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CHAPTER 1

Introduction

The theory of variational inequalities were first introduced in 1960’s, in rela-
tion with the notion of subdifferential in convex analysis. The pioneer result
in this theory is the theorem of Hartman-Stampacchia [9] which asserts that
if X is a finite dimensional Banach space, K C X is compact and convex,
F: K — X* is continuous, then there exists u € K such that

(F(u),u—wv) >0, YveK. (1.1)

They also proved a necessary and sufficient condition for the existence of
solutions to when K is only closed and convex under certain formu-
lation Variational inequalities are a powerful tools for the study of
Optimization and Equilibrium problems, Operation research, and other field
of studies.

However, hemivariational inequalities have been introduced and inves-
tigated by P. D. Panagiotopoulos about two decades ago. Hemivariational
inequality problems are arising in many field of studies, such as in Mechanics,
Engineering, and Economics in connection to nonconvex energy functionals.
The basic development of the problem can be framed as; Let X be a real
Banach space, a(-,-) is a bilinear form in X x X, J(-) is a locally lipschitz
functional on X and f € X*. Then find u € X such that

alu,v —u) + J(u,v —u) > (fv—u), YweX
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where JO(-,-) is the generalized directional derivative in the sense of Clarke
and J(-) is generally nonsmooth function.

There are many interesting application problems solved via hemivariational
inequalities. In particular, consider the nonconvex problem in [27] as follows:
We consider an open, bounded, connected subset 2 of R3 referred to a fixed
Cartesian coordinate system Ozjzoxs and we formulate the equation

—Au=f in Q. (1.2)

Here u represents the temperature in the case of heat conduction, whereas in
hydraulics and electrostatics the pressure and the electric potential, respec-
tively. We denote further by I' the boundary of 2 and we assume that I is
sufficiently smooth. If n = {n;} denotes the outward unit normal to I" then
% is the flux of heat, fluid or electricity through I' for the aforementioned
classes of problems.

We may consider the interior and the boundary semipermeability problems.

For the first class of problems the classical boundary condition.
u=0 on I. (1.3)

is assumed to be hold.
For the second class also we find a function u such that is satisfied
together with the boundary condition
ou ,

—%Eaj(x,u) on Th'cCl and u=0 on T\TIy. (1.4)
j(z,-) is locally Lipschitz function and 0 denotes the generalized gradient.
Note that, if ¢ = {¢;} denotes the heat flux vector and k > 0 is the coefficient
of thermal conductivity of the material. We may write by Fourier’s law that
qin; = —kou/on.
Let us introduce the notations

a(u,v) = / vu - \yvdz,
Q

and

(fu) = /Q Fud.

We may ask in addition that w is constrained to belong to a convex bounded
closed set K C V due to some technical reasons, e.g., constraints for the
temperature or the pressure of the fluid, etc.

The hemivariational inequalities correspond to the following two classes of



CEU eTD Collection

problems written up as: Let for the first class V = H}(Q) and f € L*(Q);
for the second class V= {v : v € H'(Q),v = 0on '\ 1} and f € L?(9).
Then from the Green-Gauss theorem applied to , with the definition of
, we are leading to the following hemivariational inequality.

(P) Find u € K such that,

a(u,v — u) +/F 7%z, u(z);v(x) —u(x))dl > (f,v—u) Yoe K. (1.5)

The existence of the solutions for the problems (P) follows by Theorem

In this thesis we will explore the Hartman-Stampacchia theorems in finite

and infinite dimensional spaces, generalizing these results framed in hemi-
variational inequalities, and weakening the assumption of K to be closed
and convex. We also discuss the notion of monotone operator, coercievity
and present most important existence and uniqueness results using concepts,
such as KKM principle [10].
This thesis has two main chapters. Chapter one covers the basic definitions
and properties of nonsmooth analysis. Chapter two is devoted to existence
and uniqueness of solutions to in finite and infinite dimensional spaces.
Moreover, we extend these results in hemivarational setting. An the end
we provide an abstract result which appears as variational-hemivariational
inequality problem.
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CHAPTER 2

Basics of Nonsmooth Analysis

In this section, we shall define the basic notion of classical derivative and
generalized directional derivatives.

2.1 Classical Derivatives and Their Properties

Definition 2.1 (Gateaux Derivative). Let X and Y be Banach spaces, and
let f: U C X =Y be a map whose domain D(f) = U is an open subset of
X. The directional derivative of f at uw € U in the direction h € X is given

by

)

T(o). _ 1
f(uvh)_}g% t

provided that the limit exists. If f'(u;h) exists for every h € X, and if the
mapping Daf(u) : X =Y defined by

Da f(u)h = f'(u; h).

1s linear and continuous, then we say that f is Gdteaux differentiable at u,
and we call D¢ f(u) the Gateaux derwative of f at u.

Definition 2.2 (Fréchet Derivative). Let X and Y be Banach spaces, and
let f:U C X — Y be a map whose domain D(f) = U is an open subset of
X. Then f is called Fréchet differentiable at w € U if and only if a linear
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and continuous mapping A: X — Y exists such that

) — () = AR

0, 2.2
]| —0 [|A]l 22)

or equivalently
fu+h) = f(u) = Ah + o([[h]]), (h — 0).

If such a mapping A ezists, then we call Dpf(u) = A or (simply f'(u) = A)
the Fréchet derivative of f at u.

The two differentiability notions are not equivalent even on finite dimen-
sions, which can be easily verified that Fréchet differentiability at u implies
continuity at u, but Gateaux differentiability does not imply continuity. In
addition, Fréchet differentiability implies Géateaux differentiability but the
converse is not always true.

For instance, consider the function f(x) = |z| at x = 0, it has a Gateaux
derivative but not Fréchet derivative at this point. The following corollary
is immediate from the above definitions.

Corollary 2.3. Let X and Y be Banach spaces, and let f: U C X — Y.
Then the relations between Gdateaux and Fréchet derivative hold:

(1) If f is Fréchet differentiable at uw € U, then f is Gateauz-differentiable at
u.
(1) If f is Gateaux differentiable in a neighborhood of v and Dg f is contin-
uous at v , then f is Fréchet-differentiable at v and f'(v) = Dgf(v).

Definition 2.4. Let X be a Banach space and f: X — R. We say f is
Lipschitz of constant K > 0 near a point x € X, if for some ¢ > 0 we have

1) = f) < Klly— 2], Vy,z € B(z;e). (2.3)

It is not always true that functions having Lipschitz property near a point
is differentiable. For example, f(x) = |z| in R is Lipschitz near x = 0, But
not differentiable at this point in the classical sense.

Theorem 2.5. The function f is Fréchet differentiable at xq if and only if
for all y € R™.
fzo +ty) — f(zo)

. o
mlquih t = [@o)h.

Theorem 2.6. A Lipschitz function around a point xq is Fréchet differen-
tiable at xg if and only if it is Gdteaus differentiable at xg.
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Proof. It f is Lipschitz around zg with Lipschitz constant K > 0 , then for

any y € X
|f($0+t2)—F(l"0) ~ f(zo +ty) — F(xo)
t t

B

f@o +t2) — f(@o + ty)
= | : < K]z~ yll
for all z contained in a small neighborhood of y, and ¢ > 0 sufficiently small.
Therefore, the two differentiability notions coincide. O

The following theorem has significant importance in application involving
Lipschitz functions, The proof can be found in many real analysis books.

Theorem 2.7 (Rademacher’s Theorem). Let Q@ C R™ be open and f: Q —
R be Lipschitz on QQ, then f is differentiable at almost every point in Q ( in
the sense of Lebesque measure).

Definition 2.8. The function f is strictly differentiable at xq if

fl@+h)— f(z)— f(xo)h —0. (2.4)

lim

h—0,x—xg Hh”

Immediate from the definition, if f is strict differentiable at xg, then f
is Lipschitz around z and also sufficient for Fréchet differentiability.

Theorem 2.9. The function [ is strictly differentiable at xo if and only if
for all h € R™

im @t ty) — f2)

y—h,x—x0,t0 t

= #(x0)h. (2.5)

The following example will show the strict differentiability and Fréchet
differentiability are not always the same.

Example 2.10. Let the function f: R — R be given by

[ 2?sin(d) ,x #0
fl)= { 0 ,x=0.

The function f has a classical derivative at zo = 0 with f'(x¢) = 0.
Moreover, f is Lipschitz around xzg = 0 but f is not strictly differentiable at
zog = 0. To show this consider the sequence {x} and {tx} defined as

1 t 1 1
T = ———— = — .
P Okn+ T T 2kr— T 2k I
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We can easily see that both sequence converge to zero. Let us set h = 1 and

evaluate
i @kt teh) = f(zx)
k—o00 ik
8k2r2 4 T
— lim ——2 =
k—oo (4k272 — )
which is not equal to the Fréchet derivative at zg = 0.
Generally it is not easy to check strict differentiability of a function for

this reason the following theorem provides a sufficient condition for strict
differentiability.

2

Theorem 2.11. If f is continuously Gateauz differentiable at xg, then f
strict differentiable at xg.

Proof. Let x € R™ with ||z — x¢| sufficiently small and z € R"™ be given.
Then for small ¢ > 0 the function ¢, .(t) = f(x + tz) is continuous and
differentiable. Applying the mean value theorem we have that

f(l' +tz) — f(x) _ ¢z,z(t) - ¢z,z(0)
t t
where a € (0,1).

Since the gradient is continuous at xg, we obtain

flz+1tz) - f(z)

= ¢ -(a) = 2f'(z + az),

I PR

10,2 hoe 0 ¢ f(@o)h
holds for all h € R™. By definition the function f is strict differentiable
at xo. .

2.2 Convex Functions

Convex functions have many important differential properties such as Lip-
schitz property, existence of one sided directional derivative (subgradients),
monotonicity of the gradient for smooth convex functions, and local opti-
mizers are also global in this class of functions, etc. In this section we shall
see important results which can be used in the later sections as well.

Definition 2.12. Let X be a real Banach space and K be subset of X. The
set K is said to be convez if

A+ (1—- ANy €K,
forallx and y in K and 0 < A < 1.
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All linear subspace of X, empty set and X are convex sets. Moreover a
set K C X is a cone, for x € K and for all A > 0 whenever Az € K, and K
is convex cone if r +y € K forv € K and y € K.

Definition 2.13. A real valued function f: K — R is convex on K if for
each r,y € K and 0 < A <1

fOz+ (1 =Ny < Af(z) + (1= N)f(y) (2.6)
A function f is concave if and only if —f is convex.

~ we can extend f to all of X by f and setting f(x) = f(x) for z € K and
f(z) = oo for x ¢ K. The convex indicator function Ix: X — R for any
convex set K is defined by

Ig(2) :{ OOO 5;? (2.7)

Another useful notion is the epigraph of a convex function f: X — R which
is convex and defined as

{(z,\): f(x) <A, AeR, ze€ X}

An equivalent definition of convexity is: A function f: X — R is convex if
its epigraph is a convex subset of X x R.

Proposition 2.14. If f is a convex function on U that is bounded above on
a neighborhood of some point in U, then for any x in U, fis Lipschitz near
T.

The above proposition implies that Theorem also holds for convex
functions on a bounded neighborhood. This in turn shows that Fréchet and
Gateaux differentiability is equivalent.

Definition 2.15. Let f: X — R U oo be a convex function. An element
n € X* is said to be a subgradient of the convex function f at a point x € X.
Provided that for any y € X,

fy) = f(x) >y —z), VyeX. (2.8)

The set of all subgradient of f at x is called the subdifferential of f at
z and is denoted by df(z). If the function f is differentiable then this set
reduces to a singleton set {7 f}.
The following examples verifies subdifferential of convex function.
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Example 2.16. Let f(x) = |x| in the real line R, then

-1, x<0,
af(‘/lj): [_171]7 .’E:O,
1, x=>0.

Example 2.17. let f: R — R, f(x) = f(x) + |z|, where f(x) is given by

b>0 5
X (T
SE(Z 1), x<0,

flx)=< 0, 0<z<a,
oo, T > a.

then
b2z _ 1)1, z<0,

=22 —1,1], 2=0,
f(x) =< 1, 0<z<a

[1,0], z=a

0, x> a.

The following theorem assures the existence of subgradient of a convex
function.

Theorem 2.18. Let f: U — R, U C R"™ be an open convex set, then f is
convez on U if and only if for each xq € U there exists a vector n € R™ such
that

f(@) = f(wo) 2 - (z—w0), VweU.

Proof. Let f be a convex function. Then the epigraph of f is a convex set.
For each xy € U, (xo, f(zo)) is a point of the boundary of the convex set
epif. Then from convex analysis there exists a vector (v,vg) # (0,0) such
that

v-x+vga > v-xo+ vof(zo),

for each (z,a) € epif. If vy = 0 then v-(z—1x0) >0, Va € U which implies
v = 0. U being open set, therefore we have the absurd result (v,vy) = (0,0)
. If vy < 0, then it is possible to take « sufficiently large in order to have

v-x+voa < v-xo+ vof(zo),

which is a contradiction.
Hence, vg > 0, choose a = f(x) and n = % Which gives the desired inequal-

ity.
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Conversely, let 21,29 € U and A € [0,1]. For each xy € U, there exists a
vector n € R™ such that

f(x1) = f(z0) = 1 (z1 — 20),

and
f(x2) — f(z0) = 1 (22 — 20)-

multiplying these inequalities by A and 1 — A, respectively and summing up
we obtain

Af(@1) + (1= A) f(z2) = f(zo) = [Az1 + (1 — A)z2 — 2],
taking xo = Az1 + (1 — \)xo convexity of f follows. O

Theorem 2.19. Let f be a convez function, and let x be a point where f is
finite. Then n is a subgradient of f at x if and only if

(@) > (n,2), VyeX (2.9)

Proof. Put z = x + Ay. Then using the subgradient inequality and plugging
z in to the inequality we obtain

[f(z+Ay) = f(@)]/A = (n,y),

for every y and A > 0. This implies (2.9)). The converse holds trivially from
the definition. O

2.3 Generalized Directional Derivatives

In this section we present the known Clarke generalized gradient which has
a wide application in real life problems for Lipschitz functions and the gen-
eralized directional derivative for nonconvex functions. For the later case
the limit of the difference quotient discussed in the previous section does not
exist, so the simplest replacement of the limit is by upper and lower limits.

Definition 2.20 (Clarke generalized gradient). The generalized directional
derivative of f: X — R at x in the direction of h, denoted by f°(x;h) is

defined by
() = limsup LX) = FW)
t}0,y—x t

(2.10)

where y 1s a vector in X and t 1s a positive scalar.

10
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Definition 2.21. The generalized gradient of a locally Lipschitz functional
f: X — R at a point x is a subset of X* defined by

of () = {z e X*: fO>a;h) > (2,h), Vhe X}

Proposition 2.22. Let f be a Lipschitz function of constant K near x .
Then:
i) The function h — f°(x; h) is finite, positive homogeneous, and sub-additive
on X, and satisfies

PO b)) < KAl

i) fO(x; h) is upper semicontinuous as a function of (x,h), and as a function
of h alone, is Lipschitz of constant K on X.

iii) fO(wsh) = (=f)°(x; h).

Proof. The absolute value of the difference quotient in the definition of
fO(x; k) is bounded by K||h|| when y is sufficiently close to = and t suffi-
ciently near 0. It follows that |f(x;h)| admits the same upper bound. The
fact that fO(z; Ah) = Af%(z;h) for any A > 0 ( positive homogeneity ) is
immediate, so let us turn now to subadditivity. With all upper limit below
understood to be taken as y — x and ¢t | 0, we calculate :

fO(x;h + d) = limsup fly +th+td) — f(y)

t}0,y—x t ’
th + td) — td L) —
§limsupf(y+ +td) — fly+ )+limsupf(y+ ) f(y>
t}0,y—a t t}0,y—x t

We conclude from the above inequality that fO(z; h+d) < fO(x; h)+ f0(z; d),
which implies (i).

Consider an arbitrary sequence {z;} and {h;} converges to = and h respec-
tively. For each ¢, by definition of the upper limit there exists y; in X and
t; > 0 such that

1
lyi — @il +t; < -
J(yi +t:h) — f(ys)

FOwishi) = % < .
_ fittih) = flyi) | flyi +tiha) = Fy + tihi)
£ 4 '

Note that the last term is bounded in magnitude by K||h; — k|| then taking
the upper limits (i — 00), we obtain

limsup fO(zi; hi) < fO(x; h),

i—00

11
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which shows the upper semicontinuity.
Let any h and d in X be given. Then

fly+th) — f(y) < fly +td) — f(y) + Kt||h —d]|.

For any y near x and ¢t — 0, dividing by ¢ and taking the upper limit as
Yy — T, gives

fOw;h) < fO(a;d) + Kb — d|
This also holds when we interchange the role of h and d. Hence (ii) holds.
Finally it remains to show (iii);

fo(fE; —h) = lim sup fly—th) - f(y)

t}0,y—x t

— limsup (=f)(z + th) — (—f)(y)’ where 2=y — th
t}0,z—x t

= (=)°(xh)

O]

Proposition 2.23. Let f be a Lipschitz function of constant K near x.
Then
a) Of (x) is a nonempty, convex, weak*-compact subset of X, and ||n|| < K

for every n € Of(x).
b) For every h in X we have

fO(a;h) = maz{(n, h) : n € Of (x)};

¢) n € df(x) if and only if fO(x;h) > (n,h),Vh € X;

d) If {z;} and {n;} are sequences in X and X* such that n; € 0f(z;) for
each i, and if x; converges to x and n is a weak® cluster point of the sequence
{ni}, then we have n; € Of(z).

Theorem 2.24. Let f: R™ — R be a locally Lipschitz function at a point
x € R*. Then

Of(x) = conv{n e R" : 7 f(x;) = n,z; — x, and fis differentiable at x;}.
where conv denotes the convex hull of the set.

For nonconvex functions we define the following generalized directional
derivatives as follows:
Let f: R™ — R and x¢y € R™ where f is finite, then the upper and lower Ding

12
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directional derivative at the point xg in the direction of h € R", is defined
as

(o + th) — f(x0)

ful@worh) = lim sup p : (2.11)
£ (z0: h) = lim inf £Z0 ) = f(z0) (2.12)

tl0 t

Clearly, from the above definition we have that f; (zo;h) < fi(zo; h).

In the case of equality we get the classical directional derivative f'(zg,h).
To assure the uniformly convergence of directional derivative we consider the
topological structure of the space and define the upper and lower Hadamard
directional derivative as follows:

£ (w0 h) = liming L8 HW) = J@o), (2.14)

t}0,y—h t

From the definition we have that fJ (xo,) is upper semicontinuous and
f1 (o, -) is lower semicontinuous with respect to the direction vector. More-
over, we have the inequality

f;(:co, ) < f/L(x07 ) < f(lj(xm ) < fl—]i_(xov )

When the function f is uniformly directional differentiable at the point xg
then f}"(xo,-) = f (20, ).

In addition, for strict differentiability as we discussed earlier we have also a
generalized directional derivative defined by

t —
fir(xosh) = limsup flz+ty) f(x)’ (2.15)
t}0,y—h,x—xo t
el e flx+ty) — f(z)
filwoh) = Mminf : ~ (2.16)

We can verify that fj5(zo, ) and f}(zo, -) are upper semicontinuous and lower
semicontinuous, respectively. Moreover, their comparison can be written as

fz(w(b ) S fzr(x()v ) S fL<w07 ) S fu(a;(h ) S qu(x07 ) S fé(x(ﬁ )
If the function f is Lipschitz around zg, then the generalized directional
derivative f}5(zo;h) reduces to exactly the Clarke generalized derivative.

13
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This in turn has the useful property of convexity (sublinear) proved in Propo-
sition 2.22] Generally there are many ways to construct convex generalized
directional derivatives using complicated convergence concepts. For our dis-
cussion we only consider the already mentioned generalized derivatives and
including the Rockafellar upper sub derivative which is defined as

f/(xo; h) = lim sup infzﬁhf(x + tz) - f(ﬂ?)

t10,z—x0 t

(2.17)

' ' flx+tz) — f(x)
= sup limsup inf..|._p|<c ; :
e>0 t]0,x—xo

Finally, the following theorem together with the convexity of Clarke general-

ized derivative will put an end our discussion for the construction of convex
generalized derivatives which replace the gradient of a function.

Theorem 2.25. The directional derivatives f;(xzo,-) and f/"(z9,-) are con-
ver.

Proof. First let us consider the case for ff;(xo, ). Let hi,hs € R™ and
{zr} C R", {tx} is a sequence of positive numbers and {z;} C R" such that
xp — o, tg 4 0, 25 — h1+ ho. We can decompose {zx} as zp = uy + vk, and
up — h1, v — ho for each k. Then we have

flor +tez) — f(ag)

f;}(:ﬁo; hy + hg) = lim

k—o0 tr
— lim sup 2k T (W + 0k)) — f(2r)
k—s00 tx
t t — t t —
< lim sup J(op 4 tpug + tpop)) — f(ap + trog) 4 limsup [k + tpoy)) — flag)
k—o0 tk k—o0 tk

< fir(xos ha) + fir(xo; ha)

This implies f{;(xo,-) is subadditive and since it is positive homogeneous,
convexity holds.

Finally, let us show the convexity of f/"(xo,-). Let hy,hy € R", € > 0 and
{z} CR", {tx} C (0,00) such that z — zo, tx | 0.

By definition of f”(zg, ho), there exists a sequence {v} C Be (h2) such that

£/ (0, hy) > lim sup 228 T t0) = F (k)
7 T koo tr :

14
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Moreover, since xj + tpvr — g, by definition of f/(xo, h1) again we have a
sequence {uy} C Be(hy) such that

. trLv ) + tkuk) — f(xk + tkvk)
Az hi) > 1 S((@k + ek
7 (20, h1) > i sup T

Setting hy = ug + vi for k € N, we get a sequence {hy} C Be(h1, ha)

limn sup f (g + tihe) — f(zg)
k—so0 g

flap + tror)) — f(ag)

< limsup f((zp + tpor) + tpug) — fog + tpop) limsup
k—o0 ti k—s00 Tk
< (w0, h1) + £/ (20, ha).

This condition holds for any € > 0, and since {z}} — z¢, thus we have

) ) flx+t2) — f(x
f/‘(an hy + h2) = Supe>0 limsup znfz;||z—h1+h2“<e ( t) ( )
t}0,x—xq

< [/ (w0, 1) + 7 (w0, ha).
Hence convexity is assured. O

Note that;
f/‘(xﬂv ) < fo(x()? ) < fé(m07 )

Equality holds whenever f is lipschitz near Xj.

15
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CHAPTER 3

Variational Inequalities

This section is devoted to variational inequalities both in R™ and in Hilbert
spaces. Indeed, we will discuss also on hemivariational inequalities, variational-
hemivariational inequality problems and related results.

3.1 Variational Inequalities in Finite Dimensional
Spaces

3.1.1 Definition and Examples

The finite dimensional variational inequality problem, denoted by (VI(F, K)),
is to determine a vector v € K C R" such that

(F(u),v—u) >0, YveK,
where F is a given continuous function from a convex closed set K to R™.

Example 3.1. Let f be a smooth function defined on a closed convex set
K C R™ and let xg € K such that

f(zo) = min f(z).

Since K is convez, tx + (1 — t)xzg € K, for 0 < ¢t < 1. The function
o(x) = f(zo + t(z — o)) attains its minimum at t = 0. Thus we have that

0'(0) = 7 f(zo)(x —x0) >0, VxekK.
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Hence the point xg satisfies the variational inequality problem,
vV f(zo)(x —x9) >0, VzekK.

Example 3.2. Let 2 C R™ be a bounded domain with boundary 02 and
be a given function on Q = QU OO satisfying

mgwaO, and <0 on 0.

Define
K={welCQ):v>¢ in Q and v=0 on 0Q},

a conver set of functions which is non empty. We look for a function u € K
of the least area given by

/ V14 |vul2de = Hll[r(l/ V14 |vu|?de.
Q ve Q

Then the associated variational inequality is: Find a function u € K such

that
/vuv(v—u)dpo, Vo€ K
Q

V1t [l

Definition 3.3. Let X be a metric space and a mapping f: X — X is a
contraction mapping if

d(f(z), f(y)) < ad(z,y), 2,yeX
. forsomea , 0 < a<1. When a =1 the mapping is called nonexpansive.

3.1.2 Basic Properties and Theorems

Theorem 3.4. Let K be a closed convex set of a Hilbert space H. Then
y = Pgx (the projection of x on K) if and only if

yeEK:(y,z2—y) > (z,2—y), Vz€K.

Proof. Let € H and y = Pgz. Since K is convex we have y+t(z —y) € K
for any z € K, 0 <t < 1, then the function ¢(t) = ||z —y —t(z—y)|? attains
its minimum at ¢ = 0. Therefore ¢/'(0) > 0, and gives

(ﬁ_yaz_y)é()?
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which can be written as
(y,z—y) > (v,2—y), VzeK.
Conversely,
yeK: (y,z—y) > (x,z—y), foral zeK.
can be rewritten as
0<(y—a,(z—2)+(@—y) < —llz—yl* + (y — 2,2 - 2).

We obtain
ly —|> < (y— 2,2 — ) < |ly — z|||z — z|,

which gives
ly—z|| < ||z —=z| for ze€K.

O]

Corollary 3.5. Let K be a closed convex set of a Hilbert space H. Then the
operator Pk is nonexpansive, that is | Pxx — Pryl| < ||z —y||, for z,y € K.

Theorem 3.6 (Brouwer). Let K C R™ be a compact and conver and let
F: K — K be continuous. Then F' admits a fixed point.

Proof. Let ¥ be a closed ball in R™ such that K C ¥. From the above
corollary we can see that Pk is continuous, hence the mapping

FoPg:X—>KCX

is a continuous mapping of ¥ to itself. It admits a fixed point x by the closed
ball version of Brouwer’s theorem. Namely (F o Px)(z) = z, which gives
F(z)==. O

The dual (R™)" of R™ is the space of all linear forms
a:R" =R, z— (a,z)
and the bilinear mapping
(R") x R" - R, a,r— (a,x)
is refereed to the pairing. We always assume that
{a,z) = (ra,z), ac (R"), zeR"

where 7: (R™)" — R"™ is the identification and (-, -) is scalar product on R™.

18
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Theorem 3.7. Let K C R"™ be compact and convex and let F: K — (R™)’
be continuous. Then there exists x € K such that

(F(z),y—xz) >0, YyeK. (3.1)
Proof. It is equivalent to prove that there exists x € K such that
(x,y—z) > (x —7F(x),y —z), VyeK.
The mapping
Px(I—nF): K — K

is continuous since Px and (I — 7F) are continuous. Hence by Brouwer’s
theorem it admits a fixed point € K. That is ¢ = P (I — nF)z. Conse-
quently, by applying Theorem we obtain

(x,y —x) > (x —wF(x),y — x), Yy e K

If K is unbounded, the problem does not always have a solution.
For example, the case when K =R and F(z) = e”.
Given a convex set K, we set Kr = K N Xpg, where X is the closed ball of
radius R and center 0 € R". We have that there exists at least one

xr € Kp: (F(xp),y —xRr) >0, Yy € R™. (3.2)

Theorem 3.8. Let K C R"™ be closed and conver and F: K — (R™) be
continuous. A necessary and sufficient condition that there exists a solution

to (3.1) is that there exists an R > 0 such that a solution xr € Kgr of (3.2)
satisfies |xr| < R.

Proof. It is obvious that if there exist a solution = to , then z is a solu-
tion to whenever |z| < R. Suppose that zr € Kp satisfies the condition
in the theorem. Then zp is also a solution to (3.1). Since |zr| < R, given
ye K, w=xrp+e(y—xr) € Kg, for € > 0 sufficiently small. Consequently

zr € KR C K:0< (F(xg),w—zg) =¢e(F(zr,y —zg), for yekK.
which means that zg is a solution to (3.1). O

Theorem 3.9 (Existence under Coercivity). Let F: K — (R™) satisfy

(F(z) — F(z0), — 7o)
|z — o

for some xg € K. Then there exists a solution to (3.1)).

— 400, as |z| = +oo,z € K, (3.3)
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Proof. Choose M > |F(xy)| and R > |z¢| such that
(F(z) — F(xg),x —xo) > M|z —x0|, |z|>R, z€K.
we obtain

(F(z),z — x0) > M|z — zo| + (F(x0),x — x0)
> Mlx — xo| — [F(zo)||lz — o
> (M~ )} (] — fool) > 0, for |o] = R.

Let zp € Ki be the solution of . Then
(F(zR),zr —x0) = —(F(xRr,z0 — zg) < 0.
Thus |z| # R, hence |z| < R as required together with Theorem [3.7] O
Definition 3.10. The mapping F: K — (R™) is called monotone if
(F(x1) — F(xg),x1 —x2) >0 forall z1,29 € K,
and strictly monotone
(F(x1) — F(x2),21 —x2) >0, forall x1,29 € K, x1 # xo.
A uniqueness result is presented in the subsequent theorem.

Theorem 3.11. Let F: K — (R™) be a strictly monotone function, then
the solution of the variational problem is unique, if it exists.

Proof. Suppose xijand x2 be solutions of problem (3.1) with z1 # z2, then
the following hold:

(F(z1),y — 1) >0, Vy€EK,

(F(x2),y —x2) >0, VyeK.

Substituting z; for y in the first and xo for y in the second inequality and
adding the resulting inequality resulted in

(F(21) — F(x2),22 — 1) >0

, Contradiction to strict monotonicity. Hence x1 = xs. ]
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3.2 Variational Inequalities in Hilbert Spaces

Let H be a real Hilbert space and H' be its dual, (-,-) denotes the inner
product on H and ||-|| is its norm. Let a: H x H — R be a linear continuous
form. A linear and continuous mapping A: H — H’ determine a bilinear
form via the pairing a(u,v) = (Au,v).

Definition 3.12. The bilinear form a(u,v) is coercive on H if there exists
a > 0, such that
a(v,v) > alv|? for ve H.

Next we discuss the existence and uniqueness of solution of the problem:
Let K C H be a closed and convex set and f € H’, Find

u€ K:alu,v—u) > (f,o—u), foral vekK. (3.4)

Theorem 3.13. Let a(u,v) be a continuous, symmetric, bilinear form on
H, K C H closed and convexr set and f € H'. Then there exists a unique
solution to , In addition the mapping f — w s Lipschitz, that is if uy
and ug are solutions to corresponding to fi, fo € H', then

Jus — uall < ()1 = Foll
Proof. Suppose there exist ui,us € H solution to :
u; € K :a(uj,v—u;) > (fi,v—u;), YveK,i=1,2.
It follows that
a(ur —ug,u1 — ug) < (f1 — fa,u1 — ug).
From coercivity of a, we have that

aflur —uoll® < (fi — foyur —u2) < |[|fi — foll - lur — usa|

which proves the Lipschitz condition. It remains to show existence of wu.
Define a functional

F(u) =a(u,u) —2(f,u), wu€ H.

Let d = infx F'(u) and since
1 1
Fu) > allull® = 2|1 £ - llull = eflull* = (D) = allul* = ()1 I
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we have that 1
d>=|f[* > —oc.
o

Let u, be a minimizing sequence of F' in K:
uneK:dgF(un)gd—{—%
Since K is convex and applying parallelogram law,
allu, — umH2 < a(Up — U, Up — Up,),
= 2a(up, un) + 2a(Up,, Up,) — 4a(%(un + Um), %(un + Um)),
= 2F (un) + 2F (t) — 4 (5 (1 + 1)),
< 2[5 + E]'

Hence, the sequence u, is cauchy. Since K is closed there exist an element
u € K such that u, — win H and F(u,) — u, therefore F(u) = d.
Now for any v € K, u+¢ec(v—u) € K, 0<e<1and

Flu+e(v—u)) > F(u).

Then
(d/de) = F(u+e(v—u)) [e=0> 0.

which gives

2ea(u, v —u) + 2a(v — u,v —u) — 2e(f,v —u) >0

Equivalently,
1
a(u,vfu)z<f,vfu>f§ea(vfu,v7u), Ve , 0<e<L
Setting € = 0, u becomes a solution for Problem ([3.4). O

3.2.1 Sobolev Spaces

Let o = (a1, -+, an) with nonnegative integers aq, - - - , an be a multi-index
and denote its order by |a| = a1 + a2+ -+ an. Set D; = gzz:i,i =1,---,N
and D = D{* - - DY with D° = u. Let © be a domain in RY with
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N > 1. Then w € L} () is called the o weak or generalized derivative
of u € L}, () if and only if

/uDaapdx = (—1)“|/wg0da:, Vo € C5°(Q).
Q Q

holds, Where C§°(€2) denotes the space of infinitely differentiable functions
with compact support in 2. The generalized derivative w denoted by w =
D%w is unique up to a change of values of w on a set of Lebesgue measure
ZEro.

Definition 3.14. Let 1 < p < oo and m = 0,1,2,.... The Sobolev space
W™P(Q) is the space of all functions u € LP(QY), which have generalized
derivatives up to order m such that D% € LP(Q) for all a: |a| < m. For
m = 0 we set WOP(Q) = LP().

With the corresponding norm is given by

1
p
lallwrsey = | D2 1Dl |+ 1P <.
laf<m
=) = mace | D% 1= ).

the space WP (Q) is a real Banach space.
Definition 3.15. W;""(Q) is the closure of C§°(2) in W™P(Q).
We have also a special case when m = 2
Wm(Q) = H™(9),
Wo" () = HF ().

3.2.2 Variational Inequalities for Monotone Operators

In this section we extend the results that we have discussed before and
include more existence and uniqueness results in general spaces.

Definition 3.16. The mapping A: K — H' is continuous on finite dimen-
stonal subspace if any finite dimensional subspace M C H, the restriction of
A to KN M is continuous, namely, if

AKNM— H .

15 weakly continuous.
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Theorem 3.17. Let K be a closed, bounded, and conver subset of H and
A: K —s H' be monotone and continuous on finite dimensional subspace.
Then there exists

ue€ K:(Au,v —u)y >0, forall veK

Note that, if A is strictly monotone then the solution u is unique.

Lemma 3.18 (Minty). Let K be a closed convex subset of H and let A: K —
H' be monotone and continuous on finite dimensional subspace. Then u sat-

1sfies
ue K :(Au,v—u) >0, VYvekK.

if and only if it satisfies
ue K:(Av,o—u) >0, YveK.

Proof. Assume
ue K:(Au,v—u) >0, YveK.

holds. Then from monotonicity of A, we have that
0 < (Av— Au,v —u) = (Av,v —u) — (Au,v —u), for wu,v €K

Thus,
ue K:0< (Au,v—u) < (Av,v—u), YweK

Conversely, let w € K, and set for 0 <t <1, v =u+t(w—u) € K, since K
is convex. From our hypothesis

<A(U + t(w - u)),t(w - U)> > Oa
or, equivalently,
(A(u+t(w —u)),w—u) >0, YweK.

Since A is weakly continuous on the intersection of K with the finite dimen-
sion subspace spanned by v and w, we may allow ¢ — 0 to obtain

(Au,w —u) >0, YweK.
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Proof of the theorem. Let M C H be a finite dimensional subspace
of H of dimension N < co. We may assume with out loss of generality that
0 € K. Define

j:M—H

be the injection map and
jiH =M
be its dual. The pairing between M  and M, (-,-)a; is chosen, so that
(f,jx) = <f,j/x>M, whenever x € M, f € H'.

We set Ky = KN M = K N jM and consider the mapping JAj Ky —
M'. Here K is a compact convex subset of M and j/Aj is continuous by
hypothesis from K in to M . Hence, there exists an element uy € Ky such

that
(4 Ajuprr,v —um)m >0, Yo € K.

since juy = upy and jupyr = v.
(Aupr,v —upr) >0, Yo € Kyy.
By Minty’s lemma
(Av,v —up) >0, Yo e Ky
At this point, we define
S(w)={ue K: (Av,v —u) > 0}.

S(v) is weakly closed for each v € K. Moreover since K is bounded, K is
weakly compact. Consequently (), cx S(v) is closed subset of K, is weakly
compact . To conclude that it is nonempty, we employ the finite intersection
property. Let {vi,--- vy} C K. We claim that

S(v1) N S(ve) NN S(vm) # 0.

Let M be the finite dimensional subspace of X spanned by {vi,---,vp} and
define Ky = K N M as before. According to the argument given earlier,
there is an element up; € K such that

(Av,v —upr) >0, Yv € Kyy.

In particular,
<AU¢,1}Z' —uM> >0, Vi=1,---,m.
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Thus ups € S(v;),i = 1,--- ,m. Hence for any finite collection vy, -+ , Uy,
the inequality holds.
Therefore there exists an element u € (),c S(v), which means

ue K:(Av,v—u) >0, YveK.
By the Minty’s lemma again, we obtain
ue K:(Au,v—u) >0, YvekK.

Corollary 3.19. Let H be a Hilbert space and K C H be nonempty, closed,
bounded, and convex sel. Suppose that F': K — K is nonexpansive. Then
F possesses a nonempty closed convex subset M C K of fixed points.

Proof. It is enough to observe that we may take H = H and the pairing ()
with the scalar product in H. Now if F' is nonexpansive, I — F' is monotone
so we may apply Theorem [3.17 Any solution to the variational inequality
for I — F is a fixed point for F. O

Theorem 3.20. Let K be a closed conver subset of H and let A: K — H'
be a monotone and continuous on finite dimensional subspace. A necessary
and sufficient condition that there exists a solution to the variational inequal-

1ty
ue K:(Au,v—u) >0, YvekK.
1s that there exists an R > 0 such that at least one solution of the variational
imequality
ur € K : (Aug,v —ug) >0, Yve Kp.
Kr=Kn{v:|v|] <R}
satisfies the inequality
lur| < R.

Corollary 3.21. Let K C H be a nonempty, closed, and convex set and
A: K —s H' be monotone, coercive and continuous on finite dimensional
subspace. Then there exists

ue K:(Au,v—u) >0, YveK.

The proof of the above Theorem and Corollary are analogous
to those in the case of finite dimension.

26



CEU eTD Collection

3.3 Hemivariational Inequalities

In this section we explore the general formulation of hemivariational inequal-
ities. These type of problems are a generalization of the classical variational
inequality which arises in the variational formulation of Engineering, Me-
chanical and Economic problems whenever nonconvex energy functionals are
involved.

The basic form of the problem may be developed as in the following form:
suppose that X is a Banach space a(-,-) is a bilinear form on X x X, j(-) a
locally Lipschitz functional on X and f € X*, then we seek a u € X such as
to satisfy

alu,v —u) + 2w, v —u) > (f,v —u), YveX.

Where j9(-,-) is the generalized derivative in the sense of Clarke.

3.3.1 Coercieve Hemivaritional Inequalities

In this section we deal with the common and simplest type of hemivaria-
tional inequalities in the case of one dimensional nonconvex superpotentials
which was first studied by P. D. Panagiotopoulos concerning the existence
of solutions.

Let X be a real Hilbert space with the property that

XcL*Q)cXx*

where () is an open bounded subset of R", and the injections are continuous
and dense. Denote (-,-);2 the L?(2) inner product and duality pairing, by
|-l the norm of X and by ||;2 for the L?(Q) norm.

Moreover, let L: X — L?(Q), Lu = 4, @ € R be a linear continuous
mapping. Further assume that [ € X* that

L: X = L*(Q)
is compact and B
X={veX:0eL>®O)}.

is dense in X for the X-norm. It is also assumed that a(-,-): X x X — R is
a symmetric continuous bilinear form which is coercive.
Suppose that 8: R — R is a function such that g € L{°(R), i.e. An

loc
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essentially bounded function on any bounded interval of R. For any p > 0
and & € R, let us define

Bp(g) = ess inf|£1,5|§pﬁ(§1), and Ep(g) = ess inf‘&,agp B(&1).

Monotonicity properties of p — 3,(£) and p — Ep(f) implies that the limits
as p — 04 exists. Therefore one may write as

By(&) = essinf, 0, B(&1), and B,(€) = essinf, 0, B(E1).

and define the multivalued function

B(€) = [B(€), BE))-

If 5(&40) exists for every £ € R, then we can apply a result proved by Chang:
A locally Lipschitz function j can be determined up to an additive constant
by the relation

B(&) = 95(8)-
Now we formulate the following coercive hemivariational inequality problem
(PY): Find v € X such that

a(u, v — ) + / Pl o—a)d2 > (Lv—u), YoeX. (3.5
Q

An element u € X is said to be a solution of (P) if there exists x € L'(Q)
with L*x € X*,( L* denotes the transpose operator of L) such that
a(u,v) + (L*x,v) = (I,v) Vv e X.

and
x(x) € 9j(u(z)) a.e on Q.

and where
(L*X,v):/vadQ:/xf)dQ, if veX.
Q Q

Therefore, an element u € X is said to be a solution of (PY) if there exists
x € LY(2) such that

a(u,v)%—/Xf)dQ:(l,v)7 Vv e X.
Q

and
x(x) € 0j(u(z)) a.e on Q.
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holds. In order to define a regularized problem PS¢ we consider the mollifier

o0

peCR(-LY, p20. with [ pede—1

— 00

and let
3

1
Be =pex B with p.(§) = gp(g), 0<e<l.

The regularized problem PS¢ can be formulated as: Find u. € X with

3

B:(1ic) € L'(2), such as to satisfy the variational equality
a(ug,v) +/ Be(1i)0dQ = (I,v), Vv e X.
Q

To define the corresponding finite dimensional problem Pgl, we consider a
Galerkin basis of X in X and let X,, be the resulting n-dimensional subspace.
The problem becomes

Problem PECT:: Find 4., € X, such as to satisfy the variational equality

a(lep, v) —l—/ Be(tien ) 0dQY = (1, v),Vv € X,,. (3.6)
Q

Now we assume that there exists & € RT such that

eSS SUP(_ oo _g) B(§)1 < 0 < essinf (¢ o) B(61)- (3.7)

Roughly speaking we may say that the graph (£, 3(§)) ultimately increases.
We state existence results based on the following lemmas though some of the
proofs are not written up here. For further detail refer to [27].

Lemma 3.22. Suppose that (3.7) holds. Then we can determine p1 > 0 ,
p2 > 0 such that for every G, € X,

/ Be (lign )0d2 > —p1 pames. (3.8)
Q

Lemma 3.23. The problem sz has at least one solution U, € X,,.

Proof. Equation (3.6) can be written in the form (A(tepn),v) =0 Yo € X,
and we have the estimate from the coercivity and from equation ([3.8])

(A(tigp),v) > cHiLmHQ — p1pamesQ — c1||ten||, ¢, 1 > 0.

By applying Brouwer’s fixed point theorem, we obtain a solution #., with
ltien || < ¢, where ¢ is independent of £ and n. O
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Lemma 3.24. The sequence {B:(tin)} is weakly precompact in L' (€2).
Lemma 3.25. The problem PC has at least one solution.

Proof. From lemma we have that ||i.,| < ¢, where ¢ is independent of
¢ and n. Thus as € — 0, n — oo (by considering subsequences if necessary)

we may write
Uen — u, weakly in X.

and from compactness of L.
Gien, — @, strongly inL?(€).

and thus
Uen, — U, a.e. on S

Moreover, due to lemma [3.24] we can write
Be(fien) — x, weakly in  L'(€Q).

From our previous assumptions and properties of the Galerkin basis we can
pass to the limit € — 0, n — 0o, and we obtain

a(u,v) +/ x0dQ = (I,v), Yve X.
Q
from which it follows that a linear functional

(L*x,v) = / xodQ, Vuve X.
Q

can be uniquely extended to the whole space as L*x € X. Thus the above
can be written in the form

a(u,v) + (L*x,v) = (l,v), YvelX.
In order to complete the proof, we need to show
X € B(0) = 0j(0) a.e. on K.

From Egoroft’s theorem, we can find that for any a > 0, and determine
w C Q with mesw < a such that for any p > 0 and for ¢ < g9 < p/2 and
n > ng > 2/u. We have

\am—a\<%, forall z€Q—w.
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From (3.7, (3.6) we obtain

Be(lien) < esssupy;,, ¢j<. B(§) < esssupjy,, g<u B(§) < esssupjg_gj<, B(E)
where Eu was previously defined. Analogously we prove the inequality

Blt<a) = €8S inf|a75\§ﬂ B(g) < 5&(11671)-

We take now 7 > 0 a.e. on 2 —w with 7 € L*(Q — w), and we obtain from
the above inequality

Bu@)rd2 < | Blbeqrd < [ Bu(@)rds.
Q—w Q-w Q-w

Taking the limit as € — 0 and n — oo we obtain that

Bu(0))7d2 < / YrdQ < B (@) rdS.

Q—w Q—w Q—w

Since 7 is arbitrary, we have that

x € [B(0), B(0)] = B(4), ae. on Q-—w.

where mesw < «, for o as small as possible, so the result follows. O

3.3.2 Existence Theorems on Hemivariational Inequalities

In this subsection we extend the results of Hartman and Stampacchia to
hemivariational inequalities. Before we discuss the results we need to define
the basic ingredients and state the basic assumptions as follows.

Definition 3.26 (Carathéodory Function). Let Q C R™,n > 1 be a nonempty
measurable set, and f: QQ x R™ — R,m > 1. The function f is called a
Carathéodory function if the following two conditions are satisfied:

(i) v — f(x,s) is continuous in Q for all s € R™;

(ii)s — f(x,s) is continuous on R™ for a.e. x € .

Definition 3.27. A normed linear space X is called reflexive if the canonical
embedding j : X — X is surjective: j(X) = X**.

Definition 3.28. The operator A : K — X* is w* demicontinuous for
K C X if for any sequence {u,} C K converging to u, the sequence {Auy}
converges to Au for the w* topology in X*.
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Definition 3.29. The operator A: K — X* is continuous on finite dimen-
sional subspace of K, if for any finite dimensional space F C X, which
intersects with K, the operator A|xnr is demicontinuous , that is {Auy}
converges weakly to Au in X* for each sequence {u,} C K N F which con-
verges to u.

The following information is useful in order state and proof theorems,
lemmas and corollaries in this section. Let X be a real Banach space and let
T: X — LP(Q,R¥) be a linear and continuous operator , where 1 < p <
00,k > 1 and  is a bounded open set in RY | K C X. Define an operator
A: K — X* and a function j = j(z,9): Q x R¥ = R. j assumed to be a
Carathéodory function which is locally Lipschitz with respect to the second
variable and satisfies the following assumption:

There exists h; € Lp%l(Q,R) and hy € L*™(Q,R) such that

() 1zl < ha(x) + ho(a)|yP~,

for a.e. x € Q , every y € R¥ and 2 € 9j(x,y). Denote Tu = 4, u € X. Our
aim is to study the problem
Find v € K such that, for every v € K,

(P) (Au,v — u) + / 7Oz, w(x); 0(x) — a(z))dz > 0. (3.9)
Q

Theorem 3.30. Let K be a compact and conver subset of an infinite di-

mensional Banach space X and let j salisfies condition (j). If the operator

A: K — X* is w* demicontinuous, then the problem (P) has at least a

solution.

The above theorem has an equivalent finite dimensional formulation as
follows:

Corollary 3.31. Let X be a finite dimensional Banach space and let K be
a compact and convexr subset of X. If the assumption (j)is satisfied and if
A: K — X* is continuous operator, then the problem (P) has at least a
solution.

Remark 3.32. In reflexive Banach space the following hold:

a)The w* demicontinuity and demicontinuity are the same;

b) a demicontinuous operator A: K — X* is continuous on finite dimen-
sional subspace of K ;

¢) the condition of w* demicontinuity on the operator A: K — X* in The-
orem |3.30] may be replaced by the equivalently assumption:
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(A-1) the mapping K > u — (Au,v) is weakly upper semi continuous,
for each v e X.
d) If A is w* demicontinuous , {u,} C K and u, — u, then

lim (Au,u,) = (Au, uy).

n—o0

The basic input to prove the above theorem and corollary is the following
auxiliary result.

Lemma 3.33. i) If condition (j) is satisfied and V1, Vo are nonempty subsets
of X, then the mapping V1 X Vo — R defined by

(u,v) —>/Qj0(a?,ﬁ(x);®(a:))da:

15 uUpper semi-continuous.
i) In addition, if T: X — LP(Q,R¥) is a linear compact operalor, then the
above mapping is weakly upper semi-continuous.

Proof. (1) Let {(tm,vm)}men C Vi X Vi be a sequence converging to (u,v) €
Vi x Vo, as m — 0o. Since T: X — LP(Q, R¥) is continuous, it follows that

Gy = U, O — 0 in LP(Q,RF), as m — oo

There exists a subsequence {(ty, 0,,)} of the sequence {(7y,, 0m)} such that

limsup/jo(:c,am(x);@m(:v))dx: lim ]O(xaan(m)aﬁn(x))dx
Q

m—o0 n—aoo JO

By Proposition 4.11 of [13], one may suppose that there exist two functions
g, 0o in LP(2;RT) and of two subsequences {(i,)} and {(¢,)} denoted
again by the same symbols and such that:

Up () — u(z), Op(z) — v(x), as n — oo

for a.e. z € . On the other hand, for each x where condition (7) holds and
for each y, h € R¥, there exists z € 9j(x, ) such that

@, yih) = (2, h) = maz{{w,h) : w € iz, y)}.
Therefore

15 (2, 3 B)| < |2||R] < (R (@) + ha(a)|ylP~1) - |
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Denoting, F(x) = (hy(x) + ha(z)|t0|P~1) - |G|, we have that
17°(, in (2); 0n (2)] < F(a),

for all n € N and for a.e. € Q. From Hélder’s inequality and condition (j)
for the function hy and hs it follows that F' € L'(Q,R). Applying Fatou’s
lemma yields

lim jo(w,ﬂn(x);f)n(x))dxg/limsupjo(x,ﬂn(m);ﬁn(x))da:.

n—oo [o Q n—oo
By the upper semicontinuity of the mapping jo(fc, 5-). we get

lim sup j°(z, @y (2); On () < 0, 0(x); 0(x)),

n—oo

for a.e. x € €. Since
Un(x) — u(x), Op(x) — 0(x), as n — oo,

for a.e. = € Q. Hence

lim sup /Q 50(@, g (); O () )d < / 3, a(x); 0(x))da,

m—00 (9]

which proves part (a) of our lemma.

(b) Let {(tm,vm)}men C Vi x Vo be now a sequence weakly converging to
{u,v} € Vi x V5 as m — oo. Thus u,, — u,v, — v weakly as m — oo.
Since T: X — LP(Q, R¥) is a linear compact operator, it follows that

Gy — U, Oy — 0 in LP(Q,RY).
O]
Proof of corollary.

Let us assume by contradiction, for every v € K, there is some v = v, € K
such that

(Au,v —u) + /Qjo(:c,ﬁ(a:); o(x) — a(x))dx < 0.

for every v € K, Put

N@w)={uve K : (Au,v —u) + /Qjo(:r,ﬂ(x);@(:r) —a(x))dx < 0}.
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For any fixed v € K, the mapping K — R defined by

ur— (Au,v —u) + / 30z, a(z); 0(x) — a(z))dz.
Q

is upper semicontinuous, by Lemma [3.33] and continuity of A. Thus by

the definition of the upper semicontinuity ,N(v) is an open set. Our ini-

tial assumption implies that {N(v);v € K} is a covering of K. Hence by

compactness of K there exist vy, -+ ,v, € K such that
n
K c | N@).
j=1

Let p;(u) be the distance from u to K \ N(vj). Then p; is a Lipschitz map
which vanishes outside N(v;) and the functionals

pi(u)
hj(u) =
’ Z:‘L:1 Pi
define a partition of the unity subordinated to the covering {p1, -, pn}.
Moreover, the mapping

pu) = (u)v;.
j=1

is continuous and maps K into itself, because of the convexity of K. Thus
by Brouwer’s fixed point theorem , there exists ug in the convex closed hull
of {v1,--- ,v1} such that P(ug) = ug. Define

a(u) = (Au, P(u) —u) + /Q (@, ax); P(a)(z) — a(z))da

The convexity of the map j°(4; ) and the fact that > i1 ¥j(u) =1 implies
q(u) < Zz/g(u)(Au, vj —u) + Z%(u) /Qjﬂ(x,ﬁ(x); vj(x) — u(zx))dx.
j=1 j=1

For arbitrary v € K, there are only two possibilities : if u ¢ N(v;), then
1;(u) = 0. On the other hand, for all 1 < j < n. That is, there exists at
least such an indice such that w € N(v;), we have v;(u) > 0. By definition
of N(v;), q(u) < 0 for every u € K, but ¢(u) = 0 which is a contradiction.
Proof of the Theorem

We need the following Lemma to prove our theorem. Let F' be an arbitrary
finite dimensional subspace of X which intersect with K. Let ignr be the
canonical injection of K N F in to K and 4} be the adjoint of the canonical
injection % of F' into X. Then
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Lemma 3.34. The operator
B: KNF — F*, B=1ipAignr
18 continuous.

Proof. For any v € K. set

S() = {u € K : (Au,v—u) + / 30z, a(x); P(i)(x) — a(m))dx} .

Q
We need to show the following two conditions;

(I) S(v) is a closed set.

Since v € S(v), S(v) # 0. Let {u,} C S(v) be an arbitrary sequence which
converges to u as n — oco. We need to prove that u € S(v), by the part (a)
of Lemma [3.33] we have

0 < limsup[{Aun, v — un) + /QJ'O(% U (2); 0(x) — dn(2))]de,

n—oo

= lim (Aup,v — u,) + lim sup/ 3%z, i (x); D(2) — G (2))de,
Q

n—=00 n—00

< (uv =)+ [ i) - ala)ds,

which is equivalent to u € S(v).

(I1) The family {S(v);v € K} has finite intersection property

Let {v1,---,v,} be an arbitrary finite subset of K, and let F' be the linear
space spanned by this family. Applying Corollary to the operator B
defined in lemma , we find w € K N F' such that u € (;_; S(vj), which
means that the family of closed sets {S(v); v € K} has the finite intersection
property. But the set K is compact hence (o S(v) # 0, which implies the
problem (P) has at least one solution. O

When we weaken the assumption and considering K to be a closed,
bounded and convex set, then the existence result is assured by extra as-
sumption on the operator A and T

Theorem 3.35. Let X be a reflexive infinite dimensional Banach space and
let T: X — LP(QL,RF) be a linear and compact operator. Assume K is
closed, bounded and convex subset of X and A: K — X* is monotone and
continuous on finite dimensional subspaces of K. If j satisfies the condition
(j) then the problem (P) has at least one solution.
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Proof. Let F be an arbitrary finite dimensional subspace of X, which in-
tersect with K. Consider the canonical injection ixnp: K N F — K and
ip: F' — X and let i,: X* — F* be the adjoint of ip, applying Corol-
lary to the continuous operator B = i} Aixnr, we find some up in the
compact set K N F, such that for every v € KN F,

(ipAignFpup, v — up) + / jo(x,ﬁp(m);@(:r) — ap(x))dz > 0.
Q
But
0 < (Av—Aup,v —up) = (Av,v —up) — (Aup,v — up).

Now we can verify that (i Aignrur,v—ur) = (Aup,v —up), and from the
above results we have that

(Av,v —up) + / 7%z, tp (x); 0(z) — Gp(z))dz > 0,
Q

for any v € K N F. The set K is weakly closed as a closed convex set,

moreover it is weakly compact since it is bounded and X is a Banach space.

Now for every v € K, define

M(v) = {u € K:(Av,v —u) + /Qjo(:v,ﬁ(:c);@(ac) —a(x))dx > 0} :

(3.10)
The set M(v) is weakly closed by the part (b) of lemma and also
it is weakly sequentially dense. Now we need to show that the set M =
Nvex M (v) C K is nonempty. To prove this it suffices to show that

() M(vj) #0. (3.11)
j=1

for any vy, --- ,v, € K. Let F be the finite dimensional linear space spanned
by {v1,---,v,}. Hence by (3.10) there exists up € F such that for every
ve KNF

(Av,v —up) + / 3%z, ip(z); o(x) — ap(z))dz > 0. (3.12)
Q

Thus up € M(vj;) for every 1 < j < n, which implies (3.11)). Consequently

it follows that M # (). Therefore there is some u € K such that for every

ve K

(Av,v —u) + /Qjo(x,ﬂ(:z); 0(x) — a(x))dz > 0. (3.13)
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Next we shall prove by (3.13)) that u is a solution of problem (P). Fix w € K
and A € (0,1). Putting v = (1 — N)u+ Aw € k in (3.13]) we obtain

(A((1 = Nu+ Aw), M(w — u)) + /Qjo(x, w(z); A(w — u)(x)dx > 0. (3.14)

since jO(x,; A0) = A\jO(z,; 9), for any A > 0, (3.14) can be written as

(A((1 = Nu + w), (w —u)) + / 3%z, a(z); (0 — @) (x)dz > 0. (3.15)
Q

Let F' be the vector space spanned by u and w. Taking into account the

demicontinuity of the operator Axnp and passing to the limit in (3.15)) as

A — 0, we have that u is a solution to (P). O

Theorem 3.36. Consider the same hypothesis as in Theorem without
the assumption of boundedness of K. Then the necessary and sufficient con-
dition for existence of solution for (P) is that there exists R > 0 with the
property that at least one solution of the problem

ugp € KN{u € X;|ul| < R};
(P —2) (Aup,v —ug) + [o J° (z, 4g(x); 0 — Ag(x))dz >0
for every ve K with |v] <R.

satisfies the inequality |ur| < R.

Proof. Observe that the set K N{u € X; ||lu|| < R} is a closed, bounded and
convex in X. Moreover, from Theorem it follows that problem (P — 2)
has at least one solution for any fixed R > 0. Which asserts the necessary
condition.

On the other hand, let us suppose there exists a solution ug of (P — 2) with
lur|| < R. We prove that ug is solution of (P). For any fixed v € K we
choose € > 0 small enough so that w = ugr + e(v — ug) satisfies ||w|| < R.
Hence,

(Aug,e(v — up)) + /Q (@, an();e(0 — ap)(@)dz > 0.

Due to the positive homogeneity of the map v — j°(u;v), the conclusion
follows. o
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3.3.3 Basic Elements of Critical Point Theory

In this section we introduce the basic elements of critical point theory for
nonsmooth functionals and present some related results.
Let I: X — R U {oo} satisfy the structural hypothesis:

(H) I=o+V, with &: X — R locally lipschitz, and,
U: X — RU {00}, convex, lower semicontinuous, and proper (i.e. # 00),

where X is a real Banach space.
(3.16)

Definition 3.37. An element v € X s called a critical point of the func-
tional I: X — RU {oo} satisfying (H) if

®%(u;v —u) + ¥(v) — ¥(u) >0, YveX.
The above definition can be equivalently expressed as follows.

Proposition 3.38. An element u € X is a critical point of the functional
I: X — RU{oo} satisfying (H) if and only if u € D(OY) and

0 € 0®(u) + 0¥ (u),

where the notations 0P(u) and 0V(u) stands for the generalized gradient
of ® at u and the subdifferential in the sense of convexr analysis of ¥ at u

respectively, and D(O¥) = {zx € X : 0V (x) # (}.

Proof. Assume that u € X is a critical point. Then it satisfies the relation
in the above definition which is equivalent to

OO (u;w) + ¥(w+u) — ¥(u) >0, Ywe X.
It follows that 0 is a minimum point of the convex function
w — PO (u;w) + U(w + u) — U(u).
so u € D(0V¥) and by using the subdifferential calculus of convex functions,
0 € (D% (u; )+ (-4+u)—T(u))(0) = (D% (u; ) (0)+0V (u) = dP(u)+0V (u).

Conversely, there exists ( € 0®(u) and n € 0¥ (u) such that 0 =+ 7 in X.
By definition of the corresponding generalized gradients, we obtain

(w0 — u) + U(v) — ¥(u) > (¢, v —u) + (n,v —u) = ((+n,v—u) =0,
for all v € X. ]
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Corollary 3.39. Let &: X — R be a locally Lipschitz function, and let K
be a nonempty, closed, convex subset of X. Let I be the indicator function
of K. Then u € K is a critical point of © + I if and only if u € K and
0 € 0®(u) + Ng(u) where Ng(u) ={n € X*: (n,v—u) <0,Yv € K} is the
normal cone of K at u.

The proof is similar to the proof of proposition replacing ¥ by Ik.

Example 3.40. Every local minimum v € X of a nonsmooth functional
I X — RU{oo} satisfying (H) with I(u) < 400 is a critical point. Indeed,
if u € X with I(u) < +o0 is a local minimum of I then from convexity of ¥
for any v € X and a small t > 0 we have

0<I(u+tlv—u))—I(u) <P(u+tlv—u))—P(u)+t(¥(v) — T(u)).
Dividing by t and letting t — 07, we deduce that u satisfies the definition.

Definition 3.41. The functional I : X — R U {oo} with (H) is said to
satisfy the Palais-Smale condition ( for short,(PS)) if every sequence(uy,) C
X such that (I(uy)) is bounded in R and

DO (up;v — up) + U(0) — Uluy) > —enllv —unl, Vo€ X,
for a sequence (e,) with €, | 0 contains a strong convergent subsequence.

Lemma 3.42. Let x : X — R U {oco} be a lower semicontinuous, convex
function with x(0) = 0. If

\(@) > ~Jall, voeX.
Then z € X* exists such that ||z||x+ <1 and

x(z) > (z,z), VzrelX.
Proof. Consider the following convex subsets A and B of X xR :
A={(z,t) e X xR : |jz|| < =t} and B ={(z,t) e X xR: x(z) <t}.

Note that: A is an open set and due to the condition x(x) > —||z||, one has
AN B =10. A well known separation result yields the existence of o, 3 € R
and w € X* such that (w,a) # (0,0)

(wyz)y —at > B, VY(z,t) € A,
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and
(w,) —at < B, V(x,t) € B.
We see that 3 = 0 because (0,0) € ANB , set t = —||z|| in the first inequality

above. It follows that (w,z) > —allz|,Vz € X, which implies a > 0 and
lw||x+ < @. Set z = a'w using t = x(x), we deduce that

(z,7) < x(z),Vz € X,
as ||w||x+ < a, thus we obtain ||z||x+ < 1. O
Theorem 3.43. Assume that the function I = ®+ ¥ : X — RU{oo} sat-
isfies hypothesis (H), is bounded from below, and verifies the (PS) condition.

Then there exists x € X such that I(u) = infx I € R and u is a critical point
of 1.

Proof. Denote m = infxI € R. There exists a minimizing sequence (u,) C
X such that

I(uy) <m+ e,
for a sequence (e,) of positive numbers,with ¢ | 0 . Applying Ekeland’s
variational principle to the function I, a sequence (v,) C X exists such that

I(v)) <m+ e,

and
I(v) > I(vy) — €nlvn —v]|, YveX,VneN.

Setting v = (1 — t)v, + tw in the above inequality , for arbitrary 0 < ¢ < 1
and w € X , we obtain

O((1—t)vp+tw)+ Y (((1—t)vp+tw) > P(v,)+¥(vn) —ent|on—v||, Yw € X.
The convexity of ¥ : X — R U {oo} yields
O((1—t)vp+tw)—t¥ (vy,)+t¥(w) > P(v,)—ent|vn—vll, Yw e X,Vte (0,1)
Dividing by ¢ and letting ¢ | 0 we deduce that for all w € X, we obtain

B (v w — vy,) + U(w) — U(vy)

1
> lim sup ;(fb(vn +t(w —vy)) — P(vyn) + ¥(vy) > —€nljw — vy
t10

On the other hand, we have ®(v,) + ¥(v,) = m as n — oco. Then
the (PS) condition implies that along a relabelled subsequence u, — wu in
X, for some u € X. The lower semicontinuity of I yields

I(u) < liminf I(V,,) < m,
n—r00

so I(u) = m and u satisfies definition of critical point. O
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3.3.4 Variational-Hemivariational Inequality Problems with
Lack of Convexity

In this section we present an abstract result in connection with the well
known KKM principle.

Let X be a real Banach space, (S, 1) be a finite positive measure space,
A: X — X* an operator. We assume a compact mapping v: X — LP(S;R™),
and g be the conjugate of p. If ®: X — R is locally lipschitz functional. Let
j: S xR™ — R be a function such that for any y € R” the mapping
j(-,y): S — R is measurable.
In the following condition we assumed at least one holds; either there exists
k € Li(S,R such that

]j(a:,yﬂ—j(x,yg)] Sk('r)‘yl_yQ‘v VES,Vyl,yQ eRm’ (317)

or the mapping j(z,-) is locally lipschitz, Vo € S, and there exists C' > 0
such that

‘Z‘ < C(l + ‘y’p—l)’ VZ/17Z/2 € Rma Vz € 8.7(xay) (318)

Let K C X be a nonempty closed and convex, f € X* and ¥: X — R U
{+00} convex, lower semicontinuous functional such that

D(Y)NK # 0. (3.19)
Now consider the problem: Find u € K
(Au — f,v—u) + ¥ (v) — U(u)

+/j0(a:,7(u(x));y(v(x) —u(z))dp >0, YveK. (3.20)
S

consider the two practical cases as follows:

)T =9Q, pu=dr, X = WH(Q,R™) and v: X — LP(Q,R™), is sobolev
embedding operator;

(i) T = 09, p = do, X = WHP(Q,R™), and v = i on, where n: X —
Wl_%’p((?Q, R™) is the trace operator and i : Wl_%’p(ﬁQ, R™) — LP(0Q2,R™)
is embedding operator.

Lemma 3.44. Let K C X be nonempty,closed, bounded, and convex, ¥U: X —
R U {400} convez, lower semicontinuous functional such that(3.19) holds.
Consider a Banach Space Y such that L: X — Y be linear and compact,
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and J:Y — R be locally lipschitz function. In addition suppose that the
mapping K > v — (Av,v — u) is weakly lower semicontinuous, for every
u € k. Then for every f € X*, there exists u € K such that

(Au— f,v—u) + () — U(u) + JYL(u); Llv —u)) >0, YveK. (3.21)

The proof is based on the Knaster-Kuratowski-Mazurkiewicz ( in short,
KKM ) principle. Let E be a vector space, and A C FE is called finitely closed
if its intersection with any finite dimensional linear variety L C FE is closed
in the Euclidean topology of L. Let X be an arbitrary subspace of E.

A function G: X — 2F is called a KKM-mapping if

conv{xy, - ,xn} C U G(zi),

=1

for any finite set {z1, -+ ,x,} C X.

The KKM Principle Let E be a vector space, X be an arbitrary
subspace of E, and G: X — 2F KKM-mapping such that G(z) is finitely
closed for any z € X. Then the family {G(z)}zex has the finite intersection

property.
Proof. Assume by contradiction, let zy,--- ,z, € X besuch that (", G(z;) =
(). Let L be a linear manifold spanned by the set {x1,--- ,z,}, thus

conv{xy, - ,xp} C L.

Let d be the Euclidean metric on L, since L N G(x;) is closed in L, it fol-
lows that d(z, L N G(x;)) = 0 if and only if z € L N G(x;). Now define
A: conv{xy, - ,xn,} — R by

n
AMu) = Zd(u, LNG(x;),Yu € conv{z1,--- ,xn}.
i=1
From our assumption, we obtain
n
(N LNG(xi) = 0.
i=1

Which implies A(u) # 0, for any v € conv{xi,--- ,z,}. Then we can define
a continuous function

f:conv{zy, - ,xn} — conv{zy, - ,zn}
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F(u) = A(lu) ; d(u, L O G(wi)s

By Brouwer’s theorem we assured the existence of a fixed point ug € conv{zy,---

of f. Set
I ={i:d(up,LNG(x;)) #0}.

Then ug will not belongs to | J;c; G(z;). On the other hand
ug = f(up) € conv{z;:ie€l} C UG(SUZ)
i€l
which is a contradiction, hence the proof holds. O

Proof of Lemma Define the set-valued mapping G: KN D(V) —
2X by
Gx)={ve KND(Y): (Av— f,v—x)

—JO(L(v); L(x) = L(v)) + ¥(v) — ¥(z) < 0}.
We claim that G(z) is weakly closed. Indeed, if G(x) 3 v, — v then

(Av,v — z) < liminf(Av,, v, — z),

n—oo
and
U (v) < liminf ¥(vy,).

n—00

In addition, L(v,) — L(v) and by upper semicontinuity of J°, we also have

limsup JO(L(vn; L(z — v,)) < J°L(L(v); L(x — v)).

n—oo

Therefore,

—JYU(L(v); L(z —v)) < liminf(=J°(L(v,); Lz — vy)).

If v, € G(x) and v, — v, then
(Av— f,v —x) — JUL(v); L(z — v)) + ¥(v) — ¥(z)
< liminf{(Av, — f,v — z)
—JO(L(vn); Lz — vn)) + ¥(v) — ¥(2)} <0,
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which implies v € G(z). Since K is bounded, it follows that G(x) is weakly
compact. This shows that

(N Glx) #0,

2€KND(T)

provided the the family {G(x) : z € K N D(¥)} has the finite intersection
property. By using the KKM principle after showing G is a KKM-mapping.
Suppose by contradiction that there exists z1,--- , 2, € KN D(V¥) and yy €
conv{z1,--- ,x,} such that y0 ¢ |J! | G(z;). Then

(Ayo — f,y0 — mi) + ¥ (yo) — ¥(x;) — J(L(yo; L(zi — yo)) > 0,
forall i =1,--- ,n. Therefore, z; € A, Vi € {1,--- ,n}, where
A= {x € X;(Ayo— f,y0— i) + ¥ (yo) — ¥(2;) — JO(L(yo; L(wi — o)) > 0}

The set A is convex and hence yg € A, which is a contradiction. Therefore,

(| Gl)#0.

e KND(V)
This gives an element u € K N D(V) such that;
(Au— f,v —u) + ¥(v) — ¥(u) — JO(L(u; L(v — u)) > 0,Yv € K N D(¥).
The conclusion follows.

Remark 3.45. e Using the hypothesis in Lemma Motreanu and
Radulescu [3] proved the existence of at least one solution to the prob-

lem (3.20) for the case when Y = LP(S;R™), L =+, and J is defined

as

J(u) = /S 3, ulz))dp

and when K 1s unbounded they also proved existence with coercievity
condition. Moreover, for monotone and hemicontinuous operators the
problem (3.21)) has a solution using the result due to Mosco’s theorem

16]].
o Many scholars working in the varational-hemivariational inequality prob-
lems discovered related results by employing different approaches. For

example, recently using the principle of symmetric criticality (which
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states that it is enough to study the existence of critical points of a given
function on a certain subspace, not on the whole space) will be applied

for functions satisfying (3.16|) studied on certain unbounded strip [1Jf
and existence results on unbounded domains with smooth boundary [12)].

o The theory of variational and hemivariational inequalities are active
area of research and could solve many open problems in mechanics and
engineering. Interested readers are motivated to refer monographs of
P. D. Panagiotopoulos [20],[19], and D. Motreanu and P. D. Pana-
giotopoulos [2], and related materials.
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