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Abstract

The subject matter of this thesis is the computation of Thom
polynomials of singularities of maps, in particular Thom-Boardman
singularity classes. A “singularity” means a type of local behaviour
of maps between smooth (or analytic) manifolds; the simplest ex-
ample is the differential being degenerate. It is well known that the
cohomology class of the (closure of the) locus in the source manifold
where a map has a given singularity can be expressed as a polyno-
mial of the characteristic classes of the map. This multivariate poly-
nomial, which only depends on the singularity and the dimensions,
is called the Thom polynomial of the singularity. Even though the
above phenomenon was observed by Thom more than 50 years ago,
there are still only a few examples where we can explicitly calculate
these polynomials. In this work, we contribute both new methods
of computations, and explicit calculations of some previously un-
known Thom polynomials. In particular, we discover a connection
between localization formulae for contact singularities and basic
hypergeometric series; we present a new geometric construction to
compactify some moduli spaces related to Thom-Boardman classes;
and we give new formulae for the Thom polynomials of some second
order Thom-Boardman singularities.
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Introduction

This thesis reports on the state of the author’s ongoing investigation on the subject of
computing Thom polynomials of singularities of maps, in particular Thom-Boardman singu-
larity classes.

A “singularity” here means a type of local behaviour of maps between smooth (analytic)
spaces; a very simple example is the vanishing of the differential of the map. There is a
general local-global principle, which says the global topological properties of (closed) spaces
can be read off from local geometric data. Two well-known examples of this phenomenon are:
the Gauss-Bonnet theorem, which expresses the Euler characteristic of a manifold from the
curvature; and the Poincaré-Hopf theorem, which expresses the Euler characteristic from the
singularities of a vector field on the manifold. Thom polynomials, proposed by René Thom
around 1950, are also a manifestation of this principle; in a sense, they are a generalization
of the latter example. The basic observation is that given a singularity (that is, a type of
local behaviour), the (co)homological properties of the locus where a map has the given type
of behaviour depends only on the homotopy type of the map, and not on the fine details of
the map itself. This can be made quantitative: the cohomology class of the locus can be
expressed as a polynomial of the characteristic classes of the map; this polynomial is called
the Thom polynomial of the singularity.

Our focus in this work is the problem of computing these polynomials. However, one
quickly bumps into the philosophical question of what ‘computing’ means: First, these poly-
nomials can be expressed in many different forms (eg. polynomials in Chern roots; polyno-
mials in Chern classes; linear combination of Schur functions; variations of the latter two
for the difference alphabet; pushforward formulae; iterated residue formulae; localization
formulae; etc.) which are often very hard to convert to each other; second, it is easy to write
down formulae which are very hard to evaluate in concrete cases (eg. even small cases are
intractable by today’s home computers).

Our answer (which is by no means final) is that we prefer expressing the Thom polyno-
mials as linear combinations of Schur polynomials in the difference alphabet; the motivation
for this form is that it is elegant, unique, relatively compact, the coefficients are nonnega-
tive integers, they do not depend on the dimensions of the source and target spaces, and
there is some evidence that they have very rich combinatorics. Furthermore, we seek (when
possible) computationally effective methods to compute these coefficients; of course, we still
prefer (closed) formulae.

In the last 10 years, there was a new wave of activity in the field; thanks to works of G.
Bérczi, A. Buch, L. Fehér, M. Kazarian, A. Némethi, P. Pragacz, R. Rimányi, A. Szenes,
the author, and others, we now know much more about both concrete examples and the
structures behind Thom polynomials. However explicit computations are still hard, even
using computers; and that is the subject matter this thesis contributes to, with both new
formulae and new methods.

vi
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Organization of the material. The first two chapters are introductory: The first
chapter introduces informally the notion of Thom polynomials and the basic methods to
compute them, using the Thom-Porteous formula as a running example. The next chapter
recalls some basic definitions of singularity theory. The third chapter deals with the general
localization formula for contact singularities; it introduces a new idea to evaluate them,
which can be also used to derive closed formulae. The fourth chapter investigates the specific
case of second order Thom-Boardman singularities from multiple viewpoints. In the final,
fifth chapter, we show how to modify a geometric idea introduced in the previous chapter
to compute the Thom polynomials of the A3 singularity. The appendices collect together
various results we use during the text.

New results and statement of originality. The sections 3.2, 3.3, 3.4 in Chapter
3; sections 4.4, 4.3, 4.5 in Chapter 4, and Section 5.2.1 contain new results. From the
above, Theorem 4.2.2, Section 4.4 (except the proof of Theorem 4.4.3), and Section 4.5.1
was published in the article [FK06] joint with László Fehér. The rest of the above is my
original work. Furthermore, I gave new proofs of some known statements; in particular, the
proofs of Lemma 3.1.2, Theorem A.3.7 and Theorem A.4.4 are my own work; Theorem 4.2.1
of Ronga [Ron72] is also reproved as a side-effect of this work.

Acknowledgments. The author would like to thank Gergely Bérczi, László Fehér,
Frances Kirwan, András Némethi, Richárd Rimányi and András Szenes for various help
and discussions; and his family and friends for support. During this work, he was supported
financially by the Central European University (2003-2006), the Alfréd Rényi Institute of
Mathematics (2007-2009), and by a Marie Curie fellowship during his six-month stay at the
University of Oxford (2006-2007).

This work wouldn’t exist without computers. In particular we used the following software
and resources: The MapleTM computer algebra system; John Stembridge’s SF package for
Maple [Ste05] (to compute with symmetric polynomials); Matthias Franz’s Convex pack-
age for Maple [Fra09] (to compute with convex polyhedra); the Glasgow Haskell Compiler
[GHC] for the Haskell programming language [PJ03]; Sloane’s On-Line Encyclopedia of
Integer Sequences [OEIS]; and last, but not least, various digital libraries. The thesis was
typeset with LATEX. The figures were produced with several different software, which should
remain nameless, as the range varied from the “rather inconvenient” to the “exceptionally
painful”.
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Notations and conventions

Unless specifically stated, we will always work over the field of complex numbers; ie. vec-
tor spaces are complex vector spaces, vector bundles are complex vector bundles, algebraic
varieties are complex algebraic varieties—in particular, Pn is the complex projective space—,
etc. Cohomology is singular cohomology, the default coefficient ring is the field Q of ratio-
nal numbers (just to be on the safe side; however, most results should work, without any
modification, with integer coefficients).

1. Partitions. Partitions are by definition finite nonincreasing sequences of positive
integers. They will be usually denoted by the greek letters λ, χ, µ and ν. Our conven-
tion is that we allow arbitrary number of zeros at the end of partitions, that is, we treat
(µ1, µ2, . . . , µk) and (µ1, µ2, . . . , µk, 0, 0, . . . , 0) as the same object; this is often useful in for-
mulae. The length of a partition µ, which is the number of positive elements, is denoted
by `(µ) = k; the weight, or sum, is denoted by |µ| =

∑
µi. Repeated numbers are often

denoted by exponents, ie. (23, 14) = (2, 2, 2, 1, 1, 1, 1). The dual partition1 of µ, denoted by
µ̃, is defined by

µ̃i = max
{
j : µj ≥ i

}
.

This is an involution on the set of partitions; note that `(µ) = µ̃1. We denote by λ± µ the
pointwise addition (resp. subtraction) of the sequences; the latter isn’t necessarily a partition.

A partition µ is a subpartition of an other partition λ, denoted by µ ⊂ λ, if µi ≤ λi
for all i. If µ ⊂ (nk), then its complement {µ is defined by ({µ)i = n − µk+1−i; we omit
the ‘block’ (nk) from the notation, as it will be always clear from the context. The reverse
sequence (µk, µk−1, . . . , µ1) is denoted by revµ.

The ‘stairway’ partition (n, n− 1, n− 2, . . . , 1) is used often enough to deserve a special
notation, for which we will use bne.

2. Symmetric functions and characteristic classes. Let c1, c2, c3 . . . and s1, s2, s3, . . .
denote two sequences of formal variables related by the equation

(1 + c1t+ c2t
2 + c3t

3 + · · · ) · (1− s1t+ s2t
2 − s3t3 +− · · · ) = 1.

The convention is that c0 = s0 = 1, and c<0 = s<0 = 0. If we have a polinomial ring
k[x1, . . . , xn], we can specialize these formal variables to the elementary and complete sym-
metric functions, respectively; the subring generated by either of the two sequences is exactly
the ring of symmetric polynomials k[x1, . . . , xn]Sn . The same thing works with the limit
n→∞, the ring

Λ = ←−lim
n

k[x1, x2, . . . , xn]Sn

being called the ring of symmetric functions.
If we have a complex vector bundle E → M (or more generally, a formal difference of

two vector bundles), we can specialize to the Chern and Segre2 classes ci(E) and si(E) in
H2i(M), respectively (and that’s why we use the notations ci and si instead of the ei and hi
which are the standard in the theory of symmetric functions).

1the term conjugate partition is also used
2the literature has a sign ambiguity in the definition of Segre classes; for example our convention agrees

with that of [FP98] but differs by (−1)i from that of [Ful98]

viii
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The Schur polynomials are symmetric polynomials parameterized by partitions; they are
arguably the most important symmetric functions, and they give an additive basis in the
ring of symmetric functions. Given a partition µ = (µ1, µ2, . . . , µk), we define the Schur
polynomial sµ by the formula

sµ = det[sµi+j−i]k×k = det[ceµi+j−i]µ1×µ1 ;

in particular3, s(i) = si and s(1i) = ci. As before, we can define the Schur class sλ(E) ∈
H2|λ|(M) of a (complex) vector bundle E by substituting its Chern (or Segre) classes into
the formula above.

3. A list of various notations. Finally we try to make the life of the reader easier by
assembling a (necessarily partial) list of the various notations used in this thesis.

H∗(Y ) singular cohomology with coefficients in Q
H∗
G(Y ) G-equivariant cohomology

AGi (X) G-equivariant Chow groups (see [EG98a])
f∗ pullback along the map f (of cohomology classes, or vector bundles)
π∗ pushforward (or Gysin map); if π : X → Y then π∗ : H∗(X)→ H∗+codimπ(Y )

[X ⊂ Y ] the (equivariant) cohomology class represented by X in H∗(Y ) (or H∗
G(Y ));

often denoted simply by [X]
e(V ), [V ] (equivariant) Euler class of a vector bundle or representation; [V ]—as a short-

hand for [{0} ⊂ V ],—is used only when there is no danger of confusion
NZX normal bundle (or bundle of normal cones, if X is singular) of Z in X

Sn the symmetric group of order n
V ∨ dual representation

SymkV symmetric tensor powers of V
∧kV antisymmetric tensor powers of V
SλV Schur functors; S(k)V = SymkV and S(1,1,...,1)V = ∧kV
curry the natural isomorphism curry : Hom(U ⊗ V,W )→ Hom(U,Hom(V,W ))4

U � V if V ≤ U , this is the image of U ⊗V under the quotient map U ⊗U → Sym2U ;
isomorphic to ((U/V )⊗ V )⊕ (Sym2V ). Similarly for U ≤ V .

i� j the dimension analogue of the previous entry: dim(U i � V j) = i� j. If j ≤ i,
we have i� j = j(i− j) + j(j + 1)/2

Jd(V,W ) the space of d-jets from (V, 0) to (W, 0); that is,
Jd(V,W ) = ⊕dk=1Hom(SymkV,W )

J ◦d (V,W ) jets with injective linear part
J (V,W ) shorthand for Jd(V,W ) where d (possibly infinity) is clear from the context,

or not important
Jd(n,m) shorthand for Jd(Cn,Cm)
Jd(V ) shorthand for Jd(V,C), which is a (nilpotent) ring
Ed(V ) C⊕ Jd(V ); space of jets of functions, a local ring with unit

Diffd(V ) jets of diffeomorphisms; shorthand for J ◦d (V, V )

3the equation s(i) = si motivates our choice of conventions. S(k) = Symk is another lucky corollary.
4‘currying’ is a standard terminology for this in computer science and logic, named after the logician

Haskell Brooks Curry.
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Chapter 1. First order - The Thom-Porteous formula

The aim of this part of the thesis is to introduce the methods, phenomena and notations
on the simplest and most widely studied case, which we denote by Σi. Correspondingly, we
claim no originality for the results presented in this chapter. See also [FR06] for a short
overview of different methods.

The sentence

“the map f : Nn →Mm has Σi singularity at the point x ∈ N”

means simply that the rank of the differential dxf drops by i, that is (assuming m ≥ n),
dim ker(dxf) = i. The cohomological properties of the locus

Σi(f) =
{
x ∈ N : dim ker(dxf) ≥ i

}
(1)

are widely studied in different contexts, including topology, algebraic geometry, etc. The
class1 [Σi(f)] in the cohomology ring (also in the Chow ring, etc.) is given by the Thom-
Porteous formula [Por71]:[

Σi(f)
]

= s(im−n+i)(f
∗TM − TN) = det[cm−n+i+j−k(f∗TM − TN)]k,j∈i×i ∈ H∗(N ; Z)

assuming some mild transversality conditions (or in the complex analytic case, that the locus
has the expected codimension i(m− n+ i)). Chapter 9 of [FP98] lists some applications of
this formula in algebraic geometry.

1.1. Existence of the Thom polynomial and stability

Thom was interested in the set (1), and more generally, its analogue for other singularities.
He proposed the following theorem:

Theorem 1.1.1 ([Tho56, HK57]). Let Nn and Mm be two smooth (real) manifolds, and
Σ be a singularity, that is, a Diff(n)×Diff(m) invariant subvariety of Jd(n,m). Σ defines a
subset (which we also denote by Σ) of the global jet space Jd(N,M). There exists a polynomial
P in two set of variables c1, c2, . . . and d1, d2, . . . such that for a map f : N → M , whose
jet is transversal to the singularity subset Σ, the cohomology class [Σ(f)] ∈ H∗(N ; Z2) of the
locus

Σ(f) =
{
x ∈ N : the jet of f at x belongs to Σ

}
is given by substituting the Stiefel-Whitney classes of TN and f∗TM into the polynomial P :

[Σ(f)] = P (w1(TN), w2(TN), . . . ; f∗w1(TM), f∗w2(TM), . . . )

This polynomial is called the Thom polynomial of the singularity.

Remark. The theorem remains true if we replace R with C, ‘smooth’ by ‘analytic’, Z2 with
Z and Stiefel-Whitney classes with Chern classes. In the following, we will focus on the
complex case.

1With some abuse of notation, we will always write [X] instead of [X], as only closed subvarieties represent

classes anyway.

10
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Let us demonstrate this theorem for the Σi singularity defined above. The derivative dxf
of f at x ∈ N is a linear map in Hom(TxN,Tf(x)M). Assembling these maps for all x ∈ N ,
we get a section df of the vector bundle ξ = Hom(TN, f∗TM). The structure group of this
bundle is GLn ×GLm; since Σi (the set of corank i linear maps) is invariant for the action of
this structure group, we can define the “smeared” version Σi(TN, f∗TM) by

Σi(TN, f∗TM) =
{

(ϕ, x) ∈ Hom(TN, f∗TM) : x ∈ N, ϕ ∈ Σi(TxN,Tf(x)M)
}

Clearly, we have

Σi(f) = (df)−1 Σi(TN, f∗TM),

and if the section df is transversal to the stratification given by the Σi(TN, f∗TM) sets, we
also have [

Σi(f) ⊂ N
]

= (df)∗
[
Σi(TN, f∗TM) ⊂ Hom(TN, f∗TM)

]
.

Note that at this point, we could have any two vector bundles An, Bm and a (nice,
transversal) section σ ∈ ΓHom(A,B) instead of TN and f∗TM and df . In particular, we
can apply the construction to the universal bundles

Un = pr∗1
(
Cn ×GLn EGLn

)
Um = pr∗2

(
Cm ×GLm EGLm

)
on the classifying space BGLn ×BGLm; and get a universal class

[Σi] = [Σi ⊂ Hom(Un, Um)] ∈ H∗(Hom(Un, Um)) ∼= H∗(BGLn ×BGLm) = H∗
GLn×GLm

(pt).

This construction is compatible with pull-backs, and for any bundles An and Bm over a
(paracompact) manifold M there is a map Φ : M → BGLn × BGLm such that Φ∗Un = A

and Φ∗Um = B; putting these together, we get that Σi(A,B) = Φ∗Σi(Un, Um), and thus

[Σi(A,B)] = Φ∗[Σi(Un, Um)].

Finally, let us remark that H∗(BGLn × BGLm) is a (graded) polynomial ring, generated by
the Stiefel-Whitney (or Chern, in the complex case) classes of Un and Um, and the pullback
Φ∗ is given by substituting the Stiefel-Whitney (Chern) classes of A and B into these gener-
ators. Thus the universal class [Σi] is the Thom polynomial P .

Next, let us show that this polynomial can be expressed as a polynomial in the (virtual)
Stiefel-Whitney or Chern classes of the (formal) difference bundle B −A, which are defined
(in the Chern case) by the equation∑

k≥0

ck(B −A) · tk =

∑m
j=0 cj(B) · tj∑n
i=0 ci(A) · ti

∈ H∗(M; Z)[[t]],

where t is a formal variable. Observe that if E is a third vector bundle, then for the section
σ ⊗ id ∈ ΓHom(A⊕ E,B ⊕ E), defined simply by

(σ ⊗ id)x(a, e) = (σx(a), e),

we have Σi(σ) = Σi(σ⊗id) already as a set (the transversality conditions are also equivalent).
Choosing E to be an orthogonal complement2 of A in some large trivial bundle CK , we get

2Orthogonal complements do not exist in the category of holomorphic vector bundles, but here we are

dealing simply with complex vector bundles.
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that
[Σi(A,B)] = [Σi(A⊕A⊥, B ⊕A⊥)] = [Σi(CK , B ⊕A⊥)],

but c(CK) = 1 and c(B ⊕ A⊥) = c(B − A), from which it follows that P (c(A), c(B)) =
P (1, c(B − A)). Since this works for any compact manifold M, it must be true for the uni-
versal polynomial, too.

Rephrasing in the language of equivariant cohomology, we demonstrated that the Thom
polynomial is a universal class (characteristic class), in particular, it is the GLn × GLm-
equivariant cohomology class represented by the closed subvariety Σi ⊂ Hom(An, Bm), where
A and B are the standard GLn resp. GLm representations (optionally thought as equivariant
vector bundles over the point). Also, this class cannot be arbitrary: It lies in the subring
generated by {ck(B −A)}.

1.2. Porteous’ embedded resolution

The “classical” method for calculating the cohomology class [Σ] ∈ H∗(X) represented by
a singular subvariety Σ of a smooth ambient variety X is to find an embedded resolution of
the pair (X,Σ), that is, smooth varieties Σ̃ ⊂ Y and a map π : Y → X such that

• π−1(Σ) = Σ̃,
• Σ̃ is a resolution of Σ,
• and the following diagram commutes:

Σ̃
j−−−−→ Y

π
y yπ
Σ i−−−−→ X

In this situation we have

[Σ ⊂ X] = i∗[1] = i∗π∗[1] = π∗j∗[1] = π∗[Σ̃ ⊂ Y ]

This is useful if it is easy to compute [Σ̃ ⊂ Y ]; typically Y will be a vector bundle
and Σ̃ a subbundle, in which case [Σ̃ ⊂ Y ] is the Euler class of the quotient bundle. The
same construction works in the equivariant setting, where a Lie group G acts on X and
Y such that Σ and Σ̃ are invariant and π is equivariant. Y is choosed such that the push-
forward map π∗ : H∗

G(Y )→ H∗
G(X) can be computed, for example using the formulae in A.4.

Porteous’ construction [Por71] uses a straightforward generalization of the usual blow-
up construction in algebraic geometry. Using the notation above, the rôles are played as
follows:

X : Hom(V n,Wm)

Σ : Σi =
{
ϕ ∈ Hom(V,W ) : dim ker(ϕ) ≥ i

}
Y : Gri(V )× Hom(V,W )

Σ̃ : Σ̃i =
{

(R,ϕ) ∈ Gri(V )× Hom(V,W ) : R ⊂ ker(ϕ)
}

π : pr2 = projection to the second coordinate

and the whole diagram is GL(V ) × GL(W )-equivariant. In this situtation, Σ̃ is a linear
subbundle of Y , and the quotient bundle is Hom(R, π∗W ), where R ⊂ π∗V is the tautological
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rank i vector bundle over Gri(V ); thus, using the pushforward formula (38), Theorem A.4.1,

[Σi(V,W )] = π∗ctop

(
Hom(R, π∗W )

)
= π∗s(im)(π

∗W −R) = (−1)imπ∗s(mi)(R− π∗W )

= (−1)im+i(n−i)s(mi−(n−i)i)(V −W )

= s(im−n+i)(W − V )

Remark. In this toy case, the weaker version of the pushforward formula (36) would be also
sufficient, though resulting in a more involved derivation.

1.3. Equivariant localization

This is a variation and generalization of the previous method, which, in the context of
computing Thom polynomials, first appeared in [BSz06]. The first idea is that we can use
equivariant localization to compute the pushforward, see Corollary A.3.3: This works in the
general case, where we may not have such a nice formula as in the case of the Grassman-
nian; of course, then it may be not easy to evaluate the resulting localization formula either.
Second, we may not need a full resolution: Since localization works quite well with singular
varieties, a partial resolution is often enough.

The typical situation is that we want to compute the (torus-equivariant) class of an
invariant affine variety Z ⊂ V , and we can present the closure Z as an union of (infinitely
many) linear subspaces; that is, we have an (equivariant) vector bundle Y ⊂M× V over a
compact varietyM, such that pr2(Y ) = Z. Then we can apply Theorem A.3.7, and localize
onM:

[Z ⊂ V ]T =
∑
p∈MT

[Yp ⊂ V ]T
eT(TpM)

assuming (for simplicity) that M is smooth and has isolated fixed point set MT. Here Yp
denotes the fiber pr−1

1 (p) over p ∈M.

In the case of Z = Σi, the situation is the same as described in the previous section:

V = Hom(V,W )

M = Gri(V )

Y =
{

(R,ϕ) ∈ Gri(V )× Hom(V,W ) : R ⊂ ker(ϕ)
}

which results in the formula

[Σi(V,W )] =
∑
I∈(n

i)

eT(Hom(I,W )
eT(Hom(I, n− I))

=

=
∑
I∈(n

i)

∏m
l=1

∏
j∈I(θl − αj)∏

k/∈I
∏
j∈I(αk − αj)

∈ Z[α1, . . . , αn, θ1, . . . , θm]Sn×Sm .
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1.4. Restriction equations

This method was introduced by Richárd Rimányi, [Rim01]; see also [FR04]. It is based
on the geometry of orbits: It works best when the symmetries are large, and there are only
finitely many orbits. This is probably the most efficient method for small cases; on the other
hand, its scope is limited. While we don’t use this method directly in this thesis, it was the
original motivation for Section 4.4.

Let V be a representation of a Lie group G, and X be an orbit; as usual, we want to
compute the G-equivariant class [X]G represented by the closure of X. The basic idea is
very simple: Take other G-orbits, and restrict the class [X] to them; if we can compute
these restrictions, we get equations on [X], and if we have enough equations, maybe they
determine [X] completely.

Lemma 1.4.1. Let Z be any G-orbit, and denote by jZ the embedding jZ : Z → V . Then

j∗Z [X]G =


0 Z ∩X = ∅
eG(NZV ) Z = X

[NZX ⊂ NZV ]G Z ⊂ X

Note that the third case actually contains the other two. For a sketch of proof, see Lemma
A.3.5 in the Appendix.

Remark. There is a different interpretation of this result. Let p ∈ Z be any point, and
Gp ⊂ G be its stabilizer subgroup. Then Z ∼= G/Gp,

j∗Z : H∗
G(V ) = H∗

G(pt) → H∗
G(Z) = H∗

Gp
(pt)

and j∗Z is also the map induced by ip : Gp → G (we could also take any subgroup H < Gp, or
more generally, a Lie group morphism H → Gp, and restrict further). This viewpoint gives
the following interpretation of the lemma: For h : H → Gp

(ip ◦ h)∗[X]G =


0 Z ∩X = ∅
eH
(
(NZV )|p

)
Z = X[

(NZX)|p ⊂ (NZV )|p
]
H

Z ⊂ X

While the original version is geometrically more natural, this version is effectively com-
putable: We can take H to be a subgroup of Gp so that there exists a H-invariant comple-
mentary subspace S to TpZ in TpV , then[

(NZX)|p ⊂ (NZV )|p
]
H

=
[
Np(S ∩X) ⊂ S

]
H
.

The basis of the theory is the following theorem:

Theorem 1.4.2 ([FR04]). Suppose there are finitely many G-orbits, and for any orbit Z
the Euler class of the normal bundle eG(NZV ) is not a zero divisor in H∗

G(Z). Then the
following set of equations for the class of a G-orbit X

j∗Z [X] =
{
eG(NXV ) Z = X ‘principal equation’
0 Z 6= X, codim(Z) ≤ codim(X) ‘homogeneous equations’

has a unique solution.
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Let’s apply this method to our running example: The group G = GLn×GLm acts on the
space of matrices Hom(Cn,Cm) = Matn×m from the left3 by

(L,R) ·A = LAR−1.

Let us suppose for simplicity that m ≥ n. The classification of the orbits is well-known:
They are exactly the rank varieties Σk for 0 ≤ k ≤ n. For such an orbit Σk, we can choose
a representative matrix of rank k

Ak =
[
Ik 0
0 0

]
∈ Σk ⊂ Matn×m

with a k×k identity matrix on the top-left corner, and zero elsewhere. It is easy to compute
the tangent space TAk

Σk of the orbit Σk at the Ak, by just applying (a basis of) the Lie
algebra of infinitesimal actions g = gln × glm to Ak; it turns out that tangent space is

TAk
Σk =

{ [
∗ ∗
∗ 0

]
, where ∗ is anything

}
< TAk

Matn×m ∼= Matn×m

As a side effect of this computation, we get the codimension formula

codim(Σk) = (n− k)(m− k).

A reasonably big subgroup (meaning that it is homotopy equivalent to it) Hk of the stabilizer
of Ak is

Hk =
{ ([

C 0
0 A

]
,

[
C 0
0 B

])
: C ∈ GLk, A ∈ GLn−k, B ∈ GLm−k

}
.

To do the computation however, it is better to restrict ourselves to the maximal tori. Let
us denote by α1, . . . , αn and β1, . . . , βm the generators of H∗

Tn×Tm(pt); and by γ̂1, . . . , γ̂k,
α̂k+1, . . . , α̂n and β̂k+1, . . . , β̂m the corresponding generators of the the maximal torus Tk of
Hk. Then the restriction map j∗k : H∗

G(pt)→ H∗
Hk

(pt) is given by

αi 7→
{
γ̂i i ≤ k
α̂i i > k

and βi 7→

{
γ̂i i ≤ k
β̂i i > k

A Hk-invariant normal space to Σk at Ak is

Sk =
{ [

0 0
0 ∗

]
, where ∗ is anything

}
< TAk

Matn×m

with the Euler class

eTk
(Sk) =

n∏
i=k+1

m∏
j=k+1

(β̂j − α̂i).

Gathering all this gives us a bunch of linear equations for the coefficients of the Thom
polynomial (expressed as a polynomial in two set variables, one for GLn and one for GLm),
which we can then solve using a computer algebra software, for example. In fact, in this
concrete case the ‘principal equation’ imply all the others, since clearly the stabilizer of Σk

contains the stabilizers of Σi for all i < k. However, it is not easy in general to derive a
formula which works for any k, n and m; this approach is algorithmic in nature. Of course,
when we can guess the result, it is possible to prove it (in this case, for example by using
Sylvester’s determinantal formula for the resultant); we omit this last step here.

3The usual convention to write linear maps as matrices is the transpose of what we use here; by that

convention, GLn would be the right group, etc.
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1.5. Gröbner degeneration

For the sake of completeness, we have to mention the method of Gröbner degeneration,
which is well known among algebraic geometers. The basic fact here is that for an ideal
I � C[V ] in a polynomial ring, there is a flat deformation to its initial ideal (see eg. [Eis95],
Section 15.8). Many properties are invariant under flat deformation, in particular, the co-
homology class, too (in the equivariant case, of course we need an invariant deformation).
Since there are algorithms to compute the Gröbner basis, and thus the initial ideal, this
gives us an algorithm to compute the (torus-equivariant) cohomology class represented by a
(torus-invariant) affine variety given its ideal, since the geometry corresponding to the initial
ideal is just a bunch of coordinate subspaces with multiplicities.

For a very simple example, consider the plane C2 with the linear action of the multiplica-
tive group U = C×〈ω〉 defined by

ω · (x, y) = (ω2x, ω3y),

with weights (2α, 3α). The subvariety Z defined by the equation y2 = x3 is invariant to
this action; let us compute it equivariant class [Z] ∈ H2

U (C2) = Z[α]. For this, consider the
following two U -invariant one-parameter deformations:

Zs = {y2 = sx3} ⊂ C2 and

Z ′t = {ty2 = x3} ⊂ C2, s, t ∈ C.

We have Z1 = Z ′1 = Z, and since both deformations are actually flat, [Z] = [Zs] = [Z ′t]; but
Z0 is simply the line {y = 0} with multiplicity 2, and Z ′0 is the other coordinate line {x = 0},
but with multiplicity 3. Thus both give the result [Z] = 6α. In general, instead of finding ex-
plicit flat deformations, we can just compute the initial ideal using a Gröbner basis algorithm.

However, in the situations studied in this thesis, more often that not we have no idea about
the ideals, and even if we knew them, the resulting Gröbner basis computations would be
too big (even for computers). Nevertheless, this method can be useful for sub-computations;
for example if we want to localize using Theorem A.3.7 over a base which is a singular toric
variety, we could in principle compute the virtual tangent Euler classes using Gröbner bases.
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Chapter 2. Primer on singularity theory

Singularities, in our context, are types of local behaviour of (smooth or holomorphic)
maps. We briefly collect the necessary definitions and facts here while referring to the
literature ([AVGL98] and the references therein) for the details, as our focus is on the
computations.

2.1. Singularities

Probably the most natural definition is to consider germs of maps up to reparameteriza-
tion of the source and the target: The “left-right” group

A = Diff(Cn, 0)× Diff(Cm, 0)

acts on the space of holomorphic germs (Cn, 0) → (Cm, 0). The equivalence classes (orbits)
are called left-right singularity classes. An analogous definition can be given for smooth real
germs. A map f : M → N between manifolds has singularity type η at a point x ∈ M

if the germ of f at x in some (and thus, in any) local coordinate system belongs to the
A-orbit of η. A singularity η is stable if for any map f having η singularity at x, and any
small perturbation f ′, there exist an x′ close to x having the same singularity (in words: the
singularity cannot be eliminated by a small perturbation).

While A-equivalence is a certainly a natural notion, a better behaved classification is the
so-called contact equivalence or K-equivalence, introduced by John Mather. Two germs f
and f ′ are contact equivalent if there is a diffeomorphism germ h ∈ Diff(Cn) and a map germ
ϕ ∈ J (Cn,GLm) such that

f ′(x) = ϕ(x)f(h(x)).

This can be also thought as a group action: the group K is

K = Diff(Cn)× J (Cn,GLm)

is acting (from the left) on J (n,m) by

((h, ϕ)f) (x) = ϕ(x)f(h−1(x)).

We will need some fundamental definitions.

Definition 2.1.1. The ideal of a singularity f = (f1, . . . , fm) ∈ J (n,m) is the ideal the
generated by the component functions

If = (f1, . . . , fm) � E(n)

where E(n) = C[[x1, . . . , xn]] is the ring of formal power series on Cn (similarly for truncated
polynomial rings and other function rings). Clearly If is also an ideal in J (n) ⊂ E(n). The
local algebra of the singularity f is the quotient E(n)/If ; we will call the nilpotent quotient

Qf = J (n)/If
the quotient algebra. The dimension of the local algebra is called the algebraic multiplicity of
the singularity; however, what actually is the important object for us is the quotient algebra
and its dimension, which we will denote by µ:

µf = dim(Qf ) = dim(E(n)/If )− 1.

17
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Remark. The difference between E(n) and J (n) is that the former ring has a unit, while
the latter is nilpotent: E(n) = C⊕J (n). Actually J (n) is the unique maximal ideal in E(n).
There are versions of our main objects for both rings. The singularity theory literature
usually works with the ring of functions (or power series) and the local algebra, however for
us it is more natural to work with the nilpotent objects. Note that the literature somtimes
use the symbols Q and µ for the local algebra and the algebraic multiplicity; but it would
be very inconvenient for us to follow this convention.

The most important results for us are the following:

Theorem 2.1.2 (Mather). K-equivalent stable germs are A-equivalent.

This shows that K-equivalence is a reasonably natural object.

Theorem 2.1.3 (Mather). Two map germs are K-equivalent if and only if their ideals are
taken into each other by a map induced by a germ of diffeomorphism in Diff(n).

Corollary 2.1.4. Two finitely determined map germs are K-equivalent if and only if their
local algebras (or equivalently, their quotient algebras) are isomorphic.

Remark. In this thesis, we are only dealing with finitely determined singularities: These
are the singularities for which it is possible to determine for any jet whether it belongs to the
given singularity by looking at only finitely many (depending on the singularity) derivatives.
In this case, it is possible to truncate our rings at a given order; thus we can work with finite
dimensional objects. In our viewpoint, this is not a real restriction.

2.2. Thom-Boardman classes

Since the complete classification of (say, contact) singularities is hopeless, it is clearly
useful to have more coarse but better behaved classification schemes. The Thom-Boardman
classification, introduced by Thom [Tho56] and clarified by Boardman [Boa67] (see also
[Mat73]), is probably the most well-known and useful such scheme. It has the clear ad-
vantage that the classes are indexed by discrete objects, namely, partitions (non-increasing
finite sequences of integers).

Definition 2.2.1 (Thom). For a (nice enough) map f : N →M , define the locus

Σi(f) =
{
x ∈ N : dim(ker(dxf)) = i

}
.

Suppose that Σi(f) ⊂ N is smooth; then we can define Σij(f) to be Σj(f |Σif ), and similarly,
for any index set I = {i1, . . . , ik−1}, let

ΣI,ik(f) = Σik(f |ΣIf ).

This definition is intuitive enough, but in the definition of Σi1i2...ik we have to assume
that the loci Σi1 , Σi1i2 , etc. are all smooth. Boardman gave a definition which cures this
problem, but is much less intuitive.

Definition 2.2.2. Let U � E(n) = {f : Cn → C} be an ideal of functions (or formal power
series, etc.; and also similarly for the real case). The kth Jacobian extension ∆k(U) is the
ideal generated by U and all the k× k determinants det[∂ϕi/∂xj ], where xj is a (fixed) local
coordinate system and ϕi ∈ U . It will be convenient to also define ∆k(U) = ∆n−k+1(U).
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Figure 1. A Σ11 singularity; f : R2 → R2 is the vertical projection.

Definition 2.2.3. It is easy to see that

U = ∆0(U) ⊆ · · · ⊆ ∆k(U) ⊆ ∆k+1(U) ⊆ · · · ⊆ ∆n+1(U) = E(n).

The largest ∆k such that ∆k(U) ( E(n) is called the critical Jacobian extension.

Remark. The critical extension of an ideal U is ∆n−r = ∆r+1, where r = rankU is the rank
of the ideal U , which is defined as rankU = dimC (m2 + U)/m2.

Definition 2.2.4 (Boardman). The germ f = (f1, . . . , fm), f(0) = 0 belongs to ΣI if the
ideal U = (f1, . . . , fm) � E(n) has successive critical extensions

∆i1U, ∆i2∆i1U, ∆i3∆i2∆i1U, . . .

For a map g : N → M between manifolds, take a point x ∈ N and let (f1, . . . , fm) be the
coordinate functions of g in some local coordinate system around x and g(x); the definition
then tells us the Boardman type of g at the point x.

Boardman proved that the singularity subsets defined this way are smooth submanifolds
of the appropriate jet spaces, and that they coincide with Thom’s definition when the latter
applies, by which we mean that ΣI

Thom(f) = (J f)−1(ΣI
Boardman).

Porteous proposed a third definition in [Por83], based on his theory of intrinsic deriva-
tives (see Section 4.3.1).

Remark. Thom-Boardman singularities of order d are d-determined, that is, it’s enough to
look at the first d differentials of a map to decide whether it belongs to the given Thom-
Boardman class (this should be clear from Boardman’s definition). They are also stable in
the sense that if f : Cn → Cm belongs to ΣI , then so does f ⊕ idC : Cn+1 → Cm+1.
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2.3. Thom polynomials

Singularities describe local behaviour of maps, however, Thom polynomials are global
invariants of singularities, describing (in cohomological terms) the “shape” of the singular
locus; they are an instance of the local-global principle.

Let us recall Theorem 1.1.1 from Chapter 1:

Theorem 2.3.1 ([Tho56, HK57]). Let Nn and Mm be two smooth, real (resp. complex
analytic) manifolds, and Σ be a singularity, that is, a Diffn × Diffm invariant subvariety of
Jd(n,m). Σ defines a subset (which we also denote by Σ) of the global jet space Jd(N,M).
There exists a universal polynomial P in two set of variables c1, . . . , cn and d1, . . . , dm, de-
pending only on n, m and Σ, such that for a map f : N →M whose jet is transversal to the
singularity subset Σ, the cohomology class [Σ(f)] ∈ Hcodim(Σ)(N ; Z2) (resp. H2codim(Σ)(N ; Z))
of the locus

Σ(f) =
{
x ∈ N : the jet of f at x belongs to Σ

}
is given by substituting the Stiefel-Whitney (resp. Chern) classes of TN and f∗TM into the
polynomial P :

[Σ(f)] = P (w1(TN), w2(TN), . . . ; f∗w1(TM), f∗w2(TM), . . . )(2)

This polynomial is called the Thom polynomial of the singularity.

Sketch of proof. Consider the universal jet bundle JU → BU , and the Diffn×Diffm-equivariant
cohomology class of the corresponding singularity set ΣU ⊂ JU . For any concrete case
f : N →M , we can pull back from the universal case along the classifying map Φ : N → BU :

[Σ ⊂ J (N,M)] = [Φ−1(ΣU ) ⊂ J (N,M)] = Φ∗[ΣU ⊂ JU ];

furthermore, if f is transversal to Σ, then

[Σ(f) ⊂ N ] = [(Jf)−1(Σ) ⊂ N ] = (Jf)∗[Σ ⊂ J (N,M)] = (Jf)∗Φ∗[ΣU ⊂ JU ].

Since Diffn × Diffm is homotopy equivalent to GLn × GLm, the cohomology ring H∗(JU ) =
H∗(BU ) in the universal situation will be a polynomial ring, and the pullback Φ∗ is given
by substituting the appropriate characteristic classes; consequently P = [ΣU ⊂ JU ]. Finally,
(Jf)∗ is simply an isomorphism. �

Remark. In the real case, the set of maps which are transversal to a given singularity are
dense and open among all smooth maps; thus (2) is satisfied for almost any map f , and even
if f is “bad”, we can approximate it with “nice” maps to arbitrary precision. In the complex
case, this is no longer true. However, complex analytic maps are rigid, and we expect the
formula to hold if the locus Σ(f) is a subvariety with the expected dimension (cf. [Ful98]).

In fact, the polynomial P cannot be arbitrary:

Theorem 2.3.2 ([Dam72]). For contact singularities, the polynomial P can be written as

P (c1, c2, . . . , cn; d1, d2, . . . , dm) = Q(h1, h2, h3, . . . )

where Q is again a polynomial, and hi is defined by the following identity of formal power
series:

1 +
∞∑
k=1

hkt
k =

1 +
∑m

j=1 djt
j

1 +
∑n

i=1 cit
i
.
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The interpretation of hi in the above theorem is that they are the Chern classes of the ‘virtual
difference bundle’ f∗TM 	 TN .

Remark. This theorem also holds for the Thom-Boardman classes.

Corollary 2.3.3. The polynomials P depend only on the relative codimension r = m− n,
in the following sense:

Pn,m(c1, . . . , cn; d1, . . . , dn) = Pn+1,m+1(c1, . . . , cn, 0; d1, . . . , dn, 0).

Furthermore, the sequence k 7→ Pn+k,m+k eventually stabilizes.

We will call both P and Q the Thom polynomial of Σ (though we are more interested
in computing Q), and use the notation TpΣ(n,m) or just TpΣ for them. We will frequently
write Q as a linear combination of Schur polynomials (cf. Appendix A.2):

Qr(h1, h2, . . . ) =
∑
λ

eλr · sλ(h1, h2, . . . );

one observation motivating such a rendition is that the coefficients eλ are nonnegative integers
(this was recently proven in [PW07a, PW07b], motivated by numerical evidence).

Another such observation is that the coefficients (when they appear) do not actually
depend on the dimensions n and m at all; more precisely

eλr = e
(µ,λ)
r+1

where µ = µ(Σ) ∈ N is the dimension of the quotient algebra of the singularity. This means
that if we “shift” the Thom polynomials by −r, they fit into an infinite series, called the
Thom series of the singularity; see [FR07], and Sections 3.1, 3.2 for the details.

2.3.1. Known Thom polynomials. To place our results into a context, we tried to
collect the list of previously known Thom polynomials here. We will (ab)use the notation
Σ(r) for the Thom polynomial of Σ in relative codimension r.

• Σi(r) was calculated by Porteous [Por71] (but was already known to Giambelli).
• Σij(r): A pushforward formula was given by Ronga [Ron72]. Some concrete cases,

eg. Σ2,1(0) and Σ2,2(−1) were computed. A simpler version (and a computer program)
was given by Kazarian [Kaz06].
• A2(r) was computed by Ronga as a special case of Σij .
• A4(0) was computed by Gaffney [Gaf83].
• A≤8(0), A≤4(1), Ia,b(0) for a + b ≤ 8 and some other examples were computed by

Rimányi [Rim01], using the restriction equations method.
• A3(r) was computed in [BFR02], [LP09].
• I2,2(r): Kazarian gave a pushforward formula; the Thom series was computed in [FR07,

FR08], [Pra07].
• A≤6(r): An iterated residue formula was given in [BSz06].
• For I2,3(r), IIIa,b(r), a + b ≤ 6, A≤4(r), Σ21(r), and some other cases, localization

formulae were derived in [FR08], via “extrapolation” from previous results for small
r-s. They also computed the coefficients for an unnamed family which includes I2,2(r)
and III2,3(r).
• We computed Σi1(r) and Σij(−i+ 1) in [FK06].
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Chapter 3. Localization of Thom polynomials

In this chapter we study the general properties of localization formulae for singularities,
which first appeared in [BSz06] in the context of Ad singularities, and were then generalized
in [FR08]. While the localization principle is very powerful in the sense that we can write
down formulae in cases which are not accessible to other methods, the resulting formulae
are notoriously hard to evaluate, since the terms are rational functions instead of polynomi-
als. Summing rational functions in many variables with large denominators is pretty much
impossible even using computers; while bringing the terms to a common denominator, the
number of temporary terms suffer an exponential explosion, quickly exhausting the memory
of the computer. This happens for relatively small examples already: For example suppose
that the denominators are products of binoms; today’s personal computers cannot handle
the case when the number of different factors (binoms) is about 30 or more.

However, Thom polynomials of singularities have some special properties (as opposed to
general systems of polynomials in two sets of variables); in particular, we know a priori that
they depend only on the (Chern classes of the) formal difference bundle c(f∗TM 	TN); and
we can exploit this fact to remedy the situation described above. It turns out that following
this program leads quite naturally into the world of basic hypergeometric series; localization
formulae for singularities become q-hypergeometric identities.

Remark. Here we will work within the theory of contact singularities; while Thom-Boardman
classes are not, in general, contact classes, everything holds for them too (see [Mat73]), as
it is also easy to check in each concrete situation we will deal with in the thesis.

3.1. Localization for contact singularities

We present the basic ideas of [FR08], which give us insight into the structure of the
(Thom polynomials) of contact singularities.

Recall the following notations:

F = (f1, f2, . . . , fm) ∈ J (n,m) the jet of the singularity

IF = (f1, f2, . . . , fm) � J (n) the ideal of the singularity

QF = J (n)/IF the quotient algebra

µF = dimC(QF ) the algebraic multiplicity, shifted by −1

kQ = corank(IF ) minimal number of algebra generators of Q

rank(IF ) = dimC(m2 + IF )/m2 rank of the ideal

The basic construction is the following: For a (contact) singularity class Z ⊂ Jd(n,m)
we want to find a vector bundle E → M which is an embedded partial resolution of (the
closure of) Z; we can then use equivariant localization on a compactification M̄ to compute
[Z] (the localization basically computes a pushforward). We will see that there exists a very
natural partial resolution satisfying our needs; that construction actually dates back to the
seventies (Damon, Mather).

22



C
E

U
eT

D
C

ol
le

ct
io

n

23

Consider the map p : Z → Hilbµ(Jd(n)) ⊂ Grµ(Jd(n)), where Hilbµ(Jd(n)) is the (re-
duced) Hilbert scheme of ideals of codimension µ in Jd(n), defined by mapping a jet F into
its ideal IF .

Proposition 3.1.1 ([FR08], Lemma 4.3). For any ideal I �Jd(n), the closure of p−1(I) is

p−1(I) = I ⊗ Cm ⊂ Jd(n,m) = Jd(n)⊗ Cm.

Proof. Clearly p−1(I) ⊂ I⊗Cm. On the other hand it is open in I⊗Cm: Suppose f1, . . . , fm
generates I, and b1, . . . , bm ∈ I are arbitrary elements of the ideal; we want to show that

f1 + εb1, . . . , fm + εbm

also generates I if ε ∈ C is small enough. For this, write bi =
∑
rijfj for some rij ∈ R =

Jd(n) and take any c =
∑
sifi ∈ I (si ∈ R). We have to present c as c =

∑
ti(fi + εbi) for

some ti ∈ R. But∑
i

ti(fi + εbi) =
∑
i

ti

(
fi + ε

∑
j

rijfj

)
=
∑
j

fj

(∑
i

ti(δij + εrij)
)
;

thus we have to solve the system of equations

sj =
∑
i

ti(δij + εrij), j ∈ {1, . . . ,m}

for ti, but the coefficient matrix [δij + εrij ] is clearly invertible for |ε| small enough.
Actually, the same reasoning proves the Zariski-openness: The locus where the coefficient

matrix [δij + rij ] is not invertible is closed. �

Basically the object M = p(Z) ⊂ Hilbµ encodes everything about the singularity class
Z; and unlike Z, at least for large enough m it is independent of m, which shows that the
parameter m is “not that important” in this theory.

The following GLn×GLm-equivariant diagram summarizes the situation:

E → Ē → I ⊗ Cm → R⊗ Cm π−−→ Jd(n,m)
↓ ↓ ↓ ↓ ↓
M ⊂ M̄ ⊂ HilbµJd(n) ⊂ GrµJd(n) π−−→ pt

where R and I denotes the tautological codimension µ bundles over Grµ and Hilbµ, respec-
tively; Z = π(E) and Z̄ = π(Ē). The group GLm acts on the bottom row trivially. We can
restrict the action to the maximal torus T = Tn×Tn ⊂ GLn×GLm, and apply Theorem A.3.7
to compute [Z] by localizing on M̄:

[Z] =
∑
I∈Fix

[I ⊗ Cm ⊂ Jd(n,m)] · [NIM̄ ⊂ TIGr]
e(TIGr)

(3)

where Fix is the set of torus-fixed ideals in M̄, and NIM̄ is the tangent cone of M̄ at I.
The quotient can be thought as the (inverse) “tangent Euler class” at the possibly singular
point I (also called equivariant multiplicity).

To move forward, we have to understand the (tangent cones of the) fixed points of
M̄ ⊂ Hilbµ(Jd(n)). The fixed points of Hilb are easy to list: they are just the monomial
ideals, that is, ideals generated by monomials. A good way to visualise them is to consider the
case n = 2: Then the monomial ideals of codimension µ are in bijection with the partitions
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y4

xy3y3

y2 xy2 x2y2

y xy x2y x3y

1 x x2 x3 x4

Figure 2. The codimension 4 monomial ideal (y3, xy2, x2) � J4(2)

of weight (µ + 1), see Figure 2. In the n > 2 case, monomial ideals correspond to “higher-
dimensional partitions” (eg. for n = 3, the so called plane partitions). We can now write (3)
as

[Z] = Tp(α, θ) = Tp(α1, . . . , αn; θ1, . . . , θm) =
∑
I∈Fix

∏m
j=1

∏µ
i=1

(
θj − wQi (α)

)
EI(α)

(4)

where I runs over the monomial ideals of codimension µ in J (n); αi and θj are (−1 times)
the weights of the tori Tn and Tm, respectively; wQi are the weights of the quotient algebra
Q = J (n)/I; and EI(α) = e(TIGr)

[NIM̄⊂TIGr]
is the “virtual” tangent Euler class of M̄ at I (which

is ∞ if I /∈ M̄, thus those terms do not contribute to the sum). Note that the tangent Euler
class is a rational function in the variables αi.

It is very important to understand what happens when we increase n. Let us denote the
“operation” n 7→ n+ 1 by #, motivated by the musical notation. Then clearly

Fix ⊂ #Fix

#I = (I, xn+1) = I ⊕ (xn+1 ·Ed(n+ 1)) � Jd(n+ 1)

#Q = Q

The important fact here is

Lemma 3.1.2 ([FR08], Lemma 8.2).

#EI = E#I = EI

µ∏
i=1

(αn+1 − wQi ).

In an earlier version of [FR08] this lemma was proved somewhat indirectly, and was
noted that “it would be interesting to find a direct proof of it”. Here we give such a direct,
geometric proof. In the latest version of that paper, a sketch of a similar proof appeared.

Proof. Consider any ideal I � J (n) of codimension µ. First, we will show how the tangent
spaces of the orbits O = Diff(n)·I and #O = Diff(n+1)·(#I) relate to each other. In general,
if we have a Lie group action, it is relatively easy to compute the tangent space of an orbit
at a point, by applying the infinitesimal action of the correspoding Lie algebra to the point.
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The Lie algebra diff(n+1) is generated by the infinitesimal actions

xi 7→ xi + εxj

xi 7→ xi + εxjxk

xi 7→ xi + εxjxkxl

...

Clearly TIO ⊂ T#I(#O), so what we really want to calculate is the factor

T#I(#O) / TIO ≤ T#IGrµJ (n+1) / TIGrµJ (n) =

= Hom(#I,Q) /Hom(I,Q) = Hom(xn+1E(n+1),Q)

which we can do by computing the action of the factor diff(n+1)/diff(n); this is generated
by (the classes of) two types of infinitesimal transformations

xi 7→ xi + ε(xk1 · · ·xke)(a)

xn+1 7→ xn+1 + ε(xj1 · · ·xje)(b)

where 1 ≤ e ≤ d and (n+ 1) ∈ {ki}. Applying such an infinitesimal action gives us a linear
map in Hom(#I,J (n+1)) (by taking the derivative wrt. ε at ε = 0 for all v ∈ #I), and we
can get a tangent vector in T#IGrµJ (n+1) via the natural factor map

Hom(#I,J (n+1))→ Hom(#I,Q).

It is easy to see that only case (b) can lead to a nonzero tangent vector, which identifies
T#I(#O) as a product

Hom(I,Q) × Q ⊂ Hom(#I,Q)
∪ ‖ ∪
TIO × Q ∼= T#I(#O)

via the isomorphism

(ϕ, u+ I) 7→

(xn+1)kv 7→


ϕ(v) k = 0
uv + I k = 1
0 k > 1


(5)

Since this is true for any orbit, it is true for the union of orbits, that is, for any invariant
subset X; and since this isomorphism varies continously as we move around on Hilbµ, it
follows that the tangent cone of #X at #I is also a product, exactly the same way (actually
the bundle of tangent cones of #X, restricted to X, is a vector bundle over the bundle of
tangent cones of X).

The only thing remains is to compute the weights of the new directions at a monomial
ideal, which is easy using (5): The new directions are µ-dimensional subspace A of

Hom(xn+1Ed−1(n),Q) ⊂ Hom(xn+1Ed−1(n+ 1),Q)

and given a basis {ui + I} of Q, we can construct a basis {ψi} of A, based on (5), by setting
ψi(xn+1v) = uiv + I. Observe that if the line 〈ui〉 is T-invariant with weight wi, so is 〈ψi〉
with weight wi−αn+1, which completes the proof (the apparent sign discrepancy comes from
our notation system, which gives negative weights to J (n) = Hom(⊕kSymkCn,C), because
the torus acts on the source side). �
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Note that we can specify a monomial ideal I by first specifying the ismorphism type
of its quotient algebra Q, then choosing the k = kQ generators xi1 , . . . , xik of Q, where
{i1, . . . , ik} = K ⊂

(
n
kQ

)
, and finally specifying an order of these generators by choosing a

permutation σ ∈ SkQ/AutQ. Here, AutQ denotes the group of symmetries of (any) “higher-
dimensional partition” corresponding toQ. Thus, allowing some permutation of the variables
x1, x2, . . . , xn, for every monomial ideal I � J (n) there is an I0 � J (kQ) such that I =
#(n−kQ)I0 (where Q = J (n)/I = J (kQ)/I0, as usual). Denoting EI0 by PQ, all this boils
down to the following corollary of Lemma 3.1.2:

EI = PQ(ασ(i1), . . . , ασ(ik)) ·
∏
j /∈K

µ∏
l=1

(
αj − wQl (ασ(i1), . . . , ασ(ik))

)
(6)

3.2. The substitution trick

It is well known that for reasonably nice singularities (all contact singularities fall into
this class, [Dam72]), the Thom polynomial can be written as a polynomial in the formal
difference θ−α; thus the formula (4) above is redundant. Our idea is the exploit this redun-
dancy to enable actual computations.

Let us start with the equation (compare with (4) above)

[Z] =
∑
λ

dλ ·sλ(θ − α) =
∑
y∈Fix

∏µ
i=1

∏m
j=1

(
θj − wyi (α)

)
Ey(α)

where λ runs over the partitions with weight |λ| equalling to the codimension codim(Z) of the
singularity; dλ ∈ Z are the unknown coefficients of the Thom polynomial we are interested
in. Rewriting in Schur polynomials of α and θ (see Appendix A.2) we get

∑
λ

dλ
∑
ϕ,χ

(−1)|χ|cλϕχsϕ(θ)seχ(α) = (−1)mµ
∑
y∈Fix

∑
ϕ⊂(µm)(−1)|ϕ|sϕ(θ)s{eϕ(Wy(α))

Ey(α)

(the cλϕχ are the Littlewood-Richardson coefficients). Consider the coefficient of sλ(θ) in both
sides, with |λ| = codim: on the LHS, it is just dλ, which gives the following:

Theorem 3.2.1. With the notations above, we have

dλ =
∑
y∈Fix

s{eλ(Wy(−α))
Ey(α)

= (−1)mµ−codim
∑
y∈Fix

s{eλ(Wy(α))
Ey(α)

.(7)

An immediate corollary is that dλ = 0 unless λ1 ≤ µ.

Note that dλ ∈ Z, while the RHS is a rational function in the variables αi; which boils
down the fact that we can substitute basically anything into the αi-s, as long as Ey(α) does
not became zero (which is very easy to guarantee in practice), and (7) still holds. That means
that for example a computer can substitute either randomly or deterministically chosen inte-
gers or rational numbers into the αi-s, and compute the coefficients of the Thom polynomial
from the localization data; this was more-or-less impossible before, except for very small
cases. The reason we can do it is that summing (rational) numbers is a much easier task
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µ µ

n− im− n+ i

λ1 λ2 . . .

χ1

χ2

...ν−

ν+

Figure 3. The relation between λ, χ = {λ̃, n, m and the pair (ν+, ν−)

than summing rational functions. Also we can compute the coefficients dλ independently of
each other.

An important corollary of Theorem 3.2.1 is that the coefficients of the Thom polynomials
do not depend on m (and since they are a polynomial in the difference θ − α, they don’t
depend on n either). While there is a shifting, in the sense that when we replace m by m+1,
dλ becomes d(µ,λ), we can relabel the coefficients, indexing them with the pair ν± = (ν+, ν−)
(see Figure 3). This way we get an infinite series (as a linear combination of “renormalized
Schur polynomials” in the difference alphabet θ − α), called Thom series of the singularity,
from which the Thom polynomial for any n,m can be read off.

Remark. This stability property was noticed only recently: first in [BFR02] in the single
case of the A3 singularity (expressed in Chern monomials, instead of Schur polynomials),
then by the author in the one-parameter family of Thom-Boardman singularities Σi,1 (see
[FK06] and Section 4.4), and then, motivated by these examples, proved in [FR07].

The coefficients dλ are also known to be nonnegative; this was conjectured by the author
(based on numerical evidence), and also independently by Pragacz, and finally proved in
[PW07a], [PW07b].

Let us explain Figure 3 in more detail. The vertical dotted line in the middle is our ‘base
line’: relative to this line are things stable. n and m are the dimensions of the source and
target, as usual; the big box has width m and height µ. The exact placement of the base line
is not very important, in the sense that it could be shifted by a fixed finite amount; however,
the natural choice seems to be (m − n + i, n − i), where the positive integer i is defined
by letting Σi to be the unique first-order Thom-Boardman class our singularity belongs to.
The bottom-left partition (ignoring the base line) is λ; the terms dλ · sλ(θ − α) appear in
the Thom polynomial. The top-right partition is the complement χ = {λ̃; these appear in
the RHS of formula (7) for the coefficients dλ. ν− is the portion of χ lying on the left of
the base line; similarly, ν+ is the portion of λ̃ lying on the right of the base line. We will
denote the pair (ν+, ν−), or more specifically, the “signed partition” (which is just a non-
increasing sequence of integers) (ν+,−rev ν−) ∈ Zµ by ν±; analogously, ν∓ = (ν−,−rev ν+).
Clearly, `(ν+) + `(ν−) = µ; and, since |λ| = codim(Z), and the codim changes by µ when we
increase m or decrease n (this follows for example from Lemma 3.1.2), it is also true that
ofs = |ν+| − |ν−| is also a constant, depending only on the singularity (and the choice of the
base line).
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For an example, consider the singularity A2. The Thom polynomials and the Thom series
are

Tpn,m(A2) =
m−n+1∑
k=0

2k · s(m−n+1+k,m−n+1−k)e(θ − α) =

=
m−n+1∑
k=0

2k · s(2m−n+1−k,12k)(θ − α)

Ts(A2) =
∞∑
k=0

2k · rs(k,−k)

where rsν± denotes the “renormalized Schur polynomials”: we can recover Tpn,m from Ts by
the substitution

rsν± 7→ s((m−n+i)µ+ν±)e(θ − α).

(in this case, i = 1, since A2 = Σ11 ⊂ Σ1).

3.3. Principal specialization

Theorem 3.2.1 works pretty well for computer calculations, however it does not allow
any insight into the structure behind the scenes. What we will do now is to substitute
1, q, q2, q3, . . . (where q is a formal variable) into the variables αi, and let n tend to infinity.
This is called the (stable) principal specialization in the symmetric polynomial literature
[Sta99].

Remark. The reader could ask why we singled out this substitution instead of some others,
especially since it breaks the symmetry of the variables? The answer is first of all that we
couldn’t find any other substitution which looks at least somewhat natural in any way and
works in the limit n→∞; the only other standard specialization is the so-called exponential
specialization, but to use that we would need our expressions to contain symmetric polyno-
mials instead of roots. We shouldn’t worry about the breaking of the symmetry: As the
literature shows, this is a rather natural specialization, and taking the limit n→∞ restores
some of the symmetry. Finally, note that since our formulae are homogeneous of degree 0,
shifting the exponents to qk, qk+1, qk+2, . . . would not change the result.

The idea is to expand the terms of (7) into Laurent series (after the specialization); since
we know that the sum is an integer, we only need to extract the constant terms of the
individual Laurent series, and sum them. We will use the following notation:

Gν±,y,n(q) =
sχ(Wy(−1,−q,−q2, . . . ,−qn−1))

Ey(1, q, q2, . . . , qn−1)
=
∑
j∈Z

gν±,y,n,j ·qj ∈ Q[[q]][q−1]

where Wy(α) = {wy1 , . . . , w
y
µ} is the set of weights at the fixed point y, and χ = {λ̃ =

(n− 1)µ + µ∓ as usual. Thus (for any m)

Tpn,m =
∑
ν±

sλ(θ − α)

∑
y∈Fixn

Gν±,y,n(q)

 =
∑
ν±

sλ(θ − α)

∑
y∈Fixn

gν±,y,n,0


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We already understood what happens with the denominator Ey when we increase n, and
it is very easy to see what happens with the numerator:

W#y = Wy

#χ = χ+ 1µ = (χ1 + 1, χ2 + 1, . . . , χµ + 1)

#[sχ(Wy)] = s(χ+1µ)(Wy) = sχ(Wy) ·
µ∏
i=1

wi

From this, we have the

Corollary 3.3.1.

Gν±,y,n+1 = Gν±,y,n

µ∏
i=1

−wi(q)
qn − wi(q)

= Gν±,y,n

µ∏
i=1

(
1− qn

qn − wi(q)

)
(8)

Theorem 3.3.2. For any fixed ν±, y ∈ Fix, and j ∈ Z the series of rational numbers
n 7→ gν±,y,n,j eventually stabilizes. We will denote the stable limit by gstab

ν±,y,j
∈ Q.

Proof. Let us fix an n0. According to Corollary 3.3.1

Gν±,y,n = Gν±,y,n0 ·
n∏

k=n0+1

µ∏
i=1

(
1− qk

qk − wi(q)

)
.

Denote by cmin
i qe

min
i the leading (smallest) term of wi(q); expanding the multiplier 1−qn/(qn−

wi(q)) into Taylor series, the expansion starts with

1− qn

qn − wi(q)
= 1 +

qn−e
min
i

cmin
i

+ . . . ;

from which it follows that gν±,y,n,j = gν±,y,n+1,j if n > j−fn0 +max{emin
i }, where fn0 denotes

the leading degree of the (the Laurent series of) Gν±,y,n0 . �

Theorem 3.3.3. For any fixed ν± and j, there are only finitely many y ∈ Fix∞ such that
gstab
ν±,y,j

is not zero.

Proof. We will estabilish a lower bound for the leading degree of (the Laurent series of)
Gν±,y,n. Since there are only finitely many types of quotient algebras, it is enough to consider
a single one, denoted by Q; similarly, we can fix a permutation σ ∈ SkQ/AutQ. Fixed points
(monomial ideals) of this fixed type correspond to the choice of k = kQ integers

K =
{
0 ≤ i1 < i2 < · · · < ik < n

}
.

It is instructive to look at the example of Figure 2 (page 24): There Q = J (2)/(y3, xy2, x2)
with an (additive) basis {y2, y, xy, x}, the corresponding weights are {2β, β, α + β, α}; we
have to choices for the permutation: For 0 ≤ i1 < i2 < n either α 7→ qi1 and β 7→ qi2 or vice
versa. For each weight wi, let emin

i denote the leading (meaning smallest) degree of of wi(q);
this is one of the ij-s (in our running example, either {i2, i2, i1, i1} or {i1, i1, i1, i2} depending
on the permutation).

It is easy to determine the leading degree of the numerator s((n−1)µ+ν∓)(−W (q)): Schur
polynomials are sums of monomials determined by semistandard Young tableaux, from which
it is immediate that the smallest degree is

∑µ
i=1 e

min
i (n− 1 + (ν∓)i) if we order the weights
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such that emin
1 ≤ emin

2 ≤ · · · ≤ emin
µ (similarly the largest degree can be obtained by reversing

the ordering of the emin
i -s). Now consider the denominator

PQ(qσ(i1), . . . , qσ(ik))
∏
l /∈K

µ∏
i=1

(ql − wi(q)).

The leading degree of the PQ is a linear function of the ij-s, since PQ is a rational function.
The leading degree of a product

∏
l /∈K(ql − wi(q)) is∑

l<emin
i ,l /∈K

l +
∑

l>emin
i ,l /∈K

emin
i = (n− 1)emin

i −
(
emin
i + 1

2

)
−
∑
l∈K

min(l, emin
i )

To sum it up, the leading degree of G is

L+
µ∑
i=1

(
emin
i + 1

2

)
where L is linear in the ij-s. If any ij is big, then there must be at least one corresponding
emin
i which equals to it (since we have a monomial ideal), and then the second order binomial

term will dominate the degree. For any concrete case it is easy to convert this argument into
an explicit lower bound, but writing down a general formula is somewhat cumbersome. �

Corollary 3.3.4. The stable limit

Gstab
ν±,y = lim

n→∞
Gν±,y,n ∈ Q[[q]][q−1]

is well-defined by its Laurent series.

Corollary 3.3.5. We have the following formulae for the Thom series:

Ts =
∑
ν±

rsν±
∑

y∈Fix∞

Gstab
ν±,y(q)(9)

=
∑
ν±

rsν±
∑

y∈Fix∞

gstab
ν±,y,0(10)

Note that the first formula is a priori a Laurent series in q; however since it expresses the
Thom series, it must be independent of q.

3.3.1. An algorithmic approach. Formula (10) leads to a new algorithm to compute
the coefficients of the Thom series: For each ν± and each fixed point y, we have a (sharp)
lower bound for the n where gν±,y,n,0 stabilizes, and for each ν± we have an upper bound for
the fixed points whose contribution is nonzero; furthermore, computing the Laurent series
expansions can be done fast, since the coefficients satisfy simple recursions.

The following small computer program, written in the Haskell programming language
[PJ03], uses these recursions to efficiently compute the Taylor series of the reciprocal of a
product of univariate polynomials (with constant terms 1, which is not a real restriction); it
is very easy to extend it to work for arbitrary (univariate) rational functions (the fact that
the denominator is factored into a product is important only for performance; but in our
situation it is typically presented in that form anyway).

Our key function convolves an arbitrary formal power series with the Taylor expansion
of the inverse of a polynomial. The polynomial is given in the first argument, encoded as
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a list of (coefficient,exponent) pairs. The second argument is an infinite list, representing a
power series. It is assumed that the polynomial has constant term 1 (which is not included
in the list); also the coefficients are negated.

convolveWith :: Num a => [(a,Int)] -> [a] -> [a]

convolveWith terms series = ys where

ys = worker terms ys

worker [] _ = series

worker ((coeff,exp):rest) xs =

zipWith (+)

(replicate exp 0 ++ map (*coeff) xs)

(worker rest xs)

Our other function use the previous one to convolve several such Taylor series series:

productSeries :: Num a => [[(a,Int)]] -> [a]

productSeries = foldl (flip convolveWith) unit

starting with the multiplicative unit in the ring of formal power series:

unit :: Num a => [a]

unit = 1 : repeat 0

As an example, consider the function

F (q) =
1

(1− 15q2 + 17q3) · (1− 14q5) · (1− 29q2 + 37q7 + 11q9)
.

Its Taylor series around q = 0 can be computed with the function call

productSeries

[ [ (15,2) , (-17,3) ]

, [ (14,5) ]

, [ (29,2) , (-37,7) , (-11,9) ] ]

The result is infinite list of integers, which starts with

[1,0,44,-17,1501,-989,47193,-39983,1431989,-1392409,42670891, ... ]

In addition, if we have a polynomial in the numerator of F , we just have to replace unit

in the above code by (the power series representation of) that polynomial.

3.4. Some analytic computations

In this section, we evaluate Formula (9) analytically for some simple cases. As we will
see, these computations fit very well with the theory of basic hypergeometric series; we refer
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to [GR90] for the background on this theory. The notations and the fundamental results
we use are summarized in Appendix A.5.

The necessary input data for the localization formula, that is, the virtual tangent Euler
classes PQ, are computed in [FR08] for small singularities (µ = 2: A2; µ = 3: A3, I2,2, III2,3;
µ = 4 : A4, I2,3, III2,4, III3,3, Σ2,1) by “reverse engineering”, using earlier computations of
Thom polynomials for these singularities. We will rederive a few of these (Σij , A3) from first
principles, understanding the geometry of the moduli spaces M, in the next chapters.

3.4.1. Σ1, A1. A1 is open in Σ1, thus their Thom polynomials are the same. This is
the simplest possible case; it serves as an introduction before we dive into more complicated
computations. Since we have |ν+| = |ν−| and `(ν+) + `(ν−) = µ = 1, there is only a single
possibility for ν±, namely, ν± = (0). So the Thom “series” consists of a single term in this
case. There is also a single type of quotient algebra of codimension 1: Q = (xC[x])/(x2),
so all the fixed points are of the same type. The fact is that PQ = 1, so (after substituting
αi = qi−1) Theorem 3.2.1 with Lemma 3.1.2 gives Ts(A1) =

{
limn d

(n)
0

}
rs(0), with

d
(n)
0 =

n−1∑
i=0

s(n−1)(−qi)∏i−1
l=0(ql − qi) ·

∏n−1
l=i+1(ql − qi)

=
n−1∑
i=0

(−1)n−1qi(n−1))

q(
i
2)
∏i−1
l=0(1− qi−l) · (−1)n−i−1qi(n−i−1)

∏n−1
l=i+1(1− ql−i)

=
n−1∑
i=0

(−1)iq(
i+1
2 )

(q; q)i(q; q)n−i−1

At this form, it is clear that we can take the limit n→∞.

d0 = lim
n→∞

n−1∑
i=0

(−1)iq(
i+1
2 )

(q; q)i(q; q)n−i−1
=

1
(q, q)∞

∞∑
i=0

(−1)iq(
i+1
2 )

(q; q)i
= 1

by the limit case A.5.6 of the q-binomial theorem.

3.4.2. Σ2, III2,2. Again, the singularity III2,2 is open in Σ2; their Thom polynomials
are the same. In this case, µ = 2, codim = 2(m − n + 2), ofs = 0; the possible (ν+, ν−)
pairs are (a, a) for a ∈ N; that is, ν± = (a,−a). There are two types of quotient algebras
of codimension 2, but only Q = J (2)/(x2, xy, y2) contributes to the Thom polynomial; and

sing. ideal µ ofs type codim = µ(m− n+ i) + ofs

Ad (xd+1) d 0 Σ1 d(m− n+ 1)
Ia,b (xy, xa + yb) a+ b− 1 2− a− b Σ2,0 (a+ b− 1)(m− n+ 1) + 1
IIIa,b (xy, xa, yb) a+ b− 2 4− a− b Σ2,0 (a+ b− 2)(m− n+ 1) + 2

Table 2. Table of singularities of Boardman type Σ1 and Σ2,0, in Mather’s notation
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PQ = 1. Thus Ts(Σ2) =
∑∞

a=0

{
limn d

(n)
a

}
rs(+a,−a), where

d(n)
a =

∑
0≤i<j<n

s(n−2+a,n−2−a)(−qi,−qj)∏
l 6=i,j(ql − qi)(ql − qj)

=
∑

0≤i<j<n

q(i+j)(n−2)(−1)i+jq(
i+1
2 )+(j+1

2 )(qi − qj)(qj − qi)
∑+a

s=−a q
s(j−i)

q(i+j)(n−1) (q; q)i (q; q)n−1−i (q; q)j (q; q)n−1−j

=
∑

0≤i<j<n

(−1)i+jq(
i+1
2 )+(j+1

2 )(1− qj−i)(1− qi−j)
∑+a

s=−a q
s(j−i)

(q; q)i (q; q)n−1−i (q; q)j (q; q)n−1−j

Note how we multiplied both the numerator and the denominator by (qi − qj)(qj − qi), so
that we can have the nice denominator in the last line.

Introduce the function

F (z) = (1− z)(1− z−1)
+a∑
s=−a

zs = −z−a−1 + z−a + za − za+1

so that

d(n)
a =

∑
0≤i<j<n

(−1)i+jq(
i+1
2 )+(j+1

2 )F (qj−i)
(q; q)i (q; q)n−1−i (q; q)j (q; q)n−1−j

=
1
2

n−1∑
i=0

n−1∑
j=0

(−1)i+jq(
i+1
2 )+(j+1

2 )F (qj−i)
(q; q)i (q; q)n−1−i (q; q)j (q; q)n−1−j

since F (1) = 0 and F (z) = F (z−1). At this point the näıve idea is to expand F into Laurent
series, and exchange the order of the summation; that in fact works in this particular case,
since F is a Laurent polynomial, but has a subtle problem when F is an actual series with
a convergence annulus R1 < |z| < R2 strictly smaller than 0 < |z| < ∞: When we take the
limit n→∞, the difference j− i can be an arbitrarily large positive or negative integer, and
thus R1 < |qj−i| < R2 implies |q| = 1; on the other hand, the rest of the formula requires
|q| < 1 to work.

So let’s take a step back, and consider the following sum in two independent variables q
and u

Z(n)
q (F, u) =

n−1∑
i=0

n−1∑
j=0

(−1)i+jq(
i+1
2 )+(j+1

2 )F (uj−i)
(q; q)i(q; q)n−1−i(q; q)j(q; q)n−1−j

(11)

Lemma 3.4.1. Suppose F is meromorphic on P1, and it has no poles on |z| = 1. Then
Z(n)
q (F, u) holomorphic in u for |q| < 1 and u ∈ Ω(n) = C −∆(n) where ∆(n) is the (finite)

set of at most (n− 1)-th roots of the poles of F (including the ‘negative roots’ p−1/k). Fur-
thermore, Z(n)

q (F, u) converges as n→∞ for |q| < 1 and u ∈ C−∆, and the limit Zq(F, u)
is holomorphic on the domain Ω<1 = {|u| < 1} −∆ (and also on Ω>1 = {|u| > 1} −∆, but
we won’t need that), where ∆ = ∪n∆(n) is the (countable) set of all roots of the poles of F .

Proof. The sequence Z(n)
q (F, u) converges because for large (j−i), |F (uj−i)| is asymptotically

|u|r0(j−i), bounded, or |u|r∞(j−i) for |u| < 1, |u| = 1 and |u| > 1, respectively, where r0 and
r∞ are the orders of the poles of F at 0 and ∞ (cf. Corollary 3.4.4 below).
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The only other thing not immediately clear is the holomorphicity of the limit. To see this,
consider the smaller domain Uε = {|u| < 1− ε} −∆ε, where ∆ε = ∪p∈∆,|p|<1−ε{|u− p| < ε}
is the ε-neighbourhood of ∆ ∩ {|u| < 1− ε}. Note that the latter is a finite set. The closure
U ε ⊂ Ω<1 is a compact set, thus Z(n)

q converges uniformly on it, and then the limit Zq
must be holomorphic on Uε. Since this works for any small ε > 0, Zq is holomorphic on
∪ε>0Uε = Ω<1. �

Proposition 3.4.2. For u 6= 0, z ∈ C

n∑
i=0

(−1)iq(
i+1
2 )

(q; q)i(q; q)n−i
(zu±1)i =

(zqu±1; q)n
(q; q)n

Proof. Set b = zqu±1/a in Theorem A.5.7 and let a tend to infinity. �

Corollary 3.4.3. For u 6= 0, z ∈ C

n∑
i=0

n∑
j=0

(−1)i+jq(
i+1
2 )+(j+1

2 )

(q; q)i(q; q)n−i(q; q)j(q; q)n−j
z(i+j)u(j−i) =

(zqu−1; q)n(zqu; q)n
(q; q)n(q; q)n

.

Corollary 3.4.4. For u 6= 0, z ∈ C

∞∑
i=0

∞∑
j=0

(−1)i+jq(
i+1
2 )+(j+1

2 )

(q; q)i(q; q)j
z(i+j)u(j−i) = (zqu−1; q)∞(zqu; q)∞.

Now consider the Laurent series expansion F (z) =
∑

m∈Z cmz
m on an annulus containing

|z| = 1. Substituting this back into (11) and using Corollary 3.4.3, we get that for a small
(depending on n) neighbourhood of |u| = 1

Z(n)
q (F, u) =

n−1∑
i=0

n−1∑
j=0

(−1)i+jq(
i+1
2 )+(j+1

2 )
(∑

m∈Z cmu
m(j−i)

)
(q; q)i(q; q)n−1−i(q; q)j(q; q)n−1−j

=
1

(q; q)n−1(q; q)n−1

∑
m∈Z

cm · (qu−m, qum; q)n−1(12)

We will use the finite version of Jaboci’s triple product formula A.5.11.

(qz, qz−1; q)n =

{
1−z−1qn

1−z−1 (qz, z−1; q)n, if z 6= 1
(q, q; q)n, if z = 1

=

{
1−z−1qn

1−z−1

∑n
k=−n(−1)k

[
2n
n+k

]
q
q(

k+1
2 )zk, if z 6= 1

(q, q; q)n, if z = 1

Since this formula has a special case for |z| = |um| = 1, we have to separate the m = 0 case;
we can do that by introducing F0(z) = F (z)− c0. Using the expansions

1− z−1qn

1− z−1
=
{

1− (1− qn)
∑∞

l=0 z
l if |z| < 1

1 + (1− qn)
∑∞

k=1 z
−l if |z| > 1
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we get that for 1− ε < |u| < 1

Z(n)
q (F, u) = c0 +

1
(q, q; q)n−1

∑
m6=0

cm
1− u−mqn−1

1− u−m
n−1∑

k=1−n
(−1)k

[
2n− 2
n− 1 + k

]
q

q(
k+1
2 )umk

= c0 +
1

(q, q; q)n−1

n−1∑
k=1−n

(−1)k
[

2n− 2
n− 1 + k

]
q

q(
k+1
2 ) ·

·

∑
m>0

cmu
mk
[
1− (1− qn−1)

∑
l≥0

uml
]

+
∑
m<0

cmu
mk
[
1 + (1− qn−1)

∑
l<0

uml
]

= c0 +
1

(q, q; q)n−1

n−1∑
k=1−n

(−1)k
[

2n− 2
n− 1 + k

]
q

q(
k+1
2 ) ·

·

F0(uk)− (1− qn−1)
[∑
l≥0

F+(ul+k)−
∑
l>0

F−(ul−k)
]

where F0(z) = F+(z)+F−(z−1) is the decomposition of F0 to its principal part and the rest.
The important observation is that though our derivation works only for a limited set of u-s,
both Z(n)

q (F, u) and the function defined by the last formula are holomorphic on Ω<1, so if
they agree on a small set, they must be equal on on the whole domain. Now we can take the
limit of both sides as n→∞:

Zq(F, u) = c0 +
1

(q, q, q; q)∞

∞∑
k=−∞

(−1)kq(
k+1
2 )
{
−
∑
l>0

F+(ul+k) +
∑
l≥0

F−(ul−k)
}

= c0 +
1

(q, q, q; q)∞

∞∑
k=0

(−1)kq(
k+1
2 )

∞∑
l=0

{[
F+ + F−

]
(ul−k)−

[
F+ + F−

]
(ul+k+1)

}

= c0 +
1

(q, q, q; q)∞

∞∑
k=0

(−1)kq(
k+1
2 )

+k∑
j=−k

[
F+ + F−

]
(uj)(13)

and substitute u = q. While all this complexity was unnecessary for this particular case,
because our F was simple enough (namely, a Laurent polynomial), it will be needed in the
next subsection for the computation of Ts(A2).

Lemma 3.4.5. When F is a Laurent polynomial, Zq(F, q) = c0.

Proof. Since a Laurent polynomial is a finite sum of monomials, it is enough to consider the
case F0(z) = zb, b 6= 0. Then the statement follows from (12), observing that already for
n > b it is true that Z(n)

q (F, q) = c0. Alternatively we can also start from (13), prove the
cases b = 1 and b = 2 “by hand”, then proceed by the induction step b→ b+ 2. �

In the Σ2 case we started with, we have

F+(z) = F−(z) =
{
−z, a = 0
za(1− z), a > 0

}
and c0 =

{
2, a = 0
0, a > 0

}
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thus

da =
1
2
Zq(q) =

{
1, a = 0
0, a > 0

Ts(Σ2) = rs(0,0)

3.4.3. A2, Σ11. This is the first really interesting computation. In this case, µ = 2,
codim = 2(m − n + 1), ofs = 0; the possible (ν±)-s are again (a,−a) for a ∈ N. There are
two types of quotient algebras of codimension 2, and thus two types of fixed points:

Q1 = J (1)/(x3) PQ1 = 1

Q2 = J (2)/(x2, xy, y2) PQ2 =
1
3
(α− 2β)(β − 2α)

So the Thom series is Ts(A2) =
∑∞

a=0

{
limn(d

(n)
a + e

(n)
a )
}
rs(a,−a), where

d(n)
a =

n−1∑
i=0

s(n−1+a,n−1−a)(−qi,−2qi)∏
l 6=i[(ql − qi)(ql − 2qi)]

=

(
+a∑
s=−a

2s
)
·
n−1∑
i=0

2i
[
(−1)iq(

i+1
2 )
]2

(q; q)i (2q; q)i (q; q)n−1−i (q/2; q)n−1−i

and

e(n)
a =

∑
0≤i<j<n

3 · s(n−1+a,n−1−a)(−qi,−qj)
(qi − 2qj)(qj − 2qi) ·

∏
l 6=i,j(ql − qi)(ql − qj)

=
∑

0≤i<j<n

(
+a∑
s=−a

qs(j−i)

)
3(qi − qj)(qj − qi)
(qi − 2qj)(qj − 2qi)

· (−1)i+jq(
i+1
2 )+(j+1

2 )

(q; q)i (q; q)n−1−i (q; q)j (q; q)n−1−j

The first fixed point type is pretty straightforward. We can simply take the limit n→∞:

da
(2a+1 − 2−a)

=
1

(q, q/2; q)∞

∞∑
i=0

2i
[
(−1)iq(

i+1
2 )
]2

(q, 2q; q)i

=
1

(q, q/2; q)∞
lim
a→∞ 2Φ1

[
a, a

2q

∣∣∣ q, 2q2
a2

]
=

1
(q, q/2; q)∞

lim
a→∞

(2q/a, 2q2/a; q)∞
(2q, 2q2/a2; q)∞

2Φ1

[
q, a

2q2/a

∣∣∣ q, 2q
a

]
=

1
(q, 2q, q/2; q)∞

∞∑
i=0

(−1)iq(
i+1
2 )2i

= 1 +
3
2
q +

21
4
q2 +

117
8
q3 +

633
16

q4 +
3129
32

q5 + · · ·

using Theorem A.5.9, version (40) in the middle. As far as we know, there is no closed
formula for the type of sum appearing in the last formula.

The second fixpoint type is more involved. We start with the machinery built in the
previous computation: Note that we have exactly the same type of sum Z(n)

q (F, q), but here
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our F is

F (z) =
3(1− z)2

2(1− 2z)(1− z/2)

+a∑
s=−a

zs = H(z) ·
+a∑
s=−a

zs

The Laurent series around |z| = 1 is convergent for 1
2 < |z| < 2, and it is relatively straight-

forward to compute

F (z) =
[
H+(z) + 1 +H−(z−1)

] +a∑
s=−a

zs

= (2a+1 − 2−a)H(z) +
[
X+(z) + x0 +X−(z−1)

]
where

H+(z) = H−(z) =
z

2(z − 2)
= −1

4
z − 1

8
z2 − 1

16
z3 − · · ·

H+(z−1) = H−(z−1) =
1

2(1− 2z)

x0 = −(2a+1 − 2−a+1)

X+ = X− =
a∑
i=1

(2i−1 + 2−i) · za+1−i.

But we proved in the previous section (Lemma 3.4.5) that Laurent polynomials without a
constant term give a zero sum, thus we can discard the X± part, and calculate just with

x0 + (2a+1 − 2−a)H(z) = 2−a + (2a+1 − 2−a)
[
H+(z) +H−(z−1)

]
Now, lets compute Zq(H0, q); starting from (13):

Zq(H0, q) =
1

(q; q)3∞

∞∑
k=0

(−1)kq(
k+1
2 )

+k∑
j=−k

[
H+ +H−

]
(qj)

=
1

(q; q)3∞

+∞∑
j=−∞

1
1− 2qj

∞∑
k=|j|

(−1)kq(
k+1
2 )

=
1

(q; q)3∞

+∞∑
j=−∞

1
1− 2qj

∞∑
k=j

(−1)kq(
k+1
2 )

=
1

(q; q)3∞

+∞∑
j=−∞

(−1)jq(
j+1
2 ) 1

1− 2qj

∞∑
l=0

(−1)lq(
l+1
2 )qlj

=
1

(q; q)3∞

∞∑
l=0

(−1)lq(
l+1
2 )

+∞∑
j=−∞

(−1)jq(
j+1
2 ) qlj

1− 2qj

where, at first we used H±(z−1) instead of H±(z), which is fine since the sum is symmetric
for z 7→ z−1 anyway; then we used the trivial identity

∑n−1
k=−n(−1)kq(

k+1
2 ) = 0; finally,

substituted k = l + j. Now let us concentrate on the inner sum. Observe that

1− x
1− xqj

=
(x; q)j
(xq; q)j

;
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writing y = ql and briefly x = 2 (just for the symmetry), the inner sum is (1− x)−1 times

+∞∑
j=−∞

(−1)jq(
j+1
2 ) (x; q)j

(xq; q)j
yj = lim

a→∞ 2Ψ2

[
a , x

a−1, xq

∣∣∣ q, yq
a

]

= lim
a→∞

(qy, qx/a, 1/ax, q/y; q)∞
(qy/a, qx, q/x, 1/ay; q)∞

2Ψ2

[
a , y

a−1, yq

∣∣∣ q, xq
a

]

=
(qy, qy−1; q)∞
(qx, qx−1; q)∞

+∞∑
j=−∞

(−1)jq(
j+1
2 ) (y; q)j

(qy; q)j
xj

=
(qy, qy−1; q)∞
(qx, qx−1; q)∞

+∞∑
j=−∞

(−1)jq(
j+1
2 ) 1− y

1− qjy
xj

using the bilateral transformation formula A.5.14. Now we want to substitute back x = 2
and y = ql; however, the latter is a bit tricky: If we do it naively, we get zeros both in the
numerator and the denominator for l > 0, j = −l. Fortunately, they just cancel out, and
the rest of terms (j 6= −l) becomes simply zero when multiplied by (q1−l; q)∞ = 0. To see
what happens with the critical term, set y = ql + ε, and take the limit ε→ 0:

lim
ε→0

 (qy, qy−1; q)∞
(2q, q/2−1; q)∞

+∞∑
j=−∞

(−1)jq(
j+1
2 ) 1− y

1− qjy
2j


y=ql+ε

= lim
ε→0

[
(q(ql + ε); q)∞
(2q, q/2; q)∞

(−1)−lq(
−l+1

2 )2−l · (1− (ql + ε))
(1− q−l(ql + ε))

·

·
[( q

ql + ε
; q
)
l−1
·
(
1− ql

ql + ε

)
·
( ql+1

ql + ε
; q
)
∞

]
︸ ︷︷ ︸

(qy−1;q)∞

]

=
(ql+1; q)∞

(2q, q/2; q)∞
(−1)−lq(

−l+1
2 )2−l · (1− ql)(q−l+1; q)l−1(q; q)∞ · lim

ε→0

 1− ql

ql+ε

(1− q−l(ql + ε))


︸ ︷︷ ︸

=−1

=
(q; q)2∞

(2q, q/2; q)∞
2−l

using that (q−l+1; q)l−1 = (q; q)l−1(−1)l−1q−(l
2). Note that though we handled the l = 0 case

separately, this last formula is valid for l = 0, too. Thus

Zq(H0, q) =
−1

(q, 2q, q/2; q)∞

∞∑
l=0

(−1)lq(
l+1
2 )2−l
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The sign comes from the (1−x)−1 factor (x = 2). This is almost the same as the formula for
the other fixpoint type! The two are connected by Jacobi’s triple product identity A.5.10:

−(q, 2q, q/2; q)∞ =
∞∑

n=−∞
(−1)nq(

n+1
2 ) 1

2n

=
∑
l≥0

(−1)lq(
l+1
2 ) 1

2l
+
∑
i<0

(−1)iq(
i+1
2 ) 1

2i

=
∑
l≥0

(−1)lq(
l+1
2 ) 1

2l
+
∑
i>0

(−1)iq(
i
2)2i

=
∑
l≥0

(−1)lq(
l+1
2 ) 1

2l
− 2

∑
j≥0

(−1)jq(
j+1
2 )2j

by substituting i = j + 1. Reorganizing, we get

Zq(H0, q) = −
∑∞

l=0(−1)lq(
l+1
2 )2−l

(q, 2q, q/2; q)∞
= 1− 2

∑∞
j=0(−1)jq(

j+1
2 )2j

(q, 2q, q/2; q)∞
thus

ea =
1
2
Zq(F, q) =

1
2
[
2−a + (2a+1 − 2−a)Zq(H0, q)

]
= 2a +

(
2−a − 2a+1

) ∑∞
j=0(−1)jq(

j+1
2 )2j

(q, 2q, q/2; q)∞
.

Finally, combining with the other fixed point type, da + ea = 2a, and the Thom series is

Ts(A2) =
∑
a≥0

2a rs(a,−a)

Remark. We could also turn the whole argument upside-down, and say that starting from
the Thom polynomial theory, we proved an interesting q-hypergeometric identity (note that
even if we didn’t know the Thom polynomial, the general theory guarantees that the sum
of the functions appearing is a constant, thus we get a hypergeometric identity up to an
unknown constant).

In fact, to compute the Thom series, we need to compute only the constant term of the
series appearing, which is (in this case) much easier than proving that the series actually
cancel each other (as we did). However, for more complicated singularities, these series may
contain negative powers of q, so similar computations will be necessary.

Concluding remarks. It is easy to make mistakes in such a long computation; however,
we can be reasonably confident in its correctness: In addition of being careful, we cross-
checked each step using computer algebra software (Maple), typically by examining the first
30-40 coefficients of the Taylor (or Laurent) series expansion (with respect to q). Indeed, a
subtle sign error was discovered this way.

The reader probably noticed that, in spite of the complexity of the computation, the
result—the Thom polynomials of the A2 singularity—, is nothing new: They were first
calculated by Ronga in [Ron72]. However, we discovered a surprising connection with the
theory of basic hypergeometric series; indeed we find it quite astonishing how well the basic
results of this theory fit the needs of our computation. While computing the next cases
(µ = 3) this way is inherently more difficult, we still hope that the connection can be
generalized; there is also some (very) light evidence suggesting that the µ = 3 case already
contains all the essential complexity. Note that we are not aware of any other method for
computing the Thom series directly from the localization data.
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Chapter 4. Second order - Σij

The Thom polynomials of second order Thom-Boardman singularities Σij are well-studied,
by Porteous [Por71], Ronga [Ron72], Kazarian [Kaz06]. Some would say that this ques-
tion is solved; however, we argue that this is not the case. While it is true that there are
many different formulae for these Thom polynomials, the coefficients in the Schur (or Chern-
monomial) expansion are not known; in fact, as we will show (see Theorem 4.4.4), for the
particular case Σii, these coefficients has a very nice combinatorial interpretation, and the
resulting combinatorial problem of finding some kind of formula, or positive enumeration
for these numbers is unsolved. We regard this fact as a solid evidence for the richness of
combinatorics of the coefficients of Thom polynomials expressed as linear combination of
(supersymmetric) Schur polynomials.

In this chapter, we will first derive a localization formula for the Thom polynomials of
Σij singularities, which leads to a new proof of Ronga’s theorem (Theorem 4.2.1); then (by
completely different methods) we derive closed formulae for the coefficients of the Σi1, Σ22

singularities, and also for all Σij in the smallest codimension they appear. With the exception
of the Σ22 case, these were first presented in [FK06].

4.1. Equivalence of the different definitions

We are using different definitions of the algebraic sets Σij ; here we collect them in one
place and show that they are equivalent.

Recall that we are working in the second jet space

J2(n,m) = Hom(Cn,Cm)⊕ Hom(Sym2Cn,Cm);

Σij is a Diff2(n) × Diff2(m)-invariant smooth quasi-affine subvariety of this space. Usually
we are interested in the closure Σ̄ij , which is singular; the boundary Σ̄ij −Σij contains (jets
of) more complicated singularities.

We will need some definitions, which we recall from Chapter 2.

Definition 4.1.1. Let U�E(n) be an ideal of functions. The kth Jacobian extension ∆k(U)
is the ideal generated by U and all the k×k determinants det[∂ϕi/∂xj ], where xj is a (fixed)
local coordinate system and ϕi ∈ U . It will be convenient to also define ∆k(U) = ∆n−k+1(U).

Lemma 4.1.2 (Boardman, [Boa67]). Let (ϕ1, . . . , ϕN ) be a generating system for U ; then
∆k(U) is generated by these functions together with the determinants with entries being
partial derivatives of functions belonging to this particular generating set.

Definition 4.1.3. It is easy to see that

U = ∆0(U) ⊆ · · · ⊆ ∆k(U) ⊆ ∆k+1(U) ⊆ · · · ⊆ ∆n+1(U) = E(n).

The largest ∆k such that ∆k(U) ( E(n) is called the critical Jacobian extension.

Remark. The critical extension of an ideal U is ∆n−r = ∆r+1, where r = rankU is the rank
of the ideal U , which is defined as rankU = dimC (m2 + U)/m2.

Now we are ready to state

40
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Theorem-Definition 4.1.4. The following 4 definitions of Σij agree (at least on a Zariski-
open set):

(1) (Thom) Let f : Cn → Cm be a smooth map. We say 0 ∈ Σij(f) if 0 ∈ Σi(f),
Σi(f) is a smooth submanifold with the expected codimension, and 0 ∈ Σj(f |Σi(f)).
Note: This works for “nice” maps f : Nn → Mm; the relationship with the other
definitions is that Σij(f) = (J2f)−1(Σij ⊂ J2(n,m)).

(2) (Boardman) Let F = (f1, . . . , fm) ∈ J (n,m) be a jet of a map. F ∈ Σij if the ideal
U = (f1, . . . , fm) � E(n) has successive critical extensions ∆i(U) and ∆j(∆i(U)).

(3) (Porteous, Boardman, Ronga) Let

F = (F1, F2) ∈ J2(n,m) = Hom(Cn,Cm)⊕ Hom(Sym2Cn,Cm).

Then F ∈ Σij if dim(kerF1) = i and dim(ker(curry F̂2)) = j, where

F̂2 : Sym2(kerF1) −→ Sym2Cn F2−−→ Cm −→ cokerF1

curry F̂2 : kerF1 −→ Hom(kerF1, cokerF1).

(4) (Porteous) With F = (F1, F2) as before, F ∈ Σij if there exists (α1, α2) ∈ J ◦2 (i, n),
β1 ∈ J ◦1 (j, i) such that F1 ◦ α1 = 0 and

F2 ◦ (α1 ⊗ (α1 ◦ β1)) + F1 ◦ α2 ◦ (id⊗ β1) = 0 : Ci ⊗ Cj → Cm,

and no such α, β exists with higher indices. See Appendix A.1, in particular Figure
12, to gain some intuition about such expressions. Note: the second equation can
be rewritten as

F2

(
α1(x), α1(β1(y))

)
+ F1

(
α2(x, β1(y))

)
= 0 ∀x ∈ Ci, y ∈ Cj .

Proof.
(1) ⇔ (2). See [Boa67], Section 6.
(2) ⇔ (3). See [Boa67], Section 7.

(4) ⇒ (3). The correspondence between the two definitions will be im(α1) = ker(F1) and
im(α1 ◦ β) = ker(curryF̂2). Factoring out by coker(F1) in the target of the second equation
of (4), the second term vanishes by definition, and the first term becomes equivalent to (3).

(3) ⇒ (4). Choose α1, β1 such that im(α1) = ker(F1) and im(α1 ◦ β) = ker(curryF̂2), and
choose α2 to be

α2 = −
(
F1

∣∣imF1

coimF1

)−1
◦
(
F2

∣∣im(F1)
)
◦
(
α1 ⊗ α1

)
(note that F1 has rank n− i). �

Remark. All these definitions generalize for higher order Thom-Boardman singularities
(eg. Σijk).

4.2. Ronga’s formula

Ronga was the first to study in detail the Thom polynomials of Σij singularities in
[Ron72]. By constructing a resolution of the closure of Σij , he derived a pushforward
formula, which we present here (transcribed into more modern language).

Let V n and Wm be representations of GLn and GLm, respectively; Gri(V ) the Grassman-
nian of i-planes, and 0 → I → V → Q → 0 the tautological exact sequence over it. The
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(total space of the) Grassmannian bundle Grj(I) is nothing else but the partial flag variety
Flij(V ); we will denote its tautological bundle with J . Denote by p1, p2 and π = p1 ◦ p2 the
collapse maps p1 : Gri(V ) → pt, p2 : Grj(I) → Gri(V ) and π : Flij(V ) → pt, respectively.
Then

Theorem 4.2.1 (Ronga).[
Σij(V,W )

]
= π∗

{
e(Hom(I,W )) · s(i�j)m−n+i

(
W − (I�J +Q)

)}
We will re-derive this theorem via equivariant localization in Section 4.3.3.

This theorem gives an algorithm to compute the Thom polynomials of Σij , since we can
use the pushforward formula (Theorem A.4.1) to compute the pushforwards along p2 and
p1 after the separation of variables using the formulae in A.2. However, this algorithm is
effective only for very small cases, and it’s hard to derive general formulae from it (except
in the case i = j = 1, [Ron72]). Nevertheless, we can use it to prove the following theorem,
which we will use in section 4.4.

Theorem 4.2.2. Write the Thom polynomial of Σij(n,m) as a linear combination of Schur
polynomials: [Σij(V n,Wm)] =

∑
eλsλ(W − V ), where eλ ∈ Z are (nonnegative integer)

coefficients. Then eλ = 0 if λ satisfies any of the following three conditions:

(a) i(m−n+i) 6⊂ λ
(b) (i+ 1)(m−n+i+1) ⊂ λ
(c) λ1 > µ = i+ i� j

Remark. (c) follows from the general theory, too; (a) and especially (b) is what is important
here. In the language of Chapter 3, this statement means that using the shifted ‘base line’
(m − n + i, n − i), for all terms appearing in the Thom series, we have `(ν+) = i and
`(ν−) = i � j (cf. Figure 3). Note that (b) is in general false for higher-order singularities:
Already A3 = Σ111 is a counterexample (that is, the Thom polynomials of A3 contain nonzero
terms eλsλ with λ satisfying (b)).

Proof of Theorem 4.2.2. We will use the shorthand notations h = m− n+ i and k = i� j.
All three claims will be the consequence of the following computation. First, substituting
the trivial m dimensional representation for W and using the expansion (see A.2)

sλ(A+B) =
∑
µ,ν

cλµν · sµ(A)sν(B)

—which, for the special case λ = hk gives s(hk)(A+B) =
∑

µ⊂hk sµ(A)s{µ(B)— we get[
Σij(−V )

]
= ±

∑
λ⊂hk

p1∗

[
s(mi)(I)sλ(V − I) · p2∗s{λ(I�J)

]
.

We are not interested in the exact result of the inner pushforward; instead we just set

± p2∗s{λ(I�J) =
∑
`(µ)≤i

fµλ · sµ(I),

where fµλ are some coefficients. Using the above expansion again, now for sλ(V − I) we get:[
Σij(r)

]
(−V ) =

∑
λ⊂hk

∑
α,β⊂λ

∑
`(µ)≤i

cλαβf
µ
λ · sα(V ) · p1∗

[
s(mi)(I)seβ(I∨)sµ(I)

]
.
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Using the Littlewood-Richardson rule A.2.5, Theorem A.4.1 and that the rank of I is i, it
follows immediately that

p1∗

[
s(mi)(I)seβ(I∨)sµ(I)

]
= ± p1∗

[
s(mi)(I)seβ(I)sµ(I)

]
=
∑
`(γ)≤i

gγ · s(hi+γ)(V ),

where the gγ ’s are integer coefficients. Now, we see that [Σij ](−V ) is a linear combination
of terms of the form sα(V )s(hi+γ)(V ), where α ⊂ hk and `(γ) ≤ i. From the Littlewood-
Richardson rule it follows directly that the expansion of such a term satisfies the duals of all
three claims of the theorem, that is, the duals of the partitions appearing in the expansions
satisfy the three conditions; thus, using the identity sλ(−V ) = seλ(V ∨) = (−1)|λ|seλ(V ) the
theorem follows. �

4.3. Localization

In this section, we will apply equivariant localization to derive a formula for the Thom
polynomials of Σij singularities. As usual with such efforts, the main difficulty is that the
space we want to localize over is not compact, therefore we have to compactify it; but this
compactification cannot be arbitrary, since our space has a vector bundle over it which has
to extend to the compactified space. In other words, there is a canonical compactification
inside a Grassmannian, and we require a dominant map to that. While in this particular
case the canonical compactification is simple enough to understand directly, that’s not the
case in general; thus first we present another, rather convoluted construction, which we hope
has some chance to work in some other cases too (eg. it can be adapted to work for the A3

singularity, see Chapter 5).

4.3.1. The probe model for Thom-Boardman singularities. Porteous proposed in
[Por83] the following definition of Thom-Boardman singularities (which is the generalization
of the fourth definition of Σij in 4.1.4 above). As we will see this definition is well-suited for
the purposes of localization.

Recall the following notations:

Jd(V,W ) :=
d⊕

k=1

Hom(SymkV,W )

J ◦d (V,W ) :=
{

(ϕ1, ϕ2, . . . , ϕd) ∈ Jd(V,W ) s.t. kerϕ1 = {0}
}

Diffd(V ) := J ◦d (V, V )

Jd(n,m) := Jd(Cn,Cm), etc.

Let F ∈ Jd(n,m) be the d-jet of an analytic map; we would like to decide whether it is in
the singularity set ΣI for a given I = (i1 ≥ i2 ≥ · · · ≥ id).

Proposition 4.3.1 ([Por83]). F ∈ ΣI if and only if there exists a probe (α1, α2, . . . , αd),
where αk ∈ J ◦d+1−k(ik, ik−1) (using the convention that i0 = n), such that the following d
equations are satisfied:

0 = d(F ◦ α1)|0
0 = d(d(F ◦ α1) ◦ α2)|0
0 = d(d(d(F ◦ α1) ◦ α2) ◦ α3)|0

...
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and no such probe exists for higher Boardman indices.

Remark. An important property of these equations is that they are linear in the unknown
F ; thus for a fixed probe {α(i)}, the solutions form a linear subspace of Jd(V,W ). This
means that they separate the “trivial” part of ΣI (the linear fibers) from the “essence” (the
moduli space of probes).

Another very important observation is that the equations are filtered : The solution space
of the first k equations can be determined without looking on the remaining equations, for
any k.

The main difficulty with the application of this theorem is that such a probe is not at all
unique, and in general fails to be unique in complicated ways. To start with, if we are given
(jets of) diffeomorphisms ψ1, . . . , ψd, where ψk ∈ Diffd+1−k(ik), and a probe (α1, . . . , αd) for
F , then we can define a new probe (α̃1, . . . , α̃d) by the following diagram:

Cm F←− Cn α1

←− Ci1 α2

←− Ci2 α3

←− · · · αd

←− Cid

↖
∥∥∥ yψ1

yψ2
yψd

Cn α̃1

←− Ci1 α̃2

←− Ci2 α̃3

←− · · · α̃d

←− Cid

Thus the groupGI =
∏d
k=1 Diffd+1−k(ik) acts on the space of probes PI =

∏d
k=1 J ◦d+1−k(ik, ik−1),

and we are only interested in the factor space P/G. However, that is unfortunately not all
the ambiguity the probes have. Consider for example the case d = 2, I = (i, j). We will use
the symbols α1, α2, β1, resp. F1, F2, for the components of the probe, resp. the map F :

(F1, F2) ∈ J2(n,m) = Hom(Cn,Cm)⊕ Hom(Sym2Cn,Cm),
(α1, α2) ∈ J ◦2 (i, n) = Hom◦(Ci,Cn)⊕ Hom(Sym2Ci,Cn),

β1 ∈ J ◦1 (j, i) = Hom◦(Cj ,Ci).

It’s not hard to compute Pij/Gij (see Appendix A.1):

Pij/Gij =
{

(im(α1), im(α1 ◦ β1), ᾱ2)
}
∈ Flij(n)× Hom(Sym2Ci, Cn/im(α1)).

But the equations for the probe written out in the components are

0 = F1(α1v) ∀ v ∈ Ci

0 = F2(α1v, α1(β1w)) + F1(α2(v, β1w)) ∀ (v, w) ∈ Ci × Cj

which tells us that what matters is not α2 itself (which is a symmetric bilinear map), but
the restriction of α2 to im(β1) in one of its inputs.

In general, solving the equations for F gives a map from the space of probes PI to a
Grassmannian

solI : PI → Grµ(Jd(V,W )),

and the space we are really interested in is the factor space MI = PI/∼, where we call
two probes α• and β• equivalent if sol(α•) = sol(β•). This space is of course isomorphic to
the image im(sol). We will call MI the moduli space of probes. Note that it also depends
on n = dim(V ); however, it does not depend on W : it comes with a canonical embedding
jI,W :MI → Grµ(Jd(V,W )) for any W . The natural choice to work with is W = C, because
it’s the simplest possible, and also because Jd(V,C) comes with an extra structure: It is a
(nilpotent) ring, and in fact,MI embeds into the space of ideals of this ring.
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Example. Consider the simplest possible case of Σi. In this case, we have

J1(Cn,Cm) = Hom(Cn,Cm)

P = Hom◦(Ci,Cn)

sol(α) =
{
F ∈ Hom(Cn,Cm) : F |im(α) = 0

}
M = Gri(Cn)

j : Gri(Cn)→ Gr(n−i)m
(
Hom(Cn,Cm)

)
j(Λ) = (Cn/Λ)∨ ⊗ Cm

In general, the space MI can be quite complicated. There are however two cases which
we understand pretty well:

Theorem 4.3.2. For Σij, the moduli space of probes Mij is the vector bundle

Mij = Hom(I � J, Cn/I)→ Flij(Cn)

where Ii and J j are the tautological bundles over the partial flag variety Flij(Cn). The
solutions over a fixed probe (I, J, α̂2) ∈Mij are the pairs (F1, F2) ∈ J2(n,m) such that

0 = F1|I(14)

0 = F2|I�J + F̂1 ◦ α̂2

where F̂1 : Cn/I → Cm is obtained from F1 using the first equation: Since F1|I = 0, F1 factors
through the linear quotient Cn/I. The factor map q : Pij = J ◦2 (i, n) × J ◦1 (j, i) → Mij is
given by

I = im(α1) ⊂ Cn

J = im(α1 ◦ β1) ⊂ I ⊂ Cn

α̂2 = (Cn → Cn/I) ◦ α2 ◦ (α−1
1 ⊗ α

−1
1 )|I�J : I�J → Cn/I

Theorem 4.3.3 ([BSz06], [Gaf83]). For Ad = Σ11...1, the moduli of probes (which in this
particular case is also called the moduli of test curves) is the quotient

Md = J ◦d (1, n)/Diffd(1),

that is, jets of curves in Cn up to reparameterization. The solutions in Jd(n,m) for a fixed
test curve γ ∈ J ◦d (1, n) are

sol(γ) =
{
F ∈ Jd(n,m) : F ◦ γ = 0

}
.

Remark. Note that the group Diffd(1) is not reductive, thus the usual techniques dealing
with reductive group quotients (namely, Geometric Invariant Theory) do not apply. Still,
this particular quotient is nice enough to enable us to understand it “by hand”.

Proof of Theorem 4.3.2. First, we show that Mij is the moduli space set-theoretically : two
probes has the same solution space if and only if their image under the quotient map

q : Pij = J ◦2 (i, n)× J ◦1 (j, i)→Mij

is the same point. To see this, we will apply Gaussian elimination to Equations (14). We can
assume without loss of generality that β1 : Cj → Ci and α1 : Ci → Cn are just embeddings
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of the first j resp. i coordinates (since it can be achieved by a change of coordinates). This
simplifies the equations considerably:

0 = F1|Ci

0 = (F2 + F1 ◦ α2)|Ci�Cj

It may be easier to grasp when written in a matrix form

M ·
[
(F2|Ci�Cj )

∣∣F1

]t = 0 where M = 1

1

. . .

. . .
α2

CiCn−iCi � Cj

1

1

. . .0 0

or more formally, with wedge products (µ stands for µ = i+ i� j here):

sol : Pij → Grµ(Cn ⊕ Sym2Cn) ⊂ P[∧µ(Cn ⊕ Sym2Cn)]

(id, α2, id) 7→

( i∧
i=1

(
ei , 0

))
∧
(∧

i,j

(
α2(ei ⊗ ej) , ei ⊗ ej

))
During the Gaussian elimination, the rightmost region of α2 in the matrix is eliminated,
which shows thatMij is indeed the set we claimed it to be.

Second, we have to show that the algebraic structure onMij is the right one, that is, that
map q is algebraic when we put onMij the algebraic structure coming from it being a vector
bundle over a flag manifold. But that’s clear from the description of q given above. �

4.3.2. The compactifications. We would like to apply equivariant localization in the
following situation:

R
j←− Sol π−−→ Jd(n,m)y y y

Grµ(Jd(n, 1))
j←− M π−−→ pt

where j is the embedding discussed above, π is the projection, and we are interested in the
class [Σ] = [π(Sol)] = π∗[Sol] ∈ H∗

GLn×GLm
(Jd(n,m)). However, for this to work, M has to

be compact (since otherwise the pushforward map π∗—which is basically what we want to
compute via localization—is not even defined); but in general, our moduli spaces are never
compact (the only exception being Σi). Thus we have to compactify the moduli spaces, and
we also need to extend to bundle Sol to the compactified moduli space M̂.

There is a canonical compactification to start with, namely the closure of j(M) in the
Grassmannian Grµ(Jd(n, 1)). While in this particular case (Σij) we can understand this
space directly, in general it can be very complicated; so first we show a different (and rather
complicated) route, which we hope has some chance to work in other situations as well (eg.
for A3, see Chapter 5). After that, we will show the “direct” route, in Section 4.3.2.2.
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4.3.2.1. The blow-up method. What we will do instead is to consider a natural but wrong
compactification, in the sense that the bundle Sol (or equivalently, the embedding j) does not
extend to it; and then “repair” this problem with repeated blow-ups. (The embedding j will
become a rational map, and it is well known (eg. [Har95] Theorem 7.21) that any rational
map can be resolved by a finite sequence of blow-ups, thus it at least sounds reasonable).
Our first candidate compactification will be simply the projective bundle

P
[
1⊕ Hom(I � J, Cn/I)

]
→ Flij(Cn).

We will denote the new coordinate (on the trivial line bundle 1) by ξ; the torus Tn ⊂ GLn
should act on it trivially so that the compactification is equivariant. To work with projective
coordinates, we have to homogenize our equations. This is very straightforward:

0 = F1|I
0 = ξF2|I�J + F̂1 ◦ α̂2

or, in matrix form (F̂1, F2|I�J)|imA = 0, where A is the matrix

ξ

ξ

. . .

. . . bα2

1

1

. . .

I�J Cn/I I

I�J

I

Note that our convention is that the linear map associated with a matrix A is x 7→ xA (as
opposed to the more popular x 7→ Ax).

It is easy to see which are the “bad points”, where the map sol does not extends to: The
points where the rank of the matrix above is less than µ, that is, where ξ = 0 and the rank
of α̂2 is not maximal. These “bad points” are stratified by the rank of α̂2:

Σ1 ∪ Σ2 ∪ · · · ∪ Σi�j = PHom(I � J,Cn/I) =
{
ξ = 0

}
⊂ P

[
1⊕ Hom(I � J,Cn/I)

]
Thus our strategy will be the following: First we blow up Σ1 (it is a smooth subvariety),
then we blow up the strict transform of Σ2, and so on until Σi�j−1.

Remark. For this to work, we have to assume that n− i = dim(Cn/I) ≥ dim(I�J) = i� j,
or, rearranging it, n ≥ µ = i+ i� j.

Theorem-Definition 4.3.4. This way we got a tower of GLn-equivariant blow-ups

M̂ij := B(i�j) → · · · → B(3) → B(2) → B(1) = P
[
1⊕ Hom(I � J,Cn/I)

]
→ Flij(Cn)

and each B(k) is stratified (by the rank):

B(k) = U ∪ E◦1 ∪ · · · ∪ E◦k−1 ∪ Σ(k)
k ∪ Σ(k)

k+1 ∪ Σ(k)
k+2 ∪ · · · ∪ Σ(k)

i�j

such that

• Σ(k)
k ⊂ B

(k) is a smooth subvariety;
• B(k+1) is the blow-up of B(k) along Σ(k)

k ;
• Σ(k+1)

l ⊂ B(k+1) is the strict transform of Σ(k)
l ⊂ B

(k) for l > k;
• E◦k ⊂ Ek is the exceptional divisor of the kth blow-up, minus the strict transforms.
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Figure 4. Schematic drawing of the blow-up process. The plane symbolizes
{ξ = 0}.
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Figure 5. The trees indexing the strata (left) and types of fixed points (right)
in the i� j = 3 case.

The open set U is simply U = {ξ 6= 0} ∼= Hom(I�J,Cn/I). The blow-ups will be denoted
by πk : B(k) → B(k−1).

This blow-up process is illustrated in the i� j = 3 case on Figure 4. The three pictures
show B(1), B(2) and B(3), respectively; the planes represent the ξ = 0 hyperplane.

Sketch of proof. The only thing not clear is that Σ(k+1)
k+1 ⊂ B(k+1) is smooth; this follows

from the fact that normal cone of the (closure of the) rank variety Σk+1 ⊂ Matn×m over Σk

is the cone of the Segre varieties of the projective normal bundle, and the Segre varieties are
smooth, thus the blow-up completely resolves the singularity. �

We can further stratify the sets Σ(k)
l (and thus B(k)) by distinguishing the points added

in the process of strict transform, that is, those which are in the exceptional divisor Ek.
This finer stratification, which is the common refinement of the coarser stratifications at the
different levels B(≤k), is best described by pictures. Looking at Figure 4, the first drawing,
representing B(1), has 3 strata (not counting U); the second, B(2) has 5; finally, B(3) has
7. The strata are indexed by nodes of trees: Figures 5 (left) and 6 shows these trees in the
i � j = 3 and i � j = 4 cases, respectively (the root → {ξ 6= 0} edge is missing from these
trees; it would represent the open stratum U). The (boxed) leaves of the trees index the
strata of the final stratification B(i�j).

The blow-up, by definition, replaces the subvariety X we are blowing up by the projec-
tive bundle associated to its normal bundle. We can visualize that by imagining that we
are moving away from X by an infinitesimal distance, into different directions. From this
point of view, the strata (the nodes of the trees) enumerate the combinatorial possibilities
of “travelling” between the subsets of different rank.

The reason why we did this complicated blow-up process is of course the following

Proposition 4.3.5. The rational map sol : B(1) 99K Grµ(J2(n)), with domain of regularity
V = U ∪ Σi�j, extends to a regular (and birational) map sol : B(i�j) → Grµ(J2(n)).

Before proving this theorem, let us construct, for all strata (actually for any point in the
indeterminacy locus Z = B(i�j) − V ), curves γ(t) : C× → V such that limt→0 γ(t) lands in
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Figure 6. The tree indexing the strata in the i� j = 4 case.

the given strata (is the given point). This is easy to do: Consider the path in the index tree
from the root to the leaf corresponding to the given strata. This path, for example

root→ {rk = 1} → {rk = 3} → {rk = 4} → {ξ 6= 0},

describes how we “travel” between the different rank varieties, and thus can be directly
translated into a curve γ(t), for example in this case (and i� j = 5, n− i = 7)

[ ξ(t)·idI�J | α̂2(t) ] =


t3 1

t3 t

t3 t

t3 t2

t3 0 0 0


works (the whole curve lives over a fixed flag (I, J) ∈ Flij(n)). More formally: If the path
describing the strata is

root→ {rk = r1} → {rk = r2} → · · · → {rk = rk} → {ξ 6= 0},

we put (
1, . . . , 1︸ ︷︷ ︸

r1

, t, . . . , t︸ ︷︷ ︸
r2−r1

, t2, . . . , t2︸ ︷︷ ︸
r3−r2

, . . . , tk−1, . . . , tk−1︸ ︷︷ ︸
rk−rk−1

, 0, . . . , 0︸ ︷︷ ︸
i�j−rk

)
on the diagonal of α̂2(t), and set ξ(t) = tk; the other possibility is that last node is {rk = i�j},
in which case we set ξ(t) = 0. For any given point in the indeterminacy locus Z = B(i�j)−V ,
we can take a curve which looks like this in a suitable coordinate system. Note that from
this form, it is very easy to read off the limit

lim
t→0

sol(γ(t)) ∈ Grµ(J2(n));

in our example it is the subspace of linear functions in J2(n) = (Sym2Cn ⊕ Cn)∨ vanishing
on K = (id⊕ q−1

I )(L) ⊂ Sym2Cn ⊕ Cn,

L =
{

[ 0 0 0 0 ∗ | ∗ ∗ ∗ ∗ 0 0 0 ]
}
⊂ I�J ⊕ (Cn/I),

qI : Cn → Cn/I.
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Next, we will extend the above construction, so that not only we can approach any point
z ∈ Z on a curve, but we can approach it from any direction. That is, given a tangent vector
v ∈ TzB(i�j) − TzZ, we want a curve γ′(t) : C× → V such that

lim
t→0

γ′(t) = z and
d
dt
γ′(t)

∣∣
t=0

= v.

To do that, we modify the existing curves; basically we can “shear” along the directions
parallel to Σ(k)

k . In our running example, α̂2(t) will become the modified α̂′2(t)

α̂′2(t) = Aλ(t)+t·

 ∗ ∗ ∗ ∗ ∗ ∗
∗
∗
∗
∗

+t2 ·

 ·
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗

+t3 ·

 ·
·
·

∗ ∗ ∗
∗

+t4 ·

 ·
·
·
·
∗ ∗ ∗



ξ′(t) = λ∞t
3 + ∗ · t4 Aλ(t) =


λ1

λ2t

λ3t

λ4t
2

0 0 0


where we can write are any (constant) numbers into the place of stars, and any nonzero
numbers into the place of λi-s (the small dots in the matrices are only there to indicate to
diagonal). Note that we overspecified the tangent vector by one dimension, but that causes
no problems.

We can also describe the neighbourhood relationship between the strata. Given a stratum
S by its path from the root to a leaf, we can get all the strata S′ for which S ⊂ S

′, that is,
those who can degenerate into it (in another words, the neighbouring strata) by taking all
the possible proper subsets of nodes, and closing with a ξ 6= 0 node those which do not end
correctly (that is, with either maximal rank or ξ 6= 0). This can be seen via induction. For
example, the neighbours of 1©→ 2©→ 3© (which corresponds to the corner points on the
semisphere in Figure 4) are: 1©→ 2©→ ξ© , 1©→ 3© , 2©→ 3© , 1©→ ξ© , 2©→ ξ© , 3© and
ξ© (the last one is just open open stratum U). The codimension of a stratum is the length

(number of nodes) of the corresponding path, not counting the ξ© nodes.

Proof of Proposition 4.3.5. We show that the map sol extends from V = B(i�j)−Z to B(i�j)

as a continuous map (in the complex topology). For this, simply apply Gauss elimination
(alternatively, compute the wedge product of the rows) to the “sheared” matrix [ ξ′(t) ·
idI�J | α̂′2(t) ], and observe that its image does not depend on the the numbers substituted
into the stars (and λi-s) in the limit t→ 0, that is, on the direction we are approaching from.

We also want to show that this limit depends continuously on the point z ∈ Z. Since we
have the GLn symmetry, and also each fixed fiber over (I, J) ∈ Flij has the extra symmetry
given by the action of G = GL(I�J) × GL(Cn/I) with the strata there being precisely the
G-orbits, the only interesting situation is when we degenerate from a larger stratum S′ to a
smaller one S. Consider a parametric family of curves γε(t) for which limt=0(γ0(t)) = z ∈ S
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and limt=0(γ6=0(t)) ∈ S′; two representative examples of such families are

Ma =


t5 1

t5 t

t5 (t2 + ε1t)
t5 (t3 + ε2t)

t5 t4 0


for S = 1©→ 2©→ 3©→ 4©→ 5© and S′ = 1©→ 4©→ 5© ; and

Mb =


t3 + εt2 1

t3 + εt2 t

t3 + εt2 t

t3 + εt2 t2

t3 + εt2 t2 0


for S = 1©→ 3©→ 5© and S′ = 1©→ 3©→ ξ© . It is a straightforward computation with
wedge products to show that in such situtations, ε 7→ limt=0(γε(t)) is continuous (there are
three cases, depending on what happens with the last node).

Finally it is an application of the Riemann extension theorem (see eg. [GH78]) that the
resulting extended map is holomorphic. �

Now we would like to apply Theorem A.3.7 for M̂ij = B(i�j). For this, we have to
understand the fixed points. This is easy, since fixed points comes in a hierarchy: The map
πk : B(k) → B(k−1) maps the fixed point set Fix(k) to Fix(k−1). Since B(1) is just a projective
bundle, its fixed points are triples (I, J, [l]), where (I, J) ∈ Flij(Cn) is a coordinate flag, and
l is a coordinate axis. The blow-up process replaces fixed points by projectivized normal
spaces, and thus introduces new fixed points. So a typical fixed points (over an implicitly
specified fixed flag) looks like this:

α̂2 =


· · · · · · ·

· · · t · · ·
· 1 · · · · ·
· · · · · · ·
· · · · · t2 ·

 , ξ = t3.

The lines in the matrix represent the tangent spaces of the Σ(k)
k . Types of fixed points are

indexed by a tree similar to that which indexes the strata, except that we cannot “jump
over” ranks (Figure 5, right). More formally, a fixed point is specified by the following data:

• A coordinate flag (I, J), which we identify with subsets J ⊂ I ⊂ n = {1, 2, . . . , n},
where |I| = i and |J | = j;
• a natural number 0 ≤ k ≤ i� j, specifying the type of the fixed point;
• two subsets S ⊂ I�J and R ⊂ n− I, with |S| = |R| = k;
• two permutations σ, % ∈ Sk.

A curve tending to the fixed point given by this data is

[α̂2(t)]ab =
{
ti−1 a = Sσi and b = R%i ,

0 otherwise;
ξ(t) =

{
tk k < i� j,
0 k = i� j;

(distinguishing between two cases for ξ is actually not necessary). The solution over that
fixed point is the space of jets vanishing on K = (I�J − S)⊕ q−1(R).
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Remark. The number of fixed points is

#Fix =
(
n

i

)(
i

j

)
︸ ︷︷ ︸

the flag

·
i�j∑
k=0

(
i� j
k

)(
n− i
k

)
(k!)2.

An obvious disadvantage of our blow-up method is the combinatorial explosion of the fixed
points; however, in this particular case, we can simplify a bit and will remove the (k!)2 factor
below.

Finally, we have to understand the tangent Euler class, that is, the tangent weights of a
fixed point. As before, this is done inductively, from blow-up to blow-up. We start with the
space Hom(I�J,Cn/I), which has weights{

αk − αi − αj : (i, j) ∈ I�J, k /∈ I
}
.

However, to simplify the notation, for a moment consider just any torus representations An

and Bm, m ≥ n, with weights ϕ1, ϕ2, . . . and ψ1, ψ2, . . . , and apply the blow-up process to
P[1⊕ Hom(A,B)]. Also, let us assume that R and S are simply the first k coordinates, and
the permutations are trivial. These assumptions are of course not essential, but clarify the
presentation significantly.

We will also use the notation wab = ψb − ϕa for the weights of Hom(A,B). The fixed
point z(1) ∈ P[1⊕ Hom(A,B)] has tangent weights

N (0) =
{

0− w11

}
∪
{
wab − w11 : a 6= 1 or b 6= 1

}
,

which can be partitioned to the tangent and normal spaces T (1) and N (1) of Σ(1)
1 at z(1):

T (1) =
{
wab − w11 : a = 1 xor b = 1

}
,

N (1) =
{
wab − w11 : a > 1 and b > 1

}
∪
{

0− w11

}
,

where we use ‘xor’ as the standard abbreviation for ‘exclusive or’. The blow-up leaves T (1)

unchanged, and replaces N (1) by L(1) ⊕ Tz(2)PN (1), the line L(1) ⊂ N (1) = N (0)/T (1) being
the tautological line 〈z(2)〉+T (1). Thus the tangent weights of z(2) are T (1)∪L(1)∪T (2)∪N (2),

L(1) =
{
w22 − w11

}
T (2) =

{
(wab − w11)− (w22 − w11) : a = 2 xor b = 2, a ≥ 2, b ≥ 2

}
=

=
{
wab − w22 : a = 2 xor b = 2, a ≥ 2, b ≥ 2

}
,

N (2) =
{

(wab − w11)− (w22 − w11) : a > 2 and b > 2
}
∪
{

(0− w11)− (w22 − w11)
}

=

=
{
wab − w22 : a > 2 and b > 2

}
∪
{

0− w22

}
.

At this point, it is easy to spot the pattern, which is illustrated on Figure 7. On the picture,
the matrix Hom(A,B) is shown; the arrows denote subtractions of weights.

At the end of the day, the weights of our fixed point will be

T (1) ∪ L(1) ∪ T (2) ∪ L(2) ∪ · · · ∪ T (k) ∪ L(k) ∪N (k).

Note that since in the last blow-up we always select the ξ 6= 0 direction, L(k) = {0 − wkk}
and N (k) will be simply

N (k) =
{
wab : a > k and b > k

}
,
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Figure 7. The weights of a fixed point. The arrows denote subtractions.

except when k = dim(A), in which case L(k−1) = {wkk − wk−1,k−1} and N (k) = {0− wkk}.

We can now write down the tangent Euler class at our fixed point x specified by the
quadruple x = (S,R, σ, %) (specifying k is superfluous, since k = |S| = |R| = |σ| = |%|). Note
that we use the convention that {σ(u) : 1 ≤ u ≤ k} = S ⊂ {1, 2, . . . , i � j}, and similarly
for % and R.

e
(
TxB

(n)
)

=
k∏

u=1

[
k∏

a=u+1

(wσ(a),%(u) − wσ(u),%(u)) ·
∏
i/∈S

(wi,%(u) − wσ(u),%(u)) ·

·
k∏

b=u+1

(wσ(u),%(b) − wσ(u),%(u)) ·
∏
j /∈R

(wσ(u),j − wσ(u),%(u))

]
·

· (0− wσ(k),%(k)) ·
k∏

u=2

(wσ(u),%(u) − wσ(u−1),%(u−1)) ·
∏
i/∈S

∏
j /∈R

wi,j .

We can rewrite this as follows. To simplify the notation, let us introduce the convention that
wσ(k+1),%(k+1) = w0,0 = 0; also, (i, a) ∈

(
S
2

)
means the set of pairs (i, a) ∈ S such that i < a.

e
(
TxB

(n)
)

=
k∏

u=1

(wσ(u+1),%(u+1) − wσ(u),%(u)) ·

· sgn(σ) ·
∏

(i,a)∈(S
2)
(−ϕa + ϕi) · sgn(%) ·

∏
(j,b)∈(R

2)
(+ψb − ψj) ·

·
∏
a∈S

∏
i/∈S

(−ϕi + ϕa) ·
∏
b∈R

∏
j /∈R

(+ψj − ψb) ·
∏
i/∈S

∏
j /∈R

(ψj − ϕi).

Since the solution over a fixpoint depends only on S and R, but not on σ and %, we can try
to simplify the sum ∑

σ,%

1
e(T(S,R,σ,%)B(n))

.
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Lemma 4.3.6. We have∑
σ∈Sk

∑
%∈Sk

[
k∏

u=1

(wσ(u+1),%(u+1) − wσ(u),%(u)) · sgn(σ)sgn(%)

]−1

=

= (−1)k ·

∏
(i,a)∈(S

2)
(−ϕa + ϕi) ·

∏
(j,b)∈(R

2)
(+ψb − ψj)∏

i∈S
∏
j∈R

(
ψj − ϕi

) = (−1)k · det

[
1

ψj − ϕi

]
k×k

.

Remark. The second equality is Cauchy’s double alternant; we won’t actually use that.

Corollary 4.3.7.∑
σ,%

1
e(T(S,R,σ,%)B(n))

=

=
1[

Hom(R,S)
]
·
[
Hom(A− S, S)

]
·
[
Hom(R,B −R)

]
·
[
Hom(A− S,B −R)

] =

=
1[

Hom
(
R+ (A− S), S + (B −R)

)] .
Remark. Note that the last expression is just the (inverse of the) tangent Euler class of
the Grassmannian Grn(A⊕B) at the fixed point K = S⊥ ⊕R. The sign (−1)k = (−1)(k

2)is
hidden in the term [Hom(R,S)].

Proof of Lemma 4.3.6. We can apply the idea presented in Section A.3.1, and use localization
to prove this identity. Consider the representation Hom(A,B); first blow up the origin (locus
of rank 0 matrices), then blow up the locus the rank 1 matrices, and so on. The construction
is very similar what we did before, except that we here started with Hom(A,B) instead of
P(1 ⊕ Hom(A,B)). The method of A.3.1 applied to this this geometric situation proves a
formula which is, up to sign and ordering of variables (which does not matter, as the sum is
symmetric), is the same as the statement of the Lemma.

More formally, this sequence of blow-ups gives us a chain of identities

E0 :=
1∏

i∈A
∏
j∈B(ψj − ϕi)

= E1 = E2 = · · · = Ek,

where

Er =
∑
|S|=r

∑
|R|=r

∑
σ∈SS

∑
%∈SR

1
D · V1 · V2 ·N

D = wσ(1),%(1) ·
(
wσ(2),%(2) − wσ(1),%(1)

)
· · ·
(
wσ(r),%(r) − wσ(r−1),%(r−1)

)
V1 =

r∏
s=1

[
r∏

u=s+1

(
wσ(u),%(s) − wσ(s),%(s)

)
·
∏
i/∈S

(
wi,%(s) − wσ(s),%(s)

)]

V2 =
r∏
s=1

 r∏
v=s+1

(
wσ(s),%(v) − wσ(s),%(s)

)
·
∏
j /∈R

(
wσ(s),j − wσ(s),%(s)

)
N =

∏
i/∈S

∏
j /∈R

(wij − wσ(r),%(r))

wi,j = ψj − ϕi
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Note that though these A, B, S, R, etc. are very similar to the previous ones, they are
unrelated, local to this proof! The two ends of the chain gives E0 = Ek, which for |A| =
|B| = k is equivalent to the lemma. �

4.3.2.2. The canonical compactification. It turns out that it is actually easy to under-
stand the closure of j(Mij) ⊂ GrµJ2(n) directly. For

(I, J, α̂2) ∈
{
Hom(I � J,Cn/I)→ Flij(n)

}
=Mij

and (F1, F2) ∈ J2(n,m) (in particular, for m = 1 too) we can rewrite our equations into the
single equation (F1 + F2)|K = 0 where

K = (id⊕ q−1
I )
(
im(idI�J , α̂2)

)
qI : Cn → Cn/I

In other words, we take the graph graph(α̂2) ⊂ (I � J) ⊕ (Cn/I) of the (linear) map α̂2 :
I � J → Cn/I. This gives the map j : Mij → GrµJ2(n)∨ = GrµJ2(n). Clearly, j factors
through the bundle of Grassmannians Y = Gri�j(I � J ⊕ Cn/I) → Flij , which is compact,
and is embedded into GrµJ2(n); thus the the closure of j(Mij) can be constructed by taking
the closure in Y , and embedding it to GrµJ2(n).

Now the question is, basically, that which linear subspaces arise as limits of graphs? And
the answer is: ‘all’. For two vector spaces V v and Ww, the image of graph : Hom(V,W ) →
Grv(V ⊕W ) is the open Schubert cell in Grv(V ⊕W ). So we have

j(Mij) = Y ⊂ GrµJ (n)

4.3.3. The localization formula. We get the same formula out of both methods:

[Σij ] =
∑
I∈(n

i)

[Hom(I,Θ)]
[Hom(I, n− I)]

∑
J∈(I

j)

1
[Hom(J, I − J)]

∑
K∈(I�J+n−I

i�j )

[Hom(K,Θ)]
[Hom(K, (I�J + n− I)−K)]

where, with some abuse of notation, n stands for (α1, . . . , αn), Θ = (θ1, . . . , θm), and the
brackets denote the Euler class of the representation inside (as in [V ] = [{0} ⊂ V ] ∈ H∗

G(pt)).
Notice that the inner sum is just the localization formula for Σi�j(I�J+n−I,Θ) (see Section
1.3), which we can evaluate as a Schur polynomial, thus

[Σij ] =
∑
I∈(n

i)

∑
J∈(I

j)

s(im)(Θ− I) · s((i�j)m−n+i)(Θ− (I�J + n− I))
[Hom(I, n− I)] · [Hom(J, I − J)]

And this sum is just calculating the pushforward along π : Flij(n)→ pt (see Corollary A.3.3),
resulting in

[Σij ] = π∗
{
s(im)(Θ− I) · s((i�j)m−n+i)(Θ− (I�J + n− I))

}
which is just Ronga’s pushforward formula (Theorem 4.2.1).

We can also evaluate the localization formula using the technique presented in Section
3.2. We implemented this method as a computer program (written in Haskell), substituting
rational numbers, and found that it is practical for n, µ ≤ 9: Table 3 shows the running times
on an average personal computer (note that for the cases not marked ‘new’, we actually have
explicit formulae, see the next two sections). Using floating point arithmetic one can gain
several orders of magnitude in speed, which may further extend the range where computer
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calculations are possible with this method (which has the advantage of computing them =∞
case directly; see Figure 3 on page 27).

4.4. Explicit formulae for the coefficients

In this (and part of the next) section we present the results of our article [FK06] joint
with László Fehér. It is based on the idea of restricting Σij to Σk (in the sense of Section
1.4) for k ≤ i, though this is implicit in the argument we present here.

Recall that

Σij(V,W ) =
{

(α1, α2) ∈ J2(V,W ) = Hom(V,W )⊕ Hom(Sym2V,W )

: corank(α1) = i, and α̂2 ∈ Σ•,j(ker(α1), coker(α1)
)}

where α̂2 : Sym2(ker(α1))→ coker(α1) is the natural map induced by α2, and

Σ•,j(A,B) =
{
ϕ ∈ Hom(Sym2A,B) : corank(curry(ϕ)) = j

}
.

singularity new µ = i+ i� j n running time # of terms

Σ2,1 4 4 negligible 7
5 0.3 seconds 17
6 2 seconds 33
7 10 seconds 57
8 45 seconds 90

Σ2,2 5 5 1 second 31
6 7 seconds 64
7 40 seconds 117
8 3.5 minutes 199

Σ3,1 6 6 31 seconds 110
7 7 minutes 277
8 not measured 592
9 not measured 1137
6 5.5 minutes 230
7 105 minutes 689

Σ3,2 ? 8 8 several hours – one day 1733
6 2.5 minutes 156

Σ3,3 ? 9 9 one day – few days 3222
6 34 seconds 107
7 25 minutes 450

Σ4,1 8 8 several hours 1393
6 11 minutes 269

Σ4,2 ? 11 11 out of reach ?

Table 3. Running times for computing TpΣij (n,∞) using the method of Sec-
tion 3.2. Where times are approximate, the calculations were ran on different
(faster) computer, and not exactly measured.
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Here curry denotes the (restriction of the) natural isomorphism

curry : Hom(A⊗B,C) ∼−−→ Hom(A,Hom(B,C)).

Remark. In the following, we will either assume that m ≥ n, or define corank as the source
corank, that is, corank(ϕ : Cn → Cm) = n − rank(ϕ), even if m < n. Note that though this
theory works for m < n, from the Thom series point of view it is enough to consider the
m� n case.

It follows directly from this definition that Σij(n,m) is empty if n < i and it is particularly
simple for n = i:

Σij(Ai, Bm−n+i) = {0} × Σ•,j(A,B) ⊂ J2(A,B);

which means that its class is a product:[
Σij(Ai, Bm−n+i)

]
= e(Hom(A,B)) ·

[
Σ•,j(A,B)

]
.

We can exploit the simplicity of these cases because the stability : The Thom polynomial
actually depends only on the (formal) difference B − A, that is, there exists a universal
polynomial in the formal variables ci

Tp(r) ∈ Z[c1, c2, c3, . . . ]

such that the classes [Σ(An, Bm)] can be obtained by the specialization %A,BTp(m−n), where

%A,B : Z[c1, c2, c3, . . . ]→ H∗
G(A)⊗H∗

G(B)

ci 7→ cGi (B −A)

This notation is a bit strange (the correct interpretation is that A and B are G-equivariant
vector bundles over some base manifold M), so let us work with the formal version instead:

%n,m : Z[c1, c2, c3, . . . ]→ Z[a1, a2, . . . an; b1, b2, . . . , bm]

which is defined by the equation
∞∑
k=0

%n,m(ci)ti =
1 +

∑m
j=1 bjt

j

1 +
∑n

i=1 ait
i

with t being a formal variable. (This corresponds to let A and B be the standard GLn
resp. GLm representations, viewed as GLn × GLm-equivariant vector bundles over the point;
ai and bj are then the equivariant Chern classes of A resp. B).

We will use the following well-known properties of the map %n,m.

Proposition 4.4.1.

(i) ker(%n,m) is spanned (over Z) by the Schur polynomials sλ(c) with (n+1)(m+1) ⊂ λ;

(ii) im(%n,m) is spanned by the images of the Schur polynomials sλ(c) with (n+1)(m+1) 6⊂
λ;

(iii) Suppose that nm ⊂ λ but (n+ 1)(m+1) 6⊂ λ; that is, λ has the form λ = (nm + β, α)
with `(β) ≤ m and `(α̃) = α1 ≤ n (see Figure 8). Then we have to so called
factorization formula

%n,m(sλ(c)) = s(nm)(b− a) sα(−a) sβ(b).
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n

m

(nm)

β

α

Figure 8. The shape of λ appearing in the factorization formula.

A proof can be found in eg. [FP98], Section 3.2. Note that sα(−a) = (−1)|α|seα(a), and
s(nm)(b− a) is just the (equivariant) Euler class e(Hom(A,B)) (see Appendix A.2).

Compare this result to the observations above:

%k,r+kTp(r) =
{

0 k < i;
s(nm)(b− a) · [Σ•,j(a, b)] k = i.

These equations can be also interpreted as restriction equations (see Section 1.4), namely,
we are restricting Σij to Σk for k ≤ i.

Writing the universal polynomial Tp(r) and the class [Σ•,j(a, b)] as a linear combination
of Schur polynomials (resp. Schur classes, to be precise)

Tp(r) =
∑
λ

dλ · sλ(c)

[Σ•,j(a, b)] =
∑
α,β

eαβ · sα(a)sβ(b),(15)

the first case (actually it is enough to consider k = i− 1) means that if dλ is nonzero, then
i(r+i) ⊂ λ; and the second case (k = i) means that if (i + 1)(r+i+1) 6⊂ λ, dλ equals (up to
sign) to the coefficient eeαβ of seα(a)sβ(b) in the class [Σ•,j(i, r+ i)]. Note that we did not say
anything about the coefficients dλ where (i + 1)(r+i+1) ⊂ λ; fortunately, these are all zero,
as we proved in Theorem 4.2.2.

To sum it up, we proved the following theorem.

Theorem 4.4.2. The Thom polynomial of the Σij singularity in relative codimension r is

Tp(r) =
∑
α,β

(−1)|α|eαβ · s(i(r+i)+β,eα)(c),

where eαβ ∈ Z are defined by (15) as the Schur coefficients of the class [Σ•,j(a, b)].

Computing eαβ seems to be pretty difficult in general; however, the difficulties are mostly
combinatorial. There are two special cases which are somewhat easier, namely, r = −i+1 or
i = 1; in these cases, we will give closed formulae for these coefficients. Another interesting
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case is j = i, when we can give a nice combinatorial interpretation of the coefficients, but
the problem of giving formulae or an enumerative recipe to compute them is unsolved. We
can compute the case i = j = 2, however.

Theorem 4.4.3. Let π : Grj(Ai)→ pt denote the projection map from the Grassmannian of
j-planes in A to the one-point space, and J j be the tautological (equivariant) vector bundle
over Grj(A). Then [

Σ•,j(Ai, Br+i)
]

= π∗e(Hom((π∗A)� J, π∗B),(16)

where e, as usual, is the equivariant Euler class, with the group GL(A) × GL(B) acting
naturally.

Proof (compare with [LP00], Section 3). Consider the diagram

Hom(A⊗A,B) = A∨⊗A∨⊗B σ−→ J∨⊗A∨⊗B −→ J∨⊗J∨⊗By yqA yqJ ↙

Hom(∧2A,B) = ∧2A∨⊗B −→ ∧2J∨⊗B

over a fixed J ∈ Grj(A). Note that Hom(Sym2A,B) ∼= ker(qA); thus any ϕ ∈ Hom(Sym2A,B)
gives us a section σ(ϕ) of the vector bundle ker(qJ)→ Grj(A). Combining these for different
ϕ’s, we get a section σ of the bundle

ker(qJ)→ Grj(A)× Hom(Sym2A,B).

Observe that the image of the map pr2 restricted to the zero locus Z of the section σ

pr2|Z : Z = σ−1
{
0 ⊂ ker(qJ)

}
→ Hom(Sym2A,B)

is Σ•,j , and it’s one-to-one on Σ•,j ; thus the locus Z is a resolution of Σ•,j (it is clear that σ
is transversal to the zero section, thus Z is smooth). From that, it follows that

[Σ•,j ] = π∗e(ker(qJ));

but of course, ker(qJ) ∼= Hom(A� J,B). �

Naturally, one would try to apply the pushforward formula (Theorem A.4.1) to evaluate
(16). For this, we have to separate the “variable” J ; the first step is

π∗e(Hom(A� J, B) =
∑

λ⊂(r+i)(i�j)

(−1)|λ|s{eλ(B) · π∗sλ(A� J).

However, the problem of expanding sλ(A� J) into

sλ(A� J) =
∑
ϕ,ψ

fϕψ · sϕ(A)sψ(J)(17)

is unsolved in general. This question belongs to a larger family of similar expansion problems,
most of which is unsolved. There are some tractable special cases, though:

(a) j = 1: in this case, A � J = A ⊗ J , and the coefficients fϕψ were computed by
Lascoux in [Las78] (Lemma A.2.8);

(b) r + i = 1: in this case, λ = (1k) is special; s(1k) is just the kth Chern class; for the
top Chern class, a formula is proved in [LP00];
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(c) i = j: in this case, A � J = Sym2A; this is unsolved, but we can compute the
smallest nontrivial case i = j = 2, see Section 4.5.2. Note that in this case π

is trivial, so there is no pushforward; thus the coefficients in the Thom series are
exactly the same as the coefficients fϕψ!

Nonetheless, we will not use Theorem 4.4.3 directly for cases (a) and (b), but handle them
with different approaches. Case (c) serves as a motivation: It shows that the coefficients of
the Thom polynomials have very rich combinatorics. We find this very important, so let us
repeat it as a theorem:

Theorem 4.4.4. The Thom series of the Σii singularity is Ts =
∑
fν±rsν±, where fν± is the

coefficient of sν+(Ai) in the expansion of sν−(Sym2Ai). (Note that in this chapter we use the
‘shifted base line’ (m− n+ i, n− i), cf. Figure 3).

Next, let us state two theorems about the cases (a) and (b).

Theorem 4.4.5. [Σ•,j(Ai, L1)] = 2j ·sbje(A∨ ⊗
√
L) where bje = (j, j − 1, . . . , 2, 1).

Remark. Note that the line bundle L has no square root, so the formula above should be
understood formally: the only Chern root of

√
L is β/2 where β = β1 is the Chern root of

L, and then the Chern roots of A∨ ⊗
√
L are −α1 + β/2, . . . ,−αn + β/2.

Proof. Notice that the elements of Hom(Sym2Ci,C) can be identified with symmetric i × i
matrices and then the ‘curried corank’ becomes simply corank, so the class in question is given
by the twisted symmetric degeneracy locus formula ([HT84], [JLP82], [Pra90], [Ful96]).
A general explanation of twisting can be found in [FNR05]. �

Theorem 4.4.6. [Σ•,1(Ai, Br+i)] = ci(r+i−1)+1(A∨ ⊗B −A).

Proof. The codimension of Σ•,1(An, Bm) ⊂ Hom(Sym2A,B) is mn − n + 1, which equals
to the codimension of Σ1(A,A∨ ⊗ B) ⊂ Hom(A,A∨ ⊗ B) = Hom(A ⊗ A,B); so—exactly
as noted in [LP00], where a similar degeneracy locus problem is considered—we are in the
situation of the Giambelli-Thom-Porteous formula, since Σ•,1(An, Bm) is just the transversal
intersection Σ1(A,A∨ ⊗W ) ∩ Hom(Sym2A,B):[

Σ•,1(An, Bm)
]

= [Σ1(A,A∨ ⊗W )] = cmn−n+1(A∨ ⊗B −A).

�

4.5. Combinatorics

In this section we will deal with the combinatorics of the special cases mentioned above.

4.5.1. The coefficients for Σi,1. We will need the following statements of Lemma
A.2.8:

Lemma ([Las78]). Denote by Eλ/µ(n) the determinant

Eλ/µ(n) = det

[(
λi + n− i
µj + n− j

)]
i,j∈n×n

.
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(1) Let An and Bm be an n-dimensional and a m-dimensional (equivariant) vector
bundle, respectively. Then∑

k

ck(A⊗B) =
∑

µ⊂λ⊂mn

Eλ/µ(n)sµ(A)s{eλ(B)

(2) Furthermore, if L is a line bundle and λ is partition with `(λ) ≤ n, then

sλ(A⊗ L) =
∑
µ⊂λ

Eλ/µ(n)·c1(L)|λ|−|µ| ·sµ(A)

Remark. Our notation Eλ/µ(n) is motivated by the following formula. Suppose that n ≥
`(λ), `(µ) (if this is not the case, one should take (λ1, . . . , λn) and (µ1, . . . , µn) instead of λ
and µ in the RHS); then

Eλ/µ(n) = sλ/µ

(
1,

1
2!
,

1
3!
,

1
4!
, . . .

)
·
∏

(i,j)∈λ/µ

(n+ i− j),

where we substitute 1/k! for the kth elementary symmetric polynomial in the (Jacobi-Trudi
expansion of the) skew Schur polynomial sλ/µ (this is called exponential specialization in the
symmetric polynomial literature, see eg. [Sta99]). The proof of the formula is a straightfor-
ward computation (one observes that in the expansion of the determinant Eλ/µ(n) each term
is the polynomial

∏
(n+ i− j) up to a scalar). An important corollary is that Eλ/µ(n) = 0

if µ 6⊂ λ.

The lemma, together with Theorem 4.4.5 immediately implies the following

Theorem 4.5.1. The Thom polynomial of the second order Thom-Boardman singularity
Σij(−i+ 1) in relative codimension r = −i = 1 is[

Σij(−i+ 1)
]

=
∑
µ⊂bje

2|µ|−j(j−1)/2 · Ebje/µ(i) · s(d−|µ|,eµ)

where bje is the ‘stairway’ partition bje = (j, j − 1, . . . , 2, 1) and

d = codim Σij(−i+ 1) = i+
(
j+1
2

)
.

Remark. This is the smallest relative codimension where the singularity appears at all. In
the Thom series language, this theorem calculates the “lowest degree” part of the Thom
series.

Similarly, Theorem 4.4.6 leads to

Theorem 4.5.2. Using the shorthand notation h = r + i,[
Σi,1(r)

]
=

∑
(λ,µ)∈K

s(ih+λ,µ) ·
∑

x∈{0,1}`(µ)

E{eλ/(µ−x)e(i)

where x runs over the 0-1 sequences of length `(µ), and

K =
{

(λ, µ) : λ ⊂ ih, µ1 ≤ i, |λ|+ |µ| = ih− i+ 1, and µ− x is a valid partition
}
.

Proof. According to Theorem 4.4.2, to express [Σi,1] all we have to do is to expand the
formula cih−i+1(A∨ ⊗B −A) into linear combination of products of Schur polynomials. For
the sake of convenience, we calculate the total Chern class∑

m≥0

cm(A∨ ⊗B −A) =

∑
k≥0

ck(A∨ ⊗B)

 ·
∑
l≥0

cl(−A)

 .
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Using the Lemma, the Pieri formula, and

c(−A) =
∑
l≥0

cl(−A) =
∑
k≥0

(−1)ksk(A),

we will get

c(A∨ ⊗B −A) =
∑

µ⊂λ⊂ih

∑
x∈{0,1}l(µ)

(−1)|µ+x|Eeλ/eµ(i) · s(µ+x)e(A)s{λ(B),

where the second sum runs over 0-1 sequences such that µ+x is a valid partition. From this
the theorem follows directly, using the fact that Eλ/µ(k) = 0 if µ 6⊂ λ and k ≥ `(λ), `(µ). �

Note that in both cases, the Thom polynomial is a nonnegative linear combination of
Schur polynomials. The same is true in general, for any Thom polynomial: This was con-
jectured by the author (based on numerical evidence), and independently by Pragacz; and
then proved in [PW07a, PW07b].

With some work, we can get a more elegant formula. Introduce the notations{
n

k

}
:=

k∑
j=0

(
n

j

)
and Fλ/µ(n) := det

[{
λk + n− k
µl + n− l

}]
k,l∈n×n

.

Note that the numbers
{
n
k

}
also form a Pascal-like triangle:

1
1 2

1 3 4
1 4 7 8

1 5 11 15 16
1 6 16 26 31 32

Theorem 4.5.3.

[Σi,1(r)] =
∑

(ν,µ)∈K

Fν/µ(i) · s(ih+{eν,eµ)(18)

where K = {(ν, µ) : ν ⊂ hi, `(µ) ≤ i, and |ν| − |µ| = i− 1}.

Proof. According to Theorem 4.5.2, the coefficient aν,µ of s(ih+{eν,eµ) is a sum, which we can
rewrite as follows:

aν,µ =
∑

x∈{0,1}µ1

Eν/(eµ−x)e(i) =
µ1∑

α1=µ2

µ2∑
α2=µ3

· · ·
µi∑

αi=0

Eν/α(i)

Expanding the determinant Eν/α(i) and rearranging the sums yields

aν,µ = det

[{
νk + i− k
µl + i− l

}
−
{

νk + i− k
µ(l+1) + i− (l + 1)

}]
k,l∈i×i

Observe that aν,µ is of the form det(A−B) where

Bk,l =
{
Ak,l+1 if l < n

0 if l = n

It is an easy exercise then to prove that in such a situation det(A+ βB) = det(A) holds for
any β ∈ C. �
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Note that in the formula (18), the coefficients are manifestly independent of r = m− n;
thus what we got here is actually a closed formula for the Thom series:

Corollary 4.5.4. The Thom series of the Σi,1 singularity is

Ts(Σi,1) =
∑
ν±∈K

Fν−/ν+(i) · rsν±

where

K =
{

(ν+, ν−) : `(ν+) = `(ν−) = i, |ν−| − |ν+| = i− 1
}
.

Note that with some abuse of notation, here we allow ν+ and ν− to be padded with zeros.

Example 4.5.5. Specializing for Σ21,

Ts(Σ21)] =
∑
K

({
a+ 1
d+ 1

}{
b

c

}
−
{
a+ 1
c

}{
b

d+ 1

})
· rs(d,c,−b,−a)

where K is the set of quadruples

K = {(a, b, c, d) ∈ N4 : 0 ≤ b ≤ a, 0 ≤ c ≤ d, c+ d = a+ b− 1}.

4.5.2. The coefficients for Σ22. According to Theorem 4.4.4, the coefficients in the
Thom series of Σ22 are the same as the coefficients in the expansion

s(a,b,c)(2x, x+ y, 2y) =
∑
r

d
(M−r,r)
(a,b,c) · s(M−r,r)(x, y),(19)

where M = a+ b+ c. In this section, we derive a formula for these numbers.

By definition,

s(a,b,c)(2x, 2y, x+ y) =
−1

2(x− y)3

∣∣∣∣∣∣
(2x)a+2 (2x)b+1 (2x)c

(2y)a+2 (2y)b+1 (2y)c

(x+ y)a+2 (x+ y)b+1 (x+ y)c

∣∣∣∣∣∣
Expanding the determinant by the last row, we get

−1
2(x− y)2

(
2b+c+1sa+2

1 s(b,c) − 2a+c+2sb+1
1 s(a+1,c) + 2a+b+3sc1s(a+1,b+1)

)
,

using the notational convention that s1 = s1(x, y) = x + y and s(a,b) = s(a,b)(x, y). One
(x− y) factor vanishes from the denominator, since the definition of s(n,k) contains that.

First, let us compute the subexpressions of the form sn1s(b,c). For this, recall the fact that

(x+ y)n = cn1 = sn1 =
bn/2c∑
i=0

T(n−i,i)s(n−i,i),

where

T(n−i,i) =
(
n

i

)
−
(

n

i− 1

)
= the Catalan triangle

= number of standard Young tableaux of shape (n− i, i).
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We will need the Littlewood-Richardson rule for this very special case:

s(a,b)s(p,q) =
min(a−b,p−q)∑

i=0

s(a+p−i,b+q+i).

Let us start.

sn1s(b,c) =
bn/2c∑
i=0

T(n−i,i)s(n−i,i)s(b,c) =
bn/2c∑
i=0

T(n−i,i)

min(n−2i,b−c)∑
j=0

s(n+b−i−j,c+i+j)

Substituting k = i+ j:

=
bn/2c∑
i=0

T(n−i,i)

min(n−i,b−c+i)∑
k=i

s(n+b−k,c+k) =
b−c+b(n−b+c)/2c∑

k=0

s(n+b−k,c+k)

min(k,n−k)∑
i=max(0,k−b+c)

T(n−i,i) =

=
b−c+b(n−b+c)/2c∑

k=0

s(n+b−k,c+k)

[(
n

min(k, n− k)

)
−
(

n

k − b+ c− 1

)]
=

=
b−c+b(n−b+c)/2c∑

k=0

s(n+b−k,c+k)

[(
n

k

)
−
(

n

k − b+ c− 1

)]
since the inner sum is telescopic. Note that the last sum could start from (−∞), and if we
declare s(b<c) to be zero, then it could stop at (+∞). We can rephrase this as follows: The
coefficient of s(n+p+q−l,l) in sn1 ·s(p,q) is

coefficient of s(n+p+q−l,l) in sn1 · sp,q =
(

n

l − q

)
−
(

n

l − p− 1

)
.

Thus we have

s(a,b,c)(2x, x+ y, 2y) =

=
−1

(x− y)2
(
2b+cca+2

1 sb,c − 2a+c+1cb+1
1 sa+1,c + 2a+b+2cc1sa+1,b+1

)
=

=
−1

(x− y)2

b(M+2)/2c∑
k=0

s(M+2−k,k)

[
2b+c

(
a+ 2
k − c

)
− 2b+c

(
a+ 2

k − b− 1

)
− 2a+c+1

(
b+ 1
k − c

)
+(20)

+2a+c+1

(
b+ 1

k − a− 2

)
+ 2a+b+2

(
c

k − b− 1

)
− 2a+b+2

(
c

k − a− 2

)]
.

What remains is to factor the term (x− y)2 out of the expression above. To do this, let
us introduce some notations: Let n be fixed, and m = bn/2c; furthermore,

a(n) = (a0, a1, . . . , am) ∈ Z(m+1)

b(n+2) = (b0, b1, . . . , bm+1) ∈ Z(m+2)

s(n) = (s(n), s(n−1,1), s(n−2,2), . . . ) ∈ Z[x, y](m+1)

〈a(n), s(n)〉 =
∑
i

ais(n−i,i) ∈ Z[x, y]

k(n) = (n+ 1, n− 1, n− 3, . . . , n+ 1− 2m) ∈ N(m+1)

k(n+2) = (n+ 3, n+ 1, n− 1, n− 3, . . . , n+ 1− 2m) ∈ N(m+2)
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Then it is a straightforward computation to show that

(x− y)2 · 〈a(n), s(n)〉 = (s(2) − 3s(1,1)) · 〈a(n), s(n)〉 = 〈A(n)a(n), s(n+2)〉

where the matrix A(n) ∈ Mat(m+2)×(m+1) is defined as

A(n) =



1
−2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 xn


where xn = −3 + (n mod 2)

Proposition 4.5.6. b(n+2) ∈ im(A(n)) if and only if 〈k(n+2), b(n+2)〉 = 0.

Proof. k(n+2) generates ker([A(n)]†). �

In this case, we have a left pseudo-inverse J (n) ∈ Mat(m+1)×(m+2):

J (n) = [A(n)]−1 =



1 0
2 1 0
3 2 1 0
4 3 2 1 0
...

. . . . . . . . .
...

m · · · 3 2 1 0 0
m+ 1 · · · 4 3 2 1 0


With this, we can complete the computation: Just multiply the expansion vector of (20)

by the matrix J (M). This results in

Theorem 4.5.7. The coefficient of s(M−r,r)(x+y) in (the expansion of) s(a,b,c)(2x, x+y, 2y)
is

d
(M−r,r)
(a,b,c) =−

r∑
k=0

(r + 1− k) ·
[
2b+c

(
a+ 2
k − c

)
− 2b+c

(
a+ 2

k − b− 1

)
− 2a+c+1

(
b+ 1
k − c

)
+(21)

+2a+c+1

(
b+ 1

k − a− 2

)
+ 2a+b+2

(
c

k − b− 1

)
− 2a+b+2

(
c

k − a− 2

)]
.

Recall the following notation introduced in the previous section:{
n

k

}
=

k∑
j=0

(
n

j

)
.

With this notation, we can simplify a bit the type of sums appearing in (21):

Lemma 4.5.8. For n, r, b ∈ N,
r∑

k=0

(r + 1− k)
(

n

k − b

)
=

r−b∑
j=0

{
n

j

}
.

Proof. Straightforward. �
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Corollary 4.5.9.

d
(M−r,r)
(a,b,c) =− 2b+c

b∑
j=c

{
a+ 2
r − j

}
+ 2a+c+1

a+1∑
j=c

{
b+ 1
r − j

}
− 2a+b+2

a+1∑
j=b+1

{
c

r − j

}
.(22)

Putting together with Theorem 4.4.4:

Theorem 4.5.10. The Thom series of the Σ22 singularity is

Ts(Σ22) =
∑
ν±

dν+ν− · rsν± ,

where ν± runs over the pairs of partitions such that `(ν+) ≤ 2, `(ν−) ≤ 3, and |ν+| = |ν−|,
and dν+ν− is defined by (22) above.

Remark. Compare this formula with Example 4.5.5, which gives a formula for Σ21. It is
intriguing that both contain the numbers

{
n
k

}
; however, the connection between the two is

not at all clear.
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Chapter 5. Third order - A3

In the last chapter, we sketch how to modify the “blow-up method” of Section 4.3.2.1 to
work with the A3 (or Σ111) singularity. We believe it can be also adapted to other (small)
singularities, eg. A4, Σ211, Σ221; however, the computations did not work out yet. For this
reason, some of the statements are presented in more generality than needed for the A3 case.

We find it possible that this method could even work for all third order Thom-Boardman
singularities (Σijk), however this only of theoretical interest, since the vast number of fixed
points (or possibly fixed components) make any computation inpractical already for small
cases. A very rough estimation of the number of fixed points is (µ!)2, for the smallest case
n = µ; so for example Σ321, with µ = 13 seems to be completely out of reach with this
method, while Σ221, with µ = 8, is around the limits of present-day personal computers.

5.1. The probe model for Σijk

Recall Porteous’ probe model (we concentrate on the d = 3 case here):

Proposition 5.1.1 ([Por83]). F ∈ J3(n,m) belongs to the Thom-Boardman class Σijk if
there exists a probe (α, β, γ) ∈ Pijk = J ◦3 (i, n)× J ◦2 (j, i)× J ◦1 (k, j) such that

0 = d(F ◦ α)|0
0 = d(d(F ◦ α) ◦ β)|0
0 = d(d(d(F ◦ α) ◦ β) ◦ γ)|0,

and no such probe exists for higher Boardman indices.

We can rewrite these equations to a linear form, using the tensor notation of Appendix
A.1. The expansion of third, most complicated equation is shown in Figure 9.

Proposition 5.1.2 ([Por83]). If (α, β, γ) is a good probe for F , then so is (α′, β′, γ′) defined
by the commutative diagram

Cn α←− Ci β←− Cj γ←− Ck∥∥∥ yϕ yψ yχ
Cn α′←−− Ci β′←−− Cj γ′←−− Ck

(23)

where (ϕ,ψ, χ) ∈ Gijk = Diff3(i)× Diff2(j)× Diff1(k) are jets of biholomorphisms.

Proposition 5.1.3. The moduli space Mijk of the probes is, set-theoretically,

Mijk =
{

(I, J,K, α̂2, α̂3, β̂2) : (I, J,K) ∈ Flijk(Cn)

, α̂2 ∈ Hom(I�J, Cn/I), α̂3 ∈ Hom(I�J�K, Cn/I)

, β̂2 ∈ Hom(J�K, I/J)
}

Proof. Apply Gauss elimination to the equations written in a matrix form. The proof shows
that β̂2 should be probably called ‘alpha’ too, however, we think that would be equally
confusing. �

68
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Figure 9. The 7 terms of the expression d(d(d(F ◦ α) ◦ β) ◦ γ)|0.

These spaces are remarkably subtle. At first sight, they look quite simple: They are fiber
bundles (actually, towers of fiber bundles), and the fibers are vector spaces. But they are not
holomorphic vector bundles, at least not with the complex structure defined by requiring the
quotient map Pijk →Mijk to be analytic.

However, one aspect of the vector bundle structure (ofMij) survives the generalization,
namely, a C×-action, generalizing the multiplication by scalars. Suppose we multiply α2 by
a nonzero scalar ω ∈ C×; now, there is only way to extend this to an action of C× on the
space of probes P which is compatible with the factor map q : P →M, which is to multiply
the degree d components by ωd−1:

Proposition 5.1.4. Let C× act on the space of probes

PI =
d∏

k=1

J ◦d+1−k(ik, ik−1)

by the formula

ω : J ◦d+1−k(ik, ik−1) → J ◦d+1−k(ik, ik−1)(
β1, β2, β3, . . . , βd+1−k

)
7→

(
β1, ωβ2, ω

2β3, . . . , ω
d−kβd+1−k

)
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This action induces a well-defined action on MI = PI/∼, via the formula

ω · x = qI(ω · y), y ∈ q−1
I (x).

Note that im(α1) ⊃ im(α1 ◦β1) ⊃ im(α1 ◦β1 ◦γ1) ⊃ . . . define a fibrationMI → FlI(Cn),
and we act on the fibers (the action is trivial on FlI).

Lemma 5.1.5 (Boardman). The codimension of Σijk is

codim(Σijk) = (m− n+ i)µijk − (i− j)µjk − (j − k)k,

where

µijk = i+ i� j + i� j � k
µjk = j + j � k.

Remark. This codimension formula has a straightforward generalization for higher order
Thom-Boardman singularities, but we will not need the general case.

5.2. Morin singularities

The case i = j = k = · · · = 1, called Morin singularities, deserves special attention. These
were studied in [BSz06, Bér08], and it was that work where the idea of applying equivariant
localization to the computation of Thom polynomials first appeared. This was also the case
which motivated a large part of our work: The original goal was to find an alternate (and
possibly more general) approach to the compactification of these moduli spaces, since even
though they were able to derive iterated residue formulae for the Thom polynomials of Ad
for d ≤ 6, the spaces appearing in the process are not very well understood geometrically.
Unfortunately, this program didn’t really work, since the geometry is indeed intricate.

Theorem 5.2.1 ([BSz06], [Gaf83]). For Ad = Σ11...1, the moduli of probes (which in this
particular case is also called the moduli of test curves) is the quotient

Md = J ◦d (1, n)/Diffd(1),

that is, jets of curves in Cn up to reparameterization. The solutions in Jd(n,m) for a fixed
test curve γ ∈ J ◦d (1, n) are

sol(γ) =
{
F ∈ Jd(n,m) : F ◦ γ = 0

}
.

Proof. Recall Mather’s theorem: Two germs are K-equivalent if and only of their ideals
are taken into each other by a diffeomorphism germ. The protype ideal for Ad is Id =
(x2, x3, . . . , xn) � Jd(n). Suppose we have a germ F = (f1, . . . , fm) of type Ad: Then there
exists a diffeomorhism germ ϕ ∈ Diffd(n) such that the ideal (f1 ◦ ϕ, . . . , fm ◦ ϕ) is Id; thus
F ◦ γ = 0 for γ(t) = ϕ(t · dx1). Conversely, suppose that F ◦ γ = 0; for any γ there is a
ψ ∈ Diffd(n) such that ψ ◦ γ = (t 7→ tdx1), that is, (f1 ◦ ψ−1, . . . , fm ◦ ψ−1) ⊂ Id. �

Remark. It is not hard to see this from Porteous’ model; in fact, we don’t even need the
Boardman indices i = j = k = . . . to be exactly 1, we only need them to be equal. Look
at diagram (23): For any fixed ϕ ∈ Diffd(i), there is a unique ψ ∈ Diffd−1(i), χ ∈ Diffd−2(i),
etc. such that β′ = γ′ = · · · = id : Ci → Ci; thus Piii.../Giii... = J ◦d (i, n)/Diffd(i). Dimension
calculation shows that there are no further ambiguities in the probes, soMiii... = Piii.../Giii....
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We adopt the notation x, u, v, w, . . . ∈ Cn for the components of our test curve:

γ ∈ J ◦d (1, n)

γ(t) = xt+ ut2 + vt3 + wt4 + · · ·

(these corresponds to α1, α2, α3, . . . in the old notation), and A,B,C,D, . . . for the compo-
nents of the singularity (which corresponds to F1, F2, F3, . . . in the old notation). Note that
x 6= 0. Then the equations can be written as

0 = Ax

0 = Au+Bxx

0 = Av + 2Bux+ Cxxx

0 = Aw +Buu+ 2Bvx+ 3Cuxx+Dxxxx
...

In general, the terms in the dth equations correspond to partitions of d, and the coeffi-
cients (which are mostly irrelevant) are the number of automorphisms of the partition (see
[BSz06]). Note that there are at least two different conventions for the coordinatization of
the symmetric tensors B,C,D, . . . ; the other convention results in different coefficients.

We can represent the group Diffd(1) and its action on the space of test curves with
matrices: Denoting the components of a diffeomorphism jet by (α, β, γ, . . . ), using the d = 4
case as an example, the action reduces to the matrix multiplication

α

β α2

γ 2αβ α3

δ 2αγ + β2 3α2β α4

 ·

x1 x2 . . . xn
u1 u2 . . . un
v1 v2 . . . vn
w1 w2 . . . wn

 =


x′1 x′2 . . . x′n
u′1 u′2 . . . u′n
v′1 v′2 . . . v′n
w′1 w′2 . . . w′n


Note that Diffd(1) acts on J ◦d (1, n) on the left, while GLn acts on the right; thus, these

two actions commute, and GLn also acts on the quotient space Md = J ◦d (1, n)/Diffd(1).

Theorem 5.2.2 (cf. [BSz06], Prop. 4.4). For any test curve (x, u, v, w, . . . ) with xi 6= 0,
there is a unique diffeomorphism jet (α, β, γ, . . . ) ∈ Diffd(1) such that for the new curve
(x′, u′, v′, w′, . . . ) we have x′i = 1, and u′i = v′i = w′i = · · · = 0.

Proof. This is basically the Lagrange inversion theorem. The unique (α, β, . . . ) can be written
down explicitly:

α =
1
xi

β =
−ui
x3
i

γ =
2u2

i − xivi
x5
i

δ =
5xiuivi − 5u3

i − x2
iwi

x7
i...

The coefficients in these formulae are Sloane’s A111785 [OEIS]. �
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This theorem gives us an atlas on the moduli space of test curves: The charts are {xi = 1,
ui = vi = wi = · · · = 0} for 1 ≤ i ≤ n, and the transition functions are compositions of two
diffemorphisms. The atlas gives a down-the-earth definition of the complex structure on the
moduli space of test curves Md = J ◦d (1, n)/Diffd(1).

Example. Consider the transition function from ith chart to the jth chart. The notation
will be such that {xi = 1, ui = vi = wi = 0} and {x′j = 1, u′j = v′j = w′j = 0}, and k 6= i, j.
These transition functions can be also written down explicitly:

x′i = 1
xj

x′k = xk
xj

u′i = −uj

x3
j

u′k = ukxj−xkuj

x3
j

v′i =
−vjxj+2u2

j

x5
j

v′k =
vkx

2
j−2ukujxj−xkvjxj+2xku

2
j

x5
j

w′i =
−wjx

2
j+5vjujxj−5u2

j

x7
j

w′k =
wkx

3
j−3vkujx

2
j−2ukvjx

2
j+5uku

2
jxj−xkwjx

2
j+5xkvjujxj−5xku

3
j

x7
j

Remark. Note that these expressions for α, β, . . . are homogeneous with respect to two
different grading : The first one is the standard grading deg(x) = deg(u) = deg(v) = · · · = 1;
and the second one is deg(x) = 0, deg(u) = 1, deg(v) = 2, deg(w) = 3, etc. The transition
functions are also homogeneous wrt. the second grading; this observation motivated our C×

action.

Theorem 5.2.3. The C× action on J ◦d (1, n) defined by

ω · (x, u, v, w, . . . ) = (x, ωu, ω2v, ω3w, . . . )

induces a well-defined action on Md = J ◦d (1, n)/Diffd(1).

Proof. We have to prove that for any two y1, y2 ∈ J ◦d (1, n) such that y1 ∼ y2, and any
ω ∈ C×, we have ω · y1 ∼ ω · y2. But the equivalence relation ∼ is defined by a group
action, thus there is an H ∈ Diffd(1) such that y2 = Hy1; and we want to find an H ′

such that ω · (Hy1) = ω · y2 = H ′(ω · y1). In fact, an H ′ exists (independently of y1)
such that H ′ ◦ ω = ω ◦ H, and it is very easy to write down: If H = (α, β, γ, δ, . . . ), then
H ′ = (α, ωβ, ω2γ, ω3δ, . . . ). �

This C× action allows us to imitate the process of Section 4.3.2.1: The initial, wrong
compactification will be

B(1) =
((

C×Md

)
− {zero section}

)
/C× ,

which is a bundle over Pn−1 (the projection map is given by [x] ∈ Pn−1), whose fibers are
weighted projective spaces with weights

{1; 1n−1, 2n−1, . . . , (d− 1)n−1}

(C× acts on the new direction C〈ξ〉 with weight 1, that is, ω · ξ = ωξ). Note that we have
a well defined zero section of Md, which can be defined for example as the set of limits
limω=0(ω · [γ]); alternatively, the transition functions leave the set {u = v = w = · · · = 0}
invariant.

Weighted projective spaces are singular; however, their singularities are very mild, namely,
cyclic quotient singularities: Locally, they look like CN/Zk for some cyclic group Zk acting
diagonally. In other words, they are complex orbifolds. This allows us to pretend that they
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are smooth, since we can work over a smooth finite cover instead (but we have to count
multiplicities): For a weighted projective space P[d] with weights d = (d0, . . . , dN ) we have a
natural degree

∏
i di branched covering π : PN → P[d] given by the formula

π [x0 : x1 : · · · : xN ] = [xd00 : xd11 : · · · : xdN
N ],

assuming that gcd(d0, . . . , dN ) = 1 (otherwise we shall factor out by the common divisor).

Of course, we have to homogenize the equations. Written in convenient matrix form, for
the d = 4 case they are M · [D|C|B|A]t = 0, where M is the matrix

M =

A

x

u

v

w

B

ξx2

2ξux
ξ(u2 + 2vx)

C

ξ2x3

3ξ2ux2

D

ξ3x4

(note that while ξ is a scalar, x, u, v, w are vectors; multiplication of vectors in this pic-
ture means symmetric tensor product). The rank of this matrix is clearly d if ξ 6= 0, and
rk [x|u|v|w] if ξ = 0 (recall that x 6= 0, thus the rank is always at least 1; actually, it is at
least 2, since we removed the zero section). Note that the rank is invariant for all three group
actions: The Diffd(1) action, the GLn action, and the C× action.

The image of (the linear map represented by) this matrix (or equivalently, the kernel of
the adjoint) determines the map

sol :Md ⊂ B(1) 99K Grd(Jd(n))

sol
(
[x, u, v, . . . ]

)
= [M1 ∧M2 ∧ · · · ∧Md](24)

where Mi are the rows of the matrix; the map is not defined when the rank of the matrix is
less than d. Again, the natural thing to try is to blow up the rank varieties, and indeed that
is what we will do.

The weights of the tangent space of Md → Pn−1 at a torus-fixed point of Pn−1, eg.
[x] = [1 : 0 : 0 : · · · : 0] can be read off from Theorem 5.2.2 (the first row represents the
tangent space T[x]Pn−1, and the rest is the fiber):

n/a (α2 − α1) (α3 − α1) · · · (αn − α1)
n/a (α2 − 2α1) (α3 − 2α1) · · · (αn − 2α1)
n/a (α2 − 3α1) (α3 − 3α1) · · · (αn − 3α1)
...

...
...

...
n/a (α2 − dα1) (α3 − dα1) · · · (αn − dα1)

(25)

The torus acts on the ‘extra direction’ ξ trivially (otherwise the embedding into the com-
pactification wouldn’t be equivariant; that is, the compactification would not respect the
torus action).

From that, we can compute the torus weights of the corresponding weighted projective
space at the fixed points. Since these fixed points are typically singular, the weights should be
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understood in the sense of Lemma A.3.8: They are the weights of CN where our space looks
locally like CN/Zk. Given a weighted projective space1 with projective weights d0, d1, . . . , dN
and torus weights β0, β1, . . . , βN , these are easy to compute: Since the equivalence relation
is

(x0, x1, . . . , xN ) ∼ (ωd0x0, ω
d1x1, . . . , ω

dNxN ),

around the kth fixed point [0 : · · · : 0 : 1 : 0 : · · · : 0] we have a local chart given by xk 6= 0,
and then choosing ω = x

−1/dk

k (note that there are dk such roots, forming the cyclic group
Zdk

),

(x0, . . . , xk−1, xk, xk+1, . . . , xN ) ∼
( x0

x
d0/dk

k

, . . . ,
xk−1

x
dk−1/dk

k

, 1,
xk+1

x
dk+1/dk

k

, . . . ,
xN

x
dN/dk

k

)
.

Thus the jth weight at the kth fixed point will be

wj = βj −
dj
dk
βk,(26)

and the tangent Euler class at the kth fixed point is, according to Lemma A.3.8,

e(k) = dk ·
∏
j 6=k

(
βj −

dj
dk
βk

)
.(27)

5.2.1. The A3 singularity. Let us now concentrate on the d = 3 case (that is, the A3

singularity). In this case we only have to do a single blow-up π : B(2) = BlΣ1B
(1) → B(1).

For brevity, let’s work in the fiber over a given fixed point xp = [0 : · · · : 0 : 1 : 0 : · · · : 0]
of the projective space Pn−1; the situtation is of course symmetric. There are three types of
fixed points in B(1) (see the middle row of Figure 10 and also Figure 11, left):

• type 0: ξ = 1, u = v = 0; this is a single smooth fixed point;
• type 1: ξ = 0, uk = 1, u 6=k = 0, v = 0, which is again smooth;
• type 2: ξ = 0, u = 0, vk = 1, v6=k = 0, which has a Z2 cyclic quotient singularity.

Note that the singular locus of B(1) is defined by the equations u = ξ = 0, and is therefore
fully contained in the rank variety Σ1 we want to blow up. There is two ways we can proceed
from here: we can either blow-up the singular locus first, so that everything becomes smooth;
or we can just accept and live with the (mild) singularities. Both works equally well in this
situation, but only the second version has any chance to scale to more complicated examples,
hence we will concentrate on that.

Proposition 5.2.4. The map sol extends to a regular (dominant, birational) map sol :
B(2) → Gr3(Jd(n)).

Proof. We imitate the the proof used for Σij . It is actually much simpler, since we have
only a single blow-up here; however, there is a bit less symmetry present. We want to show
that approaching any point z ∈ E in the exceptional divisor E = π−1(Σ1) on a curve γ(t),
the limit of sol(γ(t)) is independent of the curve, and depends continuously on z; hence
the extension is continuous. Then by the Riemann extension theorem (see eg. [GH78]) the
extended map is also holomorphic.

A generic point in π(z) ∈ Σ1 (over a fixed x) is u = λa, v = µa, where y ∈ Cn,
[λ : µ] ∈ P[1,2] ∼= P1, and y is not a multiple of x. Because of the GLn symmetry, we can

1We will always assume that 1 appears among the weights, and that leaving out any weight, the gcd. of

the rest is still 1. These assumptions hold for our weighted projective spaces.
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assume that x = (1, 0, 0, . . . , 0) and y = (0, 1, 0, . . . , 0). Then a curve approaching π(z) looks
like

x = (1, 0, . . . , 0)

u = (0, λ+ a2t, a3t, . . . , ant) ξ = et

v = (0, µ+ b2t, b3t, . . . , bnt)

where a, b ∈ Cn−1 ⊂ Cn and e ∈ C are parameters. We don’t have to worry about higher
order terms (eg. t2), since sol is already analytic outside E; but it will be also clear that
adding them wouldn’t change the proof. The matrix M thus is

M =
1

ξ u

ξ2 2ξux v

=
1

et λ+ a2t a′t

e2t2 2λet+ 2λea2t
2 2λa′t2 µ+ b2t b′t

where we used the shorthand a′ = (a3, . . . , an) and b′ = (b3, . . . , bn). The map sol is defined
by taking the row span of M . We will distinguish two cases: λ 6= 0 and λ = 0, µ 6= 0. In the
first case, from the second row, the term λ will dominate in the limit t→ 0; thus we have to
apply one step of Gaussian elimination, subtracting c times the second row from the third
one where

c =
µ+ b2t

λ+ a2t
=
µ

λ
+
b2λ− µa2

λ2
· t+O(t2).

The new third row will be then, modulo t2,

M ′
3 mod t2 = 0 2λet 0 −µ

λet 0 b′t− µ
λa

′t 0

which means that the limit of M1∧M2∧M ′
3 will depend only on χ = [e : b′− µ

ν a
′] ∈ Pn−2 (we

assume that they are not both 0, which would mean the we are approaching from a direction
inside TzE), which is determined by z ∈ E = PNΣ1B

(1), since NΣ1B
(1)|z = TzB

(1)/TzΣ1,
and the (translation) action of TzΣ1 leaves χ invariant. Indeed, Tz(Σ1|x) ⊂ Tz(B(1)|x) is
spanned by (u = λy, v = µy), y ∈ Cn−1, and those (u, v) pairs where only u2 and v2 is
nonzero; but a2 and b2 is not present in χ, and

(b′ + µy)− µ

λ
(a′ + λy) = b′ − µ

λ
a′.

The other case (λ = 0) is similar, but even simpler; we omit it.
Finally, consider the dependence of sol(z) = limt=0[M1 ∧M2 ∧M3] on z. Again, because

of the GLn symmetry, the only interesting part is dependence on [λ : µ] ∈ P [1,2]; setting
a = b = 0, it is easy to see, separately on the two charts λ 6= 0 and µ 6= 0, that sol(z)
depends on z continuously (in fact, we can write down the solution explicitely). �

name indices description mult. solution weights

type 0 p ∈ {1, 2, . . . , n} xp = 1, ξ = 1 1 αp 2αp 3αp
type 1a p, q 6= p, r 6= p, q xp = 1, uq = 1, vr = ε 1 αp αq αr
type 1b p, q 6= p xp = 1, uq = 1, ξ = ε 1 αp αq αp + αq
type 2a p, q 6= p, r 6= p, q xp = 1, vq = 1, ur = ε 2 αp αq αr
type 2b p, q 6= p xp = 1, vq = 1, ξ = ε 2 αp 2αp αq

Table 4. Table of types of fixed points in B(2)
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Figure 10. The different fixed point types of the B(2) compactification for A3.

Remark. The naive generalization of this proposition fails for d ≥ 4. For the first problem-
atic case A4, it seems that the trouble is caused by the locus v2 = 2uw; we conjecture that
by blowing up this locus first, we can make the method work in that case too.

Blowing up the rank variety Σ1(u, v), the fixed point types 1 and 2 branch into 2-2 new
types; the 5 types of fixed points of B(2) are summarized in Table 4, and illustrated in Figure
11. The solution space over a fixed point can be easily read off from the matrix M , using
(24); the corresponding weights are indicated in the table. The number of fixed points is
alltogether

#fixp = n+ 2n(n− 1) + 2n(n− 1)(n− 2).

The most involved (though straightforward) part is to compute the tangent Euler classes
at the different fixed points. To do that, we have to combine (25), (26), (27) and the blow-up.
To make life easier, let us introduce the shorthand notations

Ui = αi − 2αp
Vi = αi − 3αp

τp =
∏
j 6=p

(αj − αp).

Here τp is just the tangent Euler class of the projective space Pn−1 at the pth fixed point
xp = 1; since the everything is fibered over this projective space, this will be a common
factor in all the Euler classes.

The simplest case is type 0, where the tangent Euler class is just

E0(p) = τp ·
∏
j 6=p

(Uj − 0)(Vj − 0) = τp ·
∏
j 6=p

(UjVj).

Next, consider type 1. Before blowing up, the weights of the fiber over xp = 1 at the fixed
point given by uq = 1 are, according to (26),{

Uj − Uq : j 6= p, q
}
∪
{
Vj − 2Uq : j 6= p

}
∪
{
0− Uq

}
.

This can be partitioned to the tangent space of Σ1 and the corresponding normal space:

T1 =
{
Vq − 2Uq

}
∪
{
Uj − Uq : j 6= p, q

}
N1 =

{
Vj − 2Uq : j 6= p, q

}
∪
{
0− Uq

}
.
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Figure 11. The fixed points of B(1) (left) and B(2) (right, plus the top-left one).

Thus after the blow-up, the tangent Euler classes of the fixed points of type 1a and 1b are,
respectively

E1a(p, q, r) = τp · (Vq − 2Uq) ·
[ ∏
j 6=p,q

(Uj − Uq)
]
· (Vr − 2Uq)·

·
[ ∏
i6=p,q,r

(
(Vi − 2Uq)− (Vr − 2Uq)

)︸ ︷︷ ︸
Vi−Vr =αi−αr

]
·
(
(0− Uq)− (Vr − 2Uq)

)︸ ︷︷ ︸
Uq−Vr =αp+αq−αr

E1b(p, q) = τp · (Vq − 2Uq) ·
[ ∏
j 6=p,q

(Uj − Uq)
]
· (0− Uq) ·

[ ∏
i6=p,q

(
(Vi − 2Uq)− (0− Uq)

)︸ ︷︷ ︸
Vi−Uq =αi−αp−αq

]

Similarly, for type 2, the weights are T2 ∪N2 where

T2 =
{
Uq − 1

2Vq
}
∪
{
Vj − Vq : j 6= p, q

}
N2 =

{
Uj − 1

2Vq : j 6= p, q
}
∪
{
0− 1

2Vq
}
,

and the Euler classes for type 2a and 2b are

E2a(p, q, r) = 2 · τp · (Uq − 1
2Vq) ·

[ ∏
j 6=p,q

(Vj − Vq)
]
· (Ur − 1

2Vq)·

·
[ ∏
i6=p,q,r

(
(Ui − 1

2Vq)− (Ur − 1
2Vq)

)︸ ︷︷ ︸
Ui−Ur =αi−αr

]
·
(
(0− 1

2Vq)− (Ur − 1
2Vq)

)︸ ︷︷ ︸
−Ur =2αp−αr

E2b(p, q) = 2 · τp · (Uq − 1
2Vq) ·

[ ∏
j 6=p,q

(Vj − Vq)
]
· (0− 1

2Vq) ·
[ ∏
i6=p,q

(
(Ui − 1

2Vq)− (0− 1
2Vq)

)︸ ︷︷ ︸
Ui

]
.

Note the factors of two, which account to the multiplicities, according to (27).

Putting everything together, we get a localization formula for the Thom polynomials of
the A3 singularity. Using the notation

Θ(w1, w2, w3) =
m∏
j=1

[
(θj − w1)(θj − w2)(θj − w3)

]
,
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we have, for n ≥ 3,

TpA3
(n,m) =

∑
p

Θ(αp, 2αp, 3αp)
E0(p)

+
∑
p,q

[
Θ(αp, αq, αp + αq)

E1b(p, q)
+

Θ(αp, 2αp, αq)
E2b(p, q)

]
+(28)

+
∑
p,q,r

[
Θ(αp, αq, αr)
E1a(p, q, r)

+
Θ(αp, αq, αr)
E2a(p, q, r)

]
.

Indeed, implementing (28) as a computer program, and converting the results to Schur
polynomials in the difference alphabet θ − α (otherwise they would be way too large to fit
in a page), we get

TpA3
(3, 3) = 6s1,1,1 + 5s2,1 + s3

TpA3
(3, 4) = 36s1,1,1,1,1,1 + 30s2,1,1,1,1 + 19s2,2,1,1 + 5s2,2,2 + 6s3,1,1,1 + 5s3,2,1 + s3,3

TpA3
(3, 5) = 36s3,1,1,1,1,1,1 + 6s3,3,1,1,1 + 216s1,1,1,1,1,1,1,1,1 + 65s2,2,2,1,1,1+

+ 24s2,2,2,2,1 + 5s3,2,2,2 + s3,3,3 + 114s2,2,1,1,1,1,1 + 5s3,3,2,1+

+ 19s3,2,2,1,1 + 180s2,1,1,1,1,1,1,1 + 30s3,2,1,1,1,1

The phenomenon that these polynomials fit into a Thom series can be observed on these
examples already: The terms of Tp(n,m) appear in Tp(n,m + 1), but with a 3 preprended
to the partition. Unfortunately, the RHS of (28) is in a form which makes it rather hard to
evaluate for larger n,m-s.

Remark. Compare the formula (28) above with Section 3.1, in particular with equations
(4) and (6) there. The observation is that by computing the Euler classes at the fixpoints
of a B(2), which has a birational dominant map sol : B(2) → M̄3 ⊂ Hilb3(J3(n)), we can
derive the same data for M̄3 itself, which was not clear how to do directly! We only have to
rearrange our Euler classes to the form (6), so that a term of the localization formula looks
like

Θ(w1, w2, w3)
P (αK) ·

∏
i/∈K

[
(αi − w1)(αi − w2)(αi − w3)

]
where K = {i1, . . . , ik} ∈

(
n
k

)
, and w1, w2, w3 resp. P are linear resp. rational in αK =

{αi1 , . . . , αik}. In our case, K will be either {p}, {p, q} or {p, q, r}, and the P -s can be
readily read off from the Euler classes; we summarized them in Table 5.

name kQ ideal the rational function P

type 0 1 (x4) P0(p) = 1
type 1a 3 (x2, y2, z2, xy, xz, yz) P1a(p, q, r) = (αp − αq)2(αr + αp − 2αq)·

·(αq + αp − αr)(αr − αp)(αq − αr)
type 1b 2 (x2, y2) P1b(p, q) = (αp − αq)2(αq − 2αp)
type 2a 3 (x2, y2, z2, xy, xz, yz) P2a(p, q, r) = 1

2(αp − αq)2(αq + αp − 2αr)·
·(2αp − αr)(αr − αp)(αq − αr)

type 2b 2 (x3, xy, y2) P2b(p, q) = 1
2(αp − αq)2(3αp − αq)

Table 5. Table of fixed points for A3 from the viewpoint of Section 3.1.

To fully convert to the form used in Chapter 3 and [FR08], we have to combine the
different fixed points with the same ideal; note that this also includes permutations of the
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parameters p, q, r when the ideal has some symmetry! Therefore the final data (compare
with the table in [FR08], Section 8) can obtained as follows:

P(x4) = P0 = 1

P(x2,y2) =
[
P1b(1, 2)−1 + P1b(2, 1)−1

]−1
=

(α1 − α2)2(2α1 − α2)(α1 − 2α2)
α1 + α2

P(x3,xy,y2) = P2b(1, 2) = 1
2(α1 − α2)2(3α1 − α2)

P(x2,y2,z2,xy,xz,yz) =

 ∑
(i,j,k)∈S3

(
P1a(i, j, k)−1 + P2a(i, j, k)−1

)−1

= . . .

For reference (it’s omitted from [FR08]), the last expression equals to

· · · = 4
6(α3

1 + α3
2 + α3

3)− 7(α2
1α2 + α2

1α3 + α2
2α1 + α2

2α3 + α2
3α1 + α2

3α2) + 10α1α2α3

(α1 − α2 − α3)(α2 − α1 − α3)(α3 − α1 − α2)
∏
i6=j∈{1,2,3}(αi − 2αj)

.

We could now in principle apply the ideas of Sections 3.3 and 3.4 to compute the Thom
series of the A3 singularity (which is known by the way, see [BFR02] and [LP09]; how-
ever, the methods used in those work are not very elegant and have no chance to scale);
unfortunately the actual calculations present rather profound challenges, which are yet to
overcome.
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The aim of the Appendix is to collect together results, sometimes with proofs, which are
used in the main body of the thesis, but would break the flow if presented there.

A.1. Multivariate differentials

Porteous’ probe model for the Thom-Boardman singularities (see Chapter 4, Section
4.3.1) deals with higher order differentials of composite functions in many variables; in par-
ticular, differentials of the form

d(d(d(F ◦ α) ◦ β) ◦ γ)|0.

Since differential calculus is usually not covered in this generality in university classes and
textbooks, we present a simple graphical calculus to deal with such expressions.

For α ∈ J (n,m), the first differential at x ∈ Cn is (dα)(x) ∈ Hom(TxCn, Tα(x)Cm) =
Hom(Cn,Cm). Thus

dα ∈ J
(
Cn, Hom(Cn,Cm)

)
d2α ∈ J

(
Cn, Hom(Cn,Hom(Cn,Cm))

)
d3α ∈ J

(
Cn, Hom(Cn,Hom(Cn,Hom(Cn,Cm)))

)
and so on; but of course Hom(Cn,Hom(Cn,Cm)) = Hom(Cn ⊗ Cn,Cm), and we also know
from Young’s Theorem that d2α is actually symmetric: d2α : Cn → Hom(Sym2Cn,Cm). In
general

dkα ∈ J
(
Cn, Hom(SymkCn,Cm)

)
.

Since we work with both (multi)linear maps and smooth maps between vector spaces,
in order to not mix them up, we adopt the (temporary) convention that ◦ denotes the
composition of arbitrary maps, while ∗ denotes the composition of linear maps.

Proposition A.1.1 (Chain rule).(
d(α ◦ β ◦ γ ◦ · · · ◦ ζ)

)
[x] = (dα)

[
(β ◦ γ ◦ · · · ◦ ζ)(x)

]
∗ (dβ)

[
(γ ◦ · · · ◦ ζ)(x)

]
∗ · · · ∗ (dζ)[x].

The next ingredient is the product rule; however, we will need to apply it to various
tensor contractions, so it’s time to introduce a graphical notation. Tensor contractions will
be represented by trees drawn vertically: The nodes correspond to the tensors, the edges to
the contractions, and composition “flows downwards”. For example, the pictures on Figure
12 represent the two tensors (written in redundant Einstein notation)

Sijk =
∑
a,b

(F1)ak(α2)iba (β1)
j
b

and T ijk =
∑
a,b,c

(F2)abk (α1)ia(α1)cb(β1)jc,

respectively. These are actually the two terms of the expression d(d(F ◦ α) ◦ β)|0.
80
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Figure 12. Examples of our graphical tensor notation.

Proposition A.1.2 (The product rule). Suppose we have such a tensor expression, repre-
sented by a tree, as a smooth function of a parameter x ∈ V . Then its differential wrt. x is
a sum over the nodes of the tree, and the term corresponding to a fixed node can be drawn
by replacing the node with its differential, and attaching a new ‘input leg’, labelled with V ,
to symbolize the dependence of this differential on TxV ∼= V .

We can incorporate more complex dependencies on the parameter space by drawing hor-
izontal arrows, representing composition of functions. For an example, consider the picture
on the left in Figure 13; this represents the expression

T [x]ijk =
∑
a,b

(dF )[α(β(x))]ak · (d2α)[β(x)]iba · (dβ)[x]jb.

Putting together the chain rule and the product rule, we get

Proposition A.1.3 (Pictorial rule of tensor differentials). The differential of an expression
of the form shown on Figure 13 is a sum over the (boxed) nodes of the tree, where the term
corresponding to a fixed node can be obtained by replacing that node with its differential,
attaching a new leg to it, and attaching to that leg the string of differentials of the incoming
horizontal thread (representing the dependence on the parameter space), in accordance with
the chain rule A.1.1.

Figure 13. A more complex example (left), and one of the 3 terms appearing
in its derivative (right).
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As an example, the picture on the right in Figure 13 is the term corresponding to the
node dF in the differential of the picture on the left.

Corollary A.1.4. The terms of the kth equation in Porteous’ model are in bijection with
the rooted trees with k leaves such that the set of the depths of the leaves is {2, 3, . . . , k+ 1},
where the depth is measured as the number of edges from to root the leaf.

Proof. What we need to show is that the terms in the derivatives of the trees with k leaves
are exactly the trees with k+1 leaves. But the derivative process, as described above, simply
attaches a “long” thread (with the leaf having depth k + 1) to each existing node in turn.
Conversely, starting with a tree with k + 1 leaves, removing the thread of the “deepest”
node (with depth k+1) gives back the k-tree and the node (the attach point of the removed
thread) whose derivative this tree is. �

For an illustration, see Figure 9 on page 69, which shows the k = 3 case (also Figure 12
above shows the k = 2 case). The number of such terms (or trees) is growing fast; for k ≤ 8,
the counts are

1, 2, 7, 39, 321, 3686, 56516, 1118159, . . .

A.2. Formulae for symmetric polynomials

In this section we collect together various useful formulae for symmetric polynomials,
mostly involving Schur polynomials. The canonical reference is [Mac98].

Definition A.2.1. The Schur polynomial indexed by the partition λ = (λ1, . . . , λn) is a
symmetric polynomial in the variables x1, . . . , xn defined as the following quotient of two
alternating polynomials:

sλ(x1, . . . , xn) =
det[xλj+n−j

i ]n×n
det[xn−ji ]n×n

(29)

Note that the denominator is a Vandermonde determinant (up to sign).

Remark A.2.2. The Schur polynomials can be defined for arbitrary sequences of integers,
not just partitions, with the same formulae; and it is true that such a “generalised” Schur
polynomial is either zero or equals to a “usual” Schur polynomial up to sign. Specifically,
applying the following transformation finitely many times, we can always obtain a partition
(or zero):

s(...,a,b,... ) =
{
−s(...,b−1,a+1... ) a < b− 1
0 a = b− 1

In formula (29), this corresponds to exchanging columns of the matrix in the numerator, or
having two identical columns, respectively.

The Jacobi-Trudi formulae express the Schur polynomials in terms of elementary (resp. com-
plete) symmetric polynomials:

sλ(x) = det[cµi+j−i(x)] = det[sλi+j−i(x)]

where µ = λ̃ is the dual partition.
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Let us introduce two variations of Schur polynomials, which also depend on a second
alphabet y = (y1, . . . , ym). Define ck(x− y) via the equation∏

i(1 + xit)∏
j(1 + yjt)

=
∞∑
k=0

ck(x− y)tk,

where t is a formal variable. Then the supersymmetric Schur polynomials (or Schur polyno-
mials in the ‘difference alphabet’) can be defined via the Jacobi-Trudi formula as

sλ(x− y) = det
[
cµi+j−i(x− y)

]
`(µ)×`(µ)

,(30)

where µ = λ̃ is the dual partition. sλ(x − y) is a symmetric polynomial in both set of
variables.

The double Schur polynomials (or factorial Schur polynomials) sλ(x|y), defined as

(xi|y)k = (xi + y1)(xi + y2) · · · (xi + yk) =
k∏
j=1

(xi + yj)

sλ(x|y) =
det
[
(xi|y)λj+n−j

]
n×n

det
[
(xi|y)n−j

]
n×n

=
det
[
(xi|y)λj+n−j

]
n×n

det
[
xn−ji

]
n×n

,(31)

are, in general, symmetric only in the xi variables. For this definition to make sense, we have
either to assume that m > n+ λ1; or define y>m to be zero.

The two constructions are related by the surprising fact that sλ(x − y) = sλ(x|y∨) in
the limit n → ∞ (see [Mac92]); also both specialize to the usual Schur polynomials when
substituting y = 0.

In the following, instead of explicit variables x1, . . . , xn, we will work with the Grothendieck
ring of representations (or even more generally, equivariant vector bundles); for non-virtual
representations, the variables are the roots of the representation, but in general they do not
exist.

A family of natural questions ask for expressing the Schur polynomials of various derived
representations, eg. symmetric and antisymmetric tensor powers, in terms of the Schur
polynomials of the original representation(s). A compact way to ask these questions is to
find some kind of formula for the coefficients gν1,...,νk

λ;µ1,...,µk
∈ Z in the equation

sλ
[
Sµ1(X1)⊗ Sµ2(X2)⊗ · · · ⊗ Sµk(Xk)

]
=
∑
ν1

∑
ν2

· · ·
∑
νk

gν1,...,νk
λ;µ1,...,µk

sν1(X1)sν2(X2) · · · sνk
(Xk)

where λ, µi, νi are partitions, and Sµ is the Schur functor corresponding to the partition µ.
This is very far from being solved2, however, a few special and very useful cases are known.

Lemma A.2.3 (Pieri’s rule).

sµ(X) · sk(X) =
∑
λ∈K

sλ(X)

where λ runs over the partitions K which are obtained from µ by adding k boxes to the Young
diagram of µ, but no two boxes in the same column.

2For example, as we prove in this thesis, these coefficients for k = 1, µ1 = (2) coincide with the coefficients

of the Thom polynomials of Σii singularities, expressed in Schur polynomials.
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2

1 3

2 3

1 2

1 1

Figure 14. A strict (4, 3, 2)-expansion of (4, 3, 1). The boxes read from the
right to the left and from the top to the bottom are 1, 1, 2, 1, 3, 2, 3, 1, 2.

Lemma A.2.4 (multiplication of Schur polynomials).

sµ(X) · sν(X) =
∑
λ

cλµνsλ(X)

where cλµν are the Littlewood-Richardson coefficients.

The numbers cλµν are determined by the Littlewood-Richardson rule:

Proposition A.2.5. cλµν equals the number of ways the Young diagram of ν can be expanded
to the Young diagram of λ by a strict µ-expansions. A µ-expansion of a Young diagram is
obtained by adding µ1 boxes, according to Pieri’s rule, and filling them with the number 1;
then adding µ2 boxes and filling them with the number 2, etc. The expansion is strict if, when
these integer numbers are listed from the right to the left and from the top to the bottom (in
the English notation), in any initial segment of this list, any number k appears at least as
many times as the next number k + 1.

Remark. Note that while cλµν is symmetric for the exchange of µ and ν, the Littlewood-
Richardson rule is not. As far as we know, there is no known enumerative interpretation for
cλµν in which this symmetry is manifest.

Lemma A.2.6 (branching rule).

sλ(X−1) = seλ(X∨) = (−1)|λ|seλ(X)

sλ(X ⊕ Y ) =
∑
µ,ν

cλµνsµ(X)sν(Y )

sλ(X 	 Y ) =
∑
µ,ν

cλµνsµ(X)seν(Y ∨).

An important special case is when λ = (nk) is a rectangle, because in this case

cλµν =
{

1 if µ ⊂ λ and ν = {µ;
0 otherwise.

Corollary A.2.7.

ctop(Xn ⊗ Y k) =
∑
µ⊂nk

seµ(X)s{µ(Y )

ctop(Hom(Xn, Y k)) =
∑
µ⊂nk

seµ(X∨)s{µ(Y ) = s(nk)(Y 	X)
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Let us introduce the determinant (see Chapter 4, Section 4.5)

Eλ/µ(n) = det

[(
λi + n− i
µj + n− j

)]
n×n

.

Lemma A.2.8 ([Las78]). Let L be a 1 dimensional (virtual) representation. Then

sλ(Xn ⊗ L) =
∑
µ⊂λ

Eλ/µ(n)sµ(X)s|λ/µ|(L)

c(Xn ⊗ Y k) =
∑

µ⊂λ⊂nk

Eλ/µ(k)sµ(Y )s{eλ(X)

c(∧2Xn) =
∑

µ⊂bn−1e

2|µ|−n(n−1)/2 · Ebn−1e/µ(n) · sµ(X)

c(Sym2Xn) =
∑
µ⊂bne

2|µ|−n(n−1)/2 · Ebne/µ(n) · sµ(X)

where c denotes the total Chern class: c(X) =
∑
ci(X), and bne = (n, n− 1, n− 2, . . . , 1) is

the ‘stairway’ partition.

A.3. Localization of equivariant cohomology classes

Localization in equivariant cohomology has a rich history, dating back to Duistermaat
and Heckman [DH82], Atiyah and Bott [AB84] and Berline and Vergne [BV82, BV83].

We build our treatment on the algebraic theory developed by Edidin and Graham in
[EG98a, EG98b], so that the singular case fits into the theory naturally. We can then pass
to the cohomology version via the so called cycle map. Regarding the intersection theory
background, we refer to the standard source [Ful98]. We will constrain ourselves to torus
actions, which causes no problems in our context, since the GLn-equivariant cohomology is
a subring of the Tn-equivariant cohomology for a maximal torus Tn ⊂ GLn.

Lemma A.3.1 ([Ive72]). Let Y be smooth variety with a torus action. Then the fixed point
set Y T is also smooth.

Theorem A.3.2 ([EG98b], Proposition 6). Let f : X → Y be a T-equivariant embedding
of X into a nonsingular variety Y . Assume that every component of Y T which intersects X
is contained in X. For a component F ⊂ XT write iF : F → X and jF = f ◦ iF : F → Y

for the corresponding embeddings. Let R = A∗T(pt) ∼= Q[t1, . . . , tn] and Q = (R+)−1R, where
R+ ⊂ R is the multiplicative system of homogeneous elements of positive degree. Then

• f∗ : AT
∗ (X)⊗R Q → AT

∗ (Y )⊗R Q is injective;
• Let α ∈ AT

∗ (X)⊗R Q. Then

α =
∑
F⊂XT

(iF )∗
j∗F f∗α

ctop(NFY )
,

where F runs over the components of XT, and ctop(NFY ) is the T-equivariant top Chern
class (in the Chow ring of F ) of the normal bundle of F in Y .

Remark. Implicit in the theorem is the fact that ctop(NFY ) is invertible in AT
∗ (F )⊗Q, see

[EG98b], Proposition 4.
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For smooth varieties, we can use the cycle map to pass to the cohomology: For a smooth
n-dimensional variety X, we have

AT
n−k(X) = AkT(X) cl−−→ H2k

T (X).

See [Ful98], Chapter 19 and [EG98a], sections 2.6, 2.8.

Equivariant localization can be used to compute the pushforward:

Corollary A.3.3. Let π : M → pt be the map collapsing a smooth compact variety M to a
point, and α ∈ H∗

T(M) a cohomology class (it could be a Chow class, too). Assume that M
has isolated fixed points. Then

π∗α =
∑
p∈MT

i∗pα

e(TpM)

It can also be used to compute classes of subvarieties.

Corollary A.3.4. In the situation of Theorem A.3.2, we have

[X ⊂ Y ] =
∑
F⊂XT

(jF )∗
j∗F [X ⊂ Y ]
e(NFY )

Proof. Use the theorem with α = [X]⊗1 ∈ AT
n(X)⊗Q and apply f∗ to the resulting formula.

Note that f∗[X] = [X ⊂ Y ] ∈ AT
n(Y ). Finally use the cycle map to pass to the cohomological

version. �

Lemma A.3.5. j∗F [X ⊂ Y ] = [NFX ⊂ NFY ] where NFX is the bundle of normal cones of
X along F , embedded into the normal bundle of F in Y .

A direct consequence of the Lemma and the Corollary is the following

Theorem A.3.6 (Localization of classes of subvarieties).

[X ⊂ Y ] =
∑
F⊂XT

(jF )∗
[NFX ⊂ NFY ]

e(NFY )

Topological sketch of proof of Lemma A.3.5. Consider a sequence of “smaller and smaller”
tubular neighbourhoods of F in Y :

Y ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nk ⊃ · · · ⊃ F

with inclusion maps ik : Nk → Y and jk : F → Nk. By the excision property of cohomology,
we have

j∗F [X ⊂ Y ] = j∗ki
∗
k[X ⊂ Y ] = j∗k [(X ∩Nk) ⊂ Nk],

but the latter is “closer and closer” to [NFX ⊂ NFY ]. �

Algebraic sketch of proof of Lemma A.3.5. Apply the ‘deformation to the normal cone’ con-
struction ([Ful98], Chapter 5) to F ⊂ X: Let

X = BlF×{∞}(X × P1) ⊂ Y = BlF×{∞}(Y × P1);

the pair (X ,Y)→ P1 is now a (flat) family of embeddings: a deformation from F ⊂ X ⊂ Y
at 0 ∈ P1 to F ⊂ NFX ⊂ NFY at ∞ ∈ P1. Apply the ‘principle of continuity’ for flat
families. �
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Our main tool will be the following, less well-known but very useful variation of the
above.

Theorem A.3.7 ([BSz06], [Ros89]). Let V be a representation of a torus T, M be a smooth
compact variety equipped with an action of the torus T, with isolated fixed points, and X ⊂M
be a (possibly singular) T-invariant closed subvariety. Consider the classifying map ϕ :M →
Grr(V ) of a rank r equivariant vector bundle pr1 :E ⊂ M × V → M , and let Y → X the
pullback (restriction) of E to X Suppose that ϕ|X : X → ϕ(X) is birational; then Z = pr2(Y )
is a closed invariant subvariety of V of dimension dim(Z) = r + dim(X), and

[Z ⊂ V ]T =
∑
p∈XT

[Yp ⊂ V ]T ·
[NpX ⊂ TpM ]T

eT(TpM)
∈ H∗

T(pt) = H∗
T(V ),

where Yp = pr−1
1 (p) ⊂ V ×{p} ∼= V is the fiber over the point p ∈ X, and NpX is the tangent

cone of X at p (the normal cone of X “along” p).

Remark. The quotient e(TpM)
[NpX⊂TpM ] is simply e(TpX) if X is smooth at p, and can be thought

as the generalization of the tangent Euler class for singular points. Its inverse is sometimes
called equivariant multiplicity ([Ros89], [Bri97]). Note that it is actually independent of
the embedding, since the normal cone NpX embeds into the Zariski tangent space TpX which
further embeds into TpM ; thus

e(TpM)
[NpX ⊂ TpM ]

=
e(TpX) · e(TpM/TpX)

[NpX ⊂ TpX] · [TpX ⊂ TpM ]
=

e(TpX)
[NpX ⊂ TpX]

.

Lemma A.3.8. Let a cyclic group Zk act (diagonally and faithfully) on a torus representation
Cn. Then for the cyclic quotient singularity X = Cn/Zk, the virtual Euler class is just k
times the Euler class of Cn (that is, k times the product of weights).

Proof. Direct application of [Bri97], 4.3. �

Proof of Theorem A.3.7. First we apply Theorem A.3.6 to the embedding (∆ ◦ K) : Y ⊂
M×V . Note that since M , and thus X has isolated fixed points, we can classify the fixed
components of Y by recording which fixed point p of X they lie over. The following diagram
summarises the situation and the notations:

F
jF−−−→ Yp

Ip−−→ Y
K−−→ E

∆−−−→M × V pr2−−−→ V

πF↘
yπp

yπ yπ ↙pr1

p
ip−−→ X

k−−→ M

Now

[Z] = (pr2)∗[Y ⊂M×V ] = (pr2)∗
∑
F⊂Y T

(∆ ◦K ◦ Ip ◦ jF )∗
[NFY ⊂ NF (M×V )]

e(NF (M×V ))
=

= (pr2)∗
∑
p∈XT

(∆ ◦K ◦ Ip)∗
∑
F⊂Y T

p

(jF )∗

(
[NFYp ⊂ NFVp]

e(NFVp)
· (πF )∗

[NpX ⊂ TpM ]
e(TpM)

)
since NFY is just the product NpX×NFYp (note that F ⊂ Yp is smooth by Lemma A.3.1),
and the class of a product is the product of the classes. Now, observe that all our maps
respect the local product structure around p:

Ip=ip ⊗ id ∆ =id⊗∆p

K=k ⊗ id pr2= pt⊗ id



C
E

U
eT

D
C

ol
le

ct
io

n

88

where pt is the collapsing map pt :M → pt and ∆p is the embedding ∆p : Yp ⊂ Vp. Thus
rearranging and applying Theorem A.3.6 again, now in the reverse direction:

[Z] =
∑
p∈XT

(
(pt ◦ k ◦ ip)∗

[NpX ⊂ TpM ]
e(TpM)

) ∑
F⊂Y T

p

(∆p ◦ jF )∗
[NFYp ⊂ NFVp]

e(NFVp)

=
∑
p∈XT

[NpX ⊂ TpM ]
e(TpM)

· [Yp ⊂ V ],

which is what we wanted to prove. �

A.3.1. Application. Equivariant localization can be used to prove algebraic identities.
Consider a T-representation V with different nonzero weights w1, . . . , wn, and the blow-up
π : U → V of the origin {0} ⊂ V . We can use Theorem A.3.2 to give two different formula
for any α ∈ AT

k (V )⊗Q. First, apply the theorem to the α and X = Y = V :

α = i∗
i∗α

ctop(V )
= i∗

i∗α∏n
j=1wj

,

where i : {0} → V . But we can also apply it to π∗α and U :

π∗α =
n∑
k=1

(ik)∗
(ik)∗π∗α
ctop(Tpk

U)
=

n∑
k=1

(ik)∗
(ik)∗π∗α

wk ·
∏
j 6=k wi

,(32)

where ik : pk → U and pk ∈ PV = π−1(0) ⊂ U are the fixed points of the blow-up. Apply π∗
to (32), note that π∗π∗α = α for blow-ups, and that π ◦ ik = i (after identifying the points
pk and {0}):

α = i∗
i∗α∏n
j=1wj

= i∗

n∑
k=1

i∗α

wk ·
∏
j 6=k wi

.

Since i∗ : AT
∗ (pt) ⊗Q → AT

∗ (V ) ⊗Q is an isomorphism ([EG98b] Theorem 1), and thus so
is i∗ (by the self-intersection formula i∗i∗β = ctop(V ) · β) and this is true for all α, we have

1∏n
j=1wj

=
n∑
k=1

1
wk ·

∏
j 6=k wi

∈ A∗T(pt)⊗Q ∼= Q.(33)

In general, we can use a sequence of blow-ups, or even flip-flops to get nontrivial identities.

For a very simple example, let V be the standard Tn-representation V . Then the above
argument gives the formal identity

1∏n
j=1 ti

=
n∑
k=1

1
tk ·
∏
j 6=k(tj − tk)

.

A more complex example is used in Section 4.3.2.1.

A.4. Pushforward formulae

The situation we are considering here is the following. Let M be a compact manifold,
and En →M a complex vector bundle. The Grassmann bundle π : GrrE = GrqE →M has
the the tautological exact sequence of vector bundles

0→ Rr → π∗E → Qq → 0
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over it. We are interested in formulae expressing the pushforward map

π∗ : H∗(GrqE)→ H∗−2rq(M).

There are variations of this theme for partial flag bundles, sequences of vector bundles, etc.

Theorem A.4.1. Assuming the situation described above, and that `(λ) ≤ q, `(µ) ≤ r, we
have

π∗sλ(Q) = s(λ−rq)(E);(34)

π∗sµ(R) = (−1)rqs(µ−qr)(E);(35)

π∗[sµ(R)sλ(Q)] = s(λ−rq ,µ)(E).(36)

Furthermore, if F →M is another vector bundle,

π∗[sµ(R|F )sλ(Q|F )] = s(λ−rq ,µ)(E|F );(37)

π∗[sµ(R− F )sλ(Q− F )] = s(λ−rq ,µ)(E − F ).(38)

The same formulae are true for the universal bundle, and equivariant vector bundles too;
and also for Chow groups instead of cohomology.

Remarks. Both (34) and (35) are special cases of (36), which itself is special case of both
(37) and (38). The RHS of these formulae should be understood according to Remark A.2.2,
which explains the sign in (35). The most useful variation (38) is proved in [JLP82, Pra88].
The case (35) was also proved in [Ron72]. As far as we now, (37) is new.

In the remaining part of the section, we give a simple geometric proof of (37), using
equivariant localization. We believe this proof can be adapted to the last case (38) too, for
example using the so-called Sergeev-Pragacz formula for the supersymmetric Schur polyno-
mials.

A geometric representation. For the proof, we will need a geometric representation
for the Schur classes sλ(E); consider the following construction. Let En be the standard
GLn representation; fix a large integer N � 0, the standard representation FN of GLN , and
a complete flag K• in F∨:

0 = K0 < K1 < K2 < · · · < KN = F∨, dim(Kj) = j.

Denote by BN the Borel subgroup of GLN fixing K•. Let τ be a partition

N ≥ τ1 ≥ τ2 ≥ · · · ≥ τn ≥ 0.

Consider Flτ (E∨), the variety of partial flags in the dual space E∨ with dimensions corre-
sponding to {τ̃j : j}: points of Flτ (E∨) correspond to sequences A• of linear subspaces

0 < · · · < Ai < · · · ≤ E∨, dim(Ai) = i, (i, ∗) ∈ corner(τ).

Here corner denotes the set of outer corners of the Young diagram of a partition:

corner(µ) =
{

(i, j) ∈ N× N : µi = j, µ̃j = i
}
.

If τ is a strict partition, Flτ is simply the complete flag variety. Let {ek} denote the (ordered)
set of the dimensions of the subspaces in A•:{

e1, e2, . . . , el
}

=
{
i : (i, ∗) ∈ corner(τ)

}
, l = |corner(τ)|,
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(note that 0 < ek ≤ n; for convenience, set e0 = 0), and let dτ denote the dimension of Flτ :

dτ = dim(Flτ (E∨)) =
l∑

k=1

(ek − ek−1)(n− ek) ≤
(
n

2

)
.

Now consider the vector bundle pr1 : S̃τ → Flτ (E∨) of subspaces of E ⊗F , where elements of
E ⊗ F are thought as bilinear functions on E∨ × F∨:

S̃τ =
{

(A•, f) ∈ Flτ (E∨)× E ⊗ F : f |Ai⊗Kj = 0, (i, j) ∈ corner(τ)
}

and let Sτ = pr2(S̃τ ) be the image of S̃τ in E ⊗ F .

Lemma A.4.2. Sτ is a GLn × BN -invariant closed subvariety of E ⊗ F of codimension

codim(Sτ ) = |τ | − dτ ≥ |τ | −
(
n

2

)
,

with equality if and only if τ is a strict partition.

Proof. The only thing not clear here is the (co)dimension. However, S̃τ → Flτ is GLn-
equivariant by construction, and it is easy to see that for any flag A• the stabiliser of the
fibrum XA• = pr−1

1 (A•) is the same as the stabiliser of pr2(XA•), from which the codimension
formula follows using the simple fact that codim(XA•) = |τ |. �

Remark. The unique flag A• ∈ Flτ corresponding to a generic map f ∈ Sτ is{
Ai = coker(f †|Kj ) : (i, j) ∈ corner(τ)

}
where f † is the image of f at the canonical isomorphism E⊗F → Hom(F∨, E). Alternatively,
it can be also found algorithmically, by applying the Gaussian elimination process to the
matrix of f , where on F we choose a basis compatible with K•.

If τ is a strict partition, let us denote by λ the partition λ = τ − bn− 1e (that is,
λi = τi−n+ i), and use the alternative name Zλ for Sτ . In this case Flτ is the complete flag
variety, codim(Zλ) = |λ|, and

Lemma A.4.3. Zλ represents the classes

[Zλ]GLn×BN
= sλ(E|F ) ∈ H∗

GLn×BN
(E ⊗ F ).

Proof. The proof is a direct application of Theorem A.3.7. As always, we can reduce GLn×BN
to its maximal torus Tn × TN . The fixed points of the complete flag variety Fl(E∨) are the
coordinate flags, indexed by permutations of n. Let

x1, . . . , xn and y1, . . . , yN

denote the weights of E and F , respectively; then the weights of the tangent space representa-
tion TσFl(E∨) at the fixed flag corresponding to the permutation σ ∈ Sn are {−xσ(j)+xσ(i) :
j > i }, thus the equivariant Euler class eT(TσFl(E∨)) is

eT
(
TσFl(E∨)

)
= sgn(σ)

∏
j>i

(xi − xj) = det
[
xn−ji

]
.

Choosing a basis of F∨ such that theKj are coordinate subspaces, the fiber Zσ ⊂ Hom(E∨, F )
over σ ∈ Sn consists of the matrices of the form
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...n

N

n

(n−1)

...

2

1

Kσ(n) Kσ(n−1)

Kσ(2)Kσ(1)

∗ · · ·
∗ · · ·

∗ · · ·
∗ · · ·

· · · ∗
· · · ∗

· · · ∗
· · · ∗

0 · · ·
0 · · ·

0 · · · 0

0 · · ·

· · · 0
· · · 0

· · · 0

thus its class is [
Zσ ⊂ E ⊗ F

]
GLn×BN

=
n∏
i=1

λi+n−i∏
k=1

(xσ(i) + yk).

Summing over σ ∈ Sn, we get the right hand side of Equation (31). �

The proof. Now we are prepared to prove the pushforward formula (37). We present
two variations of the proof. The first one is more intuitive, but leaves the algebraic category.
The second one fixes this problem.

Theorem A.4.4. Let λ and µ be partitions with `(λ) ≤ q and `(µ) ≤ r. In the situation
described above, we have

π∗[sµ(R|F )sλ(Q|F )] = s(λ−rq ,µ)(E|F ) ∈ H∗
GLn

(pt),

where the right hand side should be understood according to Remark A.2.2.

Proof variation A. Since the sλ are characteristic classes, they are universal ; thus sλ(Q|F )
is represented by subvariety ZQ ⊂ Q ⊗ F which we get by applying the construction of the
previous section fiberwise to the bundle Q→ Grq(E):

Z̃Q =
{

(A•, f,Q) ∈ Fl(Q∨)× (Q⊗ F )→ Grq(E) : f |Ai⊗Kλi+n−i
= 0

}
,

and ZQ = pr2(Z̃Q); similarly for µ and ZR ⊂ R ⊗ F . At this point we step out of the
algebraic category, since we want to identify Q with a complement of R; but a holomorphic
complement of R does not exist. However, if we don’t want holomorphicity, we can simply
identify Q with R⊥. Again by universality, the fibre product

X = ZR ×Gr ZQ ⊂ (R⊕Q)⊗ F ∼= π∗E ⊗ F → Grr(E)

represents [X] = sµ(R|F )sλ(Q|F ) ∈ H∗(GrrE). Consider the projection

Y = π̄(X) ⊂ E ⊗ F.

There are two cases here: s(λ−rq ,µ) is either ±sν for a honest partition ν, or 0 otherwise. It
is easy to see (see Remark A.2.2) that this is equivalent to ask whether

τ =
(
µ+ br− 1e

)
∪
(
λ+ bq− 1e

)
is a strict partition or not. On the other hand, set-theoretically Y = Sτ ; thus, according to
Lemma A.4.2 it has the “right” codimensions if and only if τ is strict.

In the latter case, consider the following resolution of Y :
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Ỹ =
{

(U•, fR, fQ) ∈ Flτ (E∨)× (Ur ⊗ F )× (U⊥r ⊗ F )

: f |Ui⊗Kµi+r−i = 0 ∀i ≤ r
, g|(Uj∩U⊥r )⊗Kλj−r+q−(j−r)

= 0 ∀j > r
}
.

The following diagram summarises the situation:

Hom(π∗E,F ) π̄−−→ Hom(E,F )x x
Ỹ

ᾱ−−→ ZR ×Gr ZQ
π̄−−→ Yy y y

Fl(E) α−−→ Grr(E) π−−→ pt

where α(U•) = Ur and ᾱ(U•, f, g) = (Ur, f, g). Applying Theorem A.3.7 to Ỹ gives the
desired result, similarly as in the proof of Lemma A.4.3. The sign comes from the different
order of (µ+ br− 1e)∪ (λ+ bq− 1e) and (µ+ br− 1e, λ+ bq− 1e) (it will be the sign of the
permutation between the two; cf. Remark A.2.2). �

Remark. It is in fact not surprising that the above proof does not work in the algebraic
category: equivariant cohomology classes (also called multidegrees) represented by complex
algebraic varieties are always “positive”, similarly as degrees of projective varieties are pos-
itive. By “positive”, we mean that it is in the cone spanned by the weights of the ambient
representation, which is E⊗F in our case. However, we have a sign in our formula, depend-
ing on the relation of λ and µ, that is, depending on the geometry and not just, say, the
conventions. Nonetheless, the proof works in the algebraic category if either µ = 0 or λ = 0,
which gives the idea for the second variation below.

Proof variation B. We will calculate the pushforward of

sµ(R∨|F∨)sλ(Q|F ) = (−1)|µ|sµ(R|F )sλ(Q|F ).

For this, consider the varieties

XQ = (q ⊗ id)−1(ZQ ) ⊂ E ⊗ F → Grq(E) and

XR∨ = (i∨ ⊗ id)−1(ZR∨) ⊂ E∨ ⊗ F∨ → Grr(E∨) = Grq(E),

where i and q are the tautological inclusion and factor maps:

R
i−−−→ E

q−−−→ Q ;

R∨
i∨←−−− E∨ q∨←−−− Q∨ .

We still have [XQ] = sλ(Q|F ) and [XR∨ ] = sµ(R∨|F∨), and thus[
XQ ×XR∨ ⊂ (E ⊗ F )⊕ (E∨ ⊗ F∨)→ Grq(E)

]
= sµ(R∨|F∨)sλ(Q|F ).

Note that there is a canonical isomorphism

Fl(Q∨)×GrFl(R) −→ Fl(E∨)
{A1, . . . , Aq} , {B1, . . . , Br} 7−→

{
A1, . . . , Aq = (E/Br)∨, . . . , (E/B1)∨, E∨

}
and we can compute the class π∗[X] = [π(X)] using Theorem A.3.7, as before. �
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A.5. Basic hypergeometric series

Here we collect the definitions and theorems we use from the theory of basic hypergeo-
metric3, or q-hypergeometric series. We refer to [GR90] for the details.

Definition A.5.1 (The q-shifted factorial).

(a; q)∞ =
∞∏
k=0

(1− aqk)

(a; q)n =
(a; q)∞

(aqn; q)∞
=


(1− a)(1− aq)(1− aq2) · · · (1− aqn−1) n > 0
1 n = 0
1/
[
(1− aq−1)(1− aq−2) · · · (1− aq−n)

]
n < 0

We will sometimes use the shorthand notation

(a1, a2, . . . ak; q)n =
k∏
i=1

(ai; q)n

Definition A.5.2 (The q-binomial coefficient).[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k

Definition A.5.3 (The basic hypergeometric (or q-hypergeometric, or Heine’s) series).

2Φ1

[
a, b

c

∣∣∣ q, z] =
∞∑
n=0

(a; q)n(b; q)n
(q; q)n(c; q)n

zn

Definition A.5.4 (The generalized q-hypergeometric series).

rΦs

[
a1, a2, . . . , ar
b1, . . . , bs

∣∣∣ q, z] =
∞∑
n=0

(a1, . . . , ar; q)n
(q, b1, . . . , bs; q)n

[
(−1)nq(

n
2)
](1+s−r)

zn

One of the fundemental results in the subject is the q-binomial theorem:

Theorem A.5.5. For |z| < 1 and |q| < 1
∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

A general trick is letting a parameter tend to infinity. For example:

Corollary A.5.6. Setting z = z/a and letting a→∞ in the q-binomial theorem, we get
∞∑
n=0

(−1)nq(
n
2)

(q; q)n
zn = (z; q)∞

Theorem A.5.7 (Finite q-binomial theorem).

(ab; q)n =
n∑
k=0

[
n

k

]
q

bk(a; q)k(b; q)n−k

The Theorem A.5.5 follows from this one by setting b = z and letting n tend to infinity.

3The word ‘basic’ refers to ‘base q’; for example there are ‘bibasic’ series too, which contain two parameters

p and q.
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Corollary A.5.8 (Finite version of Corollary A.5.6).

(z; q)n =
n∑
k=0

(−1)k
[
n

k

]
q

q(
k
2)zk

Theorem A.5.9 (Heine’s transformation formulae). For |z| < 1 and |b| < 1

2Φ1

[
a, b

c

∣∣∣ q, z] =
(b, az; q)∞
(c, z; q)∞

2Φ1

[
c/b, z

az

∣∣∣ q, b](39)

and, iterating it:

=
(c/b, bz; q)∞

(c, z; q)∞
2Φ1

[
abz/c, b

bz

∣∣∣ q, c/b](40)

=
(abz/c; q)∞

(z; q)∞
2Φ1

[
c/a, c/b

c

∣∣∣ q, abz/c](41)

Theorem A.5.10 (Jacobi’s triple product identity).

(q, zq, z−1; q)∞ =
∞∑

n=−∞
(−1)nq(

n+1
2 )zn

Theorem A.5.11 (Finite version of Jacobi’s triple product identity).

(zq; q)n(z−1; q)m =
n∑

k=−m
(−1)k

[
m+ n

m+ k

]
q

q(
k+1
2 )zk

Proof (Cauchy). Applying Corollary A.5.8:
m+n∑
j=0

(−1)j
[
m+ n

j

]
q

q(
j
2)
(
zq1−m

)j = (zq1−m; q)m+n = (zq1−m; q)m(zq; q)n

= (−1)mq−(m
2 )zm(z−1; q)m(zq; q)n

Rearranging and substituting j 7→ m+ k gives the desired result. �

Letting m and n tend to infinity gives Theorem A.5.10.

Definition A.5.12 (The bilateral basic hypergeometric series).

rΨs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

∣∣∣ q, z] =
∞∑

n=−∞

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n

[
(−1)nq(

n
2)
](s−r)

zn

Theorem A.5.13 (Ramanujan’s summation formula for 1Ψ1). For |b/a| < |z| < 1

1Ψ1

[
a

b

∣∣∣ q, z] =
(q, b/a, az, q/az ; q)∞
(b, q/a, z, b/az ; q)∞

Note how Jacobi’s triple product identity follows from this by setting b = 1/a, z = qz/a

and letting a tend to infinity.

Theorem A.5.14 (Bailey’s transformation formula for 2Ψ2).

2Ψ2

[
a, b

c, d

∣∣∣ q, z] =
(az, d/a, c/b, dq/abz ; q)∞

(z, d, q/b, cd/abz ; q)∞
· 2Ψ2

[
a, abz/d

c, az

∣∣∣ q, d
a

]
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en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math 295 (1982), 539–541.
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[Tho56] René Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, Grenoble 6 (1956),

43–87.


	Introduction
	Notations and conventions
	1. Partitions
	2. Symmetric functions and characteristic classes
	3. A list of various notations


	Chapter 1. First order - The Thom-Porteous formula
	1.1. Existence of the Thom polynomial and stability
	1.2. Porteous' embedded resolution
	1.3. Equivariant localization
	1.4. Restriction equations
	1.5. Gröbner degeneration

	Chapter 2. Primer on singularity theory
	2.1. Singularities
	2.2. Thom-Boardman classes
	2.3. Thom polynomials
	2.3.1. Known Thom polynomials


	Chapter 3. Localization of Thom polynomials
	3.1. Localization for contact singularities
	3.2. The substitution trick
	3.3. Principal specialization
	3.3.1. An algorithmic approach

	3.4. Some analytic computations
	3.4.1. Sigma1, A1
	3.4.2. Sigma2, III22
	3.4.3. A2, Sigma11


	Chapter 4. Second order - Sigma(ij)
	4.1. Equivalence of the different definitions
	4.2. Ronga's formula
	4.3. Localization
	4.3.1. The probe model for Thom-Boardman singularities
	4.3.2. The compactifications
	4.3.3. The localization formula

	4.4. Explicit formulae for the coefficients
	4.5. Combinatorics
	4.5.1. The coefficients for Sigma(i1)
	4.5.2. The coefficients for Sigma(22)


	Chapter 5. Third order - A3
	5.1. The probe model for Sigma(ijk)
	5.2. Morin singularities
	5.2.1. The A3 singularity


	Appendix
	A.1. Multivariate differentials
	A.2. Formulae for symmetric polynomials
	A.3. Localization of equivariant cohomology classes
	A.4. Pushforward formulae
	A.5. Basic hypergeometric series

	Bibliography

