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Abstract

A database can be considered as a matrix where a sufficiently large

set of columns (a key) will uniquely determine the rows. Given the

number of columns and the family of minimal keys an interesting task

is to find the minimal number of rows with which a matrix can be

constructed that fulfills these requirements.

Secret sharing is based on a similar situation. There is a treasure

box with many keyholes with each participant holding a key. The box

can only be opened if at least a given number of key holders pool their

resources together. This can also be formulated by a matrix where the

participants are represented by the columns and the treasures are the

indices of the rows. Here one can also ask what the minimum number

of rows is with which this situation can be reached.

In both problems insufficient resources should not determine the

row/secret. However, in real life applications we need stronger secu-

rity. We cannot allow the possibilities to be narrowed down to the

point where brute force is enough to find the correct one. Also we

may require that the keys of the participants must be changed from

time to time, in other words there must be many sets of partial secrets

which properly function.

The main task of the present thesis is to investigate mathematical

problems lying in-between. There is a very wide class of problems

which are special cases of the general problem obtained as a common

generalization of problems in database theory and secret sharing.
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1 Introduction

A database can be considered as an n×m matrix M . The columns represent

kinds of data, first name, last name, date of birth, etc., the entries in one

row are the data of a given individual. (Suppose that the rows are different.)

Let Ω denote the set of columns where |Ω| = m. We say that a set K ⊂ Ω

of columns is a key, if the data in the columns belonging to K uniquely

determine the row. In other words, there are no two rows which are equal

in the columns belonging to K but different in some other column. K is

a minimal key if it is a key, but none of its proper subsets is a key. Of

course the family of minimal keys can be quite complicated, but here it will

be supposed that they all have the same size. Let 1 ≤ ` be an integer and

suppose that the family of minimal keys is equal to
(

Ω
`

)
(= family of all `-

element subsets). In other words, every `-element set of columns is a key, but

no `− 1-element set of columns is a key. Choosing ` columns and fixing the

entries in these columns they determine at most one such row, but choosing

` − 1 columns there are at least two different rows which are equal in these

columns. For instance, if ` = 1 then this definition means that the entries

in any one column are all different, but the empty set is not a key, in other

words, the number of rows is at least two.

Let s(m, `) denote the minimum number of rows n in an n×m matrix M

in which all `-element sets of columns are the minimal keys. This question
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was asked in [4], where also the lower bound(
s(m, `)

2

)
≥
(

m

`− 1

)
(1)

was found. It was shown that the bounds obtained from (1) for ` = 1 and

2 are sharp. For ` = 3 (1) gives s(m, 3) ≥ m. It was conjectured in [4]

that s(m, 3) = m and a hint was given for its solution. The conjecture was

partially solved in [3] and it was finally proved in [1] for all m ≥ 7. There

are many interesting related results surveyed in [5]. (Papers which appeared

later: [8], [12], [14], [15], [18], [19], [20].)

For general ` (1) leads to s(m, `) ≥ cm
`−1
2 . Paper [3] proved that this

lower bound is asymptotically sharp, that is c′m
`−1
2 is an upper bound with

some c = c(`) < c′ = c′(`).

An important branch of cryptology, the theory of secret sharing is based

on a very similar situation. There is a treasure box with m keyholes. Each

of the m persons possesses a hard key. Any ` of them can open the box,

but `− 1 of them cannot. In other words each of them has a partial secret,

his own key. ` of these partial secrets are sufficient to determine the main

secret, the information needed to open the treasure box, but no ` − 1 of

these partial secrets determine the main secret. This can also be formulated

by an n × m matrix M where the persons are represented by the columns

and the ith main secret is the index of the ith row. The partial secret p

of the person is an entry in his column. In other words he knows that the

secret/row can only be one of the rows where p is the entry in his column in
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the matrix. Suppose, again that the rows of the matrix are different. Then

the assumption is that fixing the entries of the matrix in any ` columns there

is exactly one row containing these prescribed entries in the given columns,

while if only ` − 1 of these entries are fixed in ` − 1 columns, then one can

find two distinct rows in which the entries in the given columns are equal.

Here one can also ask what the minimum number of rows (main secrets) is

with which this situation can be reached. Of course having all `-element

subsets as minimal keys is a very specific case, in general we could determine

any family of qualified subsets to serve as the access structure of our secret

sharing scheme.

The two problems look mathematically identical until this point. In the

case of the second problem, however, there are stronger assumptions con-

cerning the security. When the `−1 people with the `−1 (hard)keys cannot

open the box, they cannot do much more. However, in the case of practical

(electronic) situations it is supposed that the ”mechanical structure” of the

treasure box is also known by everybody. Mathematically, the participants

all know the matrix M . If the partial secrets (entries) of the ` − 1 persons

determine two rows then they know that one of the two main secrets open

the treasure box. They simply try both! Therefore one supposes here that

there are many rows which are equal in the columns belonging to a given set

of `− 1 columns.

But there is another difference between the assumptions in database the-

ory and secret sharing. In the case of databases an ` − 1-element set of
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columns is not a key, if there are different rows for one given set of pre-

scribed entries in these columns. In terms of treasure box and of hard keys

it means that no ` − 1 (hard) keys can open the box. But strong security

requires that the keys of the persons must be changed from time to time, in

other words there must be many sets of partial secrets which properly func-

tion. In the extreme case all choices function, that is choosing the partial

secrets (entries in the corresponding columns) in any way and taking ` − 1

columns there are many distinct rows which have the prescribed entries in

these ` − 1 rows. This problem was solved in the paper of Shamir ([21]).

(More precisely, Shamir’s problem was formulated in a probabilistic way:

` − 1 persons do not receive any information on the main secret what ever

choice of partial secrets are given.)

Let us summarize the differences between the two problems in the matrix

form. There is no difference concerning the choice of ` columns. Prescribing

the entries in these ` columns in any way there is at most one row containing

these entries in the given columns. But the two problems are very different

concerning the choice of `− 1 columns. In the case of databases there must

be one choice of entries such that there are at least two rows containing these

entries in the given columns. In the case of (absolutely secure) secret sharing,

for every choice of entries for the ` − 1 columns there must be many rows

equal to these entries.

The main task of the present thesis is to investigate mathematical prob-

lems lying in-between. There is a very wide class of problems which are
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special cases of the general problem obtained as a common generalization of

problems in database theory and secret sharing.

In Section 2 we describe Shamir’s original idea and provide alternative

solutions for some weaker secret sharing schemes based on his design.

In Section 3 we will investigate the minimum number of rows in a matrix

in which the followings hold. Any ` = 2 columns form a key, but no single

column does in a stronger sense: not only that there is a pair of equal entries

in each column, but there are at least k equal entries. Also we will look at

graphs serving as access structures which, as we will see, can be regarded as

a more general case of this one.

These definitions do not depend on the actual values (entries) in the

matrix, only on their equality in the columns, we can replace the column by

the partition of the set of n rows defined by equality on its entries (throughout

this thesis the two terminologies will be used alternatively). The conditions

on these partitions are nothing else but conditions on the sizes of the `-wise

and ` − 1-wise intersections. So, in the case of ` = 2 the condition is that

each partition has a class with size at least k, but the pairwise intersections

of these classes do not have two or more elements. This is a problem of

Steiner systems, which have been solved years ago. We have found a short

asymptotic solution in [9].

In Section 4 we present some relevant constructions concerning matrix

representations of closure operations done by Demetrovics, Füredi and Ka-

tona ([3]) in order to lay the groundwork for our main result.
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Finally in Section 5 the analogous problem for ` = 3 is considered. In

the form of partitions our conditions are the following ones: 1. for any two

partitions there is a c-element subset, which is covered by both of them, each

2-element subset of [n] is covered by at most two different partitions. In [10]

we found asymptotic bounds on the minimum size of the underlying set [n]

where such partitions can be constructed.
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2 Shamir’s (k, n) Threshold Scheme

2.1 Definitions

In a secret sharing scheme with access structure A ⊂ 2n (where n is the

number of participants) the goal is to divide a secret S into n pieces S1, . . . , Sn

in such a way that:

(i) knowing a set B of Si pieces makes S computable if ∃C : C ∈ A,C ⊆ B;

(ii) if no such C exists then knowledge of a set B of Si pieces leaves S

completely undetermined (in the sense that all of its possible values are

equally likely).

If A consists of precisely of all k-element subsets of 2n then this scheme

is called a (k, n) threshold scheme.

Shamir’s scheme described in [21] is based on polynomial interpolation:

given k points in the 2-dimensional plane (x1, y1), . . . , (xk, yk) with distinct

xi’s, there is one and only one polynomial q(x) of degree k − 1 such that

q(xi) = yi for all i. To divide the secret S into pieces Si, we pick a random

k−1 degree polynomial q(x) = a0 +a1 ∗x+ · · ·+ak−1 ∗xk−1 in which a0 = S,

and evaluate: S1 = q(1), . . . , Si = q(i), . . . , Sn = q(n). A piece received by

the ith participant will be the ordered pair (i, Si). Knowing any k of these

pieces is sufficient to find the coefficients of q(x) by interpolation and then

evaluate S = q(0). On the other hand knowledge of just k − 1 of these

values is not enough to calculate S. To make this claim more precise, we use
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modular arithmetic instead of real arithmetic. The set of integers modulo

a prime number p forms a field in which interpolation is possible. Given

an integer valued secret S, we pick a prime p which is bigger than both S

and n. The coefficients a1, . . . , ak−1, in q(x) are randomly chosen from a

uniform distribution over the integers in [0, p), and the values D1, . . . , Dn are

computed modulo p.

Let us now assume that k − 1 of these n pieces are obtained by an op-

ponent. For each possible value S ′ in [0, p) he can construct exactly one

polynomial q′(x) of degree k − 1 such that q′(0) = S ′ and q′(i) = Si for the

k− 1 given pieces. By construction, these p possible polynomials are equally

likely, and thus there is absolutely nothing the opponent can deduce about

the real value of S.

Some of the useful properties of this (k, n) threshold scheme are:

(1) The size of each piece does not exceed the size of the original data.

(2) When k is kept fixed, Si pieces can be dynamically added or deleted

without affecting the other Si pieces.

(3) By giving a participant multiple Si pieces we can create a hierarchical

scheme in which we can assign a weight to each participant according to

their importance. For example if the secret is the ability to sign checks in

a company then we can give the company’s president three values of q(x),

each vice-president two values of q(x) and each executive one value of q(x).

This way a (3, n) threshold scheme enables checks to be signed either by any

three executives, or by any two executives one of whom is a vice-president,

10
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or by the president alone.

2.2 Databases and weak schemes

Shamir’s scheme is strong in the sense that after obtaining k − 1 pieces

the adversary still cannot reduce the number of possible secrets from the

original. However in the main part of this paper we will consider ’weaker’

schemes in the sense that we do not require that all secrets remain valid after

the opponent manages to get hold of k − 1 pieces only that there should be

at least a pre-determined number d of them that are still possible.

Let us translate the scheme into a database of which a simple model

is a matrix. Each row in the matrix corresponds to a secret, each column

corresponds to a participant. Shamir’s scheme would translate into a (pk, n)

matrix with each row representing one of the pk polynomials possible over

the field. It can be easily proved that the construction is minimal in the

number of rows necessary for the given access structure. Our main goal is to

minimize the number of rows needed in the case of other, weaker schemes.

However finding a solution with i rows won’t necessarily mean that we can

easily obtain a solution for any j > i as well because simply adding a row

is not always possible without damaging the structure of the database. This

new row could introduce completely new valid choices of values and it is not

at all guaranteed that these choices are already covered by our database.

Therefore finding the minimum number of rows won’t always be enough,

sometimes we’ll need multiple constructions to show that the database can

11
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be realized with the given parameters.

Let us see a specific example. Given Shamir’s polynomial secret sharing

structure, we’d like to modify it so that after learning k − 1 values the ad-

versary still has p
c

secrets to choose from, with c ≥ 2, c ∈ Z+. Following the

original proof it is easy to see that this database requires at least (p
c
)k rows.

We will show 3 solutions for this problem, all with different number of rows.

Solution 1: We start with all of the pk rows from the original structure

and we delete each of those where the value given to a specific participant

is not divisible by c. This will leave us with pk

c
rows. Suppose that an

adversary manages to learn k − 1 shares. If the share of this designated

person is among them, then all possible choices for the secret are still valid.

If not, then knowing this additional information means that only p
c

secrets

remain possible. So this construction achieves the desired result with pk

c
rows

and has a further property: after learning k − 2 shares the adversary can’t

discard any choice yet, only after learning k− 1 shares can he get additional

information.

Solution 2: We use the original design but for p
c

instead of p. This gives

us (p
c
)k rows but only p

c
possible secrets. Therefore we duplicate the database

c times, each with different values and secrets. Now we have c(p
c
)k rows and

p secrets. With this construction the adversary will know immediately after

obtaining only 1 share which p
c

secrets remain possible but he won’t get any

further information out of the next k − 2 shares. In some sense this is the

12
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exact opposite of the previous solution.

Solution 3: Again we start with the original design modified for p
c

instead

of p secrets. We partition the rows into p
c

sets, according to the secret cor-

responding to them. We then further partition each set into c roughly equal

subset independent from the others. For each subset we change the secret

corresponding to it, so that no two new secrets will be equal. It doesn’t mat-

ter if the subsets aren’t of equal size or the way we partition them. With this

construction we will have cp
c

= p secrets in our database. Because we didn’t

modify the underlying structure, nor the data received by the participants it

follows from the original proof that after obtaining k−1 shares the adversary

will still have p
c

rows to choose from. These rows come from different sets,

so the secret corresponding to any 2 of them cannot be the same. This con-

struction uses the absolute minimum number of rows possible, but we cannot

say anything about the behavior of the structure between the first and the

k − 1th information obtained by the adversary.
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3 Asymptotic packing of k-sets

3.1 Introduction

Let [n] = {1, 2, . . . , n} be an n-element set, k ≥ 3 an integer. The family

P(n, k) ⊂
(

[n]
k

)
is called a packing if F,G ∈ P(n, k) (F 6= G) implies |F ∩G| <

2. A packing is called exact if there is an element H ∈ P(n, k) for every pair

a, b ∈ [n] (a 6= b) such that {a, b} ⊂ H. These exact covers are also called

Steiner systems and denoted by S(n, k). There are some obvious divisibility

conditions for n and k which are needed for the existence of an exact cover

S(n, k). Richard Wilson’s classical theorem [22] states that these necessary

conditions are also sufficient.

It is easy to see by double counting that

|P(n, k)| ≤
(
n
k

)(
k
2

) (3.1)

holds for every packing with equality for an exact packing. Wilson’s theorem

gives an infinite sequence of n’s (k is fixed) for which an exact cover P(n, k)

exists. Our modest goal, as described in [9], is to give a cover P(n, k) for

every n so that the inequality (3.1) is an asymptotic equality (k is fixed).

However our construction is very simple. More effort is needed to prove its

asymptotic behavior than to describe the construction itself.

A packing P(n, k) defines a graph G = ([n], E) where E consists of the

pairs {a, b} (a 6= b) which are subsets of the members of P(n, k). The graph

will be denoted by G(P(n, k)).
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The Turán graph T (p, k) has pk vertices, V = V1 ∪ . . . ∪ Vk, Vi ∩ Vj =

∅(i 6= j) and |V1| = . . . = |Vk| = p. The vertices a and b are joined by an

edge if and only if a ∈ Vi, b ∈ Vj and i 6= j.

Proposition 3.1 If p is prime number, k ≤ p then there is a packing

P(pk, k) satisfying G(P(pk, k)) = T (p, k).

Theorem 3.2 Let k ≥ 3 be a fixed integer. There is a packing P(n, k) for

every n such that

lim
n→∞

|P(n, k)|(
n
k

) =

(
k

2

)
. (3.2)

The construction will be based on Proposition 3.1.

As it turns out Erdős and Hanani proved this result already in 1963 [6],

however in their proof they only gave the exact packing of a Turán graph

where the size of the classes was very general. In contrast my construction

only requires the sizes to be primes. This case can be proven much more

easily, although we have to use deeper number theory tools. The creating

of the asymptotically good construction is the same as in [6], the important

observation is that the asymptotic quality remains true even so.

3.2 Proofs

Proof of Proposition 3.1. Let the vertices of the Turán graph be the

ordered pairs (i, j) where 1 ≤ i ≤ k, 1 ≤ j ≤ p, the classes of the vertices

15
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are Vi = {(i, j) : 1 ≤ j ≤ p} (1 ≤ i ≤ k). Let c and d be integers satisfying

1 ≤ c, d ≤ p and define the set

F (c, d) = {(i, ci+ d) : 1 ≤ i ≤ k}

where ci + d is considered mod p. It is obvious that F (c, d) has exactly

one element in each Vi, therefore |F (c, d)| = k. Only such pairs can be their

subsets which are in distinct classes that is the edges of the Turán graph.

Now it will be shown that every such edge {(i1, j1), (i2, j2)} (i1 6= i2) is a

subset of exactly one of the sets F (c, d). This inclusion holds if and only if

the following equations hold:

ci1 + d ≡ j1 (mod p)

ci2 + d ≡ j2 (mod p).

This equation system in c and d has a unique solution when i1 6= i2 since its

matrix is non-singular.

This proves that the family

P(pk, k) = {F (c, d) : 1 ≤ c, d ≤ p}

is a packing satisfying the conditions of the proposition. �

Let R(p, k) denote the packing obtained in Proposition 3.1. Theorem 3.2

will be proved by combining copies of R(p, k)’s.

Proof of Theorem 3.2.

Construction. Define p1(n, k) as the largest prime number such that

p1(n, k)k ≤ n. If i ≥ 1 then let pi+1(n, k) be the largest prime number

16
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satisfying pi+1(n, k)k ≤ pi(n, k). If there is no such prime number, that is,

k2 > pi(n, k) (as for using Lemma 3.1 pi ≥ k is required) then let us stop and

denote the last i by u. (Of course u also depends on n and k, from now on

these arguments are also omitted from pi(n, k) to avoid too long formulas.)

Let Tu(n, k) = R(pu, k). Since G(R(pu−1, k)) is a Turán graph with

classes of size pu−1 ≥ puk, one can place an isomorphic copy of Tu(n, k) in each

of these classes in such a way that the so obtained family of k-element subsets

on [pu−1k] is a packing. Denote this family by Tu−1(n, k). Suppose that

Ti(n, k) is a packing of k-element subsets on [pik]. The graph G(R(pi−1, k))

is a Turán graph with classes of size pi−1 ≥ pik. Place isomorphic copies

of Ti(n, k) in each of these classes. The so obtained family of k-element

subsets, Ti−1(n, k) is a packing on [pi−1k]. The construction of T1(n, k) uses

R(p1, k), there is sufficient room for this, since p1k ≤ n. To indicate the

slight difference between the underlying sets, the notation T (n, k) will be

used when T1(n, k) is considered on [n] (rather than [p1k]).

Investigating the asymptotic behavior. Let hi(n, k) be the number of pairs

which are not covered by the members of Ti(n, k) that is the number of edges

of the complement of G(Ti(n, k)) (with the underlying set [pik]). On the

other hand, h(n, k) is the same thing as h1(n, k), but on the underlying set

[n].

Lemma 3.3

h(n, k) = o

((
n

2

))
.
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Proof. hu(n, k) = k
(
pu
2

)
is trivial. Suppose that hi(n, k) is known, try to

express hi−1(n, k). The non-covered pairs in one class of Ti−1(n, k) are either

in the here placed Ti(n, k) or one of their end-points are in the pi−1 − pik

element set not covered by the elements of of the copy of Ti(n, k). The

number of edges of the previous kind is hi(n, k) while the number of edges

of the latter kind is at most pi−1(pi−1 − pik). This is true for every class,

therefore

hi−1(n, k) ≤ k (hi(n, k) + pi−1(pi−1 − pik)) . (3.3)

Here it is crucial that we took the largest prime number pi satisfying

pik ≤ pi−1 and the fact that this is near to pi
k

, that is, the prime numbers are

densely situated on the number line. This is why the following statement will

be used to obtain a good upper bound on (3.3). It is an easy consequence of

the prime number theorem. (See e.g. [2].)

Theorem 3.4 Let 0 < ε be a real number. If r > r(ε) then there is a prime

number between r(1− ε) and r.

The following almost special case of this theorem is also needed, an ele-

mentary proof of which can be found in [7].

Theorem 3.5 (Chebyshev) If 2 ≤ N is a natural number then there is a

prime number between N and 2N .

Since p1 is the largest prime number with p1 ≤ n
k
, the inequality n

2k
≤ p1

holds by Theorem 3.5. Similarly, pi
2k
≤ pi+1 is also true. Hence we have

n
(2k)u

≤ pu < k2 and u, as a function of n, tends to infinity with n.
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By definition we have

kapb ≤ pb−a(a < b). (3.4)

This implies ku−vpu ≤ pv. Let v = bu
2
c what also tends to the infinity with

n. Choose n(ε) so that r(ε) ≤ pv (where v = v(n(ε), k)) and

1

kv−1
≤ ε (3.5)

both hold. Then r(ε) ≤ pi holds for i ≤ v. Applying Theorem 3.4 with

r = pi−1

k
≥ pi we obtain that (1 − ε)pi−1

k
≤ pi holds for i ≤ v. This is

equivalent to pi−1 − pik ≤ εpi−1. Inequality (3.3) implies

hi−1(n, k) ≤ k
(
hi(n, k) + εp2

i−1

)
if i ≤ v. (3.6)

Induction on j proves the generalization of (3.6):

hi−j(n, k) ≤ kjhi(n, k) + ε

j−1∑
`=1

kj+1−`p2
i−` + εkp2

i−j (1 ≤ j < i). (3.7)

Using (3.4) in (3.7)

hi−j(n, k) ≤ kjhi(n, k)+ε

j−1∑
`=1

1

kj−1−`p
2
i−j+εkp

2
i−j = kjhi(n, k)+εp2

i−jk

j∑
`=1

1

kj−`

≤ kjhi(n, k) + εp2
i−j

k2

k − 1
(i ≤ v)

is obtained. We will actually use this inequality for i = v and j = v − 1:

h1(n, k) ≤ kv−1hv(n, k) + εp2
1

k2

k − 1
. (3.8)
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Obvious analogues of (3.3) and (3.6) are

h(n, k) ≤ k(h1(n, k) + n(n− p1k))

and

h(n, k) ≤ k(h1(n, k) + εn2).

Combine the latter one with (3.8) to obtain

h(n, k) ≤ kvhv(n, k) + εp2
1

k3

k − 1
+ εkn2 ≤

kvhv(n, k) + ε
(n
k

)2 k3

k − 1
+ εkn2 = kvhv(n, k) + εn2 k2

k − 1
. (3.9)

Recall that T (n, k) is a family of k-element subsets of [n]. The total num-

ber of pairs of elements (potential edges) is
(
n
2

)
. The ratio of the uncovered

pairs and this number of all pairs for T (n, k) can be upperbounded using

(3.9).

h(n, k)(
n
2

) ≤ kvhv(n, k)(
n
2

) +
εn2 k2

k−1(
n
2

) . (3.10)

Let us give now an upper bound on the second term of the right hand

side applying n ≥ p1 and (3.4):

kvhv(n, k)(
n
2

) ≤ kvhv(n, k)(
kv−1pvk

2

) = k · hv(n, k)(
pvk
2

) · kpv − 1

kvpv − 1
.

The second factor is at most 1, the third one is less than ε by (3.5). That is,

the first term of the right hand side of (3.10) is less than εk if n ≥ n(ε). The

second term of the right hand side of (3.9) is at most 3ε k2

k−1
if n ≥ 3. This

proves that (3.10) is at most ε
(
k + 3 k2

k−1

)
for n(ε) ≤ n. �L
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Lemma 3.3 implies that the number of edges contained in the members

of T (n, k) is

|G(T (n, k))| =
(
n

2

)
− o

((
n

2

))
.

Every member contains exactly
(
k
2

)
pairs, therefore

|T (n, k)| =
(
n
2

)
− o(

(
n
2

)
)(

k
2

)
proves the theorem. �T

3.3 Graphs as access structures

Recently there has also been a lot of interest in graphs as access structures.

The idea is the following:

1. Every point represents a participant.

2. If two points are joined with an edge then the shares given to the partici-

pants corresponding to the points are enough to reconstruct the secret.

3. The shares corresponding to an independent set of points give no clue

about the secret whatsoever.

It is easy to see that this approach corresponds to an access structure

where the size of any minimal key is exactly 2 and conversely, any such

access structure can be represented by a simple graph. There are already

lots of results concerning these kinds of access structures, I would like to

present a new one:

Theorem 3.6 If a graph G = (V,E) contains n totally independent edges,

that is 2n points a1, . . . , an, b1, . . . , bn such that ∀i(ai, bi) ∈ E and ∀i 6=
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j(ai, aj), (bi, bj), (ai, bj) /∈ E, then the access structure corresponding to G

cannot be realized with less then p2n rows, where p is the number of possible

secrets.

Proof. Consider the points a1, . . . , an. These are independent, so for

any valid choice of values c1, . . . , cn, there exist at least p rows where ∀i

ci appears in the column of ai. The same holds for a1, . . . , an−1, bn, with

values c1, . . . , cn−1, dn. (an, bn) ∈ E, therefore each (cn, dn) pair can appear

at most in 1 row. We can give a lower estimate for the number of rows

that have c1, . . . , cn−1 in the columns a1, . . . , an−1: Any cn appears at least

p times in an. In these rows the value in bn must be different everywhere,

so there are at least p different valid values in bn. These too must appear

at least p times in the column, independently from the others. Therefore

there are at least p2 rows with the same values in a1, . . . , an−1. Of course

this is true regardless of our choice in c1, . . . , cn−1. We can apply the same

argument for a1, . . . , an−2, bn−1 as well. Now we can give a lower estimate

for the number of rows that have c1, . . . , cn−2 in the columns a1, . . . , an−2:

Any cn−1 appears at least p2 times in an−1. In these rows the value in bn−1

must be different everywhere, so there are at least p2 different valid values in

bn−1. These too must appear at least p2 times in the column, independently

from the others. Therefore there are at least (p2)2 = p22 rows with the same

values in a1, . . . , an−2. This argument can be used recursively until we get

the following result: the number of rows having the same value in a1 is at

least p2n−1
. This is of course true for b1 as well and the values appearing in
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b1 in those rows where c1 is given must be different as (a1, b1) ∈ E. So b1

contains at least p2n−1
different values which (independently from each other)

appear at least p2n−1
times. This proves the theorem. �
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4 Closure operations

4.1 Definitions

Let us now return to our other interpretation when the database is repre-

sented by a matrix. Given a subset A ⊆ X suppose that the values of the

columns belonging to A are known. As there may exist more than one row

containing these values in the columns specified by A the row is not neces-

sarily determined. However all these rows might share the same data in a

column b /∈ A. We say that b belongs to the closure L(A) of A if this is

true for b for any choice of values in the columns belonging to A. Formally

defined:

Let M be a matrix of m rows and n columns, X denoting the set of columns.

If A ⊆ X, a ∈ X and M contains no two rows equal in A but different in a

then we say that A implies a. The closure of A is

LM(A) = {a : a ∈ X,A implies a} (4.1)

.

The following rules can be easily seen to be valid for LM = L:

A ⊆ L(A), (4.2)

A ⊆ B ⇒ L(A) ⊆ L(B), (4.3)
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L(L(A)) = L(A). (4.4)

A function L : 2X → 2X is called a closure operation if it satisfies (4.2)-(4.4).

For the other direction, let L be an arbitrary closure operation on X

which is an n-element set. Then there exists an m× n matrix M such that

LM = L ([3]). We say that M represents L. The definition of our main

target is the following:

s(L) = min{m : M is an m× n matrix, LM = L}. (4.5)

Now we define the class of keys, an important subset determined by the

closure operation. K is said to be a key in L if L(K) = X. K = K(L) denotes

the family of minimal keys (K is a minimal key if it is a key but no proper

subset of K is a key). It can be easily seen that K1, K2 ∈ K, K1 6= K2 imply

K1 6⊂ K2. Those families of subsets that satisfy this condition are called

Sperner-families, therefore K is a Sperner-family. We say that a matrix M

represents a given Sperner-family K if K = K(LM) is true. The maximal

non-keys are called antikeys. Their family is defined by

K−1 = {A : @B ∈ K, B ⊆ A, and ∀C ⊆ X,A ⊂ C : ∃D ∈ K, D ⊆ C}.

Lemma 4.1 [3] M represents the Sperner-family K iff for any A ∈ K−1 M

has two different rows having the same entries in the columns in A and any

two rows equal in K ∈ K are equal everywhere.
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Proof. If M represents K, then K = K(LM) is true. K ∈ K implies

LM(K) = X, the second condition obviously holds. Similarly, A ∈ K−1

implies LM(A) 6= X and from this we obtain the first condition.

Conversely, if both conditions are true for M and K, then (i) LM(A) 6= X

holds for any A ∈ K−1 and (ii) LM(K) = X holds for any K ∈ K.

(ii) and (4.3) imply that LM(C) = X if C ⊇ K for some K ∈ K. If

we suppose that C is not a superset of a member of K, then by definition

there exists an A ∈ K−1 such that C ⊆ A. From (i) and (4.3) we get

LM(C) 6= X. Therefore LM(C) = X holds exactly for the supersets of

members K : K = K(LM). �

The following definition is an analogue of (4.5):

s(K) = min{m : M is an m× n matrix representing K}. (4.6)

where K is a Sperner-family on an n-element set.

The k-uniform closure operation on an n-element groundset X is defined by:

Lnk(A) =


X, if |A| ≥ k

A, if |A| < k

(4.7)

The family of all k-element subsets of X is denoted by
(
X
k

)
. Usually there

exists several closure operations with the same class K of minimal keys (K =

K(L)). Our next Lemma states that if K is the family of all k-element subsets

of X, then L is uniquely determined by K = K(L).
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Lemma 4.2 [3] Let any closure operation L be defined on an n-element set

X. Then

K(L) =

(
X

k

)
iff L = Lnk .

Proof. K(Lnk) =
(
X
k

)
is obvious therefore we have to prove the converse

statement only. Suppose that a ∈ L(A) − A for some A ⊆ X such that

|A| < k. Then one can find a set B satisfying |B| = k,B ⊇ A ∪ {a}. (2)

implies L(B − a) ⊇ B − a; (4.3) implies L(B − a) ⊇ L(A) 3 a. From this

L(B − a) ⊇ B follows. We get L(B − a) = L(L(B − a)) ⊇ L(B) = X

by (4.4) and (4.3). Consequently, there is a set B − a of cardinality < k

with closure X. This contradiction shows that a ∈ L(A) − A cannot exist

if |A| < k : L(A) = A. L(A) = X for |A| ≥ k is easily obtained from

K(L) =
(
X
k

)
and (4.3). L = Lnk holds, the lemma is proved. �

4.2 Minimum representation of uniform closure oper-

ations

We prove the following statements for sake of completeness.

Lemma 4.3 [3] If an m× n matrix M represents K, then(
m

2

)
≥ |K−1|.

Proof. If A ∈ K−1, then by Lemma 4.1 there exist two different rows

i, j such that they are equal in A. Take another element B of K−1. For
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B two such rows also exist, let them be i′ and j′. If these unordered pairs

{i, j}, {i′, j′} are equal, then these two different rows are equal in A ∪ B.

Therefore L(A ∪ B) 6= X and there exists a C ⊇ A ∪ B with C ∈ K−1.

By the definition of K−1 this is only possible when C = A and C = B,

contradicting our original supposition A 6= B. Consequently for different

members of K−1 we are able to assign different pairs of rows satisfying the

above condition, so the number of pairs of rows of M must be ≥ |K−1|. �

Lemma 4.4 [3] (
s(Lnk)

2

)
≥
(

n

k − 1

)
. (4.8)

Proof. Let M be an s(Lnk) × n matrix representing Lnk . By Lemma 4.2,

M also represents K(Lnk) =
(
X
k

)
. It is easy to see that K−1(Lnk) =

(
X
k−1

)
.

Then (4.8) follows by Lemma 4.3. �

We will show that (4.8) gives a fairly good lower estimate on s(Lnk). It is

sharp for k = 1, 2, n− 1. It seems to be sharp for k = 3 and n ≥ 7.

Theorem 4.5 [3]

s(Ln1 ) = 2, s(Ln2 ) = d(1 +
√

1 + 8n)/2e,

s(Lnn−1) = n, s(Lnn) = n+ 1.

where dxe denotes the smallest integer ≥ x.

Proof. By Lemma 4.2, s(Lnk) = s(K(Lnk)) = s(
((
X
k

))
. We use this last

form for the proof.
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For k = 1, (4.8) gives s(Ln1 ) ≥ 2. The construction of two rows, one filled

with 0 everywhere, the other filled with 1 everywhere proves the equality.

For k = 2, (4.8) gives

(
s(Ln2 )

2

)
≥ n (4.9)

.

Suppose now that s(Ln2 ) satisfies (4.9), we will construct an s(Ln2 ) × n

matrix M that represents
(
X
2

)
: any column of M will contain exactly two

zeros, with different columns containing different pairs of zeros. All of the

other entries of the ith row will be equal to i (1 ≤ i ≤ s(Ln2 )). Using Lemma

4.1 it is obvious that M represents
(
X
2

)
. The least integer satisfying (4.9) can

be expressed in the form in the theorem.

For k = n− 1, (4.8) gives s(Lnn−1) ≥ n. The identity matrix In gives the

equality.

The case k = n needs another lemma. If M is an m × n matrix let

G(M) denote the graph whose vertices are the rows of M , two vertices are

connected with an edge iff the set A of columns where the two rows are equal

is non-empty. The edge is labeled by A.

Lemma 4.6 [3] Let M be a matrix and let A1, . . . , Ar be the labels along a

circuit of G(M). Then
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r⋂
i = 1

i 6= j

Ai − Aj = ∅ (1 ≤ j ≤ r). (4.10)

Proof. Suppose that, on the contrary, (4.10) is non-empty, that is there

is a column, say the uth one, which is an element of all Ai but Aj. Let the

vertices of the circuit be K−1, . . . , kr in such a way that the edge (ki, ki+1) is

labeled by Ai (1 ≤ i < r) and (kr, K − 1) is labeled by Ar. From u ∈ Aj+1 it

follows that the kj+1st and kj+2nd entries of the uth column are equal. The

same holds for the kj+2nd and kj+3rd entries, etc. Consequently, the kj+1st,

kj+2nd, . . . , krth, k1st, . . . ,kjth entries in the uth column are all equal. This

leads to u ∈ Aj contradicting the assumption, thus proving the lemma.

Now suppose that the m × n matrix M realizes
(
X
n

)
= {X}. By Lemma

4.1 there is an edge in G(M) labeled with A for any (n− 1)-element subset

of X. G(M) has n different edges of this kind. These edges cannot form a

circuit because the (n− 1)-element subsets cannot satisfy (4.10), the lemma

is applicable. G(M) has at least n+ 1 vertices: s(Lnn) ≥ n+ 1. The following

construction gives the equality:
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

0 0 . . . 0

1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


The proof is complete. �

Substituting k = 3 into (4.8) we obtain

s(Ln3 ) ≥ n.

s(L3
3) = 4 > 3 is proved and s(L6

3) > 6 can be verified by checking all the

cases. We conjecture that the above inequality is sharp for all other cases:

Conjecture 1 s(Ln3 ) = n for n ≥ 7.

We are able to reduce this conjecture in the case n = 3r + 1 for another

conjecture concerning a ceratin kind of resolvable Steiner triple systems:

Conjecture 2 There is a system of 3-element subsets of an n (=3r+1)-

element set {1,2, . . . ,n } satisfying the following conditions:

(1) Any pair of elements is contained in exactly two 3-sets.

(2) The family of 3-sets can be divided into n subfamilies where the ith

subfamily is a partition of {1,2, . . . ,n } - { i }.

(3) Exactly one pair of members of two different subfamilies meet in 2

elements.

31



C
E

U
eT

D
C

ol
le

ct
io

n

We show the construction of an n × n matrix M representing Ln3 (n =

3r + 1) if the family in Conjecture 2 exists. We write zeros in the main

diagonal. The ith row jth entry will be l if i is an element of the lth triple in

the j sub-family. It follows by condition (3) that for any two columns of M

there are two rows equal in these columns. The rows are, of course, different

due to the zeros. The first condition of Lemma 4.1 is satisfied.

Condition (1) implies that any two rows agree in exactly two entries.

Hence there are no two rows equal in any given triple of columns. The

second condition of Lemma 4.1 is also satisfied, M really represents Ln3 .

Conjecture 2 follows for n (mod 1) or 4 (mod 12) from the following

result of Hanani [16], [17]. There exists a Steiner system S(4, 2, n) for these

n’s. (I.e. we have a 4-uniform subsystem S on n-element set V such that

for every two v1, v2 ∈ V there exists exactly one member S ∈ S such that

{V − 1, v2} ⊂ S.) Consider the 4-uniform set-system S over {1, 2, . . . , n}

and replace every member S ∈ S with 4 3-element subsets. The obtained

set-system F meets the condition of Conjecture 2, where the ith subfamily

F1 = {S − {i} : i ∈ S ∈ S.

Therefore the following theorem is proved:

Theorem 4.7 [3]

s(Ln3 ) ≥ n,

s(Ln3 ) = n for n = 12k + 1 for n = 12k + 4.

Corollary 1 n ≤ s(Ln3 ) ≤ n+ 8.
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Proof. It follows from Theorem 4.7 and the inequality s(Ln3 ) ≤ s(Ln+1
3 ).

�

The main result of Demetrovics, Füredi and Katona is the following theorem:

Theorem 4.8

√
2(

1

k − 1
)(k−1)/2n(k−1)/2 < s(Lnk) < 23k/2n(k−1)/2 (2 ≤ k < n). (4.11)

Proof. The left-hand side of (4.11) follows easily from (4.8), we only need

to give a construction for the right-hand side.

Let p be a prime number. We will show that there exists a set of D of

cardinality 2b√pc such that any integer satisfies

i ≡ d1 − d2 (mod p) (4.12)

for some members d1, d2 of D. We define D as

D = {0, 1, 2, . . . , a− 1, 2a, 3a, . . . , (a− 1)a}

where a = d√pe. For any i satisfying 0 ≤ i < p we will express it in the

form i = al+r (0 ≤ r < a). If 1 ≤ l ≤ a−2 and 0 < r < a, then d1 = (l+1)a

and d2 = a−r obviously satisfy (4.12). If i = al (2 ≤ l ≤ a−1), then d1 = al

and d2 = 0 are adequate. a = 3a − 2a and the rest can be expressed as a

difference of zero and one of the numbers 1, 2, . . . , a − 1. (Here we suppose

that 3 ≤ a − 1. Otherwise we would have p ≤ 9 and these cases can be

checked separately.)
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For the cardinality of D we have

|D| = 2a− 2 = 2(d√pe − 1) = 2b√pc.

Let P be defined in the following way:

P = {ck−1x
k−1 + ck−2x

k−2 + · · ·+ c1x+ c0 : c0, . . . , ck−1 ∈ D, ck−1 = 0 or 1}.

Note that

|P | = 2kb√pck−1.

Let M be a |P | × p matrix. Let us associate its rows with elements of

P . Define the jth entry of the row that is associated with z(x) ∈ P as z(j)

(mod p) (0 ≤ j ≤ p− 1, 0 ≤ z(j) ≤ p− 1). We now prove that M represents

Lpk. For this it is sufficient to show (by Lemma 4.2) that M represents
(
X
k

)
(where |X| = p). Here we can use Lemma 4.1, we only have to verify its

conditions with K =
(
X
k

)
,K−1 =

(
X
k−1

)
.

Suppose now that the rows associated with z1(x) and z2(x) have k equal

entries:

z1(ti) ≡ z2(ti) (mod p) (0 ≤ t1 < · · · < tk < p).

Then looking at the polynomial z1(x)− z2(x) of degree ≤ k − 1 we note

that it has k different roots. This is a contradiction, proving that z1 and z2

are really the same.
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Now, if we choose the integers 0 ≤ t1 < · · · < tk−1 < p arbitrarily, there

should exist two different rows containing equal entries in the t1st, t2nd, . . . ,

tk−1st places. Consider the polynomial

w(x) = (x− t1)(x− t2) . . . (x− tk−1) = xk−1 + ak−2x
k−2 + · · ·+ a1x+ a0.

To ai (0 ≤ i ≤ k− 2) we are able to find two elements ci and c′i of D such

that ai ≡ ci − c′i(mod p). Then w(x) = z(x)− z′(x) will hold where

z(x) = xk−1 + ck−2x
k−2 + · · ·+ c1x+ c0 and

z′(x) = c′k−2x
k−2 + · · ·+ c′1x+ c′0.

z(x) and z′(x) are obviously different members of P , also it is easy to see

that z(ti) ≡ z′(ti)(mod p) holds for every i. As both conditions of Lemma

4.1 have been verified, M really represents Lpk. This proves

s(Lnk) ≤ 2kp(k−1)/2.

For the general case, given an arbitrary n we will choose a prime number

p satisfying n ≤ p ≤ 2n. p exists by Chebyshev’s theorem. Then we will

construct a matrix representing Lpk and discard p − n columns. The matrix

so obtained represents Lnk . Hence

s(Lnk) ≤ 2kp(k−1)/2 ≤ 2k(2n)(k−1)/2 ≤ 23k/2n(k−1)/2.
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The theorem is proved. �

The method of Theorem 4.8 gives only a good estimate in case of a small k.

For instance a much better estimate is known if k = n/2. It is proved ([3])

that:

s(K) ≤ |K−1|+ 1.

holds for any Sperner-family. From this follows:

s(Lnn/2) = s

((
X

n/2

))
≤
(
n

n/2

)
+ 1 = 2n+o(n).
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5 Partitions acting as access structures

5.1 Introduction

Let [n] = {1, 2, . . . , n} be a finite set, P = (P1, P2, . . . , Pm) a partition of [n].

We will consider the maximum number of such partitions satisfying certain

conditions. We say that a partition covers a given subset A of [n], if A is a

subset of one of the classes Pi.

The following problem was motivated by the theory of relational databases.

Find the maximum number f(n) of partitions satisfying the following two

conditions:

(i) for any two partitions there is at least one 2-subset of [n], which is covered

by both of them,

(ii) each 2-subset of [n] is covered by at most two different partitions.

Let m be the number of partitions. For every pair (P1,P2) of partitions

take a 2-subset of [n] existing by (i): γ(P1,P2). By (ii) γ(P1,P2) 6= γ(Q1,Q2)

unless (P1,P2) = (Q1,Q2). Hence the following inequality must hold:(
m

2

)
≤
(
n

2

)
.

This implies m ≤ n and f(n) ≤ n. It was conjectured and partially proved

in [3] that equality holds for all n ≥ 7. It was finally proved in [1]. There are

many interesting related results surveyed in [5].
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If we specify equality in both conditions, that is

(i’) for any two partitions there exists exactly one 2-subset of [n], which is

covered by both of them,

(ii’) each 2-subset of [n] is covered by exactly two different partitions,

then we arrive at the definition of orthogonal double covers, a concept

which has also been studied extensively along with its generalizations.

In some investigations exploring the interrelation of database theory and

secret sharing [11] (see Section 2) we arrived to the following generalization

of the problem above, to which we were able to find a solution in [10]. Our

more general conditions are the following:

(iii) for any two partitions there is a k-element subset, which is covered by

both of them,

(iv) each 2-subset of [n] is covered by at most two different partitions.

A set of m partitions on the underlying set [n] satisfying (iii) and (iv)

will be called an (n,m, k)-pamily.

For given n, k let f(n, k) be the maximum m for which an (n,m, k)-pamily

exists. For every pair (P1,P2) of partitions take a k-element set covered by

both partitions, this exists by (iii). It determines a set Γ(P1,P2) of
(
k
2

)
2-

subsets of [n] covered by both of them. By (iv) Γ(P1,P2) and Γ(Q1,Q2)

are disjoint unless (P1,P2) = (Q1,Q2). Hence the following inequality must

hold: (
m

2

)(
k

2

)
≤
(
n

2

)
. (5.1)
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The discriminant of this quadratic inequality in m can be upperbounded in

the following way.

1

4
+ 2

n(n− 1)

k(k − 1)
≤ 2

n2

k(k − 1)

if k(k − 1) ≤ 8n. By (5.1) we obtain

m ≤ 1

2
+ n

√
2

k(k − 1)
.

We believe that this is the asymptotically correct upper bound (for fixed k

and n→∞), but we are able to construct only weaker lower bounds.

Theorem 5.1 Let 2 ≤ k. Then:

f(n, k) ≤ n

√
2

k(k − 1)
+

1

2
,

k + 3 if (k + 1)(2k + 3) ≤ n

n

3k + 4
if 5k2 +

37

2
k + 16 ≤ n

 ≤ f(n, k).

Remark. k + 3 ≥ n
3k+4

holds for small ns.

Our upper and lower bounds are relatively far apart for small k, e.g. when

k is fixed and n tends to infinity. They are much closer when k is about
√
n.

This case is treated in the following theorem in an asymptotic form.

Theorem 5.2 Let n(k) be a function of k and suppose that

lim
k→∞

k2

n(k)
= λ.
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Then

2

3
(λ+ 1) if 0 < λ ≤ 1

2

1 if
1

2
< λ < 1

 ≤ lim
k→∞

f(n(k), k)
n(k)
k

≤
√

2.

5.2 Proofs

We start with a well-known lemma from number theory, that we prove for

the sake of completeness.

Lemma 5.3 Let p be a prime. If both a + c ≡ b + d (mod p) and ac ≡ bd

(mod p) hold then the element sets {a, c} and {b, d} are equal (mod p).

Proof. The case p = 2 is trivial therefore we can assume that p is odd.

Suppose first that a + c ≡ b + d ≡ 0 (mod p). Then c ≡ −a (mod p) and

d ≡ −b (mod p) hold and the second condition becomes −a2 ≡ −b2 (mod p)

which implies b ≡ ±a (mod p). Then the first condition gives c ≡ −a

(mod p), d ≡ ∓a ≡ −b (mod p), proving the statement for this case.

The general case can be reduced to the above one. Let e ≡ a+c (mod p),

and subtract e/2 from all four numbers. (Here e/2 denotes the unique integer

whose double is congruent to e (mod p).) Then

a− e

2
+ c− e

2
≡ b− e

2
+ d− e

2
(mod p)

(a− e
2

)(c− e
2

) ≡ (b− e
2

)(d− e
2

) ≡ ac−(a+c)
e

2
+
(e

2

)2

≡ bd−(b+d)
e

2
+
(e

2

)2
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are consequences of the conditions, the modified numbers satisfy the condi-

tions of the first case, therefore the pairs
(
a− e

2
, c− e

2

)
and

(
b− e

2
, d− e

2

)
(mod p) are the same. �

The following lemma gives our main construction.

Lemma 5.4 Let p be an odd prime. Then there exists a (p(p−1), p+1, p−2)-

pamily.

Proof. The construction. Let the underlying set X be the set of ordered

pairs (i, j) where i and j are integers mod p (0 ≤ i, j ≤ p − 1) and i 6≡ −j2

(mod p). Then |X| = p2 − p = p(p − 1) is obvious. First we define the sets

Y (a, b) ⊂ X (1 ≤ a, b ≤ p+1). Start with the case when one of a or b is p+1.

Then Y (p− j, p+ 1) = Y (p+ 1, p− j) (0 ≤ j ≤ p− 1) contains all the pairs

(i, j) ∈ X (0 ≤ i ≤ p − 1). Y (p + 1, p + 1) = ∅. Suppose now 1 ≤ a, b ≤ p

and define Y (a, b). The element (i, j) ∈ X is in Y (a, b) if j 6= p− a, j 6= p− b

and

ab+ aj + bj ≡ i (mod p) (5.2)

holds. Since (5.2) is symmetric in a and b, we have Y (b, a) = Y (a, b).

Let us show that 1 ≤ a, b1, b2 ≤ p, a 6= b1, a 6= b2, b1 6= b2 implies Y (a, b1)∩

Y (a, b2) = ∅. Otherwise they have a common element (i, j) ∈ X where

j 6= p−a, p− b1, p− b2 and (5.2) holds for both b1 and b2. However j 6= p−a

implies that b is uniquely determined by (5.2), the contradiction verifies the

statement.
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This statement is also true when b2 = p + 1, since Y (a, b1) contains no

element (i, j) with j = p − a while the elements of Y (a, p + 1) contain only

such elements. Finally, Y (p+ 1, b1) ∩ Y (p+ 1, b2) = ∅ is trivial.

The classes of the ath partition are the sets Y (a, b) where 1 ≤ b ≤ p +

1, b 6= a, which are disjoint. We only need to prove that they cover X. This is

trivial when a = p+1, so a ≤ p can be supposed. Then the elements (i, p−a)

are covered by Y (a, p+ 1), therefore it is sufficient to consider the pairs (i, j)

where j 6= p − a. For given a, i, j (5.2) has a (unique) solution b and then

(i, j) ∈ Y (a, b) holds, proving that the classes Y (a, b) (1 ≤ b ≤ p + 1, b 6= a)

really determine a partition. (Here the solution for b may be equal to a, this

is why (Y (a, a) is also needed.)

Proof of the fact that this pamily satisfies (iii). Consider two partitions,

the ath and bth ones (a 6= b). It should be verified that there are two classes

in these partitions having intersection of size at least p− 2. The set Y (a, b)

is a class in both the ath and the bth partitions. We will show that its size

is at least p− 2.

Let 1 ≤ a < b ≤ p. We have to show that X has at least p − 2 pairs

(i, j) ∈ Y (a, b). These elements are defined by (5.2). j cannot be p − a

and p − b, all other p − 2 values can be chosen. However, for given a, b, j

(5.2) uniquely determines an i. By the definition of Y (a, b) this is equivalent

to the statement that there are p − 2 solutions of (5.2) in X for any fixed

a, b. This is obvious, since j can be chosen in p− 2 ways avoiding the cases

j = p− a, p− b, and (5.2) uniquely determines i. The only problem could be
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that the so obtained i satisfies i 6≡ −j2 (mod p) and the solution (i, j) is not

in X. However this and (5.2) would imply (a+j)(b+j) = ab+aj+bj+j2 ≡ 0

(mod p) contradicting the assumptions a + j 6≡ 0 (mod p) and b + j 6≡ 0

(mod p).

Compare now the ath (1 ≤ a ≤ p) and the (p+1)st partitions. Y (a, p+1)

is a class in both partitions, we need to show |Y (a, p + 1)| ≥ p − 2. It is s

actually equal to p− 1 since this is the number of elements (i, p− a) where

i 6≡ −(p− a)2 (mod p).

Proof of the fact that this pamily satisfies (iv). Suppose 1 ≤ a < b ≤ p

and choose a pair of classes from the ath and bth partitions, respectively,

with intersection of size at least 2, that is, |Y (a, c) ∩ Y (b, d)| ≥ 2 holds for

some 1 ≤ c, d ≤ p + 1. Suppose temporarily that c, d ≤ p. Let (i, j) and

(u, v) be two distinct elements of the intersection. We intend to prove that

c = b, d = a follows.

By the definition of Y (a, c) and Y (b, d) the following congruencies must

hold.

ac+ aj + cj ≡ i (mod p) (5.3)

ac+ av + cv ≡ u (mod p) (5.4)

bd+ bj + dj ≡ i (mod p) (5.5)

bd+ bv + dv ≡ u (mod p). (5.6)

If v ≡ j (mod p) then (i, j) = (u, v) by (5.3) and (5.4), therefore

v 6= j (5.7)
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can be supposed. The differences (5.3)-(5.5) and (5.4)-(5.6) are

ac− bd+ j((a+ c)− (b+ d)) ≡ 0 (mod p) (5.8)

and

ac− bd+ v((a+ c)− (b+ d)) ≡ 0 (mod p).

The difference of these two congruencies is

(j − v)((a+ c)− (b+ d)) ≡ 0 (mod p).

Hence we have

a+ c ≡ b+ d (mod p) (5.9)

by (5.7). Moreover, (5.8) leads to

ac ≡ bd (mod p). (5.10)

Lemma 5.3, (5.9) and (5.10) give {a, c} = {b, d}, that is, c = b, d = a.

The same conclusion is needed when one or more of a, b, c, d is equal to

p+ 1.

Let c = p + 1, a, b, d ≤ p and suppose that (i, j), (u, v) ∈ Y (a, p + 1) ∩

Y (b, d). Then j = v = p − a. (5.5) and (5.6) make i = u, that is, (i, j) and

(u, v) are the same, the contradiction settles this case.

Let c = d = p + 1, a, b ≤ p. The contradiction is obtained trivially:

i = p− a = p− b.

Let a, c ≤ p, b = p+ 1 hold. Then d ≤ p is a consequence. j = v = p− d

follows. (5.3) and (5.4) imply i = u, the same contradiction is obtained.
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If a ≤ p, c = b = p + 1 then d must be equal to a and the desired

c = b, d = a is obtained.

We have seen that if the intersection of a class of the ath and a class of

the bth partition (a 6= b) has at least two common elements then these classes

are Y (a, b) = Y (b, a). This makes it impossible to have 3 distinct partitions

containing classes with intersection of size at least 2. �

Summarizing what we obtained: Y (a, b) = Y (b, a) is the only pair of

classes in the ath and bth (a 6= b) partitions with more then two common

elements and |Y (a, b)| ≥ p− 2.

Lemma 5.5 (a) Let p be an odd prime, r(0 ≤ r ≤ p−1
2

) an integer. Then

there exists a (p(p− 1− r), p+ 1, p− 2− r)-pamily.

(b) Let p > 5 be an odd prime. There exists a ( (p−1)(p−2)
2

, p + 1, p−5
2

)-

pamily.

Proof. Proof of (a). Let Xi = {(i, j) : 0 ≤ j ≤ p−1, i+j2 6≡ 0}. Suppose

that i is not 0 and −i is not a quadratic residue mod p. Then |Xi| = p. Let

us see that

|Xi ∩ Y (a, b)| ≤ 1 (5.11)

holds in this case. If 1 ≤ a, b ≤ p, a + b 6≡ 0 (mod p) then this follows from

the fact that (5.2) has exactly one solution in j when a, b, i are given. On

the other hand, if a+ b ≡ 0 (mod p) then (5.2) becomes a(−a) ≡ i (mod p)

contradicting the condition that −i is not a quadratic residue. Finally, if

1 ≤ a ≤ p, b = p+ 1 then the label of Y (a, p+ 1) is determined by j, namely
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a = p− j, that is, Xi ∩ Y (a, p+ 1) = {(i, p− a)}, (5.11) holds for this case,

too.

As a consequence, the sizes of the non-one-element intersections of the

restrictions of the classes on X −Xi are decreased by at most one, they are

at least p − 3. Deleting r such Xi from X, the intersection sizes will be

decreased by at most r.

Proof of (b). The statement of (a) with r = p−1
2

results in the existence

of a
(
p(p−1)

2
, p+ 1, p−3

2

)
-pamily. It is constructed on the set X ′ = X −

⋃
Xi

where i runs on the set of indexes for which i 6= 0 and −i is not a quadratic

residue. Now X0 will be deleted. |X0| = p− 1 since j = 0 is excluded.

Let us show now that

|X0 ∩ Y (a, b)| ≤ 1 (5.12)

holds. If 1 ≤ a, b ≤ p, a + b 6≡ 0 (mod p) then the reasoning is the same

as in the case of (a). However, when a + b ≡ 0 (mod p) then i = 0 and

(5.2) imply a = b = 0, contradicting the assumption a 6= b. The subcase

1 ≤ a ≤ p, b = p+ 1 behaves exactly like at (a).

Deleting X0 from X ′, the so obtained X ′′ = X ′ −X0 has size (p−1)(p−2)
2

.

The restrictions of the p+ 1 partitions on X ′′ have the property that for any

two of these restricted partitions one can find one class in both of them with

an intersection of size p−5
2

. �

Lemma 5.6 Let p be an odd prime, s(0 ≤ s ≤ p−9
2

) an integer. Then there

exists a ( (p−1)(p−2)
2

− sp+1
2
− s2, p+ 1, p−5

2
− s)-pamily.
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Proof. Illustrate the proof for s = 1. Suppose that i 6= 0 and −i is a

quadratic residue. Then two different j satisfies i+ j2 ≡ 0 (mod p) therefore

|Xi| = p− 2. The inequality (5.11) and its proof work in the same way as in

the case of the previous lemma except when a+ b ≡ 0 (mod p) holds. Then

(5.2) becomes ab ≡ i (mod p) and −a2 ≡ i has a pair of solutions, a and −a.

(5.11) holds with one exception: {a,−a}.

Therefore deleting Xi from X ′′ and restricting the permutations on the

remaining underlying set, the pairwise intersection of the non-one-element

classes of the ath and bth permutations will be decreased only by one except

for the case when a satisfies a2 ≡ −i (mod p) and b = p − a. In order

to preserve the desired intersection property we add a (disjoint) set Z ′i to

X ′′ − Xi and extend the partitions on it. Namely all partitions will have

one-element classes on Z ′i, except the ath and bth partitions. They have

only one class: the whole Z ′i. Its size must be p−7
2

. The size of the new

underlying set is (p−1)(p−2)
2

− (p − 2) + p−7
2

= p2−4p−1
2

. We have obtained a

(p
2−4p−1

2
, p+ 1, p−7

2
)-pamily.

The same can be done for larger s. the only difference is that the sets Z

can be smaller, since the intersections between the partitions became smaller.

Take s (non-zero) indexes i (−i is a quadratic residue). Delete all of them

from X ′′ and add the disjoint (to X ′′ and each other) sets Zs
i of size p−5

2
− s.

The size of the new underlying set (X ′′ ∪i Xi)− ∪iZs
i is

(p− 1)(p− 2)

2
− s(p− 2) + s

(
p− 5

2
− s
)

=
(p− 1)(p− 2)

2
− sp+ 1

2
− s2.
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The ath partition is extended by one-element classes on Zs
i unless a2 + i ≡ 0

(mod p) holds, then the extension has one class: the whole Zs
i . It is easy to

see that this pamily satisfies the conditions. �

We now recall once more the following theorems concerning the density

of prime numbers which will be needed in the proofs.

Theorem 5.7 Let 0 < ε be a positive real number. If R > R(ε) then there

is a prime number between R and R(1 + ε).

Theorem 5.8 (Chebyshev Theorem) If R ≥ 2 is a real number then there

is a prime number between R and 2R.

Proof of Theorem 5.1

Case 1. Suppose (k + 1)(2k + 3) ≤ n. Lemma 5.5 (a) will be used with

k = p − 2 − r where p and r have to be properly found. By the Chebyshev

theorem there is a prime number p satisfying k + 2 ≤ p ≤ 2k + 3. Choose

0 ≤ r = p− (k + 2). Here p+1
2
≤ k + 2 implies r = p− (k + 2) ≤ p− p+1

2
=

p−1
2

, therefore r satisfies the condition in Lemma 5.5 (a). The pamily is

constructed on a set of p(p−1−r) elements. Here p(p−1−r) ≤ (2k+3)(k+1)

which is at most n by the condition of the case. The construction of Lemma

5.5 can be placed in [n]. Consequently we have p + 1 ≥ k + 3 partitions in

the pamily.

Case 2. Suppose 5k2 + 37
2
k+ 16 ≤ n. Then Lemma 5.6 will be used with

k = p−5
2
− s with properly chosen p and s. Since s is non-negative, p must

satisfy 2k+5 ≤ p. The condition s ≤ p−9
2

of the lemma holds by 2 ≤ k. If we
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want to use the lemma with the underlying set of size (p−1)(p−2)
2

− sp+1
2
− s2

then this number cannot exceed n. Replacing s by p−5
2
− k, the following

inequality is needed:

(p− 1)(p− 2)

2
− sp+ 1

2
− s2 = p

(
3k

2
+ 2

)
− k2 − 9

2
k − 4 ≤ n.

Hence we must have

p ≤
n+ k2 + 9

2
k + 4

3k
2

+ 2
.

By the Chebyshev inequality there is a prime p satisfying

n+ k2 + 9
2
k + 4

3k + 4
≤ p ≤

n+ k2 + 9
2
k + 4

3k
2

+ 2
.

The lower bound is in accordance with the condition 2k + 5 ≤ p when

2k + 5 ≤
n+ k2 + 9

2
k + 4

3k + 4
,

but this is equivalent to the condition of the case. �

Proof of Theorem 5.2

The proof of Theorem 5.1 is copied, but Theorem 5.7 is used rather than

Theorem 5.8. We show the main ideas only, the details with ε are left to the

reader. n, p, r, s are functions of k, but we will not indicate it in the notation.

Case 1. Suppose 1
2
< λ < 1. Lemma 5.5 (a) will be used with k = p−2−r

where p has to be properly found. The size of the underlying set of the

construction is p(k + 1) cannot be larger than n, that is, p ≤ n
k+1

must

hold. By Theorem 5.7 there is a prime number p satisfying this condition
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and p ∼ n
k
. Then r = k + 2− p ∼ (1− λ)n

k
. The conditions 0 ≤ r ≤ p−1

2
are

satisfied by 1
2
< λ < 1. Consequently, the construction of Lemma 5.5 can be

placed in [n], we have p+ 1 ∼ n
k

partitions in the pamily.

Case 2. Suppose 0 < λ < 1
2
. Lemma 5.6 will be used with k = p− 2− r

where p has to be properly found. Let p be a prime such that p ∼ k 2(1+λ)
3λ

.

It exists by Theorem 5.7. Then one can find a non-negative integer s such

that s ∼ k 1−2λ
3λ

. Since 0 < λ ≤ 1
2
, we have 0 < s < p−1

2
. Then

s

(
p+ 1

2
+ s

)
∼ k2 (1− 2λ)(2− λ)

9λ2

and

(p− 1)(p− 2)

2
− sp+ 1

2
− s2 ∼ k2 1

λ
.

Use here k ∼ λn
k

in one of the ks obtaining that the size of the underlying

set in the construction is ∼ kλn
k

1
λ

= n. �
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