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Introduction

The aim of this paper is to give an exposition of the main theorems of local class field
theory using Lubin-Tate extensions. The existence of the Artin map is one of the
main results of local Class Field theory and our approach will be only one of many.
Each one of the available proofs has its own benefits e.g. the cohomological approach
yields information about the cohomology groups. In contrast the rationale behind
using Lubin-Tate theory is that the constructions here are explicit.

The Local Artin map of a local field K is between K∗ and GKab/K and it satisfies
certain arithmetic conditions which will allow us to better understand the Galois group
of the maximal abelian extension of K: Kab. We will see how this map induces
isomorphisms between finite quotients of K∗ and GKab/K and then this will yield
a correspondence between certain subgroups of the multiplicative group K∗ and its
abelian extensions.

Like many other approaches to the subject, the proof of existence will need to
be handled carefully - we will separate the cases into two parts, the ramified and
unramified extensions. The unramified extensions are fairly well understood for local
fields and will not take much time to dispense of. However the ramified case requires
more care and this is where we use Lubin-Tate theory.

We begin by introducing the theory of local fields and arithmetic properties of
their extensions, these results will be mostly preliminary and will have been covered
in a first course in Algebraic Number Theory, proofs will be ommited. We will then
consider Formal Group laws, which are, informally speaking, a formal analogue of a
group structure. After we have proven what we’ve needed for Lubin-Tate group laws
we shall explicitly construct maximal totally ramified extensions of K. This will set
the stage for an explicit description of the Artin map. A large part of the proof will
be to show that the composition of the maximal unramified extension with a maximal
totally ramified extension is in fact the maximal abelian extension. After this we will
need to determine the norm groups of certain fields and establish the functoriality of
the Artin map.

We should mention that while we have striven for a self-contained exposition we
have found that ommiting certain proofs increased the readibility and flow of the paper.
The proofs we omit are largely technical results whose proofs are of an unenlightening
nature. The one exception to this is The Hasse-Arf theorem which we do not include
because its proof is elementary, complicated, and outside the framework of Lubin-
Tate theory. In the beginning we will state the results needed from Algebraic Number
Theory but we will assume as known many algebraic concepts. In particular Galois
theory and its infinite analogue will be assumed.

For the preliminaries we refer to [3] and [2]. Our exposition of Formal Group
Laws follows that of [4] as Milne does an excellent job of presenting the main facts
quickly. We continue to follow his exposition, with some help form [6] up until the
Local Kronecker-Weber theorem. To prove the remaining theorems of Local Class
Field Theory we found it necessary to consult [5] and [1].
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1 Preliminaries from Algebraic Number Theory

Definition 1.1. An absolute value on a field K is a nonnegative function | · |: K → R
satisfying the following properties: it should attain positive values on nonzero elements
and zero on the zero, it should be multiplicative and lastly it should satisfy the triangle
inequality: |x+ y| ≤ |x|+ |y| for all x, y, z ∈ K. If in fact the absolute value satisfies
the stronger condition that |x + y| ≤ max{|x|, |y|} then we say the absolute value is
non-archimedean on K. Moreover if |K∗| is discrete in R>0 then we say | · | is a discrete
absolute value.

Definition 1.2. By a local field we mean a field K with a discrete absolute value
that induces a topology with respect to which K is locally compact. We will call
a local field whose topology is induced by a non-archimedean absolute value a non-
archimedian local field.

Theorem 1.3. Let K be a nonarchimdean local field, then K is either finite extension
of Qp for some p or a finite extension of Fp((x)) the Laurent series field over a finite
field.

Proof: [2] Chapter 2, Proposition 5.2
♣

Definition 1.4. If K is a non-archimedean local field then define OK = {x ∈ K | |x| ≤
1} to be the ring of integers of K.

Note that although we defined a valuation to be multiplicative most people who
have studied valuations on rings will have seen an additive definition. However, one
can pass from (non-archimeadean) multiplicative valuations to their additive analogue
using the logarithm and the exponential functions to go backwards - using this we will
see that OK is in fact a discrete valuation ring.

Proposition 1.5. If K is a non-archimedean local field with absolute value | · | then
log| · | is an additive valuation with respect to which OK is a discrete valuation domain
whose unique prime ideal is {x ∈ K||x| < 1}.

Proof: [3] Propositions 7.5 and 7.6
♣

Proposition 1.6. If K is a non-archimedean local field with absolute value | · | then
|K| is a subset of the real numbers with only zero as a limit point.

Proof: [3] Proposition 7.6
♣

Definition 1.7. Any generator of the maximal ideal of OK is called a prime element.
Note that such elements exist as discrete valuation rings are principal rings.

Proposition 1.8. If K is a nonarchimedean local field and L a finite extension of K,
then there is a unique extension of the additive valuation on K to L. This additive
valuation induces a metric on L making it a local field. Also, the valuation ring of L
is the integral closure of OK in L.
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Proof: [2] Chapter 2, Theorem 4.8
♣

Proposition 1.9. If K is a nonarchimdean local field and ai ∈ L some sequence then
limn→∞

∑n
i=1 ai converges if and only if ai → 0.

Proof: One can immediately recognize the forward direction as the well known
convergence test. It therefore remains to show ai → 0 is sufficient to guarantee the
sum converges. We will show the sequence of partial sums, sn = a1 + ... + an, is
Cauchy and completeness will give the result. Recall that K is complete since it is
locally compact and compact neighborhoods are complete. Since the norm is non-
archimdean we have:

|sn − sm| = |
n∑

i=m+1

ai| ≤ min{|am+1 + ...+ an−1|, |an|}

but using the non-archimedean property again we know the the term on the right is
less than or equal to

min{|am+1 + ...+ an−2|, |an−1|, |an|}

and proceeding in this way we obtain

|sn − sm| = |
n∑

i=m+1

ai| ≤ min{|am+1|, ..., |an|}

Now, we use the fact that ai → 0 and choose m,n to be large enough so that |sn− sm|
is small. This shows that the partial sums are Cauchy and therefore convergent.
♣

Proposition 1.10. Given an extension of local fields L/K we know that we have a
corresponding integral extension of OL/OK of discrete valuation rings. From the basic
theory of integral extensions of Dedekind rings we know that if mK and mL are the
maximal prime ideals of OK and OL then mK = me

L for some e. Moreover that if
|OL/mL : OK/mK | = f is the degree of residue field extensions then ef = |L : K|.

Proof: [3] Theorem 3.34
♣

Definition 1.11. As in the proposition above call e the ramification index of L/K
and f the residue class degree. ♣

Definition 1.12. : If L/K is an extension with ramification index equal to 1 then
we say L is an unramified extension of K, however if the ramification index equals
|L : K| then we call the extension totally ramified. An infinite extension is unramified
(totally ramified) if every finite subextension is unramified (totally ramified).

Proposition 1.13. If L1, L2 are unramified extensions of K then L1L2 is as well.

6
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Proof: [2] Chapter 2, Corollary 7.3 ♣

Corollary 1.14. If K is a local field then there exists a unique maximal unramified
extension of K, we call it Kun.

Proof: Zorn’s lemma tells us that a maximal unramified extension exists, so assume
L1 and L2 are examples. Then by the previous result L1L2 is also unramified and by
maximality we have that L1 = L1L2 = L2 as desired. ♣

Proposition 1.15. Unramified extensions have a Galois group isomorphic to that of
the residue field extensions and are thus cyclic.

Proof: [3] Theorem 7.50 ♣

Definition 1.16. : If L/K is a unramified extension and l/k the corresponding residue
field extension with |k| = q then by the previous proposition there exists a unique
element σ ∈ Gal(L/K) such that σa = aq mod mL for every a ∈ L. This element is
called the Frobenius of the Galois group Gal(L/K).

We will need the following lemma regarding finitely generated modules over princi-
pal ideal domains. For the following lemma suppose that A is a principal ideal domain
with a unique prime ideal generated by some π ∈ A.

Lemma 1.17. Let M be a A-module and put Mn = kerπn where πn : M → M is
the endomorphism m 7→ πn ·m. If |M1| = |A/(π)| and π : M → M is surjective then
Mn
∼= A/(π)n as A-modules.

Proof: We proceed by induction on n. Note that M1 has the same size as A/(π).
Since A has a unique prime ideal the structure theorem of finitely generated A-modules
tells us that every A-module will be isomorphic to A/(π)n1 ⊕A/(π)n2 ⊕ · · · ⊕A/(π)nk

where the ni form an increasing sequence of natural numbers. This forces M1 ≡ A/(π)
which completes the base case. Next consider the following chain complex

0→M1 →Mn →Mn−1 → 0

where the second map is multiplication by π and Mn−1
∼= A/(πn−1). The fact that

π : M →M is surjective tells us that every element in Mn−1 is of the form π · x where
x ∈M . Since π · x ∈Mn−1 we know that πn · x = 0 so that x ∈Mn, this tells us that
the above sequence is in fact exact. So Mn has qn many elements and is of the form
stated above. If it isn’t cyclic (i.e. of the form A/(π)n for some n) then it is impossible
for Mn−1

∼= A/(π)n−1 which we have assumed. Therefore Mn
∼= A/(π)n as desired. ♣

We are now in a position to describe the Local Artin map.

Theorem 1.18. If K is a local field a and Gal(Kab/K) the Galois group of the maxi-
mal abelian extension of K then there exists a unique map φ : K∗ → Gal(Kab/K) such
that for each prime element π ∈ K, φ(π)|Kun is the Frobenius element. Moreover, for
any finite abelian extension L/K, φ induces an isomorphism: φL/K : K∗/NL/K(L∗)→
Gal(L/K).
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Recall from infinite Galois theory that there is a one to one correspondence between
open subgroups of Gal(Kab/K) and finite abelian extensions of K. The theorem gives
us a link between the norm subgroup of that field and its fixed field. We will see
that this is actually a bijection and that what we have is a one-to-one order-reversing
correspondence between norm subgroups and finite field extensions. Note that by the
above theorem every norm subgroup is of finite index in K∗. It is not difficult to show
that it is open in K∗. The converse of the previous two statements is the content of
the next major theorem of Local Class Field theory:

Theorem 1.19. (Local existence): Every open subgroup of finite index in K∗ is a
norm subgroup.

In constructing the Artin map it will be useful to define the action of φ(K∗) over two
subfields, the maximal unramified extension Kun and some maximal totally ramified
extension separately. We will then use the Hasse-Arf theorem from classical algebraic
number theory to show that the composition of these two subfields equals Kab.

Proposition 1.20. Let O∗K denote the group of multiplicative units in OK , then we
have an isomorphism K∗ ∼= Z×O∗K .

Proof: Fix a prime element π ∈ O∗K and note that O∗K = OK−mK = {x ∈ K||x| =
1}, now we know every element in O∗K can be written as uπm with u ∈ O∗K since it
is a discrete valuation domain with maximal ideal equal to (π). Send this element to
(m,u) ∈ Z×O∗K . It is easy to verify that it is a group isomorphism. ♣

Proposition 1.21. Let L/K be a Galois extension of local fields then becauseGal(L/K)
fixes the prime ideal mL ⊂ OL setwise there is an induced action on OL/mL = l.
Putting k = OK/mK . This yields a surjective homomorphism Gal(L/K)→ Gal(l/k).

Proof: [3] Propositions 7.50 and 8.10 ♣

Definition 1.22. The kernel of the above map is denoted (Gal(L/K))0 and is called
the inertia subgroup ofGal(L/K). By the above proposition we haveGal(L/K)/(Gal(L/K))0

∼=
Gal(l/k)

Proposition 1.23. The fixed field of the inertia subgroup is the maximal unramified
extension of L/K.

Proof: [3] Proposition 7.58 ♣

Proposition 1.24. Given an algebraic extension of local fields L/K there is a one to
one correspondence between unramified subextensions and residue field subextensions
of l/k.

Proof: [3] Proposition 7.50 ♣

Proposition 1.25. Given an extension of local fields L/K, the corresponding ex-
tension of integer rings, OL/OK is monogenic, that is, there is a α ∈ OL such that
OK [α] = OL.

Proof: [6] Chapter 3, Section 6, Proposition 12 ♣
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Definition 1.26. A polynomial f ∈ OK of degree n

f(X) = anX
n + ...+ a1X + a0

is called Eisenstein if ai ∈ mK exactly when i < n and if 0 = |π| for some prime
element π of OK .

Proposition 1.27. A finite extension of local fields L/K is totally ramified if and
only if L ∼= K[α] where α is the root of an Eisenstein polynomial.

Proof: [3] Proposition 7.55 ♣

Definition 1.28. Given a finite extension L/K, each a ∈ L induces a K-linear map,
σa, on L viewed as a K-vector space: b 7→ ab. Define the norm of a ∈ L with respect
to L/K to be det(σa). We denote this quantity NL/K(a). More generally if L/K is
not finite, then set NL/K(L∗) =

⋂
K ′/KNK′/K(K ′∗) where K ′ runs through the finite

subextensions of L/K.

Proposition 1.29. The norm operator is transitive, that is if M/L/K are finite
extensions then NM/L = NL/K ◦ NM/L. Moreover if, L/K is Galois then NL/K(a) =
Πσ∈GL/Kσ(a).

Proof: [2] Chapter 1, Corollary 2.7 ♣

Theorem 1.30. An algebraic extension L/K is totally ramified if and only if its Norm
group NL/K(L∗) contains a prime element of K.

Proof: For finite extensions L/K this follows from proposition 1.27 and the fact
that the norm of an element is, upto sign, the constant term of its minimal polynomial.
So L/K being totally ramified implies the extension is of the form K[α]/K where the
minimal polynomial of α is Eisenstein and the norm of α is a prime element of K.
Recall that e denotes the ramification index of L/K. Conversely, if a prime element
of K, π, is the norm of an element in L, Π, then because the normalized valuation of
L, when restricted to K, is equal to evK , we have

1 = vK(NL/K(Π)) =
vL(NL/K(Π))

e
=
|L : K|vL(Π)

e
≥ |L : K|

e

Since |L : K| ≥ e this forces equality so that L/K must be totally ramified. The
infinite case now follows easily. ♣

9
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2 Formal Group Laws

We now introduce the Lubin-Tate formal group laws but before this we give a quick
review of formal power series rings.

Definition 2.1. If A is a ring then A[[x]] consists of elements of the form
∑∞

i=0 aix
i

where ai ∈ A. Moreover, it can be given a ring structure where multiplication and
addition are defined formally, that is:∑

aix
i +

∑
bix

i =
∑

(ai + bi)x
i

and ∑
aix

i
∑

bjx
j =

∑
ckx

k

where ck =
∑

i+j=k aibj. We call A[[x]], endowed with the aforementioned ring struc-
ture, the formal power series ring.

Note that A will usually just be a ring without any topological structure and as
such the notion of an infinite sum over A will be meaningless. This is why we call A[[x]]
the ring of formal power series because multiplication and addition between two such
elements is considered in a formal manner and as such the infinitude of their coefficients
pose no problem. However, in what follows we will need to compose two such series
that is, given f, g ∈ A[[x]] can we say what f(g(x)) is? If g(x) has a nonzero constant
term then the composition will almost always (unless f is a polynomial) require us to
sum infinitely many terms because f(g(x)) = a0 + a1(b0 + ..) + a2(b0 + ...)2 + ... where
f =

∑∞
i=0 aix

i. In general, over an arbitrary ring A this would be meaningless - so we
define f ◦ g only when g has no constant term. In this case to calculate the coefficient
of xi in f(g(x)) we only need to calculate at the most of the first ith powers of g and
then collect the coefficients belonging to xi in each of ajg

j (1 ≤ j ≤ i).
In our discussion about formal group laws we follow [4].

Proposition 2.2. For f, g, h ∈ A[[x]] where g and h have no constant term then
f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Proof: [4] Chapter 1, Proposition 2.1. ♣
One can define power series in several variables in exactly the same way. Also

if f ∈ A[[x1, ..., xn]] and h1, ..., hn have no constant terms then we can make sense
out of the composition f(h1, ..., hn) just as we did in the one variable case so that
f(h1, ..., hn) ∈ A[[x1, ...., xn]]. This brings us to our first new definition

Definition 2.3. Let A be a commutative ring, then a commutative formal group law is
a power series F ∈ A[[X, Y ]] such that F (X, 0) = X, F (0, Y ) = Y , F (X,F (Y, Z)) =
F (F (X, Y ), Z) and F (X, Y ) = F (Y,X). Lastly, we require that there be a unique
iF ∈ A[[X]] with no constant term such that F (X, iF (X)) = 0.

Note that the first two properties imply that F has no constant term and so
F (X,F (Y, Z)) and F (F (X, Y ), Z) make sense. We note the following

Proposition 2.4. Suppose F ∈ A[[X, Y ]] satisfies all of the above requirements for
being a formal group law except that instead of F (X, 0) = X and F (0, Y ) = Y we
have that F (X, Y ) = X + Y + F2 where F2 is a power series with degree ≥ 2 terms.
Then F is a formal group law.

10
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Proof: [4] Chapter 1, Remark 2.4. ♣

Proposition 2.5. Suppose F ∈ A[[X, Y ]] satisfies all of the above requirements for
being a formal group law except for the existence of an iF with F (X, iF (X)) = 0, then
F is still a formal group law.

Proof: [5] Lemma 3.1. ♣

We now specialize to the local number theoretic situation. Suppose that our com-
mutative ring is actually OK , the ring of integers in a nonarchimedean local field, we
now have the notion of convergence! Let F =

∑
i,j≥0 aijX

iY j be a formal group law
over OK . Proposition 1.9 says that a series converges if and only if its summands
converge to zero in such fields. As such if c, d ∈ mK then the series

∑
i,j≥0 aijc

idj

converges to some element in OK . That the series converges in mK follows because it
is closed. From here onwards we will call this element c+F d. Since F (X, Y ) is a formal
group law mK is an abelian group under +F . Another set we can turn into a group
using F is the collection of all formal power series in one or more variables without
constant terms: if f, g ∈ ZA[[Z]] then define f +F g = F (f(Z), g(Z)) ∈ ZA[[Z]]. Now
we define the morphisms between these group laws

Definition 2.6. Given two formal group laws F,G over A a homomorphism F → G
is an element f ∈ ZA[[Z]] with the property that f(F (X, Y )) = G(f(x), f(y)). If
there is a homomorphism G → F with f ◦ g = g ◦ f = Z then we say that f is an
isomorphism of formal group laws. A homomorphism from F to itself is called an
endomorphism.

Proposition 2.7. For any two formal group laws F,G the set of homomorphism
from F to G is a group under +G, we call this set Hom(F,G). Moreover, the set
of endomorphism of a group law forms a ring End(F ) with multiplication being the
composition of power series.

Proof: First we show that the set is closed under addition, let f, g ∈ Hom(F,G)
and consider h = f +G g then note that

h(F (X, Y )) = G(f(F (X, Y )), g(F (X, Y ))) = G(G(f(X), f(Y )), G(g(X), g(Y )))

which is
f(X) +G f(Y ) +G g(X) +G g(Y )

and now because G satisfies associativity and commutativity this is equal to

(f(X) +G g(X)) +G (f(Y ) +G g(Y )) = G(h(X), h(Y ))

this tells us that h is in fact a homomorphism from F → G. Now we would like to show
that if f ∈ Hom(F,G) then iG◦f ∈ Hom(F,G). To see this we first show that iG◦G =
G ◦ iG. Note that G(G(X, Y ), G(iG(X), iG(Y ))) = X +G Y +G iG(Y ) +G iG(X) = 0
(using associativity and commutativity of +G) so that G ◦ iG kills G(X, Y ) but iG ◦G
also has this property and since there is only one power series with this property
they must be the same. This means iG ◦ f(F (X, Y )) = iG ◦ (G(f(X), g(Y ))) =

11
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G(iG(f(X)), iG(f(Y ))) as desired. It is clear that 0 ∈ Hom(F,G) so the first state-
ment is proved. To show that the endomorphisms form a ring we need only show
distributivity, i.e. that f ◦ (g +G h) = f ◦ g +G f ◦ h since Z is the multiplicative
identity and is clearly an endomorphism. But f ◦ (g +G h) = f ◦ G(g(Z), h(Z)) =
G(f ◦ g(Z), f ◦ h(Z)) = f ◦ g+G f ◦ h as desired. Distributivity from the other side is
proved in the exact same way. ♣

Definition 2.8. Consider the ring of formal power series over OK , the ring of integers
in a nonarchimedean local field and a prime element π ∈ K. Then let Fπ denote the
set of all f ∈ OK [[X]] such that f(X) has no constant term, f ≡ πX mod degree
two terms, and f ≡ Xq mod (π). Here q = |OK/mK | is the size of the residue field
of K.

The following lemma will be essential in endowing the Lubin-Tate group laws with
an OK-module structure. It is a special case of another lemma we will state but not
prove.

Lemma 2.9. Given f, g ∈ Fπ and any linear polynomial φ1(X1, ..., Xn) over OK there
exists a unique φ ∈ OK [[X1, ..., Xn]] such that φ has linear part equal to φ1 and no
constant terms with f(φ) = φ(g).

Proof: We inductively construct our φ degree by degree. Let φ1 be as in the
statement of the theorem. We shall construct φr such that

f(φr(X1, ..., Xn) = φr(g(X1), ..., g(Xn)) + εr+1

where εr+1 consists of r+ 1-degree terms. In what follows εi will be a generic term for
formal power series that have minimal degree greater than or equal to i. For φ1 note
that because φ1 is linear we have

f(φ1) = π(φ1(X1, ..., Xn) + ε2 = φ1(π(X1), ..., π(Xn)) + ε2

which is, modulo degree ≥ 2 terms:

φ1(πX1 + ε2, ..., πXn + ε2) + ε2 = φ1(g(X1), ..., g(Xn)) + ε2

So the case r = 1 is complete and we assume that φr exists satisfying the above prop-
erties, that is: it is the unique degree r polynomial with coefficients in OK satisfying
f ◦ φr = φr(g) + εr+1 and φr = φ1 + ε2. We have to show the existence of φr+1 and
if it were to exist then we’d have that φr + Q = φr+1 for some homogenous degree
r + 1 polynomial Q. This is because if we chopped off the degree ≥ r + 1 terms of
φr+1 we’d get a suitable replacement for φr, but by uniqueness they must be the same
modulo degree r+ 1 terms. In other words we get φr+1 by adding to φr a homogenous
polynomial, Q, of degree r + 1.

What we want is a φr+1 with

f(φr+1(X1, ..., Xn)) = f(φr(X1, ..., Xn) +Q) = f(φr(X1, ..., Xn)) + πQ+ εr+2

12
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which should equal

φr+1(g) = φr(g(X1), ..., g(Xn)) +Q(g(X1), ..., g(Xn) = φr(g) +Q(πX1, ..., πXn) + ε′r+2

So if Q is to make both quantities equal we will need it to satisfy

Q(πX1, ..., πXn)− πQ = f(φr)− φr(g) + ε′′r+2

but because Q is homogenous of degree r + 1 the above equation becomes

(πr+1 − π)Q = f(φr)− φr(g) + ε′′r+2

so Q must equal the sum of the degree r + 1 terms in the power series

f ◦ φr − φr ◦ g + ε′′r+2

π(πr − 1)

It remains to show that Q has coefficients in OK . To do this it suffices to prove that
f ◦ φr − φr(g) is divisible by π. Since f, g ∈ Fπ we know that the coefficient of every
ith degree term of f and g (except for i = q = |OK/mK |) is divisible by π so:

f(φr) =
∑
i 6=q

πai(φr)
i + φqr

and
φr(g) = φr(

∑
i 6=q

πbiX
i
1 +Xq

1 , ...,
∑
i 6=q

πbiX
i
n +Xq

n)

now when we pass to the residue field (mod out by (π)) of characteristic p we get

f(φr) ≡ φr(X1, ..., Xn)q ≡ φr(X
q
1 , ..., X

q
n)

and
φr(g) ≡ φr(X

q
1 , ..., X

q
n)

so that their difference mod π is 0. Since π − 1 is a unit in OK this completes the
proof that Q is a polynomial in OK . Now take φr+1 = φr +Q and by the construction
of Q it is obvious it satisfies the required properties. Now we define φ to be the unique
power series extending each of the φr’s. It will satisfy f ◦ φ = φ ◦ g because it does so
modulo degree r terms for each natural number r. ♣

Proposition 2.10. For each f ∈ Fπ there exists a unique formal group law Ff ∈
OK [[X, Y ]] such that f ∈ End(Ff ).

Proof: Use the lemma above with φ1 = X+Y and f = f = g to get some φ(X, Y ) ∈
OK [[X, Y ]] which we will call Ff . It remains to check that it is a formal group law. We
need to check first commutativity, put Ff (Y,X) = G(X, Y ). Note then that G = φ1

modulo degree two terms and that f(G(X, Y )) = f(Ff (Y,X)) = Ff (f(Y ), f(X)) =
G(f(X), f(Y )). But then G and Ff satisfy the properties of the above lemma (with
f = f = g and φ1 = X + Y ) and so by uniqueness they must be the same. For
associativity we proceed similarly by considering G(X, Y, Z) = Ff (Ff (X, Y ), Z) and
H(X, Y, Z) = Ff (X,Ff (Y, Z)). Then note that both G and H equal X + Y + Z plus
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some degree ≥ 2 terms. It is also easy to see that f ◦G = G ◦ f and f ◦H = H ◦ f so
again by uniqueness they must be the same. By the propositions 2.4 and 2.5 we see
that Ff is a formal group law and that f ∈ End(Ff ). ♣

The formal group laws Ff whose existence we have just proven are called the Lubin-
Tate formal group laws and will be essential in constructing totally ramified extensions
of a nonarchimdean local field K. Now let f, g ∈ Fπ and let a ∈ OK then Lemma 2.9
guarantees the existence of an [a]f,g ∈ ZOK [[Z]] whose linear term is exactly aZ and
satisfying g ◦ [a]g,f = [a]g,f ◦ f .

Proposition 2.11. [a]g,f is a homomorphism of formal group laws Ff → Fg.

Proof: We need to show that [a]g,f (Ff (X, Y )) = Fg([a]g,f (X), [a]g,f (Y )). Their
linear terms agree since they are both equal to aX + aY . Now notice

[a]g,f (Ff (f(X), f(Y ))) = [a]g,f ◦ f(Ff (X, Y )) = g ◦ [a]g,f (Ff (X, Y ))

To proceed, observe
[a]g,f (Ff ([a]g,f (X), [a]g,f (Y ))) = φ

satisfies φ(f) = g(φ) since

φ ◦ f = Fg(g([a]g,f (X)), g([a]g,f (Y ))) = g ◦ Fg([a]g,f (X), [a]g,f (Y )) = g ◦ φ

and also that φ′ = [a]g,f (Ff (X, Y )) satisfies φ′(f) = g(φ′) because

φ′ ◦ f = [a]g,f (Ff (f(X), f(Y ))) = [a]g,f ◦ f ◦ (Ff (X, Y )) = g ◦ [a]g,f (Ff (X, Y )) = g ◦ φ′

so by the uniquness in Lemma 2.10 they must be the same power series as desired. ♣

Our aim is to prove that there is a ring morphism OK → End(Ff ) taking a 7→ [a]f,f
so that we can consider think of Ff as an abstract OK-module. By this we mean that
if we regard some subset of a ring B with OK ⊂ B as a group under the group law
+Ff then it would have an accompanying OK-module structure compatible with the
group law.

Proposition 2.12. The map considered above OK → End(Ff ) is an injective ring
homomorphism.

Proof: We will prove something slightly more general, i.e. that for any a, b ∈ A we
have [a+ b]g,f = [a]g,f +Fg [b]g,f and [ab]h,f = [a]h,g ◦ [b]g,f . Once we have proven these
two identities then the proposition follows when we set g = h = f .

The plan of the proof will be to show that both sides of both equations satisfy the
same properties and then use uniqueness in Lemma 2.9 to show that they must be the
same. For the first one we know that [a+b]g,f is the unique power series satisfying both
[a+b]g,f (T ) = (a+b)T+

∑∞
i=2 ciT

i and g◦[a+b]g,f = [a+b]g,f ◦f . But it is obvious that
g◦([a]g,f +Fg [b]g,f ) = g◦Fg([a]g,f , [b]g,f ) = Fg(g◦ [a]g,f , g◦ [b]g,f ) = Fg([a]g,f ◦f, [b]g,f ◦f)
but this last power series is actually just ([a]g,f +Fg [b]g,f ) ◦ f . By uniqueness we see
that they must be the same. Similarly note that h◦ [ab]h,f = [ab]h,f ◦f and that [ab]h,f
has abT as its linear term. Now h ◦ [a]h,g ◦ [b]g,f = [a]h,g ◦ g ◦ [b]g,f = [a]h,g ◦ [b]g,f ◦ f
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and its not hard to see that [a]h,g ◦ [b]g,f has abT as its linear term as well. Again, by
uniqueness we see that these two power series are the same.

To complete the proof that it is a ring homomorphism we need to check that 1 7→ T
under this mapping but clearly the linear term of T and [1]f,f are the same and also
both commute with f , so in fact [1]f,f = T . That the map is injective is clear since if
a 6= 0 then [a]f,f will have a nonzero linear term and hence cannot be the zero power
series. ♣
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3 Lubin-Tate Extensions and their Galois groups

Fixing some prime element π ∈ OK we will construct a totally ramified abelian exten-
sion Kπ which will satisfy certain nice properties. Namely π will be a norm for any
finite subextension of Kπ, we will have Kπ =

⋃∞
i=1 Kπ,n where Kπ,n is totally ramified

with degree over K equal to qn−1(q − 1). Moreover, Kπ,n will have a Galois group
isomorphic to (OK/(π)n)∗ ∼= O∗K/(1 + (π)n) (this last isomorphism will become clear
later). We proceed in steps.

Note that the valuation on a nonarchimedean local field K extends uniquely to any
finite extension of K and thus using a maximality argument we see that it must extend
to the entire algebraic closure of K, K̄. Fix f ∈ Fπ. Given any two elements x, y ∈ K̄
with valuation strictly less than one we see that Ff (x, y) converges (since its summands
goto zero). Moreover since Ff was constructed to have no constant term it converges to
an element with valuation strictly less than one. Note that we are using the fact that
a nonarchimedean valuation is a group homomorphism sending K∗ to a set of points
in R with only zero as the limit point. In this way we endow mK̄ = {x ∈ K̄||x| < 1}
with the group structure induced by the group law +Ff . As remarked above this also

endows mK̄ with an OK-module structure where a · x = [a]f,f (x). We will let mf

K̄,n

denote the set of elements killed by [π]nf,f . But clearly f = [π]f,f since its linear term

is πT and it commutes with Ff . We will set Kπ,n = K[mf

K̄,n
] and later show it has

the required properties. The next proposition illustrates why which f ∈ Fπ we choose
does not matter.

Proposition 3.1. If we have two polynomials f, g ∈ Fπ then we have K[mf

K̄,n
] =

K[mg

K̄,n
] as field extensions of K.

Proof: By lemmas 2.11 and 2.12 there is a power series [1]g,f ∈ OK [[X]] with

[1]g,f (f) = g([1]g,f ). Thus we have [1]g,f : mf

K̄,n
→ mg

K̄,n
which is OK-module map,

it is invertible because 1 is. Since K[mf

K̄,n
] is a finite extension K it is complete and

therefore [1]g,f (a) ∈ K[mf

K̄,n
] for a ∈ mf

K̄,n
. This shows mg

K̄,n
⊂ K[mf

K̄,n
] completing

the proof. ♣

This allows us to choose f = πT + T q for simplicity. And mf

K̄,n
will consist of the

roots of f (n) = f ◦ f ◦ · · · ◦ f (n times) whose absolute value, as the next proposition
shows, is strictly less than one.

Proposition 3.2. The polynomial, f (n), above has as roots elements with valuation
strictly less than one.

Proof: The roots of f (2) are the roots of the polynomial f(X)− a where a is a root
of f(X)/X. Note that a is a root of the Eisenstein (hence irreducible) polynomial
Xq−1 + π. Thus in K[a], a has, with respect to the normalized valuation, valuation
one, i.e. it is in mK[a] but not m2

K[a]. Now lemma 3.3 applies to show that the roots

of f(X)− a have valuation strictly less than one. Using lemma 3.3 again we see that
if we replace a with any of the roots of f(X)− a we can repeat this whole argument
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with f (3) in place of f (2). The argument for f (n) now follows by an easy inductive
argument. ♣

The set mf

K̄,n
consists of the roots of f (n) and is closed under the operation +Ff

since f(Ff (x, y)) = Ff (f(x), f(y)) = F (0, 0) = 0 (since Ff has no constant term)

when x, y ∈ mf

K̄,n
. It is also closed under [a]f,f because f([a]f,f (x)) = [a]f,f (f(x)) =

[a]f,f (0) = 0 since [a]f,f is a power series with no constant term. Thus we know that

mf

K̄,n
has an OK-module structure. Note that mf

K̄,n
is a torsion OK-module that is

finitely generated since it is finite and is killed by f (n) = [π]nf,f . Since OK is a discrete
valuation ring we can apply the theory of finitely generated modules over principal
ideal domains.

Lemma 3.3. The polynomials πT+T q−a where a ∈ mK but not in m2
K are Eisenstein

polynomials and therefore have q distinct roots each of which has absolute value strictly
less than one. Moreover if b is a root then b ∈ mK[b] but not in m2

K[b].

Proof: [3] Proposition 3.53 ♣

Theorem 3.4. The OK-module mf

K̄,n
is isomorphic to OK/(π)n.

Proof: For any two f, g ∈ Fπ there is a formal group isomorphism Ff → Fg. As
we remarked earlier this really means that any two sets that form OK-modules under
the group laws +Ff and +Fg respectively are actually isomorphic as OK-modules. In
this way we see that it doesn’t matter which f ∈ Fπ we choose. So suppose that
f = πX + T q this has q distinct roots with valuation smaller than one. Moreover if
a ∈ mK̄ the preceding lemma tells us that f − a is has q distinct roots all of which lie
in mK̄ . Since f(a) = [π]f,f · a we see that the map mK̄ → mK̄ is actually surjective
since f(x)− a has roots in mK̄ . Thus the hypothesis of proposition 1.16 are satisfied
and the result follows. ♣

We set K[mf

K̄,n
] = Kπ,n. Recall that we remarked earlier the f ∈ Fπ we chose doesn’t

matter since K[mf

K̄,n
] is the same extension for any such f . Finally we come to the

following

Theorem 3.5. Kπ,n has the three desired properties, that is, it is totally ramified of
degree qn−1(q − 1), has π as a norm, and Gal(Kπ,n/K) ∼= (OK/(π)n)∗.

Proof: Since our choice of f ∈ Fπ doesn’t matter we will choose f(x) = πX +Xq.
Choose a nonzero root of f and call it a1, then let a2 be a root of f − a1 and in
this fashion let an be a root of f − an−1. Now because a1 is the root of an eisenstein
polynomial it has positive valuation and therefore is divisible by π which means f −a1

is also eisenstein (hence irreducible of degree q) and so its root a2 is also divisible by π.
In this way we see that each of the polynomials f−ai are irreducible of degree q. Note
also that f(f(a2)) = f(a1) = 0 and in general f (i)(ai) = f (i−1)(ai−1) = ... = f(a1) = 0
so that ai is a root of f (i). Also since f ∈ K[X] and ai is a root of f − ai−1 we see
that K[a1, ..., ak] = K[ak] because f(ak) = ak−1, and so f (j)(ak) = ak−j. Thus we get
a sequence of fields

K ⊂ K[a1] ⊂ K[a2] ⊂ ... ⊂ K[an] ⊂ K[mf

K̄,n
] = Kπ,n
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where the first extension is of degree q − 1 (since f = X(π +Xq−1) and is Eisenstein)
and the other n−1 extensions are of degree q, telling us that qn−1(q−1) ≤ |Kπ,n : K|.
To see that each extension is totally ramified just note that the valuation of a1 is
simply 1/(q−1) since aq−1

1 = π and so (q−1)v(a1) = v() = 1i. Similarly aq2 +πa2 = a1

so v(aq2 + πa2) = 1
q−1

and because v(aq2) = qv(a2) 6= 1 + v(a2) = v(πa2) we must have

v(aq2 + πa2) = min(qv(a2), 1 + v(a2)). But which is smaller? If 1 + v(a2) < qv(a2)
then q − 1v(a2) > 1 in other words aq−1

2 wouldn’t be an algebraic integer, but it
is! In this way we see that v(a2) = v(a1)/q. In exactly the same fashion one can

prove that v(ai) = v(ai−1)
q

for every other i ≥ 2. This implies that the extensions

K[ai]/K are totally ramified because the prime ideal (π) factors into (ai)
(q−1)(qi−1). By

constructionKπ,n is the splitting field of f (n) and as such it’s Galois groupGal(Kπ,n/K)

faithfully permutes the roots of f (n): mf

K̄,n
. It is useful to note that each element

σ ∈ Gal(Kπ,n/K) has an action that is compatible with the givenOK-module structure

on mf

K̄,n
. To see this consider that σ acts continuously with respect to the topology

induced by | · | since it fixes the ideals (π)j (setwise) for every j. Thus, by continuity, if
we take a ∈ OK and consider [a]f,f then σ([a]f,f (x)) = [a]f,f (σ(x)). This follows since
σ commutes with limits by continuity i.e.

σ([a]f,f (x)) = σ( lim
i→∞

i∑
aix

i) = lim
i→∞

i∑
aiσ(x)i

as desired. So each σ ∈ Gal(Kπ,n/K) is a OK-isomorphism of mf

K̄,n
. But we know the

latter is isomorphic to OK/(π)n thereby implying its endomorphism ring is isomorphic
to OK/(π)n). This tells us that we have an injection of groups: Gal(Kπ,n/K) →
(OK/(π)n)∗. The latter group has order equal to (q − 1)qn−1 (because there are q − 1
cosets in OK/(π) and q cosets in each of (π)i/(π)i+1 for i ≥ 1) telling us that |Kπ,n :
K| = |Gal(Kπ,n/K)| ≤ qn−1(q−1), but earlier we had the reverse inequality. It follows
that K[an] = Kπ,n and that the map Gal(Kπ,n/K)→ (OK/(π)n)∗ mentioned above is
actually an isomorphism.

We now only need to show that π is the norm of some element in K[an]. Note that
a1 is a root of f(X)/X = π + Xq−1 and that fn−1(an) = a1 meaning an is a root of
f(X)/X ◦ f (n−1)(X) which looks like π + ...+Xqn−1(q−1). The minimal polynomial of
an over K must divide this and have degree equal to qn−1(q−1). Since this polynomial
has the same degree it must be the minimal polynomial of an and hence we know the
constant term is the product of the Galois conjugates of an. This is the norm of an
and is equal to (−1)(q−1)qn−1

π = π. ♣
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4 The fields Kun ·Kπ and the maps φπ

We are getting closer to the main theorem of local class field theory. We are now in a
position to explicitly construct the local Artin map. Fix a prime element π ∈ K and
consider Kπ =

⋃∞
i=1Kπ,n. We will define a map φπ : K∗ → Gal(Kπ ·Kun/K) which

will turn out to be the Artin map. Before we proceeding with the proof we need two
important facts: that φπ and the field Kπ ·Kun are independent of our choice of π.

First, the construction. We would like to define how φπ(a) acts on Kun ·Kπ for some
a ∈ K∗. Since Kun∩Kπ = K it suffices to define its image in each of Gal(Kun|K) and
Gal(Kπ|K). We know every a ∈ K∗ can be written in the form uπn for some u ∈ O∗K
and some integer n, so put φπ(uπn)|Kun = ϕm (here ϕ is the Frobenius over K) and
φπ(uπn)|Kπ = [u−1]f,f where f ∈ Fπ. Note that since u is a unit φπ(a)|Kπ is in fact an
automorphism of the OK-module Kπ. The main theorem of the chapter is

Theorem 4.1. The Kπ ·Kun and φπ as defined above are independent of our choice
of prime element π ∈ K.

The proof will be long, technical and rather unilluminating and the reader who
is willing to accept it is encouraged to skip it and move forward. For the sake of
completeness we will present the proof as found in [4].

Remarks: It is a fact that K̄ is not complete and neither is Kun. So we let K̂un

denote its completion. It’s clear that the absolute value on K̂ extends uniquely to
K̂un so we let B denote the set of elements in K̂un with absolute value no larger than
1. Because the Frobenius automorphism, ϕ, is continuous with respect to this absolute
value, it can be extended uniquely to the completion of Kun since Kun is dense in K̂un.
For any θ(T ) =

∑
biT

i ∈ B[[T ]] as before we put θϕ(T ) =
∑
ϕ(bi)T

i.

Lemma 4.2. Given f ∈ Fπ and g ∈ Fν where π and ν are prime elements in K with
uπ = ν then Ff and Fg become isomorphic as OK-modules over the ring B. That
is, there is an ε ∈ B∗ with εϕ = εu and an element, θ of the power series ring B[[T ]]
satisfying

a) θ(T ) = εT + σi≥2aiT
i

(b) θϕ = θ ◦ [u]

(c) θ(Ff (X, Y )) = Fg(θ(X), θ(Y ))

(d) θ ◦ [a]f,f = [a]g,g ◦ θ

The last two conditions are another way of saying that θ is a homomorphism
Ff → Fg as (abstract) OK-modules. That ε ∈ B∗ implies that θ ∈ B[[T ]] is actually
invertible, i.e. that there is a θ−1 ∈ B[[T ]] with θ ◦ θ−1 = θ−1 ◦ θ = T . The inverse can
be found by solving for θ−1 coefficients inductively.
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Proof: [4] Chapter 1, Proposition 3.10 ♣

Proof: (Of theorem 4.1) As in the statement of the previous lemma suppose that
ν = uπ are two prime elements of K. By the lemma there exists a θ ∈ B[[T ]] such
that

θϕ ◦ [π]f,f = θ ◦ [u]f,f ◦ [π]f,f = θ ◦ [ν]f,f = [ν]g,g ◦ θ
since f = [π]f,f and g = [ν]g,g we can rewrite the above line as θϕ(f(T )) = g(θ(T )).
This tells us that given any element a ∈ K̄ with f(a) = 0 then θϕ(f(a)) = 0 (since
θϕ is a power series with no constant term) but this is equal to g(θ(a)). We have just
shown that f(a) = 0 implies that g(θ(a)) = 0. Now consider θ−1, it is in Hom(Fg, Ff )
and satisfies the following four properties:

θ−1(T ) = ε−1 + Σi≥2ciT
i

θϕ = θ ◦ [u−1]g,g

θ−1)Fg(X, Y ) = Ff (θ
−1(X), θ−1(Y ))

θ−1 ◦ [a]g,g = [a]f,f ◦ θ
The first, third and fourth are all follow from the fact that θ−1◦θ(T ) = θ◦θ−1(T ) = T .
For example θ−1(Fg(X, Y )) = θ−1(Fg(θ◦θ−1(X), θ◦θ−1(Y ))) = θ−1◦θ(Ff (θ−1(X), θ−1(Y ))) =
Ff (θ

−1(X), θ−1(Y )) as desired. The second follows since T = (θ ◦ θ−1(T ))ϕ = θϕ ◦
(θ−1)ϕ(T ) since the composition is compatible with the action of the Frobenius. This
fact is easy to see once one realizes that determining the coefficients of the composition
of two power series involves calculating finitely many terms at each step. Obviously
θ−1 ◦ [u−1]g,g is the inverse (with respect to composition) of θ ◦ [u]f,f and since these
are uniquely determined we se that θ−1 ◦ [u−1]g,g = (θ−1)ϕ.

Now we have the following:

(θ−1)ϕ ◦ [ν]g = θ−1 ◦ [u−1]g,g ◦ [ν]g,g = θ−1 ◦ [π]g,g

which is simply [π]f,f ◦ θ−1. In other words θϕ ◦ g(a) = f(θ−1(a)). So if g(a) = 0

then f(θ−1(a)) = 0. Thus θ establishes a one to one correspondence between mf

K̄,1

and mg

K̄,1
. From this and the completeness of K̂un[mf

K̄,1
] and K̂un[mf

K̄,1
] we deduce

the following

K̂un[mg

K̂,1
] = K̂un[θ(mf

K̄,1
)] ⊂ K̂un[mf

K̄,1
] = K̂un[θ−1(mg

K̄,1
)] ⊂ K̂un[mg

K̄,1
]

so that we have equality throughout. Note where we use completeness: if θ(a) ∈ mL ⊂
L a complete field, then so is a = θ−1(θ(a)) since θ−1 has coefficients in L and L is
complete. This tells us that K̂un[mg

K̄,1
] = K̂un[mf

K̄,1
]. The next lemma will tell us that

K̂un[mg

K̄,1
] ∩ K̄ = Kun[mg

K̄,1
] and K̂un[mf

K̄,1
] ∩ K̄ = Kun[mf

K̄,1
] thereby implying

Kun[mf

K̄,1
] = Kun[mg

K̄,1
]

The proof generalizes without difficulty to yield

Kun[mf

K̄,n
] = Kun[mg

K̄,n
]

for all n ≥ 1. This proves that Kν ·Kun = Kπ ·Kun. ♣
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Lemma 4.3. Let E be an algebraic extension of K and let Ê be its completion, then
Ê ∩ K̄ = E.

Proof: Consider the Galois group Gal(K̄|E). We know it fixes E and since E is
dense in Ê ∩ K̄ the fact that Gal(K̄|E) acts continuously on K̄ tells us that it must
also fix Ê ∩ K̄. By Galois theory this tells us that Ê ∩ K̄ ⊂ E. The opposite inclusion
is obvious. ♣

Proof: (φπ in independent of π) To prove the theorem it suffices to show that for
any two prime elements ν and π we have φπ(ν) = φν(ν). To see why this is enough,
consider any other prime element µ then we would have that φπ(µ) = φµ(µ) = φν(µ)
since ν and π were arbitrary. Now because the prime elements generate K∗ this shows
that φπ = φν . That the prime elements generate K∗ is easy to see: any unit can be
written as u = (uπ)π−1 where π is a prime element so that uπ is one too.

By construction we have that φπ(ν)|Kun = φν(ν)|Kun = ϕ (the Frobenius) so it re-
mains to show the action of φπ(ν) and φν(ν) is the same on Kν . Take a θ as in Lemma
4.2 that gives an isomorphism of formal group laws Ff → Fg for f ∈ Fπ, g ∈ Fν
(ν = πu). This yields an isomorphism of OK-modules mf

K̄,n
→ mg

K̄,n
so that we can

say Kν,n is generated over K by the elements θ(a) for a ∈ mf

K̄,n
. Since φν(ν) acts

as the identity on Kν we have to show φπ(ν)(θ(a)) = θ(a) for any a ∈ mf

K̄,n
. Write

φπ(ν) = φπ(u)φπ(π), now φπ(u) acts as the identity on Kun and as [u−1]f,f on a ∈ Kπ,n.
Also φπ(π) acts as the Frobenius on Kun and as the identity on a ∈ Kπ,n. Note that

we extend the action of the Frobenius and φπ(u) to K̂un, each of which can only be
done continuously in one way sinceKun is dense in its completion. From here, we have

φπ(ν)(θ(a)) = φπ(π)φπ(u)(θ(a)) = φπ(π)θ(φπ(u)a)

where the last equality holds since φπ(u) acts as the identity on Kun and hence on its
completion which is where θ has its coefficients. Continuing, we obtain

φπ(π)θ([u−1]f,f (a)) = θϕ([u−1]f,f (a)) = θ ◦ [u]f,f ◦ [u−1]f,f (a) = θ(a)

Since ϕ fixes [u−1]f,f (a): [u−1]f,f has coefficients in OK and a ∈ Kπ,n. We have thus
shown that φπ(ν) = φν(ν) yield the same action on Kν ·Kun as desired. ♣
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5 Ramification Groups and a proof that Kun ·Kπ =

Kab

Before we can reasonably say that φπ as constructed is the Artin map we need to prove
that Kπ · Kun is actually the maximal abelian extension of K, Kab. Note that one
inclusion is clear: Kπ ·Kun ⊂ Kab because Kπ ∩Kun = K so that Gal(Kπ ·Kun|K) ∼=
Gal(Kπ|K)| × Gal(Kun|K) and hence is abelian. The other inclusion is much more
difficult and we will prove it now. We begin with an analysis of the ramification groups
of Kπ,n.

Definition: If L/K is any finite Galois extension with Galois group G then we define
the ith ramification group to be

Gi = {σ ∈ G| v(σ(a)− a) ≥ i+ 1 ∀a ∈ OK}

where v denotes the normalized extension of the additive valuation on K to L. By
normalized we mean that v(L) = Z. Note that G0 is simply the inertia group, i.e.
those elements σ ∈ G0 that act trivially on the residue field extension corresponding
to L/K. From now onwards we will call the residue field of L, l and that of K, k. It’s
clear that we have Gi ⊂ Gi−1 and moreover that

Gi = {σ ∈ G0|v(σ(π)− π) ≥ i+ 1}

for some fixed prime element, π of L for all ı ≥ 1. This is saying that if i ≥ 1 then to
check if a field automorphism is in Gi it suffices to check two things: whether or not
it is in G0 and if it satisfies the condition for a single prime element of L instead on
all of OL. This is true because:

v(σ(uπ)− uπ) = v(σ(u)σ(π)− uπ) = v((u+ u′π)σ(π)− uπ)

which is v(σ(π) − π). So satisfying v(σ(π) − π) ≥ i + 1 for a single prime element
means it is true for all prime elements. From algebraic number theory we have that
G/G0

∼= Gal(l|k). In what follows π, and Π will denote prime elements of K and L
respectively. Consider the following

Lemma 5.1. Then there are injections G0/G1 → l∗ and Gi/Gi+1 → l (i ≥ 1) where

the first map is given by σ 7→ σ(Π)
Π

mod Π and the second by σ 7→ σ(Π)−Π
Πi+1 mod Π.

Proof: First we need to see the maps are well defined i.e. that if σ ∈ G1 then
σ(Π)

Π
≡ 1 in l∗ but since Π2 divides σ(Π) − Π. Similarly if σ ∈ Gi+1 then σ(Π)

Πi+1 ≡ Π
Πi+1

because σ(Π)−Π is divisible by Πi+2. That the first map is a homomorphism follows
since we have:

σ ◦ τ(Π)

Π
=
σ ◦ τ(Π)

Π
· τ(Π)

τ(Π)
=
σ(τ(Π)

τ(Π)
· τ(Π)

Π

and the first term is simply σ(Π
)

Π because τ(Π) = uΠ for some u ∈ O∗L and σG0 acts
trivially on u modulo Π.

That the second map is a homomorphism is similar:

σ ◦ τ 7→ σ(τ(Π))− Π

Πi+1
=
σ(τ(Π))− τ(Π) + τ(Π)− Π

Πi+1
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which is equal to the sum of the images of σ and τ since τ(Π)
Π

= 1 mod (Π). ♣
Recall that |k| = q. From this we obtain two facts, namely that |G0 : G1| divides
q − 1 and for i ≥ 1 |Gi : Gi−1| divides q. One can also see that for a sufficiently
large i, Gi will be the one element group. This follows from the finiteness of G0: we
simply choose a prime element Π of L and note that a nonidentity element σ ∈ G0

cannot fix some prime element Π. If it did then it would fix every unit as well and
hence all of OL and L. Thus for each σ ∈ G0 there is a nσ such that σ(Π)− Π is not
in (Π)nσ . If i denotes the largest of the nσ plus one, then it is easy to see that Gi = {1}.

To better understand the ramification groups of Kπ,n it will help to discuss the well
understood unit groups of OK then to show that, under a certain isomorphism, the
two objects are related.

Definition 5.2. Let π be a prime element of OK then set U (0) = O∗K and for all i ≥ 1
put U (i) = 1 + (π)i. U (i) is called the ith unit group of OK .

We have a filtration:

0 = U (n)/U (n) ⊂ U (n−1)/U (n) ⊂ .... ⊂ U (0)/U (n)

Remarks: Recall in the previous chapter that we proved Kπ,n was an OK mod-
ule isomorphic to OK/(πn). Moreover we showed that because the Galois group
Gal(Kpi,n/K) induced OK-module isomorphisms that it could be embedded into

EndOK (OK/(π)n) = OK/(π)n.

Then using order considerations we proved that this map actually yields the isomor-
phism

AutOK (OK/(π)n) = (OK/(π)n)∗ ∼= Gal(Kπ,n/K).

Note that we also have the map O∗K/U (n) → AutOK (OK/(π)n) ⊂ EndOK (OK/(π)n)
sending u 7→ [a 7→ ua]. It is easy to see that this is in fact a well defined map of
groups. That it is injective is not difficult either: u ∈ OK will fix OK/(π)n if and only
if we have u · 1 − 1 ≡ 0 or when u − 1 ∈ (πn) i.e. u ∈ U (n). This means we have an
injective map O∗K/U (n) → AutOK (OK/(π)n) ∼= Gal(Kπ,n/K) but a quick glance at the
U (i) show that they both have the same order. Thus we get

O∗K/U (n) ∼= AutOK (OK/(π)n) ∼= Gal(Kπ,n/K)

Now we can state the precise relationship between the unit groups of K∗ and the
ramification groups of Kπ,n.

Proposition 5.3. Under the above isomorphism O∗K/U (n) ∼= GKπ,n|K the restriction
to U (i)/U (n) induces the isomorphisms U (i)/U (n) ∼= Gqi−1.

Proof: As in the previous chapter, for simplicity we choose f(X) = Xq +πX ∈ Fπ.
Since Kπ,n is totally ramified the Galois action fixes every element in l = k, thus
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G0 = G. The isomorphism above can be rewritten as U (0)/U (n) ∼= G0. Now we work
with the case when i ≥ 1 and suppose u ∈ U (i) − U (i+1) so that u = 1 + vπi where v
is a unit in OK . Recall that we constructed a sequence of fields

K ⊂ K[a1] ⊂ K[a2] ⊂ ... ⊂ K[an] = Kπ,n

where a1 is a root of f , a2 a root of f − a2 and in general ai a root of f − ai−1. In this
way ai is a root of f (i) and f(ai) = ai−1. Thus for u = 1 + vπi we have

u · an = [u]f,f (an) = [1 + vπi]f,f (an) = [1]f,f (an) + [v] ◦ [π]if,f (an)

which is
an + [v]f,f (f

(i)(an))) = an + [v]f,f (an−i)

but

[v](an−i) = v(an−i) + v2(an−i)
2 + v3(an−i)

3 + ... = an−i(v + v2(an−i) + v3(an−i)
2 + ...)

where the term in brackets is a unit since v ∈ OK is. In other words [u]f,f (an) =
an + v′an−i for some unit v′ ∈ O∗K . We also have:

ai = f(ai+1) = π(ai+1) + aqi+1 = aqi+1(
π

aq−1
i+1

+ 1) = aqi+1(v′′)

where v′′ is a unit since π

aq−1
i+1

has absolute value strictly less than one. In other words the

valuation of π is strictly larger than that of aq−1
i+1 since i ≥ 1 and v(π) = qi−1(q−1)v(ai)

where v is the valuation on K extended to Kπ,n. Thus we see that an−i = an−i+1v
′′′ =

aqn−i+2v
′′′′ · v′′′ = ... = aq

i

n v0 where v0 is some unit in OKπ,n . We’ve shown that

u · an − an = [u]f,f (an)− an = aq
i

n v
′
0

for some unit v0 so [u]f,f ∈ Gqi−1 but is not in Gqi . Let σ ∈ Gq−1 be the image of
some u ∈ U (0)/U (n) then we know ordL(σ(Π)−Π) ≥ q. In other words [u]f,f (Π)−Π =
uΠ + (Σ∞i=2uiΠ

i) − Π = 0 = uΠ − Π mod (Π)2 so that u − 1 = kΠ ∈ (Π) = mL but
u − 1 ∈ OK as well so u − 1 ∈ mK i.e. u ∈ U (1). So far we’ve shown that U (1) maps
onto Gq−1 and that U (0) maps onto G0. The discussion above shows that for i ≥ 1 if
x ∈ U (i)−U (i+1) then its image lies in Gqi−1 but not in Gqi . So let σ ∈ Gq2−1 then we
know it is the image of some u ∈ U (1), if u isn’t in U (2) then its image lies in Gq−1 but
not in Gq. However this is impossible since its image is in Gq2−1 ⊂ Gq. This means
u ∈ U (2) and that it maps onto Gq2−1. The exact same proof works for the rest of the
i. ♣

Corollary 5.4. : Consider the extension Kπ,n of K, then a complete list of distinct
ramification groups are as follows:

G0 = G

Gq−1 = Gq−2 = ... = G1

Gq2−1 = Gq2−2 = .... = Gq

...

Gqn−1 = {1}
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Proof: In each of the rows above we have a line of inclusions like

Gq−1 ⊂ Gq−2 ⊂ ... ⊂ G1

Let x ∈ G1 so that it is the image of some u ∈ U (0) where [u]f,f (Π)−Π ≡ 0 mod (Π)2.
But [u]f,f (Π)−Π = uΠ + (Σ∞i=2uiΠ

i)−Π ≡ uΠ−Π mod (Π)2 so that uΠ−Π = kΠ2

or u − 1 = kΠ ∈ mL ∩ OK = mK because u − 1 ∈ K. This implies u ∈ U (1) but we
know from above that U (1) maps onto Gq−1 so that x ∈ Gq−1 and the inclusions above
all become equalities. Now let σ ∈ Gq then since Gq ⊂ Gq−1 and U (1) maps onto the
latter we know there is a u ∈ U (1) such that u 7→ σ. Moreover if u ∈ U (1) − U (2) then
the proof of the above theorem shows that u 7→ σ ∈ Gq−1 − Gq but this is contrary
to our assumption that σ ∈ Gq, therefore u ∈ U (2). However, the above theorem tells
us that U (2) maps onto Gq2−1 so that σ ∈ Gq2−1 i.e. Gq ⊂ Gq2−1 and we have the
equalities:

Gq2−1 = Gq2−2 = .... = Gq

The remaining i < n are proved in the exact same way. The fact that Gqn−1 is the
trivial group follows because we know by the previous theorem that the trivial group
U (n)/U (n) maps onto it. ♣

Corollary 5.5. Consider the extension Kπ,n of K, then for each i ≥ 0 we have

U (i)/U (i+1) ∼= Gqi−1/Gqi

In particular |G0 : G1| = q − 1 and |Gqi−1 : Gqi | = q for i ≥ 1.

Proof: We have the surjective map U (0)/U (n) → G0 → G0/G1 and by the proof of
the theorem above we know the kernel is exactly U (1)/U (n). Similarly for each i ≥ 1
we have the surjective map U (i)/U (n) → Gqi−1 → Gqi−1/Gqi and by the calculation in
the proof of the theorem above we see that the kernel is exactly U (i+1). The result
follows. ♣

We now define a so-called upper numbering on ramification groups since they will
be convenient when passing to quotients.

Definition 5.6. Let L be a finite Galois extension of a local field K with Galois group
G. We extend the definition of a ramification group to any real number r ≥ −1 we
extend the definition of a ramification group to

Gr = Gi

where i is the least integer greater than or equal to r. Let ϕ : R≥0 → R be the unique
continuous piecewise function with ϕ(0) = 0 and ϕ′(u) = 1

|G0:Gu| , ϕ is called the Hasse-

Herbrand function of the extension L/K. Finally, we define Gv = Gu when ϕ(u) = v.
We shall call these groups the upper ramification groups. It is useful to note that ϕ
is strictly increasing and continuous and therefore a homeomorphism from [0,∞) to
itself. This forces the existence of an inverse which we denote ψ.
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Example 5.7. It turns out that the knowledge of the upper ramification groups is
equivalent to that of the lower ramification groups. The example we need is that of
Kπ,n, we know by the previous result that |G0 : G1| = q − 1 and G1 = ... = Gq−1

so since ϕ(0) = 0 we see that ϕ′(u) = 1
q−1

for 0 < u < q − 1. This tells us that the

graph of ϕ on (0, q − 1) is the line connecting (0, 0) to (q − 1, 1). By definition of the
upper numbering we see that G1 = Gq−1. On the interval (q− 1, q2− 1) we know that
ϕ′(u) = 1

|G0:Gu| = 1
|G0:Gq2−1|

because Gq = ... = Gq2−1, and we know this value is simply
1

|G0:G1||G1:Gq | = 1
q(q−1)

. A simple calculation shows that the graph of ϕ on the interval

(q−1, q2−1) is the line segment connecting (q−1, 1) and (q2−1, 2). It is not difficult
to see that if we go on in this manner that the graph of ϕ on (qi−1, qi+1−1) is the line
segment connecting (qi − 1, i) to (qi+1 − 1, i+ 1). In this way we see that Gi = Gqi−1

for all i. Thus for Kπ,n we have that |Gi : Gi+1| is equal to q or q − 1 and that Gn is
the trivial group. Note that the Gi’s encode all the information given by the Gqi−1.

We now come to an important but highly technical theorem that will allow us
to define the upper ramification groups of infinite extensions. The proof will follow
the exposition given in [6] but we’ll simplify it somewhat by supposing all extensions
involved are abelian and totally ramified since this is the only case with which we are
concerned.

Theorem 5.8. Consider the abelian totally ramified Galois extensions K ⊂ L ⊂ M
with G = Gal(M/K) and Gal(M/L) = H / G so that we have G/H ∼= Gal(L/K).
Then the ramification group of G/H (with the upper numbering) is equal to the image
of the upper ramification group of G. More precisely for any v we have (G/H)v =
GvH/H.

The proof will proceed in steps, it will be convenient to introduce the following:

Definition 5.9. : Let L/K be an extension of local fields with Galois group G and Π
a prime element of L then define iG : G→ R to be σ 7→ vL(σ(Π)− Π) where vL here
is the normalized extension of vK so that vL(L) = Z.

Now suppose that all our extensions are totally ramified and abelian. We have
iG(σ) ≥ i+ 1 exactly when σ ∈ Gi. Moreover iG(στ) ≥ min(iG(σ), iG(τ)). To see this
last fact suppose that iG(σ) = k ≥ l = iG(τ) so that Πk divides σ(τ−1(Π)) − τ−1(π)
so that it must also divide τ(σ(τ−1(Π)) − τ(Π)) = τσ(τ−1(Π)) − Π so Πl divides it
as well. But Πl divides Π − τ(Π) and so it divides their sum as well. There sum is
τσ(τ−1(Π)− τ−1(Π), this means iG(τσ) ≥ l as desired. Note that this proof shows we
have iG(στ) = min(iG(σ), iG(τ)) if l < k. The next two propositions describe how the
function iG behaves when restricted to subgroups or passing to quotients.

Proposition 5.10. If H /G = Gal(L/K) with K ′ the fixed field of H then for every
σ ∈ H we have iG(σ) = iH(σ).

Proof: This follows trivially since the valuation of K extends uniquely to K ′ and
so the valuation of K ′ extended (and normalized) to L is exactly the normalization of
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the extension of the original valuation on K. Thus for σ ∈ H: ordL(σ(Π)−Π) = j+ 1
exactly when σ ∈ Hj or σ ∈ Gj, in other words Gj ∩H = Hj. ♣

Proposition 5.11. If H /G = Gal(L/K) with K ′ the fixed field of H then for every
σ ∈ G/H = Gal(K ′/K) we have

iG/H(σ) =
1

|L : K|
Στ 7→σiG(τ)

where τ runs through the possible coset representatives of σ in G.

Proof: Note that here |L : K ′| = e is the ramification index since our extensions
are all totally ramified. If σ is the identity of G then we know that both sides equal
vL(0) = v′K(0) = ∞ so we suppose σ 6= 1. Let ΠL and ΠK′ denote prime elements
of L and K ′ respectively. Then because our valuations are all normalized we see that
iG/H(σ)|L : K ′| = vL(σ(ΠK′) − ΠK′) and iG(τ) = vL(τ(ΠL) − ΠL). Fixing some
representative τ ∈ G representing the coset corresponding to σ we know all others will
be of the form τh for h ∈ H. Thus it suffices to show that the two elements

a = τ(ΠK′)− ΠK′

and
b = Πh∈H(τh(ΠL)− ΠL)

generate the same ideal in OL since that would mean they have the same valuation vL
and then using the fact that the valuation is a homomorphism to Z we would get

σ =
1

|L : K ′|
iG/H

∑
τ 7→σ

iG(τ)

as desired.
Now let f ∈ OK′ [X] be the minimal polynomial for ΠL over K. Then we have f =

Πh∈H(X−h(ΠL)) and if we apply τ to its coefficients we get τ(f) = Πh∈H(X−τh(ΠL).
Now because OK [ΠK′ ] = OK′ its clear that a = τ(ΠK′)− ΠK′ divides the coefficients
of τ(f) − f . To see this write

∑
aiX

i = f(X) and note that ai =
∑
biΠK′ where

bi ∈ OK . Then τ(ai) − ai =
∑
bj(τ(ΠK′)

j − Πj
K′) which is easily seen to be divisible

by (τ(ΠK′)− ΠK′) = a. However, this means b = τ(f)(ΠL)− f(ΠL) is divisible by a.
Now we need to show that b divides a. Using the fact that OL/OK′ is monogenic we
can write ΠK′ as a polynomial in ΠL over K, i.e. g(ΠL) = ΠK′ with g(X) ∈ OK . Then
g(X)− ΠK′ has ΠL as a root and is therefore divisible by its minimal polynomial, f :
g(X)− ΠK′ = f(X)h(X). Then applying τ to both sides of this equation we get

g(X)− τ(ΠK′) = τ(f)(X)τ(h(X))

and substituting ΠL yields

ΠK′ − τ(ΠK′) = τ(f)(ΠL)τh(ΠL) = bτ(h(ΠL))

showing that b divides a. ♣
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Lemma 5.12. We have ϕ(u) = −1 + 1
|G0|

∑
s∈G min(iG(s), u+ 1)

Proof: It’s easy to see that the right hand side is a piecewise linear continuous
function. It also vanishes at zero because all the summands are zero when s ∈ G−G0

and is 1 at each s ∈ G0. This is because at those elements iG(s) ≥ 1 and u+ 1 = 1 so
their minimum is 1 and at elements not in G0 we know ordL(s(Π)−Π) = 0. If we let
m be an integer then for m < u < m + 1 we see that the sum on the right simplifies
into two parts: a constant part for each group element not in Gm+1 and a linear term
in u for each group element in Gm+1. This means the derivative of the right hand side
is 1
|G0:Gm+1| . Since this is the derivative of ϕ at such u as well we see that they must

actually be same functions. ♣

Lemma 5.13. Choose σ ∈ G/H and let j(σ) denote the upper bound of the integers
iG(s) for any s in the preimage of σ in the natural map G→ G/H. Then

iG/H(σ)− 1 = ϕL/K′(j(σ)− 1)

Proof: : Let s ∈ G be an element that represents the coset σ with the property that
j(σ) = iG(s) = m. We know the other preimages of σ are of the form sh for h ∈ H.
Suppose that h ∈ Hm−1, then iG(h) ≥ m so that iG(sh) ≥ m and therefore equal to
it since m is the maximum value it can attain. If h isn’t in Hm−1 then iG(h) < m
and therefore iG(sh) = iG(h) so that we have iG(sh) = min(iG(h),m) then applying
lemma 5.12 we get

iG/H(σ) =
1

eL/K′

∑
h∈H

min(iG(h),m)

Recall that iG(h) = iH(h) and that our extensions are totally ramified so that eL/K′ =
|H0| = |H| = |L : K ′|. Now apply the last lemma to the extension L/K ′ to get

ϕ(m− 1) = −1 +
1

|H0|
∑
h∈H

min(iH(s),m) = iG/H(σ)− 1

as desired. ♣

Lemma 5.14. Let ϕ be as above then GuH/H = (G/H)ϕL/K′ (u)

Proof: If σ ∈ GuH/H then this means its the image of some τ ∈ Gu i.e. that
j(σ) − 1 ≥ u. Now since ϕL/K′ is a strictly increasing function this is equivalent to
ϕL/K′(j(σ) − 1) ≥ ϕL/K′(u) but by the previous lemma this implies iG/H(σ) − 1 ≥
ϕL/K′(u) which means σ ∈ (G/H)ϕL/K′ (u). The implications just stated are reversible
and therefore equality holds. ♣

Lemma 5.15. Let ψ be the inverse of ϕ, then both functions satisfy the following
transitivity relations for a tower of extensions K ⊂ K ′ ⊂ L

ϕL/K = ϕK′/K ◦ ϕL/K′

and
ψL/K = ψL/K′ ◦ ψK′/K
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Proof: We begin with with the first assertion: it is clear that both sides vanish at
0 and are both piecewise linear continuous functions therefore it remains to show they
have the same derivative everywhere if the derivative exists. Suppose u > −1 is not
an integer then using the chain rule the derivative of the composition ϕK′/K ◦ϕL/K′ is
simply

ϕ′K′/K(ϕL/K′(u)) · ϕ′L/K′(u)

And we know from the proof of lemma 5.12 that these derivatives are related to the
cardinalities of certain ramification groups, more precisely, the above is equal to

|(G/H)ϕL/K′ (u)|
|G/H|

· |Hu|
|H|

Referring to the previous lemma its easy to see this quantity is equal to |Gu|
|L:K| since our

extensions are totally ramified. But this is exactly equal to the derivative of ϕ at u.
The transitivity formula for the inverse ψ now follows easily. ♣
We are finally in a position to prove theorem 5.8. It will allow us to define ramifica-
tion groups for the infinite extensions Kπ, and more generally, totally ramified abelian
extensions L/K.
Proof: (of Theorem 5.8) By definition we have (G/H)v = (G/H)u with u = ψK′/K(v)
and by lemma 5.14 we know that (G/H)u = GwH/H where w = ψL/K′(u) = ψL/K′ ◦
ψK′/K(v) = ψL/K(v) by the transitivity above. Thus Gw = Gv and we have (G/H)v =
GvH/H and the theorem holds. ♣
The above theorem will allow us to define ramification groups (via an upper number-
ing) of infinite totally ramified abelian extensions by doing so at each finite step. More
precisely,

Definition 5.16. Let L be the totally ramified infinite extension defined in the pre-
vious sections and suppose that G = Gal(L/K). Then define Gv to be the set of
elements σ whose image is in (G/H)v for every open normal subgroup H of G. By
infinite Galois theory this is equivalent to saying that σ is in Gal(L′/K)v for every
finite Galois subextension L′ of L/K

Recall the description above of the the upper ramification groups of Kπ,n : Gi =
Gqi−1 and as such |Gi : Gi+1| is equal to either q or q− 1. Recall that for an arbitrary
finite Galois extension L/K we had the injections G0/G1 ↪→ l∗ and Gi/Gi+1 ↪→ l for
i ≥ 1: this tells us that |G0 : G1||q − 1 and |Gi : Gi+1||q, and in particular that
|G0 : G1| ≤ q − 1 and |Gi : Gi+1| ≤ q. We will now need a result that we shall not
prove as its proof is highly technical and outside the framework of the paper.

Theorem 5.17. (Hasse-Arf) If L/K is abelian and if the Gu, u ∈ R stand for the
ramification groups of Gal(L/K) then whenever Gu 6= Gu+1, ϕ(u) must be an integer.

Proof: [6] Chapter 5, Section 7. ♣
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Corollary 5.18. Let L/K be any abelian extension with Galois group G. Then there
is a subsequence of the natural numbers {ij}j∈Z such that

· · ·Gil ( Gil−1 ( · · ·Gi2 ( Gi1 ( Gi0

form a complete list of distinct upper ramification groups. Also |Gik : Gij+1 | divides q
or q − 1 and Gn = {1} for some n ∈ Z.

Proof: For the first statement let

G0 = ... = Gj0 6= Gj0+1 = ...Gj1 6= Gj1+1 = ... =

be a complete list of the distinct ramification groups with the jumps occuring at the
subsequence {jk}k∈N. Then by the Hasse-Arf theorem ϕ(jk) = ik ∈ Z and so

Gi0 ) Gi1 ) Gi2 ) Gi3 ) ...

forms a complete list of distinct upper ramification groups. Note that |Gik : Gij+1| =
|Gjk : Gjk+1| and by the remark above we know this divides either q or q − 1. Simi-
larly since Gn is the trivial group for a large enough n by definition Gϕ(n) will be too,
choosing the n so that it is the smallest integer with this property guarantees, by the
Hasse-Arf theorem, that ϕ(n) ∈ Z. ♣

Now consider the case when our totally ramified abelian extension, K ′/K, is infi-
nite. Let G be the Galois group this infinite extension. For convenience shorten
Gal(L/K) = GL/K . Then, consider Gij/Gij+1 . It is easy to see this is simply the in-

verse limit of the groups G
ij
L/K/G

ij+1

L/K as L/K varies over the finite Galois subextensions

L/K. Since K ′/K is totally ramified they have the same residue fields. By the remark
above this says that each group in the limit divides q = |k| or q−1 (q if j ≥ 1 and q−1
otherwise) so the maximum cardinality must be attained at some finite level, say at

L/K. But then for all L′/L/K the natural projections G
ij
L′/K/G

ij+1

L′/K → G
ij
L/K/G

ij+1

L/K

must be isomorphisms, being surjective maps between two groups of the same car-
dinality. Thus the inverse limit will simply be G

ij
L/K/G

ij+1

L/K and so we see that the

above statement applies to infinite extensions as well i.e. that |Gij : Gij+1
| ≤ q. Now

suppose that σ ∈ Gn for every natural number n and pick any open normal subgroup
N / G. Then by the previous corollary there exists an nN such that (G/N)nN = {1}
but σ ∈ GnN so σ|K′N = 1 i.e. σ 7→ σ|

K′N∈N under the natural map G→ G/N . Since
N was an arbitrary open normal subgroup and

⋂
N = {1} is the trivial subgroup of

G we get that σ is the identity of G. We have shown that
⋂
n∈NG

n = {1}.
We can finally proceed with a few lemmas which will culminate in main theorem of
this chapter.

Theorem 5.19. Let π be a prime element of K and suppose Kπ is the corresponding
Lubin-Tate extension, then

Kun ·Kπ = Kab

Lemma 5.20. Let L be any abelian totally ramified extension containing Kπ, then
L = Kπ i.e. the Lubin-tate extension is a maximal totally ramified extension.
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Proof: Put G = Gal(L/K), H = Gal(L/Kπ) so that G/H = Gal(Kπ/K). Con-
sider the following commutative diagram of abelian groups:

1

��

1

��

1

��
1 // Gn+1 ∩H

��

// Gn+1

��

// (G/H)n+1

��

// 1

1 // Gn ∩H

��

// Gn

��

// (G/H)n

��

// 1

1 // Gn∩H
Gn+1∩H

��

// Gn
Gn+1

��

// (G/H)n

(G/H)n+1

��

// 1

1 1 1

It’s clear that the columns are exact, that the first two rows are exact follows
because of theorem 5.8 i.e. that (G/H)v = GvH. A diagram chasing argument easily
shows that the third row must be exact. This tells us that

|Gn : Gn+1| = |(G/H)n : (G/H)n+1||Gn ∩H : Gn+1 ∩H|

but the left hand side is less than q and |(G/H)n : (G/H)n+1| = q or q − 1. This tells
us that |Gn ∩H : Gn+1 ∩H| must equal one i.e. Gn ∩H = Gn+1 ∩H for arbitrary n.
But for n = 0 we have G0 = G0 = G (because L is totally ramified) so

Gn ∩H = Gn−1 ∩H = .. = G0 ∩H = H

so H ⊂ Gn for every n. Since
⋂
Gn = {1} we see that H is trivial and by infinite

Galois theory L = Kπ. ♣

Lemma 5.21. Any finite unramified extension of Kπ is contained in Kπ ·Kun.

Proof: Suppose that L is some unramified extension of Kπ =
⋃∞
i=1 Kπ,n, then L is

an unramified extension of Kπ,n for some n. Consider the Galois group G of Kπ,nL/K,
we know the fixed field of the inertia subgroup G0 ≤ G is the maximal unramified
extension contained in Kπ,nL, call it L′. Its clear that L′Kπ,n ⊂ LKπ,n moreover that
L′Kπ,n is an unramified extension of Kπ,n. This follows because

|L′Kπ,n : Kπ,n| = |L′ : Kπ,n ∩ L′| = |L′ : K|

since Kπ,n ∩ L′ = K (since the only totally ramified unramified extension of K is K).
Also the residue field of L′Kπ,n contains that of L′ and the residue field of Kπ,n is
the same as that of K. So the degree of the residue field extension corresponding
to L′Kπ,n/Kπ,n is at least the degree of the residue field extension corresponding to
L′/K. But this latter extension is unramified so for it the degree of the residue field
extension is |L′ : K| = |L′Kπ,n : Kπ,n|. This means the degree of the residue field
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extension of L′Kπ,n/Kπ,n must equal |L′Kπ,n : Kπ,n| since it is also bounded above
by it (by Proposition 1.10). Its residue field extension is equal to that of LKπ,n. But
since they are both unramified we see that they must be equal (Proposition 1.23). This
shows that LKπ,n ⊂ Kun ·Kπ since Kun denotes the maximal unramified extension K
i.e. the union of all unramified extensions of K. ♣

Lemma 5.22. Suppose that L is a finite abelian extension of Kπ whose Galois group
Gal(L/Kπ) has exponent m and let (Kπ)m be the unramified extension of Kπ of degree
m. Then there is a totally ramified abelian extension Lt of Kπ with the property that
Lt · (Kπ)m = L · (Kπ)m. ♣

Proof: Note that for any σ ∈ Gal(L(Kπ)m) we have that σm is the identity since
by hypothesis its restriction to L is the identity and its restriction to (Kπ) is simply
σ|m(Kπ)m

. This is the identity because the unramified extension of degree m of Kπ has a
cyclic Galois group of degree m which is obviously of exponent m. We’ve shown that
Gal(L(Kπ)m) is a group of exponent m. Let σ ∈ Gal(L(Kπ)m) denote an element
whose restriction to (Kπ)m is the Frobenius automorphism. This element has order at
least m (since the Frobenius does) and at most m since it is in a group of exponent
n. Now consider the subgroup 〈σ〉 ≤ Gal(L(Kπ)m). We have the homomorphism
|(Kπ)m : Gal(L(Kπ)m)→ Gal((Kπ)m/Kπ) =< σ so clearly 〈σ〉 is an image of the group
Gal(L(Kπ)m). The subgroup fixing (Kπ)m is therefore a normal subgroup compli-
menting 〈σ〉 in G, call this subgroup H. Its clear that 〈σ〉 ∩H intersect trivially since
no power of the Frobenius fixes (Kπ)m unless it is the identity. Since Gal(L(Kπ)m) is
abelian (the composition of abelian extensions is abelian) we see that 〈σ〉 is normal
too and that we can write Gal(L(Kπ)m) ∼= 〈σ〉 ×H. Put Lt = L〈σ〉, we will show Lt
is totally ramified. If it wasn’t then for some n which divides m there would be an
unramified extension (Kπ)n ⊂ Lt. Its necessary that n divides m because Gal(Lt/Kπ)
is of exponent m. By the 1-1 correspondence between residue field extensions and
unramified extensions we see that (Kπ))n) ⊂ (Kπ)m. This implies (Kπ)n ⊂ Lt∩ (Kπ)m
and therefore is fixed by both 〈σ〉 and H so all of Gal(L(Kπ)m). Galois theory now
tells us that (Kπ)n = Kπ or that n = 1 and Lt is in fact totally ramified. Note that if
an element τ ∈ Gal(L(Kπ)m) fixes Lt(Kπ)m then it is in H ∩ 〈σ〉 = {1} and therefore
Galois theory says Lt(Kπ)m = L(Kπ)m as desired. ♣

Proof: (that Kπ · Kun = Kab): To show that Kab = Kun · Kπ we show that any
finite abelian extension L of K is contained in Kun · Kπ. Consider the extension
LKπ/Kπ, it has a maximal unramified part, say (Kπ)m and the Lemma above says
that there is a totally ramified extension Lt of Kπ with Lt · (Kπ)m = L · (Kπ)m. In
particular L ⊂ Lt · (Kπ)m. Now Lt/K is itself a totally ramified extension because it
is a totally ramified extension of Kπ, another totally ramified extension of K. To see
this clearly just note that the residue fields of Lt, Kπ and K must all be the same so
that no nontrivial unramified extension can occur in Lt/K. Thus by lemma 5.20 we
see that Lt ⊂ Kπ and lemma 5.21 tells us that (Kπ)m ⊂ Kπ ·Kun. All in all we get
that L ⊂ Lt · (Kπ)m ⊂ Kπ ·Kun completing the proof. ♣
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6 Norm Groups

Thus far we have constructed a φ : K∗ → Gal(Kab|K) satisfying the first property of
the Artin map, namely that φ(π) acts as the Frobenius automorphism on Kun for any
prime element π inK∗. It remains to check that kerφ|L = NL/K and that this induces
an isomorphism

K∗/NL/K(L∗) ∼= Gal(L/K)

We begin by determining the norm groups of the Kπ,n. From here onwards ϕ will
denote the Frobenius.

Theorem 6.1. Consider the extension Kπ,n/K, then its norm group, NKπ,n/K(Kπ,n) =
πZ · (1 + (π)n) where πZ denotes the cyclic subgroup of K∗ generated by π, and, as
usual, (π) is the maximal ideal in OK .

This is a nontrivial proof and before we can attack it we will need some preliminary
results. The first is adapted from [1] and [5].

Proposition 6.2. If π′ = uπ are two prime elements of K∗ with u ∈ 1 + (π)n then
Kπ′,n = Kπ,n.

Proof: We shall proceed in steps. Step one will be to show that there exists a unit
µ ∈ OK̄ with µϕ

µ
= u. By hypothesis we have u = 1 + πna for some a ∈ OKπ,n and we

are looking for a µ = 1 +πnb for some algebraic integer b. We will proceed inductively
by showing the equation

µϕ

µ
=

1 + (πnb)ϕ

1 + πnb

can be solved modulo πn+1 for some b. We know that

1

1 + πnb
= 1− πnb+ (πnb)2 + ...

since mod πk for all k ≥ 0 they are the same. Note then that modulo πn+1 combining
the two equations yields

µϕ

µ
≡ 1 + (πnb)ϕ − πnb mod πn+1

and we want this to equal u = 1 + πna i.e. (πnb)ϕ − πnb ≡ u − 1 = πna mod πn+1.
Putting w = πnϕ

πn
and dividing out by πn this amounts to finding a b satisfying the

equation wbϕ− b+a modulo (π). Note however that modulo (π) the Frobenius acts as
taking the q-th power where, as usual, q denotes the order of the base residue field so
we need b to be a root of the polynomial wxq−x+ a modulo (π). Since w is a unit its
roots will be algebraic integers, so we can find a b modulo (π) satisfying this equation.
If we continue in this way we can find what b should be modulo π2, then modulo π3

and so on. By induction there is an algebraic integer µ with the desired property.
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We will now construct a homomorphism ρ : Ff → Ff ′ where f ′ ∈ Fπ′ , f ∈ Fπ with
ρ ∈ K̄[[X]]. We want ρ to be µX modulo degree 2 terms and to have the property that
f ′ ◦ ρ = ρϕ ◦ f where ϕ is the Frobenius automorphism. Here ρϕ is the power series
obtained by applying ϕ to the coefficients of ρ, here we can extend ϕ to all of K̄ so
that it acts trivially on Kπ. This can be done because Kπ ∩Kun = K. To obtain such
a power series ρ we appeal to a Lemma that will follow. Note that any such power
series will be unique. To check that ρ as defined is a homomorphism Ff → Ff ′ we will
make use of the uniqueness statement in the Lemma to follow. To use the uniqueness
note that ρ ◦Ff ≡ Ff ′ ◦ ρ = µ(X +Y ) modulo degree two terms and the following two
facts

f ′ ◦ (ρ ◦ Ff ) = ρϕ ◦ f ◦ Ff = ρϕ ◦ Fϕ
f ◦ f = (ρ ◦ Ff )ϕ ◦ f

since Ff ∈ OK and so Fϕ
f = Ff . Also that

f ′ ◦ (Ff ′ ◦ ρ) = Fϕ
f ′ ◦ f

′ ◦ ρ = Fϕ
f ′ ◦ ρ

ϕ ◦ f ′ = (Ff ′ ◦ ρ)ϕ ◦ f ′

so that uniqueness applies to get ρ ◦ Ff = Ff ′ ◦ ρ. This means that ρ induces a group

homomorphism mf

K̄,n
→ mf ′

K̄,n
, that it is an isomorphism follows since the coefficient

of its degree one term, µ, is a unit. Thus given a′ ∈ mf ′

K̄,n
there exists a a ∈ mf

K̄,n
with

ρ(a) = a′. Recall that [π′]f ′,f ′ = f ′ so we have

ρ ◦ [u]f,f ◦ [π]f,f = ρ ◦ [π′]f,f = [π′]f ′,f ′ ◦ ρ = f ′ ◦ ρ = ρϕ ◦ f = ρϕ ◦ [π]f,f

because ρ is a OK-module homomorphism from Ff → Ff ′ . An easy induction argu-
ment shows that this implies the coefficients of ρ◦ [u]f,f are equal to that of ρϕ i.e that
they are the same. This implies that ρϕ(a) = ρ([u]f,f (a)) = ρ(a). This is because [u]f,f
acts trivially on a ∈ mf

K̄,n
: since u ∈ 1+(π)n and we have Aut(mf

K̄,n
) ∼= O∗K/(1+(π)n).

Recall that ϕ acts trivially on Kπ now we denote ϕKun·Kπ,n = σ. Alternatively we can
define σ to be the unique extension of the Frobenius to Kun ·Kπ,n that acts as the iden-
tity on Kπ,n. This means the fixed set of the subgroup generated by σ is exactly Kπ,n,

now because a ∈ mf

K̄,n
is fixed by the Frobenius. We see that ρϕ(a) = (ρ(a))σ = ρ(a),

in other words ρ(a) = a′ is fixed by σ thereby implying that mf ′

K̄,n
⊂ Kπ,n. This shows

Kπ′,n ⊂ Kπ,n and since they have the same degrees they must be equal. ♣

Lemma 6.3. Let π and π′ be two prime elements in OK and f, f ′ ∈ OK̄ [[X]] be two
power series whose coefficient modulo degree two terms are π and π′ respectively. Also
assume f ≡ f ′ ≡ Xq modulo the unique maximal ideal in OK̄ and that L(X1, ..., Xm)
is some linear form in m variables satisfying

πL(X1, ..., Xm) = π′Lϕ(X1, ..., Xm)

then there exists a unique power series ρ ∈ OK̄ congruent to L modulo degree two
terms and that

f ◦ ρ = ρϕ ◦ f ′

Proof: [1] Proposition 3.12. ♣
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Lemma 6.4. Let g(X) be a power series in OK [[X]] whose constant term isn’t in mK .
If g satisfies g(X +Ff γ) = g(X) for all γ ∈ mf

K̄,1
then there is a unique h with h(0)

not in mK with g(X) = h ◦ f

Proof: [1] Lemma 5.6 ♣

Theorem 6.5. The norm groups ofKπ,n andKπ are πZ×(1+(π)n) and πZ respectively.

Proof: We first show that NKπ,n/K(K∗π,n) = πZ × (1 + (π)n). Theorem 3.5 shows
that π ∈ NKπ,n/K(Kπ,n) and that uπ ∈ NKuπ,n/K(Kuπ,n) for u ∈ 1 + (π)n and by
proposition 4.1 we know they are the same thing so that π, uπ ∈ NKπ,n/K(Kπ,n).
This implies u = uπ

π
is in the norm group i.e. 1 + (π)n ⊂ NKπ,n/K(Kπ,n) also that

π ∈ NKπ,n/K . Now because NKπ,n/K ≤ K∗ = πZ×OK∗ we need to show that the units
in NKπ,n/K(Kπ,n) are in 1 + (π)n. Note that the only norms which are units are the
norms of units: look at valuations at valuations and recall that the norm of an element
in a Galois extension is simply the product of all its Galois conjugates. Thus we need
to show that NKπ,n/K(OKπ,n) ⊂ 1 + (π)n.

Choose a u ∈ O∗Kπ,n and let a ∈ mf

K̄,n
− mf

K̄,n−1
so that a is a generator for the

maximal ideal in OKπ,n . Then then by proposition 1.24 OKπ,n = OK [a]. This means
that u = h(a) for some polynomial (and hence power series) h(X) ∈ OK [[X]] and
because u is a unit we know that modulo (π) u ≡ h(0) and that they cannot be
congruent to zero. This implies that the constant term of h(X) is a unit in OK and
hence invertible in OK [[X]].

Choose γ, γ′ ∈ mf

K̄,1
then by the associativity axiom satisfied by Formal groups we

have (X +Ff γ) +Ff γ
′ = X +Ff (γ +Ff γ

′). This shows that a power series of the form
h1(X) = Πγ∈mf

K̄,n

h(X +Ff γ) satisfies the identity h1(X + Ffγ) = h1(X). This is easy

to see because of the associativity law and the fact that mf

K̄,1
forms a group under

+Ff so that adding by some γ ∈ mf

K̄,1
inside just permutes the terms in the product.

By lemma 6.4 there exists a unique power series h2(X) with h1 = h2 ◦ f . We define
N(g) for some power series g ∈ OK [[X]] to be the unique power series such that

N(h) ◦ f = Πγ∈mf
K̄,1

h(X +Ff γ)

whose existence, again, is guaranteed by the previous lemma. Recall that mf

K̄,1
consists

of the roots of the polynomial f ∈ O[X] and is therefore closed under the action of
the Galois group. For any σ ∈ Gal(Kπ,n/K) this shows that for g ∈ OK [X]

(N(g) ◦ f)σ = Πγ∈mn
K̄,f
g(X +Ff γ)σ = Πγ∈mn

K̄,f
g(X +Ff γ

σ) = Πγ∈mn
K̄,f
g(X +Ff γ)

or that N(g) ◦ f is invariant under Gal(Kπ,n/K) and hence has coefficients in K.
Then, using the fact that f itself has coefficients in OK , its easy to see that N(g)
must as well. We define Nk(h) = Nk−1(N(h)) where N0(h) = h. We shall prove
some properties of this operator N . Before anything else, note that by definition
it is multiplicative. Secondly, we have N(g) ≡ g mod (π). To see this recall that
f(X) ≡ Xq modulo (π) so that N(h) ◦ f ≡ N(h) ◦ Xq modulo (π). Now because
γ ∈ mf

K̄,1
⊂ (πKπ,1) we have X +Ff γ ≡ X modulo (πKπ,1) because X +Ff γ =
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Ff (X, γ) ≡ X + γ modulo degree two terms and the γ goes to zero modulo (πKπ,1).
This means Πγ∈mK̄,1g(X +Ff γ) ≡ g(X)q ≡ g(Xq) modulo (πKπ,1). But these are all
polynomials over OK and so they must be congruent modulo (πKπ,1) ∩ Kπ,n = (π).
This tells us that N(g) ◦ Xq ≡ N(g) ◦ f ≡ g(Xq) = g ◦ Xq modulo (π). It is easy
to see this implies N(g) ≡ g modulo π as desired. This immediately implies that if
g ∈ OK [[X]]∗ then so is N(g).

Next we will show that if g ≡ 1 modulo (π)i then N(g) ≡ 1 modulo (π)i+1. Write
g = 1 + πig1 with g1 ∈ OK [X]. Then we have

N(g) ◦ f = Πγ∈mf
K̄,1

(1 + πig1(X +Ff γ)) ≡ (1 + πig1(X))q

modulo πi+1 since πi(g1(X +Ff γ) − g1(X)) ∈ (π)i+1 because, as we showed in the
previous paragraph g1(X+Ff γ) = g1(X) are congruent modulo (π). But then we have

(1 + πig1(X))q ≡ 1 + qπig1(X) + ...+ πiqg1(X)q ≡ 1

modulo (π)i+1 since each term besides the first two is a multiple of πi+1 and the second
term is in (q)(π)i which is itself in (π)i+1. Now, using multiplicativity, note that since
N(g)
g
≡ 1 modulo (π) that N2(g)

N(g)
≡ 1 modulo (π)2 i.e. that N2(g) ≡ N(g) modulo

(π)2. Proceeding in this fashion we see that in general Nk−1(h) ≡ Nk(h) modulo (π)k.
Coming back to the situation we have that N(h) is not zero modulo (π), moreover
that neither is Nn−1(h) nor Nn(h). Also we have that Nn−1(h)(0) = u1 ≡ u2 =
Nn−2(h)(0) ∈ O∗K modulo (π)n. We shall show by induction that

Nn(h) ◦ f (n) = Πβ∈mf
K̄,n

h(X +Ff β)

for n = 1 this is the definition. Our induction hypothesis will assume that the equality
holds for n−1. Let A be a set of coset representatives for the group mf

K̄,n
/mf

K̄,1
which

means every element in mf

K̄,n
can be written uniquely as a + γ for some a ∈ A and

some γ ∈ mf

K̄,1
. Then we can write

Πβ∈mf
K̄,n

h(X +Ff β) = Πβ∈AΠγ∈mf
K̄,1

h(X +Ff β +Ff γ) = Πβ∈AN(h) ◦ f(X +Ff β)

Note that f is an endomorphism of Ff which implies f(X +Ff β) = f(X) +Ff f(β)

except now f(β) ∈ mf

K̄,n−1
. In fact, it is easy to see that as β runs through A f(β)

runs through the complete list of elements in mf

K̄,n−1
. This tell us that

Πβ∈mf
K̄,n

h(X +Ff β) = Πζ∈mf
K̄,n−1

N(h)(f(X) +Ff ζ)

and by the induction hypothesis this is exactly Nn−1(h)(N(h)) ◦ f (n−1)(f(X)) =
Nn(h) ◦ f (n)(X) thereby completing the induction.

This means that u1 = Πγ∈mf
K̄,n−1

h(γ) and that u2 = Πγ∈mf
K̄,n

h(γ) so that

u2

u1

= Πγ∈mf
K̄,n
−mf

K̄,n−1

h(γ)
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Now, because mf

K̄,n
−mf

K̄,n−1
h(γ) is a complete set of Galois conjugates we see that

u2

u1
= NKπ,n/K(h(γ)) = NKπ,n/K(h(a)) = NKπ,n/K(u) is in the norm group of Kπ,n. The

fact that u1 ≡ u2 modulo (π)n tells us that NKπ,n/K(u) ∈ 1 + (π)n as claimed.
It remains to show that NKπ/K(Kπ) = πZ. However, this follows easily from the

first fact since
⋂∞
i=1 1 + (π)i = {1} and by definition the norm group of an infinite

extension is the intersection of the norm groups of the finite subextensions. This
shows that NKπ/K(K∗π) = πZ. ♣
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7 The Main Theorems of Local Class Field Theory

Now we will show that the Artin map we constructed is functorial, more precisely:

Theorem 7.1. Let L/K be a finite extension of local fields, and let φK and φL be the
respective Artin maps, then the following diagram commutes

L∗
φL−−−→ Gal(Lab/L)yNL/K y|Kab

K∗
φK−−−→ Gal(Kab/K)

Proof: Let E be a subextension of L/K i.e. K ⊂ E ⊂ L. If we show the theorem holds
for the two extensions E/K and L/E then, because the norm and restriction maps
are functorial i.e. NL/K = NE/K ◦ NL/E then the theorem holds for L/K. Setting E
equal to the fixed field of the inertia group makes L/E is totally ramified and E/K
unramified. Thus we have reduced the proof to the cases where L/K is totally ramified
and unramified. We deal with them separately.

First suppose that L/K is totally ramified. Since the prime elements of L∗ generate
L∗ we only need to show that φK(NL/K(π′)) = φL(π′)|Kab for every prime element
π′ ∈ L∗. We extend φL(π′) to an automorphism τ of K̄ = L̄, and we know that the
fixed field of τ , F , intersects Lun · Lπ′ exactly at Lπ′ . This is because the fixed field
of 〈τ〉 will have a residue field that is fixed by τ . Moreover, τ acts on the residue
field extension as the Frobenius over L. Therefore the residue field extension must be
trivial. This tells us that the fixed field,F , of τ is totally ramified and so its intersection
with Lab = Lun ·Lπ′ is a totally ramified extension containing Lπ. Lemma 5.20 implies
it is equal to Lπ. By proposition 1.30 we know that an extension is totally ramified if
and only if it contains a prime element of the ground field. By the previous result we
know that NLπ′/L

(L∗π′) = π′Z and because NF/L(F ∗) ⊂ NLπ′/L
(L∗π′) = π′Z must contain

a prime element we must have equality i.e. NF/L(F ∗) = π′Z.
Since τ extends φL(π′) we know it acts as the Frobenius automorphism on Lun

and because L/K is totally ramified (i.e. the corresponding residue field extension is
trivial) we see that φL(π′) acts as the Frobenius on Kab as well. Put σ = τ |Kab and
since it acts as the Frobenius, the following Lemma tells us that it is equal to some
φK(π) for a prime element π ∈ K∗. As in the previous paragraph the intersection of
the fixed field of φK(π) = σ and Kab is a totally ramified extension containing Kπ

and thus must be equal to Kπ. Since σ is the restriction of τ and F is the fixed field
of τ , Kπ must be contained in F . Now because F/L and L/K are totally ramified
we see that F/K is as well and thus its norm group must contain a prime element
of the ground field. Now because NF/K(F ∗) ⊂ NKπ/K(K∗π) = πZ, as in the previous
paragraph, we must have equality i.e. NF/K(F ∗) = πZ.

Now we combine the two statements, namely that NF/L =
⋂
L⊂M⊂F NM/L(M∗) =

π′Z (as M/L ranges through the finite subextensions) and NF/K(F ∗) = πZ. Firstly, by
definition and the transitivity of the norm NF/K =

⋂
K⊂M⊂F NM/K ⊂

⋂
L⊂M⊂F NL/K ◦

NM/L. Now given any M/K, we consider ML/L, and note that NL/K ◦ NML/L =
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NML/K ⊂ NM/K because NML/K = NM/K ◦NML/M . This tells us that actually

NF/K =
⋂

L⊂M⊂F

NL/K ◦NM/L

as M ranges through all finite subextensions of F/L. Applying this fact to our case
we see that NF/K(F ∗) =

⋂
L⊂M⊂F NL/K ◦ NM/L(M∗) = πZ where π′ ∈ NM/L(M∗) for

all finite subextensions M of F/L. This tells us that NL/K(π′) ∈ NF/K(F ∗) = πZ but
since L/K is totally ramified we know that the norm of a prime element of L must be
prime in K. From this we see that NL/K(π′) = π. What we’ve shown is that

φK(NL/K(π′)) = φK(π) = σ = τ |Kab = φL(π′)|Kab

for L/K totally ramified.
Now we proceed to the case where L/K is unramified. Suppose that L is the unique

unramified extension of K with |L : K| = m. As above only need to prove this for
prime elements, π′ of L. Consider Lπ′,n/L, the totally ramified Lubin-Tate extension of
L. Since π′ ∈ L is a prime element the previous argument shows π′ = NLπ′,n

(L∗π,n) and

that φL(π′) is equal to the restriction of an element from Gal(Labπ,n/Lπ′,n). This means
its restriction to Lπ′,n is the identity. Since n was arbitrary we see that φL(π′)|Lπ′ =
1. But we know the action of φL(π′) is the Frobenius over L, that is, the m-th
power of the Frobenius over K because L/K is unramified of degree m. Moreover,
φK(NL/K(π′))|Kun is the mth power of the Frobenius because NL/K(π′) is the product
of m prime elements of K. So φK(NL/K(π′)) and φL(π′) agree on Kun. Note Lπ′ ⊂ Kab,
moreover that Lun = Kun so

Kab = Lab = Lπ′L
un = Lπ

′
Kun

Thus, it remains to show that the action of φK(NL/K(π′)) is trivial on Lπ′ . The proof
is long and unenlightening, the interested reader can consult [1] Lemma 6.1. ♣

Lemma 7.2. The map φK |O∗K : O∗K → Gal(Kab/K) induces an isomorphism O∗K →
Gal(Kπ/K). Therefore the set φK(K∗) consists of all elements in Gal(Kab/K) whose
restriction to Kun is an integer power of the Frobenius.

Proof: For any unit u ∈ O∗K we know φK(u) acts trivially on Kun. Note that
Kun ∩ Kπ = K so Gal(Kab/K) ∼= Gal(Kun/K) × Gal(Kπ/K). So we obtain the
induced map by composing

O∗K → Gal(Kab/K) ∼= Gal(Kπ/K)×Gal(Kun/K)→ Gal(Kπ/K)

where the first map is φK and the second is the projection onto the first coordinate.
This map takes u 7→ [u−1]f,f for some f ∈ Fπ and it induces the isomorphisms O∗K/(1+
(π)n)→ Gal(Kπ,n/K). Moreover its easy to see that the map O∗K → Gal(Kπ/K) can
be recovered as the limit of these isomorphisms and hence yields an isomorphism

lim←−
n∈N
O∗K/(1 + (π)n) ∼= lim←−

n∈N
Gal(Kπ,n/K) ∼= Gal(Kπ/K)
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But 1 + (π)n forms a system of neighborhoods for O∗K in the topology induced by the
π-adic topology since they are the translates of the (π)n. This means its completion
with respect to the topology generated by the 1 + (π)n is the same as the completion
with respect to the π-adic topology. But the latter is simply O∗K itself because it
is a closed subset of a complete space. Thus we see that the map defined above is
actually an isomorphism as claimed. The second statement now follows easily: let
(ϕm, σ) ∈ Gal(Kab/K) where σ ∈ Gal(Kπ/K) and ϕ is the Frobenius. Then take a
u ∈ O∗K as above that gets sent to σ under the projection map, then uπm, gets sent
to φK(uπm) = (ϕm, σ) as desired. ♣

Lemma 7.3. For any finite abelian extension L/K the map K∗ → Gal(Kab/K) →
Gal(L/K) induced by φK is surjective and has NL/K(L∗) as its kernel. This map will
be denoted φL/K .

Proof: By the previous lemma φK(K∗) consists of all the automorphisms of Kab

whose restriction to Kun is an integer power of the Frobenius. We can write Kab =⋃∞
i=1KiKπ,i where Ki is the unique unramified extension of degree i. Thus we have

lim←−
i∈N

(Gal(Kπ,i/K)×Gal(Ki/K)) ∼= lim←−
i∈N

Gal(Kπ,i/K)× lim←−
i∈N

Gal(Ki/K)

and by theorem 3.5 and proposition 1.15 this is isomorphic to

lim←−
n∈N
O∗K/(1 + (π)n)× lim←−

n∈N
Z/(n) ∼= O∗K × Ẑ

where the last isomorphism follows from the previous lemma and the definition of
Z̄. Now it is obvious that the image of φK , O∗K × Z, is dense in this group. This
implies that its image in Gal(Kab/K)/Gal(Kab/L) ∼= Gal(L/K) is also dense. Since
the topology on the latter (finite) group is discrete this means φL/K onto.

It is obvious from theorem 7.1 that NL/K(L∗) ⊂ kerφL/K . This is because

φK(NL/K(x)) = φL(x)|Kab

but φL takes has its image in Gal(Lab/L) and so fixes L. Now suppose x ∈ kerφL/K ,
then φK(x)|L∩Kun = 1. Note that L ∩Kun = Km for some natural number m where
Km is the unique unramified extension of degree m. Using the previous lemma we see
that φK(x)|Km = 1 implies φK(x)|Kun is a power of the m-th power of the Frobenius
over K i.e. φK(x)|Kun = (ϕmK)i. By basic Galois theory we know that

Gal(LKun/Km) ∼= Gal(L/Km)×Gal(Kun/Km)

and
Gal(LKun/L) ∼= Gal(Kun/Km)

L and Km have the same residue fields and so do Kun and LKun. So the inertia
subgroups of Gal(LKun/L) and Gal(Kun/Km) are mapped isomorphically onto one
another. Since Kun/Km is unramified Gal(Kun/Km) has a trivial inertia subgroup
and so Gal(LKun/L) does as well. This tells us that LKun is unramified over L and
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since it has the same residue field as Lun proposition 1.24 tells us LKun = Lun. From
the above discussion we obtain the isomorphism: Gal(Lun/L) ∼= Gal(Kun/Km). This
shows φK(x)|Lun = ϕiL is some power of the Frobenius over L. Thus, by the previous
lemma this implies φK(x) = φL(x′) for some x′ ∈ L. Finally by theorem 7.1 we can say
φK(x) = φK(NL/K(x′)) and the injectivity of φK yields x = NL/K(x′), as desired. For
the injectivity of φK : suppose φK(uπm) = 1, then φK(uπm)|Kun = ϕm = 1 implying
that m = 0. Lastly, lemma 7.2 shows that φK(u) = 1 implies u = 1. ♣

With the above lemma we have proven the main theorem of Local Class Field Theory,
Theorem 1.18. Now we will prove the Local Existence theorem. In classical proofs of
Local Class field theory this was the result proven first and the Artin map was then
deduced from it. The result will give a one to one order reversing correspondence
between open subgroups in K∗ of finite index and finite abelian extensions of K∗. In
this return to the exposition given in [4].

Theorem 7.4. Let K be a nonarchimedean local field. Then the following statements
are true

(a) There is a one-to-one correspondence between finite abelian extensions of K
and subgroups of K∗ that are open and of finite index. The correspondence is given
by L↔ NL/K(L∗).

(b) This correspondence is order reversing i.e. L ⊂ M if and only NM/K(M∗) ⊂
NL/K(L∗).

(c) NLM/K((LM)∗) = NM/K(M∗) ∩NL/K(L∗)
(d) N(L∩M)/K((L ∩M)∗) = NL/K(L∗) ·NM/K(M∗)
(e) Any subgroup that contains a norm subgroup must itself be a norm subgroup.

Proof: We will prove the middle three statements first. The forward direction in
(b) is obvious since the norm is transitive: NM/K(M∗) = NL/K(NM/L(M∗)). Since L
and M are in LM this tells us that NLM/K((LM)∗) ⊂ NL/K(L∗)∩NM/K(M∗). Now if
a ∈ NL/K(L∗) ∩ NM/K(M∗) then we know that φL/K(a) = 1 = φM/K(a) and because
of theorem 7.1 this tells us that φK(a) acts trivially on ML i.e. a ∈ NML/K((ML)∗).
Note that here we are using the fact that an element of Gal(ML/K) is uniquely
determined by its action on M and L. Thus (c) holds and we can now finish the
proof of (b). Suppose NM/K(M∗) ⊂ NL/K(L∗) then (c) says NML/K((ML)∗) =
NM/K(M∗). The Artin map induces an isomorphism, φLM/K , between the groups
K∗/NML/K((ML)∗) and Gal(ML/K), it also induces an isomorphism φM/K from
K∗/NM/K(M∗) toGal(M/K). Therefore the indices ofNML/K((ML)∗) andNM/K(M∗)
in K∗ are the same and equal the degrees of ML/K and M/K. Since M ⊂ ML this
means |ML : M | = 1 or that L ⊂ M as desired. Part (a) now follows easily since
by definition the set map L → NL/K(L∗) is surjective, injectivity is easily deduced
from (b). We now prove (e). Suppose that NL/K(L∗) ⊂ I then the Artin map in-
duces an isomorphism φL/K : K∗/NL/K(L∗)→ Gal(L/K) then let M be the fixed field
of φL/K(I/NL/K(L∗)). By the previous lemma we have the following commutative
diagram
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K∗
φL/K−−−→ Gal(L/K)yid y|M

K∗
φM/K−−−→ Gal(M/K)

where the kernel of φM/K is exactly NM/K(M∗) but we know I is contained in the kernel
as well so I ⊂ NM/K(M∗). Note that I and NM/K(M∗) contain NL/K(L∗). Galois the-
ory gives us that φL/K(I) = φL/K(NM/K(M∗)) so they must have the same preimages
i.e. I = NM/K(M∗) as desired. Finally we prove (d): by (b) we see that NL/K(L∗) and
NM/K(M∗) are inside N(L∩M)/K((L ∩M)∗). By (e) we know NL/K(L∗) · NM/K(M∗)
is itself is a norm group, say NN/K(N∗). By (b) N ⊂ L ∩ M and by (b) again
N(L∩M)/K((L ∩M)∗) ⊂ NN/K(N∗) = NL/K(L∗) · NM/K(M∗) thereby completing the
proof. ♣

Proof (Local Existence Theorem): We will show that the open subgroups of finite
index of K∗ are exactly the norm subgroups of finite abelian extensions L/K. First,
let L/K be a finite abelian extension, then lemma 7.3 says NL/K(L∗) has finite index
in K∗. Note that the norm map NL/K : L∗ → K∗ is continuous: it is the composition
of the maps

L∗ → L∗ × · · · × L∗ → L∗

where the first is the map a 7→ (a, σ1(a), ..., σn(a)) where the σi run through the non-
identity elements of Gal(L/K). The second map is multiplication. These two maps
are clearly continuous so their composition, the norm, is continuous as well. Note
that we’ve used the fact that the topology on K∗ is the same as the induced topology
from L∗. This implies that the image of the compact set UL (the set of units in OL)
is itself compact and hence closed. We also see that NL/K(L∗) ∩ UK = NL/K(UL)
since an element that is in a norm group can have zero valuation if and only if it is
the norm of an element with zero valuation. This tells us that there is an injection
UK/NL/K(UL) ↪→ K∗/NL/K(L∗) so that NL/K(UL) must have finite index in UK . Since
it is also closed in UK it must be open there too: it is the complement of a finite union
of closed cosets. Since UK is itself open this implies NL/K(UL) must also be open in
K∗. Since NL/K(L∗) contains an open subgroup it is the union of open cosets and
therefore is itself open.

We now prove the converse, suppose O is an open set in K∗ of finite index. Its
intersection with UK must contain an open set, (1 + mn

K) say, since these sets form
a system of neighborhoods for UK . It must also intersect πZ nontrivially because
it has finite index. This means O contains the subgroup 〈πm〉 · (1 + mn

K) for some
positive numbers m,n. Note that the norm group of the unique unramified extension
of K of degree m, Km, is 〈πm〉 × O∗. This follows because by the construction of
φK and theorem 4.1, φK(u) acts trivially on Kun. Moreover, by lemma 7.3 order
considerations force NKm/K(Km) = 〈πm〉 × OK . Then by theorem 7.4 (c) and 6.5 we
see that 〈πm〉 · (1 + mn

K) = NL/K(L∗) where L∗ = Km ·Kπ,n. This means O contains
a norm subgroup, now by part (e) of the previous lemma it itself must be a norm
subgroup. ♣
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8 A Concrete Realization of Gal(Kab/K)

We begin by collecting the facts proven. We have constructed the Local Artin map
for a local field K:

φK : K∗ → Gal(Kab/K)

which induces isomorphisms φL/K for finite abelian extensions L/K

φL/K : K∗/NL/K(L∗)→ Gal(L/K)

Fixing a prime element π ∈ K∗ we can rewrite these isomorphisms as

φL/K : (πZ ×O∗K)/NL/K(L∗)→ Gal(L/K)

Taking the inverse limit of both sides as L/K runs through all the finite abelian
extensions induces the isomorphism

lim←−
L/K

(πZ ×O∗K)/NL/K(L∗)→ Gal(Kab/K)

The Local existence theorem says that K∗ ∼= πZ ×O∗K , with the π-adic topology, is a
finer space than K∗ with the norm topology. In other words the identity map

K∗ → K∗

is continuous when the right hand side is endowed with the topology induced by the
norm groups and the left hand side is the regular π-adic topology. By the functo-
riality of taking completions this continuous map induces a map K∗ → K̂∗ on the
completions. Here K∗ denotes the multiplicative group we began with since it is al-
ready complete with respect to the π-adic topology. K̂∗ denotes the completion of K∗

with respect to the norm topology. In O∗K the norm topology and the π-adic topology
are the same, so passing to a completion leaves it unchanged. On the other hand,
completing πZ over all subgroups of finite index yields πẐ. In other words we have
exhibited the isomorphism

K̂∗ ∼= O∗K × πẐ ∼= Gal(Kab/K)

which yields a concrete realization of the Galois group of the maximal abelian extension
over K.
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