,
∑

A∈A

|A|!(n− |A|)!.

Now, fix a maximal chain C and observe that, by the antichain property,

there may be at most one A ∈ A in C. Since the total number of maximal

chains is n!, it follows that the number of pairs (C, A) is at most n!. Thus

we have,
∑

A∈A

|A|!(n− |A|)! ≤ n!.
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and dividing through gives,

∑

A∈A

1(
n
|A|

) ≤ 1.

Since
(

n
"n

2 #

)
is a largest binomial coefficient we may replace A with %n

2 & in the

left hand side of the inequality. Then, multiplying through gives,

|A| ≤
(

n

%n
2 &

)
.

We now present Katona’s[10] elegant proof of the Erdős-Ko-Rado theorem

using cyclic permutations,

Theorem 2. Let A be an intersecting collection of r element subsets of [n],

then

|A| ≤
(

n− 1

r − 1

)
,

and this bound is sharp.

Proof. By taking all r element subsets containing a particular element the

bound is achieved. To prove the bound we will count pairs (σ, A) where

A ∈ A, σ is a cyclic permutation of [n] and A is an interval in σ. First

observe for a fixed set A there are exactly r!(n − r)! cyclic permutations

containing it as an interval. We can first order the elements of A in r! ways;

this fixes the starting end ending position where we may place the remaining

7
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n− r elements. Thus, since there are (n− r)! permutations of (n− r) objects

we have a total of r!(n−r)! cyclic permutations containing A. It follows that

the number of pairs (σ, A) is exactly |A|r!(n − r)!. If, on the other hand,

we first fix a cyclic permutation σ then there may be at most r elements of

A forming intervals in it. To see this, fix the first interval I, and observe

that all other intervals must intersect this one. If we number the positions

of σ used by I 1, 2, . . . , r; then we see for each position i, i ≥ 2 we may have

at most one of the following two intervals: the one starting at i, or the one

ending at i− 1. Thus, in addition to the first interval we may have at most

r − 1 more intervals, for a total of r. Now, since the total number of cyclic

permutations is (n− 1)!, we have that the number of pairs (σ, A) is at most

r(n− 1)!. Hence, it follows,

|A|r!(n− r)! ≤ r(n− 1)!,

and thus,

|A| ≤
(

n− 1

r − 1

)
.

Hilton[9] introduced the following generalization of the Erdős-Ko-Rado

theorem,

Theorem 3. Let {Ai}, i = 1, 2, . . . , k be a cross-intersecting collection of r

8
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element subsets of an n element set where 2r ≤ n. Then,

k∑

i=1

|Ai| ≤ max

((
n

r

)
, k

(
n− 1

r − 1

))
.

Note that we are allowing the Ai to be identical collections. The bound is

obtained by either taking A1 to be all r elements subsets and every other Ai

to be empty, In this case the cross-intersecting condition is met trivially; or we

take each Ai to be all sets containing the same fixed element.. Which choice

is optimal depends on the relationship between k, r, and n. The standard

Erdős-Ko-Rado theorem is recovered easily: Let A be an intersecting family

of r element subsets. Choose Ai = A for all i in Hilton’s theorem and assume

k ≥ n

r
. Then Hilton’s bound gives,

k∑

i=1

|Ai| = k|A| ≤ k

(
n− 1

r − 1

)
,

and the Erdős-Ko-Rado bound follows upon dividing by k. Hilton’s proof

of this theorem was fairly long and made use of the Kruskal-Katona Theo-

rem. In the following sections, we will present a two different proofs using

cyclic permutations. We acknowledge that Peter Borg has an earlier proof

of Hilton’s theorem using cyclic permutations, and we encourage the reader

to read his article [5] (also see [4] for Kruskal-Katona based proof). More

generally he has proved a Hilton-type theorem for signed sets. However, the

proofs here take a largely different approach and lead to generalizations in

9
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several directions not yet considered. We now begin our study of Hilton’s

theorem.
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4 A proof of Hilton’s theorem

We recall the statement which we will prove,

Theorem 4. Let {Ai}, i = 1, 2, . . . , k be a cross-intersecting collection of r

element subsets of an n element set where 2r ≤ n. Then,

k∑

i=1

|Ai| ≤ max

((
n

r

)
, k

(
n− 1

r − 1

))
.

The approach of the proof will be to count triples (A,Ai, σ) where A ∈ Ai

and A is an interval in the cyclic permutation σ in two different ways. First

we establish a bound on the number of pairs (A,Ai) such that A ∈ Ai where

A is compatible with a fixed cyclic permutation σ. This will follow from

the three lemmas below. Then we count the triples in a different order by

considering how many cyclic permutations contain each A in some fixed Ai.

Lemma 1. Let A1, A2, . . . , At be intervals of size h in a cyclic permutation

σ. Then |
t⋂

i=1
Ai| ≤ max(0, h− t + 1).

Proof. If
t⋂

i=1
Ai = ∅ then we are done. Therefore, we may take x ∈

t⋂
i=1

Ai.

Reindex the Ai so that i < j implies x occurs later in Ai than Aj. Formally,

we insist that any string in the equivalence class σ containing the elements

of Ai consecutively x occurs closer to the right end of Ai than it does to the

right end of Aj in any string containing the elements Aj consecutively. Then

we have for any j that |A1| = h and |
j⋂

i=1
Ai| − |

j+1⋂
i=1

Ai| ≥ 1, and it follows

11
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|
t⋂

i=1
Ai| ≤ h− t + 1.

We now introduce some notation for simplicity. For a collection A and a

cyclic permutation σ of [n] let Aσ
1 denote the set of those A ∈ A which are

intervals in σ.

Lemma 2. Let σ be a cyclic permutation of [n]. Let A1 and A2 be cross-

intersecting collections of r element subsets of [n] with 2r ≤ n. Assume Aσ
1

and Aσ
2 are nonempty, then |Aσ

1 | + |Aσ
2 | ≤ 2r.

Proof. For each A ∈ Aσ
1 let A′ denote those positions of σ for a which an

interval of length r beginning there intersects A, then |A′| = 2r− 1 for all A.

Applying the previous lemma we have,

|Aσ
2 | ≤|

⋂

A∈Aσ
1

A′| ≤ max(0, 2r − 1− |Aσ
1 | + 1).

By the assumption that Aσ
2 is nonempty, it follows |Aσ

1 | + |Aσ
2 | ≤ 2r.

We are now ready to prove a bound on the number of pairs (A,Ai) with

A ∈ Ai an interval in a fixed cyclic permutation σ. To this end we introduce

some more notation. Let I = {i : some A ∈ Ai is an interval in σ}. Also let

i∗ denote an index i for which |Aσ
i | is maximal.

Lemma 3. Fix a cyclic permutation σ, let A1 . . .Ak be pairwise cross-

intersecting collections of r element subsets of an n element base set with

2r ≤ n, then
k∑

i=1
|Aσ

i | ≤ max(n, |I|r) ≤ max(n, kr).

12
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Proof. If |I| = 1 then n is an upper bound trivially. Hence, we will assume

|I| ≥ 2.

k∑

i=1

|Aσ
i | = |Aσ

i∗| +
∑

I\{i∗}

|Aσ
i |

≤ |Aσ
i∗| +

∑

I\{i∗}

(2r − |Aσ
i∗|)

= |Aσ
i∗| + (|I|− 1)r + (|I|− 1)(r − |Aσ

i∗|)

= |I|r + (|I|− 2)(r − |Aσ
i∗|).

Now if |Aσ
i∗| ≤ r then by the definition of Aσ

i∗ we have the bound |I|r on

the sum. Otherwise the second term is ≤ 0 (since |I| ≥ 2), and so again |I|r

bounds the sum.

We can now proceed with the proof of the theorem,

Proof. Let f(A, i,σ) = 1 if A ∈ Ai and A is an interval in σ and f(A, i,σ) = 0

otherwise. Then since each A is an interval in r!(n− r)! cyclic permutations

we have,
k∑

i=1

∑

A

∑

σ

f(A, i,σ) =
k∑

i=1

| Ai | r!(n− r)!.

Changing the order of summation and applying the third lemma above

gives,

∑

σ

k∑

i=1

∑

A

f(A, i,σ) ≤
∑

σ

max(n, kr) ≤ (n− 1)!max(n, kr).

13
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Dividing through by r!(n− r)! gives the result.
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5 Varied ri Hilton

We will modify our proof of Hilton’s theorem to give us an inequality which

holds in the more general situation in which we allow Ai consist of ri element

subsets of [n] rather than just a fixed size r.

Theorem 5. Let Ai ∈
(
[n]
ri

)
, i = 1, 2, . . . , k be cross-intersecting and assume

ri + rj ≤ n for all i )= j, then

k∑

i=1

|Ai|(
n
ri

) ≤ 1 if n ≥
k∑

i=1

ri,

k∑

i=1

ri

k∑
j=1

rj

|Ai|(
n
ri

) ≤ 1 if n ≤
k∑

i=1

ri.

Observe that the standard version of Hilton’s theorem is recovered if we

take all the ri to be the same. We will again proceed with a sequence of

lemmas. First we will need the following generalization of the lemma used

to prove Hilton’s theorem. As before, for each cyclic permutation σ, denote

by Aσ the set of A ∈ A which are intervals in σ.

Lemma 4. Let A1 ∈
(
[n]
r1

)
and A2 ∈

(
[n]
r2

)
. Assume r1 + r2 ≤ n, and that A1

and A2 are cross-intersecting. Suppose Aσ
1 and Aσ

2 are nonempty. Then we

have |Aσ
1 | + |Aσ

2 | ≤ r1 + r2.

Proof. For each A ∈ Aσ
1 let A′ denote those positions of σ for a which an

interval of length r2 beginning there intersects A, then |A′| = r1 + r2 − 1 for

15
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all A. Applying the first lemma in the proof of Hilton’s theorem we have,

|Aσ
2 | ≤|

⋂

A∈Aσ
1

A′| ≤ max(0, r1 + r2 − 1− |Aσ
1 | + 1).

By the assumption that Aσ
2 is nonempty, it follows |Aσ

1 |+ |Aσ
2 | ≤ r1 + r2.

We now generalize the third lemma of our proof of Hilton’s theorem to

the nonuniform case. Again for a fixed cyclic permutation σ, define I to be

the set of i for which there is a pair (A,Ai) such that A ∈ Ai and A is an

interval in σ. We Define ∆∗ = min
i

(ri − |Aσ
i |) and i∗ = argmin

i
(ri − |Aσ

i |).

Observe that if we have ri = r for all i, then the definition of i∗ coincides

with our old definition.

Lemma 5. Fix a cyclic permutation σ. Let A1 . . .Ak be pairwise cross-

intersecting collections of respectively ri element subsets of an n element base

set with ri + rj ≤ n for all ri )= rj, then
k∑

i=1
|Aσ

i | ≤ max(n,
∑
I

ri).

Proof. If |I| = 1 we immediately have the upper bound of n, so we may

16
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suppose that |I| ≥ 2.

k∑

i=1

|Aσ
i | = |Aσ

i∗| +
∑

I\{i∗}

|Aσ
i |

≤ |Aσ
i∗| +

∑

I\{i∗}

(ri + ri∗ − |Aσ
i∗|)

= ri∗ −∆∗ +
∑

I\{i∗}

(ri + ∆∗)

= ri∗ −∆∗ + (|I|− 1)∆∗ +
∑

I\{i∗}

ri

= (|I|− 2)∆∗ +
∑

I\{i∗}

ri.

Now if ∆∗ ≤ 0 we have the bound by the inequality above. If, on the other

hand, ∆∗ ≥ 0, then ri ≥ |Aσ
i | for every i. Hence, by summing over all i we

get
k∑

i=1
|Aσ

i | ≤
∑
i∈I

ri.

We are now ready to prove the theorem,

Proof. Let f(A, i,σ) = 1 if A ∈ Ai and A is an interval in σ and f(A, i,σ) = 0

otherwise. If n ≥
k∑

i=1
ri, then we have by the previous lemma,

∑

σ

k∑

i=1

∑

A

f(A, i,σ) ≤
∑

σ

n = n!.

Summing in another order we have,

k∑

i=1

∑

A

∑

σ

f(A, i,σ) =
k∑

i=1

| Ai | ri!(n− ri)!.
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After dividing through by n! we have established the first inequality. Now

suppose n ≤
k∑

i=1
ri. Then,

∑

σ

k∑

i=1

∑

A

f(A, i,σ) ≤
∑

σ

k∑

i=1

ri = (n− 1)!
k∑

i=1

ri.

Summing in a different order we again get,

k∑

i=1

∑

A

∑

σ

f(A, i,σ) =
k∑

i=1

| Ai | ri!(n− ri)!.

After dividing through by (n − 1)!
∑k

i=1 ri we have established the second

inequality.

18
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6 EKR and Hilton When r Divides n

Here we present very short proofs of the Erdős-Ko-Rado theorem and of

Hilton’s theorem in the case where r divides n. These proofs are likely

known, but we have yet to come across them in the literature. The idea is to

replace the notion of an interval in the cyclic permutation method with that

of an anti-interval, defined as a set of r elements each occurring
n

r
positions

after the previous in σ. For example, consider the cyclic permutation 231546.

This cyclic permutation has anti-intervals 214, 356, 25, 34, 16 as well as the

singletons, the complete interval, and the empty set.

Theorem 6. Let A be an intersecting collection of r element subsets of an

[n] where r < n and r divides n, then |A| ≤
(

n−1
r−1

)
.

Proof. We double count pairs (A, σ) where A ∈ A is an anti-interval in σ.

Observe that for a fixed A there are (r − 1)!(n− r)! permutations for which

A is an anti-interval. To see this first we place the elements of A; there are

(r−1)! distinguishable ways to do this. Next we have (n−r)! ways to fill in the

remaining elements. On the other hand each cyclic permutation may contain

at most one anti-interval from A. Thus, we have |A|(r−1)!(n−r)! ≤ (n−1)!,

and dividing gives the bound.

We now provide a similar proof for the r dividing n case of Hilton’s

theorem.

Theorem 7. Let {Ai} be a cross-intersecting collection of r element subsets

19
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of an n element set such that r < n and r divides n. Then,

k∑

i=1

|Ai| ≤ max

((
n

r

)
, k

(
n− 1

r − 1

))

Proof. Denote by Aσ the number of A ∈ A which are anti-intervals in σ. Let

f(A, i,σ) = 1 if A ∈ Ai and A is an anti-interval in σ and f(A, i,σ) = 0

otherwise. By the same reasoning as in the above proof we have,

k∑

i=1

∑

A

∑

σ

f(A, i,σ) =
k∑

i=1

| Ai | (r − 1)!(n− r)!

Observe that for any fixed σ we have,

k∑

i=1

|Aσ
i | ≤ max(n, k)

since if exactly one Aσ
i is nonempty, then n is an upper bound. If more than

one Aσ
i is nonempty, then they must contain exactly the same set, and so we

have an upper bound of k. Rearranging the sum gives,

∑

σ

k∑

i=1

∑

A

f(A, i,σ) ≤
∑

σ

max(n, kr) ≤ (n− 1)!max(n, k)

Dividing through by (r − 1)!(n− r)! gives the result.

20
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7 Another Proof of Hilton’s Theorem

We recall the statement of Hilton’s theorem,

Theorem 8. Let {Ai}, i = 1, 2, . . . , k be a cross-intersecting collection of r

element subsets of an n element set where 2r ≤ n. Then,

k∑

i=1

|Ai| ≤ max

((
n

r

)
, k

(
n− 1

r − 1

))
.

We also recall a key lemma from our first proof of Hilton’s theorem,

Lemma 6. Let σ be a cyclic permutation of [n]. Let A1 and A2 be cross-

intersecting collections of r element subsets of [n] with 2r ≤ n. Assume Aσ
1

and Aσ
2 are nonempty, then |Aσ

1 | + |Aσ
2 | ≤ 2r.

This proof of Hilton’s theorem will differ from the previous in that we

will replace the Ai with a new collections A′
i which are easier to work with

in such a way that the sum of their cardinalities does not decrease. We then

establish the bound for
k∑

i=1
|A′

i| which is, in turn, a bound for
k∑

i=1
|Ai|. We

now state this modification as a lemma,

Lemma 7. Let Ai, i = 1, 2, . . . , k be cross-intersecting collections of r ele-

ments subsets of [n]. Let A denote those sets A which occur in at least two

Ai and B be the collection of those sets occurring in exactly one Ai. We

define the sets A′
i by A′

1 = A ∪B and A′
i = A for 1 < i ≤ k. Then A′

i are

cross-intersecting and
k∑

i=1
|Ai| ≤

k∑
i=1

|A′
i|.
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Proof. First, we may add all sets A occurring in at least two Ai to every Ai

without violating the cross-intersecting property. This is clear since, for all

i, every B ∈ Ai must intersect A since A lies in a some Aj, j )= i. Next we

may move all sets A which occur in exactly one Ai to A1 since every set A

either lies in 0, 1, or k of the Ai and we already have that the sets in just one

Ai intersect with the ones in all k.

Now proving the theorem amounts to bounding the size of k|A| + |B|.

The proof will again use cyclic permutations.

Proof. We introduce some terminology we will need. Let T1 be the set of

those cyclic permutations, σ, on [n] for which there is A ∈ A forming an

interval in σ. Let T2 be the set of cyclic permutation, σ, for which there is

no A ∈ A forming an interval in σ. Let

T1 = {σ such that some A ∈ A is an interval in σ}, (1)

T2 = {σ such that no A ∈ A is an interval in σ}, (2)

N1(A) = {(A, σ) such that A ∈ A, σ ∈ T1, and A is an interval in σ}, (3)

N1(B) = {(A, σ) such that A ∈ B, σ ∈ T1, and A is an interval in σ}, (4)

N2(A) = {(A, σ) such that A ∈ A, σ ∈ T2, and A is an interval in σ}, (5)

N2(B) = {(A, σ) such that A ∈ B, σ ∈ T2, and A is an interval in σ}. (6)

We now list some simple relationships between |A|, |B|, and the above quan-

tities:
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|T1| + |T2| = (n− 1)!, (7)

N1(A) = |A|r!(n− r)!, (8)

N1(B) + N2(B) ≤ |B|r!(n− r)!, (9)

N2(B) ≤ n|T1|, (10)

2N1(A) + N1(B) ≤ 2r|T1|, (11)

where the last inequality follows from the first lemma applied to the cross

intersecting sets A ∪ B and A. We now use these facts to bound k|A|+ |B|,

k|A| + |B| =
1

r!(n− r)!
(kN1(A) + N1(B) + N2(B)) by (8) and (9) (12)

=
k

2r!(n− r)!
(2N1(A) +

2

k
N1(B) +

2

k
N2(B)) (13)

≤ k

2r!(n− r)!
(2N1(A) + N1(B) +

2

k
N2(B)) since k ≥ 2 (14)

≤ k

2r!(n− r)!
(2r|T1| +

2

k
N2(B)) by (11) (15)

≤ k

r!(n− r)!
(r|T1| +

n

k
|T2|) by (10) (16)

≤ k

r!(n− r)!
max(r,

n

k
)(|T1| + |T2|) (17)

=
k

r!(n− r)!
max(r,

n

k
)(n− 1)! by (7) (18)

= max

((
n

r

)
, k

(
n− 1

r − 1

))
. (19)
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8 A Weighted Version of Hilton’s theorem

We will prove the following weighted version of Hilton’s theorem:

Theorem 9. Let {Ai}, i = 1, 2, . . . , k be a cross-intersecting collection of r

element subsets of an n element set. Let wi be positive real numbers. Let

wmax = max
i

wi. Let W =
k∑

i=1
wi. Then,

k∑

i=1

wi|Ai| ≤ max

(
wmax

(
n

r

)
, W

(
n− 1

r − 1

))
.

Hilton’s theorem is recovered by taking all weights equal to one. We will

use a natural extension of our lemma from our proof of Hilton’s theorm. For

simplicity we reindex so that w1 = wmax.

Lemma 8. Let Ai, i = 1, 2, . . . , k be cross-intersecting collections of r ele-

ments subsets of [n]. Let A denote those sets A which occur in at least two

Ai and B be the collection of those sets occurring in exactly one Ai. We

define the sets A′
i by A′

1 = A ∪B and A′
i = A for 1 < i ≤ k. Then A′

i are

cross-intersecting and
k∑

i=1
wi|Ai| ≤

k∑
i=1

wi|A′
i|.

Proof. By the same reasoning as in the unweighted version, the cross-intersecting

property is preserved if we copy the A’s occurring in at least two Ai to all of

them and move all the A’s only occurring once to A1. Now we just note that

since the weights are positive the weighted sum can only increase by copying

sets. Furthermore, w1 = wmax implies the sum can not decrease by moving

sets to A1.
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Now, all that remains is to bound the sum W |A| + w1|B|. We will first

assume that W ≥ 2w1 and then deal with the remaining simple case sepa-

rately,

W |A| + w1|B| =
1

r!(n− r)!
(WN1(A) + w1N1(B) + w1N2(B)) (20)

=
W

2r!(n− r)!
(2N1(A) +

2w1

W
N1(B) +

2w1

W
N2(B)) (21)

≤ W

2r!(n− r)!
(2N1(A) + w1N1(B) +

2w1

W
N2(B)) (22)

≤ W

2r!(n− r)!
(2r|T1| +

2w1

W
N2(B)) (23)

≤ W

r!(n− r)!
(r|T1| +

w1n

W
|T2|) (24)

≤ W

r!(n− r)!
max(r,

w1n

W
)(|T1| + |T2|) (25)

=
W

r!(n− r)!
max(r,

w1n

W
)(n− 1)! (26)

= max

(
w1

(
n

r

)
, W

(
n− 1

r − 1

))
. (27)

Now suppose W ≤ 2w1. Then we have,

W |A| + w1|B| = w1(
W

w1
|A| + |B|)) (28)

≤ w1(2|A| + |B|) (29)

≤ w1 max

((
n

r

)
, 2

(
n− 1

r − 1

))
by Hilton’s theorem (30)

= w1

(
n

r

)
(31)
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In fact if we assume the sum of the weights is convergent, then the same

proof implies the following infinite version:

Theorem 10. Let {Ai}, i = 1, 2, . . . be a cross-intersecting collection of r

element subsets of an n element set. Let wi be positive real numbers. Let

wmax = max
i

wi. Let W =
k∑

i=1
wi. Then,

∞∑

i=1

wi|Ai| ≤ max

(
wmax

(
n

r

)
, W

(
n− 1

r − 1

))
.
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9 The Cross-intersection Graph

We will generalize the notion of a cross-intersecting family ofAi, i = 1, 2, . . . , k

by no removing the assumption that for all (i, j), Ai and Aj are cross inter-

secting. Rather, we define a graph on k vertices, representing the collections,

and add edges for those pairs of Ai we wish to be cross intersecting. We

call this graph the cross-intersection graph, G. The standard theorem corre-

sponds to the case where G is the complete graph.

The first theorem we prove may be thought of as a defect version of

Hilton’s theorem. We will allow l of the Ai to not cross-intersect with each

other, but we insist that every other possible cross-intersection occurs. We

state the theorem in terms of the cross-intersection graph.

Theorem 11. Let the cross-intersection graph G to be a complete bipartite

graph with classes of size l and k − l; furthermore, we add all edges among

the vertices in the k − l class forming a clique. Then

k∑

i=1

|Ai| ≤ max

(
l

(
n

r

)
, k

(
n− 1

r − 1

))
.

Again, we will introduce a lemma which allows us to push the sets around,

Lemma 9. Let Ai be cross-intersecting with respect G. Index the Ai so that

the first l collections correspond to the independent partition of the bipartite

graph. Let A denote the collection of sets A occurring in at least two Ai, i > l

or occurring at least once for i ≤ l and at least once for i > l. Let B be the
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collection of all remaining sets. Define the collections A′
i by A′

i = A ∪ B

for i = 1, 2, . . . , l and A′
i = A for i = l + 1, l + 2, . . . , k. Then A′

i are

cross-intersecting with respect to G and
k∑

i=1
|Ai| ≤

k∑
i=1

|A′
i|.

Proof. As before, we first copy all sets A occurring in A to all collections Ai.

By the choice of A we can not violate the cross-intersecting property by doing

this since, otherwise, we would have had two Ai with an edge between them

but not cross-intersecting to begin with. Next we move every set occurring

in exactly one Ai to A1. As before, we do not violate the cross-intersecting

property since all remaining A, not contained in the first l Ai already occur

in all Ai; hence, we would have already had a violation. Finally, we copy

every set A found in one of the first l Ai to all of the first l Ai. No violation

can occur because there is no edges between these collections in G.

Proving the theorem now amounts to determining an upper bound for
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k|A| + l|B|. We proceed as in our proof of Hilton’s theorem,

k|A| + l|B| =
1

r!(n− r)!
(kN1(A) + lN1(B) + lN2(B)) (32)

=
k

2r!(n− r)!
(2N1(A) +

2l

k
N1(B) +

2l

k
N2(B)) (33)

≤ k

2r!(n− r)!
(2N1(A) + lN1(B) +

2l

k
N2(B)) (34)

≤ k

2r!(n− r)!
(2r|T1| +

2l

k
N2(B)) (35)

≤ k

r!(n− r)!
(r|T1| +

nl

k
|T2|) (36)

≤ k

r!(n− r)!
max(r,

nl

k
)(|T1| + |T2|) (37)

=
k

r!(n− r)!
max(r,

nl

k
)(n− 1)! (38)

= max

(
l

(
n

r

)
, k

(
n− 1

r − 1

))
(39)

The standard version of Hilton’s theorem is recovered by take l = 1.

We note that if we instead to G to be a blown-up complete graph, where

each vertex is blown-up by possibly a different amount, then the same exact

proof goes through. We merely have treat the biggest component in the

blown-up graph like the independent set above. This direction of research

can be continued allowing one to obtain results for other types of graphs.

For example it is not too hard to prove the obvious bounds hold for cycles

and paths. However, this direction of research would be more interesting

if we could find a more general result involving a parameter of G like the

independence number. For example, we could try to prove that for a tree T ,

29



C
E

U
eT

D
C

ol
le

ct
io

n

we should always take the independence number of T copies of full Ais or

every Ai should be a star.
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10 Infinite Analogues for Classical Theorems

We will discuss some of our attempts to extend some classical theorems to

the infinite setting. The first question one might ask is does there exist an

uncountable antichain consisting of subsets of the integers? This exercise is

interesting to think about, but it turns out there are indeed such collections.

For example we may the collection A consisting of every subset of the positive

integers union its complement in the positive integers negated. For example

{2, 4, 6, 8, . . . ,−1,−3,−5, . . . } ∈A . This collection is uncountable since it

contains the powerset of an infinite countable set. Furthermore, it is an

antichain since containment with respect to the positive part implies reverse

containment with respect to the negative part and vice versa. This example

suggests that cardinality is not the right property to study if we are looking

for infinite analogues. Instead, we will see that other notions of measure

might be more interesting.

We will think of our subsets of the integers as infinite binary strings.

Furthermore we will identify these strings with the numbers in the interval

(0, 1) considered in base 2. Now we can think of A as a collection of strings,

and if we let A = .a1a2a3 . . . and B = b1b2b3 . . . then A ⊂ B just means

ai ≤ bi for every i. Now, strictly speaking there is not a 1−1 correspondence

due to the ambiguity of strings ending with repeating 1′s, but there are

only countable such strings and hence this does not contribute to measure

calculations. Then our question is the following: Suppose A is an antichain

31



C
E

U
eT

D
C

ol
le

ct
io

n

(and measurable), then what is the best upper bound for µA where µ is the

Lebesgue measure? We have yet to succeed n answering this question, but we

can say something about a related problem. Recall the following elementary

theorem in extremal set theory,

Theorem 12. Suppose A ⊂ 2[n] is intersecting. Then |A| ≤ 2n−1 and this

is sharp.

Proof. The family of subsets of [n] containing the element 1 achieves the

bound. Now, partition the subsets of [n] into pairs consisting of a set and

its complement. At most one set from each pair can be in an intersecting

collection. Hence we have a bound of 2n−1.

Now we will prove a measure theoretic analogue of this result,

Theorem 13. Let A be intersecting; that is, when we compare any two

binary strings in A, there is a common 1 in some position. Then µA ≤ 1
2

and this bound is sharp.

Proof. First observe that if we let A be the set of strings with 1 in the first

position, then the bound is achieved. This is obvious since then A is just the

second half of the interval. Now let A be an arbitrary intersecting collection.

Consider the function defined by f(x) = 1−x. This function is bijective and

measure preserving as a reflection across a point. Thus µA = µf(A). Now,

observe that f flips all the bits of the string it is applied to. Since A and

f(A) are disjoint for all A ∈ A, we know that we never have f(A) ∈ A. It
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follows that A ∩ f(A) = ∅. Then, by disjointness we have,

µA + µA = µA + µf(A) = µ(A ∪ f(A)) ≤ 1.

Dividing through by 2 gives the bound.

33



C
E

U
eT

D
C

ol
le

ct
io

n

11 A Generalization of Sperner’s Theorem

We will prove the following extension of Sperner’s theorem,

Theorem 14. Let A be a collection of subsets of [n] such that for all collec-

tions of three distinct elements of A, {A, B, C}, there does not exist x ∈ A

and y ∈ [n] \ (A \ {x}) such that (A \ {x}) ∪ {y}, B, and C lie in a chain.

Then |A| ≤
(

n
"n

2 #

)
.

Before proving the theorem we will explain it in more detail. In words the

restricted configuration is having 3 sets in A such that optionally swapping

out one element of one of the sets for another gives us 3 (possibly non-

distinct) sets in a chain. To clarify we allow the case where x = y. We also

allow (A \ {x}) ∪ {y} = B or C.

We call the operation of creating (A\{x})∪{y} from A a swap. Observe

that the theorem is indeed a generalization of Sperner’s: If A is an antichain

then a swap can lead to, at worst, two sets (possibly identical) in a chain.

On the other hand, the collection {{1, 2, 3}, {1, 2}, {5, 6}} is not an antichain

but satisfies the conditions of the theorem.

To prove the theorem we will introduce a generalization of the key ob-

ject in Lubell’s proof of Sperner’s theorem: the maximal chain. Recall

that a maximal chain of subsets of [n] is a collection of distinct subsets

{A0 = ∅, A1, . . . , An = [n]} where Ai ⊂ Ai+1 for all i. That is, a maximal

chain is a chain of length n + 1. We will consider a variation on this object

which we call a “thick chain”. Let x, y ∈ [n], then take a maximal chain
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{A0 = ∅, A1, . . . , An−2 = [n] \ {x, y}} in [n] \ {x, y}. We call the following

collection of distinct subsets a thick chain:

{∅, {x}, {y}, A1∪{x}, A1∪{y}, A2∪{x}, A2∪{y}, . . . , An−2∪{x}, An−2∪{y}, [n]}.

We are now ready to prove the theorem using Lubell’s double counting ap-

proach but with thick chains playing the role of chains.

Proof. If A contains ∅ or [n], then the remaining sets must form an antichain.

Now a full level of the 2[n] is prohibited since then we could create a collection

of 3 sets in a chain by performing a swap operation to get two identical subsets

and ∅ in a chain. Then by the equality characterization of Sperner’s theorem

we have strictly smaller than
(

n
"n

2 #

)
sets excluding ∅.

Now, we assume ∅ and [n] are not contained in A and count pairs (C, A)

where A ∈ A and C is a thick chain containing A. First, note that a thick

chain contains at most 2 elements of A. To see this, suppose we had 3

elements of A in C. Let {x} and {y} be the cardinality one sets in C. If the

3 sets form a chain we have a contradiction so we may assume two of them

contain x and the third contains y. Swapping y for x in the third set creates

3 sets in a chain, a contradiction.

Observe that there are
n!

2
distinct thick chains on [n]. To see this note

that we may choose x and y in
(

n
2

)
ways, and since the Ai form a maximal

chain in an n − 2 element set, there are (n − 2)! factorial ways to choose

them. Multiplying these numbers gives us
n!

2
. Thus, we see the number of

pairs (C, A) is at most 2
n!

2
= n!.
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If, on the other hand, we fix A ∈ A, we see that |A|!(n− |A|)! thick chains

contain it. First we must select an interval of sets from ∅ to A; there are |A|!

ways to do this. Now we choose the one element set not contained in A; there

are n− |A| such choices. So far we have determined all sets in C of cardinality

at most |A|. Finally, we can add the remaining (n − |A| − 1) elements in

(n− |A|− 1)! ways. Multiplying gives |A|!(n− |A|)! thick chains containing

A. Thus we have the number of pairs (C, A) is equal to
∑

A∈A
|A|!(n − |A|)!.

Dividing gives the LYM-type inequality:

∑

A∈A

1(
n
|A|

) ≤ 1

Thus we have, |A| ≤
(

n
"n

2 #

)
.

The proof above generalizes to prove an analogue of Erdős’s[7] k+1-chain

generalization of Sperner’s theorem.

Theorem 15. Let A be a collection of subsets of [n] such that for all collec-

tions of k+2 distinct elements of A, {A1, A2, . . . , Ak+2}, there does not exist

x ∈ A1 and y ∈ [n] \ (A1 \ {x}) such that (A1 \ {x})∪ {y}, A2,. . . ,Ak+1, and

Ak+2 lie in a chain. Then |A| is at most the sum of the k largest binomial

coefficients.

Proof. If ∅ or [n] are in A we are done by the equality characterization of

Erdős theorem. Suppose not, and again consider pairs (C, A) where A ∈ A

is contained in C. There are at most 2k sets contained on the thick chain, or
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else, by the pigeonhole principle, we could perform a swap and create k + 2

sets contained in a chain. Thus the number of pairs (C, A) is at most 2k times

the number of thick chains,
n!

2
, that is kn!. Counting in the other order we

again get,
∑

A∈A
|A|!(n− |A|)!. Dividing gives the LYM-type inequality,

∑

A∈A

1(
n
|A|

) ≤ k

which in turn gives us that |A| is at most the sum of the k largest binomial

coefficients.

It seems plausible that one could get the same Sperner and Erdős type

bounds for natural generalizations involving more swapping. We could define

even “thicker” chains and do similar counting. The barrier to continuing in

this direction is the fact we needed to deal with the case of A containing ∅ or

[n] in an ad hoc way not contained in the counting argument. Nonetheless,

we can obtain an LYM-type inequality for the nonempty elements of A which

are not too large, and the analogous Sperner type bounds. To this end we

extend the notion of a thick chain to a “t-thick chain”. t-thick chains will be

truncated consisting of subsets of [n] with sizes in the interval [1, n− t + 1].

Our original notion of thick chain corresponds to a 2-thick chain if we for-

get about ∅ and [n]. We are now ready to give the formal definition. Let

x1, x2, . . . , xt be distinct elements of [n]. Let {A0 = ∅, A1, . . . , An−t} be a

maxiamal chain in [n] \ {x1, x2, . . . , xt}. Then a t-thick chain is a collection

of the following form:
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{A0∪{x0}, A1∪{x0}, . . . , An−t∪{x0}, A0∪{x1}, A1∪{x1}, . . . , An−t∪{x1}, . . . , A0∪

{xt}, A1 ∪ {xt}, . . . , An−t ∪ {xt}}. We now state our limited extension of the

above theorem applying only when A consists of sets in the range [1, n−t+1]:

Theorem 16. Let A be a collection of subsets of [n] consisting of elements

whose sizes lie in the interval [1, n − t + 1]. Furthermore, suppose that for

all t + 1 distinct elements A1, A2, . . . , At+1 ∈ A, there does not exist xi ∈ Ai

and yi ∈ [n] \ (Ai \ {xi}) for i = 1, 2, . . . , t − 1 such that (Ai \ {xi}) ∪ {yi},

i = 1, 2, . . . , t− 1, At, and At+1 lie in a chain. Then |A| ≤
(

n
"n

2 #

)
.

Proof. We will double count pairs (A, C) where A ∈ A, C is a t-thick chain

and A ∈ C. First, observe that in total there are
n!

t!
t-thick chains. First

we can choose the xi in
(

n
t

)
ways, and then we can add the remaining n− t

elements one at a time in (n− t)! ways. Multiplying gives
n!

t!
.

We may have at most t elements of A in any t-thick chain since otherwise,

by the pigeonhole principle we would have some two of them containing the

xi. Then we could perform t− 1 swaps to create t + 1 sets in a chain. Thus,

by fixing C first we have an upper bound on the number of pairs (A, C) of

t
n!

t!
=

n!

(t− 1)!
.

We now first fix some A ∈ A and consider how many C contain it. First,

we have a chain of |A|! sets up to A. Next we choose the t − 1 singleton

sets of the t-thick chain which are not subsets of A. There are
(

n−|A|
t−1

)
ways

to do this. All sets in the t-thick chain of size at most |A| have now been

determined. Finally, we can add the remaining n − |A| − t + 1 elements to

38



C
E

U
eT

D
C

ol
le

ct
io

n

complete the t-thick chain; we can do this in (n−|A|−t+1)! ways. Hence, we

see that the number of (A, C) pairs is exactly
∑

A∈A
|A|!

(
n−|A|
t−1

)
(n− |A|− t+1)!.

After simplifying, we get,

∑

A∈A

|A|!(n− |A|)!
(t− 1)!

≤ n!

(t− 1)!

Or equivalently,
∑

A∈A

1(
n
|A|

) ≤ 1.

Thus we have, |A| ≤
(

n
"n

2 #

)
.

In the same manner, one can prove a k + 1 chain version, but we omit

this proof.

To conclude we return to our original simple definition of thick chains

and consider another extremal problem. Although this bound, unlike the

ones above, is probably not sharp. We have yet to find other research on this

problem, but Katona mentioned he thinks Frankl has proved the following

(or something better),

Theorem 17. Let A be such that for all A, B ∈ A we have |B \A| ≥ 2, then

|A| ≤ 1
2

(
n
"n

2 #

)
.

Proof. If ∅ or [n] are in A the problem is trivial. Suppose not and count pairs

(C, A). The proof is exactly as in the first theorem of the section except that

now a thick chain may contain at most one A ∈ A rather than 2. Carrying
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through the proof we get the LYM-type inequality,

∑

A∈A

1(
n
|A|

) ≤ 1

2

Thus, we get a bound |A| ≤ 1
2

(
n
"n

2 #

)
.

Observe that if instead of considering the constraint |B \A| ≥ 2 we con-

sider |B \A| ≥ 1, then we have exactly the conditions of Sperner’s theorem.
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12 An Inequality for a Skew k-part Sperner

System

First, we recall what it means for a collection F of subsets of [n] to be k-part

Sperner. Let [n] = X1 ∪X2 ∪ · · · ∪Xk be partition (k-coloring) of [n]. Then

F is said to be k-part Sperner if for all F, G ∈ F we do not have G\F ⊂ Xi.

We recall without proof the famous 2-part Sperner theorem of Katona[11]

and Kleitman[12]:

Theorem 18. Let F be 2-part Sperner, then |F| ≤
(

n
"n

2 "

)
.

Unfortunately, things become more complicated in more part Sperner

families and similar bounds do not hold. Nonetheless, it is possible to de-

termine some LYM-type inequalities for such families. For a k-part Sperner

family F and F ∈ F we let Fi = F ∩Xi. Furthermore, for all such families

we assume, n1 ≤ n2 ≤ · · · ≤ nk. In [2] the following inequality was proved,

Theorem 19. Let F be k-part Sperner, then

∑

F∈F

1
k∏

i=1

(
ni

|Fi|

) ≤
k∏

i=2

(ni + 1).

The proof given in [2] used a reduction to the classical LYM-inequality. In

proving results about the convex hull of k-part Sperner families, Péter Erdős

and Katona [8] inroduced an extension of Lubell’s permutation method to

k-tuples of permutations. We will show that the idea of Péter Erdős and
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Katona, with one additional insight can be used to give the above LYM-type

inequality for k-part Sperner systems.

Proof. Consider k-tuples π = (π1, π2, . . . ,πk) where πi is a permutation of

Xi. F ∈ F is said to be compatible with π if the first |Fi| elements of πi are

the elements of Fi in some order. We will count pairs (π, F ), where F ∈ F

is compatible with π, in two different ways. If we fix the set F first then we

must have the elements of Fi at the beginning of each π. Thus the number

of pairs (π, F ) is equal to,

∑

F∈F

k∏

i=1

|Fi|!(ni − |Fi|)!

Now, fix a k-tuple of permutations π. Observe that there each F ∈ F may

be identified with the k-tuple of its cooresponding Fi, (F1, F2, . . . , Fk). By

the pigeonhole principle, if we have more than
k∏

i=2
(ni +1), F ∈ F compatible

with π then some two k − 1 tuples (F2, . . . , Fk) coincide. However, this can

not happen because if two compatible F end in the same k − 1 tuple then

the first coordinate must also coincide by the k-part Sperner property. Thus,

the number of F compatible with a given π is at most
k∏

i=2
(ni + 1). It follow

that the number of pairs (π, F ) is at most
k∏

i=1
ni!

k∏
i=2

(ni +1). Dividing though

by
k∏

i=1
ni! gives,

∑

F∈F

1
k∏

i=1

(
ni

|Fi|

) ≤
k∏

i=2

(ni + 1)
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After seeing this inequality it is natural to wonder what conditions we

would need to put on F to replace the right hand side of the the inequal-

ity with a 1. After all, the asymmetry with respect to the ni is somewhat

unpleasing. In the following theorem we remedy this asymmetry, but unfor-

tunately it is at the cost of introducing asymmetry to the conditions on F .

Given a partition, [n] = X1 ∪ X2 ∪ · · · ∪ Xk, we say that F is skew-k-part

Sperner if there is no F, G ∈ F and t ∈ [n] such that Fi = Gi for i < t and

Ft ⊂ Gt and Ft )= Gt.

Theorem 20. Let F be skew-k-part Sperner, then

∑

F∈F

1
k∏

i=1

(
ni

|Fi|

) ≤ 1.

Proof. We will again double count pairs (π, F ). By first fixing F ∈ F we see

that as before the number of pairs is equal to,

∑

F∈F

k∏

i=1

|Fi|!(ni − |Fi|)!

Fix a k-tuple of permutations π. There is at most one F ∈ F compatible

with π. To see this suppose F and G are compatible with π and and again

identify F and G with their k-tuples, (F1, F2, . . . , Fk) and (G1, G2, . . . , Gk).

Let t be the smallest i for which Fi )= Gi. Then, Ft ⊂ Gt or Gt ⊂ Ft, and,
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hence, we have violated the skew-k-part Sperner property. It follows that the

number of pairs (π, F ) is at most
k∏

i=1
ni!. Dividing through by

k∏
i=1

ni! gives

the inequality.

The above inequality is the LYM-type inequality for the following poset:

Take the Hasse diagram of the poset Bn1 . Replace each vertex in the diagram

with a copy of the Hasse diagrame for Bn2 . Continue in this way until we

replace each vertex with a copy of the Hasse diagram of Bnk
.
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