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Chapter 1

Introduction

The aim of the following thesis will be investigation the Moore-Penrose (gen-
eralized) inverses of matrices by different iteration processes.

1.1 The necessity of iteration processes for a

matrix inverse

Except usual ways of calculating a matrix inverse, there are methods which
compute it iteratively. A reasonable question would be why these iterative
methods would be needed, especially when having in mind that by using
them we cannot get an exact answer, only an approximation. In reply to this
question, one should consider the role that computers play in mathemat-
ics nowadays. Using computers for the computation of different numerical
problems started in 1950s and 1960s. Nowadays it is hard to imagine that
one can solve complex numerical problems without using some kind of com-
puter language programs. Without doubt, computers had their enormous
contribution to the field of mathematics. Yet, using them in mathematics
is not without problems. Generally, as it turned out, computer programs
cannot give an exact numerical value of division of two numbers if it has
long fractional part. In that case a programming language always rounds
it. For example 1000000/999999 = 1.000001000001 . . . In this case most of
computer programs would give as an output: 1. But why is it so important
to compute problems exactly, when in most cases we do not need the exact
numerical results. For example: For a mathematical problem instead of using
value 1.999999999999 we can round it and take number 2. In many cases this
would not have a substantial influence on the solution. In some situations,
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however, it can considerably damage the final outcome. Below is presented
an example of this situation.
The following is from [3].
Consider the system: {

0.001x+ y = 1
x+ y = 2

We see that the solution is x = 1000/999 ≈ 1, y = 998/999 ≈ 1 which does
not change much if the coefficients are altered slightly.
Let us solve this system of equations by usual row reduction algorithm.
Adding a multiple of the first to the second row gives the system on the
left below, then dividing by 999 and rounding to 3 places on 998/999 =
0.99899 ≈ 1.00 gives the system on the right:{

0.001x+ y = 1
−999y = −998

{
0.001x+ y = 1
y = 1.00

The solution for the last system is x = 0, y = 1 which is wildly inaccurate.
But as we know this row reduction algorithm is quite usable for solving
systems of linear equations by different computer programs. Having this in
mind, a reasonable question would be: Why does a problem of correctness
appear in some equations? On what does it depend? How can we avoid it?
This paper will respond to these questions.
The main problem is ill-conditioning. When a matrix is ill-conditioned, a
modern computer may not be able to work with it. The main indicator of
measuring ill-conditioning is the condition number. If the condition number
is not too big, then we can say that a matrix is well-conditioned.

Definition 1.1.1. Condition number for square matrix A is

K(A) = ‖A‖op · ‖A−1‖op.

In our presented example the condition number for the initial matrix

A =

(
0.001 1

1 1

)
is equal K(A) ≈ 4. After using row reduction algorithm

the initial matrix A is transformed into a new matrix B =

(
0.001 1

0 1

)
,

note that the condition number has increased significantly K(B) ≈ 2002.
Thus, we can conclude that the computer property of rounding long frac-
tional parts of numbers can change the solution significantly. Therefore, in
order to avoid these troubles, there exist iterative methods of computing in-
verses of matrices. In my thesis, I will discuss several of them.
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1.2 Iterative methods for the Moore-Penrose

pseudoinverse

For a matrix beside the usual matrix inverse there exist other inverses. In
this thesis I will discuss the Moore-Penrose pseudoinverse. I took this para-
graph from [6] verbatim. [The great advantage of this inverse is that every
matrix has one, square or not, full rank or not. The idea of a generalized
inverse of a singular matrix goes back to E.H. Moore in a paper published
in 1920. He investigated the idea of a ”general reciprocal” of a matrix again
in a paper in 1935. Independently, R. Penrose rediscovered Moore’s idea in
1955].
A main use of the MoorePenrose inverse is to compute a least squares solu-
tion(see definition below) for a system of linear equations that lacks a unique
solution. It is also used to find the minimum (Euclidean) norm solution(see
definition below) to a system of linear equations with multiple solutions.

Definition 1.2.1. (minimum norm)[6] We say x0 is a minimum norm
solution of Ax = b iff x0 is a solution and ‖x0‖ ≤ ‖x‖ for all solutions x of
Ax = b.

Definition 1.2.2. (least square)[6] A vector x0 is called a least squares
solution of the system of linear equations Ax = b iff ‖Ax0 − b‖ ≤ ‖Ax − b‖
for all vectors x.

I took this paragraph from [6] verbatim. When Ax = b has a solution,
A+b is the solution of minimum norm. When Ax = b does not have a so-
lution, A+b gives the least squares solution of minimum norm. (by A+ we
denote A matrix’s pseudoinverse)
There are several methods of computing the Moore-Penrose inverse. The
mostly used are: ”Singular Value Decomposition(SVD)” and ”QR Factoriza-
tion”. During the process of computing SVD and QR factorization methods
for getting the Moore-Penrose inverse of a matrix, we may get a matrix which
will be ill-conditioned and after this a computer might give as an output a
result which will be significantly different from the actual result. Therefore,
scientists started investigating iteration processes in order to avoid this kind
of problems. The pioneers of exploring iterative methods of pseudoinverse
were Adi Ben-Israel and Dan Cohen. They published their first article about
it in 1966 and nowadays many people are working with it. There are many
papers and articles connected to iteration processes of the Moore-Penrose
inverse.
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In this thesis one can see different iterative methods for computing the
pseudoinverse, charts and numerical results of them for different parameters,
as well as exploring each process by searching parameters, and comparison
of different iterative methods.
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Chapter 2

Iterative methods for a regular
matrix inverse

The following section is based on [7].

2.1 Gauss-Seidel iterative method

Consider the system of n linear equations:

n∑
q=1

apqxq = bq, 1 ≤ p ≤ n

The Gauss-Seidel method is:

xr+1
p = − 1

app
[

p−1∑
q=1

apqx
r+1
q +

n∑
q=p+1

apqx
r
q − bp].

It is known that Gauss-Seidel iterative method is convergent if and only if
the matrix An×n = [apq] is symmetric and positive-definite.
Let us now consider the system of linear equations

CX = D.

Suppose C is regular, but not positive definite, so the Gauss-Seidel method
is not convergent. Let us multiply the equation by CT from the left. We get

AX = B,

where A = CTC and B = CTD. Notice that A is both symmetric and
positive-definite. Truly:
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Symmetricity: AT = (CTC)T = CTCTT = CTC = A.
Positive definiteness: yTAy = yTCTCy = (Cy)TCy > 0 for non zero y.
Therefore we can apply Gauss-Seidel iterative method for the equation AX =
B, which is convergent and the result yields the solution of the equation
CX = D.
We can use this technique for finding C−1.
It is the solution of CX = I, so the solution of AX = CT , where A = CTC.
We solve the equation AX = CT column by column using the Gauss-Seidel
iterative method.

2.2 Newton’s iterative method

Let A ∈ Rn×n. If A is invertible then with suitable starting matrix X0 the
following iteration process is convergent to A−1.

Xn+1 = Xn(2I − AXn).

In fact it is convergent if the eigenvalues of I−AX0 are at most 1. According
to Victor Pan and Robert Schreiber [4], a good starting matrix is

X0 =
A∗

‖A‖1‖A‖∞
,

where
‖A‖1 = max

i
(
∑
j

|aij|),

‖A‖∞ = max
j

(
∑
i

|aij|).

8
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Chapter 3

The Moore-Penrose
pseudoinverse

3.1 Description of the Moore-Penrose pseu-

doinverse

Definition 3.1.1. (The Moore-Penrose inverse)[6]
Let A be any matrix in Cm×n. We say A has The Moore-Penrose inverse(or
just Pseudoinverse for short) if and only if there is a matrix A+ in Cm×n

such that

a) AA+A = A
b) A+AA+ = A+

c) (AA+)∗ = AA+

d) (A+A)∗ = A+A.

Theorem 3.1.2. [6]For any matrix A ∈ Cm×n there always exists the
Moore-Penrose inverse which is unique.

(Proof is not discussed here.)

Theorem 3.1.3. [6]If a matrix is invertible then inverse of this matrix is
equal to its pseudoinverse.

(Proof is not discussed here.)

Theorem 3.1.4. [6]Let A ∈ Cm×n. Then

9
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1. (AA+)2 = AA+ = (AA+)∗.
2. (Im − AA+)2 = A+A = (A+A)∗.
3. (A+A)2 = A+A = (A+A)∗.
4. (In − A+A)2 = (In − A+A) = (In − A+A)∗.
5. A++ = A.
6. (A∗)+ = (A+)∗.
7. (A∗A)+ = A+A∗+.
8. A∗ = A∗AA+ = A+AA∗.
9. A+ = (A∗A)+A∗ = A∗(AA∗)+.

3.2 Singular Value Decomposition(SVD)

Singular Value Decomposition method is factorization of matrices in the com-
plex space.

Definition 3.2.1. [6]A square matrix X ∈ Cn×n is unitary if

X∗X = XX∗ = In×n,

where X∗ is conjugate transpose of X and In×n is identity matrix of dimen-
sion n.

Remark: In other words, U is a unitary matrix iff U∗ = U−1.

Theorem 3.2.2. [8]Let A be m×n matrix (m ≥ n) of rank r. Then A can
be represented in the following form:

A = UΣV ∗ = U


δ1 . . . 0 0
...

. . .
...

...
0 . . . δr 0
0 0 0 0

V ∗. (3.1)

Where U is a m × m unitary matrix, Σ = diag(δ1, δ2, . . . , δr) δ1 > 0, δ2 >
0 . . . δr > 0 is a n×n rectangular diagonal matrix with nonnegative elements,
V is a n× n unitary matrix.

(The proof of the following theorem is beyond the scope of this thesis.)
Define:

X = V Σ+U∗ = V


1
δ1

. . . 0 0
...

. . .
...

...
0 . . . 1

δr
0

0 0 0 0

U∗. (3.2)
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Theorem 3.2.3. [8]X is Moore-Penrose inverse of the matrix A, A+ = X.

Proof. We have to check the four conditions of the Moore-Penrose inverse.

1) AXA = A.
AXA = UΣV ∗V Σ+U∗UΣV ∗ = UΣIn×nΣ+Im×mΣV ∗ = UΣΣ+ΣV ∗

= UΣV ∗.

2) XAX = X.
XAX = V Σ+U∗UΣV ∗V Σ+U∗ = V Σ+Im×mΣIn×nΣ+U∗

= V Σ+ΣΣ+U∗ = V Σ+U∗ = X.

3) (XA)∗ = XA.
(XA)∗ = (A)∗(X)∗ = (UΣV ∗)∗(V Σ+U∗)∗ = (V Σ∗U∗)(U(Σ+)∗V ∗)
= (V ΣU∗)(UΣ+V ∗) = XA.

4) (AX)∗ = AX.
(AX)∗ = (X)∗(A)∗ = (V Σ+U∗)∗(UΣV ∗)∗ = (U(Σ+)∗V ∗)(V Σ∗U∗)
= (UΣ+V ∗)(V ΣU∗) = AX.

3.3 QR factorization

Theorem 3.3.1. (QR factorization)[6] Let A ∈ Cm×n, with n ≤ m. Then
there is a matrix Q ∈ Cm×n with orthonormal columns and an upper tri-
angular matrix R in Cn×n such that A = QR. Moreover, if n = m, Q is
square and unitary. Even more, if A is square and nonsingular, R may be
selected so as to have positive real numbers on the diagonal. In this case, the
factorization is unique.

(The proof of the following theorem is beyond the scope of this thesis.)

Lemma 3.3.2. [6]If A is of full column rank then A∗A is regular.

Theorem 3.3.3. [6]A+ = (A∗A)−1A∗.

Proof. Let us check the conditions of the pseudoinverse.

11
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1) AA+A = A(A∗A)−1(A∗A) = A.

2) A+AA+ = (A∗A)−1(A∗A)(A∗A)−1A∗ = (A∗A)−1A∗ = A+.

3) (A+A)∗ = ((A∗A)−1A∗A)∗ = (In×n)∗ = In×n = (A∗A)−1(A∗A)
= ((A∗A)−1A∗)A) = A+A.

4) (AA+)∗ = (A(A∗A)−1A∗)∗ = (A∗)∗((A∗A)−1)∗A∗ = A((A∗A)∗)−1A∗

= A(A∗A)−1A∗ = AA+.

Consider the case when A is full rank. Then by the theorem of factoriza-
tion A can be factorized of the following form A = QR whereQ andR are uni-
tary and upper triangular matrices. A∗ = R∗Q∗ ⇒ A∗A = R∗Q∗QR = R∗R.
If we substitute the last result into the formula of A+, we will get:

A+ = (A∗A)−1A∗ = (R∗R)−1A∗.

When A is not full rank then A can be factorized of the following form

A = [Q1, Q2]

[
R1

0

]
= Q1R1.

Where R is upper triangular and Q ∈ Rm×m is orthogonal. Here Q1 ∈ Rm×n.
The decomposition A = Q1R1 is called the economy QR factorization. For
economy QR factorization the pseudoinverse has the following form

A+ = R−11 Q∗1.

12
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Chapter 4

Iterative methods for the
Moore-Penrose matrix inverse

The following section is based on [5].

4.1 Iterative method for computing the Moore-

Penrose inverse based on Penrose equa-

tions

Assume A ∈ Cm×n and X = A+ ∈ Cm×n, as we know

X∗ = (XAX)∗ = X∗(XA)∗ = X∗XA.

For arbitrary β ∈ R it holds

X∗ = X∗ − β(X∗XA−X∗) = X∗(I − βXA) + βX∗.

Equivalently
X = (I − βXA)∗X + βX.

We can formulate the following iteration process

Xk+1 = (I − βXkA)∗Xk + βXk. (4.1)

Let us assume that the starting value for the iterative method (4.1) is

X0 = βA∗. (4.2)

Lemma 4.1.1. For the sequence generated by (4.1) and (4.2) the following
holds.

XkA = (XkA)∗, XAXk = Xk, XkAX = Xk, k ≥ 0. (4.3)
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Proof. In order to prove the equations, we use induction.
For k = 0 the statement is true: X0A = βA∗A = (βA∗A)∗ = (X0A)∗. Let us
assume XkA = (XkA)∗ for k. Then

(Xk+1A)∗ = ((I − βXkA)∗XkA+ βXkA)∗

= (XkA)∗(I − βXkA) + β(XkA)∗

= XkA(I − βXkA) + βXkA

= (I − βXkA)∗XkA+ βXkA

= Xk+1A.

We proved the first statement of Lemma. Similarly we prove the second one.

For k = 0, XAX0 = βXAA∗ = βA∗ = X0.
Assume the second statement of Lemma holds for k. Let us prove it for k+1:

XAXk+1 = XA(I − βXkA)∗Xk + βXAXk

= XAXk − βXAXkAXk + βXAXk

= Xk − βXkAXk + βXk

= Xk+1.

Similarly we prove the third statement of the lemma.

For k = 0, X0AX = βA∗AX = βA∗ = X0.
Assume it holds for k. For k + 1:

Xk+1AX = (I − βXkA)∗XkAX + βXkAX

= (I − βXkA)∗Xk + βXk

= Xk+1.

By using Lemma 4.1.1 equation (4.1) can be rewritten in the following
form:

Xk+1 = (I − βXkA)Xk + βXk = (1 + β)Xk − βXkAXk. (4.4)

Theorem 4.1.2. Iterative method (4.4) with the starting value (4.2) con-
verges to the Moore-Penrose inverse X = A+ under the assumptions

‖(X0 −X)A‖ < 1, 0 < β 6 1. (4.5)

For β < 1 the method has a linear convergence, when β = 1 its convergence
is quadratic. The first and the second order terms, corresponding to the error
estimation of (4.4) are equal to:

error1 = (1− β)Ek, error2 = −βEkAEk. (4.6)

14
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Proof. For the first part of the theorem it is sufficient to show that ‖(X0 −
X)A‖ → 0 when n → +∞. Using (4.3) and the properties of the pseudoin-
verse, we obtain

‖Xk+1 −X‖ = ‖Xk+1AX −XAX‖ ≤ ‖Xk+1A−XA‖‖X‖. (4.7)

Using (4.3) and (4.4) we obtain

Xk+1A−XA = (1 + β)XkA− βXkAXkA−XA
= −(βXkA−XA)(XkA−XA).

Taking into account

βXkA−XA = β(XkA−XA)− (1− β)XA,

and using (4.3) we have

Xk+1A−XA = −β(XkA−XA)2 + (1− β)(XkA−XA).

Let us define Ek = Xk − X, then the last statement can be written in the
following form

Ek+1A = −β(EkA)2 + (1− β)EkA. (4.8)

Let tk = ‖EkA‖. Our aim is to show that tk → 0 when k → +∞. First we
show that tk < 1. We will show it by using induction. From (4.5) we get
t0 = ‖(X0−X)A‖ < 1. Now let us assume that tk < 1. From (4.8) we obtain

tk+1 ≤ β(tk)
2 + (1− β)tk < βtk + (1− β)tk = tk. (4.9)

We have proved tk+1 ≤ tk < 1. Therefore tk is a decreasing sequence, which
is bounded tk ≥ 0. Therefore we know that this sequence is convergent,
tk → t, when k → +∞, for some 0 ≤ t < 1. If we take limit on both sides of
(4.9), we get

t ≤ βt2 + (1− β)t =⇒ 0 ≤ t(t− 1).

Hence t ≥ 1 or t = 0, and therefore we conclude t = 0. It completes the
proof of tk → 0 .
By (4.7), ‖Xk −X‖ ≤ tk‖X‖, so we conclude Xk → X. We proved the first
part of the theorem.
Substituting X + Ek = Xk in (4.4), we obtain the following expression for
the error matrix Ek:

Ek+1 = (1 + β)Ek − βXAEk − βEkAX − βEkAEk,

15
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which implies

error1 = (1 + β)Ek − βXAEk − βEkAX.

error2 = −βEkAEk.
Using Lemma 4.1.1 and Ek = Xk −X we get

error1 = (1 + β)(Xk −X)− βXA(Xk −X)− β(Xk −X)AX

= (1− β)(Xk −X) = (1− β)Ek.

All claims of the theorem are justified.

Lemma 4.1.3. Let ε > 0 and M ∈ Cn×n be given. There exist minimum
one matrix norm ‖ · ‖ such that

ρ(M) ≤ ‖M‖ ≤ ρ(M) + ε.

Where
ρ(M) = max(|λ1(M)|, |λ2(M)|, . . . , |λn(M)|).

Lemma 4.1.4. If matrices S, P ∈ Cn×n are such that PS = SP, P = P 2

then
ρ(PS) ≤ ρ(S).

Lemma 4.1.5. Let us assume that the eigenvalues of A∗A satisfy

lambda1(A
∗A) ≥ · · · ≥ lambdar(A

∗A) = · · · = lambdan(A∗A) = 0.

Then ρ((βA∗ −X)A) < 1 is satisfied under the assumption

max
1≤i≤r

|1− βλi(A∗A)| < 1.

Let us denote sk = ‖Ek‖ and dk = ‖Ek+1 − Ek‖.

Theorem 4.1.6. Iterative method (4.4) with starting value (4.2) satisfies

lim
k→∞

tk+1

tk
= lim

k→∞

sk+1

sk
= lim

k→∞

dk+1

dk
= 1− β.

Proof. From (4.8)

Ek+1A = −β(EkA)2 + (1/β)EkA,

we can conclude

tk+1 = ‖Ek+1A‖ ≥ ‖(1− β)EkA‖ − ‖β(EkA)2‖
≥ (1− β)‖EkA‖ − β‖EkA‖2 = tk(1− β − βtk).
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On the other hand

tk+1 = ‖Ek+1A‖ ≤ ‖(1− β)EkA‖+ ‖β(EkA)2‖
≤ (1− β)‖EkA‖+ β‖EkA‖2 = tk(1− β + βtk).

From these two inequalities we imply

1− β − βtk ≤
tk+1

tk
≤ 1− β + βtk.

From Theorem (4.1.2) we know that tk = ‖EkA‖ → 0. If we take limit of
the previous equation we get that tk+1/tk → 1− β, when k →∞.
By using Theorem (4.1.2) we can write

Ek+1 = (1− β)Ek − βEkAEk.

The previous equation implies

1− β − βtk
‖EkAEk‖
‖Ek‖

≤ ‖Ek+1‖
‖Ek‖

≤ 1− β + β
‖EkAEk‖
‖Ek‖

(4.10)

From ‖EkAEk‖ ≤ ‖Ek‖2‖A‖ and ‖Ek‖ → 0 , it follows

0 ≤ lim
k→∞

‖EkAEk‖
‖Ek‖

≤ lim
k→∞
‖Ek‖‖A‖ = 0.

If we take limit on both sides of (4.10) and use the previous equation, then
we conclude sk+1/sk → 1− β, when k →∞.
In order to verify the third statement about the sequence dk, we are starting
by using Xk+1 −Xk = Ek+1 − Ek and (4.6) which together imply
dk = ‖Ek+1 − Ek‖ = ‖(1− β)Ek − βEkAEk − Ek‖ = β‖Ek + EkAEk‖.
Analogously to the above, we get

lim
k→∞

dk
sk

= lim
k→∞

dk
‖Ek‖

= β.

We obtain

lim
k→∞

dk+1/sk+1

dk/sk
= 1,

this implies

lim
k→∞

dk+1

dk
= lim

k→∞

dk+1/sk+1

dk/sk
· sk+1

sk
= 1− β.

17
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The following section is based on [1].

4.2 On Iterative Computation of Generalized

Inverses and Associated Projections

Let A ∈ Cm×n be a nonzero matrix. Let r denote the rank of A. Let
λ1(A

∗A) ≥ λ2(A
∗A) ≥ . . . ≥ λn(A∗A) be the eigenvalues of A∗A. As it is

known λr(A
∗A) > 0 and λi(A

∗A) = 0, i = r + 1, . . . n. In this section we
will use the Euclidean matrix norm ‖A‖ =

√
λ1(A∗A).

Theorem 4.2.1. Let α ∈ R satisfy

0 < α <
2

λ1(A∗A)
, (4.11)

then the sequence

Xk = α
k∑
p=0

A∗(1− αAA∗)p, k = 0, 1, . . . (4.12)

converges to A+ when k →∞.

(Proof is a consequence of theorems 4.2.3, 4.2.4 and 4.2.5.)

Theorem 4.2.2. Let us assume condition (4.11) Then the sequence

Y0 = αA∗, (4.13)

Yk+1 = Yk(2I − AYk), k = 0, 1, . . . . (4.14)

converges to A+ when k →∞.

(Proof is a consequence of theorem 4.2.5.)

Theorem 4.2.3. (a) The process (4.12) is of the first order

‖A+ −Xk+1‖ < ‖A+ −Xk‖. (4.15)

(b) The process (4.14) is of the second order

‖A+ − Yk+1‖ < ‖A‖‖A+ − Yk‖2. (4.16)
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Proof. (a)

Xk+1 = α

k+1∑
p=0

A∗(1− αAA∗)p

= αA∗ + α

k+1∑
p=1

A∗(I − αAA∗)p

= αA∗ + (α
k∑
p=0

A∗(I − αAA∗)p)(I − αAA∗)

= αA∗ +Xk(I − αAA∗).

(4.17)

From the last statement consider with A+AA∗ = A∗, we get

A+ −Xk+1 = A+ − αA∗ −Xk(I − αAA∗)

= (A+ −Xk)(I − αAA∗), k = 1, 2 . . .

(4.18)

which, because of condition (4.11) proves (4.15).

Now, let us prove the second part of the theorem.
Notice, that Yk = YkAA

+ = A+AYk, because Yk = CkA
∗ for some matrix Ck

and at the same time Yk = A∗Bk for some matrix Bk. k = 0, 1, . . .
Therefore the following statement holds:

A+ − Yk+1 = A+AA+ − Yk − Yk + YkAYk

= A+AA+ − A+AYk − YkAA+ + YkAYk

= (A+ − Yk)A(A+ − Yk).
(4.19)

If we take norm on both sides of the previous equation we get (b).

Theorem 4.2.4. The following statement holds

Yk = X2k−1. (4.20)

(Proof is derived by using induction on k.)
Remark. By using Euler’s Identity

(1 + x)
k−1∏
p=1

(1 + x2
p

) =
2k−1∑
p=0

xp, |x| < 1 (4.21)
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and 4.20, we obtain:

Yk = αA∗[I + (I − αAA∗)]
k−1∏
p=1

[I + (I − αAA∗)2p ], (4.22)

which converges to A+.

Theorem 4.2.5. The following for k = 0, 1, . . . is true:

|A+ − Yk‖ ≤
√
λ1(A∗A)(1−αλr(A∗A))2

k

λr(A∗A)
for 0 < α ≤ 2

λ1(A∗A)+λr(A∗A)
.

|A+ − Yk‖ ≤
α
√
λ1(A∗A)(1−αλ1(A∗A))2

k

2−αλ1(A∗A) for 2
λ1(A∗A)+λr(A∗A)

< α < 2
λ1(A∗A)

.

Proof. From Theorems (4.2.1) and (4.2.3) it follows

A+ − Yk = α
∞∑

p=2k

A∗(I − αAA∗)p = α
∞∑

p=2k

A∗(AA+ − αAA∗)p. k = 0, 1, . . . .

(4.23)
The following statements holds:

‖AA+ − αAA∗‖ = |1− αλr(A∗A)| 0 < α ≤ 2

λ1(A∗A) + λr(A∗A)
,

‖AA+−αAA∗‖ = |1−αλ1(A∗A)| 2

λ1(A∗A) + λr(A∗A)
< α <

2

λ1(A∗A)
.

Truly, let W = Im(AA∗), and B = AA+−αAA∗. Hence B∗ = AA+−αAA∗.
It is known that AA+ is the orthogonal projection onto W .

B∗Bx = λx ⇒ x ∈ W ⇒ AA+x = x.

So
(AA+ − αAA∗)2x = λx,

x− 2αAA∗x+ α2AA∗AA∗x = λx,

(1− αAA∗)2x = λx,

λ = (1− αλi(A∗A))2,

‖B‖ =
√
λ1(B∗B) = max|1− αλi(A∗A)|.

Finally we obtain{
‖AA+ − αAA∗‖ = |1− αλr(A∗A)| 0 < α ≤ 2

λ1(A∗A)+λr(A∗A)

‖AA+ − αAA∗‖ = |1− αλ1(A∗A)| 2
λ1(A∗A)+λr(A∗A)

< α < 2
λ1(A∗A)
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If we take norm on both sides of the (4.23) and use the previous equation,
we obtain

‖A+ − Y k‖ ≤ α‖A∗‖
∞∑

p=2k

‖AA+ − αAA∗‖p

≤ α‖A∗‖‖AA+ − αAA∗‖2k

1− ‖AA+ − αAA∗‖

(4.24)

≤


√
λ1(A∗A)(1−αλr(A∗A))2

k

λr(A∗A)
When 0 < α ≤ 2

λ1(A∗A)+λr(A∗A)

α
√
λ1(A∗A)(1−αλ1(A∗A))2

k

2−αλ1(A∗A) When 2
λ1(A∗A)+λr(A∗A)

< α < 2
λ1(A∗A)

k = 0, 1, . . .

Definition 4.2.6. α is optimal if it minimizes ‖AA+ − αAA∗‖.

Theorem 4.2.7. The optimal α is

α0 =
2

λ1(A∗A) + λr(A∗A)
, (4.25)

for which

‖A+ − Y k‖ ≤
√
λ1(A∗A)

λr(A∗A)
(1− α0λr(A

∗A))2
k

. (4.26)

The following section is based on [2].

4.3 Iterative Methods for Computing Gen-

eralized Inverses related to Optimization

Methods

Let A be a complex C∗ Algebra with unit.

Definition 4.3.1. An a ∈ A is called relatively regular if there exists b ∈ A
such that aba = a. Such b is called an inner generalized inverse of a.

It is known that a is relatively regular if and only if it has Moore-Penrose
inverse.
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Lemma 4.3.2. Let a ∈ A be relatively regular. The following holds:
(1) (a∗)+ = (a+)∗;
(2) (a∗a)+ = a+(a∗)+;
(3) a+ = (a∗a)+a∗;
(4) (a∗a)+ commutes with every element of A which commutes with a∗a;
(5) a∗a is invertible in the algebra β = a+aÅa+a and (a∗a)+ = (a∗a)−1β ;
(6) a∗ = a+aa∗ = a∗aa+;

Definition 4.3.3. If d ∈ A is self-adjoint then upper and lower bounds of
the spectrum of d in the algebra A are

MA(d) = sup{< x, dx >: ‖x‖ = 1}.

mA(d) = inf{< x, dx >: ‖x‖ = 1}.

Theorem 4.3.4. Suppose that a ∈ A is relatively regular, x0, c ∈ A are
arbitrary, B = a+aAa+a and (λn)n is a sequence of positive numbers such
that

0 < ε ≤ λn ≤ 2 min{[MB(a∗a)]−1, [mB(a∗a)]−1} − δ,

holds for ∀ n and some ε, δ > 0. Then the iterative method

xn+1 = xn − λna∗(axn − c), (4.27)

converges to a+c + (1 − a+a)x0, consequently, lim
n→∞

xn = a+c if and only if

a+ax0 = x0.

Proof. Assume first that a+ax0 = x0. We claim that a+axn = xn (∀n).
Indeed, we prove it by induction on n.
Assume a+axn = xn, then

a+axn+1 = a+a(xn − λna∗(axn − c))
= a+axn − λna+aa∗(axn − c)

= xn − λna∗(axn − c)) = xn+1,

as claimed. We compute

a∗axn+1 − a∗c = a∗axn − a∗c− λna∗a(a∗axn − a∗c) = (1− λna∗a)(a∗axn − a∗c).

If we multiply the previous statement by (a∗a)+ from the left side and use
Lemma 4.3.2(3)-(4), we obtain:

(a∗a)+a∗axn+1 − (a∗a)+a∗c = (a∗a)+(1− λna∗a)(a∗axn − a∗c),
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a+axn+1 − a+c = (1− λna∗a)(a∗a)+(a∗axn − a∗c),

xn+1 − a+c = (1− λna∗a)(a+axn − a+c),

and:

xn+1 − a+c = a+a(xn+1 − a+c) = a+a(1− λna∗a)a+a(xn − a+c),

⇓

‖xn+1 − a+c‖ ≤ ‖a+a(1− λna∗a)a+a‖‖xn − a+c‖.

The convergence will be implied once we find a universal upper bound ‖a+a(1−
λna

∗a)a+a‖ ≤ q < 1. We know that

‖a+a(1−λna∗a)a+a‖ = max{|MB[a+a(1−λna∗a)a+a]|, |mB[a+a(1−λna∗a)a+a]|}.

Notice that
MB[a+a(1− λna∗a)a+a] = 1− λnmB(a∗a),

and
mB[a+a(1− λna∗a)a+a] = 1− λnMB(a∗a).

Hence, the existence of the bound ‖a+a(1− λna∗a)a+a‖ ≤ q < 1 is a conse-
quence of the assumed bounds for λn :

0 < ε ≤ λn ≤ 2 min{[MB(a∗a)]−1, [mB(a∗a)]−1} − δ.

We have proved the first part of the theorem.
Now, Let us assume that a+ax0 6= x0. We denote x

′
= a+ax and x

′′
=

(1 − a+a)x for any x ∈ A. Now we have x
′′
0 6= 0. Let us prove by induction

that x
′′
n+1 = x

′′
0 . First we need to show that x

′′
1 = x

′′
0 .

x
′′

1 = (1− a+a)x1 = (1− a+a)(x0 − λ0a∗(ax0 − c))
= (1− a+a)x0 − λ0(1− a+a)a∗(ax0 − c)

= x
′′

0 − λ0(a∗ − a+aa∗)(ax0 − c)
= x

′′

0 − λ0(a∗ − a∗)(ax0 − c) = x
′′

0 ,

assume that x
′′
n = x

′′
0 . We need to show x

′′
n+1 = x

′′
0 .

Truly,

x
′′

n+1 = (1− a+a)xn+1 = (1− a+a)(xn − λna∗(axn − c))
= (1− a+a)xn − λn(1− a+a)a∗(axn − c)

= x
′′

n − λn(a∗ − a∗)(axn − c) = x
′′

n = x
′′

0 .
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Hence
xn+1 = x

′

n+1 + x
′′

n+1 = x
′

n+1 + x
′′

0 .

Also
a+ax

′

0 = a+aa+ax0 = a+ax0 = x
′

0.

We compute:

x
′

n+1 = a+axn+1 = a+a(xn − λna∗(axn − c))
= a+axn − λna+aa∗(axn − c)

= x
′

n − λna∗(aa+axn − c) = x
′

n − λna∗(ax
′

n − c).

Therefore we have a+ax
′
0 = x

′
0 and x

′
n+1 = x

′
n − λna∗(ax

′
n − c).

Now for the sequence x
′
n we can apply the first part of the current theorem.

We get
lim
n→∞

x
′

n = a+c.

Therefore

lim
n→∞

xn+1 = lim
n→∞

x
′

n+1 + lim
n→∞

x
′′

0 = a+c+ (1− a+a)x0.

Theorem 4.3.5. Suppose that a ∈ A is relatively regular, x0, c ∈ A are
arbitrary, and (λn)n is a bounded sequence of positive numbers. Then the
iterative method

xn+1 = xn − (λn + a∗a)−1a∗(axn − c), (4.28)

converges to a+c + (1 − a+a)x0, consequently, lim
n→∞

xn = a+c if and only if

a+ax0 = x0.

Proof. Let a+ax0 = x0. By induction on n we prove a+axn = xn ∀n.
Assume a+ax0 = x0 and a+axn = xn, we need to show that a+axn+1 = xn+1.

a+axn+1 = a+axn − a+a(λn + a∗a)−1a∗(axn − c)
= xn − a+a(λn + a∗a)−1a∗(axn − c).

We need to show that

a+a(λn + a∗a)−1a∗(axn − c) = (λn + a∗a)−1a∗(axn − c).
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Truly,

a∗(axn − c) = a+aa∗(axn − c)
= a+a(λn + a∗a)(λn + a∗a)−1a∗(axn − c)

= (λna
+a+ a+aa∗a)(λn + a∗a)−1a∗(axn − c)

= (λna
+a+ a∗aa+a)(λn + a∗a)−1a∗(axn − c)

= (λn + a∗a)a+a(λn + a∗a)−1a∗(axn − c).

We obtained:

a∗(axn − c) = (λn + a∗a)a+a(λn + a∗a)−1a∗(axn − c).

Finally, we have:

(λn + a∗a)−1a∗(axn − c) = a+a(λn + a∗a)−1a∗(axn − c).

We have proved the statement: a+axn = xn, ∀ n.

Now we compute:

a∗axn+1 − a∗c = a∗axn − a∗c− a∗a(λn + a∗a)−1(a∗axn − a∗c)
= λn(λn + a∗a)−1(a∗axn − a∗c)

= (1− a∗a(λn + a∗a)−1))(a∗axn − a∗c).
(4.29)

We know:
(λn + a∗a)(λn + a∗a)−1 = 1,

λn(λn + a∗a)−1 + a∗a(λn + a∗a)−1 = 1,

λn(λn + a∗a)−1 = 1− a∗a(λn + a∗a)−1.

If we substitute last result into (4.29) we obtain

a∗axn+1 − a∗c = λn(λn + a∗a)−1(a∗axn − a∗c).

If we multiply the previous equation by (a∗a)+ from the left side and use
Lemma 4.3.2(3) we obtain:

(a∗a)+a∗axn+1 − (a∗a)+a∗c = (a∗a)+λn(λn + a∗a)−1(a∗axn − a∗c),

a+axn+1 − a+c = a∗a+λn(λn + a∗a)−1(a∗axn − a∗c),
xn+1 − a+c = a∗a+λn(λn + a∗a)−1(a∗axn − a∗c).

Because of Lemma 4.3.2(4) if a∗a commutes with (λn + a∗a)−1 then (a∗a)+

will commute with the same element. Truly:
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(a∗a)+ commutes with (λn + a∗a)−1. Because:

a∗a = a∗a,

a∗a(λn + a∗a)(λn + a∗a)−1 = a∗a,

(λna
∗a+ a∗aa∗a)(λn + a∗a)−1 = (λn + a∗a)(λn + a∗a)−1a∗a,

(λn + a∗a)a∗a(λn + a∗a)−1 = (λn + a∗a)(λn + a∗a)−1a∗a,

If we multiply the previous equation by (λn + a∗a)−1, we obtain:

a∗a(λn + a∗a)−1 = (λn + a∗a)−1a∗a.

We have:

xn+1 − a+c = λn(λn + a∗a)−1(a∗a)+(a∗axn − a∗c)
= λn(λn + a∗a)−1(a+axn − a+c)
= λn(λn + a∗a)−1(axn − a+c).

We got:
xn+1 − a+c = λn(λn + a∗a)−1(axn − a+c).

Now we have:

xn+1 − a+c = a+a(xn+1 − a+c)
= λna

+a(λn + a∗a)−1a+a(axn − a+c).

Let B = a+aAa+a. Because a+a is invertible in B (Lemma 4.3.2(5)), we
know that mB(a∗a) > 0. The following holds

‖xn+1 − a+c‖ ≤ λnMβ[a+a(λn + a∗a)−1a+a]‖xn − a+c‖

=
λn

λn +mβ(a∗a)
‖xn − a+c‖.

Because the sequence λn in bounded and the function t −→ t
t+mβ(a∗a)

is

increasing, therefore we conclude that there exists q ∈ R 0 < q < 1, such
that

‖xn+1 − a+c‖ ≤ q‖xn − a+c‖.

Therefore lim
n→∞

xn = a+c.

The first part of the theorem is proved.
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Now, suppose that a+ax0 6= x0. We define x
′

= a+ax and x
′′

= (1 − a+a)x
for any x ∈ A. Now we have x

′′
0 6= 0. We conclude that:

x
′

1 = a+ax1 = a+a(x0 − (λ0 + a∗a)−1a∗(ax0 − c))
= a+ax0 − a+a(λ0 + a∗a)−1a∗(aa+ax0 − c)

= x
′

0 − a+a(λ0 + a∗a)−1a∗(x
′

0 − c)
= x

′

0 − (λ0 + a∗a)−1a∗(x
′

0 − c).

As the correctness of the last equation, we only need to show that

a+a(λ0 + a∗a)−1 = (λ0 + a∗a)−1a+a.

Truly:
a+a(λ0 + a∗a)(λ0 + a∗a)−1 = a+a,

(λ0 + a∗a)a+a(λ0 + a∗a)−1 = a+a,

a+a(λ0 + a∗a)−1 = (λ0 + a∗a)−1a+a.

Therefore: x
′
1 = x

′
0 − (λ0 + a∗a)−1a∗(x

′
0 − c) and x1 = x

′
1 + x

′′
0 . By induction

on n we obtain xn = x
′
n + x

′′
0 ∀ n. Now for the sequence x

′
n we can apply

the first part of the current theorem. We get

lim
n→∞

x
′

n = a+c.

Therefore

lim
n→∞

xn = lim
n→∞

x
′

n + lim
n→∞

x
′′

0 = a+c+ (1− a+a)x0.

Lemma 4.3.6. If 0 is not a point of accumulation of σA(a∗a), then

lim
λ→0

(λ+ a∗a)−1a∗ = lim
λ→0

a∗(λ+ aa∗)−1 = a+.

Theorem 4.3.7. Let a ∈ A be relatively regular, let (αn)n be strongly de-
creasing to 0 and let (βn)n be a bounded sequence of positive numbers such
that βn − αn > 0 ∀ n. Consider the iterative method

xn+1 = xn − (βn + a∗a)−1(a∗axn − a∗ + αnxn). (4.30)

There are two possible cases.
(a) if a+ax0 = x0, then lim

n→∞
xn = a+.

(b) if a+ax0 6= x0, then lim
n→∞

xn = a+ + e

∞∑
n=0

ln(1−αn
βn

)
(1− a+a)x0. In this case

lim
n→∞

xn = a+ if and only if
∞∑
n=0

αn
βn

is divergent.
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Proof. Let yn = (αn+a∗a)−1a∗. From Lemma 4.3.6 we get that lim
n→∞

yn = a+.

Notice that

xn+1 = xn − (βn + a∗a)−1(αn + a∗a)[xn − (αn + a∗a)−1a∗]

= xn − (βn + a∗a)−1(αn + a∗a)(xn − yn).

Now we compute

xn+1 − yn = xn − yn − (βn + a∗a)−1(αn + a∗a)(xn − yn)

= (βn + a∗a)−1[βn + a∗a− (αn + a∗a)](xn − yn).

Consequently, we get

xn+1 − yn = (
βn

βn − αn
+

a∗a

βn − αn
)−1(xn − yn).

(a) Suppose that a+ax0 = x0. Notice that a+ayn = yn holds for all n. By
induction on n we get that a+axn = xn is satisfied for all n. Truly:

a+axn+1 = a+axn − (βn + a∗a)−1a+a(a∗axn − a∗ + αnxn)

= xn − (βn + a∗a)−1(a+aa∗axn − a+aa∗ + αna
+axn)

= xn − (βn + a∗a)−1(a∗axn − a∗ + αnxn) = xn+1.

Hence we have

xn+1 − yn = a+a(xn+1 − yn) = a+a(
βn

βn − αn
+

a∗a

βn − αn
)−1a+a(xn − yn).

Again, let B = a+aAa+a; where a∗a is invertible in B and mB(a∗a) > 0.
Notice that

‖a+a(
βn

βn − αn
+

a∗a

βn − αn
)−1a+a‖ = MB(a+a(

βn
βn − αn

+
a∗a

βn − αn
)−1a+a)

= (
βn

βn − αn
+
mB(a∗a)

βn − αn
)−1 =

βn − αn
βn +mB(a∗a)

≤ βn
βn +mB(a∗a)

.

Because the sequence βn is bounded and the function t −→ t
t+mB(a∗a)

is in-
creasing, therefore we conclude that there exist q ∈ R 0 < q < 1, such that

‖a+a(
βn

βn − αn
+

a∗a

βn − αn
)−1a+a‖ ≤ q < 1,

is satisfied for all n. For an arbitrary ε > 0, there exists some n0 such that
‖yn − a+‖ < ε holds for all n ≥ n0. This implies
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‖xn+1 − a+‖ ≤ ‖xn+1 − yn‖+ ‖yn − a+‖
≤ q‖xn − yn‖+ ‖yn − a+‖
≤ q‖xn − a+‖+ (1 + q)‖yn − a+‖
≤ q‖xn − a+‖+ (1 + q)ε

≤ qn−n0+1‖xn0 − a+‖+ ε(1 + q)/(1− q).

We see that lim
n→∞

xn = a+.

(b) Now, lets assume that a+ax0 6= x0. We denote by x
′

and x
′′
, x
′

= a+ax
and x

′′
= (1− a+a)x for any x ∈ A. Now we compute

x
′

n+1 = a+axn+1 = a+a(xn − (βn + a∗a)−1(a∗axn − a∗ + αnxn))

= a+axn − a+a(βn + a∗a)−1(a∗axn − a∗ + αnxn)

= x
′

n − (βn + a∗a)−1a+a(a∗axn − a∗ + αnxn)

= x
′

n − (βn + a∗a)−1(a+aa∗axn − a+aa∗ + αna
+axn)

= x
′

n − (βn + a∗a)−1(a∗axn − a∗ + αna
+axn)

= x
′

n − (βn + a∗a)−1(a∗aa+axn − (αn + a∗a)(αn + a∗a)−1a∗ + αna
+axn)

= x
′

n − (βn + a∗a)−1((a∗a+ αn)a+axn − (αn + a∗a)(αn + a∗a)−1a∗)

= x
′

n − (βn + a∗a)−1(a∗a+ αn)(a+axn − (αn + a∗a)−1a∗)

= x
′

n − (βn + a∗a)−1(a∗a+ αn)(x
′

n − yn).

Notice that a+ax
′
0 = x

′
0. Therefore if we apply the first part of the theorem

we get lim
n→∞

x
′

n = a+. We compute

x
′′

n+1 = (1− a+a)xn+1 = (1− a+a)(xn − (βn + a∗a)−1(a∗axn − a∗ + αnxn)

= (1− a+a)xn − (βn + a∗a)−1(1− a+a)(a∗axn − a∗ + αnxn)

= (1−a+a)xn−(βn+a∗a)−1(a∗axn−a∗+αnxn−a+aa∗axn+a+aa∗−αna+axn)

= (1− a+a)xn − (βn + a∗a)−1(a∗axn − a∗ + αnxn − a∗axn + a∗ − αna+axn)

= (1− a+a)xn − (βn + a∗a)−1(αnxn − αna+axn)

= (1− a+a)xn − αn(βn + a∗a)−1(1− a+a)xn

= x
′′

n − αn(βn + a∗a)−1x
′′

n

= (I − αn(βn + a∗a)−1)x
′′

n.
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Notice that

(I − αn(βn + a∗a)−1)x
′′

n = (βn − αn)(βn + a∗a)−1x
′′

n.

Truly:

(a∗a− a∗aa+a)xn = 0,

(βn − αn − βn − a∗a+ αn)(I − a+a)xn = 0,

[(βn − αn)(βn + a∗a)−1 − (βn + a∗a)−1(βn + a∗a) + αn(βn + a∗a)−1]x
′′

n = 0,

[(βn − αn)(βn + a∗a)−1 − I + αn(βn + a∗a)−1]x
′′

n = 0,

(βn − αn)(βn + a∗a)−1x
′′

n = (I − αn(βn + a∗a)−1)x
′′

n.

Finally, we obtained:

x
′′

n+1 = (βn − αn)(βn + a∗a)−1x
′′

n.

From

βn + a∗a = (βn + a∗a)a+a+ (βn + a∗a)(1− a+a)

= (βn + a∗a)a+a+ βn(1− a+a),

it is easy to verify that (βn + a∗a)−1 = [(βn + a∗a)a+a]−1β + (1 − a+a)/βn,

where [(βn + a∗a)a+a]−1β is an ordinary inverse of (βn + a∗a)a+a in algebra
B. We obtain

x
′′

n+1 = (βn − αn)([(βn + a∗a)a+a]−1β + (1− a+a)/βn)x
′′

n

=
(βn − αn)

βn
(βn[(βn + a∗a)a+a]−1β + I − a+a)x

′′

n

=
(βn − αn)

βn
x
′′

n = (
n∏
k=0

(1− αk
βk

))x
′′

n.
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Chapter 5

Investigation of Iterative
Methods for the
Moore-Penrose Pseudoinverse,
Numerical Results and Charts

In this chapter we will show that all iterative methods for the Moore-Penrose
inverse discussed in this present work are based on Newton’s method for the
matrix inversion. In addition, numerical results from the iterative processes
will be presented. Numerical examples are derived taking the following stop-
ping criterion ‖Xk+1−Xk‖ < ε, where Xk and Xk+1 are two successive results
for an iterative process and ε is some small fixed real number.
The following matrix will be used through out the chapter.

A =


3 1 4 9
1 2 3 4
0 −2 −2 0
−1 0 −1 −4

 (5.1)

Hence

A+ =


8
9
−47

54
− 7

27
61
54

−4
9

14
27

− 1
27
−13

27
4
9
−19

54
− 8

27
35
54

−1
3

7
18

2
9
−11

18

 (5.2)

5.1 Investigation of the Iterative Method (4.14)

We can observe that Newton’s iterative method for nonsingular matrix inver-
sion described in section 2.2 is the same as Ben-Israel’s and Cohen’s method
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(4.14) described in the section 4.2.

Yk+1 = Yk(2I − AYk). k = 0, 1, . . . .

Ben-Israel and Cohen realized that Newton’s iterative method works not only
for usual matrix inversion but also for the Moore-Penrose inversion. In order
to prove this finding, first they proved the convergence of (4.12) to the pseu-
doinverse and after this they managed to prove (4.20). Therefore Newton’s
iteration process with the starting value (4.13) is convergent to the Moore-
Penrose inverse.

Consider 5.2. By Theorem (4.2.7) The optimal α is, α ≈ 0.013128302506547.
For ε = 0.0000005 we have the following chart

On the chart horizontal axis describes the number of iteration steps and ver-
tical axis shows the matrix norm 1 of Xn−A+. For α ≈ 0.013128302506547
after 14 steps we get the following approximation of the pseudoinverse of A
with the precision ‖X14 −X13‖ = 1.292523588158900 · 10−9. We got:

0.888888888888889 −0.870370370370370 −0.259259259259259 1.129629629629630
−0.444444444444444 0.518518518518519 −0.037037037037037 −0.481481481481481
0.444444444444444 −0.351851851851851 −0.296296296296296 0.648148148148148
−0.333333333333333 0.388888888888890 0.222222222222223 −0.611111111111110


Making test for different α showed that the number of the iteration steps
needed is within the same order of magnitude(in our case < 30).
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α ε Norm Iteration number
0.013129 0.0000005 1 15
0.003129 0.0000005 1 17
0.000129 0.0000005 1 22
0.000029 0.0000005 1 24
0.000009 0.0000005 1 26

5.2 Investigation of the Iterative Method (4.27)

The following iterative method is based on (4.14).

xn+1 = xn − λna∗(axn − c).

Truly, from (4.14) we obtain:

Yk+1 = Yk − Yk(AYk − I). (5.3)

We can notice that there exist Ck ∈ Cn×n for ∀k such that the following
holds

Yk+1 = Yk − CkA∗(AYk − I),

where α satisfies (4.11). First by induction we will show Yk = CkA
∗. Truly,

for k = 1:

Y1 = Y0(2I − AY0) = αA∗(2I − αAA∗) = α(2I − αA∗A)A∗ = C1A
∗,

where C1 ≡ α(2I −αA∗A). If we assume for k that Yk = CkA
∗, then we get:

Yk+1 = Yk(2I−AYk) = CkA
∗(2I−ACkA∗) = (2Ck−CkA∗ACk)A∗ = Ck+1A

∗,

where Ck+1 = 2Ck − CkA∗ACk. Therefore from (5.3) it follows:

Yk+1 = Yk − CkA∗(AYk − I). (5.4)

In 4.27 instead of Ck the multiplier is λkI. This substitution simplifies cal-
culation of the iterative process, because instead of calculating some com-
plicated matrices we just take scalars which economizes the computational
time and space of a computer’s memory.

Consider (5.2). For constant λn = 0.013111605 after 3873 steps we get
the following approximation for the Pseudoinverse of A with the precision
‖X3874 −X3873‖ = 4.978585573800487 · 10−7.
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
0.888873326648520 −0.870312663934795 −0.259281212930094 1.129547299243109
−0.444437050781649 0.518491092310388 −0.037026627204830 −0.481442372790331
0.444436275866865 −0.351821571624350 −0.296307840134912 0.648104926452780
−0.333325834733609 0.388861048819393 0.222232728132671 −0.611071464311854


By observing results we see that (4.27) needs more iteration steps to com-
pute pseudoinverse than (4.14) but this does not mean that the former is
slower than the latter. As we see in (5.3) for each iteration step it needs to
compute two matrix multiplications in contrast to (5.4) when it needs one
multiplication for computing one iteration. Therefore if we have a quite big
dimensional matrix then for (5.4) computation a computer will need less time
and memory space then for (5.3).

For λn = 0.013− 1/n7 we get:

As observation showed if we accelerate λn to 0 (for example λn = 1
n15 ) then

the iteration process is not convergent to A+, it is convergent to the starting
value X0. Which contradicts to the theorem(4.3.4).

5.3 Investigation of the Iterative Method (4.28)

We see that the difference between (4.28) and (5.4) is that instead of Ck we
take (λnI + A∗A)−1.

xn+1 = xn − (λnI + a∗a)−1a∗(axn − c).
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This makes sense, because as we know

lim
k→∞

CkA
∗ = A+. (5.5)

Let Yn = (λnI + A∗A)−1A∗, as known lim
n→∞

Yn = A+ if λn → 0.

As results showed, for all A we can find very small (λn)n such that (λnI +
A∗A)−1 is not ill-conditioned for all n and Yn converges to A+ much quicker
then CkA

∗. Therefore substituting Yn into (5.4) instead of CkA
∗ causes ac-

celeration of the iteration process.

Consider 5.2. For constant sequence λn = 0.1 we get:

For λn = 0.1 after 14 steps we get the following approximation for the pseu-
doinverse of A with precision ‖X14 −X13‖ = 2.475861949347014 · 10−7.

0.888888879447414 −0.870370335354776 −0.259259272566503 1.129629579684490
−0.444444439961510 0.518518501892622 −0.037037030718536 −0.481481457766725
0.444444439485965 −0.351851833462300 −0.296296303285054 0.648148121917767
−0.333333328793601 0.388888872052371 0.222222228620744 −0.611111087096000


In the following table we consider the case when the (λn)n sequence is con-
stant.
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λn ε Norm Iteration number
100 0.0000005 1 4989
100 0.000005 1 3835
10 0.0000005 1 620
10 0.000005 1 504
1 0.0000005 1 80
1 0.000005 1 68
0.1 0.0000005 1 16
0.1 0.000005 1 14
0.0001 0.0000005 1 4
0.00001 0.0000005 1 3

If we change the matrix order investigation significantly, for example to con-
sider A/1000, then the number of iterations may change largely, but the
property of the iterative method remains. Taking (λn)n closely to 0 reduces
the number of iterations. But as we mentioned above for parameter (λn)n
we should make some distance to 0 in order to avoid ill-conditioning.

5.4 Investigation of the Iterative Method (4.4)

For the iterative method

Xk+1 = (I − βXkA)Xk + βXk = (1 + β)Xk − βXkAXk,

consider (5.2). For β = 0.013128318235738 after 1307 steps we get the fol-
lowing approximation for the Pseudoinverse of A with the precision ‖X1307−
X1306‖ = 4.987680035095643 · 10−7.

0.888877558528980 −0.870359076900360 −0.259255442025780 1.129614519686639
−0.444439056002752 0.518513137432797 −0.037038817317009 −0.481474319355279
0.444438502526237 −0.351845940228077 −0.296294260103299 0.648140199570867
−0.333327889817448 0.388883472112553 0.222220365640064 −0.611103837752616


For β = 0.013128318235738 we get:
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α ε Norm Iteration number
0.000229 0.0000005 1 75188
0.003129 0.0000005 1 5489
0.003129 0.000005 1 4754
0.013129 0.0000005 1 1307
0.013129 0.000005 1 1133
0.06 0.0000005 1 284
0.06 0.000005 1 247
0.08 0.0000005 1 212
0.08 0.000005 1 185

5.5 Investigation of the Iterative Method (4.30)

As we saw in the example at the introduction part of my thesis, a computer
can make some computational errors in some special situations. In this ex-
ample a computer error significantly impacts on the results. Therefore, as
we already mentioned, in order to avoid it, iterative methods which compute
a problem in a different way were invented. As we saw above, all iteration
methods presented in this thesis converge to a real solution of a problem, but
we cannot be sure that they work well when we apply computer programming
languages in practice. The authors of [2] describe the other method

xn+1 = xn − (λn + a∗a)−1a∗(axn − c).
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Although they do not state it, it is in fact a method that takes into consid-
eration the computational errors when implementing their previous method
(4.28). If we take c = Identity, we get

xn+1 = xn − (λn + a∗a)−1a∗(axn − I)

= xn − (λn + a∗a)−1((a∗a+ αn)(a∗a+ αn)−1a∗axn − a∗)
= xn − (λn + a∗a)−1((a∗a+ αn)ynaxn − a∗),

where yn = (a∗a+αn)−1a∗. It is well known that lim
n→∞

yn = a+ when αn −→ 0.

Therefore yn−a+ = bn is small. If we consider case a+ax0 = x0 (consequently
a+axn = xn), we obtain:

ynaxn = (a+ + bn)axn = a+axn + bnaxn ≈ a+axn + 0 = xn.

If we substitute this into the above equation, we get:

xn+1 = xn − (λn + a∗a)−1((a∗a+ αn)xn − a∗)
= xn − (λn + a∗a)−1(a∗axn − a∗ + αnxn).

In this we recognise the method (4.30), where (βn)n is a bounded sequence,
(αn)n is a decreasing sequence to 0 and βn − αn > 0, ∀n

In the proof part of the Theorem 4.3.7. we saw that

‖xn+1 − a+‖ ≤ ‖xn+1 − yn‖+ ‖yn − a+‖.

Let us observe charts of each part of the previous inequality.

Consider the matrix (5.2). For βn = 0.01 and αn = 0.01/n, n > 1 we
obtain
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Red line describes ‖xn+1 − a+‖ and blue line ‖yn − a+‖. Let us magnify
any area of the chart. We see

If we accelerate α to zero, αn = 1/n6 and we magnify the chart again, we
observe that on both charts the difference between the graph of ‖xn+1− a+‖
and the graph of ‖yn − a+‖ is very small.
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Therefore, by logic, instead of observing the complicated iterative method
(4.30) with 2 parameters, we simply can take the following process:

yn = (a∗a+ αn)−1a∗.

But a problem might occur during the computation of yn. If the iterative
method’s approximative value is very small then (a∗a + αn) might become
ill-conditioned for quite small αn. Therefore in order to avoid it, we can use
an iterative method for computing matrix inversion. The above described
Gauss-Seidel’s iterative method is less productive because when αn → 0 and
hence (a∗a + αn) becomes ill-conditioned, then it increases the number of
iterations needed.

However if we apply Newton’s method for computing (a∗a+αn)−1, we obtain
better results.
For αn = 1

n6 , ε = 0.0000005 we get
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For αn = 1
n15 , ε = 0.0000005

For βn = 1, αn = 1
n15
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For βn = 0.0001, αn = 1
n15

We see that when βn becomes closer to zero then the iteration process needs
fewer steps for computing A+. But generally we cannot reduce it too much,
because for computing (4.30) we need to invert (βn + A∗A) and it might
become an ill-conditioned matrix. Therefore generally βn should be bounded
away from 0.
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Chapter 6

Conclusion

In this thesis we presented a definition of the Moore-Penrose inverse, its
usage, as well as two classic methods of its computation. In addition, we de-
scribed a situation when computing the pseudoinverse through these methods
by using computer programs is not correct. After this we presented different
iteration processes for computing the Moore-Penrose inverse, we compared
them to one another, explained their differences and made analysis to each of
them. The numerical results and charts presented in the thesis were derived
by using program Matlab.

It can be recommended that future research should focus on more inves-
tigation of each iterative method. As we mentioned in the previous chapter,
the iterative process (4.27) does not work in the case when the sequence of
parameters goes to 0 very quickly. Which contradicts to the theorem(4.3.4).
Therefore, future work can improve this method, also to find optimal param-
eter for (4.4).
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Chapter 7
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