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CHAPTER 1

Introduction

The theory of variational inequalities were �rst introduced in 1960's, in rela-
tion with the notion of subdi�erential in convex analysis. The pioneer result
in this theory is the theorem of Hartman-Stampacchia [9] which asserts that
if X is a �nite dimensional Banach space, K ⊂ X is compact and convex,
F : K → X∗ is continuous, then there exists u ∈ K such that

〈F (u), u− v〉 ≥ 0, ∀v ∈ K. (1.1)

They also proved a necessary and su�cient condition for the existence of
solutions to (1.1) when K is only closed and convex under certain formu-
lation 3.8. Variational inequalities are a powerful tools for the study of
Optimization and Equilibrium problems, Operation research, and other �eld
of studies.

However, hemivariational inequalities have been introduced and inves-
tigated by P. D. Panagiotopoulos about two decades ago. Hemivariational
inequality problems are arising in many �eld of studies, such as in Mechanics,
Engineering, and Economics in connection to nonconvex energy functionals.
The basic development of the problem can be framed as; Let X be a real
Banach space, a(·, ·) is a bilinear form in X × X, J(·) is a locally lipschitz
functional on X and f ∈ X∗. Then �nd u ∈ X such that

a(u, v − u) + J0(u, v − u) ≥ (f, v − u), ∀v ∈ X
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where J0(·, ·) is the generalized directional derivative in the sense of Clarke
and J(·) is generally nonsmooth function.
There are many interesting application problems solved via hemivariational
inequalities. In particular, consider the nonconvex problem in [27] as follows:
We consider an open, bounded, connected subset Ω of R3 referred to a �xed
Cartesian coordinate system 0x1x2x3 and we formulate the equation

−4u = f in Ω. (1.2)

Here u represents the temperature in the case of heat conduction, whereas in
hydraulics and electrostatics the pressure and the electric potential, respec-
tively. We denote further by Γ the boundary of Ω and we assume that Γ is
su�ciently smooth. If n = {ni} denotes the outward unit normal to Γ then
∂u
∂n is the �ux of heat, �uid or electricity through Γ for the aforementioned
classes of problems.
We may consider the interior and the boundary semipermeability problems.
For the �rst class of problems the classical boundary condition.

u = 0 on Γ. (1.3)

is assumed to be hold.
For the second class also we �nd a function u such that (1.2) is satis�ed
together with the boundary condition

− ∂u

∂n
∈ ∂j(x, u) on Γ1 ⊂ Γ and u = 0 on Γ \ Γ1. (1.4)

j(x, ·) is locally Lipschitz function and ∂ denotes the generalized gradient.
Note that, if q = {qi} denotes the heat �ux vector and k > 0 is the coe�cient
of thermal conductivity of the material. We may write by Fourier's law that
qini = −k∂u/∂n.
Let us introduce the notations

a(u, v) =

∫
Ω
5u · 5vdx,

and

(f, u) =

∫
Ω
fudx.

We may ask in addition that u is constrained to belong to a convex bounded
closed set K ⊂ V due to some technical reasons, e.g., constraints for the
temperature or the pressure of the �uid, etc.
The hemivariational inequalities correspond to the following two classes of

2
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problems written up as: Let for the �rst class V = H1
0 (Ω) and ¯̄f ∈ L2(Ω);

for the second class V= {v : v ∈ H1(Ω),v = 0 on Γ \ Γ1} and f ∈ L2(Ω).
Then from the Green-Gauss theorem applied to (1.2), with the de�nition of
(1.4), we are leading to the following hemivariational inequality.
(P ) Find u ∈ K such that,

a(u, v − u) +

∫
Γ1

j0(x, u(x); v(x)− u(x))dΓ ≥ (f, v − u) ∀v ∈ K. (1.5)

The existence of the solutions for the problems (P ) follows by Theorem 3.35.

In this thesis we will explore the Hartman-Stampacchia theorems in �nite
and in�nite dimensional spaces, generalizing these results framed in hemi-
variational inequalities, and weakening the assumption of K to be closed
and convex. We also discuss the notion of monotone operator, coercievity
and present most important existence and uniqueness results using concepts,
such as KKM principle [10].
This thesis has two main chapters. Chapter one covers the basic de�nitions
and properties of nonsmooth analysis. Chapter two is devoted to existence
and uniqueness of solutions to (1.1) in �nite and in�nite dimensional spaces.
Moreover, we extend these results in hemivarational setting. An the end
we provide an abstract result which appears as variational-hemivariational
inequality problem.

3
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CHAPTER 2

Basics of Nonsmooth Analysis

In this section, we shall de�ne the basic notion of classical derivative and
generalized directional derivatives.

2.1 Classical Derivatives and Their Properties

De�nition 2.1 (Gâteaux Derivative). Let X and Y be Banach spaces, and
let f : U ⊂ X → Y be a map whose domain D(f) = U is an open subset of
X. The directional derivative of f at u ∈ U in the direction h ∈ X is given
by

f ′(u;h) = lim
t→0

f(u+ th)− f(u)

t
, (2.1)

provided that the limit exists. If f ′(u;h) exists for every h ∈ X, and if the
mapping DGf(u) : X → Y de�ned by

DGf(u)h = f ′(u;h).

is linear and continuous, then we say that f is Gâteaux di�erentiable at u,
and we call DGf(u) the Gâteaux derivative of f at u.

De�nition 2.2 (Fréchet Derivative). Let X and Y be Banach spaces, and
let f : U ⊂ X → Y be a map whose domain D(f) = U is an open subset of
X. Then f is called Fréchet di�erentiable at u ∈ U if and only if a linear

4
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and continuous mapping A : X → Y exists such that

lim
‖h‖→0

‖f(u+ h)− f(u)−Ah‖
‖h‖

= 0, (2.2)

or equivalently

f(u+ h)− f(u) = Ah+ o(‖h‖), (h→ 0).

If such a mapping A exists, then we call DF f(u) = A or (simply f ′(u) = A)
the Fréchet derivative of f at u.

The two di�erentiability notions are not equivalent even on �nite dimen-
sions, which can be easily veri�ed that Fréchet di�erentiability at u implies
continuity at u, but Gâteaux di�erentiability does not imply continuity. In
addition, Fréchet di�erentiability implies Gâteaux di�erentiability but the
converse is not always true.
For instance, consider the function f(x) = |x| at x = 0, it has a Gâteaux
derivative but not Fréchet derivative at this point. The following corollary
is immediate from the above de�nitions.

Corollary 2.3. Let X and Y be Banach spaces, and let f : U ⊂ X → Y .
Then the relations between Gâteaux and Fréchet derivative hold:
(i) If f is Fréchet di�erentiable at u ∈ U , then f is Gâteaux-di�erentiable at
u.
(ii) If f is Gâteaux di�erentiable in a neighborhood of v and DGf is contin-
uous at v , then f is Fréchet-di�erentiable at v and f ′(v) = DGf(v).

De�nition 2.4. Let X be a Banach space and f : X → R. We say f is
Lipschitz of constant K > 0 near a point x ∈ X, if for some ε > 0 we have

|f(y)− f(z)| ≤ K‖y − z‖, ∀y, z ∈ B(x; ε). (2.3)

It is not always true that functions having Lipschitz property near a point
is di�erentiable. For example, f(x) = |x| in R is Lipschitz near x = 0, But
not di�erentiable at this point in the classical sense.

Theorem 2.5. The function f is Fréchet di�erentiable at x0 if and only if
for all y ∈ Rn.

lim
t↓0,y→h

f(x0 + ty)− f(x0)

t
= f ′(x0)h.

Theorem 2.6. A Lipschitz function around a point x0 is Fréchet di�eren-
tiable at x0 if and only if it is Gâteaux di�erentiable at x0.

5
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Proof. If f is Lipschitz around x0 with Lipschitz constant K > 0 , then for
any y ∈ X

|f(x0 + tz)− F (x0)

t
− f(x0 + ty)− F (x0)

t
|,

= |f(x0 + tz)− f(x0 + ty)

t
| ≤ K‖z − y‖.

for all z contained in a small neighborhood of y, and t > 0 su�ciently small.
Therefore, the two di�erentiability notions coincide.

The following theorem has signi�cant importance in application involving
Lipschitz functions, The proof can be found in many real analysis books.

Theorem 2.7 (Rademacher's Theorem). Let Ω ⊂ Rn be open and f : Ω −→
R be Lipschitz on Ω, then f is di�erentiable at almost every point in Ω ( in
the sense of Lebesgue measure).

De�nition 2.8. The function f is strictly di�erentiable at x0 if

lim
h→0,x→x0

f(x+ h)− f(x)− f ′(x0)h

‖h‖
= 0. (2.4)

Immediate from the de�nition, if f is strict di�erentiable at x0, then f
is Lipschitz around x0 and also su�cient for Fréchet di�erentiability.

Theorem 2.9. The function f is strictly di�erentiable at x0 if and only if
for all h ∈ Rn

lim
y→h,x→x0,t↓0

f(x+ ty)− f(x)

t
= f ′(x0)h. (2.5)

The following example will show the strict di�erentiability and Fréchet
di�erentiability are not always the same.

Example 2.10. Let the function f : R→ R be given by

f(x) =

{
x2sin( 1

x) , x 6= 0
0 , x = 0.

The function f has a classical derivative at x0 = 0 with f ′(x0) = 0.
Moreover, f is Lipschitz around x0 = 0 but f is not strictly di�erentiable at
x0 = 0. To show this consider the sequence {xk} and {tk} de�ned as

xk =
1

2kπ + π
2

, tk =
1

2kπ − π
2

− 1

2kπ + π
2

.

6



C
E

U
eT

D
C

ol
le

ct
io

n

We can easily see that both sequence converge to zero. Let us set h = 1 and
evaluate

lim
k→∞

f(xk + tkh)− f(xk)

tk

= − lim
k→∞

8k2π2 + π2

2

π(4k2π2 − π2

4 )
= − 2

π
.

which is not equal to the Fréchet derivative at x0 = 0.
Generally it is not easy to check strict di�erentiability of a function for
this reason the following theorem provides a su�cient condition for strict
di�erentiability.

Theorem 2.11. If f is continuously Gâteaux di�erentiable at x0, then f
strict di�erentiable at x0.

Proof. Let x ∈ Rn with ‖x − x0‖ su�ciently small and z ∈ Rn be given.
Then for small t > 0 the function φx,z(t) = f(x + tz) is continuous and
di�erentiable. Applying the mean value theorem we have that

f(x+ tz)− f(x)

t
=
φx,z(t)− φx,z(0)

t
= φ′x,z(α) = zf ′(x+ αz),

where α ∈ (0, t).
Since the gradient is continuous at x0, we obtain

lim
t↓0,z→h,x→x0

f(x+ tz)− f(x)

t
= f ′(x0)h.

holds for all h ∈ Rn. By de�nition 2.8 the function f is strict di�erentiable
at x0.

2.2 Convex Functions

Convex functions have many important di�erential properties such as Lip-
schitz property, existence of one sided directional derivative (subgradients),
monotonicity of the gradient for smooth convex functions, and local opti-
mizers are also global in this class of functions, etc. In this section we shall
see important results which can be used in the later sections as well.

De�nition 2.12. Let X be a real Banach space and K be subset of X. The
set K is said to be convex if

λx+ (1− λ)y ∈ K,

for all x and y in K and 0 < λ < 1.

7



C
E

U
eT

D
C

ol
le

ct
io

n

All linear subspace of X, empty set and X are convex sets. Moreover a
set K ⊂ X is a cone, for x ∈ K and for all λ ≥ 0 whenever λx ∈ K, and K
is convex cone if x+ y ∈ K for x ∈ K and y ∈ K.

De�nition 2.13. A real valued function f : K → R is convex on K if for
each x, y ∈ K and 0 ≤ λ ≤ 1

f(λx+ (1− λ)y ≤ λf(x) + (1− λ)f(y). (2.6)

A function f is concave if and only if −f is convex.

we can extend f to all of X by f̄ and setting f̄(x) = f(x) for x ∈ K and
f̄(x) = ∞ for x /∈ K. The convex indicator function IK : X → R̄ for any
convex set K is de�ned by

IK(x) =

{
0 , x ∈ K
∞ , x /∈ K. (2.7)

Another useful notion is the epigraph of a convex function f : X → R̄ which
is convex and de�ned as

{(x, λ) : f(x) ≤ λ, λ ∈ R, x ∈ X}.

An equivalent de�nition of convexity is: A function f : X → R̄ is convex if
its epigraph is a convex subset of X × R.

Proposition 2.14. If f is a convex function on U that is bounded above on
a neighborhood of some point in U , then for any x in U , f is Lipschitz near
x.

The above proposition implies that Theorem 2.5 also holds for convex
functions on a bounded neighborhood. This in turn shows that Fréchet and
Gâteaux di�erentiability is equivalent.

De�nition 2.15. Let f : X → R ∪ ∞ be a convex function. An element
η ∈ X∗ is said to be a subgradient of the convex function f at a point x ∈ X.
Provided that for any y ∈ X,

f(y)− f(x) ≥ 〈η, y − x〉, ∀y ∈ X. (2.8)

The set of all subgradient of f at x is called the subdi�erential of f at
x and is denoted by ∂f(x). If the function f is di�erentiable then this set
reduces to a singleton set {5f}.
The following examples veri�es subdi�erential of convex function.

8
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Example 2.16. Let f(x) = |x| in the real line R, then

∂f(x) =


−1, x < 0,
[−1, 1] , x = 0,
1, x > 0.

Example 2.17. let f : R → R̄, f(x) = f̄(x) + |x|, where f̄(x) is given by
b > 0

f̄(x) =


3bx
a (xa − 1), x ≤ 0,

0, 0 ≤ x ≤ a,
∞, x > a.

then

∂f(x) =



3b
a (2x

a − 1)− 1, x < 0,[−3b
a − 1, 1

]
, x = 0,

1, 0 < x < a
[1,∞] , x = a
∅, x > a.

The following theorem assures the existence of subgradient of a convex
function.

Theorem 2.18. Let f : U −→ R , U ⊂ Rn be an open convex set, then f is
convex on U if and only if for each x0 ∈ U there exists a vector η ∈ Rn such
that

f(x)− f(x0) ≥ η · (x− x0), ∀x ∈ U.

Proof. Let f be a convex function. Then the epigraph of f is a convex set.
For each x0 ∈ U , (x0, f(x0)) is a point of the boundary of the convex set
epif . Then from convex analysis there exists a vector (v, v0) 6= (0, 0) such
that

v · x+ v0α ≥ v · x0 + v0f(x0),

for each (x, α) ∈ epif . If v0 = 0 then v ·(x−x0) ≥ 0, ∀x ∈ U which implies
v = 0. U being open set, therefore we have the absurd result (v, v0) = (0, 0)
. If v0 < 0, then it is possible to take α su�ciently large in order to have

v · x+ v0α < v · x0 + v0f(x0),

which is a contradiction.
Hence, v0 > 0, choose α = f(x) and η = −v

v0
which gives the desired inequal-

ity.

9
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Conversely, let x1, x2 ∈ U and λ ∈ [0, 1]. For each x0 ∈ U , there exists a
vector η ∈ Rn such that

f(x1)− f(x0) ≥ η · (x1 − x0),

and
f(x2)− f(x0) ≥ η · (x2 − x0).

multiplying these inequalities by λ and 1− λ, respectively and summing up
we obtain

λf(x1) + (1− λ)f(x2)− f(x0) ≥ [λx1 + (1− λ)x2 − x0],

taking x0 = λx1 + (1− λ)x2 convexity of f follows.

Theorem 2.19. Let f be a convex function, and let x be a point where f is
�nite. Then η is a subgradient of f at x if and only if

f ′(x; y) ≥ (η, x), ∀y ∈ X. (2.9)

Proof. Put z = x+ λy. Then using the subgradient inequality and plugging
z in to the inequality we obtain

[f(x+ λy)− f(x)]/λ ≥ (η, y),

for every y and λ > 0. This implies (2.9). The converse holds trivially from
the de�nition.

2.3 Generalized Directional Derivatives

In this section we present the known Clarke generalized gradient which has
a wide application in real life problems for Lipschitz functions and the gen-
eralized directional derivative for nonconvex functions. For the later case
the limit of the di�erence quotient discussed in the previous section does not
exist, so the simplest replacement of the limit is by upper and lower limits.

De�nition 2.20 (Clarke generalized gradient). The generalized directional
derivative of f : X → R at x in the direction of h, denoted by f0(x;h) is
de�ned by

f0(x;h) = lim sup
t↓0,y→x

f(y + th)− f(y)

t
(2.10)

where y is a vector in X and t is a positive scalar.

10
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De�nition 2.21. The generalized gradient of a locally Lipschitz functional
f : X −→ R at a point x is a subset of X∗ de�ned by

∂f(x) = {z ∈ X∗ : f0(x;h) ≥ 〈z, h〉, ∀h ∈ X}.

Proposition 2.22. Let f be a Lipschitz function of constant K near x .
Then:
i) The function h→ f0(x;h) is �nite, positive homogeneous, and sub-additive
on X, and satis�es

|f0(x;h)| ≤ K‖h‖;
ii)f0(x;h) is upper semicontinuous as a function of (x, h), and as a function
of h alone, is Lipschitz of constant K on X.
iii) f0(x;h) = (−f)0(x;h).

Proof. The absolute value of the di�erence quotient in the de�nition of
f0(x;h) is bounded by K‖h‖ when y is su�ciently close to x and t su�-
ciently near 0. It follows that |f0(x;h)| admits the same upper bound. The
fact that f0(x;λh) = λf0(x;h) for any λ ≥ 0 ( positive homogeneity ) is
immediate, so let us turn now to subadditivity. With all upper limit below
understood to be taken as y → x and t ↓ 0, we calculate :

f0(x;h+ d) = lim sup
t↓0,y→x

f(y + th+ td)− f(y)

t
,

≤ lim sup
t↓0,y→x

f(y + th+ td)− f(y + td)

t
+ lim sup

t↓0,y→x

f(y + td)− f(y)

t
.

We conclude from the above inequality that f0(x;h+d) ≤ f0(x;h)+f0(x; d),
which implies (i).
Consider an arbitrary sequence {xi} and {hi} converges to x and h respec-
tively. For each i, by de�nition of the upper limit there exists yi in X and
ti > 0 such that

‖yi − xi‖+ ti <
1

i
,

f0(xi;hi)−
1

i
≤ f(yi + tih)− f(yi)

ti

=
f(yi + tih)− f(yi)

ti
+
f(yi + tihi)− f(yi + tihi)

ti
.

Note that the last term is bounded in magnitude by K‖hi − h‖ then taking
the upper limits (i→∞), we obtain

lim sup
i→∞

f0(xi;hi) ≤ f0(x;h),

11
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which shows the upper semicontinuity.
Let any h and d in X be given. Then

f(y + th)− f(y) ≤ f(y + td)− f(y) +Kt‖h− d‖.

For any y near x and t → 0, dividing by t and taking the upper limit as
y → x, gives

f0(x;h) ≤ f0(x; d) +K‖h− d‖

This also holds when we interchange the role of h and d. Hence (ii) holds.
Finally it remains to show (iii);

f0(x;−h) = lim sup
t↓0,y→x

f(y − th)− f(y)

t

= lim sup
t↓0,z→x

(−f)(z + th)− (−f)(y)

t
, where z := y − th

= (−f)0(x;h)

Proposition 2.23. Let f be a Lipschitz function of constant K near x.
Then
a) ∂f(x) is a nonempty, convex, weak∗-compact subset of X , and ‖η‖ ≤ K
for every η ∈ ∂f(x).
b) For every h in X we have

f0(x;h) = max{(η, h) : η ∈ ∂f(x)};

c) η ∈ ∂f(x) if and only if f0(x;h) ≥ (η, h), ∀h ∈ X;
d) If {xi} and {ηi} are sequences in X and X∗ such that ηi ∈ ∂f(xi) for
each i, and if xi converges to x and η is a weak∗ cluster point of the sequence
{ηi}, then we have ηi ∈ ∂f(x).

Theorem 2.24. Let f : Rn → R be a locally Lipschitz function at a point
x ∈ Rn. Then

∂f(x) = conv{η ∈ Rn : 5f(xi)→ η, xi → x, and f is di�erentiable at xi}.

where conv denotes the convex hull of the set.

For nonconvex functions we de�ne the following generalized directional
derivatives as follows:
Let f : Rn → R̄ and x0 ∈ Rn where f is �nite, then the upper and lower Dini

12



C
E

U
eT

D
C

ol
le

ct
io

n

directional derivative at the point x0 in the direction of h ∈ Rn, is de�ned
as

f
′
U (x0;h) = lim sup

t↓0

f(x0 + th)− f(x0)

t
, (2.11)

f
′
L(x0;h) = lim inf

t↓0

f(x0 + th)− f(x0)

t
. (2.12)

Clearly, from the above de�nition we have that f
′
L(x0;h) ≤ f ′U (x0;h).

In the case of equality we get the classical directional derivative f ′(x0, h).
To assure the uniformly convergence of directional derivative we consider the
topological structure of the space and de�ne the upper and lower Hadamard
directional derivative as follows:

f+
U (x0;h) = lim sup

t↓0,y→h

f(x0 + ty)− f(x0)

t
, (2.13)

f+
L (x0;h) = lim inf

t↓0,y→h

f(x0 + ty)− f(x0)

t
. (2.14)

From the de�nition we have that f+
U (x0, ·) is upper semicontinuous and

f+
L (x0, ·) is lower semicontinuous with respect to the direction vector. More-
over, we have the inequality

f+
L (x0, ·) ≤ f

′
L(x0, ·) ≤ f

′
U (x0, ·) ≤ f+

U (x0, ·).

When the function f is uniformly directional di�erentiable at the point x0

then f+
L (x0, ·) = f+

U (x0, ·).
In addition, for strict di�erentiability as we discussed earlier we have also a
generalized directional derivative de�ned by

f∗U (x0;h) = lim sup
t↓0,y→h,x→x0

f(x+ ty)− f(x)

t
, (2.15)

f∗L(x0;h) = lim inf
t↓0,y→h,x→x0

f(x+ ty)− f(x)

t
. (2.16)

We can verify that f∗U (x0, ·) and f∗L(x0, ·) are upper semicontinuous and lower
semicontinuous, respectively. Moreover, their comparison can be written as

f∗L(x0, ·) ≤ f+
L (x0, ·) ≤ f

′
L(x0, ·) ≤ f

′
u(x0, ·) ≤ f+

u (x0, ·) ≤ f∗U (x0, ·)

If the function f is Lipschitz around x0, then the generalized directional
derivative f∗U (x0;h) reduces to exactly the Clarke generalized derivative.
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This in turn has the useful property of convexity (sublinear) proved in Propo-
sition 2.22. Generally there are many ways to construct convex generalized
directional derivatives using complicated convergence concepts. For our dis-
cussion we only consider the already mentioned generalized derivatives and
including the Rockafellar upper sub derivative which is de�ned as

f↗(x0;h) = lim sup
t↓0,x→x0

infz→h
f(x+ tz)− f(x)

t

= sup
ε>0

lim sup
t↓0,x→x0

infz;‖z−h‖<ε
f(x+ tz)− f(x)

t
. (2.17)

Finally, the following theorem together with the convexity of Clarke general-
ized derivative will put an end our discussion for the construction of convex
generalized derivatives which replace the gradient of a function.

Theorem 2.25. The directional derivatives f∗U (x0, ·) and f↗(x0, ·) are con-
vex.

Proof. First let us consider the case for f∗U (x0, ·). Let h1, h2 ∈ Rn and
{xk} ⊂ Rn, {tk} is a sequence of positive numbers and {zk} ⊂ Rn such that
xk → x0, tk ↓ 0, zk → h1 +h2. We can decompose {zk} as zk = uk + vk, and
uk → h1, vk → h2 for each k. Then we have

f∗U (x0;h1 + h2) = lim
k→∞

f(xk + tkzk)− f(xk)

tk

= lim sup
k→∞

f(xk + tk(uk + vk))− f(xk)

tk

≤ lim sup
k→∞

f(xk + tkuk + tkvk))− f(xk + tkvk)

tk
+ lim sup

k→∞

f(xk + tkvk))− f(xk)

tk

≤ f∗U (x0;h1) + f∗U (x0;h2)

This implies f∗U (x0, ·) is subadditive and since it is positive homogeneous,
convexity holds.
Finally, let us show the convexity of f↗(x0, ·). Let h1, h2 ∈ Rn, ε > 0 and
{xk} ⊂ Rn, {tk} ⊂ (0,∞) such that xk → x0, tk ↓ 0.
By de�nition of f↗(x0, h2), there exists a sequence {vk} ⊂ B ε

2
(h2) such that

f↗(x0, h2) ≥ lim sup
k→∞

f(xk + tkvk))− f(xk)

tk
.
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Moreover, since xk + tkvk → x0, by de�nition of f↗(x0, h1) again we have a
sequence {uk} ⊂ B ε

2
(h1) such that

f↗(x0, h1) ≥ lim sup
k→∞

f((xk + tkvk) + tkuk)− f(xk + tkvk)

tk

Setting hk = uk + vk for k ∈ N, we get a sequence {hk} ⊂ Bε(h1, h2)

lim sup
k→∞

f(xk + tkhk)− f(xk)

tk

≤ lim sup
k→∞

f((xk + tkvk) + tkuk)− f(xk + tkvk)

tk
+lim sup

k→∞

f(xk + tkvk))− f(xk)

tk

≤ f↗(x0, h1) + f↗(x0, h2).

This condition holds for any ε > 0, and since {xk} → x0, thus we have

f↗(x0, h1 + h2) = supε>0 lim sup
t↓0,x→x0

infz;‖z−h1+h2‖<ε
f(x+ tz)− f(x)

t

≤ f↗(x0, h1) + f↗(x0, h2).

Hence convexity is assured.

Note that;
f↗(x0, ·) ≤ f0(x0, ·) ≤ f∗U (x0, ·).

Equality holds whenever f is lipschitz near X0.
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CHAPTER 3

Variational Inequalities

This section is devoted to variational inequalities both in Rn and in Hilbert
spaces. Indeed, we will discuss also on hemivariational inequalities, variational-
hemivariational inequality problems and related results.

3.1 Variational Inequalities in Finite Dimensional

Spaces

3.1.1 De�nition and Examples

The �nite dimensional variational inequality problem, denoted by (V I(F,K)),
is to determine a vector u ∈ K ⊂ Rn such that

〈F (u), v − u〉 ≥ 0, ∀v ∈ K,

where F is a given continuous function from a convex closed set K to Rn.

Example 3.1. Let f be a smooth function de�ned on a closed convex set
K ⊂ Rn and let x0 ∈ K such that

f(x0) = min
x∈K

f(x).

Since K is convex, tx + (1 − t)x0 ∈ K, for 0 ≤ t ≤ 1. The function
ϕ(x) = f(x0 + t(x− x0)) attains its minimum at t = 0. Thus we have that

ϕ′(0) = 5f(x0)(x− x0) ≥ 0, ∀x ∈ K.
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Hence the point x0 satis�es the variational inequality problem,

5f(x0)(x− x0) ≥ 0, ∀x ∈ K.

Example 3.2. Let Ω ⊂ Rn be a bounded domain with boundary ∂Ω and ψ
be a given function on Ω̄ = Ω ∪ ∂Ω satisfying

max
Ω

ψ ≥ 0, and ψ ≤ 0 on ∂Ω.

De�ne

K = {v ∈ C1(Ω̄) : v ≥ ψ in Ω and v = 0 on ∂Ω},

a convex set of functions which is non empty. We look for a function u ∈ K
of the least area given by∫

Ω

√
1 + |5u|2dx = min

v∈K

∫
Ω

√
1 + |5v|2dx.

Then the associated variational inequality is: Find a function u ∈ K such
that ∫

Ω

5u5 (v − u)√
1 + |5u|2

dx ≥ 0, ∀v ∈ K.

De�nition 3.3. Let X be a metric space and a mapping f : X → X is a
contraction mapping if

d(f(x), f(y)) ≤ αd(x, y), x, y ∈ X

. for some α , 0 ≤ α < 1 . When α = 1 the mapping is called nonexpansive.

3.1.2 Basic Properties and Theorems

Theorem 3.4. Let K be a closed convex set of a Hilbert space H. Then
y = PKx (the projection of x on K) if and only if

y ∈ K : (y, z − y) ≥ (x, z − y), ∀z ∈ K.

Proof. Let x ∈ H and y = PKx. Since K is convex we have y+ t(z−y) ∈ K
for any z ∈ K, 0 ≤ t < 1, then the function ϕ(t) = ‖x−y− t(z−y)‖2 attains
its minimum at t = 0. Therefore ϕ′(0) ≥ 0, and gives

(x− y, z − y) ≤ 0,
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which can be written as

(y, z − y) ≥ (x, z − y), ∀z ∈ K.

Conversely,

y ∈ K : (y, z − y) ≥ (x, z − y), for all z ∈ K.

can be rewritten as

0 ≤ (y − x, (z − x) + (x− y)) ≤ −‖x− y‖2 + (y − x, z − x).

We obtain
‖y − x‖2 ≤ (y − x, z − x) ≤ ‖y − x‖‖z − x‖,

which gives
‖y − x‖ ≤ ‖z − x‖ for z ∈ K.

Corollary 3.5. Let K be a closed convex set of a Hilbert space H. Then the
operator PK is nonexpansive, that is ‖PKx−PKy‖ ≤ ‖x− y‖, for x, y ∈ K.

Theorem 3.6 (Brouwer). Let K ⊂ Rn be a compact and convex and let
F : K −→ K be continuous. Then F admits a �xed point.

Proof. Let Σ be a closed ball in Rn such that K ⊂ Σ. From the above
corollary we can see that PK is continuous, hence the mapping

F ◦ PK : Σ→ K ⊂ Σ

is a continuous mapping of Σ to itself. It admits a �xed point x by the closed
ball version of Brouwer's theorem. Namely (F ◦ PK)(x) = x, which gives
F (x) = x.

The dual (Rn)′ of Rn is the space of all linear forms

a : Rn → R, x→ 〈a, x〉

and the bilinear mapping

(Rn)′ × Rn → R, a, x→ 〈a, x〉

is refereed to the pairing. We always assume that

〈a, x〉 = (πa, x), a ∈ (Rn)′, x ∈ Rn

where π : (Rn)′ → Rn is the identi�cation and (·, ·) is scalar product on Rn.
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Theorem 3.7. Let K ⊂ Rn be compact and convex and let F : K −→ (Rn)′

be continuous. Then there exists x ∈ K such that

〈F (x), y − x〉 ≥ 0, ∀y ∈ K. (3.1)

Proof. It is equivalent to prove that there exists x ∈ K such that

(x, y − x) ≥ (x− πF (x), y − x), ∀y ∈ K.

The mapping
PK(I − πF ) : K −→ K

is continuous since PK and (I − πF ) are continuous. Hence by Brouwer's
theorem it admits a �xed point x ∈ K. That is x = PK(I − πF )x. Conse-
quently, by applying Theorem 3.4 we obtain

(x, y − x) ≥ (x− πF (x), y − x), ∀y ∈ K

If K is unbounded, the problem does not always have a solution.
For example, the case when K = R and F (x) = ex.
Given a convex set K, we set KR = K ∩ ΣR, where ΣR is the closed ball of
radius R and center 0 ∈ Rn. We have that there exists at least one

xR ∈ KR : (F (xR), y − xR) ≥ 0, ∀y ∈ Rn. (3.2)

Theorem 3.8. Let K ⊂ Rn be closed and convex and F : K −→ (Rn)′ be
continuous. A necessary and su�cient condition that there exists a solution
to (3.1) is that there exists an R > 0 such that a solution xR ∈ KR of (3.2)
satis�es |xR| < R.

Proof. It is obvious that if there exist a solution x to (3.1), then x is a solu-
tion to (3.2) whenever |x| < R. Suppose that xR ∈ KR satis�es the condition
in the theorem. Then xR is also a solution to (3.1). Since |xR| < R, given
y ∈ K, w = xR + ε(y−xR) ∈ KR, for ε > 0 su�ciently small. Consequently

xR ∈ KR ⊂ K : 0 ≤ 〈F (xR), w − xR〉 = ε〈F (xR, y − xR〉, for y ∈ K.
which means that xR is a solution to (3.1).

Theorem 3.9 (Existence under Coercivity). Let F : K → (Rn)′ satisfy

〈F (x)− F (x0), x− x0〉
|x− x0|

→ +∞, as |x| → +∞, x ∈ K, (3.3)

for some x0 ∈ K. Then there exists a solution to (3.1).
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Proof. Choose M > |F (x0)| and R > |x0| such that

〈F (x)− F (x0), x− x0〉 ≥M |x− x0|, |x| ≥ R, x ∈ K.

we obtain

〈F (x), x− x0〉 ≥M |x− x0|+ 〈F (x0), x− x0〉
≥M |x− x0| − |F (x0)||x− x0|
≥ (M − |F (x0)|)(|x| − |x0|) > 0, for |x| = R.

Let xR ∈ KR be the solution of (3.2). Then

〈F (xR), xR − x0〉 = −〈F (xR, x0 − xR〉 ≤ 0.

Thus |x| 6= R, hence |x| < R as required together with Theorem 3.7.

De�nition 3.10. The mapping F : K → (Rn)′ is called monotone if

〈F (x1)− F (x2), x1 − x2〉 ≥ 0 for all x1, x2 ∈ K,

and strictly monotone

〈F (x1)− F (x2), x1 − x2〉 > 0, for all x1, x2 ∈ K, x1 6= x2.

A uniqueness result is presented in the subsequent theorem.

Theorem 3.11. Let F : K −→ (Rn)′ be a strictly monotone function, then
the solution of the variational problem (3.1) is unique, if it exists.

Proof. Suppose x1and x2 be solutions of problem (3.1) with x1 6= x2, then
the following hold:

〈F (x1), y − x1〉 ≥ 0, ∀y ∈ K,

〈F (x2), y − x2〉 ≥ 0, ∀y ∈ K.

Substituting x1 for y in the �rst and x2 for y in the second inequality and
adding the resulting inequality resulted in

〈F (x1)− F (x2), x2 − x1〉 ≥ 0

, Contradiction to strict monotonicity. Hence x1 = x2.
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3.2 Variational Inequalities in Hilbert Spaces

Let H be a real Hilbert space and H ′ be its dual, (·, ·) denotes the inner
product on H and ‖·‖ is its norm. Let a : H×H → R be a linear continuous
form. A linear and continuous mapping A : H → H ′ determine a bilinear
form via the pairing a(u, v) = 〈Au, v〉.

De�nition 3.12. The bilinear form a(u, v) is coercive on H if there exists
α > 0, such that

a(v, v) ≥ α‖v‖2, for v ∈ H.

Next we discuss the existence and uniqueness of solution of the problem:
Let K ⊂ H be a closed and convex set and f ∈ H ′, Find

u ∈ K : a(u, v − u) ≥ 〈f, v − u〉, for all v ∈ K. (3.4)

Theorem 3.13. Let a(u, v) be a continuous, symmetric, bilinear form on
H, K ⊂ H closed and convex set and f ∈ H ′. Then there exists a unique
solution to (3.4). In addition the mapping f → u is Lipschitz, that is if u1

and u2 are solutions to (3.4) corresponding to f1, f2 ∈ H ′, then

‖u1 − u2‖ ≤ (
1

α
)‖f1 − f2‖H′ .

Proof. Suppose there exist u1, u2 ∈ H solution to (3.4):

ui ∈ K : a(ui, v − ui) ≥ 〈fi, v − ui〉, ∀v ∈ K, i = 1, 2.

It follows that

a(u1 − u2, u1 − u2) ≤ 〈f1 − f2, u1 − u2〉.

From coercivity of a, we have that

α‖u1 − u2‖2 ≤ 〈f1 − f2, u1 − u2〉 ≤ ‖f1 − f2‖ · ‖u1 − u2‖

which proves the Lipschitz condition. It remains to show existence of u.
De�ne a functional

F (u) = a(u, u)− 2〈f, u〉, u ∈ H.

Let d = infK F (u) and since

F (u) ≥ α‖u‖2 − 2‖f‖ · ‖u‖ ≥ α‖u‖2 − (
1

α
)‖f‖2 − α‖u‖2 ≥ −(

1

α
)‖f‖2.
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we have that
d ≥ 1

α
‖f‖2 > −∞.

Let un be a minimizing sequence of F in K:

un ∈ K : d ≤ F (un) ≤ d+
1

n

Since K is convex and applying parallelogram law,

α‖un − um‖2 ≤ a(un − um, un − um),

= 2a(un, un) + 2a(um, um)− 4a(
1

2
(un + um),

1

2
(un + um)),

= 2F (un) + 2F (um)− 4F (
1

2
(un + um)),

≤ 2[
1

n
+

1

m
].

Hence, the sequence un is cauchy. Since K is closed there exist an element
u ∈ K such that un → u in H and F (un)→ u, therefore F (u) = d.
Now for any v ∈ K, u+ ε(v − u) ∈ K, 0 ≤ ε ≤ 1 and

F (u+ ε(v − u)) ≥ F (u).

Then
(d/dε) = F (u+ ε(v − u)) |ε=0≥ 0.

which gives

2εa(u, v − u) + ε2a(v − u, v − u)− 2ε〈f, v − u〉 ≥ 0

Equivalently,

a(u, v − u) ≥ 〈f, v − u〉 − 1

2
εa(v − u, v − u), ∀ε , 0 ≤ ε ≤ 1.

Setting ε = 0, u becomes a solution for Problem (3.4).

3.2.1 Sobolev Spaces

Let α = (α1, · · · , αN ) with nonnegative integers α1, · · · , αN be a multi-index
and denote its order by |α| = α1 +α2 + · · ·+αN . Set Di = ∂

∂xi, i = 1, · · · , N
and Dαu = Dα1

1 · · · D
αN
N with D0 = u. Let Ω be a domain in RN with
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N ≥ 1. Then w ∈ L1
Loc(Ω) is called the αth weak or generalized derivative

of u ∈ L1
Loc(Ω) if and only if∫

Ω
uDαϕdx = (−1)|α|

∫
Ω
wϕdx, ∀ϕ ∈ C∞0 (Ω).

holds, Where C∞0 (Ω) denotes the space of in�nitely di�erentiable functions
with compact support in Ω. The generalized derivative w denoted by w =
Dαu is unique up to a change of values of w on a set of Lebesgue measure
zero.

De�nition 3.14. Let 1 ≤ p ≤ ∞ and m = 0, 1, 2, .... The Sobolev space
Wm,p(Ω) is the space of all functions u ∈ Lp(Ω), which have generalized
derivatives up to order m such that Dαu ∈ Lp(Ω) for all α : |α| ≤ m. For
m = 0 we set W 0,p(Ω) = Lp(Ω).

With the corresponding norm is given by

‖u‖Wm,p(Ω) =

 ∑
|α|≤m

‖Dαu‖pLp(Ω)

 1
p

, 1 ≤ p <∞.

‖u‖Wm,∞(Ω) = max
|α|≤m

‖Dαu‖L∞(Ω).

the space Wm,p(Ω) is a real Banach space.

De�nition 3.15. Wm,p
0 (Ω) is the closure of C∞0 (Ω) in Wm,p(Ω).

We have also a special case when m = 2

Wm,2(Ω) = Hm(Ω),

Wm,2
0 (Ω) = Hm

0 (Ω).

3.2.2 Variational Inequalities for Monotone Operators

In this section we extend the results that we have discussed before and
include more existence and uniqueness results in general spaces.

De�nition 3.16. The mapping A : K −→ H
′
is continuous on �nite dimen-

sional subspace if any �nite dimensional subspace M ⊂ H, the restriction of
A to K ∩M is continuous, namely, if

A : K ∩M → H
′
.

is weakly continuous.
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Theorem 3.17. Let K be a closed, bounded, and convex subset of H and
A : K −→ H

′
be monotone and continuous on �nite dimensional subspace.

Then there exists

u ∈ K : 〈Au, v − u〉 ≥ 0, forall v ∈ K

Note that, if A is strictly monotone then the solution u is unique.

Lemma 3.18 (Minty). LetK be a closed convex subset of H and let A : K −→
H
′
be monotone and continuous on �nite dimensional subspace. Then u sat-

is�es
u ∈ K : 〈Au, v − u〉 ≥ 0, ∀v ∈ K.

if and only if it satis�es

u ∈ K : 〈Av, v − u〉 ≥ 0, ∀v ∈ K.

Proof. Assume
u ∈ K : 〈Au, v − u〉 ≥ 0, ∀v ∈ K.

holds. Then from monotonicity of A, we have that

0 ≤ 〈Av −Au, v − u〉 = 〈Av, v − u〉 − 〈Au, v − u〉, for u, v ∈ K

Thus,
u ∈ K : 0 ≤ 〈Au, v − u〉 ≤ 〈Av, v − u〉, ∀v ∈ K

Conversely, let w ∈ K, and set for 0 ≤ t ≤ 1, v = u+ t(w− u) ∈ K, since K
is convex. From our hypothesis

〈A(u+ t(w − u)), t(w − u)〉 ≥ 0,

or, equivalently,

〈A(u+ t(w − u)), w − u〉 ≥ 0, ∀w ∈ K.

Since A is weakly continuous on the intersection of K with the �nite dimen-
sion subspace spanned by u and w, we may allow t→ 0 to obtain

〈Au,w − u〉 ≥ 0, ∀w ∈ K.
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Proof of the theorem. Let M ⊂ H be a �nite dimensional subspace
of H of dimension N <∞. We may assume with out loss of generality that
0 ∈ K. De�ne

j : M → H

be the injection map and
j
′
: H

′ →M
′

be its dual. The pairing between M
′
and M, 〈·, ·〉M is chosen, so that

〈f, jx〉 = 〈f, j′x〉M , whenever x ∈M,f ∈ H ′ .

We set KM = K ∩M ≡ K ∩ jM and consider the mapping j
′
Aj : KM −→

M
′
. Here KM is a compact convex subset of M and j

′
Aj is continuous by

hypothesis from K in to M
′
. Hence, there exists an element uM ∈ KM such

that
〈j′AjuM , v − uM 〉M ≥ 0, ∀v ∈ KM .

since juM = uM and jvM = v.

〈AuM , v − uM 〉 ≥ 0, ∀v ∈ KM .

By Minty's lemma

〈Av, v − uM 〉 ≥ 0, ∀v ∈ KM .

At this point, we de�ne

S(v) = {u ∈ K : 〈Av, v − u〉 ≥ 0}.

S(v) is weakly closed for each v ∈ K. Moreover since K is bounded, K is
weakly compact. Consequently

⋂
v∈K S(v) is closed subset of K, is weakly

compact . To conclude that it is nonempty, we employ the �nite intersection
property. Let {v1, · · · , vm} ⊂ K. We claim that

S(v1) ∩ S(v2) ∩ · · · ∩ S(vm) 6= ∅.

LetM be the �nite dimensional subspace of X spanned by {v1, · · · , vm} and
de�ne KM = K ∩M as before. According to the argument given earlier,
there is an element uM ∈ KM such that

〈Av, v − uM 〉 ≥ 0, ∀v ∈ KM .

In particular,
〈Avi, vi − uM 〉 ≥ 0, ∀i = 1, · · · ,m.
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Thus uM ∈ S(vi), i = 1, · · · ,m. Hence for any �nite collection v1, · · · , vm,
the inequality holds.
Therefore there exists an element u ∈

⋂
v∈K S(v), which means

u ∈ K : 〈Av, v − u〉 ≥ 0, ∀v ∈ K.

By the Minty's lemma again, we obtain

u ∈ K : 〈Au, v − u〉 ≥ 0, ∀v ∈ K.

Corollary 3.19. Let H be a Hilbert space and K ⊂ H be nonempty, closed,
bounded, and convex set. Suppose that F : K −→ K is nonexpansive. Then
F possesses a nonempty closed convex subset M ⊂ K of �xed points.

Proof. It is enough to observe that we may take H = H
′
and the pairing (·, ·)

with the scalar product in H. Now if F is nonexpansive, I − F is monotone
so we may apply Theorem 3.17. Any solution to the variational inequality
for I − F is a �xed point for F .

Theorem 3.20. Let K be a closed convex subset of H and let A : K −→ H
′

be a monotone and continuous on �nite dimensional subspace. A necessary
and su�cient condition that there exists a solution to the variational inequal-
ity

u ∈ K : 〈Au, v − u〉 ≥ 0, ∀v ∈ K.

is that there exists an R > 0 such that at least one solution of the variational
inequality

uR ∈ KR : 〈AuR, v − uR〉 ≥ 0, ∀v ∈ KR.

KR = K ∩ {v : ‖v‖ ≤ R}.

satis�es the inequality
‖uR‖ < R.

Corollary 3.21. Let K ⊂ H be a nonempty, closed, and convex set and
A : K −→ H

′
be monotone, coercive and continuous on �nite dimensional

subspace. Then there exists

u ∈ K : 〈Au, v − u〉 ≥ 0, ∀v ∈ K.

The proof of the above Theorem 3.20 and Corollary 3.21 are analogous
to those in the case of �nite dimension.
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3.3 Hemivariational Inequalities

In this section we explore the general formulation of hemivariational inequal-
ities. These type of problems are a generalization of the classical variational
inequality which arises in the variational formulation of Engineering, Me-
chanical and Economic problems whenever nonconvex energy functionals are
involved.

The basic form of the problem may be developed as in the following form:
suppose that X is a Banach space a(·, ·) is a bilinear form on X ×X, j(·) a
locally Lipschitz functional on X and f ∈ X∗, then we seek a u ∈ X such as
to satisfy

a(u, v − u) + j0(u, v − u) ≥ (f, v − u), ∀v ∈ X.

Where j0(·, ·) is the generalized derivative in the sense of Clarke.

3.3.1 Coercieve Hemivaritional Inequalities

In this section we deal with the common and simplest type of hemivaria-
tional inequalities in the case of one dimensional nonconvex superpotentials
which was �rst studied by P. D. Panagiotopoulos concerning the existence
of solutions.
Let X be a real Hilbert space with the property that

X ⊂ L2(Ω) ⊂ X∗

where Ω is an open bounded subset of Rn, and the injections are continuous
and dense. Denote (·, ·)L2 the L2(Ω) inner product and duality pairing, by
‖·‖ the norm of X and by |·|L2 for the L2(Ω) norm.

Moreover, let L : X −→ L2(Ω), Lu = û, û ∈ R be a linear continuous
mapping. Further assume that l ∈ X∗ that

L : X → L2(Ω)

is compact and
X̃ = {v ∈ X : v̂ ∈ L∞(Ω)}.

is dense in X for the X-norm. It is also assumed that a(·, ·) : X ×X → R is
a symmetric continuous bilinear form which is coercive.
Suppose that β : R −→ R is a function such that β ∈ L∞loc(R), i.e. An
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essentially bounded function on any bounded interval of R. For any ρ > 0
and ξ ∈ R, let us de�ne

β̄ρ(ξ) = ess inf |ξ1−ξ|≤ρ β(ξ1), and ¯̄βρ(ξ) = ess inf |ξ1−ξ|≤ρ β(ξ1).

Monotonicity properties of ρ→ β̄ρ(ξ) and ρ→ ¯̄βρ(ξ) implies that the limits
as ρ→ 0+ exists. Therefore one may write as

β̄ρ(ξ) = ess infρ→0+ β(ξ1), and ¯̄βρ(ξ) = ess infρ→0+ β(ξ1).

and de�ne the multivalued function

β̃(ξ) = [β̄(ξ), ¯̄β(ξ)].

If β(ξ±0) exists for every ξ ∈ R, then we can apply a result proved by Chang:
A locally Lipschitz function j can be determined up to an additive constant
by the relation

β̃(ξ) = ∂j(ξ).

Now we formulate the following coercive hemivariational inequality problem
(PC): Find u ∈ X such that

a(u, v − u) +

∫
Ω
j0(û, v̂ − û)dΩ ≥ (l , v − u), ∀v ∈ X . (3.5)

An element u ∈ X is said to be a solution of (PC) if there exists χ ∈ L1(Ω)
with L∗χ ∈ X∗,( L∗ denotes the transpose operator of L) such that

a(u, v) + (L∗χ, v) = (l , v) ∀v ∈ X .

and
χ(x) ∈ ∂j(u(x)) a.e on Ω.

and where

(L∗χ, v) =

∫
Ω
χLvdΩ =

∫
Ω
χv̂dΩ, if v ∈ X̃.

Therefore, an element u ∈ X is said to be a solution of (PC) if there exists
χ ∈ L1(Ω) such that

a(u, v) +

∫
Ω
χv̂dΩ = (l , v), ∀v ∈ X̃ .

and
χ(x) ∈ ∂j(u(x)) a.e on Ω.
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holds. In order to de�ne a regularized problem PCε we consider the molli�er

p ∈ C∞0 (−1, 1), p ≥ 0, with

∫ ∞
−∞

p(ξ)dξ = 1.

and let

βε = pε ? β with pε(ξ) =
1

ε
p(
ξ

ε
), 0 < ε < 1.

The regularized problem PCε can be formulated as: Find uε ∈ X with
βε(ûε) ∈ L1(Ω), such as to satisfy the variational equality

a(uε, v) +

∫
Ω
βε(ûε)v̂dΩ = (l , v), ∀v ∈ X̄ .

To de�ne the corresponding �nite dimensional problem PCεn, we consider a
Galerkin basis of X̄ in X and let Xn be the resulting n-dimensional subspace.
The problem becomes
Problem PCεn: Find ûεn ∈ Xn such as to satisfy the variational equality

a(ûεn, v) +

∫
Ω
βε(ûεn)v̂dΩ = (l , v),∀v ∈ X̄n . (3.6)

Now we assume that there exists ξ ∈ R+ such that

ess sup(−∞,−ξ) β(ξ)1 ≤ 0 ≤ ess inf(ξ,∞) β(ξ1). (3.7)

Roughly speaking we may say that the graph (ξ, β(ξ)) ultimately increases.
We state existence results based on the following lemmas though some of the
proofs are not written up here. For further detail refer to [27].

Lemma 3.22. Suppose that (3.7) holds. Then we can determine ρ1 > 0 ,
ρ2 > 0 such that for every ûεn ∈ Xn∫

Ω
βε(ûεn)v̂dΩ ≥ −ρ1ρ2mesΩ. (3.8)

Lemma 3.23. The problem PCεn has at least one solution ûεn ∈ Xn.

Proof. Equation (3.6) can be written in the form (Λ(ûεn), v) = 0 ∀v ∈ Xn

and we have the estimate from the coercivity and from equation (3.8)

(Λ(ûεn), v) ≥ c‖ûεn‖2 − ρ1ρ2mesΩ− c1‖ûεn‖, c, c1 > 0.

By applying Brouwer's �xed point theorem, we obtain a solution ûεn with
‖ûεn‖ ≤ c, where c is independent of ε and n.
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Lemma 3.24. The sequence {βε(ûεn)} is weakly precompact in L1(Ω).

Lemma 3.25. The problem PC has at least one solution.

Proof. From lemma 3.30, we have that ‖ûεn‖ < c, where c is independent of
ε and n. Thus as ε→ 0, n→∞ (by considering subsequences if necessary)
we may write

uεn → u, weakly in X.

and from compactness of L.

ûεn → û, strongly inL2(Ω).

and thus
ûεn → û, a.e. on Ω.

Moreover, due to lemma 3.24, we can write

βε(ûεn)→ χ, weakly in L1(Ω).

From our previous assumptions and properties of the Galerkin basis we can
pass to the limit ε→ 0, n→∞, and we obtain

a(u, v) +

∫
Ω
χv̂dΩ = (l , v), ∀v ∈ X̃ .

from which it follows that a linear functional

(L∗χ, v) =

∫
Ω
χv̂dΩ, ∀v ∈ X̃.

can be uniquely extended to the whole space as L∗χ ∈ X̃. Thus the above
can be written in the form

a(u, v) + (L∗χ, v) = (l , v), ∀v ∈ X .

In order to complete the proof, we need to show

χ ∈ β̄(û) = ∂j(û) a.e. on Ω.

From Egoro�'s theorem, we can �nd that for any α > 0, and determine
ω ⊂ Ω with mesω < α such that for any µ > 0 and for ε < ε0 < µ/2 and
n > n0 > 2/µ. We have

|ûεn − û| <
µ

2
, for all x ∈ Ω− ω.
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From (3.7), (3.6) we obtain

βε(ûεn) ≤ ess sup|ûεn−ξ|≤ε β(ξ) ≤ ess sup|ûεn−ξ|<µ
2
β(ξ) ≤ ess sup|û−ξ|≤µ β(ξ) = ¯̄βµ(û),

where ¯̄βµ was previously de�ned. Analogously we prove the inequality

β̄µ(û) = ess inf |û−ξ|≤µ β(ξ) ≤ βε(ûεn).

We take now τ ≥ 0 a.e. on Ω− ω with τ ∈ L∞(Ω− ω), and we obtain from
the above inequality∫

Ω−ω
β̄µ(û)τdΩ ≤

∫
Ω−ω

β̄ε(ûεnτdΩ ≤
∫

Ω−ω

¯̄βµ(û)τdΩ.

Taking the limit as ε→ 0 and n→∞ we obtain that∫
Ω−ω

β̄µ(û)τdΩ ≤
∫

Ω−ω
χτdΩ ≤

∫
Ω−ω

¯̄βµ(û)τdΩ.

Since τ is arbitrary, we have that

χ ∈ [β̄(û), ¯̄β(û)] = β̃(û), a.e. on Ω− ω.

where mesω < α, for α as small as possible, so the result follows.

3.3.2 Existence Theorems on Hemivariational Inequalities

In this subsection we extend the results of Hartman and Stampacchia to
hemivariational inequalities. Before we discuss the results we need to de�ne
the basic ingredients and state the basic assumptions as follows.

De�nition 3.26 (Carathéodory Function). Let Ω ⊂ Rn, n ≥ 1 be a nonempty
measurable set, and f : Ω × Rm −→ R,m ≥ 1. The function f is called a
Carathéodory function if the following two conditions are satis�ed:
(i) x→ f(x, s) is continuous in Ω for all s ∈ Rm;
(ii)s→ f(x, s) is continuous on Rm for a.e. x ∈ Ω.

De�nition 3.27. A normed linear space X is called re�exive if the canonical
embedding j : X → X∗∗ is surjective: j(X) = X∗∗.

De�nition 3.28. The operator A : K → X∗ is w∗ demicontinuous for
K ⊆ X if for any sequence {un} ⊂ K converging to u, the sequence {Aun}
converges to Au for the w∗ topology in X∗.
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De�nition 3.29. The operator A : K → X∗ is continuous on �nite dimen-
sional subspace of K, if for any �nite dimensional space F ⊂ X, which
intersects with K, the operator A|K∩F is demicontinuous , that is {Aun}
converges weakly to Au in X∗ for each sequence {un} ⊂ K ∩ F which con-
verges to u.

The following information is useful in order state and proof theorems,
lemmas and corollaries in this section. Let X be a real Banach space and let
T : X −→ Lp(Ω,Rk) be a linear and continuous operator , where 1 ≤ p <
∞, k ≥ 1 and Ω is a bounded open set in RN , K ⊆ X. De�ne an operator
A : K → X∗ and a function j = j(x, y) : Ω × Rk → R. j assumed to be a
Carathéodory function which is locally Lipschitz with respect to the second
variable and satis�es the following assumption:
There exists h1 ∈ L

p
p−1 (Ω,R) and h2 ∈ L∞(Ω,R) such that

(j) |z| ≤ h1(x) + h2(x)|y|p−1,

for a.e. x ∈ Ω , every y ∈ Rk and z ∈ ∂j(x, y). Denote Tu = û, u ∈ X. Our
aim is to study the problem
Find u ∈ K such that, for every v ∈ K,

(P ) 〈Au, v − u〉+

∫
Ω
j0(x, û(x); v̂(x)− û(x))dx ≥ 0. (3.9)

Theorem 3.30. Let K be a compact and convex subset of an in�nite di-
mensional Banach space X and let j satis�es condition (j). If the operator
A : K −→ X∗ is w∗ demicontinuous, then the problem (P ) has at least a
solution.

The above theorem has an equivalent �nite dimensional formulation as
follows:

Corollary 3.31. Let X be a �nite dimensional Banach space and let K be
a compact and convex subset of X. If the assumption (j)is satis�ed and if
A : K −→ X∗ is continuous operator, then the problem (P ) has at least a
solution.

Remark 3.32. In re�exive Banach space the following hold:
a)The w∗ demicontinuity and demicontinuity are the same;
b) a demicontinuous operator A : K −→ X∗ is continuous on �nite dimen-
sional subspace of K;
c) the condition of w∗ demicontinuity on the operator A : K −→ X∗ in The-
orem 3.30 may be replaced by the equivalently assumption:
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(A-1) the mapping K 3 u −→ 〈Au, v〉 is weakly upper semi continuous,
for each v ∈ X.
d) If A is w∗ demicontinuous , {un} ⊂ K and un → u, then

lim
n→∞

〈Au, un〉 = 〈Au, un〉.

The basic input to prove the above theorem and corollary is the following
auxiliary result.

Lemma 3.33. i) If condition (j) is satis�ed and V1, V2 are nonempty subsets
of X, then the mapping V1 × V2 → R de�ned by

(u, v) −→
∫

Ω
j0(x, û(x); v̂(x))dx

is upper semi-continuous.
ii) In addition, if T : X −→ Lp(Ω,Rk) is a linear compact operator, then the
above mapping is weakly upper semi-continuous.

Proof. (i) Let {(um, vm)}m∈N ⊂ V1×V2 be a sequence converging to (u, v) ∈
V1×V2, as m→∞. Since T : X −→ Lp(Ω,Rk) is continuous, it follows that

ûm → û, v̂m → v̂ in Lp(Ω,Rk), as m→∞

There exists a subsequence {(ûn, v̂n)} of the sequence {(ûm, v̂m)} such that

lim sup
m→∞

∫
Ω
j0(x, ûm(x); v̂m(x))dx = lim

n→∞

∫
Ω
j0(x, ûn(x); v̂n(x))dx.

By Proposition 4.11 of [13], one may suppose that there exist two functions
û0, v̂0 in Lp(Ω;R+) and of two subsequences {(ûn)} and {(v̂n)} denoted
again by the same symbols and such that:

|ûn(x)| ≤ û0(x), |v̂n(x)| ≤ v̂0(x)

ûn(x) −→ û(x), v̂n(x) −→ v̂(x), as n→∞

for a.e. x ∈ Ω. On the other hand, for each x where condition (j) holds and
for each y, h ∈ Rk, there exists z ∈ ∂j(x, y) such that

j0(x, y;h) = 〈z, h〉 = max{〈w, h〉 : w ∈ ∂j(x, y)}.

Therefore

|j0(x, y;h)| ≤ |z||h| ≤ (h1(x) + h2(x)|y|p−1) · |h|.
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Denoting, F (x) = (h1(x) + h2(x)|û0|p−1) · |v̂0|, we have that

|j0(x, ûn(x); v̂n(x))| ≤ F (x),

for all n ∈ N and for a.e. x ∈ Ω. From Hölder's inequality and condition (j)
for the function h1 and h2 it follows that F ∈ L1(Ω,R). Applying Fatou's
lemma yields

lim
n→∞

∫
Ω
j0(x, ûn(x); v̂n(x))dx ≤

∫
Ω

lim sup
n→∞

j0(x, ûn(x); v̂n(x))dx.

By the upper semicontinuity of the mapping j0(x, ·; ·). we get

lim sup
n→∞

j0(x, ûn(x); v̂n(x)) ≤ j0(x, û(x); v̂(x)),

for a.e. x ∈ Ω. Since

ûn(x) −→ û(x), v̂n(x) −→ v̂(x), as n→∞,

for a.e. x ∈ Ω. Hence

lim sup
m→∞

∫
Ω
j0(x, ûm(x); v̂m(x))dx ≤

∫
Ω
j0(x, û(x); v̂(x))dx,

which proves part (a) of our lemma.
(b) Let {(um, vm)}m∈N ⊂ V1 × V2 be now a sequence weakly converging to
{u, v} ∈ V1 × V2 as m → ∞. Thus um ⇀ u, vm ⇀ v weakly as m → ∞.
Since T : X −→ Lp(Ω,Rk) is a linear compact operator, it follows that

ûm −→ û, v̂m −→ v̂ in Lp(Ω,Rk).

Proof of corollary.
Let us assume by contradiction, for every u ∈ K, there is some v = vu ∈ K
such that

〈Au, v − u〉+

∫
Ω
j0(x, û(x); v̂(x)− û(x))dx < 0.

for every v ∈ K, Put

N(v) = {u ∈ K : 〈Au, v − u〉+

∫
Ω
j0(x, û(x); v̂(x)− û(x))dx < 0}.
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For any �xed v ∈ K, the mapping K −→ R de�ned by

u 7−→ 〈Au, v − u〉+

∫
Ω
j0(x, û(x); v̂(x)− û(x))dx.

is upper semicontinuous, by Lemma 3.33 and continuity of A. Thus by
the de�nition of the upper semicontinuity ,N(v) is an open set. Our ini-
tial assumption implies that {N(v); v ∈ K} is a covering of K. Hence by
compactness of K there exist v1, · · · , vn ∈ K such that

K ⊂
n⋃
j=1

N(vj).

Let ρj(u) be the distance from u to K \N(vj). Then ρj is a Lipschitz map
which vanishes outside N(vj) and the functionals

ψj(u) =
ρj(u)∑n
i=1 ρi

de�ne a partition of the unity subordinated to the covering {ρ1, · · · , ρn}.
Moreover, the mapping

p(u) =
n∑
j=1

ψj(u)vj .

is continuous and maps K into itself, because of the convexity of K. Thus
by Brouwer's �xed point theorem , there exists u0 in the convex closed hull
of {v1, · · · , v1} such that P (u0) = u0. De�ne

q(u) = 〈Au, P (u)− u〉+

∫
Ω
j0(x, û(x);P (û)(x)− û(x))dx

The convexity of the map j0(û; ·) and the fact that
∑n

j=1 ψj(u) = 1 implies

q(u) ≤
n∑
j=1

ψj(u)〈Au, vj − u〉+
n∑
j=1

ψj(u)

∫
Ω
j0(x, û(x); v̂j(x)− û(x))dx.

For arbitrary u ∈ K, there are only two possibilities : if u /∈ N(vj), then
ψi(u) = 0. On the other hand, for all 1 ≤ j ≤ n. That is, there exists at
least such an indice such that u ∈ N(vj), we have ψj(u) > 0. By de�nition
of N(vj), q(u) < 0 for every u ∈ K, but q(u) = 0 which is a contradiction.
Proof of the Theorem

We need the following Lemma to prove our theorem. Let F be an arbitrary
�nite dimensional subspace of X which intersect with K. Let iK∩F be the
canonical injection of K ∩ F in to K and i∗F be the adjoint of the canonical
injection i∗F of F into X. Then
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Lemma 3.34. The operator

B : K ∩ F −→ F ∗, B = i∗FAiK∩F

is continuous.

Proof. For any v ∈ K. set

S(v) =

{
u ∈ K : 〈Au, v − u〉+

∫
Ω
j0(x, û(x);P (û)(x)− û(x))dx

}
.

We need to show the following two conditions;
(I) S(v) is a closed set.
Since v ∈ S(v), S(v) 6= ∅. Let {un} ⊂ S(v) be an arbitrary sequence which
converges to u as n→∞. We need to prove that u ∈ S(v), by the part (a)
of Lemma 3.33 we have

0 ≤ lim sup
n→∞

[〈Aun, v − un〉+

∫
Ω
j0(x, ûn(x); v̂(x)− ûn(x))]dx,

= lim
n→∞

〈Aun, v − un〉+ lim sup
n→∞

∫
Ω
j0(x, ûn(x); v̂(x)− ûn(x))dx,

≤ 〈Au, v − u〉+

∫
Ω
j0(x, û(x); v̂(x)− û(x))dx.

which is equivalent to u ∈ S(v).
(II) The family {S(v); v ∈ K} has �nite intersection property
Let {v1, · · · , vn} be an arbitrary �nite subset of K, and let F be the linear
space spanned by this family. Applying Corollary 3.31 to the operator B
de�ned in lemma 3.34, we �nd u ∈ K ∩ F such that u ∈

⋂n
j=1 S(vj), which

means that the family of closed sets {S(v); v ∈ K} has the �nite intersection
property. But the set K is compact hence

⋂
v∈K S(v) 6= ∅, which implies the

problem (P) has at least one solution.

When we weaken the assumption and considering K to be a closed,
bounded and convex set, then the existence result is assured by extra as-
sumption on the operator A and T .

Theorem 3.35. Let X be a re�exive in�nite dimensional Banach space and
let T : X −→ Lp(Ω,Rk) be a linear and compact operator. Assume K is
closed, bounded and convex subset of X and A : K −→ X∗ is monotone and
continuous on �nite dimensional subspaces of K. If j satis�es the condition
(j) then the problem (P) has at least one solution.
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Proof. Let F be an arbitrary �nite dimensional subspace of X, which in-
tersect with K. Consider the canonical injection iK∩F : K ∩ F −→ K and
iF : F −→ X and let i∗F : X∗ −→ F ∗ be the adjoint of iF , applying Corol-
lary 3.31 to the continuous operator B = i∗FAiK∩F , we �nd some uF in the
compact set K ∩ F , such that for every v ∈ K ∩ F ,

〈i∗FAiK∩FuF , v − uF 〉+

∫
Ω
j0(x, ûF (x); v̂(x)− ûF (x))dx ≥ 0.

But
0 ≤ 〈Av −AuF , v − uF 〉 = 〈Av, v − uF 〉 − 〈AuF , v − uF 〉.

Now we can verify that 〈i∗FAiK∩FuF , v−uF 〉 = 〈AuF , v−uF 〉, and from the
above results we have that

〈Av, v − uF 〉+

∫
Ω
j0(x, ûF (x); v̂(x)− ûF (x))dx ≥ 0,

for any v ∈ K ∩ F . The set K is weakly closed as a closed convex set,
moreover it is weakly compact since it is bounded and X is a Banach space.
Now for every v ∈ K, de�ne

M(v) =

{
u ∈ K : 〈Av, v − u〉+

∫
Ω
j0(x, û(x); v̂(x)− û(x))dx ≥ 0

}
.

(3.10)
The set M(v) is weakly closed by the part (b) of lemma 3.33 and also
it is weakly sequentially dense. Now we need to show that the set M =⋂
v∈KM(v) ⊂ K is nonempty. To prove this it su�ces to show that

n⋂
j=1

M(vj) 6= ∅. (3.11)

for any v1, · · · , vn ∈ K. Let F be the �nite dimensional linear space spanned
by {v1, · · · , vn}. Hence by (3.10) there exists uF ∈ F such that for every
v ∈ K ∩ F

〈Av, v − uF 〉+

∫
Ω
j0(x, ûF (x); v̂(x)− ûF (x))dx ≥ 0. (3.12)

Thus uF ∈ M(vj) for every 1 ≤ j ≤ n, which implies (3.11). Consequently
it follows that M 6= ∅. Therefore there is some u ∈ K such that for every
v ∈ K

〈Av, v − u〉+

∫
Ω
j0(x, û(x); v̂(x)− û(x))dx ≥ 0. (3.13)
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Next we shall prove by (3.13) that u is a solution of problem (P ). Fix w ∈ K
and λ ∈ (0, 1). Putting v = (1− λ)u+ λw ∈ k in (3.13) we obtain

〈A((1− λ)u+ λw), λ(w − u)〉+

∫
Ω
j0(x, û(x);λ(ŵ − û)(x)dx ≥ 0. (3.14)

since j0(x, û;λv̂) = λj0(x, û; v̂), for any λ > 0, (3.14) can be written as

〈A((1− λ)u+ λw), (w − u)〉+

∫
Ω
j0(x, û(x); (ŵ − û)(x)dx ≥ 0. (3.15)

Let F be the vector space spanned by u and w. Taking into account the
demicontinuity of the operator AK∩F and passing to the limit in (3.15) as
λ→ 0, we have that u is a solution to (P).

Theorem 3.36. Consider the same hypothesis as in Theorem 3.35 without
the assumption of boundedness of K. Then the necessary and su�cient con-
dition for existence of solution for (P) is that there exists R > 0 with the
property that at least one solution of the problem

(P − 2)


uR ∈ K ∩ {u ∈ X; ‖u‖ ≤ R};
〈AuR, v − uR〉+

∫
Ω j

0, (x, ûR(x); v̂ − ûR(x))dx ≥ 0
for every v ∈ K with ‖v‖ ≤ R.

satis�es the inequality ‖uR‖ < R.

Proof. Observe that the set K ∩{u ∈ X; ‖u‖ ≤ R} is a closed, bounded and
convex in X. Moreover, from Theorem 3.35 it follows that problem (P − 2)
has at least one solution for any �xed R > 0. Which asserts the necessary
condition.
On the other hand, let us suppose there exists a solution uR of (P − 2) with
‖uR‖ < R. We prove that uR is solution of (P). For any �xed v ∈ K we
choose ε > 0 small enough so that w = uR + ε(v − uR) satis�es ‖w‖ < R.
Hence,

〈AuR, ε(v − uR)〉+

∫
Ω
j0(x, ûR(x); ε(v̂ − ûR)(x)dx ≥ 0.

Due to the positive homogeneity of the map v 7−→ j0(u; v), the conclusion
follows.
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3.3.3 Basic Elements of Critical Point Theory

In this section we introduce the basic elements of critical point theory for
nonsmooth functionals and present some related results.
Let I : X −→ R ∪ {∞} satisfy the structural hypothesis:

(H) I = Φ + Ψ, with Φ: X → R locally lipschitz, and,

Ψ: X −→ R ∪ {∞}, convex, lower semicontinuous, and proper (i.e. 6=∞),

where X is a real Banach space.
(3.16)

De�nition 3.37. An element u ∈ X is called a critical point of the func-
tional I : X −→ R ∪ {∞} satisfying (H) if

Φ0(u; v − u) + Ψ(v)−Ψ(u) ≥ 0, ∀v ∈ X.

The above de�nition can be equivalently expressed as follows.

Proposition 3.38. An element u ∈ X is a critical point of the functional
I : X −→ R ∪ {∞} satisfying (H) if and only if u ∈ D(∂Ψ) and

0 ∈ ∂Φ(u) + ∂Ψ(u),

where the notations ∂Φ(u) and ∂Ψ(u) stands for the generalized gradient
of Φ at u and the subdi�erential in the sense of convex analysis of Ψ at u
respectively, and D(∂Ψ) = {x ∈ X : ∂Ψ(x) 6= ∅}.

Proof. Assume that u ∈ X is a critical point. Then it satis�es the relation
in the above de�nition which is equivalent to

Φ0(u;w) + Ψ(w + u)−Ψ(u) ≥ 0, ∀w ∈ X.

It follows that 0 is a minimum point of the convex function

w 7−→ Φ0(u;w) + Ψ(w + u)−Ψ(u).

so u ∈ D(∂Ψ) and by using the subdi�erential calculus of convex functions,

0 ∈ ∂(Φ0(u; ·)+Ψ(·+u)−Ψ(u))(0) = ∂(Φ0(u; ·))(0)+∂Ψ(u) = ∂Φ(u)+∂Ψ(u).

Conversely, there exists ζ ∈ ∂Φ(u) and η ∈ ∂Ψ(u) such that 0 = ζ + η in X.
By de�nition of the corresponding generalized gradients, we obtain

Φ0(u; v − u) + Ψ(v)−Ψ(u) ≥ 〈ζ, v − u〉+ 〈η, v − u〉 = 〈ζ + η, v − u〉 = 0,

for all v ∈ X.
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Corollary 3.39. Let Φ: X −→ R be a locally Lipschitz function, and let K
be a nonempty, closed, convex subset of X. Let IK be the indicator function
of K. Then u ∈ K is a critical point of Φ + IK if and only if u ∈ K and
0 ∈ ∂Φ(u) +NK(u) where NK(u) = {η ∈ X∗ : 〈η, v− u〉 ≤ 0, ∀v ∈ K} is the
normal cone of K at u.

The proof is similar to the proof of proposition 3.38 replacing Ψ by IK .

Example 3.40. Every local minimum u ∈ X of a nonsmooth functional
I : X −→ R∪{∞} satisfying (H) with I(u) < +∞ is a critical point. Indeed,
if u ∈ X with I(u) < +∞ is a local minimum of I then from convexity of Ψ
for any v ∈ X and a small t > 0 we have

0 ≤ I(u+ t(v − u))− I(u) ≤ Φ(u+ t(v − u))− Φ(u) + t(Ψ(v)−Ψ(u)).

Dividing by t and letting t→ 0+, we deduce that u satis�es the de�nition.

De�nition 3.41. The functional I : X −→ R ∪ {∞} with (H) is said to
satisfy the Palais-Smale condition ( for short,(PS)) if every sequence(un) ⊂
X such that (I(un)) is bounded in R and

Φ0(un; v − un) + Ψ(v)−Ψ(un) ≥ −εn‖v − un‖, ∀v ∈ X,

for a sequence (εn) with εn ↓ 0 contains a strong convergent subsequence.

Lemma 3.42. Let χ : X −→ R ∪ {∞} be a lower semicontinuous, convex
function with χ(0) = 0. If

χ(x) ≥ −‖x‖, ∀x ∈ X.

Then z ∈ X∗ exists such that ‖z‖X∗ ≤ 1 and

χ(x) ≥ 〈z, x〉, ∀x ∈ X.

Proof. Consider the following convex subsets A and B of X × R :

A = {(x, t) ∈ X × R : ‖x‖ < −t} and B = {(x, t) ∈ X × R : χ(x) ≤ t}.

Note that: A is an open set and due to the condition χ(x) ≥ −‖x‖, one has
A ∩ B = ∅. A well known separation result yields the existence of α, β ∈ R
and ω ∈ X∗ such that (ω, α) 6= (0, 0)

〈ω, x〉 − αt ≥ β, ∀(x, t) ∈ A,
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and
〈ω, x〉 − αt ≤ β, ∀(x, t) ∈ B.

We see that β = 0 because (0, 0) ∈ Ā∩B , set t = −‖x‖ in the �rst inequality
above. It follows that 〈ω, x〉 ≥ −α‖x‖,∀x ∈ X, which implies α > 0 and
‖ω‖X∗ ≤ α. Set z = α−1ω using t = χ(x), we deduce that

〈z, x〉 ≤ χ(x), ∀x ∈ X,
as ‖ω‖X∗ ≤ α, thus we obtain ‖z‖X∗ ≤ 1.

Theorem 3.43. Assume that the function I = Φ + Ψ : X −→ R∪ {∞} sat-
is�es hypothesis (H), is bounded from below, and veri�es the (PS) condition.
Then there exists x ∈ X such that I(u) = infX I ∈ R and u is a critical point
of I.

Proof. Denote m = infXI ∈ R. There exists a minimizing sequence (un) ⊂
X such that

I(un) < m+ ε2n,

for a sequence (εn) of positive numbers,with ε ↓ 0 . Applying Ekeland's
variational principle to the function I, a sequence (vn) ⊂ X exists such that

I(vn) < m+ ε2n,

and
I(v) ≥ I(vn)− εn‖vn − v‖, ∀v ∈ X,∀n ∈ N.

Setting v = (1 − t)vn + tw in the above inequality , for arbitrary 0 < t < 1
and w ∈ X , we obtain

Φ((1−t)vn+tw)+Ψ(((1−t)vn+tw) ≥ Φ(vn)+Ψ(vn)−εnt‖vn−v‖, ∀w ∈ X.
The convexity of Ψ : X −→ R ∪ {∞} yields
Φ((1−t)vn+tw)−tΨ(vn)+tΨ(w) ≥ Φ(vn)−εnt‖vn−v‖, ∀w ∈ X,∀t ∈ (0, 1)

Dividing by t and letting t ↓ 0 we deduce that for all w ∈ X, we obtain

Φ0(vn;w − vn) + Ψ(w)−Ψ(vn)

≥ lim sup
t↓0

1

t
(Φ(vn + t(w − vn))− Φ(vn) + Ψ(vn) ≥ −εn‖w − vn‖.

On the other hand, we have Φ(vn) + Ψ(vn) → m as n −→ ∞. Then
the (PS) condition implies that along a relabelled subsequence un → u in
X, for some u ∈ X. The lower semicontinuity of I yields

I(u) ≤ lim inf
n→∞

I(Vn) ≤ m,

so I(u) = m and u satis�es de�nition of critical point.
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3.3.4 Variational-Hemivariational Inequality Problems with

Lack of Convexity

In this section we present an abstract result in connection with the well
known KKM principle.

Let X be a real Banach space, (S, µ) be a �nite positive measure space,
A : X → X∗ an operator. We assume a compact mapping γ : X → Lp(S;Rm),
and q be the conjugate of p. If Φ: X → R is locally lipschitz functional. Let
j : S × Rm → R be a function such that for any y ∈ Rm the mapping
j(·, y) : S → R is measurable.
In the following condition we assumed at least one holds; either there exists
k ∈ Lq(S,R such that

|j(x, y1)− j(x, y2)| ≤ k(x)|y1 − y2|, ∀ ∈ S,∀y1, y2 ∈ Rm, (3.17)

or the mapping j(x, ·) is locally lipschitz, ∀x ∈ S, and there exists C > 0
such that

|z| ≤ C(1 + |y|p−1), ∀y1, y2 ∈ Rm, ∀z ∈ ∂j(x, y). (3.18)

Let K ⊂ X be a nonempty closed and convex, f ∈ X∗ and Ψ: X → R ∪
{+∞} convex, lower semicontinuous functional such that

D(Ψ) ∩K 6= ∅. (3.19)

Now consider the problem: Find u ∈ K

〈Au− f, v − u〉+ Ψ(v)−Ψ(u)

+

∫
S
j0(x, γ(u(x)); γ(v(x)− u(x))dµ ≥ 0, ∀v ∈ K.

(3.20)

consider the two practical cases as follows:
(i) T = Ω, µ = dx, X = W 1,q(Ω,Rm) and γ : X → Lp(Ω,Rm), is sobolev
embedding operator;
(ii) T = ∂Ω, µ = dσ, X = W 1,p(Ω,Rm), and γ = i ◦ η, where η : X →
W

1− 1
p
,p

(∂Ω,Rm) is the trace operator and i : W 1− 1
p
,p

(∂Ω,Rm)→ Lp(∂Ω,Rm)
is embedding operator.

Lemma 3.44. LetK ⊂ X be nonempty,closed, bounded, and convex, Ψ: X →
R ∪ {+∞} convex, lower semicontinuous functional such that(3.19) holds.
Consider a Banach Space Y such that L : X → Y be linear and compact,
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and J : Y → R be locally lipschitz function. In addition suppose that the
mapping K 3 v 7→ 〈Av, v − u〉 is weakly lower semicontinuous, for every
u ∈ k. Then for every f ∈ X∗, there exists u ∈ K such that

〈Au− f, v − u〉+ Ψ(v)−Ψ(u) + J0(L(u);L(v − u)) ≥ 0, ∀v ∈ K. (3.21)

The proof is based on the Knaster-Kuratowski-Mazurkiewicz ( in short,
KKM ) principle. Let E be a vector space, and A ⊂ E is called �nitely closed
if its intersection with any �nite dimensional linear variety L ⊂ E is closed
in the Euclidean topology of L. Let X be an arbitrary subspace of E.

A function G : X → 2E is called a KKM-mapping if

conv{x1, · · · , xn} ⊂
n⋃
i=1

G(xi),

for any �nite set {x1, · · · , xn} ⊂ X.

The KKM Principle Let E be a vector space, X be an arbitrary
subspace of E, and G : X → 2E KKM-mapping such that G(x) is �nitely
closed for any x ∈ X. Then the family {G(x)}x∈X has the �nite intersection
property.

Proof. Assume by contradiction, let x1, · · · , xn ∈ X be such that
⋂n
i=1G(xi) =

∅. Let L be a linear manifold spanned by the set {x1, · · · , xn}, thus

conv{x1, · · · , xn} ⊂ L.

Let d be the Euclidean metric on L, since L ∩ G(xi) is closed in L, it fol-
lows that d(x, L ∩ G(xi)) = 0 if and only if x ∈ L ∩ G(xi). Now de�ne
λ : conv{x1, · · · , xn} → R by

λ(u) =

n∑
i=1

d(u, L ∩G(xi),∀u ∈ conv{x1, · · · , xn}.

From our assumption, we obtain

n⋂
i=1

L ∩G(xi) = ∅.

Which implies λ(u) 6= 0, for any u ∈ conv{x1, · · · , xn}. Then we can de�ne
a continuous function

f : conv{x1, · · · , xn} → conv{x1, · · · , xn}
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by

f(u) =
1

λ(u)

n∑
i=1

d(u, L ∩G(xi)xi

By Brouwer's theorem we assured the existence of a �xed point u0 ∈ conv{x1, · · · , xn}
of f . Set

I = {i : d(u0, L ∩G(xi)) 6= 0}.

Then u0 will not belongs to
⋃
i∈I G(xi). On the other hand

u0 = f(u0) ∈ conv{xi : i ∈ I} ⊂
⋃
i∈I

G(xi).

which is a contradiction, hence the proof holds.

Proof of Lemma 3.44 De�ne the set-valued mapping G : K ∩D(Ψ)→
2X by

G(x) = {v ∈ K ∩D(Ψ) : 〈Av − f, v − x〉

−J0(L(v);L(x)− L(v)) + Ψ(v)−Ψ(x) ≤ 0}.

We claim that G(x) is weakly closed. Indeed, if G(x) 3 vn ⇀ v then

〈Av, v − x〉 ≤ lim inf
n→∞

〈Avn, vn − x〉,

and
Ψ(v) ≤ lim inf

n→∞
Ψ(vn).

In addition, L(vn)→ L(v) and by upper semicontinuity of J0, we also have

lim sup
n→∞

J0(L(vn;L(x− vn)) ≤ J0L(L(v);L(x− v)).

Therefore,

−J0(L(v);L(x− v)) ≤ lim inf
n→∞

(−J0(L(vn);L(x− vn)).

If vn ∈ G(x) and vn ⇀ v, then

〈Av − f, v − x〉 − J0(L(v);L(x− v)) + Ψ(v)−Ψ(x)

≤ lim inf{〈Avn − f, v − x〉

−J0(L(vn);L(x− vn)) + Ψ(v)−Ψ(x)} ≤ 0,
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which implies v ∈ G(x). Since K is bounded, it follows that G(x) is weakly
compact. This shows that ⋂

x∈K∩D(Ψ)

G(x) 6= ∅,

provided the the family {G(x) : x ∈ K ∩ D(Ψ)} has the �nite intersection
property. By using the KKM principle after showing G is a KKM-mapping.
Suppose by contradiction that there exists x1, · · · , xn ∈ K ∩D(Ψ) and y0 ∈
conv{x1, · · · , xn} such that y0 /∈

⋃n
i=1G(xi). Then

〈Ay0 − f, y0 − xi〉+ Ψ(y0)−Ψ(xi)− J0(L(y0;L(xi − y0)) > 0,

for all i = 1, · · · , n. Therefore, xi ∈ ∆, ∀i ∈ {1, · · · , n}, where

∆ := {x ∈ X; 〈Ay0− f, y0−xi〉+ Ψ(y0)−Ψ(xi)−J0(L(y0;L(xi− y0)) > 0}.

The set ∆ is convex and hence y0 ∈ ∆, which is a contradiction. Therefore,⋂
x∈K∩D(Ψ)

G(x) 6= ∅.

This gives an element u ∈ K ∩D(Ψ) such that;

〈Au− f, v − u〉+ Ψ(v)−Ψ(u)− J0(L(u;L(v − u)) > 0, ∀v ∈ K ∩D(Ψ).

The conclusion follows.

Remark 3.45. • Using the hypothesis in Lemma 3.44 Motreanu and
R�adulescu [3] proved the existence of at least one solution to the prob-
lem (3.20) for the case when Y = Lp(S;Rm), L = γ, and J is de�ned
as

J(u) =

∫
S
j(x, u(x))dµ

and when K is unbounded they also proved existence with coercievity
condition. Moreover, for monotone and hemicontinuous operators the
problem (3.21) has a solution using the result due to Mosco's theorem
[6].

• Many scholars working in the varational-hemivariational inequality prob-
lems discovered related results by employing di�erent approaches. For
example, recently using the principle of symmetric criticality (which
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states that it is enough to study the existence of critical points of a given
function on a certain subspace, not on the whole space) will be applied
for functions satisfying (3.16) studied on certain unbounded strip [1]
and existence results on unbounded domains with smooth boundary [12].

• The theory of variational and hemivariational inequalities are active
area of research and could solve many open problems in mechanics and
engineering. Interested readers are motivated to refer monographs of
P. D. Panagiotopoulos [20],[19], and D. Motreanu and P. D. Pana-
giotopoulos [2], and related materials.
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