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Abstract

The Noether number β(G) of a finite group G gives the maximal degree of the
elements of a minimal generating system in the ring of polynomial invariants
F[V ]G for any G-module V over a field F. Its precise value is known only
for very few particular groups until yet. We developed a new method for
calculating the Noether number consisting of a generalization of this notion
and a series of related reduction lemmata. By means of this we were able
to calculate or estimate β(G) for several particular groups, including every
finite group with a cyclic subgroup of index two; for this infinite class of
groups we proved that the difference β(G) − 1

2
|G| equals 1 or 2. The main

result of this thesis states that — apart from four particular groups of small
order — the groups with a cyclic subgroup of index at most two are the only
finite groups satisfying the inequality β(G) ≥ 1

2
|G|.
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Chapter 1

Introduction

1.1 Outline of the main results

Let G be a finite group and V a G-module of finite dimension over a field F.
By a classical theorem of E. Noether [35] the algebra of polynomial invariants
on V , denoted by F[V ]G, is finitely generated. Set

β(G, V ) := min{d ∈ N | F[V ]G is generated by elements of degree at most d},
β(G) := sup{β(G, V ) | V is a finite dimensional G-module over F}.

The famous theorem on the Noether bound asserts that

β(G) ≤ |G| (1.1)

provided that char(F) does not divide the order of G (see Noether [34] in
characteristic 0 and Fleischmann [16], Fogarty [17] in positive characteristic).
We define the relative Noether bound

γ(G) :=
β(G)

|G|
.

Working over the field of complex numbers, Schmid [43] proved that γ(G) = 1
holds only when G is cyclic. This was sharpened by Domokos and Hegedűs in
[14] by proving that γ(G) ≤ 3/4 for all non-cyclic G; the result was extended
to non-modular positive characteristic by Sezer [45]. The constant 3/4 is
optimal here. On the other hand, a straightforward lower bound on γ(G)
can be obtained based on the result of Schmid in [43], that β(G) ≥ β(H)
holds for any subgroups H of G, so in particular, β(G) is bounded from below
by the maximal order of the elements in G. Therefore γ(G) ≥ 1/2 whenever
G contains a cyclic subgroup of index two, and obviously there are infinitely

3
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many isomorphism classes of such non-cyclic groups. The first main result of
the present thesis is that —apart from four sporadic exceptions— these are
the only groups for which the relative Noether number is so large:

Theorem 1.1. For a finite group G with order not divisible by char(F) we
have γ(G) ≥ 1/2 if and only if G has a cyclic subgroup of index at most 2,
or G is isomorphic to Z3 × Z3, Z2 × Z2 × Z2, the alternating group A4, or
the binary tetrahedral group Ã4.

This Theorem is a novelty even for the case F = C. Its proof reunites
methods of representation theory and commutative algebra with additive
combinatorics and group theory. Chapter 2 introduces our main technical
tool, the generalized Noether number βk(G), which is the smallest integer d
such that the homogeneous invariants of degree strictly greater than d are all
contained in the k+1-th power of the maximal homogeneous ideal F[V ]G+. We
prove a series of reduction lemmata which will allow us to estimate βk(G) by
structural induction on G, using our previous knowledge on the generalized
Noether number of some subgroups and homomorphic images of G, such as:

βk(G) ≤ ββk(G/N)(N) if N / G

βk(G) ≤ βk[G:H](H) if H ≤ G

βk(G) ≥ βr(G/N) + βk+1−r(N)− 1 if G′ ≤ N / G

βk(G×H) ≥ βr(G) + βk+1−r(H)− 1 if 1 ≤ r < k

(for the precise statement see Lemma 2.3, Corollary 2.7, Theorem 2.15 and
Theorem 2.11). These are extensions of Schmid’s reduction lemmata and
in the same time of some analogous results on the generalized Davenport
number Dk(A), which coincides with βk(G) whenever G = A is abelian (see
Chapter 6.1 in [21]). They give typically stronger estimates for the Noether
number than Schmid’s original reduction lemmata. The general explanation
for this is given by Theorem 2.25, which proves that βk(G) as a function of
k is linear for sufficiently large values of k, and determines the coefficient of
k: it turns out to be another notable quantity in invariant theory.

In the proof of our main result the application of these reduction lemmata
is based on Theorem 6.1 which isolates a list of groups such that an arbitrary
finite group G must contain one of them as a subgroup or a subquotient.
The proof is then made complete in Chapters 3–5, where we compute the
(generalized) Noether number for these particular groups.

In Chapter 3 we deal with the surprisingly difficult case of the non-abelian
group ZpoZq, where p, q are odd primes and q | p− 1. We rely here in great
part on an extended version of Goebel’s algorithm described in Section 3.1.

4
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For the general case we were only able to give some estimates leading to
the conclusion in Theorem 3.16 that γ(Zp o Zq) <

1
2
. Precise values were

only obtained for β(Z7 o Z3) and βk(Zp o Z3, V ) for V multiplicity free in
Theorem 3.25 and Theorem 3.29: from these particular cases we can get a
picture about the nature and the extent of the difficulties overshadowing the
general case.

In Chapter 4 we give the precise value of βk(A4) (see Theorem 4.5), from
which we derive information on two related groups: the binary tetrahedral
group Ã4 and (Z2 × Z2) o Z9 which is a central extension of A4 by Z3.

Chapter 5 contains our second main result, Theorem 5.20, which gives the
exact value of βk(G) for every finite group G containing a cyclic subgroup of
index 2. We begin with the case of the dihedral group D2n; for this group
the value of β(D2n) was already known before, however our new proof based
on the simple combinatorial idea of the so-called “zero-corners” also yields in
addition the generalized Noether numbers βk(D2n) and a characterization of
the k-extremal invariants of G = D2n, i.e. those which have degree equal to
βk(G) but they still don’t belong to (F[V ]G+)k+1. The knowledge of these k-
extremal invariants can then be used to refine our estimates on βk(G) when
G has a subgroup or a homomorphic image isomorphic to D2p, as in the
case of G = Zp o Z4, where Z4 acts faithfully on Zp, or as in the case of
G = ZpoZ2n, where Z2n acts by inversion on Zp. The “contraction method”
used in this later case might be adapted in the future for several groups of
similar structure. Finally we treat the case of the quaternion group Q and
the direct product Zp ×Q in Theorem 5.17.

The concluding Chapter 6, apart from connecting together the different
elements in the proof of Theorem 1.1, also gives some applications, most
notably Corollary 6.9 stating that

lim sup γ(G) =
1

2
(1.2)

where G runs through the isomorphism classes of all non-cyclic finite groups
of order coprime to char(F). This brings to light the remarkable theoretical
status of Theorem 1.1: given any 0 < c < 1, one might aim at classifying finite
groups G with γ(G) ≥ c. Theorem 1.1 and Theorem 5.20 show that 1/2 is
a limit point in the set {γ(G) | G is a finite group} of rational numbers, and
there are no limit points strictly between 1 and 1/2. Chapter 6 is closed by
Theorem 6.13 determining the exact degree bound for separating invariants
of the group Zp o Z3. The systematic study of the version for separating
invariants of the Noether number was recently initiated, see [32].

The practical relevance of our results is the following: every computer
algorithm used for finding a minimal generating system of the invariant ring

5
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F[V ]G is computationally very expensive and their feasibility may depend on
the availability of an a priori bound of good quality on the degrees of these
generators. From now on these algorithms may safely assume the upper
bound 1

2
|G| of (1.2) instead of the classic upper bound |G| in (1.1) — except

for the few groups listed in Theorem 1.1.

1.2 Preliminaries

Let M be a graded module over a commutative graded F-algebra R such that
R0 = F is a field if R is unital and R0 = ∅ otherwise. For any d ∈ N we
denote by Md the F-vector space of degree d homogeneous elements in M .
We set:

M≥s :=
⊕
d≥s

Md M≤s :=
s⊕

d=0

Md

We also use the notation M+ := M≥1, so if we regard R as a module over
itself, its maximal homogeneous ideal is denoted by R+. Remark that M≥s
is also a graded R-module, whereas M≤s is merely a vector space over F; the
R-submodule generated by it is M≤sR, while the subalgebra of R generated
by R≤s will be denoted by F[R≤s].

Definition 1.2. If M is finitely generated as an R-module then set:

β(M,R) := min{s ∈ N : M = M≤sR}

and write β(M,R) =∞ otherwise.

Lemma 1.3 (graded Nakayama Lemma). M is generated by its homogeneous
elements m1, ...,mn if and only if the F-vector space M/R+M is spanned by
the images m1, ...,mn.

As a consequence the homogeneous elements m1, ...,mn constitute a min-
imal R-module generating system of M if and only if m1, ...,mn is a basis of
the F-vector space M/R+M . In particular, every minimal generating system
of M has the same cardinality. Note that M/R+M := ⊕i∈NMi/(R+M ∩Mi)
is a graded R-module, and supposing that deg(m1) ≤ deg(m2) ≤ ..., this de-
gree sequence is uniquely determined by M , since the number of occurrences
of any integer d in this degree sequence equals the dimension of the degree d
component of M/R+M . Remark finally that β(M,R) = maxi deg(mi).

We set β(R) := β(R+, R). In view of Definition 1.2 this gives the maximal
degree of a homogeneous element m ∈ R+ not belonging to R2

+, i.e. which
cannot be expressed as a polynomial of strictly lower degree elements of R+.
Thus R is generated as an algebra by its elements of degree at most β(R).

6
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Lemma 1.4. β(M,R) has the following elementary properties:

1. If S is a graded subalgebra of R then β(M,R) ≤ β(M,S).

2. If a degree preserving R-module epimorphism τ : N → M exists then
β(M,R) ≤ β(N,R).

3. β(M ⊗ N,R ⊗ S) = β(M,R) + β(N,S) where M and N are graded
modules over the graded F-algebras R and S, respectively.

Proof. (1) is trivial. For (2) suppose that d > β(N,R); by Definition 1.2
this implies that Nd ⊆ R+N . From the assumption on τ it follows that
Md = τ(Nd) ⊆ R+τ(N) = R+M , whence β(M,R) ≤ d. Finally, for (3)
observe that the vector space M ⊗ N/(R ⊗ S)+(M ⊗ N) can be identified
with M/R+M ⊗N/S+N , whence the claim follows by Lemma 1.3.

Let us translate the above concepts into the more particular setting of
invariant theory. Here we are given a group G and a vector space V over a
field F equipped with a group homomorphism G→ GL(V ); in this situation
we also say that V is a representation of G or a (left) G-module. As an affine
space, V has a coordinate ring F[V ] which is defined in abstract terms as
the symmetric tensor algebra of the dual space V ∗. This means in fact that
F[V ] is isomorphic to a polynomial ring in dim(V ) variables, so in particular
it is a graded ring and we have an identification F[V ]1 ∼= V ∗. From the
left action of G on V we can derive a natural right action on V ∗ by setting
xg(v) = x(gv) for any g ∈ G, v ∈ V and x ∈ V ∗. This right action of G on
V ∗ is then extended multiplicatively onto the whole F[V ]. The basic object
of our study is the ring of polynomial invariants defined as:

F[V ]G := {f ∈ F[V ] : f g = f ∀g ∈ G}

β(G, V ) := β(F[V ]G) is called the Noether number of the G-module V . The
question wether it is finite was answered for the non-modular case by Hilbert
in [26] as follows. Suppose that G is linearly reductive: this amounts basically
to the requirement that there is a G-equivariant R-module projection τ : L→
R, where L := F[V ] and R := F[V ]G; τ is the so called Reynolds operator.
The Hilbert ideal R+L is finitely generated by Hilbert’s basis theorem, hence
β(L+, R) is finite. But as β(R) ≤ β(L+, R) by Lemma 1.4 (2), it follows that
β(G, V ) is finite.

Any finite group G is linearly reductive; this is the content of Maschke’s
theorem, the proof of which actually constructs the Reynolds operator. We
shall need in the sequel a relativized version of this construction:

7
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Definition 1.5. (cf. [33] p. 33) Let H ≤ G be a subgroup and g1, ..., gn
a system of right coset representatives of H. For a G-module V the map
τGH : F[V ]H → F[V ]G called the relative transfer map is defined by the sum

τGH (u) =
n∑
i=1

ugi .

In the special case when H is the trivial subgroup {1G}, we recover the
transfer map τG : F[V ]→ F[V ]G.

Proposition 1.6. If char(F) does not divide [G : H] then τ := τGH is a graded
F[V ]G-module epimorphism onto F[V ]G.

Proof. Remark that τ does not depend on the choice of the coset representa-
tives in Definition 1.5. Indeed, if f1, ..., fn is another set of coset representa-
tives of H then gif

−1
i ∈ H for every i, hence

∑
i u

gi =
∑

i u
(gif

−1
i )fi =

∑
i u

fi

since u was invariant under H by assumption. Consequently, the image of τ
is contained in F[V ]G, since g1f, ..., gnf forms another system of coset repre-
sentatives of H for any f ∈ G. Moreover for any u ∈ F[V ]G and v ∈ F[V ]H we
have τ(uv) =

∑n
i=1(uv)gi = u

∑n
i=1 v

gi = uτ(v) hence τ is an F[V ]G-module
homomorphism. Obviously τ is degree preserving. Finally, τ is surjective
onto F[V ]G because by Definition 1.5 we have τ(u) = nu for any u ∈ F[V ]G.
Then τ(n−1u) = u since n = [G : H] ∈ F× by assumption.

When we turn from the linearly reductive groups to the particular case
of finite groups, an interesting new topic emerges. The global degree bound
for a finite group G is defined as

β(G,F) := sup
V
β(G, V )

where V runs through all G-modules over the field F. By Noether’s degree
bound (see (1.1)) if char(F) is coprime to |G| then β(G, V ) ≤ |G| for any
G-module V , so that β(G,F) is finite. The converse of this statement also
holds: it was proved in [13] for char(F) = 0 and subsequently in [6] for the
whole non-modular case that the finiteness of β(G,F) implies the finiteness
of the group G, as well. As for the modular case, i.e. when char(F) divides
|G|, Richman constructed in [40] a sequence of G-modules V1, V2, ... such that
β(G, Vi)→∞ as i→∞, so in this case β(G,F) is not finite.

The dependence of β(G,F) on the field F was studied by Knop in [31]. He
proved that β(G,F) is the same for every field F with the same characteristic,
so that the notation β(G, p) would be more appropriate, where p = char(F).
In particular this implies that β(G,F) = β(G,F) where F is the algebraic

8
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closure of F. Knop also proves that β(G, 0) ≤ β(G, p) for any prime p > 0,
with equality for almost all primes. Finally, he raises the question whether
there are any examples where β(G, 0) 6= β(G, p); this is still unanswered. It
is customary in the literature to suppress the reference to the base field F and
write only β(G); we shall do the same when it does not lead to confusions.

If char(F) = 0 then a classic theorem of Weyl (see [49]) asserts that given
some G-modules Vi each of dimension ni = dim(Vi), a generating set of the
invariant ring F[V ⊕d11 ⊕ ...⊕ V ⊕drr ]G can be obtained by polarization from a
generating set of the ring F[V ⊕n1

1 ⊕ ...⊕V ⊕nrr ]G, provided that di ≥ ni for all
i = 1, ..., r. Since polarization preserves the degree, we get as an immediate
consequence the result (due to Schmid) that β(G) = β(G, Vreg) where Vreg is
the regular representation of G. If char(F) > 0 this fails to be true even in
the non-modular case; instead of that, it follows from a result of Grosshans in
[23] that if char(F) does not divide |G|, then for any G-module W containing
Vreg as a submodule the ring F[W ]G is the p-root closure of its subalgebra
generated by the polarization of F[Vreg]

G. We shall need later the following
result of Knop on polarization in positive characteristic:

Proposition 1.7 (Knop, Theorem 6.1 in [31]). Let U and V be finite di-

mensional G-modules. If n0 ≥ max{dim(V ), β(G)
char(F)−1} and S is a generating

set of F[U ⊕ V ⊕n0 ]G then F[U ⊕ V ⊕n]G for any n ≥ n0 is generated by the
polarization (with respect to the type-V variables) of S.

Finally, let us summarize the previously known reduction lemmata by
means of which γ(G) can be bound through induction on the structure of G:

Lemma 1.8. We have γ(G) ≤ γ(K) for any subquotient K of G.

Proof. For any subgroup H ≤ G, resp. for any normal subgroup N / G the
following reduction lemmata hold:

β(G) ≤ [G : H]β(H) (1.3)

β(G) ≤ β(G/N)β(N) (1.4)

These were proved for characteristic 0 by Schmid (see Lemma 3.2 and 3.1
in [43]) and subsequently extended to the case when char(F) - |G| by Sezer
(see Proposition 2 and 4 in [45]). After dividing by |G| = [G : H]|H| the
first inequality yields γ(G) ≤ γ(H), and similarly from the second inequality
γ(G) ≤ γ(G/N)γ(N), whence γ(G) ≤ γ(G/N), as γ(N) ≤ 1 by (1.1).

Convention 1.9. Throughout this thesis F is an algebraically closed base
field and G is a finite group of order not divisible by char(F), unless explicitly
stated otherwise. All vector spaces and algebras are over F.

9
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1.3 The Davenport constant

A character of an abelian group A is a group homomorphism from A to
the multiplicative group F× of the base field. The set of characters of A
is denoted by Â; it is naturally an abelian group, and in fact there is a
(non-canonic) isomorphism Â ∼= A. Let V be a representation of A over the
base field F. Since F is algebraically closed and char(F) is coprime to |A| by
Convention 1.9, V decomposes as direct sum of irreducible representations
of dimension 1. This means that V ∗ has an A-eigenbasis {x1, ..., xn} and the
action of A on each of these dual vectors can be described by a character
θi ∈ Â such that xai = θi(a)xi; θi is called the weight of xi. We shall always
tacitly choose this A-eigenbasis as the variables in the polynomial algebra
F[V ] = F[x1, ..., xn]. Let M(V ) denote the set of monomials in F[V ]; this
is a monoid with respect to ordinary multiplication and unit element 1. On
the other hand we denote byM(Â) the free commutative monoid generated
by the elements of Â. Due to our choice of variables in F[V ] we can define
a monoid homomorphism Φ : M(V ) → M(Â) by sending each variable xi
to its weight θi. We shall call Φ(m) the weight sequence of the monomial
m ∈ M(V ). We prefer to write Â additively, hence for any character θ ∈ Â
we denote by −θ the character a 7→ θ(a)−1, a ∈ A.

An element S ∈M(Â) can be interpreted as a sequence S := (s1, . . . , sn)
of elements of Â where repetition of elements is allowed and their order is
disregarded. The length of S is |S| := n. By a subsequence of S we mean
SJ := (sj | j ∈ J) for some subset J ⊆ {1, . . . , n}. Given a sequence R
over an abelian group A we write R = R1R2 if R is the concatenation of its
subsequences R1, R2, and we call the expression R1R2 a factorization of R.
Given an element a ∈ A and a positive integer r, write (ar) for the sequence
in which a occurs with multiplicity r. For an automorphism b of A and a
sequence S = (s1, . . . , sn) we write Sb for the sequence (sb1, . . . , s

b
n), and we

say that the sequences S and T are similar if T = Sb for some b ∈ Aut(A).
Let σ :M(Â)→ Â be the monoid homomorphism which assigns to each

sequence over A the sum of its elements. The value σ(Φ(m)) ∈ Â is called the
weight of the monomial m ∈M(V ) and it will be abbreviated by θ(m). The
kernel of σ is called the block monoid of Â, denoted by B(Â), and its elements
are called zero-sum sequences. Our interest in zero-sum sequences and the
related results in additive number theory stems from the observation that
the invariant ring F[V ]A is spanned as a vector space by all those monomials
for which Φ(m) is a zero-sum sequence over Â. Moreover, as an algebra,
F[V ]A is minimally generated by those monomials m for which Φ(m) does
not contain any proper zero-sum subsequences. These are called irreducible
zero-sum sequences, and they form the Hilbert basis of the monoid B(Â). A

10
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sequence is zero-sum free if it has no non-empty zero-sum subsequence.
The Davenport constant D(A) of A is defined as the length of the longest

irreducible zero-sum sequence over A. It is an extensively studied quantity,
see for example [20]. As it is seen from our discussion:

D(A) = β(A). (1.5)

The generalized Davenport constant Dk(A) is introduced in [24] as the
length of the longest zero-sum sequence that cannot be factored into more
than k non-empty zero-sum sequences. Obviously D1(A) = D(A), moreover
Dk(A) ≤ kD(A), and for cyclic groups Dk(Zq) = kq.

By the structure theorem of finite abelian groups A ∼= Zn1 × · · · × Zns ,
where 1 < n1 | · · · | ns are positive integers and Zn stands for the cyclic
group of order n. It was proved by Olson [36], [37] that when A is a p-group
or A has rank s = 2, then

D(A) = n1 + ...+ ns − s+ 1. (1.6)

We close this section with two results on Dk which will be used later on.

Proposition 1.10 (Halter-Koch, [24] Proposition 5). For any n | m we have

Dk(Zn × Zm) = km+ n− 1.

Proposition 1.11 (Delorme-Ordaz-Quiroz, [10] Lemma 3.7).

Dk(Z2 × Z2 × Z2) =

{
4 if k = 1

2k + 3 if k > 1

Proof. A sequence of length at least 8 over Z2×Z2×Z2 either contains 0 or
it contains two identical non-zero elements: in both cases there is a “short”
zero-sum sequence of length at most 2 in it. Therefore any zero-sum sequence
of length 8+2k factors into k+1 short zero-sum sequences, plus one of length
at least 6, which in turn factors into two, since D(Z2×Z2×Z2) = 4 by (1.6).
This shows that Dk+2 ≤ 7 + 2k.

For the converse consider the zero-sum sequence which contains one non-
zero element a ∈ Z2 × Z2 × Z2 with multiplicity 2k + 1 and every other
non-zero element with multiplicity 1. This sequence has length 7 + 2k, and
since (aa) is the only short zero-sum sequence occurring in it, it cannot be
factored into more than k + 2 non-empty zero-sum sequences.

Now we are in the position to classify the abelian groups with γ(A) ≥ 1/2:

11
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Proposition 1.12. Let A be a finite abelian group such that |A| ∈ F×. We
have γ(A) ≥ 1

2
if and only if A is one of the following groups:

(i) Zm where m ≥ 1 and then γ(A) = 1;

(ii) Z2 × Z2m where m ≥ 1 and then γ(A) = 1
2

+ 1
4m

;

(iii) Z3 × Z3 and then γ(A) = 5
9
;

(iv) Z2 × Z2 × Z2 and then γ(A) = 1
2
.

Proof. Assume A ∼= Zn1 × · · · × Zns where s ≥ 2, 1 < n1 | ... | ns and
γ(A) ≥ 1/2. If s = 2 then Olson’s formula (1.6) implies that (ii) or (iii)
holds for A. Moreover, taking into account Lemma 1.8 we conclude that if
s ≥ 3, then Z3 × Z3 × Z3 or Z2 × Z2 × Z2 is a subgroup of A. By (1.6) the
relative Noether number of the first group is strictly less than 1/2, hence this
case is ruled out. If Z2 × Z2 × Z2 is a subgroup of index m in A, then by
Lemma 2.3 and by Proposition 1.11 we have γ(A) ≤ 2m+3

8m
, which is strictly

less than 1/2 when m > 1.

1.4 Results on zero-sum sequences

In the remaining part of this chapter we collect for further reference some
facts about zero-sum sequences over the cyclic group Zn. We shall repeatedly
use the Cauchy-Davenport Theorem, asserting that

|A+B| ≥ min{p, |A|+ |B| − 1} (1.7)

for any non-empty subsets A,B in Zp, where p is a prime. There are two
extensions of this result: Vosper’s theorem (see Theorem 5.9. in [46]) states
that equality in (1.7) implies that A and B are arithmetic progressions of the
same step, provided that |A|, |B| ≥ 2 and |A+ B| ≤ p− 2. Moreover, when
n is arbitrary by a result of Kemperman and Scherk (see Theorem 5.2.10 in
[21]) for any non-empty subsets A,B ⊂ Zn we have:

|A+B| ≥ |A|+ |B| − min
z∈A+B

rA,B(z) (1.8)

where rA,B(z) := |{(x, y) : x ∈ A, y ∈ B, x + y = z}| counts the number of
ways in which an element z ∈ Zn can be represented as an element of the
sumset A+B.

Lemma 1.13 (cf. [21] Thm. 5.3.1). Let S be a sequence over Zn \ {0} with
maximal multiplicity h. If |S| ≥ n then S has a zero-sum subsequence T ⊆ S
of length |T | ≤ h.

12
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Proof. LetR1 ⊇ ... ⊇ Rh be the subsets of Zn\{0} such that S = R1...Rh. Set
Ti := Ri∪̇{0} for every i = 1, ..., h. Suppose indirectly that 0 6∈ R1 + ...+Rh.
This means in particular that rT1+...+Ti,Ti+1

(0) = 1 for every i < h. Using
(1.8) we get by induction on i that |T1 + ... + Ti| ≥ |R1| + ... + |Ri| + 1 for
every i ≤ h. As a result n ≥ |T1 + ... + Th| ≥ |S|+ 1, which contradicts our
assumption.

Definition 1.14. For any sequence S = (s1, ..., sd) over an abelian group A
the set of its partial sums is Σ(S) := {

∑
i∈I si : I ⊆ {1, ..., d}}.

Lemma 1.15. Let p be a prime and S = (s1, ..., sd) a sequence of non-zero
elements of Zp. Then |Σ(S)| ≥ min{p, d+ 1}.

Proof. We use induction on d; the case d = 1 is trivial. Otherwise by the
Cauchy-Davenport theorem |Σ(S)| ≥ |Σ(s1, ..., sd−1)|+|{0, sd}|−1 = d+2−1
if d < p.

Lemma 1.16 (Freeze – Smith [19]). For any zero-sum free sequence S over
Zn of length d and maximal multiplicity h = h(S) it holds that

|Σ(S)| ≥ 2d− h+ 1.

Proposition 1.17 (Dias da Silva – Hamidoune [9]). Let p be a prime and
A ⊆ Zp a nonempty subset. Let s∧A denote the set of all sums of s distinct
elements of A. Then

|s∧A| ≥ min{p, s|A| − s2 + 1}

Proposition 1.18 (Balandraud [1]). Let p be an odd prime and A ⊂ Zp such
that A ∩ (−A) = ∅. Then

|Σ(A)| ≥ min

{
p, 1 +

|A|(|A|+ 1)

2

}
Let e be a generator of the cyclic group Zn; for an arbitrary element

a ∈ Z, the smallest positive integer r such that a = re is denoted by ||a||e.
For any sequence S = (a1, ..., al) over Zn we set ||S||e := ||a1||e + ...+ ||al||e.
The quantity ||S|| := min〈e〉=Zn ||S||e is called the index of S.

Proposition 1.19 (Savchev – Chen [42]). Any irreducible zero-sum sequence
over Zn of length l > n

2
+ 1 has index n.

Finally, we prove two original results, which might have some interest on
their own, independently of the context in which we use them later. They are
based on an intermediary step in the proof of the Savchev – Chen Theorem
(see Proposition 2. in [42]):

13
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Proposition 1.20. Let S1 ⊂ S2 ⊂ ... ⊂ St be zero-sum free sequences over
the cyclic group Zn such that |Si| = i for all i = 1, ..., t and

|Σ(Si+1)| ≥ |Σ(Si)|+ 2 for all i ≤ t− 1 (1.9)

If moreover St(b) is also zero-sum free for some b ∈ Zn and |Σ(St(b))| =
|Σ(St)|+ 1, then b is the unique element with these two properties.

Lemma 1.21. Any sequence S over Zn contains either a zero-sum sequence
of length at most dn

2
e or an element of multiplicity at least |S| − bn

2
c.

Proof. Suppose that S does not contain a zero-sum sequence of length at
most dn

2
e and let S1 ⊂ ... ⊂ St be zero-sum free sequences where t is maximal

with the property that |Σ(Si+1)| ≥ |Σ(Si)|+2 and |Si| = i for every i ≤ t−1;
let S = StR. By this assumption n ≥ |Σ(St)| ≥ 2t. If t = dn

2
e, which enforces

that n is even, then |Σ(St)| = n, hence any a ∈ R can be completed into a
zero-sum sequence U(a) with some U ⊆ St. By our assumption it is necessary
that |U(a)| > dn

2
e, hence U = St and the multiplicity of a = −θ(St) is at least

|R| = |S|−dn
2
e. It remains that t ≤ dn

2
e−1. Then for any b ∈ R the sequence

St(b) of length at most dn
2
e must be zero-sum free by our assumption, hence

by the maximality property of St necessarily |Σ(S(b))| = |Σ(S)|+ 1. But we
know from Proposition 1.20 that the element b with these two properties is
unique, hence b has multiplicity |R| ≥ |S| − dn

2
e+ 1.

Lemma 1.22. Let S be a zero-sum sequence over Zn of length |S| ≥ kn+ 1,
(k ≥ 2), which does not factor into more than k + 1 non-empty zero-sum
sequences. Then S = T1T2(e

(k−1)n) where 〈e〉 = Zn and ||T1||e = ||T2||e = n.

Proof. First we prove that an element e ∈ S has multiplicity at least (k−1)n;
if so e will have order n, for otherwise S factors into at least 2(k−1)+2 > k+1
non-empty zero-sum sequences. Let S = T1S1 where T1 is a non-empty zero-
sum sequence of minimal length in S. If |T1| > dn2 e then h(S) ≥ |S|−bn

2
c by

Lemma 1.21, and we are done. If however |T1| ≤ dn2 e then S1 = T2S2 where
T2 is a minimal non-empty zero-sum sequence in S1; obviously |T2| ≥ |T1|.
If |T2| > dn2 e then h(S) ≥ h(S1) ≥ |S1| − bn2 c ≥ |S| − d

n
2
e − bn

2
c = |S| − n

by Lemma 1.21, and we are done again. It remains that |T2| ≤ dn2 e. Then
|T1T2| ≤ n+1 and |S2| ≥ (k−1)n. Given that S2 cannot be factored into more
than k− 1 non-empty zero-sum sequences it is necessary that S2 = (e(k−1)n).

Now suppose to the contrary that ||T1||e > n, say. Then T1 = U(a)V
where U, V are non-empty subsequences such that ||U ||e < n, ||U(a)||e > n.
But then (en) ·T1 = (en−||U ||e)U ·(en−||a||ea) ·(e||U ||e+||a||e−n)V is a factorization
which leads to a decomposition of S into more than k+1 non-empty zero-sum
sequences, and this is a contradiction.

14
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Chapter 2

The generalized Noether
number

Definition 2.1. Let M be a graded module over a graded F-algebra R as in
Section 1.2. We define for any integer k ≥ 1

βk(M,R) := β(M,Rk
+)

Note that β1(M,R) = β(M,R). The abbreviation βk(R) := βk(R+, R) will
also be used. For a representation V of a finite group G over the field F we
set βk(G, V ) := βk(F[V ]G). The trivial bound βk(G, V ) ≤ kβ(G, V ) shows
that this quantity is finite. We also set

βk(G) := sup{βk(G, V ) | V is a finite dimensional G-module over F}.

suppressing F from the notation as in the case of β(G). We shall refer to
these numbers as the generalized Noether numbers of the group G.

2.1 Reduction for normal subgroups

The following characterization of the generalized Noether number will be
sometimes useful:

Proposition 2.2. Suppose that char(F) does not divide |G|. Then βk(G)
is the minimal positive integer d having the property that for any finitely
generated commutative graded F-algebra L (with L0 = F) on which G acts
via graded F-algebra automorphisms we have

LG ∩ Ld+1
+ ⊆ (LG+)k+1.
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Proof. Let L be a finitely generated commutative graded F-algebra L with
L0 = F on which G acts via graded F-algebra automorphisms. There exists
a finite dimensional G-module V and a G-equivariant F-algebra surjection
π : F[V ]→ L mapping F[V ]+ onto L+. Moreover, π restricts to a surjection
F[V ]G+ → LG+ by the assumption on the characteristic of F. So we have

LG ∩ Lβk(G)+1
+ = π(F[V ]G≥βk(G)+1) ⊆ π((F[V ]G+)k+1) = (LG+)k+1.

For the reverse implication let L := F[V ], where V is a finite dimensional
G-module with βk(G, V ) = βk(G).

Lemma 2.3. Suppose that char(F) - |G| and N is a normal subgroup of G.
Then for any finite dimensional G-module V we have

βk(G, V ) ≤ ββk(G/N)(N, V )

Consequently the inequality βk(G) ≤ ββk(G/N)(N) holds, as well.

Proof. We shall apply Proposition 2.2 for the algebra L := F[V ]N ; denote
R := F[V ]G. The subalgebra L of F[V ] is G-stable, and the action of G on L
factors through G/N , and R = LG/N . Setting s := ββk(G/N)(N, V ), we have

R≥s+1 = R ∩ L≥s+1 ⊆ LG/N ∩ Lβk(G/N)+1
+ ⊆ (L

G/N
+ )k+1 = (R+)k+1.

Remark 2.4. In the particular case when G = A is abelian the generalized
Noether number equals the generalized Davenport number: βk(A) = Dk(A)
for any k > 0. In view of this, Lemma 2.3 applied to abelian groups yields
for any subgroup B ≤ A that:

Dk(A) ≤ DDk(A/B)(B) (2.1)

Dk(A) ≤ DDk(B)(A/B) (2.2)

The second inequality follows from the first by observing that A has a sub-
group C ∼= A/B for which A/C ∼= B, hence the role of A/B and B can be
reversed in this formula. This inequality appears as Proposition 2.6 in [10].

2.2 Reduction for arbitrary subgroups

For subspaces S, T of an F-algebra L we write ST for the subspace spanned
by the products {st | s ∈ S, t ∈ T}, and use the notation Sk := S . . . S (k
factors) accordingly.
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Proposition 2.5. Let J be a non-unitary commutative F-algebra on which a
finite group G acts via F-algebra automorphisms and let H ≤ G be a subgroup
for which one of the following conditions holds:

(i) char(F) > [G : H] or char(F) = 0;

(ii) H is normal in G and char(F) does not divide [G : H];

(iii) char(F) does not divide |G|.

Then we have
(JH)[G:H] ⊆ JHJG + JG

Proof. (i) Let f ∈ JH be arbitrary and S a system of right H-coset represen-
tatives in G. Then f is a root of the monic polynomial

∏
g∈S(t− f g) ∈ J [t].

Obviously all coefficients of this polynomial are G-invariant. Consequently,
f [G:H] ∈ JHJG + JG holds for all f ∈ JH . Take arbitrary f1, . . . , fr ∈ JH

where r = [G : H]. Then the product r!f1 · · · fr can be written as an alter-
nating sum of rth powers of sums of subsets of {f1, . . . , fr} (see e.g. Lemma
1.5.1 in [3]), hence f1 · · · fr ∈ JHJG + JG.

(ii) (This is a variant of a result of Knop, Theorem 2.1 in [31]; the idea ap-
pears in Benson’s simplification of Fogarty’s argument from [17], see Lemma
3.8.1 in [12]). Let S be a system of H-coset representatives in G. For each
x ∈ S choose an arbitrary element ax ∈ JH . It is easily checked that

0 =
∑
y∈S

∏
x∈S

(ax − ax
−1y
x ) =

∑
U⊆S

(−1)|U |δU where (2.3)

δU :=
∏
x 6∈U

ax
∑
y∈S

(
∏
x∈U

ax
−1

x )y

Note that agx ∈ JH for all x ∈ S and g ∈ G by normality of H in G.

Therefore δU =
∏

x 6∈U ax τ
G
H

(∏
x∈U a

x−1

x

)
. Thus δS ∈ JG and δU ∈ JHJG for

every U ( S, except for U = ∅, when we get the term [G : H]
∏

x∈S ax. Given
that [G : H] ∈ F× and the elements ax were arbitrary the claim follows.

(iii) Let S be a system of left H-coset representatives in G. Apply the
transfer map τH : J → JH to the equality (2.3), and observe that

τH(δU) =
∏
x 6∈U

ax
∑
h∈H

∑
y∈S

(
∏
x∈U

ax
−1

x )yh =
∏
x 6∈U

axτ
G(
∏
x∈U

ax
−1

x ) (2.4)

This shows that τH(δU) ∈ JHJG + JG for all non-empty subsets U ⊆ S, and
τH(δ∅) = |G|

∏
x∈S ax, implying the claim as in (ii).
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Remark 2.6. Finiteness of G can be replaced by finiteness of [G : H] in (i)
and (ii) above.

Corollary 2.7. Keeping the assumptions of Proposition 2.5 on G, H and
char(F), let V be a G-module, I := F[V ]H , R := F[V ]G. Then for any finitely
generated graded I-module M we have

βk(M,R) ≤ βk[G:H](M, I). (2.5)

In particular we have the inequalities

βk(I+, R) ≤ βk[G:H](I+/R
k
+I+) (2.6)

βk(G, V ) ≤ βk[G:H](H,V ). (2.7)

Proof. By Proposition 2.3 we have I
k[G:H]
+ ⊆ I+R

k
+ + Rk

+, and consequently

MI
k[G:H]
+ ⊆MRk

+, implying the first inequality.
The second inequality follows from the first by setting M := I+/R

k
+I+ and

noting that βk(I+, R) = βk(M,R) and similarly βk[G:H](M, I) = βk[G:H](M).
Finally, the third is a weakening of the second since by Lemma 1.4 (2)

βk(G, V ) = βk(R) ≤ βk(I+, R) and βk[G:H](M) ≤ βk[G:H](I) = βk[G:H](H, V ).

Remark 2.8. (i) From Lemma 2.3 and Corollary 2.7 in the special case
k = 1 one recovers Schmid’s reduction lemmata mentioned in Lemma 1.8.

(ii) It is conjectured that β(G, V ) ≤ [G : H]β(H,V ) holds in fact always
whenever char(F) - [G : H]. This open question is mentioned under the name
“baby Noether gap” in Remark 3.8.5 (b) in [12] or on page 1222 in [30].

The use of Lemma 2.3 and Corollary 2.7 on the generalized Noether num-
ber stems from the fact that for k > 1 the number βk(G, V ) in general is
strictly smaller than kβ(G, V ), as it can be seen in Section 1.3 already for
abelian groups.

2.3 Lower bounds

Schmid [43] proved that the Noether number is monotone with respect to
taking subgroups. This extends for the generalized Noether number as well:

Lemma 2.9. Let W be a finite dimensional H-module, where H is a subgroup
of a finite group G, and denote by V the G-module induced from W . Then
the inequality βk(G, V ) ≥ βk(H,W ) holds for all positive integers k.
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Proof. View W as an H-submodule of

V =
⊕
g∈G/H

gW (2.8)

where G/H stands for a system of left H-coset representatives. Restriction
of functions from V to W is a graded F-algebra surjection φ : F[V ]→ F[W ].
Clearly φ is H-equivariant, hence maps F[V ]G into F[W ]H . Even more, as
observed in the proof of Proposition 5.1 of [43], we have φ(F[V ]G) = F[W ]H :
indeed, the projection from V to W corresponding to the direct sum decom-
position (2.8) identifies F[W ] with a subalgebra of F[V ], and for an arbitrary
f ∈ F[W ]H ⊂ F[W ] ⊂ F[V ], we get that τ(f) :=

∑
g−1∈G/H f

g ∈ F[V ]G is a

G-invariant mapped to f by φ. Hence if F[V ]Gd ⊆ (F[V ]G+)k+1 for some integer
d > 0 then F[W ]Hd = φ(F[V ]Gd ) ⊆ φ((F[V ]G+)k+1) = (F[W ]H+ )k+1. By definition
of the generalized Noether number we get that βk(G, V ) ≥ βk(H,W ).

Corollary 2.10. Let H be a subgroup of a finite group G, and suppose that
char(F) does not divide the order of G. Then for all positive integers k we
have the inequality βk(H) ≤ βk(G).

Next we give a strengthening of Corollary 2.10 in the special case when
H is normal in G and the factor group G/H is abelian. For a character

θ ∈ Ĝ/H denote by F[V ]G,θ the space {f ∈ F[V ] | f g = θ(g)f ∀g ∈ G} of
the relative G-invariants of weight θ. Generalizing the construction in the
proof of Lemma 2.9, for f ∈ F[W ]H ⊂ F[V ] (here again V = IndGHW ) set

τ θ(f) :=
∑

g−1∈G/H

θ(g)−1f g ∈ F[V ]G,θ.

Then φ(τ θ(f)) = f , hence

φ(F[V ]G,θ) = F[W ]H holds for all θ ∈ Ĝ/H. (2.9)

Let U :=
⊕d

i=1 Ui be a direct sum of one-dimensional G/H-modules Ui.
Making the identification F[U⊕V ] = F[U ]⊗F[V ] =

⊕
α∈Nd0

xα⊗F[V ] (where
following the convention introduced in Section 1.3, the variables x1, . . . , xd
in F[U ] are G/H-eigenvectors with weight denoted by θ(xi)), we have

F[U ⊕ V ]G =
⊕
α∈Nd0

xα ⊗ F[V ]G,−θ(x
α) (2.10)

Setting φ̃ := id⊗ φ : F[U ⊕ V ]→ F[U ]⊗ F[W ], (2.9) and (2.10) imply that

φ̃(F[U ⊕ V ]G+) = F[U ]G+ ⊕
⊕
α∈Nd0

xα ⊗ F[W ]H+ . (2.11)
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Theorem 2.11. Let H be a normal subgroup of a finite group G with G/H
abelian, and suppose that char(F) does not divide the order of G. Then for
all positive integers k we have the inequality

βk(G) ≥ βk(H) + D(G/H)− 1.

Proof. Take W,V, U =
⊕d

i=1 Ui as above, where we have βk(H) = βk(H,W )
in addition, and the characters θ1, . . . , θd of the summands Ui constitute a

maximal length zero-sum free sequence over the abelian group Ĝ/H. In
particular, d = D(G/H)− 1 (since F is assumed to be algebraically closed).
Choose a homogeneous H-invariant f ∈ F[W ]H of degree βk(H,W ), not
contained in (F[W ]H+ )k+1, and consider the G-invariant

t := x1 · · ·xd ⊗ τ θ(f) ∈ F[U ⊕ V ]G,

where θ =
∑d

i=1 θi (we write the character group Ĝ/H additively). Then
t ∈ F[U ⊕ V ]G is homogeneous of degree d + βk(H,W ). We will show that
t /∈ (F[U ⊕ V ]G+)k+1, implying βk(G,U ⊕ V ) ≥ βk(H,W ) + d = βk(H) + d.
Indeed, assume to the contrary that t ∈ (F[U ⊕ V ]G+)k+1. Then by (2.11) we
have

x1 · · ·xd ⊗ f = φ̃(t) ∈

F[U ]G+ ⊕
⊕
α∈Nd0

xα ⊗ F[W ]H+

k+1

.

Since F[U ]G+ is spanned by monomials not dividing the monomial x1 · · ·xd
(recall that θ1, . . . , θd is a zero-sum free sequence), we conclude that

x1 · · ·xd ⊗ f ∈

⊕
α∈Nd0

xα ⊗ F[W ]H+

k+1

. (2.12)

Denote by ρ : F[U ] ⊗ F[V ] → F[V ] the F-algebra homomorphism given by
the specialization xi 7→ 1 (i = 1, . . . , d). Applying ρ to (2.12) we get that
f ∈ (F[W ]H+ )k+1, contradicting the choice of f .

Remark 2.12. (i) Lemma 2.9, Corollary 2.10, and Theorem 2.11 remain
true with the same proofs under the weaker condition that [G : H] is finite.

(ii) The proof of Theorem 2.11 also yields the stronger conclusion

βk(G) ≥ max
0≤s≤k−1

βk−s(H) + Ds+1(G/H)− 1 (2.13)

(iii) If G is abelian, we get Dk(G) ≥ Dk(H)+D(G/H)−1 for any subgroup
H ≤ G. For the case G = H ⊕H1, this was proved in [24], Proposition 3 (i).

20



C
E

U
eT

D
C

ol
le

ct
io

n

Lemma 2.13. Let G be a finite group of order coprime to char(F). Then
for any G-module V there exists an irreducible G-module U such that

βk(G, V ⊕ U) ≥ βk(F[V ],F[V ]G) + 1.

Proof. Write L = F[V ], R = F[V ]G and set d := βk(L,R). By semisimplicity
of theG-module Ld its submodule Rk

+L∩Ld has a direct complement, which is
non-zero by the definition of d, hence it contains an irreducible G-submodule
U . Choose a basis e1, . . . , en in U and let ε1, . . . , εn be the corresponding
dual basis in U∗. Then f :=

∑n
i=1 eiεi is a G-invariant of degree d + 1 in

the ring F[V ⊕ U ] = F[V ] ⊗ F[ε1, . . . , εn]. We claim that f 6∈ Sk+1
+ where

S := F[V ⊕ U ]G. Note that the action of G on F[V ⊕ U ] preserves the
total degree both in the variables belonging to V ∗ and to U∗. Suppose
indirectly that f ∈ Sk+1

+ . Then f =
∑

i gihi where gi ∈ Rk
+ while hi ∈ S+

is linear on U , i.e. hi =
∑n

k=1 hi,kεk for some polynomials hi,k ∈ L. After
equating the coefficients of εi on both sides we get that ei =

∑
k gihi,k ∈ Rk

+L,
contradicting the choice of U .

Corollary 2.14. If V is a G-module such that βk(G, V ) = βk(G) then

βk(G, V ) = βk(F[V ],F[V ]G) + 1.

Proof. For any G-module V it holds that βk(G, V ) ≤ βk(L,R) + 1 where
L = F[V ] and R = F[V ]G. Indeed, if f ∈ L has degree deg(f) > βk(L,R) + 1
then by definition f ∈ L+L>βk(L,R) ⊆ L+R

k
+, hence by basic properties of the

transfer map τ : L → R it follows that τ(f) ∈ Rk+1
+ . The reverse inequality

is an immediate consequence of Lemma 2.13.

Theorem 2.15. For any integers r, s ≥ 1 we have the inequality

βr+s−1(G×H) ≥ βr(G) + βs(H)− 1.

Proof. First we prove the following extension of Lemma 1.4 (3): if M and N
are graded modules over the graded algebras R and S, respectively, then:

βr+s−1(M ⊗N,R⊗ S) ≥ βr(M,R) + βs(N,S) (2.14)

Indeed, there are elements x ∈ Mβr(M,R) \ Rr
+M and y ∈ Nβs(N,S) \ Ss+N .

Take a vector space basis B1 of Rr
+M , and extend B1 ∪ {x} to a basis B of

M . Similarly, let C1 be a basis of Ss+N , and extend C1 ∪ {y} to a basis C
in N . Then A := {u ⊗ v | u ∈ B1, v ∈ C or u ∈ B, v ∈ C1} is a basis of
T := Rr

+M⊗N+M⊗Ss+N . On the other hand A∪{x⊗y} can be extended
to a basis of M⊗N , showing that x⊗y 6∈ T . But T ⊇ (R⊗S)r+s−1+ (M⊗N),
whence (2.14) readily follows.
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Now take a G-module V with βr(G, V ) = βr(G), and an H-module W
with βs(H,W ) = βs(H). Given that F[V ⊕W ]G×H = F[V ]G ⊗ F[W ]H we
have the following sequence of implications:

βr+s−1(G×H)− 1 ≥ βr+s−1(F[V ⊕W ],F[V ⊕W ]G×H+ ) by Lemma 2.13

≥ βr(F[V ],F[V ]G) + βs(F[W ],F[W ]H) by (2.14)

= βr(G) + βs(H)− 2 by Corollary 2.14

2.4 The growth rate of βk

In this section we will study for a fixed commutative graded F-algebra R the
behavior of βk(R) as a function of k. The surjection R+/R

k+1
+ → R+/R

k
+

shows that βk(R) ≤ βk+1(R) for all k. It might seem plausible at first that
βk(R) is a strictly increasing function of k, however this is false:

Example 2.16. Consider the ring R = F[a, b]/(b3 − a9, ab2 − a7) and define
a grading by setting deg(a) = 1 and deg(b) = 3. Then b2 ∈ R2

+ \ R3
+, and b2

spans the degree 6 homogeneous component of R2
+/R

4
+. In this case for all

l ≥ 7 we have that Rl ⊆ R5
+, hence 6 = β2(R) = β3(R) = β4(R).

Lemma 2.17. βk(R) as a function of k is bounded if and only if there is an
integer n such that Ri = {0} for all i ≥ n. In particular if R+ 6=

√
0 then

βk(R) is unbounded.

Proof. Note that Rn+1
+ ⊆ R≥n+1. Hence if Rn 6= {0}, then Rn * Rn+1

+ ,
implying βn(R) ≥ n. Conversely, if Ri = {0} for all i ≥ n then βi(R) ≤ n.
In this case for any f ∈ R+ there is an integer r > 0 such that r deg(f) > n,
hence f r = 0, showing that f is nilpotent and that R+ ⊆

√
0.

Lemma 2.18. For any positive integers r ≤ k we have the inequality

βk(G, V ) ≤ k

r
βr(G, V ).

Proof. Suppose to the contrary that βk(G) > k
r
βr(G, V ). Then there exist

homogeneous G-invariants f1, . . . , fl ∈ F[V ]G+ such that l ≤ k, f := f1 · · · fl
is not contained in (F[V ]G+)l+1, and deg(f) > k

r
βr(G, V ) (this forces that

l > r). We may suppose that deg(f1) ≥ · · · ≥ deg(fl). Then we have
deg(f1 · · · fr) > βr(G, V ), implying that h := f1 · · · fr ∈ (F[V ]G+)r+1, hence
f = hfr+1 · · · fl ∈ (F[V ]G+)l+1, a contradiction.

22



C
E

U
eT

D
C

ol
le

ct
io

n

By Lemma 2.18 the sequence βk(G,V )
k

is monotonically decreasing, and as
it is also non-negative, it must converge to a certain limit. Our next goal will
be to clarify what is the value of this limit.

Definition 2.19. Let R be a graded finitely generated commutative F-
algebra with R0 = F. Set

σ(R) := min{d ∈ N : R is finitely generated as a module over F[R≤d]}

Equivalently, σ(R) is the minimal integer d such that β(R,F[R≤d]) is finite.

For any G-module V we write σ(G, V ) := σ(F[V ]G). This quantity was
much studied for G a linearly reductive group (see e.g. [11]), but to our
knowledge, the particular case when G is finite has not been considered on
its own until yet. Observe first that σ(G, V ) is finite since by its definition:

σ(G, V ) ≤ β(G, V ) ≤ |G| (2.15)

We can also set σ(G) := supV σ(G, V ) where V runs through all G-modules.
By the above remark σ(G) ≤ β(G). The following gives a more precise result:

Lemma 2.20. Let V1, ..., Vn be any G-modules and W = V1⊕· · ·⊕Vn. Then

σ(G,W ) =
n

max
i=1

σ(G, Vi)

In particular σ(G) = maxU σ(G,U) where U ranges over all isomorphism
classes of irreducible G-modules.

Proof. Let R = F[W ]G and denote by Si the subalgebra of F[Vi]
G generated

by its elements of degree at most σ(G, Vi). As F[W ] = ⊗ni=1 F[Vi] we get
using Lemma 1.4 (3) that β(F[W ],⊗ni=1Si) =

∑n
i=1 β(F[Vi], Si) < ∞. Since

⊗ni=1Si ⊆ F[R≤d] where d := maxni=1 σ(G, Vi), it follows by Lemma 1.4 (1)
that β(F[W ],F[R≤d]) <∞, whence σ(G,W ) ≤ d by Definition 2.19.

For the reverse inequality let T = F[Vi]
G for a fixed i and observe that

the restriction gives a graded algebra surjection ψ : R→ T . Hence the image
under ψ of a finite set of module generators of R over its subalgebra F[R≤σ(R)]
must generate T = ψ(R) as a module over its subalgebra ψ(F[R≤σ(R)]) =
F[T≤σ(R)], as well. In particular σ(G, Vi) ≤ σ(G,W ).

Corollary 2.21. If A is an abelian group of exponent exp(A) then

σ(A) = exp(A).
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Proof. Lemma 2.20 asserts that σ(A) = maxU σ(A,U) where U runs through
the irreducible representations of A. These are all 1-dimensional (as the base
field F is algebraically closed) and if U∗ = 〈x〉 then F[x]A = F[xe] where
e ∈ N is the exponent of the weight of x. This readily implies our claim.

Proposition 2.22 (Hilbert [27]). The common zero locus of some homoge-
neous invariants f1, ..., fn ∈ F[V ]G is {0} if and only if the invariant ring
F[V ]G is finitely generated as a module over its subring F[f1, ..., fn].

Lemma 2.23. For any G-module V we have βk(G, V ) ≥ kσ(G, V ).

Proof. Let R := F[V ]G and take homogeneous elements f1, . . . , fr ∈ R with
deg(fi) = σ(G, V ) such thatR is a finite module over F[R≤σ(G,V )−1, f1, . . . , fr].
By Proposition 2.22 the common zero locus of (R+)≤σ(G,V )−1∪{f1, . . . , fr} is
{0}. If fki ∈ Rk+1

+ , then fki belongs to the ideal generated by (R+)≤σ(G,V )−1,
hence the zero locus of fi contains the common zero locus of (R+)≤σ(G,V )−1.
It follows that there is an i such that fki /∈ Rk+1

+ , hence βk(R) ≥ kσ(R).

Definition 2.24. Let R be a ring as in Definition 2.19. We set:

η(R) := β(R+,F[R≤σ(R)])

For a G-module V we write η(G, V ) := η(F[V ]G) and η(G) := supV η(G, V ).

By definition of σ(R) the number β(R+,F[R≤σ(R)]) is finite. Moreover by
Definition 2.24 any element f ∈ R with deg(f) > η(R) belongs to the ideal
(R+)≤σ(R)R+. This implies first of all that

β(R) ≤ η(R) (2.16)

Moreover we know from Lemma 2.17 that an integer k0 exists such that
βk(R) ≥ η(R)− σ(R) holds for any k ≥ k0. Hence if deg(f) > βk(R) + σ(R)
then f ∈ R can be written in the form

∑
i gihi where 0 < deg(gi) ≤ σ(R)

and deg(hi) > βk(R), whence hi ∈ Rk+1
+ and f ∈ Rk+2

+ . This argument shows
that for any sufficiently large k ≥ k0 we have

βk+1(R) ≤ βk(R) + σ(R) (2.17)

This simple observation immediately leads us to the following result:

Theorem 2.25. For any G-module V there are non-negative integers β0(G, V )
and k0(G, V ) such that:

βk(G, V ) = kσ(G, V ) + β0(G, V ) for every k ≥ k0(G, V )

24



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. Consider the sequence ak := βk(G, V ) − kσ(G, V ). By (2.17) it is
monotonically decreasing and by Lemma 2.23 it is non-negative, therefore it
converges to a non-negative limit. But as its elements are integers, in fact it
stabilizes after finitely many steps, and this is what has been claimed.

Corollary 2.26.

lim
k→∞

βk(G, V )

k
= σ(G, V )

Remark 2.27. When char(F) = 0, then βk(G) = βk(G, Vreg) holds for all k
by the same argument as in the proof of the special case k = 1 in [43] based
on Weyl’s theorem on polarizations. Hence in this case we have

σ(G) = σ(G, Vreg) = lim
k→∞

βk(G, Vreg)

k
= lim

k→∞

βk(G)

k
.

In positive characteristic, however, it is unclear wether there is a G-module
U such that βk(G) = βk(G,U) holds for every k ≥ 1. Knop’s results in [31]
only imply that for any k ≥ 1 a G-module Uk exists with βk(G) = βk(G,Uk).

Corollary 2.28. Let G be a finite group and suppose that char(F) does not
divide |G|. Then for any subgroup H and normal subgroup N of G we have:

σ(G) ≤ σ(G/N)σ(N)

σ(H) ≤ σ(G) ≤ [G : H]σ(H)

Proof. Substitute into the inequality of Lemma 2.3 the linear expression for
βk(G, V ) given in Theorem 2.25. Then for sufficiently high values of k:

kσ(G, V ) + c0 = βk(G, V ) ≤ ββk(G/N)(N, V ) = βk(G/N)σ(N, V ) + c1

for some constants c0, c1. Our first claim follows after dividing by k and pass-
ing to the limit k →∞; here limk→∞

1
k
βk(G/N) = σ(G/N) by Remark 2.27,

provided that char(F) = 0. The second claim is proved similarly by substi-
tuting the linear expression of βk(G, V ) into the inequalities of Lemma 2.9
and Corollary 2.7 and then passing to the limit.

An alternative proof is obtained by adapting the proof of the reduction
lemmata for the Noether number to σ(G). This works also for char(F ) > 0;
we omit the details.

Remark 2.29. This implies in the same way as in Lemma 1.8 that for any
subquotient K of G

σ(G)

|G|
≤ σ(K)

|K|
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In the remaining part of this section we will develop a general method for
estimating βk based on the simple idea which lead us to (2.17).

Lemma 2.30. Let M be a graded module over a graded ring I, and S ⊆ I a
graded subalgebra. Then for any integers k > r ≥ 1 we have

βk(M, I) ≤ max{β(M,S) + βk−r−1(S), βr(M, I) + βk−r(S)}

Proof. Let d be greater than the right hand side of this inequality. Then

Md ⊆M≤β(M,S)S>βk−r−1(S) ⊆MSk−r+ ⊆M(Sk−r+ )≤βk−r(S)

hence Md ⊆M>βr(M,I)S
k−r
+ ⊆MIr+S

k−r
+ ⊆MIk+, showing that d > βk(M, I).

Lemma 2.31. For a G-module V and subgroup H ≤ G as in Proposition 2.5
set L := F[V ], M := L+/L

G
+L+. For any 1 ≤ r < [G : H] and s ≥ 1 we have

β(L+, L
G) ≤ ([G : H]− r)s+ max{βr(M,LH), β(M,F[LH≤s])− s}

Proof. We have β(L+, L
G) = β(M,LG) ≤ β[G:H](M,LH) by Corollary 2.7.

Applying Lemma 2.30 with k := [G : H], I := LH , S := F[R≤s] and noting
that βk(S) ≤ ks we obtain the above inequality.

Lemma 2.32. For a graded algebra I as in Definition 2.19 we have

βk(I) ≤ (k − 1)σ(I) + η(I).

In particular, for any G-module V

βk(G, V ) ≤ (k − 1)σ(G, V ) + η(G, V ).

Proof. Here we apply Lemma 2.30 for r = 1, M := I+ and S := F[I≤σ(I)].
Since β(M,S) = η(I) we have βk(I) ≤ (k−1)σ(I) + max{β(I), η(I)−σ(I)},
and this implies our claim using (2.16).

In the present section we have generalized, in fact, some notions and
results which were already known and much studied for abelian groups. E.g.
η(A) was originally defined as the smallest length of a sequence over A which
guarantees the existence of a “short” zero-sum subsequence, i.e. one with
length at most exp(A) (for some results on η(A) see e.g. [21] ch. 5.7). The
restriction of Lemma 2.32 to the abelian case appears in [21] as Lemma 6.1.3,
and Theorem 2.25 was first proved for the abelian case in [18] Lemma 5.1.
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Chapter 3

The semidirect product

The main question guiding our efforts in the present chapter is the following
open conjecture reported in [48]:

Conjecture 3.1 (Pawale). If p, q are odd primes such that q | p− 1 then we
have β(Zp o Zq) = p+ q − 1.

The lower bound β(Zp o Zq) ≥ p + q − 1 holds by Theorem 2.11. At
present, however, we cannot prove or disprove that this upper bound holds,
we were only able to improve the approximations given in [14] and [38].

3.1 Extending Goebel’s algorithm

Let G be a finite group with a proper abelian normal subgroup A. Consider
a monomial representation G→ GL(V ) which maps A to diagonal matrices.
This presupposes the choice of a basis x1, ..., xn in the dual space V ∗, which
are A-eigenvectors permuted up to scalars under the action of G/A. We shall
identify them with the variables in the coordinate ring L := F[V ]. Goebel
developed an algorithm for the case when V is a permutation representation
(see [22], [33], [12]) which we will adapt here to this more general case.

The conjugation action of G on A induces an action on Â in the standard
way, and we extend it to an action onM(Â) by setting U g = (ag1, . . . , a

g
l ) for

any sequence U = (a1, . . . , al) and g ∈ G. Enumerate the G-orbits in Â in a
fixed order O1, . . . , Ol. For a G-orbit O in Â let SO be the subsequence of S
consisting of its elements belonging toO. Now S has the canonic factorization
S = SO1 . . . SOl . In addition any sequence S over Â has a unique factorization
S = R1R2...Rh such that each Ri ⊆ Â is multiplicity-free and R1 ⊇ ... ⊇ Rh;
we call this the row decomposition of S and we refer to Ri as the ith row
of S, whereas supp(S) := R1 is its support and h(S) := h is its height. In
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other terms h(S) is the maximal multiplicity of the elements in S. (The
intuition behind this is that we like to think of sequences as Young diagrams
where the multiplicities in S of the different elements of Â are represented
by the heights of the columns.) Denote by µ(S) the non-increasing sequence
of integers (µ1(S), . . . , µh(S)) := (|R1|, ..., |Rh|). By the shape λ(S) of S we
mean the l-tuple of such partitions

λ(S) := (µ(SO1), . . . , µ(SOl)).

The set of the shapes is equipped with the usual reverse lexicographic order,
i.e. λ(S) ≺ λ(T ) if λ(S) 6= λ(T ) and for the smallest index i such that
µ(SOi) 6= µ(TOi), we have µj(S

Oi) > µj(T
Oi) for the smallest index j with

µj(S
Oi) 6= µj(T

Oi). Observe that λ(ST ) ≺ λ(S) always holds but on the
other hand λ(S) ≺ λ(S ′) does not imply λ(ST ) ≺ λ(S ′T ). Abusing notation
for any monomial m ∈ F[V ] we write λ(m), h(m) and supp(m) for the shape,
height and the support of its weight sequence Φ(m).

In the following we shall assume that we fixed a subset V of the variables
permuted by G up to non-zero scalar multiples; we adopt the convention that
unless V is explicitly specified, it is the set of all variables. Any monomial
m factors as m = mVmV̂ , where mV is a product of variables belonging to
V , and mV̂ does not involve variables from V . We shall also use the notation
λV(m) := λ(mV).

Definition 3.2. An A-invariant monomial u is a good factor of a monomial
m = uv if λV(ubv) ≺ λV(m) holds for all b ∈ G \ A; note that this forces
0 < deg(u) < deg(m). We say that m is terminal if it has no good factor.

Lemma 3.3. L+ = F[V ]+ is generated as an LG-module by the terminal
monomials.

Proof. We prove by induction on λV(m) with respect to ≺ that if m is not
terminal, then it can be expressed modulo L+L

G
+ as a linear combination of

terminal monomials. Indeed, take a good divisor u of m = uv. Then we have∑
b∈G/A

ubv = τGA (u)v ∈ LG+L+. (3.1)

Since for every monomial in the sum on the left hand side except for m we
have λV(ubv) ≺ λV(m), our claim onm holds by the induction hypothesis.

At this level of generality the concept of terminality is rather vacuous:
e.g. there might be an element b ∈ G \ A such that θ(xbi) = θ(xi) for every
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variable xi, and then every monomial qualifies as terminal by our definition.
To exclude these irrelevant cases we assume in the rest of this chapter that

no non-identity element of G/A fixes any non-trivial element of Â (3.2)

Remark that (3.2) depends only on the structure of G; an obvious necessary
condition for (3.2) to hold is thatAmust be a self-centralizing, hence maximal
abelian subgroup in G, and the order of G/A must divide |A| − 1, hence G
is the semidirect product of A and G/A by the Schur-Zassenhaus theorem.
In fact condition (3.2) is equivalent to the requirement that G is a Frobenius
group with abelian Frobenius kernel A. In this thesis we will study in greater
detail from this class of groups only the non-abelian semidirect products
Zp o Zq, Zp o Zqn where Zqn acts faithfully on Zp, and A4.

Definition 3.4. A monomial m ∈ F[V ] or its weight sequence S = Φ(m) is
called a brick if S is the orbit of a minimal non-trivial subgroup of G/A.

Remark 3.5. (i) If (3.2) holds then every brick is A-invariant. Indeed, when
m ∈ F[V ] is a brick then Φ(m) is stabilized by some non-identity element
b ∈ G/A, hence θ(m) is fixed by b, which is only possible by (3.2) if θ(m) = 0.

(ii) If a monomial m is not divisible by a brick, then Φ(m) 6= Φ(mb) for
each b ∈ G \ A.

Definition 3.6. A sequence S over Â with row-decomposition S = R1...Rh

is called gapless if for all G/A-orbits O and all i < h such that Ri∩O 6= ∅ we
have Ri ∩ O 6= Ri+1 ∩ O or Ri ∩ O = Ri+1 ∩ O = O. A monomial m ∈ F[V ]
is called gapless if its weight sequence Φ(m) is gapless.

Note that if (3.2) holds, then for any non-trivial 1-dimensional A-module
U the G-module IndGA(U) is irreducible by Mackey’s irreducibility criterion
(cf. [44] ch. 7.4). Moreover, the set of A-characters occurring in IndGA(U)
coincides with theG/A-orbit of the character of A on U , and each A-character
occurring in IndGA(U) has multiplicity one. Hence the G/A-orbits in Â \ {0}
are in bijection with the isomorphism classes of those irreducible G-modules
that are induced from a 1-dimensional A-module.

Proposition 3.7. Let G be a finite group satisfying (3.2) with A ∼= Zp for
some prime p. Let V be a G-module and L := F[V ], R := F[V ]G, and V a
subset of the variables permuted by G up to non-zero scalar multiples. Then
L+/L+R+ is spanned by monomials of the form b1 . . . brm, where each bi is
an A-invariant variable or a brick composed of variables in V or bi while mV
has a gapless divisor of degree at least

min{deg(mV), deg(m)− p+ 1}.
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Proof. By Lemma 3.3 it suffices to show that for any terminal monomial
m ∈ L+ not divisible by a brick belonging to V or by an A-invariant variable,
mV has a gapless divisor of degree at least min{deg(mV), deg(m) − p + 1}.
Let m∗ be a gapless divisor of mV of maximal possible degree, and sup-
pose for contradiction that deg(m∗) < min{deg(mV), deg(m)− p+ 1}. Then
there is a variable x such that m∗x is a divisor of mV and m∗x is not gap-
less, moreover, the index of the orbit Oi containing θ(x) is minimal possible,
i.e. for all j < i we have Φ(m∗)Oj = Φ(mV)Oj . Let Φ(m∗)Oi = R1R2...Rh

be the row decomposition of Φ(m∗)Oi , and denote by t the multiplicity of
θ(x) in Φ(m∗i ). It is then necessary that Rt = Rt+1 ∪ {θ(x)}, for other-
wise m∗x would still be gapless. Take a divisor u | m∗ with Φ(u) = Rt+1,
hence Φ(ux) = Rt. Now consider the remainder m/(m∗x): it contains no
variables of weight 0, and its degree is at least p − 1 by assumption, hence
|Σ(Φ(m/(m∗x)))| = p by Lemma 1.15. Thus m/(m∗x) has a (possibly triv-
ial) divisor û for which θ(û) = −θ(ux). It is easy to see that w := xuû is
a good divisor of m. Indeed, set v := m/w, and take b ∈ G \ A; clearly,
m∗/u divides v. For j < i, we have Φ((wbv)V)Oj = Φ(mV)Oj . Moreover,
µs(Φ((wbv)V)Oi) ≥ µs(Φ(mV)Oi) for s = 1, . . . t. Here we have strict inequal-
ity at least for one s: by our assumption Φ((ux)V) = Rt is not divisible by a
brick, so Rb

t \ Rt 6= ∅, hence the support of Φ(wbV)Oi is not contained in Rt,
implying

∑t
s=1 µs(Φ((wbv)V)Oi) >

∑t
s=1 µs(Φ((m∗/u)V)Oi). This contradicts

the assumption that m was terminal.

Example 3.8. Let V be an irreducible representation of ZpoZ3 of dimension
3 and F[V ] = F[x, y, z]. The monomials x4, x3y, x2yz, x2y2 are representing all
the possible shapes of the degree 4 monomials. The diagram below shows how
the algorithm given in the proof of Proposition 3.7 rewrites the monomials
using relations in R+L+ (represented here by triangles) in terms of monomials
lower in the ≺ ordering (represented here by the arrows).

x4w1

||
x3 v̂1
τ(x û1) !!

x3y w2

}}
x2y v̂2
τ(x û2) !!

x3z w3

x2y2w4

}}
xy v̂4

τ(xy û4) !!

x2yz w5

xy2z w6 x2yz w7
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3.2 Factorizations of gapless monomials

Denote by B the ideal of L = F[V ] generated by the bricks, and denote by
Gd the ideal of L generated by the gapless monomials of degree at least d.
Moreover, for a set V of variables as in Proposition 3.7, denote by Gd(V) the
ideal of L spanned by monomials with a gapless divisor of degree at least d
composed from variables in V .

Proposition 3.9. Let V = IndGA U be an isotypic G-module belonging to a
G-orbit O ⊆ Â, and s the index of a minimal nontrivial subgroup of G/A.
Then

Gd ⊆ B where d =

(
|O| − s+ 1

2

)
+ 1

Proof. Let m ∈ F[V ] be a gapless monomial not divisible by a brick. Then
in the row decomposition Φ(m) = R1...Rh we have |Ri+1| < |Ri| for every
1 ≤ i < h, and |R1| ≤ |O|−s, so deg(m) ≤ 1+2+...+(|O|−s) =

(|O|−s+1
2

)
.

Corollary 3.10. Let A = Zp and G = Ao Zqn where Zqn acts faithfully on

A. Setting r = p−1
qn

and d =
(
qn−qn−1+1

2

)
and L = F[W ], R = F[W ]G for a

G-module W we have

β(L+, R) ≤ (qn − 2)q + max{rd, p+ d− 1, p+ q}

Proof. By Lemma 2.31 (applied with s = q and r = 1) we have β(L+, R) ≤
(qn − 1)q + max{p, β(L+/R+L+, S) − q}, where S := F[I≤q]. Apart from
O0 := {0}, Zp contains r different Zqn-orbits O1, . . . , Or, each of cardinality
qn, and the bricks different from O0 are all of size q. Thus β(L+/R+L+, S) ≤
β(L+/L+R+,B), and it is sufficient to show that for e := max{rd + 1, p +
d, p+ q + 1}, L≥e ⊆ L+R+ + B.

Denote by M (i) (resp. M (0)) the subspace of L≥e spanned by monomials
u with |Φ(u)Oi | > d (resp. |Φ(u)O0| ≥ 1). Clearly L≥e ⊆

∑r
i=0M

(i). The A-
invariant variables are bricks, so M (0) ⊆ B. Apply Proposition 3.7 with V the
set of variables of weight in Oi for some fixed i ∈ {1, . . . , r}. We obtain that
the subspace M (i) is contained in R+L+ + B + Gd+1(V). By Proposition 3.9,
Gd+1(V) ⊆ B, showing that M (i) ⊆ R+L+ + B. This holds for all i, hence
L≥e ⊆ L+R+ + B.

For the rest of this section let G be the non-abelian semidirect product
Zp o Zq, where p, q are odd primes and q | p − 1. We set L := F[W ],
I = F[W ]Zp , R = F[W ]G for an arbitrary G-module W and denote by A
the normal subgroup Zp in G. In this case the bricks are the monomials m
with Φ(m) = Oi for some i = 0, 1, . . . , p−1

q
, so a brick is either an A-invariant
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variable or has degree q. Moreover, multiplying a gapless monomial by a
brick we get a gapless monomial. Thus in the statement of Proposition 3.7
all the bi may be assumed to be A-invariant variables.

Corollary 3.11. We have the inequality

β(L+, R) ≤ p+
q(q − 1)2

2
.

Proof. Applying Lemma 2.31 with r = 1 and s :=
(
q
2

)
, and using β(L+, I) ≤ p

we get

β(L+, R) ≤ (q − 1)s+ max{p, β(L+/R+L+,F[I≤s])− s}

so our statement will follow from the inequality β(L+/R+L+,F[I≤s]) ≤ p+s.
To prove the latter observe that if h(m) > s for a monomial m, then

|Φ(m)O| > s for some G/A-orbit O in Â. Therefore

L≥p+s = N +

p−1/q∑
i=0

M (i) (3.3)

where N is spanned by monomials having a degree p + s divisor m with
h(m) ≤ s, M (0) is spanned by monomials involving an A-invariant variable,
and for i = 1, . . . , p−1

q
, M (i) is spanned by monomials having a divisor m

with deg(m) ≥ p+s and |Φ(m)Oi | > s; here O1, . . . , Op−1/q are the q-element

G-orbits in Â.
By Lemma 1.13 the weight sequence Φ(m) of a monomial m ∈ N contains

a non-empty zero-sum sequence of length at most h(m) ≤ s, hence m ∈
F[I≤s]+L+. Applying Proposition 3.7 with V the variables with weight in Oi

for a fixed i ∈ {1, . . . , p−1
q
}, we get M (i) ⊆ L+R+ + Gs+1(V) + M (0), and by

Proposition 3.9 we have Gs+1(V) ⊆ B. Clearly M (0) ⊆ B. It follows by (3.3)
that L≥p+s ⊆ R+L+ + B + L+ F[I≤s]+, and since bricks have degree at most
q ≤ s, the inequality β(L+/R+L+,F[I≤s]) ≤ p+ s is proven.

Remark 3.12. The above results are getting close to the lower bound given
in Theorem 2.11 only for small values of q. E.g. by Corollary 3.11 we have
p+2 ≤ β(ZpoZ3) ≤ p+6 and p+3 ≤ β(ZpoZ4) ≤ p+6 by Corollary 3.10.
For greater values of q the strategy to find a degree bound which guarantees
the existence of a brick in a monomial seems to be insufficient.

Proposition 3.13.

Gd ⊆ (I+)≤qL if d ≥ min{p, 1
2
(p+ q(q − 2))}.
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Proof. Suppose thatm is a gapless monomial having no non-trivialA-invariant
divisor of degree at most q (hence m is not divisible by a brick). In particular
m has no variables of weight 0. Let m = m1...mp−1/q be the factorization
where Φ(mi) = Φ(m)Oi , and let Si denote the support of the weight sequence
Φ(mi). By our assumption 0 6∈ S :=

⋃
j Sj and |Si| ≤ q − 1 for every i.

For each factor mi we have h(mi) ≤ |Si| ≤ q − 1, so if deg(m) ≥ p
then m contains an A-invariant divisor of degree at most h(m) ≤ q − 1
by Lemma 1.13, which is a contradiction, hence deg(m) ≤ p − 1. On the

other hand, as each factor mi is gapless, deg(mi) ≤
(|Si|+1

2

)
≤ |Si|q

2
, and

consequently

deg(m) ≤ |S|q
2
. (3.4)

We claim that |S| ≤ q+ p−1
q
−2. Write q∧T := {t1 + · · ·+ tq | ti 6= tj ∈ T}

for any subset T ⊆ Â. If our claim were false then we would get from the
Dias da Silva - Hamidoune theorem (see Proposition 1.17) that

|q∧(S∪̇{0})| ≥ min{p, q(|S|+ 1)− q2 + 1} = p

implying that m contains an A-invariant divisor of degree q or q− 1, again a
contradiction. By plugging in this upper bound on |S| in (3.4) and taking into

account that q is odd we get deg(m) ≤ b q2−2q+p−1
2

c = 1
2
(p+ q(q−2))−1.

Proposition 3.14. Suppose c, e are positive integers such that c ≤ q and(
c
2

)
< p ≤

(
c+1
2

)
−
(
e+1
2

)
(in particular, this forces that p <

(
q+1
2

)
). Then

Gd ⊆ (I+)≤c−eL if d ≥ p+

(
e

2

)
.

Proof. Suppose thatm is a gapless monomial having no non-trivialA-invariant
divisor of degree at most c−e. Take the row-decomposition Φ(m) = S1 · · ·Sh
and set E := S1 · · ·Sc−e, F := Sc−e+1 · · ·Sh. We have |E| ≤ p− 1, for other-
wise by Lemma 1.13 we would get an A-invariant divisor of degree at most
c− e. It follows that |Sc−e| ≤ e, for otherwise the fact that m is gapless and
c ≤ q would lead to the contradiction

|E| ≥ (e+ 1) + (e+ 2) + ...+ (e+ (c− e)) =
(
c+1
2

)
−
(
e+1
2

)
≥ p.

As a result |Sc−e+1| ≤ e − 1, hence |F | ≤
(
e
2

)
since m is gapless. But then

deg(m) = |E|+ |F | ≤ p− 1 +
(
e
2

)
, and this proves our claim.
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To illustrate the use of Proposition 3.14 consider the case when p = 11
and q = 5. We then have c = 5 and e = 2, hence any gapless monomial of
degree at least 12 contains an A-invariant of degree at most 3. On the other
hand I≥22 ⊆ I+R+ + (G12 ∩ I≥22) ⊆ I+R+ + (I+)≤3I≥19 by Proposition 3.7,
hence I≥28 ⊆ I3+I≥19 + I+R+. Furthermore I≥19 ⊆ I+R+ + (G9 ∩ I≥19) by
Proposition 3.7. A monomial m ∈ G9 ∩ I≥19 has a gapless divisor u of degree
at least 9. It is easily seen that h(u) ≤ 3, hence u can be completed to
a monomial v | m of degree 11 and height h(v) ≤ 5, which will contain
an A-invariant divisor of degree at most 5 by Lemma 1.13. We get that
I≥19 ⊆ (I+)≤5I≥14 + I+R+. Finally I≥14 ⊆ I2+ and putting all these together
yields I≥28 ⊆ I6+ + I+R+ ⊆ I+R+ by Proposition 2.5. As a result

β(Z11 o Z5) ≤ 27 (3.5)

Proposition 3.15. For any odd primes p, q such that q | p− 1 we have

β(L+, R) ≤


3
2
(p+ (q − 2)q)− 2 if p > q(q − 2)

2p+ (q − 2)q − 2 if p < q(q − 2)

2p+ (q − 2)(c− 1)− 2 if c(c− 1) < 2p < c(c+ 1), c ≤ q

Proof. Let d be a positive integer such that Gd ⊆ (I+)≤qI. Since B ⊆ (I+)≤qI,
it follows that β(L+/R+L+,F[I≤q]) ≤ p + d − 2 by Proposition 3.7. Using
Lemma 2.31 we get that β(L+, R) ≤ (q − 2)q + p + d − 2. Our first two
estimates follow by substituting the value of d given in Proposition 3.13.
The last one follows similarly by deducing form Proposition 3.14 that we have
β(L+/R+L+,F[I≤c−1]) ≤ 2p− 2, and then applying Lemma 2.31 again.

Theorem 3.16. We have γ(ZpoZq) < 1
2

where p, q are primes and q | p−1.

Proof. By Corollary 3.11 we have β(Zp o Z3) ≤ p + 6, hence γ(G) < 1
2

for
p > 7. The case p = 7 will be treated below, with the result β(Z7 o Z3) = 9
in Theorem 3.25. For the rest we may assume that q ≥ 5. Suppose indirectly
that pq ≤ 2β(Zp o Zq). Then by Lemma 1.4 (2) and by the first estimate in
Proposition 3.15

p(q − 3) ≤ 3q(q − 2)− 4.

Suppose first that 4q + 1 ≤ p. In this case q2 − 5q + 1 ≤ 0, whence q < 5, a
contradiction. It remains that p = 2q+1. Since by (3.5) our statement is true
for q = 5, p = 11, it remains that q ≥ 11 (as 2q + 1 is not prime for q = 7).
Then 2p < q(q + 1), so we can apply the third estimate in Proposition 3.15.
By the indirect assumption and the fact that c(c− 1) < 2p we get that

pq

2
< 2p+ (q − 2)

2p

c
.

Here c ≥ 7 as p ≥ 23, but then by this inequality q ≤ 6, a contradiction.
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3.3 The group Z7 o Z3

In this section we will deal with the group G = Z7 o Z3, and suppose that
char(F) 6= 3, 7. The character group Â of the abelian normal subgroup
A = Z7 of G will be identified with the additive group of residue classes
modulo 7, so the generator b of G/A = Z3 acts on Â by multiplication with
2 ∈ (Z/7Z)×. Then we have three G/A-orbits in Â, namely A0 := {0},
A+ := {1, 2, 4}, A− := {3, 5, 6}. Accordingly G has two non-isomorphic
irreducible representations of dimension 3, denoted by V+ and V−. Let W be
an arbitrary representation of G; it has a decomposition

W = V
⊕n+

+ ⊕ V ⊕n−
− ⊕ V0 (3.6)

where V0 is a representation of Z3 lifted to G. Any monomial m ∈ F[W ]
has a canonic factorization m = m+m−m0 given by the canonic isomorphism
F[W ] ∼= F[V ⊕n1

+ ]⊗F[V ⊕n2
− ]⊗F[V0]; the degrees of these factors will be denoted

by d+(m), d−(m), d0(m). Finally we set I = F[W ]Z7 , R = F[W ]G and let
τ = τGA : I → R denote the transfer map.

Proposition 3.17. Let m ∈ F[W ] be a Z7-invariant monomial such that
deg(m) ≥ 7, d0(m) = 0 and d+(m), d−(m) ≥ 1. Then m ∈ I2I+ + I+R+.

Proof. Denote by S the support of the weight sequence Φ(m) and by νw the
multiplicity of w ∈ Â in Φ(m). Observe that |S| ≥ 2 since d+(m), d−(m) are
both positive. This also implies that m ∈ I2+, since any irreducible zero-sum
sequence of length at least 7 is similar to (17). We have the following cases:

(i) if |S| ≥ 4 then S ∩ −S 6= ∅ hence already m ∈ I2I+.
(ii) if |S| = 3 then up to similarity, we may suppose that S∩A+ = {1} and

S ∩ A− = {3, 5}. If a factorization m = uv exists where u, v is Z7-invariant
and 1 ∈ Φ(u), (35) ⊆ Φ(v) then obviously m− uτ(v) ∈ I2I+. This certainly
happens if Φ(m) contains (17) or one of the irreducible zero-sum sequences
with support {3, 5}, namely (355), (3253), or (335). Otherwise it remains that
ν1 ≤ 6, ν3 ≤ 2 and ν5 ≤ 4. Now, if Φ(u) = (1352) then necessarily either
1 ∈ Φ(v) or (35) ⊆ Φ(v), and in both cases m − uτ(v) ∈ I2I+. It remains
that ν5 = 1, and therefore Φ(m) equals (13325) or (1635). The first case is
excluded since deg(m) ≥ 7. In the second take Φ(u) = (143) , Φ(v) = (125)
and observe that Φ(uvb

2
) falls under case (i), while Φ(uvb) = (142232) is

similar to the sequence (123254) which was already dealt with.
(iii) if |S| = 2 then again m = uv for some u, v ∈ I+. Denote by U and

V the support of Φ(u) and Φ(v), respectively. If |U | ≥ 2 or |V | ≥ 2 then
after replacing m by m − uτ(v) we get back to case (ii) or (i). Otherwise
Φ(m) = (a7ib7j) for some a ∈ A+, b ∈ A− and i, j ≥ 1; but then an integer
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1 ≤ n ≤ 6 exists such that (abn)(a7i−1b7j−n) is a Z7-invariant factorization,
and we are done as before.

Corollary 3.18. If m ∈ F[W ] is a Z7-invariant monomial of deg(m) ≥ 10
such that d0(m) ≥ 2 or d+(m), d−(m) ≥ 3− d0(m) then m ∈ I+R+.

Proof. By Corollary 2.7 it is enough to prove that m ∈ I4+. This is im-
mediate if d0(m) ≥ 2. If d0(m) = 1 then applying Proposition 3.17 two
times shows that m ∈ I1I

2
2I+. Finally, if d0(m) = 0 then again after

two applications of Proposition 3.17 we may suppose that m = uv where
deg(v) ≥ 6, d+(v), d−(v) ≥ 1 and u ∈ I22 . It is easily checked (or deduced
from Proposition 1.19) that any irreducible zero-sum sequence over Z7 of
length at least 6 is similar to (17) or (152), none of which can equal Φ(m)
(for then d−(m) = d−(u) = 2, a contradiction). Therefore v ∈ I2+ follows and
again m ∈ I4+.

Lemma 3.19. Let G = Ao〈g〉 where 〈g〉 ∼= Z3 and A is an arbitrary abelian
group. If 3 ∈ F× then for any u, v, w ∈ I+ the following relation holds:

uvw ≡ uvgwg
2

mod I+(R+)≤deg(vw)

Proof. The following identity can be checked by mechanic calculation:

3
(
uvw − uvgwg2

)
= uvτ(w) + uwτ(v) + uτ(vw)

− uτ(vwg)− uwg2τ(v)− uvgτ(w)

Alternatively, the reader might check that the three members with positive
sign on the right hand side correspond in the diagram below to the three
”lines” through uvw, while the other three members to the three ”lines”
through uvgwg

2
:

•
uvgwg

•
uvw

•
uvg

2
wg

2

•uvgw • uvwg
2

•
uvg

2
w

•
uvgwg

2

•
uvwg

Proposition 3.20. Let m ∈ F[W ] be a Z7-invariant monomial with the
factorization m+ = m1...mn given by the isomorphism F[V ⊕n+ ] ∼= F[V+]⊗n. If
deg(m) ≥ 10, d0(m) ≤ 1 and maxni=1 deg(mi) ≥ 3 then m ∈ I+R+.
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Proof. We shall denote by x, y, z the variables of weight 1, 2, 4 belonging to
that copy of V+ for which deg(mi) is maximal, while X, Y, Z will stand for
the variables of the same weights which belong to any other copy of V+.

Since d0(m) ≤ 1 by assumption, using Proposition 3.7 with V := {x, y, z}
we may assume that mV has a gapless divisor t of degree at least 3. Let
S ⊆ Â be the support of the weight sequence Φ(t); clearly |S| ≥ 2. If |S| = 3
then mV is divisible by the G-invariant xyz, and we are done. It remains that
|S| = 2 hence by symmetry we may suppose that mV is divisible by t = x2y.

If d0(m) = 1 thenm contains anA-invariant variable w and by Lemma 1.15
|Σ(Φ(m/tw))| = 7. This gives an A-invariant factorization m/w = uv such
that xy | u and x | v. By Lemma 3.19 we get that m ≡ uvbwb

2
mod I+R+,

where uvbwb
2

contains xyz for a suitable choice of b ∈ {g, g2}, so we are done.
It remains that d0(m) = 0. By a similar argument as in the proof of

Proposition 3.7, we may assume that m+ has a gapless divisor of degree
4, while mV still contains a gapless divisor of degree 3. Therefore we may
suppose that m+ contains u := xyZ while mV still contains x2y. Now if
m/u ∈ I2+ then we get an A-invariant factorization m = uvw such that
xy | u and x | v, so we are done again by using Lemma 3.19. Finally, if m/u
is irreducible then necessarily Φ(m/u) = (17), so that m = x2yX6Z. Here
we can employ the following relations:

x2yX6Z = xyX4 τ(xX2Z)− xyzX4Z2Y − xy2X5Y 2

xy2X5Y 2 = xyY 2 τ(yX5)− xyzY 7 − x2yY 2Z5

This proves that m ≡ x2yY 2Z5 mod I+R+, and this later monomial already
belongs to I+R+ by the first part of this paragraph (since xY 2Z4 ∈ I2+).

Corollary 3.21. If W is the regular representation Vreg of Z7 o Z3 then we
have β(I+, R) ≤ 9.

Proof. Here we have to deal with the case n+ = n− = 3. Let m ∈ I+ be a
monomial with deg(m) ≥ 10. If Corollary 3.18 can be applied thenm ∈ I+R+

already holds. Otherwise d0(m) ≤ 1 and say d−(m) ≤ 2 − d0(m), whence
d+(m) ≥ 8. Then one of the monomials in the factorization m+ = m1m2m3,
say m1 has degree at least 3, and we are done by Proposition 3.20.

Remark 3.22. Pawale in [38] has proved, in fact for the whole non-modular
case, that β(G,W ) = 9 whenever n+, n− = 2. From this he concluded using
Weyl’s Theorem on polarization that β(G) ≤ 9 holds in characteristic 0.

Proposition 3.23. If char(F) 6= 2, 3, 7 then β(G) ≤ 9.
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Proof. We already know that β(G) ≤ 13 from Corollary 3.11. Therefore
it is sufficient to show that Rd ⊆ R2

+ whenever 10 ≤ d ≤ 13. Suppose

first that char(F) > 7. Then max{dim(V+), dim(V−), β(G)
char(F)−1} = 3 hence by

Proposition 1.7 a generating set of F[W ]G can be obtained by polarizations
from a generating set of F[Vreg]

G, so β(G) ≤ β(G, Vreg) ≤ 9 by Corollary 3.21.

Finally let char(F) = 5, so that max{dim(V+), dim(V−), β(G)
char(F)−1} ≤ 4.

By Proposition 1.7 here we can obtain the generators of R by polarizing the
generators of S := F[V 4

+ ⊕ V 4
− ⊕ V0]G. S is spanned by elements f that are

multihomogeneous in the sense that for all monomials m occurring in f the
triple (d+(m), d−(m), d0(m)) is the same; denote it by (d+(f), d−(f), d0(f)).
We know from formula (6.3) and Theorem 5.1 in [31] that f is contained
in the polarization of F[Vreg] (taken with respect to V ⊕3+ and then to V ⊕3−
separately), provided that d+(f), d−(f) ≤ 3(char(F) − 1) = 12. So for the
rest we may suppose that say d+(f) ≥ 13. Then take the factorization
f+ = f1f2f3f4 given by the isomorphism F[V ⊕4+ ] ∼= F[V+]⊗4, and observe that
deg(fi) ≥ 4 for some i = 1, ..., 4, so that f ∈ I+R+ by Proposition 3.20.

3.4 The case of characteristic 2

The polarization arguments at the end of the previous section does not cover
the case char(F) = 2. Here we need a closer look at the interplay between
our extended Goebel algorithm and the elementary polarization operators

∆i,j := xj
∂

∂xi
+ yj

∂

∂yi
+ zj

∂

∂zi

where as usual F[V ⊕n+ ] = ⊗ni=1 F[xi, yi, zi] and the variables xi, yi, zi have
weight 1, 2, 4, respectively. The operators ∆i,j are G-equivariant, hence map
G-invariants to G-invariants. Moreover, by the Leibniz rule it also holds that:

∆i,j(I+R+) ⊆ I+R+ (3.7)

Proposition 3.24. If char(F) = 2 then β(I+, R) ≤ 9.

Proof. Let m ∈ I be a monomial with deg(m) ≥ 10. It is sufficient to
show that m ∈ I+R+. We may suppose by symmetry that d+(m) ≥ d−(m).
It suffices to deal with the cases not covered by Corollary 3.18 so we may
suppose that d0(m) ≤ 1, d−(m) ≤ 2 − d0(m), whence d+(m) ≥ 8. By
Proposition 3.7 we can assume thatm+ contains a gapless monomial of degree
3. We have several cases:

38



C
E

U
eT

D
C

ol
le

ct
io

n

(i) Let m+ = m1...mn where each monomial mi belongs to a different copy
of V+. If deg(mi) ≥ 3 for some i ≥ 1 then m ∈ I+R+ by Proposition 3.20.
So for the rest we may suppose that deg(mi) ≤ 2 for every i = 1, ..., n.

(ii) If m+ contains the square of a variable, say x21 then a variable of
weight 2 or 4 must also divide m, say m = x21y2u, because we assumed that
m+ contains a gapless divisor of degree 3. Here we have

∆1,2x
2
1y1u = 2x1y1x2u+ x21y2u = m

as char(F) = 2. In view of case (i) and (3.7) this shows that m ∈ I+R+.
(iii) If m+ is square-free, but still deg(mi) = 2 for some i, say x1y1 | m,

then our goal will be to find three monomials u, v, w ∈ I+ such that m = uvw
and x1 | u, y1 | v. For then m ≡ uvbwb

2
mod I+R+ by Lemma 3.19 where

b can be chosen so that uvbwb
2

contains x21, and then m will fall under case
(ii). Here are some conditions under which this goal can be achieved:

(a) if d0(m) = 1 then let w be the Z7-invariant variable in m; given that
|Σ(Φ(m/wx1y1))| = 7 by Lemma 1.15, suitable factors u, v must exist

(b) it remains that d0(m) = 0. Again by Proposition 3.7 (with V the set
of variables in F[V n

+ ]) we assure that m+ contains a gapless monomial
of degree 4, hence also a Z7-invariant u := x1y1Z. Suppose now that
m/u = vw for some v, w ∈ I+. Up to equivalence modulo I+R+ we
may also suppose that one of these two monomials, say v contains a
variable X (or Y ). After swapping x1 and X (or y1 and Y ) in u and v
we are done.

(c) if d−(m) > 0, thenm/u has a variable t such that some f ∈ {x1t, y1t, Zt}
belongs to I; as deg(m/f) ≥ 8, the desired factorization of m is given
by Lemma 1.15

(d) it remains that d0(m) = d−(m) = 0 and Φ(m/u) is an irreducible zero-
sum sequence. Since deg(m/u) ≥ 7 it follows that Φ(m/u) equals (27),
(17) or (47). In the first case we use the relation:

m = x1y1ZY
7 = τ(x1Y

3)y1ZY
4 − y21Y 4Z4 − z1y1X3Y 4Z

where the two monomials on the right hand side fall under case (ii) or
(iii/b). The case Φ(m/u) = (17) is similar. Finally, if Φ(m/u) = (47)
then we replace m with m−uτ(m/u) to reduce to the other two cases.

(iv) If m is multilinear: here we can again assure that (124) ⊆ Φ(m). If
d0(m) = 0 then this is achieved using Proposition 3.7. Otherwise, if there is
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Z7-invariant variable w in m then we may still suppose by Proposition 3.7
that e.g. x1y2x3 | m and the same argument as above at (iii/a) gives a
factorization m/w = uv such that x1y2 | u and x3 | v, so our goal is achieved
by Lemma 3.19. Now we may suppose that m = x1y2z3u, say. We have:

∆1,2z1x1y3u+ ∆3,1z2x3y3u = (z1x2y3 + 2z2x1y3 + z2x3y1)u

= (z1x2y3 + y1z2x3 + 2x1y2z3)u = m+ τ(x1y2z3)u

The monomials z1x1y3u and z2x3y3u fall under case (iii), so m ∈ I+R+.

Comparing Proposition 3.23 and Proposition 3.24 with the lower bound
in Theorem 2.11, we have proved:

Theorem 3.25. If char(F) 6= 3, 7 then β(Z7 o Z3) = 9.

3.5 Calculating σ(G)

Lemma 3.26. If S ∩−S = ∅ for a non-empty subset S ⊆ Zp and a prime p
then a zero-sum sequence T exists with supp(T ) = S and |T | ≤ p.

Proof. Write p = (d+1)s+r, where s := |S| and r < s while r, d > 0. Take an
arbitrary subset R ⊆ S with |R| = r and consider the sequence U := SdR. Its
support is contained in S, and its length is p− s. By the Cauchy-Davenport
Theorem we have |Σ(U)| ≥ min{p, 1 + d(|Σ(S)| − 1) + (|Σ(R)| − 1)}. On the
other hand |Σ(S)| ≥ 1+s(s+1)/2 and Σ(R) ≥ 1+r(r+1)/2 by the theorem
of Balandraud (see Proposition 1.18). Combining these two we conclude

|Σ(U)| ≥ min

{
p, 1 +

ds(s+ 1)

2
+
r(r + 1)

2

}
≥ min{p, (d+ 1)s+ r} = p

Consequently U has a subsequence V with θ(V ) = −θ(S) and T := SV will
be a sequence with the required properties.

Proposition 3.27. Let G = Zp o Zd, where p is a prime, d > 2 is a divisor
of p− 1, and Zd acts faithfully on Zp. Then we have σ(G) = p.

Proof. We know that σ(G) ≥ σ(A) = p by Corollary 2.28 and Corollary 2.21.
By Lemma 2.20 it is enough to prove that σ(G,U) ≤ p, where U is an
irreducible representation of G. Denote by A the maximal normal subgroup
Zp of G. We have already seen in Section 3.1 that G has only two types of
irreducible representations: if U is 1-dimensional with Zp in its kernel, then
σ(G,U) ≤ |G/A| = |Zd| ≤ p− 1. Otherwise, the set of weights occurring in
U forms a G/A-orbit O ⊆ Â. For every k ≤ |O| we choose representatives
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Sk,1, ..., Sk,rk from each G/A-orbit of the k-element subsets of O. By Lemma
3.26 we can assign to each of them a monomial mSk,i with support Sk,i and
degree at most p. Now consider the polynomials:

fk =

rk∑
i=1

τ(mSk,i) for k = 1, ..., |O| (3.8)

They are all G-invariants, moreover, it is easily checked that their common
zero locus is {0}. Indeed, if the vector u = (u1, ..., u|O|) ∈ U belongs to this
common zero locus, and if the set S = {i : ui 6= 0} has cardinality k > 0
then mS(u) = fk(u) = 0, implying that uj = 0 for an index j ∈ S, which is
a contradiction. Consequently F[U ]G is finitely generated over F[f1, ..., f|O|]
by Proposition 2.22, hence σ(G,U) ≤ maxk deg(fk) ≤ p.

If d = 2 then G is the dihedral group D2p and in fact Proposition 3.27
holds for this case as well, as we shall see later from Corollary 5.5. Using
Lemma 2.32 we could estimate βk(G) for G = Zp o Zq if in addition to
σ(G) the value of η(G) would also be know to us. Unfortunately, the ap-
proach in Proposition 3.7 is insufficient to achieve this latter goal because the
rewriting procedure in its proof uses relations in I+R+ instead of relations
in I+(R+)≤σ(G). This additional combinatorial difficulty was solved only for
the particular case studied in the next section.

3.6 The multiplicity free module of Zp o Z3

If a G-module V contains every irreducible G-module with multiplicity at
most 1 then we say that V is multiplicity free.

Proposition 3.28. Let G = Zp o Z3 where p 6= 7 is a prime such that
3 | p − 1. If V is a multiplicity free representation of G not involving 1-
dimensional subrepresentations and I = F[V ]Zp, R = F[V ]G then:

β(I+, R) ≤ p.

Proof. Let m ∈ I be a monomial with deg(m) ≥ p + 1 and m = m1...mn

the factorization corresponding to the decomposition V = V1 ⊕ ...⊕ Vn into
non-isomorphic irreducible components; here n = p−1

3
. One of these factors,

say m1 must have degree at least 4. Let w | m1 be a divisor such that
deg(w) = 4 and λ(w) is minimal w.r.t. the ordering defined in Section 3.1.
We have several cases:

(i) If λ(w) = (3, 1) then w contains the brick xyz ∈ R3 hence m ∈ I+R3
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(ii) If λ(w) = (2, 2), say w = x2y2 and −θ(xy) ∈ Σ(Φ(m/w)) then we
can find a Zp-invariant monomial v such that xy | v | m and the zero-sum
sequence (θ(xy))Φ(v/xy) is irreducible. We claim moreover that deg(v) ≤ p.
For otherwise deg(v) = p + 1 and Φ(v/xy) = (cp−1) where c = θ(xy). By
the maximality of deg(m1) this weight c cannot belong to any irreducible
component different from V1. Moreover, by the minimality of λ(w) the weight
c must coincide with θ(x) or θ(y). But then either θ(y) = 0 or θ(x) = 0,
respectively, which is a contradiction. Now set u = m/v and observe that
uτ(v) ∈ I+(R+)≤p while m− uτ(v) ∈ I+R3 by case (i).

(iii) If λ(w) = (2, 2) as above, but −θ(xy) 6∈ Σ(Φ(m/w)) then necessarily
|Σ(Φ(m/w))| ≤ p− 1 and since |Φ(m/w)| ≥ p− 3. Let S denote the support
of Φ(m/w); If S ∩ −S 6= ∅ then Φ(m/w) contains a subsequence (s,−s)T
where s ∈ Zp and |T | = p−5. Given that |Σ(T )| ≥ p−4 by Lemma 1.15 and
−θ(xy) /∈ Σ(T ), at least one of the weights −θ(x),−θ(y),−θ(x2y),−θ(xy2)
must occur in T . Therefore by symmetry in x and y we may assume that
m = uvw, where u, v, w are Zp-invariant, Φ(v) = (s,−s), x | w, and xy2 | u.
Here deg(vw) ≤ 2 + |T | + 3 ≤ p hence by Lemma 3.19 we conclude that m
is congruent modulo I+(R+)≤p to a monomial which falls under case (i).

It remains that S∩−S = ∅ hence by a corollary of Balandraud’s theorem
(see Theorem 8 in [1]) we have |Σ(Φ(m/w))| ≥ 1 + ν1 + 2ν2 + ...+kνk where
ν1 ≥ ... ≥ νk are the multiplicities of the different elements of Zp occurring
in Φ(m/w). Given that |Σ(Φ(m/w))| ≤ p− 1 this forces that Φ(m/w) must
have one the following three forms for some a, b ∈ Zp:

(ap−2) (ap−3) (ap−4, b).

Here again by the maximality of deg(m1) and the minimality of λ(w) we may
suppose that a = θ(x) (using also that p− 4 > 4 by assumption).

(a) If Φ(m/w) = ap−2 then Φ(m) = (ap, θ(y)2) and as Φ(m) is a zero-sum
sequence it follows that θ(y) = 0, a contradiction.

(b) If Φ(m/w) = ap−3 then Φ(m) = (ap−1, (ra)2) is a zero-sum sequence,
where r := θ(y)/θ(x) ∈ Z×p . Consequently−a+2ra = 0 whence 2r = 1.
Given that r3 = 1 ∈ Zp it follows that p = 7, but this was excluded.

(c) It remains that Φ(m/w) = (ap−4, b). Here a 6= θ(xy) as θ(y) 6= 0, thus
the sequence S := (ap−4, b, θ(xy)) has height h(S) = p − 4. Therefore
a nonempty zero-sum sequence T ⊆ S exists, for otherwise if S were
zero-sum free then by the Freeze-Smith Lemma (see 1.16) we get that
Σ(S) ≥ 2|S| − h(S) + 1 = p + 1, a contradiction. Moreover T cannot
contain θ(xy) since we assumed that −θ(xy) 6∈ Σ(Φ(m/w)). It follows
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that T = (at, b) for some 0 ≤ t ≤ p − 4. Here t 6= 0 since b 6= 0.
Similarly t 6= p − 4, for otherwise θ(x2y2) = 0 whence θ(x) = −θ(y)
follows, in contradiction with the fact that the variables x and y belong
to the same representation V1. This way we obtained a factorization
m = uv where Φ(v) = T and uτ(v) ∈ I+(R+)≤p−4 while in the same
time m− uτ(v) ∈ I+R3 + I+(R+)≤p by case (ii) or (i).

(iv) If λ(w) = (2, 1, 1), say w = x3y: Here θ(x2y) 6= θ(x), for otherwise
θ(x) = −θ(y), a contradiction as above. Moreover θ(xy) is different from
both θ(x2y) and θ(x), for otherwise we would get θ(x) = 0 or θ(y) = 0. Now
we have two cases:

(a) If Σ(Φ(m/w)) contains −θ(x2y) or −θ(x) then we get a Zp-invariant
factorization m = uv such that x2y | u and x | v. Here we can assure
in addition that v is irreducible, so that deg(v) ≤ p. Then uτ(v) ∈
I+(R+)≤p while the monomials occurring in m− uτ(v) both fall under
case (iii), (ii) or (i), and we are done.

(b) If however {−θ(x),−θ(x2y)} 6∈ Σ(Φ(m/w)) then |Σ(Φ(m/w))| ≤ p−2;
as |Φ(m/w)| ≥ p − 3 by assumption, this situation is only possible in
view of Lemma 1.15 if |Φ(m/w)| = p − 3 while |Σ(Φ(m/w))| = p − 2.
Using Vosper’s Theorem (see Section 1.4) it follows that Σ(Φ(m/w)) is
an arithmetic progression and Φ(m/w) = (−ai, ap−2−i) for some a ∈ Z×p
and 0 ≤ i ≤ p− 2. It is also necessary that −θ(xy) ∈ Σ(Φ(m/w)), so a
factorization m = uv exists such that xy | v and v is an irreducible Zp-
invariant monomial, whence xy 6= v and deg(v) ≤ max{i+2, p−i} ≤ p.
Therefore uτ(v) ∈ I+(R+)≤p and the monomials occurring in m−uτ(v)
both fall under case (iv/a), so we are done.

(v) λ(w) = (1, 1, 1, 1), say w = x4: then |Σ(Φ(m/x2))| = p by Lemma 1.15,
so that −θ(x) ∈ Φ(m/x2) and this gives us then a Zp-invariant factorization
m = uv such that x | u, x | v, and v is irreducible, hence uτ(v) ∈ I+(R+)≤p
whereas the monomials in m− uτ(v) both fall under cases (i)–(iv).

Theorem 3.29. Let G = ZpoZ3 where p 6= 7 is a prime such that 3 | p− 1.
If V is the multiplicity free representation of G then η(G, V ) ≤ p+ 2 and

βk(G, V ) = kp+ 2

Proof. We know from Theorem 2.11 that βk(G, V ) ≥ kp+ 2 so it suffices to
prove the converse. Let m ∈ F[V ]Zp be a monomial with deg(m) ≥ p + 3.
Corresponding to the decomposition V = V A ⊕ U , where U contains no 1-
dimensional irreducible representations of G, we have a factorization m = vu
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where v ∈ F[V A] and u ∈ F[U ]. If deg(v) ≥ 3 then v ∈ I(R+)≤3 whence
m ∈ I+(R+)≤3. Otherwise deg(u) ≥ p + 1 hence by Proposition 3.28 we
get m ∈ I+R3 + I+(R+)≤p. In both cases after applying the surjective R-
homomorphism τ : I → R we arrive to the conclusion that τ(m) ∈ R+R≤p.
This shows that η(G, V ) ≤ p + 2. Now taking into account that σ(G) = p
by Proposition 3.27 and using Lemma 2.32 we get that:

βk(G, V ) ≤ (k − 1)σ(G) + η(G, V ) ≤ (k − 1)p+ p+ 2 = kp+ 2
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Chapter 4

The alternating group A4

Throughout this chapter let G := A4, the alternating group of degree four.
The double transpositions and the identity constitute a normal subgroup
A ∼= Z2 × Z2 in G, and G = Ao Z3 where Z3 = {1, g, g2}. Denote by a, b, c
the involutions in A, conjugation by g permutes them cyclically. Remark for
future reference that the only irreducible zero-sum sequences over A are: (0),
(a, a), (b, b), (c, c), (a, b, c). Hence the factorization of any zero-sum sequence
over Z2 × Z2 into maximally many irreducible ones is of the form

(0)q(a, a)r(b, b)s(c, c)t(a, b, c)e where e = 0 or 1. (4.1)

In particular the multiplicities of a, b and c must have the same parity.
Let F be a field with characteristic different from 2 or 3. Apart from the

one-dimensional representations of G factoring through the natural surjection
G → Z3, there is a single irreducible G-module V , hence an arbitrary finite
dimensional G-module W shall decompose as

W = U ⊕ V ⊕n

where U = WA consists of one-dimensionalG-modules. V is the 3-dimensional
summand in the natural 4-dimensional permutation representation of G and
it is generated over any field F with char(F) 6= 2, 3 by the matrices:

a 7→

 −1 0 0
0 1 0
0 0 −1

 , b 7→

 1 0 0
0 −1 0
0 0 −1

 , g 7→

 0 0 1
1 0 0
0 1 0

 .

Let x, y, z denote the corresponding basis in V ∗ and following our conventions
introduced in Section 3.1 let F[V ⊕n] = ⊗ni=1 F[xi, yi, zi], so that xi, yi, zi are
A-eigenvectors of weight a, b, c which are permuted cyclically by g. As usual,
we write I := F[W ]A, R := F[W ]G and τ := τGA : I → R for the transfer map.
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4.1 Calculating σ(A4) and η(A4)

Proposition 4.1. F[V ]G has an h.s.o.p. consisting of the invariants

p2 = τ(x2), p3 = xyz, p4 = τ(x2y2)

Moreover F[V ]G = P ⊕ sP where P = F[p2, p3, p4] and s = τ(x4y2).

Proof. Consider a monomial m ∈ F[V ]A+ such that τ(m) 6∈ P . In particular
p3 - m, so we may suppose by (4.1) that m = x2iy2j. If i, j ≥ 2 then m = u2v
where u = x2y2 and the relation τ(m) = p4τ(uv)− p23τ(x2v+ y2v) ∈ P leads
to a contradiction. So we may suppose by symmetry that j ≤ 1. Now if i ≥ 3
then using the relation τ(m) + τ(y2m/x2) + τ(z2m/x2) = p2τ(m/x2) ∈ P
we reduce our case to the monomials my2/x2 and mz2/x2, for which j − i is
strictly smaller, and this way we get back to the case i, j ≥ 2. So it remains
that i = 2 and τ(m) = s hence F[V ]G is generated as P -module by 1 and s.

Finally, p2, p3, p4 are algebraically independent since p2, p
2
3, p4 are the el-

ementary symmetric polynomials in the ring F[x2, y2, z2].

Corollary 4.2. σ(A4) = 4

Proof. We see from the explicit list of the primary invariants p2, p3, p4 that
σ(A4, V ) = 4. Moreover for any 1-dimensional representation U of A4 we
have σ(A4, U) = 3 or 1. Hence our claim follows by Lemma 2.20.

Proposition 4.3. βk(A4, V ) ≥ 4k + 2

Proof. Taking over the notations of Proposition 4.1 we claim that the in-
variant spk−14 of degree 4k + 2 does not belong to Rk+1

+ . For suppose indi-
rectly that this is false, i.e. that spk−14 is the linear combination of some
products f1 · · · fk+1 where each fi ∈ R+ is homogeneous. Now observe
that necessarily an index j exists such that deg(fj) ≤ 3, for otherwise
deg(f1 · · · fk+1) ≥ 4(k + 1) whereas deg(spk−14 ) = 4k + 2. But it can be
seen from Proposition 4.1 that any homogeneous element of degree at most
3 in R+ must be a constant multiple of p2 or p3, which readily implies that:

spk−14 ∈ p2R + p3R

By the uniqueness of the Hironaka-decomposition in Proposition 4.1 we con-
clude that pk−14 ∈ p2P + p3P , that is to say pk−14 belongs to the ideal of P
generated by p2 and p3. This however contradicts the fact that p2, p3, p4 are
algebraically independent. This proves that spk−14 6∈ Rk+1

+ .

Proposition 4.4. Suppose that char(F) 6= 2, 3. Then η(A4, U ⊕ V ⊕3) ≤ 6.

46



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. It is sufficient to show that I≥7 ⊆ (R+)≤4I + (I+)≤4R. Take a mono-
mial m ∈ I≥7 with deg(m+) ≥ 7. We claim that in this case m ∈ I+(R+)≤4.
Consider the factorization m = m1m2m3 given by the map F[V ⊕3] ∼= F[V ]⊗3;
by symmetry we may assume that deg(m1) ≥ 3. If the G-invariant x1y1z1
divides m then we are done. Using relation (3.1) we may assume that Φ(m1)
contains at least two different weights, say x1y

2
1 | m1. Suppose that the mul-

tiplicity of b is at least 3 in Φ(m); then the remainder m/x1y
2
1yi must contain

an A-invariant divisor w with deg(w) = 2. Set v := y1yi and u := m/vw
so that u is divisible by x1y1. By Lemma 3.19 we can replace m with the
monomial uvgwg

2
, which is divisible by the G-invariant x1y1z1. Finally, if the

multiplicity of b in Φ(m) is 2, then the multiplicity of a and c must be even,
too. Then deg(m) ≥ 8 and m has an A-invariant factorization m = uvw
with x1y

2
1 | u, and deg(v) = deg(w) = 2. By Lemma 3.19 m can be replaced

by uvgwg
2

or uvg
2
wg so that we get back to the case treated before.

It remains that deg(m+) ≤ 6. If we have deg(m0) ≥ 3 then m0 ∈ (R+)≤3I
and we are done. So for the rest deg(m0) ≤ 2. Given that D(A) = 3 and
D2(A) = 5 by Proposition 1.10, we have m ∈ I1(I+)3≤3I or m ∈ I21 (I+)2≤3I. In
both cases m ∈ I4+ hence m ∈ I+R+ by Proposition 2.5. Taking into account
that deg(m) ≤ 8 we conclude that m ∈ (R+)≤4I + (I+)≤4R, as claimed.

Theorem 4.5. If char(F) 6= 2, 3 then η(A4) = 6 and βk(A4) = 4k + 2.

Proof. Consider the subalgebra S := F[U ⊕ V ⊕3]G in R := F[U ⊕ V ⊕n]G

(where U = UA and n ≥ 3). By Corollary 2.7 we have β(G) ≤ D3(A) = 7.
Note that β(S) ≤ η(S) ≤ 6 by Proposition 4.4. We have Rd = F[GLn ·Sd]
for all d if char(F) = 0 by Weyl’s Theorem on polarization (cf. [49]) and
in positive characteristic for d ≤ dim(V )(char(F) − 1) by Theorem 5.1 and
formula (6.3) in [31]; in our case dim(V )(char(F) − 1) ≥ 12. It follows that
R7 = F[GLn ·S7] ⊆ GLn ·S2

+ ⊆ R2
+, whence β(A4) ≤ 6.

Next we show that η(R) ≤ 6, i.e. that R≥7 ⊆ (R+)≤4R. Given that R
is generated by elements of degree at most 6, it is sufficient to prove that⊕12

d=7Rd ⊆ (R+)≤4R. Applying polarization as above and Proposition 4.4
we obtain

⊕12
d=7Rd ⊆ F[GLn ·

⊕12
d=7 Sd] = F[GLn ·(S+)≤4S] ⊆ (R+)≤4R as

desired. Now the lower bound βk(A4) ≥ 4k + 2 is given by Proposition 4.3,
while βk(A4) ≤ (k − 1)σ(A4) + η(A4) = 4k + 2, by Lemma 2.32.

Remark 4.6. Working over the field of complex numbers Schmid [43] already
gave a computer assisted proof of the equality β(A4, U ⊕ V ⊕2) = 6.

Corollary 4.7. Suppose that char(F) 6= 2, 3. Then β(Ã4) = 12.

Proof. We have β(A4) = 6 by Theorem 4.5, and since Ã4 has a two-element
normal subgroup N with Ã4/N ∼= A4, the inequality β(Ã4) ≤ 12 follows by
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Lemma 1.8. It is sufficient to prove the reverse inequalities in characteristic
zero (as β(G, 0) ≤ β(G, p), see Section 1.2). Consider the ring of invariants
of the 2-dimensional complex representation of Ã4 realizing it as the binary
tetrahedral group. It is well known (see for example the first row in the table
of Lemma 4.1 in [28] or Section 0.13 in [39]) that this algebra is minimally
generated by three elements of degree 6, 8, 12, whence β(Ã4) ≥ 12.

4.2 The group (Z2 × Z2)o Z9

Proposition 4.8. Let G := (Z2 × Z2) o Z9 be the non-abelian semidirect
product, and suppose that char(F) 6= 2, 3. Then we have β(G) ≤ 17.

Let K̂ ∼= Z2 × Z2 = {0, a, b, c} and Z9 = 〈g〉. Then conjugation by g
permutes a, b, c cyclically, say ag = b, bg = c, cg = a. G contains the abelian
normal subgroup A := K × C where C := 〈g3〉 ∼= Z3. For an arbitrary G-
module W we set J = F[W ]C , I = F[W ]A, R = F[W ]G; we use the transfer
maps µ : J → R, τ : I → R. For any sequence S over Â we denote by S|C
the sequence obtained from S by restricting to C each element θ ∈ S.

Proof. Since G/C ∼= A4 and β(A4) = 6, by Lemma 1.8 we have β(G) ≤ 18.
Therefore by Lemma 3.3 it is sufficient to show that if m ∈ I is a terminal
monomial of degree 18, then τ(m) ∈ R2

+. We may restrict our attention to the

case when Φ(m)|C = (h18) for a generator h of Ĉ, as otherwise m ∈ J7
+, and

we get that τ(m) = 1
4
µ(m) ∈ R2

+ by Proposition 2.2 applied for G/C acting
on J . We claim that in this case Φ(m) contains at least 2 zero-sum sequences
of length at most 3, whence m ∈ I4+ (since β(A) = 7 by Proposition 1.10),
and consequently τ(m) ∈ R2

+ again by Proposition 2.2.
To verify this claim, factor m = uv where Φ(v)|K = (0n) and Φ(u)|K does

not contain 0. If n ≥ 3s then Φ(v) contains at least s zero-sum sequences
of length at most 3. Therefore it suffices to show that Φ(u)|K contains the
subsequence (a, b, c) whenever deg(u) ≥ 13, because then the corresponding
subsequence of Φ(u) is a zero-sum sequence over A. Suppose indirectly that
this is false and that Φ(u)|K contains e.g. only a and b. This means that
Φ(u)|K = (a2x, b2y) where 2(x+ y) = deg(u). By symmetry we may suppose
that x ≥ y and consequently x ≥ 4. Now Φ(u)|K decomposes as follows:

(a4, b2) · (a2x−4, b2y−2) if y ≥ 2

(a6) · (a2x−6, b2y) if y ≤ 1

Observe that the first factor has degree 6, hence it corresponds to a zero-sum
sequence over A. By Definition 3.2 we get a good divisor which contradicts
the assumption that m was terminal.
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Chapter 5

Extensions of Z2 by an abelian
group

In this chapter we present some techniques which are more efficient than the
rewriting procedure in Proposition 3.7 for the particular case when G/A ∼= Z2

acts by an involution on the abelian normal subgroup A / G.

5.1 Groups of dihedral type

Definition 5.1. A sequence C over an abelian group A is called a zero-corner
if C has a factorization C = EFH into non-empty subsequences E,F,H such
that EF and EH are zero-sum sequences. We denote by ρ(C) the minimal
value of max{|EF |, |EH|, |FH|} over all factorizations C = EFH satisfying
the above properties, and we call it the diameter of C.

Lemma 5.2. Let S = (s1, . . . , sl) be a sequence over A consisting of non-zero
elements. Suppose that S contains a maximal zero-sum free subsequence of
length d ≤ l − 3. Then S contains a zero-corner C with ρ(C) ≤ d+ 1.

Proof. For I ⊆ {1, ..., l} we denote by SI the subsequence (si : i ∈ I). We
may suppose that a maximal zero-sum free subsequence of S is SJ where
J = {1, ..., d}. For each i = 1, 2, 3 a nonempty subset Hi ⊆ J ∪ {d + i}
exists such that SHi is an irreducible zero-sum sequence and d + i ∈ Hi.
Observe that |Hi| ≥ 2 as the zero-sum sequence SHi must consist of non-zero
elements. There are two cases:

(i) If the three sets Hi are pairwise disjoint then C := SH1SH2SH3 is a
zero-corner with ρ(C) ≤ d+ 3−min{|H1|, |H2|, |H3|} ≤ d+ 1.
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(ii) Otherwise, if e.g. H1 ∩H2 6= ∅ then C := SH1∪H2 is a zero-corner with
ρ(C) ≤ max{|H1|, |H2|, d+ 2− |H1 ∩H2|} ≤ d+ 1; indeed, C = EFH
with E := SH1∩H2 , F := SH1\H2 , H := SH2\H1 .

We shall use for the semidirect product of two cyclic groups the notation:

Zm or Zn = 〈a, b : am = 1, bn = 1, ab = ar〉 where r ∈ (Z/mZ)×

We turn now to the groupG = Ao−1Z2 where A is a non-trivial abelian group
and Z2 = 〈b〉. Keeping conventions, notations and terminology introduced in
Sections 1.3 and 3.1, let W be a G-module over F, I = F[W ]A, R = F[W ]G

and τ : I → R is the transfer map.

Proposition 5.3. For any monomial m ∈ I and integer k ≥ 0 it holds that
m ∈ I+Rk

+ provided that

(i) deg(m) ≥ kD(A) + 2, or

(ii) deg(m) ≥ (k− 1)D(A) + d+ 2 where Φ(m) contains a zero-corner with
diameter d

Proof. We apply induction on k. The case k = 0 is trivial so we may
suppose k ≥ 1. Assume condition (ii). Thus m = nr where the mono-
mial n = efh is such that ef and eh are A-invariant monomials, and
max{deg(ef), deg(eh), deg(fh)} = d. Denoting θ(e) by a ∈ Â we have
θ(f) = θ(h) = −a and θ(r) = θ(e) = a. The generator b of Z2 trans-
forms each monomial of weight a into a monomial of weight −a, and vice
versa, hence fhb and ebr are both A-invariant. Now consider the relation:

2m = τ(ef)hr + τ(eh)fr − τ(fhb)ebr. (5.1)

After division by 2 ∈ F× we get from (5.1) that m ∈ I≥deg(m)−d(R+)≤d. Given
that deg(m)− d ≥ (k− 1)D(A) + 2 by assumption, the induction hypothesis
applies, whence I≥deg(m)−d ⊆ Rk−1

+ I+ and m ∈ I+R
k
+ as claimed. Suppose

next that condition (i) holds. If m contains three A-invariant variables, then
Φ(m) contains the zero corner (0, 0, 0) with diameter 2, hence we are back in
case (ii). Otherwise Φ(m) contains a subsequence of length at least kD(A)
of non-zero elements. If k > 1, then by Lemma 5.2 Φ(m) has a zero-corner
of diameter at most D(A), so again we are back in case (ii). It remains that
k = 1. If m contains one or two A-invariant variables, then m ∈ I3+ ⊆ I+R+

by Corollary 2.7. Otherwise m contains a subsequence of length at least
D(A) + 2 of non-zero elements, hence by Lemma 5.2 Φ(m) contains a zero-
corner of diameter at most D(A). We are done by case (ii).
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Theorem 5.4. Let G = Ao−1 Z2 and suppose |G| ∈ F×. Then

Dk(A) + 1 ≤ βk(G) ≤ βk(I+, R) ≤ kD(A) + 1

Proof. Since Id ⊆ I+R
k
+ for d ≥ kD(A)+2 by Proposition 5.3, it follows that

βk(I+, R) ≤ kD(A) + 1. The lower bound is given by Theorem 2.11 and by
Lemma 1.4 (2).

Since Dk(Zn) = kD(Zn), one concludes:

Corollary 5.5. For the dihedral group D2n of order 2n and an arbitrary
positive integer k we have βk(D2n) = nk + 1, provided that 2n ∈ F×.

The special case k = 1 of Corollary 5.5 is due to Schmid [43] when
char(F) = 0 and to Sezer [45] in non-modular positive characteristic.

5.2 Extremal invariants

Definition 5.6. Let R = F[W ]G; a monomial u ∈ F[W ]A will be called (k, ε)-
extremal with respect to τGA if deg(u) ≥ βk(G) − ε while τGA (u) 6∈ Rk+1

+ . A

sequence S over Â is (k, ε)-extremal if there is a G-module V and a monomial
m ∈ F[V ]A with Φ(m) = S such that m is (k, ε)-extremal with respect to τGA .
A (k, 0)-extremal monomial or weight sequence is also called k-extremal.

Proposition 5.7. Let G := D2n be the dihedral group of order 2n, (n ≥ 3).
A sequence over A := Zn is k-extremal with respect to τGA only if it has the
form (0, akn) for some 〈a〉 = Zn.

Proof. Let m ∈ F[W ]A be a monomial of deg(m) = βk(D2n) = kn + 1 such
that τGA (m) 6∈ Rk+1

+ . If m is divisible by the product of two weight zero
variables, then m ∈ R+I≥kn−1 by Proposition 2.5. Since kn−1 > βk−1(D2n),
we get τGA (m) ∈ R+τ

G
A (I>βk−1(D2n)) ⊆ Rk+1

+ , a contradiction. It remains that
the multiplicity of 0 in Φ(m) is at most one. Let H ⊆ Zn be the set of
nonzero values occurring in Φ(m). Suppose |H| ≥ 2; if Φ(m) contains a
zero-corner of the form (w,w,−w) with diameter 2, then τ(m) ∈ Rk+1

+ by
Proposition 5.3 (ii), a contradiction. We are done if n = 3, so assume for the
rest that n ≥ 4. Then Φ(m) contains a zero-sum free subsequence of length 2,
consisting of two distinct elements. By Lemma 1.16 this extends to a maximal
zero-sum free subsequence of length at most n − 2. If k > 1 or 0 /∈ Φ(m),
then τ(m) ∈ Rk+1

+ by Lemma 5.2 and Proposition 5.3, a contradiction. If
k = 1 and 0 ∈ Φ(m), then m ∈ I3+, hence τ(m) ∈ R2

+ by Proposition 2.2,
a contradiction again. Consequently |H| = 1 and Φ(m) = (0, akn). Taking
into account Proposition 2.2, a must have order n, whence our claim.
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We can even obtain some information on the case ε > 0, provided that
n = p is a prime:

Proposition 5.8. Let p ≥ 5 be a prime and ε ≤ p−3
2

. A (k, ε)-extremal

weight sequence with respect to τ
D2p

Zp
has row-decomposition Φ(m) = S1...Sh

where h ≥ kp− 2ε, |Sj| = 1 for all j ≥ p− ε− 1 and θ(Si) 6= 0 for all i ≥ 1.

Proof. The same argument as in the beginning of the proof of Proposition 5.7
shows that the multiplicity of 0 in Φ(m) is at most 1.

Let S∗1 be the sequence obtained form S1 by deleting the occurrences of
0. Consider the truncated sequence T := S∗1S2...Sp−ε−1. If |T | ≥ p, then T
contains by Lemma 1.13 a zero-sum sequence C = (s1, ..., sr) where sn ∈ Sin
for each n = 1, ..., r and some indices 1 ≤ i1 < ... < ir ≤ p − ε − 1,
so in particular r ≤ p − ε − 1. Given that p is a prime, it is impossible
that s1 = ... = sn, hence there is a smallest index t such that st 6= s1.
But as st ∈ St ⊆ S∗1 the sequence (st)C forms a zero-corner of diameter
at most r. As a result τ(m) ∈ Rk+1

+ by Proposition 5.3, a contradiction.
Hence |T | ≤ p − 1. It follows that |Sp−ε−1| = 1, for otherwise we would
have |T | ≥ 2(p − ε − 1) = p + 1, a contradiction. Hence each row Si for
i ≥ p − ε − 1 must consist of the same non-zero element a ∈ Zp. We get
in addition that h(S) ≥ h(T ) + (deg(m) − 1 − |T |) ≥ kp − 2ε. We have
also seen that θ(Sh) 6= 0. Now suppose indirectly that θ(Si) = 0 for some
i ≤ h − 1. Let Si = Si1...Sin be a decomposition into irreducible zero-sum
sequences; by changing indices we may suppose that Sh ⊆ Si1. Then the
sequence ShSi1 is a zero-corner of diameter ρ ≤ |Si1| ≤ p−1

2
(since p ≥ 5),

hence again τ(m) ∈ Rk+1
+ by Proposition 5.3, a contradiction.

5.3 The group ZpoZ4, where Z4 acts faithfully

Proposition 5.9. Let G := A o Z4 where Z4 = 〈b〉 and A = Zp for an
odd prime p such that 4 divides p − 1, and conjugation by b is an order 4
automorphism of A. Suppose that char(F) 6= 2, p. Then β(G) ≤ 3

2
(p+ 1).

Proof. Observe that the subgroup 〈A, b2〉 ∼= AoZ2 of G is isomorphic to the
dihedral group D2p of order 2p. Now let V be an arbitrary finite dimensional
G-module and consider the maps:

F[V ]A
µ−→ F[V ]D2p ν−→ F[V ]G

where µ := τ
D2p

A and ν := τGD2p
are the relative transfer maps. Note that

τ := νµ is in fact the transfer τGA . We also denote I := F[V ]A, J := F[V ]D2p ,
R := F[V ]G.
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We need to show that Rd ⊆ R2
+ for d ≥ p + 4 + ε, where ε = p−3

2
. We

know that Rd is spanned by its elements of the form τ(m) where m ∈ Id is
a monomial. Given that β2(D2p) − d ≤ 2p + 1 − (p + 4 + ε) = ε, we may
suppose that m is (2, ε)-extremal with respect to µ, for otherwise we have
µ(m) ∈ J3

+, whence τ(m) = ν(µ(m)) ∈ R2
+ by Proposition 2.2 applied for

G/D2p acting on J . Proposition 5.8 describes the weight sequence of m and
its row-decomposition S1...Sh: we get first of all that h ≥ 2p − 2ε = p + 3
and that |Sh| = |Sh−1| = 1. Moreover as θ(Si) 6= 0 for every i, we get by
Lemma 1.15 that the sequence (θ(S1), ..., θ(Sh−2)) contains a subsequence
of total weight equal to − θ(Sh). Note that Stab〈b〉(Sh) = {1} so we get a
factorization m = uv, where u is a good divisor as in Definition 3.2. Hence
by relation (3.1) we can express m modulo I+R+ as a linear combination of
monomials ubv which are not (2, ε)-extremal with respect to µ by the above
description, whence τ(m) ∈ R2

+ follows.

Remark 5.10. We already knew from Remark 3.12 that β(ZpoZ4) ≤ p+6.
Proposition 5.9 is an improvement on this only for p = 5.

5.4 The contraction method

Let C ≤ A be a subgroup of an abelian group A. If S = (s1, ..., sd) is a
sequence over A, then (s1 + C, ..., sd + C) is a sequence over A/C which
will be denoted by S/C. Suppose that θ(S) ∈ C; a C-contraction of S is
a sequence over C of the form (θ(S1), ..., θ(Sl)) where S = S1...Sl and each
Si/C is an irreducible zero-sum sequence over A/C; so indeed θ(Si) ∈ C.
The relevance of this notion stems from the following observation:

Lemma 5.11. Let C ≤ A ≤ G be groups such that A is abelian and C / G.
Let V be a monomial representation of G in which A is mapped to diagonal
matrices. Then a G/C-equivariant F-algebra epimorphism π : F[U ]→ F[V ]C

exists in which any monomial m ∈ F[V ]C has a preimage m̃ ∈ π−1(m) with

Φ(m̃) equal to an arbitrarily prescribed Â/C-contraction of Φ(m).

Proof. By assumption V ∗ has a basis x1, ..., xn consisting of A-eigenvectors
which are permuted up to scalars by G. Let M be the set of C-invariant
monomials in these variables, and E ⊂ M the subset of the irreducibles
among them, i.e. which cannot be factored into two non-trivial C-invariant
monomials. F[V ]C is minimally generated as an algebra by E. Moreover
the factor group G/C has an inherited action on SpanF(M), which maps
SpanF(E) to itself. Define U as the dual of the G/C-invariant subspace
SpanF(E). E is a basis of this vector space, hence E is identified with the set
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of variables in F[U ]. The F-algebra epimorphism π : F[U ] → F[V ]C taking
a variable to the corresponding irreducible C-invariant monomial is G/C-

equivariant. Now let (θ(S1), ..., θ(Sl)) be an arbitrary Â/C-contraction of
Φ(m) for a monomial m ∈ F[V ]C . By definition this means that m = m1...ml

where each mi is an irreducible C-invariant monomial with Φ(mi) = Si.
Hence for each i there are variables y1, ..., yl ∈ F[U ] such that π(yi) = mi by
construction, and the monomial m̃ := y1...yl has the required property.

Using this map π we can derive information on the generators of F[V ]G

from our preexisting knowledge about the generators of F[U ]G/C . As an
example of this principle, we will study here the group G := Zr o−1 Z2n

where r and 2n are coprime, and r ≥ 3. The center of G is C = Zn and
G/C is isomorphic to the dihedral group D2r whose extremal monomials were
described before. G also has an abelian normal subgroup A = Zrn ≥ C such
that G/A ∼= Z2 = 〈b〉. We will write S ∼ S ′ for two sequences over Â if
S = EF and S ′ = EbF for a zero-sum sequence E of length at most n.

Proposition 5.12. If S is a k-extremal sequence over Â then any Â/C-

contraction of any sequence S ′ ∼ S is a k-extremal sequence over Â/C.

Proof. Since S is a k-extremal sequence, there is a G-module V and a mono-
mial m ∈ F[V ]A such that Φ(m) = S and m is k-extremal with respect
to τGA . Let π : F[U ]A/C → F[V ]A denote the restriction of the map con-
structed in Lemma 5.11 to the A-invariants, and consider the transfer maps
τ̃ : F[U ]A/C → F[U ]G/C , τ : F[V ]A → F[V ]G. The G/C-equivariance of
π implies that τπ = πτ̃ . Suppose first that S has a non-k-extremal C-
contraction S̃. Since |S̃| ≥ 1

n
|S| where we have |S| = βk(G) ≥ knr + 1 by

Theorem 2.11, it follows that |S̃| ≥ kr + 1 = βk(G/C). So for the monomial
m̃ ∈ F[U ] with π(m̃) = m and Φ(m̃) = S̃, which exists by Lemma 5.11,

we have τ̃(m̃) ∈ (F[U ]
G/C
+ )k+1. But then τ(m) = π(τ̃(m̃)) ∈ (F[V ]G+)k+1, a

contradiction.
Now suppose that a sequence S ′ = EbF has a C-contraction S̃ which is

not k-extremal, where 0 < |E| ≤ n. Then take a factorization m = uv with
Φ(u) = E and Φ(v) = F . By the previous argument τ(ubv) ∈ (F[V ]G+)k+1. By
Lemma 2.3 and Corollary 5.5 we have βk(G) ≤ ββk(D2r)(C) = nrk+n, hence
deg(v) = deg(m)−|E| ≥ βk(G)−n ≥ nrk+1−n > nr(k−1)+n ≥ βk−1(G).
Consequently τ(v) ∈ (F[V ]G+)k and τ(m) = τ(u)τ(v) − τ(ubv) ∈ (F[V ]G+)k+1,
a contradiction again.

Lemma 5.13. Let S be a zero-sum sequence over Â = Zrn having length
l ≥ nrk + 1, where k ≥ 1, and n, r ≥ 3 are coprime. If any Zr-contraction
of any sequence S ′ ∼ S is similar to (0, nrk) then S is similar to (0, 1nrk).

54



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. By assumption any Zr-contraction of S must have length l := rk+ 1.
By Lemma 1.22 then S = T1...Tl where Ti/Zr = (en) for every i ≤ l − 2 and
some generator e of Zrn/Zr ∼= Zn, while ||Tl−1/Zr||e = ||Tl/Zr||e = n. As
l ≥ 4 we may assume that θ(T1) 6= 0 and let i 6= 1 be any other index for
which θ(Ti) 6= 0. Take an arbitrary element x ∈ Ti and let U ⊆ T1 be an
arbitrary subsequence of length d := ||x + Zr||e < n. After exchanging the
proper subsequences U and (x) in T1 and Ti the resulting T̃1 and T̃i projects
to zero-sum sequences over Zn, so we get another Zr-contraction of S:

(θ(T̃1), θ(T2), ..., θ(T̃i), ..., θ(Tl)) = (0, nrk−2, n− δ, n+ δ)

where δ := θ(U)−x. By assumption this must be similar to (0, nrk) which is
only possible if they are actually equal (here we used that l ≥ 4). Therefore
δ = 0 and x = θ(U). As this holds for any subsequence U ′ ⊆ T1 of the same
length d < |T1|, necessarily T1 = (fn) for some f ∈ Znr such that f +Zr = e.
Moreover, as x = θ(U) = df , we get by the definition of d and ||x||f that

||x||f = ||x+ Zr||e (5.2)

for every x ∈ Ti, where i differs from that unique index s for which θ(Ts) = 0.
Observe on the other hand that (5.2) cannot be true for every element y ∈ Ts,
for otherwise ||Ts||f = ||Ts/Zr||e = n, which is impossible, as ||Ts||f must be
a multiple of nr. Now suppose that |Ts| ≥ 2 and that (5.2) fails for y ∈ Ts.
Then swapping y with a proper subsequence U ⊆ T1 of length ||y + Zr||e we
get as before that δ := θ(U)−y = −nf , whence ||y||f = ||y+Zr||e+n(r−1).
On the other hand if z ∈ Ts is a second element besides y for which (5.2)
fails, then in particular (yz) 6= Ts, as otherwise calculating ||z||f by the same
argument yields that ||Ts||f = ||Ts/Zr||e+2n(r−1) = n(2r−1), which is not a
multiple of nr. Now swapping (yz) with a proper subsequence of T1 of length
||yz + Zr||e gives a Zr-contraction of S of the form (2n,−n, nrk−2) which is
not similar to (0, nrk). This contradiction shows that y is unique with the
property that ||y||f 6= ||y+Zr||e. So if |Ts| ≥ 3 then the sequence S ′ obtained
from S by replacing Ts with T bs will not satisfy this requirement, hence S ′ will
have Zr-contractions not similar to (0, nrk), which is a contradiction as S ′ ∼
S. It remains that |Ts| = 2 and Ts = (−y, y). Then necessarily s ∈ {l− 1, l}.
If moreover y 6= −f then n(r−1) < ||y||f < nr−1 and consequently we have
the factorization TsT1 = (−y, y, fn) = (y, fnr−||y||f )(−y, f ||y||f−n(r−1)) which
leads us back to the case when |Ts| ≥ 3. Finally, if y = −f then observe that
f b 6= ±f , as we have n > 2; hence after replacing Ts with T bs 6= (−f, f) we
get back to the case when y 6= −f .

As a result of these contradictions we excluded that |Ts| ≥ 2. Therefore
|Ts| = 1 and Ts = (0). Then we must have |Ti| = n for every i 6= s whence
|Ti/Zr| = (en) follows. Using (5.2) this implies that S = (0, fnrk).
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Theorem 5.14. For the group G = Zs× (Zro−1Z2n+1), where r ≥ 3, n ≥ 1
and r, s are coprime odd integers, we have βk(G) = 2nsrk + 1, except if
s = n = 1, in which case βk(G) = 2rk + 2.

Proof. βk(G) is the length of a sequence S over A := Z2nsr which is k-
extremal with respect to τGA . By Proposition 5.12 any Zr-contraction of any
sequence equivalent to S must be k-extremal with respect to τD2r

Zr
, hence it is

similar to (0, (2ns)rk) by Proposition 5.7. Therefore S is similar to (0, 12nsrk)
by Lemma 5.13, provided that 2ns ≥ 3; in particular βk(G) = |S| = 2nsrk+1.

For the case s = n = 1 we have βk(Zr o−1 Z4) ≤ 2βk(D2r) = 2r + 2
by Lemma 2.3 and Corollary 5.5. To see the reverse inequality consider the
representation on V = F2 of G given by the matrices:

A =

(
ω 0
0 ω−1

)
B =

(
0 i
i 0

)
(5.3)

where ω is a primitive 2r-th root of unity and i =
√
−1 a primitive fourth root

of unity. Then F[V ] = F[x, y] where x, y are the usual coordinate functions
on F2. Obviously (xy)2 is invariant under A and B alike; from this it is easily
seen that R = F[V ]G is generated by (xy)2, τ(x2r) and τ(x2r+1y). This shows
that any element of Rk+1

+ not divisible by (xy)2 must have degree at least
2r(k+ 1). As a result (Rk+1

+ )2rk+2 ⊆ 〈(xy)2〉. The invariant τ(x2rk+1y) ∈ R+

of degree 2rk + 2 does not belong to the ideal 〈(xy)2〉 and this proves that
βk(G) ≥ 2rk + 2.

5.5 The quaternion group

The dicyclic group Dic4n is defined for any n > 1 by the presentation

Dic4n = 〈a, b : a2n = 1, b2 = an, ab = a−1〉

In particular for n = 2 we retrieve the quaternion group Q = Dic8.

Proposition 5.15. We have βk(Dic4n) = 2nk+2 for n > 1 even and k ≥ 1.
Moreover if (r, 4n) = 1 then 1 ≤ βk(Zr ×Dic4n)− 2nrk ≤ 2.

Proof. Taking ω a primitive 2n-th root of unity in (5.3), the same argument
as in the proof of Theorem 5.14 shows that βk(Dic4n) ≥ 2nk + 2. Moreover
for G := Zr ×Dic4n we have βk(G) ≥ 2rnk + 1 by Theorem 2.11. Observe
that G/Z(Dic4n) is isomorphic to Zr×D2n, respectively to Z2r×Z2 for n = 2.
Combining Lemma 2.3 with Corollary 5.5, respectively with Proposition 1.10
leads to the inequality βk(G) ≤ 2nrk + 2.
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Proposition 5.16. Let Q = 〈a, b〉 be the quaternion group where A := 〈a〉 is
isomorphic to Z4. If S is a zero-sum sequence over Â of length 4k+ 2 which
is k-extremal with respect to τQA then S = (1t, 3s) where t 6= s.

Proof. Set I = F[V ]A, R = F[V ]Q and let S = (0x, 2y, 1t, 3s) be the weight
sequence of a monomial m ∈ I of degree 4k + 2 such that τ(m) 6∈ Rk+1

+ . By
replacing m with mb, if needed, we may suppose that t ≥ s. We will use
induction on t−s. Suppose first that t−s ≤ 4 and consider the factorization
S = (22)by/2c(13)s(0)xT . If y is odd then necessarily T = (211) and x ≥ 1,
hence m ∈ I2k+1

+ , which is a contradiction by Corollary 2.7. If however y is
even then either T is empty, and then m ∈ I2k+1

+ again, or else T = (1111);
in this later case if x ≥ 2 then again m ∈ I2k+1

+ or otherwise, taking into
account that |S| is even, it remains that x = 0 and S = (2y, 1s+4, 3s). Now,
if y > 0 then take a factorization m = uv such that Φ(u) = (211) and
observe that τ(m) = τ(u)τ(v) − τ(ubv) ∈ Rk+1

+ , because on the one hand
deg(v) = 4k − 1 > βk−1(Q), while on the other hand Φ(ubv) = (2y)(13)s+2,
hence ubv ∈ I2k+1

+ by what has been said before. From this contradiction we
conclude that y = 0 and S = (1s+4, 3s) whenever t− s ≤ 4 holds.

Finally, if t− s > 4 we have a factorization m = uv with Φ(u) = (1111),
and since τ(m) = τ(u)τ(v) − τ(ubv) 6∈ Rk+1

+ by assumption, it is necessary
that either τ(v) 6∈ Rk

+, when Φ(v) = (1t−4, 3s) by the induction hypothesis,
or τ(ubv) 6∈ Rk

+, when similarly Φ(ubv) = (1t−4, 3s+4), and in both cases
Φ(m) = (1t, 3s), as claimed.

Theorem 5.17. Let G = Zp×Q for an odd prime p. Then βk(G) = 4pk+ 1
for every k ≥ 1.

Proof. Here the distinguished abelian normal subgroup is A := C×B ∼= Z4p,
where C := Zp / G and B := 〈a〉. Set L := F[V ] and R := LG. We write θ|C
and θ|B for the restriction of the character θ ∈ Â to C or B, respectively,
and we define accordingly S|C and S|B for any sequence S over Â; note that
θ = (θ|C , θ|B) by the natural isomorphism Â ∼= Ĉ × B̂.

We already proved in Proposition 5.15 that 1 ≤ βk(G)−4kp ≤ 2. Suppose
for contradiction that there is a G-module V and a monomial m ∈ F[V ]A with
deg(m) = 4pk+ 2 and τGA (m) /∈ Rk+1

+ . Given that the restriction of τQB to LA

coincides with τGA , the sequence Φ(m)|B is kp-extremal: indeed, otherwise
τQB (m) ∈ (LQ+)kp+1 as deg(m) = βkp(Q), and since (LQ+)kp+1 ⊆ Rk

+L
Q
+ by

Proposition 2.5, we get that τGA (m) = τQB (m) ∈ (Rk
+L

Q
+) ∩ R+, but for any

f ∈ (Rk
+L

Q
+) ∩ R+ we have f = 1

[G:B]
τGA (τAB (f)) ∈ τGA (Rk

+τ
A
B (LQ+)) ⊆ Rk+1

+ , a

contradiction. As a result Φ(m)|B = (1t, 3s) by Proposition 5.16, where t > s
can be assumed and t+ s = 4pk + 2. Accordingly m has a factorization

m = m1 · · ·ml (5.4)
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where Φ(mi)|B = (1, 3) for i ≤ s and Φ(mi)|B = (14) for s < i ≤ l, so that
l = s+ t−s

4
. Consider the sequence S := (θ(m1)|C , ..., θ(ml)|C); it contains at

most one occurrence of 0, for otherwise m ∈ (LA+)2LA≥4pk−6 ⊆ R+L
A
>βk−1(G) by

Proposition 2.5, hence τGA (m) ∈ Rk+1
+ , a contradiction. Moreover S cannot be

factored into 2k+ 1 zero-sum sequences over Ĉ, for otherwise τGA (m) ∈ Rk+1
+

follows again as m ∈ (LA+)2k+1 ∈ Rk
+L

A
+.

We claim that {1, ..., l} can be partitioned into two disjoint, non-empty
subsets U, V such that the monomials u =

∏
i∈U mi and v =

∏
i∈V mi are

A-invariant, τGA (ubv) ∈ Rk+1
+ and deg(v) > 4p(k − 1) + 2 ≥ βk−1(G). Under

these assumptions τGA (m) = τGA (u)τGA (v)− τGA (ubv) ∈ Rk+1
+ , since τGA (v) ∈ Rk

+

and this will refute our indirect hypothesis.
We will prove our claim by induction on t−s

4
. Suppose first that t−s

4
= 1,

i.e. l = 2pk. Then θ(m1)|C = ... = θ(ml)|C for otherwise S could be factored
into 2k + 1 zero-sum sequences. Observe that if x is a variable in mi and
y is a variable in mj where i 6= j and θ(x)|B = θ(y)|B, then θ(x) = θ(y),
since otherwise swapping the variables x and y yields another factorization
as in (5.4) where l = 2pk but not all θ(mi)|C are equal. We conclude that
Φ(m) = (e2pk+3, (3e)2pk−1) for some generator e of Â. Then U := {1, ..., p},
V := {p + 1, ..., l} is the required bipartition, since Φ(ubv) is not similar to
Φ(m) and consequently τGA (ubv) ∈ Rk+1

+ by the above considerations.
For the rest it remains that t−s

4
> 1, hence Φ(ml−1)|B = Φ(ml)|B = (14).

If θ(mi) = 0 for some i > s, say i = l, then choosing U = {l} gives the
required factorization: indeed, Φ(ubv)|B = (1r, 3s) where r − s < t − s and
consequently τGA (ubv) ∈ Rk+1

+ by induction on t−s
4

. If however S contains
at least p + 1 non-zero elements then using Lemma 1.15 we get a subset
I ⊂ {1, ..., l − 2} such that |I| ≤ p − 1 and θ(

∏
i∈I mi) = −θ(ml). Now set

U := I∪{l}, V := {1, ..., l−1}\I and observe that Φ(ubv)|B = (1r, 3s) where
r− s < t− s. So we are done as before, provided that |U | ≤ p− 1 or there is
an index i ∈ U such that i ≤ s, because this guarantees that deg(u) ≤ 4p−2.

Otherwise it remains that l = p+ 1, s = 1 and θ(m1) = 0. Here m1 = xy,
where θ(x)|B = 1 and θ(y)|B = 3. If there is a variable z in m2 . . .ml with
θC(z) 6= θC(x), then by swapping the variables x and z we get back to a
case considered already. Thus Φ(m/y) = ((1, c)4p+1) for a non-zero element
c ∈ Ĉ ∼= Zp, and θ(y) = (3,−c). Here U := {1}, V := {2, ..., l} is the required
bipartition, because Φ(ubv) = ((1,−c), (3, c), (1, c)4pk), and since c 6= −c it
follows by the above considerations that τGA (ubv) ∈ Rk+1

+ .
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5.6 Groups with a cyclic subgroup of index

two

Proposition 5.18 (Burnside 1894, [4] Theorem 1.2, [5] ch. IV.4). If G is a
finite p-group with a cyclic subgroup of index p then it is one of the following:

1. Zpn (n ≥ 1)

2. Zpn−1 × Zp (n ≥ 2)

3. Mpn := Zpn−1 or Zp r = pn−2 + 1 (n ≥ 3)

4. D2n := Z2n−1 o−1 Z2 (n ≥ 4)

5. SD2n := Z2n−1 or Z2 r = 2n−2 − 1 (n ≥ 4)

6. Dic2n := 〈a, b | a2n−1
= 1, b2 = a2

n−2
, ab = a−1〉 (n ≥ 3)

Throughout this section let H be one of the 2-groups in the above list,
〈a〉 an index 2 subgroup in H, and b ∈ H \ 〈a〉, so that H = 〈a, b〉. If H is a
2-group as in case (3)–(6) of Proposition 5.18 then for any odd integer r > 1
it is customary to denote by Mr2n , Dr2n , SDr2n , Dicr2n the group Zr o−1H,
where b ∈ H acts on Zr by inversion x 7→ x−1 and 〈a〉 centralizes Zr.

Proposition 5.19. Any finite group containing a cyclic subgroup of index
two is isomorphic to

Zs × (Zr o−1 H)

where r, s are coprime odd integers, and H is a 2-group in Proposition 5.18.

Proof. Let G be a finite group with an index two cyclic subgroup C. Then
C uniquely decomposes as C = Zm × Z2n−1 for some odd integer m > 0 and
n ≥ 1. As Zm is a characteristic subgroup of C, it is normal in G. Thus
by the Schur-Zassenhaus theorem G = Zm o H for a Sylow 2-subgroup H
of G. Moreover, the characteristic direct factor Z2n−1 is also normal in G,
hence we may suppose that it is identical to the index two cyclic subgroup
〈a〉 ≤ H (as the automorphism group of H acts transitively on the set of
index two subgroups of H). Now Zm decomposes uniquely as a direct product
Zm = P1 × · · · × Pl of its Sylow subgroups. After a possible renumbering we
may assume that H centralizes P1, . . . , Pt, and H/〈a〉 acts on Pt+1, . . . , Pl via
the automorphism x 7→ x−1. Setting Zs := P1×· · ·×Pt, Zr := Pt+1×· · ·×Pl
we obtain the desired conclusion.
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Theorem 5.20. If G is a non-cyclic group with a cyclic subgroup of index
two then

βk(G) =
1

2
|G|k +


2 if G = Dic4n, n even

or G = Zr o−1 Z4, r odd

1 otherwise

Proof. If G is any group with a cyclic subgroup A = 〈a〉 of index 2, then
Theorem 2.11 gives us the following lower bound:

βk(G) ≥ βk(A) + D(G/A)− 1 = k|A|+ D(Z2)− 1 = 1
2
|G|+ 1

To establish the precise value of the generalized Noether number βk for these
groups, by Proposition 5.19 we will have to consider the groups of the form
G := Zs × (Zr o−1 H) where H is one of the groups of order 2n listed in
Proposition 5.18. In all these cases βk(G) ≤ βsk(Zr o−1 H) by Lemma 2.3.

(1) If H = Z2n then by Theorem 5.14 we have βk(G) = 2n−1rsk+1 except
if n = 2 and s = 1, in which case βk(G) = 2n−1rsk + 2

(2) IfH = Z2×Z2n−1 by the isomorphism Zro−1(Z2×Z2n−1) ∼= Z2n−1×D2r

we get from the application of Lemma 2.3 and Corollary 5.5 that

βk(G) ≤ βsk(Z2n−1 ×D2r) ≤ β2n−1sk(D2r) ≤ 2n−1rsk + 1 (5.5)

(3) If H = M2n then the group Zro−1M2n = M2nr will contain a subgroup
C = 〈a2, b〉 ∼= Z2n−2 ×D2r. The subgroup N := Zs×C has index 2 in G and
falls under case (2), hence by Lemma 2.3 and case (2) we heave

βk(G) = β2k(N) = 2n−1krs+ 1 (5.6)

(4) If H = D2n then G = Zs ×D2nr and we are done by Corollary 5.5
(5) IfH = SD2n then the group Zro−1SD2n = SD2nr contains a subgroup

B = 〈a2, b〉 ∼= D2n−1r. Observe that B is a normal subgroup, as it has index
2, hence by Lemma 2.3 and Corollary 5.5 we get that

βk(G) ≤ βsk(SD2nr) ≤ β2sk(D2n−1r) ≤ 2n−1rsk + 1 (5.7)

(6) If H = Dic2n then for n = 2 we get back to case (2), as Dic4 = Z2×Z2;
if however n ≥ 3 then the quaternion group Q is a subgroup of index 2n−3r
in Zro−1H, therefore by Proposition 5.15 we have β(G) = 2nrsk+2 if s = 1
and for s > 1 we get using Corollary 2.7 combined with Theorem 5.17 that
for any prime p dividing s:

βk(G) ≤ βk2n−3r(Zs ×Q) ≤ βk2n−3rs/p(Zp ×Q) ≤ 2n−1rsk + 1 (5.8)

With this all possibilities are accounted for and our claim is established.
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Chapter 6

Classification of the groups
with large Noether number

6.1 A structure theorem

The objective of this section is to prove the following purely group theoretical
structure theorem:

Theorem 6.1. For any finite group G one of the following ten options holds:

1. G contains a cyclic subgroup of index at most 2;

2. G contains a subgroup isomorphic to:

(a) Z2 × Z2 × Z2;

(b) Zp × Zp, where p is an odd prime;

(c) A4 or Ã4 (the binary tetrahedral group);

3. G has a subquotient isomorphic to:

(a) an extension of Z2 × Z2 by Z2 × Z2;

(b) a non-abelian group ZpoZq, where p, q are odd primes and q | p−1;

(c) Zp o Z4, where Z4 acts faithfully on Zp;

(d) D2p ×D2q, where p, q are distinct odd primes;

(e) an extension of D2n by Z2 × Z2, where n is odd;

(f) the non-abelian group (Z2 × Z2) o Z9.

The proof of this theorem relies on some classic results due to Burnside
and Zassenhaus which we shall reproduce here along with their proofs for the
reader’s convenience.
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Lemma 6.2 (Burnside). If the Sylow 2-subgroup P of a group G is cyclic
then G = N o P where N is the characteristic subgroup of G consisting of
its odd order elements.

Proof. Suppose P is of order 2n. If n = 0, there is nothing to prove. Consider
the permutation action of G on itself by left multiplication. An element of
order 2n is a product of an odd number of 2n-cycles, so is an odd permutation.
Hence H := G ∩ A|G| 6= G is a subgroup of index 2 in G. H has a cyclic
Sylow 2-subgroup of order 2n−1, so by induction H = N o P0 for P0 a cyclic
subgroup of order 2n−1 and N a normal subgroup of H of odd order. Since
N is the unique maximal subgroup of odd order in H, N is also normal in G.
Taking P to be any Sylow 2-subgroup containing P0, one has G = NoP .

Proposition 6.3 (Zassenhaus, Satz 6 in [50] ). Let G be a finite solvable
group with a Sylow 2-subgroup P containing a cyclic subgroup of index 2.
Then G has a normal subgroup K with a cyclic Sylow 2-subgroup such that
G/K is isomorphic to one of the groups Z2, A4 or S4.

Proof. Let 〈a〉 ≤ P be the cyclic subgroup of index 2. If G = P then we can
take K = 〈a〉. If P is cyclic then G = N o P by Lemma 6.2 and we can
take K = N o 〈a〉. So for the rest we may assume that G 6= P and that P
is non-cyclic. Let M / G be a minimal nontrivial normal subgroup. As G is
solvable, M is an elementary abelian p-group. If p is odd then G/M has a
Sylow 2-subgroup isomorphic to P , hence by induction on the group order
we get a normal subgroup K/M in G/M such that (G/M)/(K/M) = G/K
is isomorphic to Z2, A4 or S4, and the Sylow 2-subgroup of K/M , isomorphic
to the Sylow 2-subgroup of K, is cyclic, so we are done. It remains that for
any of its possible choices M is a 2-group, so that M ≤ P . The order of
M/M ∩ 〈a〉 ∼= M〈a〉/〈a〉 is 1 or 2, hence M is either Z2 or Z2 × Z2:

(1) if M = Z2 then M 6= P , since P was assumed to be non-cyclic.
So we can apply again induction to the factor G/M and obtain a subgroup
K / G as above. By Lemma 6.2 the odd order elements in K/M constitute
a characteristic subgroup N/M which is then normal in G/M . Given that
Aut(Z2) is trivial, M is in the center of G, hence N = M × O, where O
consists of the odd order elements of K. But then O must be trivial, for
otherwise it would contain a minimal normal subgroup of G of odd order,
which is excluded at this point. Consequently N = M and K/M is a 2-
group, whence K is a 2-group, as well. Since we assumed that G 6= P , the
factor G/K can only be A4 or S4. In both cases G/K has a non-cyclic Sylow
2-subgroup, which is only possible if the 2-group K is cyclic, and with this
we are done.
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(2) if M = Z2×Z2 then P/M must be cyclic, so we can apply Lemma 6.2
this time to the group G/M : as a result we get that P/M has a direct
complement N/M consisting of the odd order elements of G/M . Since G 6= P
it is necessary that N 6= M . Again, M is self-centralizing in N , for otherwise
we could find in G a non-trivial minimal normal subgroup of odd order, as
before. Given that N/CN(M) is isomorphic to a subgroup of Aut(Z2×Z2) =
S3 we conclude that N/M = Z3 and N = A4. Finally, consider the centralizer
CG(N): it is disjoint from N since CG(N) ∩ N ≤ Z(A4) = {1}. Moreover
CG(N) is trivial, for otherwise it would contain a nontrivial minimal normal
subgroup of G which is not of odd order, hence G would contain a subgroup
isomorphic to M × Z2, but this is excluded by the structure of the Sylow
2-subgroup P . Therefore CG(N) = {1}, indeed, and since G/CG(N) is a
subgroup of Aut(A4) = S4, we get that G equals A4 or S4.

Lemma 6.4 (Roquette [41], see also [4] Lemma 1.4 or III. 7. 6 in [29]). If G
is a finite p-group which does not contain a normal subgroup isomorphic to
Zp × Zp, then either G is cyclic or p = 2 and G is isomorphic to one of the
groups D2n , SD2n , Dic2n, where n > 3, or to the quaternion group Q = Dic23.

Proof. Let A / G be a maximal cyclic normal subgroup and suppose that
A 6= G. We claim first that |A| ≥ p2; for otherwise if |A| ≤ p then the
center of G/A contains a cyclic subgroup of order p, whose inverse image at
the surjection G → G/A is a normal subgroup of order p|A|, which is not
isomorphic to Zp×Zp by assumption, hence it is cyclic, in contradiction with
the maximality of A.

Secondly, we claim that A has index p in G. For suppose this is false
and let H be the unique subgroup of A of order p2. Then G/CG(H) is
isomorphic to a subgroup of Aut(Zp2) = Zp(p−1), hence [G : CG(H)] ≤ p.
But since [G : A] ≥ p2 by our indirect hypothesis, it follows that A is a
proper subgroup of CG(H). Again let B be the inverse image in CG(H) of
a central subgroup of order p in CG(H)/A. By maximality of A, the group
B is not cyclic, but it contains the cyclic subgroup A of index p. Therefore
B is isomorphic to one of the non-cyclic groups listed in Proposition 5.18
above. Moreover, H is central in B, hence the center of B has order at least
p2, which is only possible if B is isomorphic to Mpn (n ≥ 4) or Zp × Zpn−1 .
In both cases B contains a characteristic subgroup isomorphic to Zp × Zp,
which is then normal in G, contrary to our assumption.

So we have proved that G contains a cyclic subgroup of index p, hence it
is one of the groups listed in Proposition 5.18. However, the group Mpn does
contain a normal subgroup isomorphic to Zp × Zp. It follows that G must
be cyclic when p > 2, and if p = 2 and n > 3 then G can also be one of the
groups D2n , SD2n or Dic2n .

63



C
E

U
eT

D
C

ol
le

ct
io

n

Corollary 6.5. Any finite 2-group G falls under case (1), (2a) or (3a) of
Theorem 6.1.

Proof. Suppose that (1) does not hold for G. Then by Lemma 6.4, G has a
normal subgroup N ∼= Z2×Z2. Consider the factor group G/N : if it is cyclic,
i.e. generated by aN for some a ∈ G, then necessarily 〈a〉 ∩ N = {1}, for
otherwise 〈a〉 would be a cyclic subgroup of index 2 in G. Now we can find
a subgroup Z2 × Z2 × Z2, which is case (2a): if a2 6= 1 then this is because
a2 necessarily centralizes N , and if a2 = 1 then already a must centralize N ,
for otherwise G = (Z2×Z2)oZ2

∼= D8, which has a cyclic subgroup of index
2, a contradiction.

It remains thatG/N is non-cyclic. IfG/N contains a subgroup isomorphic
to Z2×Z2, then we get case (3a). Otherwise by Lemma 6.4 G/N contains a
cyclic subgroup of index 2. Given that the Frattini subgroup F/N of G/N
is cyclic, F is an extension of a cyclic group by Z2 × Z2, hence by the same
argument as above, F (and hence G) falls under case (2a), unless F is a non-
cylic group with a cyclic subgroup of index 2. Then G/Φ (where Φ is the
Frattini subgroup of F ) is an extension of F/Φ ∼= Z2×Z2 by G/F ∼= Z2×Z2,
and we get case (3a).

Proposition 6.6. Let G be a group of odd order all of whose Sylow subgroups
are cyclic. Then either G is cyclic or it falls under case (3b) of Theorem 6.1.

Proof. By a theorem of Burnside (see p. 163 in [7])G is isomorphic to ZnoZm
for some coprime integers n,m. Hence either G is cyclic, or this semidirect
product is non-abelian. In the latter case there are elements a ∈ Zn and
b ∈ Zm of prime-power orders pk and qr, which do not commute. After
factorizing by the centralizer of 〈a〉 in 〈b〉 we may suppose that 〈b〉 acts
faithfully on 〈a〉. Then the order p subgroup of 〈a〉 and the order q subgroup
of 〈b〉 generate a non-abelian semidirect product Zp o Zq.

Proposition 6.7. Let G = Zn o P , where n is odd and P is a 2-group with
a cyclic subgroup of index 2. Then G falls under case (1), (3c), (3d), or (3e)
of Theorem 6.1.

Proof. Let C be the centralizer of Zn in P . The factor P/C is isomorphic to a
subgroup of Aut(Zn), which is abelian, and G/C = Zno (P/C). If P/C con-
tains an element of order 4, then by a similar argument as in Proposition 6.6
we find a subquotient isomorphic to ZpoZ4, where Z4 acts faithfully on Zp,
which is case (3c). Otherwise P/C must be isomorphic to Z2 or Z2 × Z2.
If P/C = Z2 then either C is cyclic, and Zn × C is a cyclic subgroup of
index 2 in G — this is case (1); or else C is non-cyclic, and then G/Φ(C)
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is an extension of the dihedral group G/C ∼= D2n by the Klein four-group
C/Φ(C) ∼= Z2 × Z2 — this is case (3e).

Finally, if P/C ∼= Z2 × Z2, we get case (3d): indeed, Zn = P1 × · · · × Pr,
where the Pi are the Sylow subgroups of Zn. If the generators a and b of
Z2×Z2 are acting non-trivially on precisely the same set of subgroups Pi, then
since the only involutive automorphism of an odd cyclic group is inversion,
ab will act trivially on all Pi, hence ab ∈ C, a contradiction. Therefore a
Pi exists such that a acts non-trivially, while b acts trivially on it. But an
index j 6= i also must exist such that b is acting non-trivially on Pj; after
eventually exchanging a with ab we may suppose that a acts trivially on Pj.
Then G has a subfactor (Pi × Pj) o (Z2 × Z2) ∼= D2pk ×D2ql , which leads to
case (3d).

Proof of Theorem 6.1 for solvable groups. We shall argue by contradiction:
let G be a counterexample of minimal order. Since G does not fall under case
(2b), all its odd order Sylow subgroups are cyclic by Lemma 6.4. As G does
not fall under case (1) or (3b), its order is even by Proposition 6.6. Finally, as
G does not fall under case (2a) or (3a), its Sylow 2-subgroup contains a cyclic
subgroup of index 2 by Corollary 6.5. Therefore Proposition 6.3 applies to
G, so a normal subgroup K exists such that G/K is isomorphic to Z2, A4 or
S4, and using Lemma 6.2, K = N oQ, where Q is a cyclic 2-group while N
is a characteristic subgroup consisting of odd order elements, which is also
cyclic, for otherwise it would fall under case (3b). The case G/K ∼= S4 is
ruled out by the minimality of G. The case G/K ∼= Z2 is also ruled out, since
then G ∼= Zn o P where the Sylow 2-subgroup P of G has a cyclic subgroup
of index 2, so it falls under case (1), (3c), (3d), or (3e) by Proposition 6.7.

It remains that G/K ∼= A4. Suppose first that N is trivial. Then K = Q
and P/Q ∼= Z2 × Z2 is normal in G/Q ∼= A4, hence P is normal in G
and by the Schur-Zassenhaus theorem G = P o Z3. Take its presentation
P = 〈a, b〉 given in Proposition 5.18: the subgroup 〈a4〉 has no non-trivial odd
order automorphism, hence the factor group P/〈a4〉 must have a non-trivial
automorphism of order 3. But unless P coincides with the group Z2 ×Z2 or
Dic8, the factor P/〈a4〉 is isomorphic to D8 or Z4 × Z2, which do not have
an automorphism of order 3. It follows that G = (Z2 × Z2) o Z3 = A4 or
G = Dic8 o Z3

∼= Ã4, which is case (2c), a contradiction.
Finally, suppose that N is nontrivial. Since N is characteristic in K, it is

normal in G, and G/N is isomorphic to A4 or Ã4 by our previous argument.
Then N is necessarily cyclic of prime order, for otherwise a proper subgroup
M ≤ N would exists which is normal is G, and G/M would contain a cyclic
subgroup of index at most 2 by the minimality assumption on G, but this
is impossible since A4 is a homomorphic image of G/M . Consequently it
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also follows that N = Z3, for otherwise |N | and |G/N | are coprime, so that
G = N o (G/N) by the Schur-Zassenhaus theorem, and again G would fall
under case (2c), a contradiction. Let C denote the centralizer of N in G/N :
on the one hand G/C must be isomorphic to a subgroup of Aut(Z3) = Z2, but
on the other hand Z2 is not a homomorphic image of A4 or Ã4, hence G = C.
This means that N is central in G, and therefore the Sylow 2-subgroup P is
normal in G. Given that the Sylow 3-subgroup of G is cyclic and of order 9
we conclude that G = P oZ9 where P equals Dic8 or Z2×Z2, and this gives
case (3f), a contradiction.

Proof of Theorem 6.1 for non-solvable groups. Suppose to the contrary that
Theorem 6.1 fails for a non-solvable group G, which has minimal order among
the groups with this property. Then any proper subgroup H of G is solvable:
indeed, otherwise (2) or (3) of Theorem 6.1 holds for H, hence also for G,
a contradiction. It follows that G has a solvable normal subgroup N such
that G/N is a minimal simple group (i.e. all proper subgroups of G/N are
solvable). If G/N ∼= A5, then denote by H the inverse image in G of the
subgroup A4 ⊆ A5 under the natural surjection G → G/N . Then H is
solvable, and has A4 as a factor group. Thus H has no cyclic subgroup of
index at most two. Therefore by the solvable case of Theorem 6.1, (2) or (3)
holds for H, hence it holds also for G, a contradiction.

The minimal simple groups were determined by Thompson. According
to Corollary 1 in [47], any minimal simple group is isomorphic to one of the
following:

(a) L2(2
p), p any prime.

(b) L2(3
p), p any odd prime.

(c) L2(p), p > 3 prime with p2 + 1 ≡ 0 (mod 5).

(d) Sz(2p), p any odd prime.

(e) L3(3).

The group L2(2
2) is isomorphic to the alternating group A5. Finally we

show that for the remaining minimal simple groups one of (2a), (2b), (3)
holds, hence G/N can not be isomorphic to any of them.

The group L2(2
p) contains as a subgroup the additive group of the field

of 2p elements. Hence when p ≥ 3 then (2a) holds. Similarly, L2(3
p) contains

as a subgroup the additive group of the field of 3p elements, hence (2b)
holds. The subgroup of unipotent upper triangular matrices in L3(3) is a non-
abelian group of order 27, hence (2b) holds for it. The subgroup in SL2(p)
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consisting of the upper triangular matrices is isomorphic to the semidirect
product Zp o Zp−1. Its image in L2(p) contains the non-abelian semidirect
product Zp o Zq for any odd prime divisor q of p − 1. When p is a Fermat
prime, then L2(p) contains Zp o Z4 (where Z4 acts faithfully on Zp), except
for p = 5, but we need to consider only primes p with p2 + 1 ≡ 0 (mod
5). The Sylow 2-subgroup of Sz(q) is a so-called Suzuki 2-group of order q2,
that is, a non-abelian 2-group with more than one involution, having a cyclic
group of automorphisms which permutes its involutions transitively. It turns
out that the involutions plus the identity constitute the center, the center
has order q, see for example [25], [8]. It follows that the Sylow 2-subgroup Q
of Sz(2p) (p an odd prime) properly contains an elementary abelian 2-group
of rank p in its Sylow 2-subgroup, hence (2a) holds for it.

Remark 6.8. It is shown in [2] using the classification of finite simple groups
that every non-abelian simple group contains a minimal simple group. Our
proof however does not rely on this fact.

6.2 Proof of the classification theorem

Proof of Theorem 1.1. It suffices to consider the cases listed in Theorem 6.1:

1. ifG contains a subgroup of index at most 2 then γ(G) ≥ 1
2

by Lemma 2.9

2. if G contains a subgroup H of index k such that:

(a) H ∼= Z2 × Z2 × Z2 then by Proposition 1.11 and Corollary 2.7

γ(G) ≤ 1

8k
βk(Z2 × Z2 × Z2) =

1

4
+

3

8k

(b) H ∼= Zp × Zp then by Proposition 1.10 and Corollary 2.7

γ(G) ≤ 1

kp2
βk(Zp × Zp) =

1

p
+
p− 1

kp2

(c) H ∼= A4 then by Theorem 4.5 and Corollary 2.7

γ(G) ≤ 1

12k
βk(A4) =

1

3
+

1

6k

It is easily checked that in all three cases the inequality γ(G) ≥ 1
2

holds
if and only if k = 1, and in case (b) it is also necessary that p = 2 or 3.
Finally, let H = Ã4; by Lemma 2.3 we have βk(Ã4) ≤ 2βk(A4) hence
β(G) ≤ βk(Ã4) ≤ 8k + 4 by Corollary 2.7 and Theorem 4.5, so we get
the same upper bound on γ(G) as in the case when H = A4.
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3. For any subquotient K of G we have γ(G) ≤ γ(K) by Lemma 1.8;

(a) if K/N ∼= Z2 × Z2 for some normal subgroup N ∼= Z2 × Z2 then
by Lemma 2.3 and Proposition 1.10:

γ(K) ≤ 1

16
ββ(Z2×Z2)(Z2 × Z2) =

1

16
β3(Z2 × Z2) =

7

16

(b) if K ∼= Zp o Zq then γ(K) < 1
2

by Theorem 3.16

(c) if K ∼= Zp o Z4, where Z4 acts faithfully, then by Proposition 5.9

γ(K) ≤ 3(p+ 1)

8p
≤ 9

20

(d) if K ∼= D2p × D2q where p, q are distinct odd primes then by
Lemma 2.3 and Corollary 5.5:

γ(G) ≤ 1

4pq
ββ(D2q)(D2p) ≤

p(q + 1) + 1

4pq
≤ 19

60

(e) if K/N ∼= D2p for some normal subgroup N ∼= Z2 × Z2 then by
Lemma 2.3 and Corollary 5.5:

γ(G) ≤ 1

8p
ββ(D2p)(Z2 × Z2) ≤

2p+ 3

8p
≤ 3

8

(f) if K ∼= (Z2 × Z2) o Z9 then γ(K) ≤ 17
36

by Proposition 4.8

To sum up, γ(G) < 1
2

when G falls under case (3) of Theorem 6.1.

6.3 Some corollaries

Corollary 6.9. Let C denote the set of isomorphism classes of non-cyclic
finite groups of order not divisible by char(F). Then

lim sup
G∈C

γ(G) =
1

2

Proof. If G is a non-cyclic group with γ(G) > 1
2
, then either G = Z3 × Z3

or by Theorem 1.1 it must be a group with a cyclic subgroup of index 2.
Therefore by Theorem 5.20 we have

γ(G) ≤ 1

2
+

2

|G|
→ 1

2
as |G| → ∞

Hence for any ε > 0 there are only finitely many isomorphism types of groups
such that γ(G) ≥ 1

2
+ ε and this was to be proved.

68



C
E

U
eT

D
C

ol
le

ct
io

n

Proposition 6.10. Let G be a finite non-cyclic group and F a field such that
|G| ∈ F×. If q is the smallest prime divisor of |G|, then

σ(G) ≤ 1

q
|G|

Proof. If G has a subgroup isomorphic to Zp×Zp for some prime p ≥ 2 then
by Remark 2.29 and Corollary 2.21 we get that:

σ(G)

|G|
≤ σ(Zp × Zp)

p2
=

1

p

and we are done. Otherwise by Lemma 6.4 all Sylow subgroups of G are
cyclic, hence G falls under case (3b), (3c) or (1) of Theorem 6.1. Given
that σ(Zp o Zq) = p and σ(Zp o Z4) = p by Proposition 3.27, and that
σ(G) = |G|/2 for any group containing a cyclic subgroup of index 2, as it is
seen from Theorem 5.20 combined with Theorem 2.25 — our claim is verified
for all three cases using Remark 2.29 as above.

Conjecture 6.11. Let Cq denote the set of isomorphism classes of non-cyclic
finite groups of order not divisible by char(F) with smallest prime divisor q.
Then

lim sup
G∈Cq

γ(G) =
1

q

Conjecture 6.12. If σ(G) = β(G) for a finite group G then G is cyclic.

6.4 A remark on separating invariants

A separating algebra A ⊂ F[V ]G is defined in [30] by the property that for
any u, v ∈ V belonging to different G-orbits there is an element f ∈ A such
that f(u) 6= f(v). Following [32] we write βsep(G, V ) = sup β(A) where A
runs through all the separating subalgebras of F[V ]G. It is easily seen that:

σ(G) ≤ βsep(G) ≤ β(G) (6.1)

Indeed, as F[V ]G itself is a separating algebra, sup β(A) is finite and bounded
by β(G). On the other hand, if v ∈ V is an element of the common zero locus
of A then g(v) = 0 = g(0) for every homogeneous generator g ∈ A, but then
by definition v is on the same G-orbit with 0, whence v = 0; this shows that
σ(G) ≤ βsep(G). In the present section we will give an example where both
inequalities in (6.1) are strict. (We are unaware of any such examples so far.)
Recall that for the group G = ZpoZ3 we have σ(G) = p by Proposition 3.27
and β(G) ≥ p+2 by Theorem 2.11. This G will be such an example, because:
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Theorem 6.13. βsep(Zp o Z3) = p+ 1 for any prime p different from 7.

Proof. First we will prove the lower bound βsep(G) ≥ p + 1. Recall that
G = 〈a, b : ap = b3 = 1, bab−1 = ar〉, where r has order 3 modulo p. Let U
and V be irreducible representations of G of dimension 1 and 3, respectively.
Then F[U ⊕ V ] = F[y, x1, x2, x3] where ya = y and yb = ωy for a primitive
third root of unity ω, while the xi are a-eigenvectors of eigenvalues ε, εr, εr

2
for

some primitive p-th root of unity, which are cyclically permuted by b. Now,
the point (0, 1, 0, 0) has trivial stabilizer in G, hence the points (1, 1, 0, 0) and
(ω, 1, 0, 0) do not belong to the same G-orbit. We claim that they cannot
be separated by invariants of degree at most p. Indeed, suppose to the
contrary that they can be separated. Then there exists an 〈a〉-invariant
monomial u with deg(u) ≤ p and τ(u)(1, 1, 0, 0) 6= τ(u)(ω, 1, 0, 0). If an 〈a〉-
invariant monomial v involves at least two variables from {x1, x2, x3}, then
τ(v) vanishes on both of (1, 1, 0, 0) and (ω, 1, 0, 0). If u involves only y, then
τ(u) = 0 unless u = y3k for some positive integer k, when τ(u) takes the
value 1 both on (1, 1, 0, 0) and (ω, 1, 0, 0). So u involves exactly one variable
from {x1, x2, x3}, forcing that u = xpi , and then τ(u) agrees on the two given
points, a contradiction.

Next we prove the inequality βsep(G) ≤ p + 1. Let W be a multiplicity
free representation of G which contains every irreducible representation of
G with multiplicity 1. An arbitrary representation of G is contained in W n

for a sufficiently great integer n. According to the Draisma-Kemper-Wehlau
theorem (see [15]) a separating set of F[W⊕n]G can be obtained by “cheap”
polarization from a separating set of F[W ]G, which is a degree-preserving
procedure, whence βsep(G,W⊕n) ≤ βsep(G,W ) and

βsep(G) ≤ βsep(G,W ) (6.2)

Now let W = U ⊕ V where U is the sum of 1-dimensional irreducibles, and
V is the sum of 3-dimensional irreducibles. Suppose that (u1, v1) and (u2, v2)
belong to different G-orbits in U ⊕ V . We need to show that they can be
separated by a polynomial invariant of degree at most p + 1. If u1 and u2
belong to different G-orbits, then they can be separated by a polynomial
invariant of degree at most q = |G/G′| (recall that G′ acts trivially on U),
and we are done. From now on we assume that u1 and u2 have the same
G/G′-orbits. If v1 and v2 belong to different G-orbits in V , then they can be
separated by a G-invariant on V of degree at most p + 1 by Theorem 3.29
and we are done. It remains that v1 = vg2 for some g ∈ G; after replacing
(u2, v2) with an appropriate element v1 = v2 = v might be assumed, and
then u1 and u2 are not on the same orbit under StabG(v). Consequently
StabG(v) is contained in G′ (for otherwise StabG(v) is mapped surjectively
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onto G/G′). Let U0 be a 1-dimensional summand in U = U0 ⊕ U1 such that
π(u1, v) 6= π(u2, v), where π : U ⊕ V → U0 is the projection onto U0 with
kernel U1 ⊕ V . Denote by y the coordinate function on U0, viewed as an
element of F[U ⊕V ] by composing it with π. If G acts trivially on U0, then y
is a G-invariant of degree 1 that separates (u1, v) and (u2, v). Otherwise y is a
relative invariant of some non-trivial weight χ. By Lemma 6.14 below, there
is an f ∈ F[V ]G,χ

−1
such that f(v) 6= 0. Moreover, F[V ]G,χ

−1
is generated

as an F[V ]G-module by its elements of degree at most p by Proposition 3.28,
hence we may assume that f has degree at most p. Now yf is a G-invariant of
degree at most p+ 1 which separates (u1, v) and (u2, v) by construction.

Lemma 6.14. Let G be a finite group and V a G-module over a field F in
which |G| is invertible. Given any character χ : G → F× and any point
v ∈ V such that StabG(v) ≤ ker(χ), a relative invariant f ∈ F[V ]G,χ exists
for which f(v) 6= 0.

Proof. Let g1, ..., gn ∈ G be a system of representatives of the left cosets of
the subgroup StabG(v). Then by definition the points g1 · v, ..., gn · v ∈ V
are all different from each other. Therefore we can construct, e.g. using
multivariate Lagrange interpolation a polynomial p ∈ F[V ] such that

p(gi · v) = χ(gi) for each i = 1, ..., n

Now set f := τχ(p) where τχ : F[V ] → F[V ]G,χ is the twisted transfer map
defined as τχ(p) :=

∑
g∈G χ

−1(g)pg. Then f is a relative invariant of character
χ by construction. Moreover, since χ factors through a unique character
χ̃ : G/G′ → F×, and since StabG(v) ≤ ker(χ) by assumption, we have:

f(v) =
∑
g∈G

χ−1(g)p(g · v) = | StabG(v)|
n∑
i=1

χ−1(gi)p(gi · v) = |G|

which is indeed non-zero in F by our assumption.
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