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Abstract
The topic of this thesis is Hanoch Ben-Yami’s book Logic and Natrural Language, and the

natural deduction system for quantified logic with plural subjects developed therein. Unlike

standard modern logical systems which take the terms in the subject position as predicative,

Ben-Yami treats them as referring. I will examine his and others’ takes on the topic. The goal

of this thesis is to present a formalization and develop a completeness proof for Ben-Yami’s

system. Instead of the standard model-theoretic completeness proof I use, following Ben-

Yami, a substitutional approach.
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Introduction

The topic of my thesis Hanoch Ben-Yami’s Logic of Quantification with Plural Subjects

(LQPS for short), introduced in his 2004 book Logic and Natural Language (although the

label LQPS is introduced later). More specifically, my goal is to provide a non-model-

theoretic completeness proof for it. Instead of a model theory, the approach I will take,

following Ben-Yami’s suggestion for the predicate calculus in his manuscript Truth and Proof

without Models, is a substitutional one.

 Ben-Yami’s logical system departs from the standard modern logical tradition by

introducing a distinction between a subject and the predicate into his logic -  unlike the

standard Fregean logic, also called the predicate calculus, which views both as predicative –

and furthermore, as the name of the system suggests, making the subjects refer to a plurality

of objects (taken loosely) as well. The first three chapters will therefore deal with the

specificities of Ben-Yami’s system by examining the background of other historical and

modern approaches to the issues Ben-Yami discusses. These constitute the first part of my

thesis, while the second part is the fourth chapter, in which the completeness proof is laid out.

To motivate my research, I will turn my attention in the first chapter of my thesis to

the predicate calculus. As will be obvious from the first part, there was a long-standing

tradition in logic of treating the subject and the predicate of a sentence as serving logically

distinct functions. However, an approach suggested by Gottlob Frege and advocated by,

among others, Bertrand Russell, broke away from this tradition. The aim of the first part of

my thesis is to show how Ben-Yami undermines their arguments for doing so and, thus,

demonstrate that this shift was undermotivated.  However, the predicate calculus is ubiquitous

in its use in philosophy and logic today. One of the reasons for that is its simplicity and utility.

Therefore, in advocating an alternative approach, one needs to demonstrate that it can match

and excel those properties of Frege’s system. For this reason, in the closing sections of the
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second part, I will demonstrate how certain intuitively valid inferences, most notably those

from Aristotle syllogistic logic, can be proven in Ben-Yami’s system (but not in the predicate

calculus).

Some authors, most notably Peter Geach, Peter Strawson and Gyula Klima have taken

an approach which has some overlaps and divergences from Ben-Yami, and, of course,

Aristotle’s syllogistic logic followed the same vein. In the following two chapters of my

thesis, I will examine all of these different approaches and demonstrate how they are similar

or different from Ben-Yami’s.

In the central part of my thesis I present a formalization of Ben-Yami’s system (which

relies on the natural linguistic capacities of reader rather than a formal set of necessary and

sufficient condition). I will first present a formalization of Ben-Yami’s language into a logical

form, and then use that language to formulate a natural deduction system for it. This system

differs from the standard predicate calculus in introducing such operations (which mimic the

surface structure of natural languages better) as copula negation and anaphora. I will then

proceed to demonstrate that this system possesses the desirable metatheoretical properties of

soundness and completeness. While soundness is already presented in Ben-Yami’s book

Logic and Natural Language, there is no completeness proof. This proof has later been

published in an article by Ben-Yami and Ran Lanzet, in which they use a model-theoretic

framework. There are, however, reason to be dissatisfied with that approach, some of which

are broth forth by Ben-Yami himself in a forthcoming article.  Therefore,  after voicing those

concerns, I will present a completeness proof which is substitutional rather than model-

theoretic – it connects the truth values of quantified sentences with those of their substitution-

instances, rather than with properties of objects in a constructed models. Other than this

difference, the proof is standard Henkin-style proof, with adjustment made for the

peculiarities of the system.
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1. The Predicate Calculus

In this chapter I will first briefly present the logical system that I compare Ben-Yami’s LQPS

with – the predicate calculus. The father of this system is Gottlob Frege, but it owes its

universal adoption to, among others, Bertrand Russell. For that reason, the exposition of that

system will be followed by a discussion of their reasons and arguments for accepting it. Next,

I will provide Ben-Yami’s counter-arguments to these reasons, with the goal of demonstrating

that the acceptance of the system was under-motivated. This, in turn, will be a reason for

taking an alternative approach of LQPS. Although the argumentation here is purely negative,

I will show in the next chapter that the preceding system, that of Aristotle, could address some

objections raised against it, and that the predicate calculus was therefore not essential, at least

with regards to its application on natural language. Then I will demonstrate that LQPS has the

desirable properties of a logical system, while at the same time staying true to both the

Aristotelian tradition and the surface structure of natural language.

1.1 The Language of Predicate Calculus

The language of the Predicate Calculus (PC) consists of a set of terms T, a set of predicate

variables P, a set of truth-functional connectives { , , , , }, a set of quantifiers { , }

and a set of parentheses {(,)}. The set T consists of individual constants {a,b,c,…}, a set of

variables {x,y,z,..} and a set of function symbols {f,g,…} which take terms as their arguments.

The  set  P  consists  of n-place predicates {P,Q,R,…}, where n is  a  number  of  arguments  a

predicate takes (and which is fixed for each predicate).
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1.1.1 Sentence Formation Rules

If t1,…,tn are terms and P is an n-place predicate, then P(t1,…,tn) is an atomic well-formed

formula (wff). If P and Q are wff’’s,  then  so  are  ( P ),( P Q ),  ( P Q ),  ( P Q ) and

( P Q ), where the outermost parentheses can be omitted. If P is  a wff and v is a variable,

then vP and vP are wff’s (and any occurrence of v in vP  or vP is said to be bound).1

A wff where all the variables are bound is a sentence, and no formula that is not

generated by these rules is a sentence.

1.1.2 Assignment of Truth Values to Sentences

In this section only a provisional definition of the assignments of truth values will be given.

Consequently, I will use some expression without giving their formal definitions. It will,

however, suffice for our present purposes.

An atomic sentence (i.e. and atomic wff with no variables) P(t1,…,tn) is true just in

case the ordered n-tuple < t1,…,tn > is a member of the extension of the predicate P (where the

extension of an n-place predicate is a subset of a Cartesian product Dn, with D being the

domain), and false otherwise.

The rules for the truth-functional connectives state that P is true just in case P is

false, P Q is true just in case P and Q are both true, P Q is  true  just  in  case P or Q are

true, P Q  is true just in case P is false or Q is true, and P Q  is true just in case P and Q

are both true, or P and Q are both false.

If ( )v is a formula where v is the only unbound variable, then v (v) is true just in

case every element of D satisfies ( )v , and v (v) is  true just  in case some element of D

satisfies ( )v .

1 J. Barwise, J. Etchemendy, Language, Proof and Logic, CSLI Publications, New York, London, 1999, p.232
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This short exposition of the PC will  be  enough  to  make  the  remaining  part  of  this

chapter legible. Further detail will be introduced as the discussion warrants (for instance, how

these sentences are read). We now turn our attention to the reasons for adopting the predicate

calculus in the first place and Ben-Yami objections to it.

1.2 Referring Nouns as Predicates

Ben-Yami analyzes common nouns in quantified noun phrases as referring expressions.2

However, in the standard predicate calculus, they are treated as predicates attributing some

property (understood broadly) of an individual constant or a variable (which then falls under a

scope of a quantifier). For example, the sentence “All men are mortal” would be formalized

as:

( ( ) ( ))x Man x Mortal x

In a somewhat contrived way, this can be read as “All x are such that, if x is a man, then x is

mortal.” Obviously, “man” here does not refer to anything, but simply attributes a property of

being a man to every instance of a substitution of the variable by an element of the domain.

Given the prevalence of the predicate calculus, this is standard and widely accepted way of

treating common nouns. However, it was not commonplace when Frege first suggested it. Let

us observe what Ben-Yami suggests were his motivations for doing so.3

First, the idea that the common nouns serve the same logical function in the subject

and the predicate place might originate in Aristotle, where the latter are treated identically

with any other word type (e.g. adjective) occurring in the same position. Combined with the

notion  that  the  common  nouns  always  serve  a  similar  purpose,  it  is  easy  to  see  how  the

2H. Ben-Yami, Logic & Natural Language: On Plural Reference and Its Semantic and Logical Signi cance,
revised edition, Ashgate, Aldershot, 2004, pg.45
3 The following sections are a summary of the section 4.1 of Ben-Yami,2004, beginning at the page 45
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conflation of the logical roles of the subject and the predicate occurs. Until the nineteenth

century, this resulted with the predicate being treated as a referring term. Frege’s

understanding of concept words as predicative led to him reversing the trend – both subject

and predicate were still treated as having the same logical role, but it was now akin to

predication.

1.2.1 Frege

Frege approached the treatment of natural language from a mathematical point of view. He

understood concepts as functions whose value is a truth value. Consequently, Frege conflates

the subject-predicate distinction with the relation of an argument and a function. Since only

singular-referring expressions are the arguments of mathematical functions, they were the

only ones treated as denotative. Conversely, given that the general concepts were treated as

predicative, and that common nouns are general terms, they were assigned the predicative role

as well.

Frege argues that the sentence

All whales are mammals

doesn’t talk about whales, but rather the concept of whales, since when uttering it we cannot

indicate even a single animal we are referring to. Furthermore, even if there was a whale

around, we couldn’t infer anything from this sentence without a further proposition that it is a

whale. Therefore, this sentence is about the relation of concepts, not about whales.

Yet, as Ben-Yami points out, the same line of reasoning could applied to a sentence

Peter is ill.
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Even  if  Peter  were  present  at  the  time  of  the  uttering  of  this  sentence,  one  still  could  not

conclude anything about the man present without a further proposition to the effect that the

man present was Peter. And Frege would concede that ‘Peter’ does, in fact, have a referential

role. Therefore, Frege’s argument fails to clearly delineate the predicative use of concepts.

One could equally well argue that ‘all whales’ refers to the plurality of whales the same way

‘Peter’ refers to Peter.

Another argument Frege offers for his analysis concerns negations of sentences with

apparently plural-referring subjects. Consider the sentence

All mammals are land-dwellers

If the expression ’all mammals’ were a subject, its negation would be ‘All mammals are not

land-dwellers’, which it is not. Ben-Yami objects that this example only shows that the

negations  of  sentences  with  plural  subjects  differ  from  the  negations  of  the  ones  with  a

singular subjects. The negation of the sentence ‘Peter and Mary are painters” is not “Peter and

Mary are not painters,” but rather “Peter and Mary are not both painters,”  and  ‘Peter  and

Mary’ is the subject of that sentence. So, the fact that the negations work differently does not

commit  us  to  believe  that  both  are  not  cases  of  a  common noun playing  a  role  of  a  subject

with plural reference rather than serving a predicative function.

These considerations suggest Frege’s account, as Ben-Yami concludes, does not

provide sufficient reason for treating the common nouns in the subject position as a predicate.

1.2.2 Russell and Bradley

While Frege was the initiator of the new approach, its most significant early proponent who

caused it to be widely accepted was Bertrand Russell, who himself was influenced by
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Bradley.4 Bradley himself offers two arguments against viewing common nouns as referring.

First, he argues that, since in saying that (all) animals are mortal we do not talk about merely

the presently existing animals, but about any past, present or future animal. Now, since future

animals  do  not  yet  exist,  it  is  impossible  to  refer  to  them.  Therefore,  we  can  not  view  the

common noun “animal” as referring to animals. The second argument states that in speaking

about animals we cannot have the complete collection of animals in mind, and thus cannot

refer to them. In either case, what we are saying is that “’Whatever is an animal will die,’ but

that is the same as If anything is an animal then it is mortal. The assertion really is about mere

hypothesis; it is not about fact.”5

Ben-Yami  provides  three  answers  to  the  former  argument.  First,  we  can  grant  that

referring to future entities would not be a paradigmatic case of reference. But, even if we

disallow it altogether, this does not constitute an argument against cases devoid of such a

difficulty, such as with the expression ‘my children’.6 Next, Russell’s analysis encounters a

similar problem – even if we reconstruct ‘All animals are mortal’ as ‘for any x, if x is an

animal then x is mortal’, the variable x still  needs  to  range  over  or,  in  a  sense,  refer  to  the

future animals (on the pain of losing the initial step of the argument). However, how a

variable should refer to future entities is no clearer than how a common noun should do so.7

Ben-Yami’s final response to the first argument of Bradley’s is that “there are good reasons

for allowing the possibility of reference to future individuals. Consider the sentences

All children born last year got the flu.

All these children got the flu.

4 Ben-Yami, 2004, p.48
5 F.H. Bradley, The Principles of Logic, corrected impression of the 2nd edition, Oxford University Press,
Oxford, 1922, p.47
6 Ben-Yami, 2004, p.50
7 Ben-Yami, 2004, p.50
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All children that will be born next year will get the flu.”8

As Ben-Yami points out, all these sentences are very similar in both their grammatical form

and in their method of verification (find the children born last year and see if they got the flu,

check if the children pointed at got the flu, and wait to find out which children were born the

following year and whether they got the flu, respectively). Since “these children” is a

paradigmatic case of reference, this analogy should suggest we should grant the same status to

the  noun  phrases  in  the  first  and  the  third  sentences.  Ben-Yami  goes  into  a  more  elaborate

discussion of reference, but we will omit it here. Instead, let us now observe his objections to

Bradley’s second argument.

Ben-Yami sees this argument as question begging. Presumably, what Bradley thinks

by having a complete collection in mind is thinking of each and every individual falling under

that  description  (as  would  be  the  case  with  the  aforementioned  phrase  ‘my  children’  when

uttered by a mother, as opposed to, say, a priest). But there is no reason to see having a

collection in mind this way, as opposed to having in it mind in terms of an expression that

refers to all those and only those individuals that form that collection.9

1.3 Final Remarks

As with the Frege’s account above, we can see that the adoption of the view that the

expressions in the subject position are predicative in their deep logical structure was

undermotivated, at least with regards to the natural language (mathematical considerations

aside). On the other hand, it broke away from a longstanding tradition in philosophy, dating

back to Aristotle. However, there might have been other problems with Aristotle’s approach

8 Ben-Yami, 2004, p.50
9 Ben-Yami, 2004, p.50



C
E

U
eT

D
C

ol
le

ct
io

n

10

that Frege’s approach successfully coped with. Therefore, in the next chapter we will take a

look at Aristotle’s logical system. After a brief overview, we will observe one such difficulty

and then see that there is a way of avoiding it, dating back to the logic of Middle Ages (and

obviously predating Frege and Russell). While the constraints of space do not allow a

thorough examinations of every issue Aristotelian logic faces, showing how it can address one

substantial difficulty will serve to further undermine the reasons for the switch to a new

approach.

2.Referential Import

The first part of this chapter will serve as a brief overview of the main characteristics of

Aristotelian logic. I will first present a formalization of sentences of the type relevant for our

present discussion (subject-predicate ones), and then see some of the entailments that hold

between them. One of the characteristics of the Aristotelian logic is the principle of referential

import (using Ben-Yami’s notation). I will than bring out a modern objection to this principle,

and show how Gyula Klima, using a formalization of medieval Aristotelian logic, addresses

it. This, in addition to defending referential import, shows another way in which the

introduction of the predicate calculus can be seen as undermotivated. Finally, in the last

section of the chapter I will present Ben-Yami’s take on the same issue.

2.1 The Square of Oppositions

In the logic of Aristotle, four types of categorical propositions – a subject-predicate

propositions10 – are taken to be standard11: A type – All S are P, E type – No S are P, I type –

Some S are P and O type – Some S are not P. To illustrate, an A type proposition would be All

10 Subject term is labeled S and the predicate term is labeled P throughout this exposition
11 E. A Hacker, W. T Parry, Aristotelian Logic, SUNY Press, 1991, p.145
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men are mortal; an E type would be No men are mortal etc. The four differ from each other

according to two parameters – quantity (all/no-some) and quality (is/are – isn’t/aren’t).

The relations that hold between these types of propositions are usually sketched in a

useful diagram called the Square of Oppositions. Before laying out this diagram, let us

introduce the terminology for labeling these relations. First, two propositions which share the

subject and predicate terms but differ in type are called opposed12.  A  pair  of  opposed

propositions can be: contradictories, contraries, subcontraries and alterns. Contradictories

are those propositions which differ in both quantity and quality (A and O, E and I), contraries

are universal propositions (“all”/”no”) which differ in quality (A and E), subcontraries are

particulars (“some”) which differ in quality (I and O), and alterns are those propositions

which differ in quantity alone (A and I, E and O, where the particular propositions are called

“subaltern,” and the universal ones ”superaltern”)13. Finally, we can sketch out the square of

oppositions14:

12 Hacker, Parry, 1991, p. 155
13 Hacker, Parry, 1991, p. 157
14T. Parsons, 'The Traditional Square of Oppositions', in Stanford Encyclopedia of Philosophy. Oct 1, 2006,
http://plato.stanford.edu/entries/square/, viewed Apr 13, 2012
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2.1.1 Immediate Inferences

The types of opposition relation which hold in a pair of propositions carry with them a

connection of their truth values as well. Contradictories cannot have the same truth value –

they can neither both be true nor both be false.15 Contrary propositions cannot both be true,16

subcontrary ones cannot both be false.17 Finally, universal propositions entail, but are not

entailed by, their respective subalterns.18

Since  the  truth  values  of  some types  of  propositions  are  interdependent,  they  form a

basis for a number of valid arguments called immediate inferences (an immediate inference is

an argument with one premise and one conclusion19). These immediate inferences are as

follows: first, A and O entail one another (since they always have the opposite truth value).

Consequently, A and O will entail one another as well. The other pair of contradictories, E

and I share the same type of a relation – a mutual entailment relation will hold between E and

I.  As was obvious from the definition of alterns, A will entail I and E will entail O. And

finally, the inferences among (sub)contraries are: A entails E and I  entails O. Formally,

these  are  the  relations  that  need  to  hold  in  the  square  of  oppositions: A I , E O ,

A O , E I , A E  and I O 20.   A  logical  system  will  be  considered  to  be

Aristotelian if it retains these entailments.

2.2 Klima: Existence and Reference in Medieval Logic

In his paper Existence and Reference in Medieval Logic, Gyula Klima provides “account of

how it was possible for medieval logicians to maintain Aristotle’s theory of the four

15 Hacker, Parry,1991, p.159
16 Hacker, Parry, 1991, p.161
17 Hacker, Parry, 1991, p.162
18 Hacker, Parry, 1991, p. 163
19 Hacker, Parry, 1991, p. 155
20 G. Klima, ‘Existence and Reference in Medieval Logic’ in A. Hieke, E. Morscher (eds.), New Essays in Free
Logic, Kluwer Academic Publishers, 2001, 197–226, p.198
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categoricals and to dispense with these existential assumptions in the framework of their

theory of reference, the theory of supposition.”21 The semantic theory in question states that

the  role  the  subject  terms  serve  is  a  referring  one  –  they  stand  for  the  objects  falling  under

them,  or  stand  for nothing if  no  such  objects  exist.  In  case  they  stand  for  nothing,  the

affirmative sentences will be false, whereas their contradictories will therefore be true –

negative categorical propositions carry no presupposition of existence. Thus all the

entailments of the square of oppositions are maintained.22

2.2.1 One Objection to the Medieval Analysis

Klima discusses two interesting objections to the medieval analysis. However, as the second

one is relatively complex for the sake of brevity only the first one will be discussed in this

paper. It should, however, suffice for our present purposes.

One worry that arises with this kind of analysis is that, should the affirmative universal

proposition be understood as false when the subject term is empty, then its contradictory

should be true. This is problematic, and the predicate calculus avoids it. Take the sentence of

the type

( ( ) ( ))x Unicorn x Mortal x .

As we have seen in the preceding chapter, this is true just in case every element of the domain

satisfies the formula with one unbound variable ( ) ( )Unicorn x Mortal x . Now, since no

element of the domain satisfies the formula Unicorn(x),  the  conditional  is  true  for  every

element of the domain, and therefore the universally quantified sentence is as well. We will

21 Klima, 2001, p.197
22 Klima, 2001, p.198
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see  that  the  medieval  logicians  can  address  this  problem,  and  that  it  therefore  does  not

constitute a reason for abandoning Aristotelian logic.

Klima addresses this problem by distinguishing two ways in which a proposition can

be negated – negating (propositional negation) and infinitizing (term negation).23 Klima

illustrates  the  point  on  the  famous  example  of  Bertrand  Russell  –  negating  that  the  king  of

France is bald. This can be understood either as saying that it is not true that the king of

France is bald (propositional negation), which is true since there is no king of France, or as a

claim that the king of France is non-bald (term negation),  which is false as there is  no such

person.

In a similar manner, the negation of a sentence Every winged horse is a horse (which

is true as its subject term is empty) can be interpreted either as

1) Some winged horse is not a horse,

i.e. as saying that it is not the case that some winged horse is a horse, or as

2) Some winged horse is a non-horse.

To formalize the two we need to introduce “restricted variables, representing general terms in

their referring function, as they occur in the subject-positions of these sentences.”24 Restricted

variables range over the extension of an open sentence, if the said extension is not an empty

set, and take zero-entity (which is not an element of the universe of discourse) as their value

otherwise. If Wx is an open sentence with a free variable x, then the restricted variable formed

from  it  will  be  written  as x.Wx. Now, the formalization of the above sentences will be as

follows:

23 Klima, 2001, p.200
24 Klima, 2001, p.202
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1’) ( . ) ( ( . ))xWx H xWx ,

which can be read as “It doesn’t hold of zero-entity that it is a horse,” which is true. The

formalization of the second sentence would be

2’) ( . )( ( . ))xWx H xWx ,

which would say that it holds of the zero-entity that it is a non-horse. Since the extension of a

term negation of a predicate parameter (‘ H ’)  are  all  those  entities  in  the  universe  of

discourse which are not horses, and the zero-entity is not in the universe of discourse, this is

false.25

Therefore, one can address the problem raised at the beginning of this section by

stating that it wrongly construes the negation of the sentence Every winged horse is a horse as

(2) and (2’), and that the proper ways of understanding and formalizing it are those offered in

(1) and (1’), in direct analogy with the example of the king of France.

This analysis demonstrates that it is possible to have meaningful (i.e. either true or

false) categorical propositions even when they concern things that are outside of the natural

world, while at the same time retaining all the entailments that Aristotelian logic requires.

Therefore, the talk of entities that are not real in a sense that tables and chairs are need not

commit us to a different brand of logic.

25 Klima, 2001, p.202
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2.3 Referential Import in LQPS

One notable difference from the predicate calculus becomes obvious if we consider that

universal quantifiers have referential (but not existential) import in LQPS. This is not the case

in the predicate calculus – consider once again the sentence that all men are mortal:

(1) ( ( ) ( ))x Man x Mortal x

Since it requires only that every assignment of values to variables satisfies the open

formula ( ) ( )Man x Mortal x , if there are no elements in the domain which satisfy the open

formula Man(x) this conditional will turn out to be vacuously true, and therefore (1) will be

true as well. On the other hand, the sentence that some men are mortal

(2) ( ( ) ( ))x Man x Mortal x

requires that there be an element of the domain that is a man (who is, naturally, mortal), it will

be false when (1) is vacuously true. Therefore, (1) does not entail (2) in predicate calculus.

So, the principle of Aristotelian logic that the superalterns entail their respective subaltern

sentences is not retained in the predicate calculus.

LQPS, on the other hand, preserves these entailments due to the derivation rule of

Referential Import (a formal specification will be provided in a later chapter). Let us consider

their proofs:

1 (1) All Men are Mortal Premise

2 (2) a is a man Premise

3 (3) a  is Mortal Premise
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2,3 (4) Some Men are Mortal RI: 2,3

As the only premises which contain a that (4) relies on are (2) and (3), and (4) itself does not

contain a, we can apply the rule of Referential Import and conclude:

1 (5) Some Men are Mortal RI: 1,2,3,4

So, the universal-affirmative sentence entails the particular-affirmative one with the same

subject and predicate terms, as in the Aristotelian logic.

To demonstrate the same entailment for the negative alterns some additional

terminology is required. Ben-Yami interprets the universal-negative statements as “Every S

isn’t  a P” instead of “No S is  a P.” While this is slightly unnatural, predicate calculus faces

the same problem – the formalization

(3) ( ( ) ( ))x S x P x

would be read more naturally as “Every S is a non-P,” or “Every S isn’t a P.” If we therefore

deem this acceptable, the proof would go through, mutatis mutandis, same as the one above.

However, if we want to be more natural in our formalization, Ben-Yami offers the rules for

null-quantifier “No” as well. The introduction rule mirrors Universal Introduction,

“Suppose sentence (i) is the premise ‘a is an  A’. Suppose further that sentence (j)

contains a single appearance of ‘a’, and does not rely on any premise which contains a

apart from (i). Suppose further that if we substitute‘a’ by ‘u A’, then that appearance

of ‘u A’ governs sentence (j). Then in any following line (k) one can write the

sentence identical to (j) apart from the fact that in it ‘u A’ has been substituted for ‘a’.
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(k) relies on all the premises on which (j) relies, apart from (i). Its justification is

written ‘UI, j, i’”,26

,with the extra requirement that the line (j) is of the form (np1,…,npn) isn’t P, where npi is a

definite noun phrase. With this rule, the proof for negative alterns would proceed as follows:

1 (1) No Men are Mortal Premise

2 (2) a is a Man Premise

3 (3) a isn’t Mortal27 Premise

2,3 (4) Some Men aren’t Mortal PI:2,3

1 (5) Some Men aren’t Mortal RI:1,2,3,4

2.4 Final Remarks

The first  part  of  this  chapter  has  shown that  there  is  a  further  way that  the  adoption  of  the

predicate calculus is undermotivated – Aristotelina logic can cope with some of the problems

PC is supposed to solve. In many ways, the solution Klima offers is similar to Ben-Yami’s

project – for example, he introduces the sentence and term negation (what Ben-Yami would

call copula negation), and distinguishes between reference and existence. However, an

advantage of LQPS is that it needs not resort to an unnatural zero-entity to maintain the

Aristotelian entailments.

The observations in the third section of this chapter serve to show that LQPS differs

from the predicate calculus, and is not, therefore, simply a different notational system. In fact,

Ben-Yami’s  system stays  true  to  a  logical  system with  a  longstanding  tradition  while  at  the

same time it retains all the advantages, at least as the natural language is concerned, of the

26 Ben-Yami, 2004, p.146
27 This mirrors the sentence (i) from the introduction rule
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predicate calculus. To demonstrate it stands on equal grounds with it, some metatheoretical

properties of LQPS need  to  be  demonstrated,  but  first  we  will  move  the  debate  to  the

twentieth century and examine some modern approaches to the topics of our discussion.
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3. Subject-Predicate Distinction and Quantification

After considering the historical positions on the debate at hand in the previous chapter, we

now turn our attention to the more contemporary contributions to the discussion. As a lead-in

to the exploration of Ben-Yami’s own contribution, we will compare and contrast it with two

significant authors that tackled some of the issues relevant to our present discussion.

In Logic and Natural Language,  Ben-Yami  comments  on  the  works  of  Peter  Geach

and Peter Strawson related to the issues of the subject-predicate distinction, plural reference

and quantification. After in turn presenting the positions of each of the two authors in this

chapter, I will provide Ben-Yami’s comments on the segments he accepts and provide reasons

for rejecting others. This will serve to place the discussion of LQPS into a wider framework

of the contemporary philosophical debate.

3.1 Geach on Subject and Predicate

In Reference and Generality, Peter Geach uses the terms 'subject' and 'predicate' as purely

linguistic terms – a man is not a subject of a sentence, but rather his name. For example, the

name 'Peter' is the subject of a sentence 'Peter is an Apostle', and not the apostle himself.28

Likewise, the predicate of this sentence is the “verbal expression”29 ‘Apostle’, and not the

property of being such. However, what the predicate is predicated of is the man, and not the

name. Given these stipulations, Geach provides explanations of the terms ‘subject’ and

‘predicate’:

“A predicate is an expression that gives us an assertion about something if we attach it

to another expression that stands for what we are making the assertion about. A

28 P. T, Geach, Reference and Generality, third edition, Cornell University Press, Ithaca and London, 1980,p.49
29 Geach, 1980, p.49
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subject of a sentence S is an expression standing for something that S is about, S itself

being formed by attaching a predicate to that expression.”30

These  explanations  are  provisory  ones,  however,  and  Geach  discusses  some amendments  to

them. Geach first points out that there is a distinction between these two explanations – we

talk of a “subject of a sentence”, but do not talk of predicates in the same way. The reason for

this difference is that a predicate can be attached to an expression that stands for something,

and not that it actually always is. For this reason Geach substitutes, in the above explanation,

the term ‘predicable’ for the term ‘predicate’. So, a predicable can be attached to a name,

whereas if it actually is, it is called a ‘predicate’. Next in line is the clarification of the

expression “making an assertion about.” This he substitutes by a clearer expression “forming

the proposition about,” (the term ‘proposition’ being understood here as a merely linguistic

entity).31 Therefore, the final explanation of the terms in question comes out as.

“A predicable is an expression that gives us a proposition about something if we

attach it to another expression that stands for what we are forming the proposition

about; the predicable then becomes a predicate, and the other expression becomes its

subject; I call such a proposition a predication.”32

Next, let us observe more closely the role of the subject. Geach holds that the names have a

use – he calls it an independent use – in which they do “not require any immediate context of

words, uttered or understood”33. In this use, they can simply acknowledge the existence of

whatever they name, as in simply calling someone out. This goes against Frege and early

30 Geach, 1980, p.50
31 Geach, 1980, p.52
32 Geach ,1980, p.52
33 Geach, 1980, p.52
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Wittgenstein who held that names can stand for something only within a proposition.

Granting this way of using names, Geach notes that there is no difference between proper and

common nouns – I might equally call someone out as either “Mary!” or “Madam!”

Geach  defines  a bearer of  a  name as  the  object  that  it  names.  Then,  if  we  remove  a

name from a proposition, the remaining part, according to Geach, will be what the proposition

states about the bearer of the name, i.e. its predicate. The names denote their bearers, and can

stand on their own (in the act of naming) - they have a “complete sense.”34 On the other hand,

predicables apply to things (they are true of them), but do not have a complete sense. As the

predicable (or, a predicate if we are discussing their use in a sentence) is what we obtain when

we remove the name from a sentence, they are on their own essentially incomplete and

contain an empty place that is to be filled by a subject. Therefore, Geach concludes, the

subject and the predicate are essentially different. Consequently, Geach sees a situation where

an expression is used interchangeably as a subject or as a predicate as an ambiguity within a

language.35 Furthermore, if we view the predicate as everything that remains in a sentence

when the subject is removed, it follows, as Geach maintains, that identifying the distinctive

role of a copula is superfluous – it is simply part of a predicable.

3.1.1 Ben-Yami on Geach

Geach holds, and Ben-Yami agrees, that in a sentence of the form ‘F(qA)’, in which ‘F’ is  a

predicate, ‘q’ is a quantifier and ‘A’ is a substantival  general term, ‘A’ functions as a name.

However, Geach further concludes, given his understanding of a subject and a predicate

explained above, that “we should read ‘F(every A)’  and ‘F(some A)’ as got by attaching the

different predicates ‘F(every _)’ and ‘F(some _)’ to ‘A’, not by attaching the predicable ‘F( )’

34 Geach, 1980, p.57
35 Geach, 1980, p.57
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to two different quasi subjects ‘every A’ and ‘some A’, which refer to the things called ‘A’ in

two different ways.”36

Ben-Yami concedes that the second option should be rejected, but sees little merit in

the semantical analysis of the sentences of the form ‘F(qA)’ in just a subject and a predicate

part. Rather, he suggests that it should be viewed as having at least three parts – the

expression ‘A’ referring to particulars, the quantifier ‘q’ stating how many of the A’s the

referring expression refers to, and the predicate ‘P’ predicating something of those

particulars.37

Furthermore, whereas Geach sees no distinctive role of a copula, Ben-Yami believes it

is essential in determining the mode of predication. Since predication in natural language has

the form (np1,…,npn)P (where np1,…,npn are noun phrases and P is a predicate), and each of

the noun phrases can be quantified, quantifiers are syntactically a part of the subject.

Therefore, (unlike in the predicate calculus), a negation cannot appear between the quantifier

and the predicate in the natural language. Consequently, to keep track of different modes of

predication, the natural language needs to introduce two different copulas – is (are) and isn’t

(aren’t).

Some further differences between Ben-Yami and Geach are that, whereas Geach sees

the  use  of  common  nouns  in  both  subject  and  predicate  places,  Ben-Yami’s  account  of

predication encounters no difficulty there and that Geach treats the variables of the predicate

calculus as semantically equivalent to pronouns in the natural language.38 Despite these

differences, Ben-Yami states that their basic view on the semantic role of common nouns and

quantifiers are substantially similar, and that therefore his analysis of quantification can be

seen as an elaboration of Geach’s.39 There is, nonetheless, one last difference, which will be

36 Geach, 1980, p.200
37 Ben-Yami, 2004, p.72
38 Ben-Yami, 2004, p.72
39 Ben-Yami, 2004, p.72
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of importance to this thesis, and that is that Ben-Yami develops a natural deduction on the

basis of his analysis.

3.2 Strawson on Common Nouns and Predication

Another author that made a significant contribution to the subject-predicate debate is Peter

Strawson. In his 1974 book Subject and Predicate in Logic and Grammar, he touches upon

some of the topics Ben-Yami also covers. On the common nouns, while he maintains they are

basically predicative, he does state that they have a secondary role he labels substantiation in

the chapter titled Substantiation and its Modes.

The sentences Strawson is discussing prior to that chapter function such “that each

specifies a type-of substance-involving situation or state of affairs and is apt for the

expression  of  a  proposition  to  the  effect  that  such  a  situation  or  state  of  affairs  obtains.”40

Within this broad function, several specific functions can be distinguished, one of which is

“the function of identifying specification of individual substantial particulars.”41 At this point

Strawson suggests a broadening of this function, but in such a way that would still maintain

the overarching function of the sentence above. This broadening treats the particular-

specifying function as a special case of a larger function he calls substantiation (with the

particular-specification labeled individually identifying substantiation), in which no particular

needs to be specified. So the sentence of the kind that Strawson now introduces is “a sentence

apt for expressing a proposition to the effect that a situation of (…) a general type obtained,

without specifying a particular…”42

The  situation  of  a  general  type  here  needs  further  clarification.  Let  us  therefore,

consider some examples. Take particular specifying sentences S1:  ‘John pursues Mary’ and

40 P. F. Strawson, Subject and Predicate in Logic and Grammar,  Methuen & Co. Ltd., London, 1974, p.99
41 Strawson, 1974, p.99
42 Strawson, 1974, p.101
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S2:  ‘Tom is drowning’. Grasping of this sentences will include, Strawson states, grasping of

something general at the same time, expressed by sentences S3: ‘A man is pursuing a woman’

and  S4:  ‘A cat is drowning’,  respectively.  The  general  type  of  the  situation  is  what  is

expressed by S3 and S4 with regards to S1 and S2, and, as Strawson points out, there is no need

to introduce a new function for those types of general situations to enter into the picture – one

needs only to view the previous particular-specifying function as its special case.43 An

approach similar to what Strawson does here will be taken in the formalization of Ben-Yami’s

logical  system,  when  the  introduction  of  a  plural  subject  terms  into  a  language  will  be

performed by substituting them for a singular one.

In contrast, Ben-Yami does not see the referential role of common nouns as derived or

secondary to the predicative one, but treats it as their basic role instead. On the other hand,

Strawson treats the referential role of common nouns as on par with the same role being

served by adjectives and verbs, or to be more precise, the purely semantic categories of

nominals, adjectivals and verbals corresponding to the three grammatical categories.44 Ben-

Yami, on the contrary, draws a distinction between the functioning of these categories. For

example, the sentence with a common noun, ‘This animal is an elephant’ does not, according

to Ben-Yami, attribute any property of this animal,  but  rather  states  its  kind.  On  the  other

hand, the sentence ‘This animal is dangerous’, which contains an adjective, does attribute a

property to the animal. Ben-Yami therefore distinguishes the functions of these expressions

which Strawson treats as the same.45

43 Strawson, 1974, p.101
44 Strawson, 1974, p.103
45 Ben-Yami, 2004, p.73
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3.3 Strawson on Quantification

Strawson briefly touches upon quantification when he discusses as further expansion of the

modes of substantiation, by way of pluralization. He identifies three ways this is usually done

in languages – with bare pluralization, by various degrees of pluralization (e.g. few, some,

several, many etc.) and by numerization (e.g. one, twice, etc.). What is specified or identified

by pluralization is “some particular group or set.” These, he suggests, are pluralized analogues

of individually identifying substantiation. 46

However, as Ben-Yami points out as well, these considerations are limited and offer

no indication whether, for example, he would treat the sentence ‘Some horses are brown’ as

referring to some horses and predicating of them that they are brown, or as referring to horses

and predicating that some of them are brown. In any case, as has been shown by Geach that

the first option is not viable, Ben-Yami opts for the second.

3.4 Final Remarks

This chapter served to distinguish LQPS from other positions concerning the relation between

the subject and the predicate, plural reference and quantification by giving an overview of

those other positions. Naturally, the debate at hand is much more comprehensive than what is

presented here, but it will suffice for the present purposes. One important note, which was

mentioned at the end of the section 3.1.1 is that unlike the others, on the basis of his analysis

of the topics of this chapter, Ben-Yami provides a natural deduction system. This is what we

turn to in the following chapters.

46 Strawson, 1974, p.112
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4. The Metatheoretic Properties of LQPS – Soundness and
Completeness

In  this  chapter  we  will  focus  on  the  formalization  of  Ben-Yami’s  system  and  the

metatheoretical properties of it. In the first part of this chapter, we will present first the formal

language LQPS, and then in the second part we will provide the rules of inference for its

system of natural deduction. Next, in the third we will briefly sketch out the proof of

soundness for LQPS, provided by Ben-Yami in Logic and Natural Language.

Finally,  in  the  fourth  part  we  turn  our  attention  to  the  very  center  of  this  thesis,  and

that is the non-model-theoretic proof of completeness of LQPS. We start by explaining the

motivation for such an approach – first by pointing out some deficiencies of non-model

theoretic approach, and then by offering some positive reasons for laying out our proof

without resorting to models. This is followed by a discussion of Universal Reduction - a

principle that allows us to omit the universal quantifier from our considerations. The reason

for doing so is familiar from the predicate calculus – the interdefinability of the universal and

the existential quantifiers, namely that we can substituted ‘ ’ for ‘ .’ This proof will not

be examined in its entirety, but just in its most essential part. These initial remarks will set up

the scene for the completeness proof itself – we will first present an alternative to the model

theory – the substitutional approach – and then present the Henkin-style proof, adjusted for

LQPS. The Henkin style proofs proceed as follows: we first extend our valid arguments by a

set  of  axioms  and  then  define  an  assignment  of  truth  values  (in  place  of  a  model  –  this  is

where the proof differs from the standard ones) that makes our extended valid arguments

propositionally valid. As the completeness of propositional logic has been previously

established, we then know that the extended arguments are propositionally provable. What

remains  to  be  done  then  is  to  show  that  if  our  extended  arguments  are  propositionally

provable, then the non-extended version is provable in LQPS. We do this in the closing
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sections of the chapter by proving the Elimination Theorem, which, in a nutshell, shows how

we can do without each of the axioms we added.

Before proceeding a remark on notation is in order. For eligibility, all theorems,

definitions and proofs are indented. The terms defined are in bold and italics, the names of

theorems are in bold letters, and proofs (and sometimes their segments) are in italics. The

symbols  and  is used to signify any formula, (sti)  is used to signify a formula which

contains the subject term sti  and (…, ,…)is used to signify a formula  which contains

the formula .

4.1 The Formal Language of LQPS

The language LQPS consists of sets of subject terms S, predicates P, truth functional

connectives { , , , }, quantifiers {some, all},  and  parentheses  {(,)}.  The  set  S  contains

singular subject terms (SST’s) {a,a1,…, an,b,b1,…,bn …}, plural subject terms (PST’s) of the

form qAi, where q Q, A P,  i=1,…,n (and  this  index  can  be  omitted),  and anaphoric

expressions { 1,…, n}.  The  set  P  contains n-place predicates {P,Q,R,…}, where n is  the

number of subject terms the predicate takes as arguments, indicated with parenthesis in front

of the predicate, e.g. “(st1,…,stn)P” (with the exception of a 2-place predicate of identity, ‘=’,

which uses an infix notation, e.g. “st1=st2”).

4.1.1 Sentence formation

If  P  is  an n-place predicate and st1,…,stn are  (not  necessarily  different)  SST’s,  then

(st1,…,stn)P is a sentence (where any of the SST’s may or may not have an index number, but

no different SST’s can share the same one), called an elementary sentence. If A is a sentence,

then the formula A*, obtained by substituting some or all of the occurrences of an SST with a
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PST  in  A  is  also  a  sentence  (bearing,  once  again,  in  mind  that  if  the  PST  has  an  index,  it

differs from any other). If A is a sentence, then a formula A**, obtained by substituting some

or  all  occurrences  of  an  SST  or  a  PST  with  an  anaphoric  expression i,  such  that  in  A**

there exists to the left of ai an occurrence of an SST or a PST which bears the same index i as

the anaphoric expression, is also a sentence. Sentences which contain only predicates and

subject terms are called atomic sentences.

If A and B are sentences, then ( A), (A B), (A B), and  (A B) are also sentences

(the pair of outermost parentheses can be omitted). The sentences which contain truth-

functional connectives are called molecular sentences.

4.1.2. Negative Predication

Another mode of predication in LQPS is negative predication – saying that something isn’t

such-and-such. The formation rule is as follows: if (st1,…,stn)P is an elementary sentence,

then (st1,…,stn) P is a sentence.

Finally, no expression that cannot be generated using these rules is a sentence.

4.1.3 Governing

Another notion we need to keep in mind in our language is that of governing:

(Governing): In case psti is the left most plural subject term in sentence C, and C does

not contain any sentence C’ containing ‘psti’  and  all  the  anaphors  of  any  quantified

noun phrase appearing in C’, we shall say that psti governs C.47

47 Ben-Yami, 2004, pg. 126



C
E

U
eT

D
C

ol
le

ct
io

n

30

4.2 Rules of Inference of LQPS

The proof system that will be considered in this paper contains the propositional calculus (any

one of several classical systems in use will do for our purposes) enriched by the rules of

Universal Elimination (UE), Universal Introduction (UI), Particular Introduction (PI),

Referential Import (RI), Identity Introduction (=I), Identity Elimination (=E), Copula

Negation to Sentence Negation (CNSN), Anaphora Introduction (AI) and Anaphora

Elimination (AE). All the derivations are presented in a method similar to those of Lemmon

and Newton-Smith.48 Any standard natural deduction system for propositional logic will

suffice, with an additional provision that in sentences of the forms P Q, P Q and P Q to

which the rules of a propositional calculus are being applied, all anaphoric expressions in P

must be anaphoric on subject terms occurring within P (and likewise for Q). In other words, P

and Q must be sentences for the rules of the propositional calculus to apply to them. We now

proceed to enrich the natural deduction with the abovementioned rules.

4.2.1 Universal Elimination

Suppose the PST  ‘all  A’ governs sentence (i). Suppose further that sentence (j) is

‘(a)A’. Then, in any line (k), one can write the sentence identical to sentence (i) apart

from the fact that in it ‘a’ has been substituted for ‘all A’. Line (k) relies on the lines

on which lines (i) and (j) rely. Its justification is written ‘UE: i, j’.49

Schematically, the general form of this rule is:

(i) (all A) *

48 Ben-Yami, 2004, pg. 138
49 Ben-Yami, 2004, pg. 143
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(j) (a) A

(k) (a) UE: i, j

*where all A governs (all A)

4.2.2 Universal Introduction

Suppose sentence (i) is the premise ‘(a)A’. Suppose further that sentence (j), which

contains ‘a’, does not rely on any premise which contains ‘a’ apart from (i). Suppose

further that if we substitute ‘a’ by a PST ‘all A’ in (j), then that appearance of ‘all A’

governs sentence (j). Then in any following line (k) one can write the sentence

identical to (j) apart from the fact that in it ‘all A’has been substituted for ‘a’. (k) relies

on all the premises on which (j) relies, apart from (i). Its justification is written ‘UI: j,

i’.50

It should be noted that if there are multiple occurrences of an SST in (j), one occurrence is

substituted by the PST, while others are substituted by the appropriate anaphoric expressions,

similar to the natural tendencies in a language. This familiar procedure appears frequently in

translating predicate calculus sentences. For example, from ‘John is a man’ and ‘John loves

John’  we derive  (given  that  all  other  requirements  are  satisfied)  ‘Every  man loves  himself’,

rather than ‘Every man loves every man’ (which would have a different meaning).

The general scheme for this rule is as follows:

i (i) (a)A Premise

(j) (a) *

50Ben-Yami, 2004, pg. 144
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-{i} (k) (all A) UE: j,i

*does not rely on any premise which contains a other than (i)

4.2.3 Particular Introduction

Suppose sentence (i) contains an SST ‘a’, and that if we substitute a PST ‘some A’ for

‘a’ then this appearance of ‘some  A’ governs sentence (i). Suppose further that

sentence  (j)  is  ‘(a)A’. Then in any subsequent line (k) one can write the sentence

identical to (i) apart from the fact that in it ‘some A’ has been substituted for ‘a’. Line

(k) relies on the lines on which lines (i) and (j) rely. Its justification is written ‘PI: i,

j’.51

The general scheme for this rule is:

(i) (a)

(j) (a) A

(k) (some A) PI: i,j

4.2.4 Referential Import

Suppose sentence (i), which does not rely on sentences (j) or (k) and does not contain

‘a’,  contains a PST ‘qA’, where ‘q’ is either the particular or the universal quantifier,

which governs it. Suppose further that sentence (j) is the premise ‘(a) A’, and sentence

(k)  the  premise  which  is  identical  to  sentence  (i)  apart  for  the  fact  that  ‘a’ has been

substituted for ‘qA’. Now suppose that sentence (l) does not contain ‘a’, and does not

rely on any sentence which contains a apart from (j) and (k). Then in line (m) sentence

51 Ben-Yami, 2004, p.148
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(l)  can  be  rewritten,  relying  on  whatever  sentences  that  sentences  (i)  and  (l)  rely  on,

apart from (j) and (k). Its justification is written ‘RI: i, j, k, l’.

This rule schematically looks as follows:

(i) (qA) *

j (j) (a)A Premise

k (k) (a) Premise

.  .  .

(l) **

-

{j,k} (m) RI: i,j,k,l

   * where j , k , (i) does not contain ‘a’, and ‘qA’ governs (i)

** where no member of -{j,k} contains ‘a’, and (l) does not contain ‘a’

As  Ben-Yami  points  out,  “Referential Import relies  on  the  fact  that  the  use  of  ‘qA’

presupposes reference to A’s (this is the source of its name), namely that some sentence of the

form ‘c is A’ is true.”52 This does not, however, mean that we presuppose existence – in using

the common nouns we assume they refer to something, and not that those things we refer to

actually exist (we can, for example, talk about the characters from the Bible without agreeing

which of them, if any, are real people).

52 Ben-Yami, 2004, p.150, italics added
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4.2.5 Identity Introduction

In any line (i) any sentence of  the form ‘a = a’, where ‘a’ is a singular subject term,

can be written, not relying on any line. Its justification is written ‘=I’. 53

The general form of this rule is:

(i) a = a =I

4.2.6 Identity Elimination

Suppose that sentence (i) is ‘a = b’, where ‘a’ and ‘b’ are singular subject terms, and

that  ‘a’  appears  in  sentence  (j)  too.  Then  in  any  line  (k)  one  can  write  the  sentence

identical to sentence (j) apart from the fact that in it ‘a’ has been substituted by ‘b’ in

some or  all  of  its  appearances.  Line  (k)  relies  on  the  lines  on  which  lines  (i)  and  (j)

rely. Its justification is written ‘=E: i, j’.54

Formally, this rule looks as follows:

(i) a = b

(j) (a)

(k) (b) =E: i,j

53 Ben-Yami, 2004, p.178
54 Ben-Yami, 2004, p.178
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4.2.7 Copula Negation to Sentence Negation

This rule covers two possibilities – proceeding from a sentence negation to negative

predication, or vice versa. Let us consider them in turn, starting with sentence negation to

negative predication:

If sentence (i) is or contains the sentence ‘ (st1,…,stn) P’, where every ‘sti’ is an SST,

then in any following line (j) the sentence identical to sentence (i), but with

‘(st1,…,stn) P’ substituted for ‘ (st1, … stn) P’, can be written. Sentence (j) relies on

the same premises as sentence (i), and its justification is written ‘CNSN: i’.55

Schematically, this rule takes on the following form:

(i) (…, (st1,…,stn) P,…)

(j) (…,(st1,…,stn) P,…) CNSN: i

Next, we observe the other possible direction of the rule – from negative predication to

sentence negation:

If sentence (i) is or contains the sentence ‘(st1,…,stn) P’, where every ‘sti’ is an SST,

then in any following line (j) the sentence identical to sentence (i), but with

‘ (st1,…,stn) P’ substituted for ‘(st1,…,stn) P’, can be written. Sentence (j) relies on

the same premises as sentence (i), and its justification is written ‘CNSN: i’.56

The general form of this rule is as follows:

55 Ben-Yami, 2004, p.143, text adjusted to present notation
56 Ben-Yami, 2004, p.143, text adjusted to present notation
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(i) (…,(st1,…,stn) P,…)

(j) (…, (st1,…,stn) P,…) CNSN: i

4.2.8 Anaphora Introduction

We now turn our attention to the rules for anaphora. First, Anaphora Introduction:

Suppose the sentence (i) contains multiple appearances of an SST ‘sti’.  Then, in any

subsequent line (j)  we can write a sentence identical  to (i)  except that  some or all  of

the appearances of ‘sti’, other than the leftmost one, have been substituted by an

anaphoric expression ‘ n’, where n is the same index that ‘sti’ has, or a new index

assigned to all the appearances of both the ‘sti’ and  ‘ n’.  The  sentence  (j)  relies  on

whatever premises the sentence (i) relies on, and its justification is written AI: i.

This rule schematically looks as follows:

(i) (sti)

(j) (stin,…, n,) AI: i

4.2.9 Anaphora Elimination

The last rule we will introduce is Anaphora Elimination:

Suppose the sentence (i) contains one or more occurrences of an SST stin and one or

more occurrences of an anaphoric expression n, both with the same index n. Then, in

any subsequent line (j) we can write a sentence identical to (i), except that some or all
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of the occurrences of n have been substituted by stin (if no anaphoric expressions

remain, the index can be omitted). The line (j) relies on all the premises that the line (i)

relies on, and its justification is written AE: i.

The general form of this rule is:

(i) (stin,…, n)

(j) (sti) AI: i

This concludes the presentation of the rules of LQPS. Bear in mind that, in addition to these

rules, the natural deduction system of LQPS also contains the rules of derivation of the

propositional calculus.

Before proceeding to prove that this system is complete, in the next section we will

first offer a few considerations which demonstrate that these rules preserve validity, i.e. that

the system is sound.

4.3 The Soundness of LQPS

First of the desirable metatheoretical properties, that of soundness (that all the deductions

preserve validity), is demonstrated in Ben-Yami’s book. The proof is by mathematical

induction – first, a one-line argument is valid, since its only step is a premise. Next, Ben-

Yami demonstrates that every rule of derivation will likewise preserve validity. Let us

consider just the examples of Referential Import, since it is the only one that differs from the

standard rules for quantifiers:
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“Suppose the sentences on which sentence (m) relies are true. In that case, all

sentences on which sentence (i) relies are true, and sentence (i) is true too. If sentences

(j) and (k) were true, then all the sentences on which sentence (l) relies were true, and

it were true too. Since sentence (i) is true, then according to the substitution rule given

above (§  8.6, p. 126), there is a ‘c’ so that ‘c is an A’ is true, and if we substitute the

governing appearance of ‘q A’ by ‘c’ in (i), we get a true sentence. Let us substitute

‘a’ by ‘c’ in our argument. Since all derivation rules rely only on sameness of definite

singular noun phrases and not on the specific definite noun phrase used, the argument

up to line (m-1) remains valid. Now since ‘c is an A’ is true, premise (j) is now true.

Moreover, since ‘a’ did not appear in (i), (i) remained unchanged after the substitution,

and it is still true. But (k) is now the result of substituting ‘c’ for the governing

appearance  of  ‘q  A’  in  (i),  and  is  therefore  true.  And  since  (j)  and  (k)  are  the  only

premises  containing  ‘a’  on  which  sentence  (l)  relies,  all  other  premises  on  which  (l)

relies  remain  true  after  the  substitution.  So  sentence  (l)  relies  only  on  true  premises,

and so sentence (l), that is, sentence (m), is true, and RI preserves validity.”57

Ben-Yami provides a corresponding proof for all of the remaining rules in his system and thus

demonstrates that  it  preserves validity,  and is therefore sound. We next turn our attention to

the central topic of my thesis, the completeness proof for LQPS.

4.4 The Completeness of LQPS

While Ben-Yami does not provide a completeness proof in his book, it has nonetheless been

demonstrated in the 2004 article by Lanzet and Ben-Yami. However, as was noted earlier,

57 Ben-Yami, 2004, p.151
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that proof is model theoretic, and there are certain reasons to be dissatisfied with such proofs

in general. Let us consider those in order to motivate an alternative approach.

A logical proof system has the metatheoretical property of completeness just in case

every valid argument is provable. Validity represents a certain relation of the truth values of

premises  to  that  of  the  conclusion  (if  the  premises  are  all  true,  so  is  the  conclusion),  while

provability concerns merely the ways of deriving some sentences from others according to a

set of rules. Since provability is not concerned with the truth values of sentences, a theory of

truth is needed to connect validity and provability. This is the role model theory plays in

supplying a completeness proof for a given system.

4.4.1 Objections to Model Theory58

The model theory is not without its problems, however. The first concerns the model

theory  as  a  theory  of  meaning.  Since  it  is  merely  concerned  with  form of  sentences,  it  will

regard widely different sets of predicates as uniform, and treat their connections to a vast

array of particulars in the same manner. For instance, model theory makes no distinction

between persons, their character traits, and events. It is hard to grasp any sense of a “domain”

in which it could straightforwardly be applied to all these and many other kinds of things that

normally fall under it.

An additional argument for restraint in use of a model theory in a completeness proof

is purely logical. Since validity is defined as a conditional relation between the premises and

the conclusion of an argument, and completeness is a conditional holding between validity

and  provability,  it  would  suffice  to  provide  a  theory  of  the relations of truth values. Model

theory goes one step further, however, in developing a theory of truth. It would be a desirable

result if a completeness proof could be provided without needlessly resorting to that stronger

58 H. Ben-Yami, Tuth and Proof without Models, manuscript, p.1
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commitment.  It  is  my goal  to  provide  such  a  proof  in  my thesis.  To  do  so,  a  substitutional

approach, first advocated by Ruth Barcan Marcus59, will be used instead – “Instead of the

Tarskian rules of Model Theory, which by relying on interpretations in a domain of the non-

logical symbols of a language specify the truth value of its sentences, including quantified

sentences  (objectual  semantics),  we  give  rules  that  relate  the  truth  value  of  a  quantified

sentence to those of its substitution instances.”60 As an illustration, a substitutional account

would handle the relation of truth values of quantified sentences to those of their instances via

the following rules:

Universal rule: the sentence of the form ‘ (all  A)’,  where  ‘all A’ governs the

sentence, is true just in case so are all the instances of substitution, in that sentence, of

‘all A’ by an ‘a’, for which “(a) A” is true.

Particular rule:  the  sentence  of  the  form ‘ (some  A)’, where ‘some A’ governs the

sentence, is true just in case so is an instance of substitution, in that sentence, of ‘some

A’ by an ‘a’, for which “(a)A” is true.

4.4.2 Universal Reduction

In the completeness proof of this thesis, I will be concerned only with the particular

quantifier. The justification for this is familiar from the predicate calculus – the universal

quantifier can be defined, and substituted in sentences, by . Therefore, for any

formula of the form ( )x x , there is an equivalent formula of the form ( )x x .

59 Ben-Yami, manuscript, p.4
60 Ben-Yami, manuscript, p.3
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Consequently, in standard Henkin-style completeness proofs, the universal quantifier is,

roughly speaking, reduced to the existential one, and only the latter is tackled.

For similar reasons I will accept the principle of Universal Reduction:

(Universal Reduction): For any sentence of LQPS which contains any number of

universal quantifiers, there is an equivalent sentence ’ which contains no universal

quantifiers.

Like above, the sentence ’ will likely contain a number of particular quantifiers combined

with negations. However, the proof of Universal Reduction is not a straightforward matter

and is more complicated (as will be obvious from the remainder of this section) than the proof

of the corresponding principle for the Predicate Calculus. In particular, the introduction of a

new mode of predication, namely the negative predication, seems to complicate matters.

For this reason I will leave the proof of Universal Reduction for further research, and

will  use  it  here  as  an  assumption.  However,  in  order  to  demonstrate  the  plausibility  of  this

assumption, I will demonstrate in this section a limited case of Universal Reduction for

sentences which contain the universal quantifiers, are governed by a PST, and are of

complexity not greater than 2. Let us define complexity first:

(Complexity): complexity of a sentence A (‘comp(A)’) is 0 if A is an elementary

sentence; if  A  then comp(A)=comp( )+1, and if  A ( ), A ( ) or

A ( ), the comp(A)=max(comp( ),comp( ))+1, where the maximum

function (‘max’)  picks  out  the  greater  of  the  two  numbers.  Furthermore,  if  ‘q’ is  a

quantifier, ‘a’ is an SST, ‘ (qA)’ is a sentence governed by the PST ‘qA’ and (a) is

a sentence obtained by substituting ‘a’ for  the  PST  in  ‘ (qA)’, then
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comp( (qA))=comp( (a))+1. Lastly, substituting one SST by another does not

change the complexity of a sentence (the proof of this, which will not be supplied

here, is inductive).

From  the  definition  of  complexity  above  we  can  see  that  the  set  of  sentences  we  are

concerned with, which contain the universal quantifier and have complexity no greater than 2,

will consist of the sentences of the following forms:

1) (All S)P

2) (All S) P

3) (All S1)P ( 1)Q

4) ((All S1)P  ( 1)Q)

5) ((All S1)P ( 1)Q)

6) (All S,Some P)R

7) (Some S,All P)R

8) (All S,All P)R

I will next provide a proof for each of these types sentences, which will demonstrate that each

of them is equivalent to some sentence which contains no universal quantifiers. The

convolutedness  of  some of  the  equivalent  sentences  need  not  concerns  us  –  these  are  just  a

tool for simplification of the completeness proof itself, and I do not aim to produce natural-

sounding sentences.

Each of the equivalences will be presented as a pair of proofs, the first demonstrating

that the equivalence holds in the direction from left to right, and the second proving that it

holds from right to left.
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Proof 1: (All S)P (Some S) P

Proof 1.1: (All S)P (Some S) P

1 (1) (All S)P Premise

2 (2) (Some S) P Premise

3 (3) (c)S Premise

4 (4) (c) P Premise

1,3 (5) (c)P UE:1,3

4 (6) (c)P CNSN:4

1,3,4 (7) I:5,6

1,2 (8) RI:2,3,4,7

1 (9) (Some S) P I:2,8

Proof 1.2: (Some S) P (All S)P

1 (1) (Some S) P Premise

2 (2) (c)S Premise

3 (3) (c)P Premise

3 (4) (c) P CNSN:3

2,3 (5) (Some S) P PI:2,4

1,2,3 (6) I:1,5

1,2 (7) (c)P I:3,6

1,2 (8) (c)P E:7

1 (9) (All S)P UI:2,8

Proof 2: (All S) P (Some S) P

Proof 2.1: (All S) P (Some S) P

1 (1) (All S) P Premise

2 (2) (Some S)P Premise

3 (3) (c)S Premise

4 (4) (c)P Premise

1,3 (5) (c) P UE:1,3
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1,3 (6) (c)P CNSN:5

1,3,4 (7) I:5,6

1,2 (8) RI:2,3,4,7

1 (9) (Some S) P I:2,8

Proof 2.2: (Some S) P (All S) P

1 (1) (Some S) P Premise

2 (2) (c)S Premise

3 (3) (c) P Premise

3 (4) (c) P CNSN:3

3 (5) (c)P E:4

2,3 (6) (Some S) P PI:2,5

1,2,3 (7) I:1,6

1,2 (8) (c) P I:3,7

1,2 (9) (c) P E:8

1 (10) (All S) P UI:2,9

Proof 3: ((All S1)P ( 1)Q) ( ((Some S1) P ( 1) Q))

Proof 3.1: ((All S1)P ( 1)Q)  ( ((Some S1) P ( 1) Q))

1 (1) (All S1)P ( 1)Q Premise

2 (2)  (Some S1) P ( 1) Q Premise

3 (3) (c)S Premise

4 (4) (c1) P ( 1) Q Premise

4 (5) (c) P (c) Q AE:4

1,3 (6) (c1)P ( 1)Q UE:1,3

1,3 (7) (c)P (c)Q AE:6

8 (8) (c) P Premise

8 (9) (c)P CNSN:8

1,3 (10) (c)P E:7

1,3,8 (11) I:9,10

12 (12) (c) Q Premise

12 (13) (c)Q CNSN:12
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1,3 (14) (c)Q E:7

1,3,12 (15) I:13,14

1,3,4 (16) E:5,8,11,12,15

1,2 (17) RI:2,3,4,16

1 (18) ((Some S1) P ( 1) Q) I:2,17

Proof 3.2:( ((Some S1) P ( 1) Q)) ((All S1)P ( 1)Q)

1 (1) ((Some S1) P ( 1) Q) Premise

2 (2) (c)S Premise

3 (3) ((c1)P ( 1)Q) Premise

3 (4) ((c)P (c)Q) AE:3

3 (5) (c)P (c)Q Prop. Calc.:4

6 (6) (c)P Premise

6 (7)  (c) P CNSN:6

6 (8) (c) P (c) Q I:7

9 (9) (c)Q Premise

9 (10) (c) Q CNSN:9

9 (11) (c) P (c) Q I:10

3 (12) (c) P (c) Q E:5,6,8,9,11

3 (13) (c1) P ( 1) Q AI:12

2,3 (14) (Some S1) P ( 1) Q PI:2,13

1,2,3 (15) I:1,14

1,2 (16) ((c1)P ( 1)Q) I:3,15

1,2 (17) (c1)P ( 1)Q E:16

1 (18) (All S1)P ( 1)Q UI:2,17

Proof 4:((All S1)P  ( 1)Q) ( ((Some S1) P  ( 1) Q))

Proof 4.1: ((All S1)P  ( 1)Q)  ( ((Some S1) P  ( 1) Q))

1 (1) (All S1)P  ( 1)Q Premise

2 (2) (Some S1) P  ( 1) Q Premise

3 (3) (c)S Premise
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4 (4) (c1) P  ( 1) Q Premise

4 (5) (c) P  (c) Q AE:4

1,3 (6) (c1)P  ( 1)Q UE:1,3

1,3 (7) (c)P  (c)Q AE:6

8 (8) (c)P Premise

4 (9) (c) P E:5

4 (10) (c) P CNSN:9

4,8 (11) I:8,10

12 (12) (c)Q Premise

4 (13) (c) Q E:5

4 (14) (c) Q CNSN:13

4,12 (15) I:12,14

1,3,4 (16) E:7,8,11,12,15

1,2 (17) RI:2,3,4,16

1 (18) ((Some S1) P  ( 1) Q) I:2,17

Proof 4.2: ( ((Some S1) P  ( 1) Q)) ((All S1)P  ( 1)Q)

1 (1) ((Some S1) P  ( 1) Q) Premise

2 (2) (c)S Premise

3 (3) ((c1)P  ( 1)Q) Premise

3 (4) ((c)P  (c)Q) AE:3

3 (5) (c)P (c)Q Prop. Calc.:4

3 (6) (c)P E:5

3 (7)  (c) P CNSN:6

3 (8) (c)Q E:5

3 (9)  (c) Q CNSN:8

3 (10) (c) P (c) Q I:7,9

3 (11) (c1) P ( 1) Q AI:10

2,3 (12) (Some S1) P  ( 1) Q PI:2,11

1,2,3 (13) I:1,12

1,2 (14) ((c1)P  ( 1)Q) I:3,13

1,2 (15) (c1)P  ( 1)Q E:14
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1 (16) (All S1)P  ( 1)Q UI:2,16

Note that in the previous two proofs (namely, 3.2 and 4.2) a shortcut has been taken to avoid

the proofs being excessively long. As this is a well known equivalence that relies merely on

the propositional calculus, this shortcut does not affect the quantificational part in any way.

Proof 5:((All S1)P ( 1)Q) ( ((Some S1)P  ( 1) Q))

Proof 5.1: ((All S1)P ( 1)Q)  ( ((Some S1)P  ( 1) Q))

1 (1) (All S1)P ( 1)Q Premise

2 (2) (Some S1)P  ( 1) Q Premise

3 (3) (c)S Premise

4 (4) (c1)P  ( 1) Q Premise

4 (5) (c)P  (c) Q AE:4

1,3 (6) (c1)P ( 1)Q UE:1,3

1,3 (7) (c)P (c)Q AE:6

4 (8) (c)P E:5

1,3,4 (9) (c)Q E:7,8

4 (10) (c) Q E:5

4 (11) (c) Q CNSN:10

1,3,4 (12) I:9,11

1,2 (13) RI:2,3,4,12

1 (14) ((Some S1)P  ( 1) Q) I:2,13

Proof 5.2:( ((Some S1)P  ( 1) Q)) ((All S1)P ( 1)Q)

1 (1) ((Some S1)P  ( 1) Q) Premise

2 (2) (c)S Premise

3 (3) ((c1)P ( 1)Q) Premise

3 (4) ((c)P (c)Q) AE:3

5 (5) (c)P Premise

6 (6) (c)P Premise
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5,6 (7) I:5,6

5,6 (8) (c)Q E:7

5 (9) (c)P (c)Q I:6,8

3,5 (10) I:4,9

3 (11) (c)P I:5,10

3 (12) (c)P E:11

13 (13) (c)Q Premise

14 (14) (c)P Premise

13,14 (15) (c)P (c)Q I:13,14

13,14 (16) (c)Q E:15

13 (17) (c)P (c)Q I:14,16

3,13 (18) I:4,17

3 (19) (c)Q I:13,18

3 (20)  (c) Q CNSN:19

3 (21) (c)P  (c) Q I:12,20

3 (22) (c1)P  ( 1) Q AI:21

2,3 (23) (Some S1)P  ( 1) Q PI:2,22

1,2,3 (24) I:1,23

1,2 (25) ((c1)P ( 1)Q) I:3,24

1,2 (26) (c1)P ( 1)Q E:25

1 (27) (All S1)P ( 1)Q UI:2,26

Proof 6: (All S,Some P)R ((Some S1)S ( 1,Some P)R)

Proof 6.1: (All S,Some P)R ((Some S1)S ( 1,Some P)R)

1 (1) (All S,Some P)R Premise

2 (2) (Some S1)S ( 1,Some P)R Premise

3 (3) (c)S Premise

4 (4) (c1)S ( 1,Some P)R Premise

4 (5) (c)S (c,Some P)R AE:4

1,3 (6) (c,Some P)R UE:1,3

4 (7) (c,Some P)R E:5

1,3,4 (8) I:6,7
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1,2 (9) RI:2,3,4,8

1 (10) ((Some S1)S ( 1,Some P)R) I:2,9

Proof 6.2: ((Some S1)S ( 1,Some P)R)  (All S,Some P)R

1 (1) ((Some S1)S ( 1,Some P)R) Premise

2 (2) (c)S Premise

3 (3) (c,Some P)R Premise

2,3 (4) (c)S (c,Some P)R I:2,3

2,3 (5) (c1)S ( 1,Some P)R AI:4

2,3 (6) (Some S1)S ( 1,Some P)R PI:2,5

1,2,3 (7) I:1,6

1,2 (8) (c,Some P)R I:3,7

1,2 (9) (c,Some P)R E:8

1 (10) (All S,Some P)R UI:2,9

Proof 7: (Some S,All P)R ((Some S1)S ( 1,Some P) R

Proof 7.1: (Some S,All P)R  ((Some S1)S ( 1,Some P) R

1 (1) (Some S,All P)R Premise

2 (2) (c)S Premise

3 (3) (c,All P)R Premise

4 (4) (c,Some P) R Premise

5 (5) (d)P Premise

6 (6) (c,d) R Premise

6 (7) (c,d) R CNSN:6

3,5 (8) (c,d)R UE:3,5

3,5,6 (9) I:7,8

3,4 (10) RI:4,5,6,9

3 (11) (c,Some P) R I:4,10

2,3 (12) (c)S (c,Some P) R I:2,11

2,3 (13) (c1)S ( 1,Some P) R AI:12

2,3 (14) (Some S1)S ( 1,Some P) R PI:2,13
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1 (15) (Some S1)S ( 1,Some P) R RI:1,2,3,14

Proof 7.2:((Some S1)S ( 1,Some P) R)  (Some S, All P)R

1 (1) (Some S1)S ( 1,Some P) R Premise

2 (2) (c)S Premise

3 (3) (c1)S ( 1,Some P) R Premise

3 (4) (c)S (c,Some P) R AE:3

5 (5) (d)P Premise

6 (6) (c,d)R Premise

6 (7)  (c,d) R CNSN:6

5,6 (8) (c,Some P) R PI:5,7

3 (9) (c,Some P) R E:4

3,5,6 (10) I:8,9

3,5 (11) (c,d)R I:6,10

3,5 (12) (c,d)R E:11

3 (13) (c,All P)R UI:5,12

2,3 (14) (Some S,All P)R PI:2,13

1 (15) (Some S, All P)R RI:1,2,3,14

Note that the previous two proofs contain unnatural formulations “Some S is S.” As stated

earlier, these sentences are just an auxiliary step in establishing the completeness of LQPS.

We  can  freely  use  the  more  natural  sentences  containing  the  universal  quantifiers  when

dealing with actual proofs in the system.

Proof 8: (All S,All P)R (Some S,Some P) R

Proof 8.1: (All S,All P)R (Some S,Some P) R

1 (1) (All S,All P)R Premise

2 (2) (Some S,Some P) R Premise

3 (3) (c)S Premise

4 (4) (c, Some P) R Premise
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5 (5) (d)P Premise

6 (6) (c,d) R Premise

6 (7) (c,d) R CNSN:6

1,3 (8) (c,All P)R UE:1,3

1,3,5 (9) (c,d)R UE:5,8

1,3,5,6 (10) I:7,9

1,3,4 (11) RI:4,5,6,10

1,2 (12) RI:2,3,4,11

1 (13) (Some S,Some P) R I:2,12

Proof 8.2: (Some S,Some P) R (All S,All P)R

1 (1) (Some S,Some P) R Premise

2 (2) (c)S Premise

3 (3) (d)P Premise

4 (4) (c,d)R Premise

4 (5)  (c,d) R CNSN:4

3,4 (6) (c,Some P) R PI:3,5

2,3,4 (7) (Some S,Some P) R PI:2,6

1,2,3,4 (8) I:1,7

1,2,3 (9) (c,d)R I:4,8

1,2,3 (10) (c,d)R E:9

1,2 (11) (c,All P)R UI:3,10

1 (12) (All S,All P)R UI:2,11

These proofs will serve to establish the plausibility of our assumption of Universal Reduction.

They can be used as an initial step of a much larger inductive proof of that principle, but as

this  digression  has  proven  to  be  a  long  one  as  it  is,  this  is  left  for  further  research.  Note,

however, that these results straightforwardly lead to the principle of Universal Reduction for

sentences of greater complexity. First, by contraposing these equivalences we can establish

how to eliminate the universal quantifier for negations of any sentence of the type 1-8.



C
E

U
eT

D
C

ol
le

ct
io

n

52

Second, we can use these to eliminate the universal quantifier in any subsentence (of the type

1-8) of a larger sentence.

4.4.3 Substitutional Approach to Completeness Proof

In the substitutional approach, every elementary sentence is assigned a truth value regardless

of  the  assignments  of  truth  values  to  any  other  elementary  sentence.  This  is  similar  to  how

truth values are assigned to propositional variables is the propositional logic. Next, we

connect the truth values of other sentence to the assignments of truth values to the elementary

sentences. Next, the atomic sentences, the rules for which we have already seen in arguing the

advantages of the substitutional approach to the model-theoretic one (of which we will be

using only the one for the particular quantifier, due to the principle of universal reduction):

 (Particular Rule): the sentence of the form ‘ (some P)’, where ‘some P’ governs the

sentence, is true just in case so is an instance of substitution, in that sentence, of ‘some

P’ by an ‘a’, for which “(a) P” is true.

Molecular sentences are the next in line. These are straightforward and familiar – an

assignment of truth values assigns ‘true’ to A just  in case it  assigns ‘false’ to A, to A B

just in case it assigns ‘true’ to both A and B, to A B just in case it assigns ‘true’ to A or B,

and to A B just in case it assigns ‘false’ to A or ‘true’ to B.

Next, we define the rules for negative predication and anaphora:

(Negative Predication Rule):  the  sentence  of  the  form  (st1,…,stn) P  is  true  just  in

case a sentence (st1,…,stn)P is false.
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(Anaphora Rule): a sentence of the form (…,stin,…, n,…) , where ‘stin‘ is a singular

or plural subject term, n is an anaphoric expression and they both (or all) share the

same index n,  is  true  just  in  case  a  sentence  of  the  form (…,stin,…) ,  where  all

occurrences of ‘ n‘have been substituted by ‘stin’, is true.

Before proceeding we still need to define the truth values for sentences containing identity:

(Law of Identity):  ‘a = a’  is  true (namely, all  sentences of this form are true on any

assignment of truth values)61

(Indiscernibility of Identicals):  If  ‘a  =  b’ is true and ‘(…, a, …) P’ an elementary

formula which contains ‘a’,  then  if  ‘(…  ,a, …) P’ is true then so is ‘(…,b, …) P’

(where ‘b’ has replaced all or some occurrences of ‘a’ in (…, a, …)P).62

Notice that sentences of the form ‘a=b’ are elementary sentences, and therefore whether they

are  in  fact  true  will  depend  on  the  particular  assignment  of  truth  values  to  elementary

sentences. We now need to show that the Indiscernibility of Identicals generalizes:

(Indiscernibility of Identicals Generalization):  for  any  pair  of  sentences (a) and

(b), such that (a) is a sentence that contains ‘a’, and (b) is a sentence obtained

by substituting some or all instances of ‘a’  with ‘b’ in (a),  it  holds that if  ‘a=b’ is

true then, if ‘ (a)’is true so is ‘ (b)’.

61 Ben-Yami, manuscript, p.8
62 Ben-Yami, manuscript, p.8
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The proof for Indiscernibility of Identicals Generalization (IIG) is by induction on the

complexity of the formula. As before, the complexity is defined as:

(Complexity): complexity of a sentence A (‘comp(A)’) is 0 if A is an elementary

sentence; if  A  then comp(A)=comp( )+1, and if  A ( ), A ( ) or

A ( ), the comp(A)=max(comp( ),comp( ))+1, where the maximum

function (‘max’)  picks  out  the  greater  of  the  two  numbers.  Furthermore,  if  ‘q’ is  a

quantifier, ‘a’ is an SST, ‘ (qA)’ is a sentence governed by the PST ‘qA’ and (a) is

a sentence obtained by substituting ‘a’ for  the  PST  in  ‘ (qA)’, then

comp( (qA))=comp( (a))+1. Lastly, substituting one SST by another does not

change the complexity of a sentence.

Now let us proceed with the inductive proof of Indiscernibility of Identicals Generalization:

IIG – Basic step
The  sentences  of  complexity  0  are,  by  the  definition  of  complexity,  elementary

sentences. As Indiscernibility of Identicals was defined for elementary sentences, its

generalization holds for the basic step.

Next,  we  need  to  demonstrate  that  if  IIG holds  for  the  sentences  of  complexity n or less, it

holds for sentences of complexity n+1, for any n.

IIG – Inductive step
Suppose that a=b holds. Suppose further that A is a sentence of complexity n+1. If

A (a), then the complexity of (a) is n. By inductive hypothesis, it is true just

in case (b) is. But A is true just in case (a) is false. Therefore, A is true just in case
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(b) is false. Since (b) is false just in case (b) is true (by definition of truth

value assignments for negation), A is true just in case (b) is. The proofs for the

other truth-functional connectives proceed along similar lines.

If  A  ( (some  B))(a), then, by Particular Rule, A is true just in case so is some

sentence ( (c))(a)  (where (c)B is true). But, since the complexity of  ( (c))(a) is n,

IIG holds for it by inductive hypothesis. Therefore, it is true just in case  ( (c))(b) is.

This, in turn, is true, once again by the Particular Rule, just in case ( (some B))(b)is.

Therefore, A is true just in case ( (some  B)) (b)  is  as  well.  This  concludes  the

inductive step of the proof of IIG.

4.4.4 Henkin Theory

Henkin Theory is a set of axiomatic schemas which we will use to establish a connection

between LQPS and  the  propositional  calculus,  which  we know is  complete.  In  the  standard

procedure for Henkin-style proofs we first define the members of the Henkin Theory. But, to

do this, we must first define a language LH, which represents an expansion of our language

meant to accommodate the Henkin Theory, by way of Witnessing SST’s.

4.4.4.1 Witnessing SST’s

For any formula (Some P)  of LQPS, we define a witnessing singular subject term w(P)
63.

Adding this witnessing SST to our language expands it into the language L1, which will

contain some new sentences, themselves of the form (Some P) . We repeat the process for

these, thereby generating L2, and go on until we generate the Henkin language LH, which

63 This can be understood as as definite description P-that-is-
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expands LQPS with symbols belonging to any expanded language Ln, for any n. The stage of

generation of the symbol (“n”) is  called its date of birth. No witnessing SST will occur in a

language with lower n than its date of birth.

Now that we have defined LH, we can define Henkin theory -  a set of sentences of LH,

with one of the four following forms:

(Henkin Theory):

(H1): (Some P) ((w(P) )  (w(P) )P)

(H2): ((c)P (c) ) (Some P)

(H3): c=c

(H4): c=d ( (c) (d))

(H5.1): (st1,…,stn) P (st1,…,stn)P

(H5.2): (st1,…,stn)P (st1,…,stn) P

(H6.1): (…,sti,…)  (…,stin,…, n,…)

(H6.2): (…,stin,…, n,…) (…,sti,…)

The first axiom can be understood as saying that is some P is , the that-P-which-is-  is

(and also P). The second axiom corresponds to the rule of Particular introduction, the third to

Identity Introduction (and to the Law of Identity), and the fourth to the Identity Elimination

(and Indiscernibility of Identicals Generalization). Axioms H5.1 and H5.2 correspond to the

two directions  of  the  rule  CNSN,  and  the  axioms H6.1  and  H6.2  to  the  rules  for  Anaphora

Introduction and elimination, respectively. Therefore, the axioms H2-H6.2 are theorems of

LQPS.

In our completeness proof, we need to demonstrate that every valid argument is

provable. In order to do that, let us first define validity:
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(Validity): an argument 1,…, n is  valid  just  in  case  every  assignment  of  truth

values that assigns truth to all the sentences 1,…, n also assigns truth to even if

we add names to our language.

Let us now take a valid argument of LQPS, T  S (where T is a set of sentences of LQPS, and

S is a sentence of LQPS). Since LH differs from LQPS only in having additional names, T  S

is valid in LH as well. We need to make this argument propositionally valid, and this we will

do by defining a Henkin assignment:

(Henkin Assignment): Henkin Assignment A “is  an  assignment  that  assigns  truth

values to the sentences of LH while respecting the rules for the connectives of the

propositional calculus, and that A also makes all the Henkin axioms true.” 64

It can be shown that

(Lemma 2): “A also respects the rules for the relation of the truth value of a quantified

sentence to those of its instances and the rules for truth assignments that involve

identity,”65 anaphora and negative predication.

L2 -Proof:

To prove this, let us first examine the particular quantifier. Since A follows the

rules of the propositional calculus and makes all the sentences of the Henkin Theory

true, by H1 it  will  follow  that  if  any  sentence  of  the  form  “(Some P) ” which is

64 Ben-Yami, manuscript, p.11
65 Ben-Yami, manuscript, p.11
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governed by “Some P”  is  true,  so  is  the  sentence  of  the  form  “(a) ” (namely,

“(w(P) ) ”), for which (a)P holds. So the Particular rule is satisfied in the direction

from left  to  right.  Likewise,  if  a  sentence  of  the  form (a) ,  such  that  (a)P holds, is

true,  then  by  H2, which A satisfies,  so  is  the  sentence  of  the  form  (Some P) .

Therefore, the Henkin Assignment satisfies the Particular rule.

Next, let us observe the rules for identity. Since A satisfies all the instances of

H3, the Law of Identity straightforwardly holds – every sentence of the form “a=a” is

true. Next, since A satisfies H4, if ‘a=b’ holds, then, if (…,a,…)  is true, the sentence

(…,b,…)  will be true as well (where the latter has been obtained, as before, by

substituting some or all instances of ‘a’  by  ‘b’  in  the  former  one).  Therefore,  the

Indiscernibility of Identicals Generalised holds under A as well.

Finally, let us consider the rules for negative predication and anaphora. Since A

satisfies H5.1 and H5.2, sentence of the form (st1,…,stn) P will be true just in case so

is the sentence (st1,…,stn)P.  But this is  true just  in case (st1,…,stn)P is false, so the

Negative Predication rule is satisfied. Since A satisfies axioms H6.1 and H6.2,

sentence of the form (…,stin,…, n,…) will  be  true  just  in  case  so  is  the  sentence

(…,sti,…) , and therefore the Anaphora Rule holds. This concludes our proof.

Let us observe our valid inference T  S again - as it was stated earlier, it is also valid in LH.

Therefore,  the  inference  T,  H  S  (where  H is  the  Henkin  theory)  is  valid  in  LH as  well  –

adding premises to a valid argument does not change its validity, and LH contains the names

necessary for H. Now, notice that every assignment of truth values that makes this argument

valid will be a Henkin assignment – it will make all the Henkin axioms true. Therefore, by

Lemma  2,  that  assignment  makes  T,  H   S  propositionally  valid.  By  the  completeness  of

propositional logic, it follows that S is provable from T and H: T, H  S. What remains to be
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shown now is that, if T, H  S is propositionally provable, then T  S is provable in LQPS –

the Elimination Theorem. We need to bear in mind that in LQPS, sentences of the form H2 –

H6.2  are  theorems  and  that,  since  LQPS  is  an  extension  of  the  propositional  calculus  with

some additional rules, whatever is propositionally valid will be valid in LQPS.

4.4.5 Elimination Theorem

(Elimination Theorem): If S is a sentence of LQPS provable from sentences

1,…, n together with the sentences of Henkin theory, then S is provable from

1,…, n alone.

To demonstrate this theorem, we will need to prove some propositions and lemmas first. Let

T be a set of sentences of our language, and p, q and r sentences of our language.

(Deduction Theorem):  If T, p q, then T p q .

Deduction Theorem – Proof:

This theorem follows from the definition of I rule of the propositional calculus –

with T as a list of premises, assume p.  By  T, p q we know we can now infer q.

Therefore, by I we can infer p q , and therefore T p q .

(Proposition 1): If T, p1,…,pn q, and for every i=1,…,n, T pi, then T q.

Proposition 1 – Proof:
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If T, p1,…,pn q, then by the repeated application of the Deduction Theorem we know

that T p1 (p2 (p3… (pn q)…).  Since  T p1,  by  the  application  of E we

obtain  T   (p2 (p3… (pn q)…).  By  the  repeated  application  of  the  same

procedure for every i=1,…,n, we finally obtain T q.

(Lemma 3.1): If T p q and T p q , then T q.

Lemma 3.1 – Proof:

This  lemma  follows  from  the  fact  that  ‘ p p ’  is  a  theorem  of  our  system,  T  

p p .  From  there  and  the  assumptions  T  p q  and  T  p q , by the

application of E, it follows that T q.

(Lemma 3.2): If T  (p q) r, then T p r  and T q r

Lemma 3.2 – Proof:

Once again, this lemma follows by elementary propositional calculus. By assuming

either p  or q we can obtain p q , and r from  there,  in  either  case,  by E. We

then obtain the respective conditionals by I.

(Lemma 4): If c is an SST that does not occur anywhere in T, (Some P), or q, then if

T  ( (c) (c)P) q, then T (Some P) q.

Lemma 4 – Proof:

Let T be the set of premises, and introduce as a premise, in some line (i), that (Some

P). Furthermore introduce as a premise (for RI) in some line (j) that (c), and (c)P in
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some line (k). Combining the last two assumptions with a conjunction, and by T 

( (c) (c)P) q, we know we can derive q in some line (m). Now, since q does not

contain c, we can conclude that q from  the  steps  (i),  (j),  (k)  and  (m).  This  line  will

depend, among others, on the line (i), which means we can now derive, by I,

(Some P) q (with premises T).

The scheme of this proof is the following:

T (1)-(i-1) T Premise(s)

i (i) (Some P) Premise

j (j) (c) Premise

k (k) (c)P Premise

j,k (k+1) (c) (c)P I:j,k

T (m-1) ( (c) (c)P) q

T,j,k (m) q E:k+1,m-1

T,i (m+1) q RI:i,j,k,m

T (m+2) (Some P) q I:i,m+1

This proof satisfies all the requirements for RI – as, by assumption, (Some P) does

not contain ‘c’, and this is the only premise (i) relies on, the introduction of premises

(j) and (k) conforms to the restraints laid out by RI – it holds that j {i}, k {i}, and (i)

does  not  contain  ‘c’.  Likewise  for  the  step  (m)  –  as  neither  T  nor q contain ‘c’, the

only premises that (m) relies on that contain ‘c’ are j and k, and (m) does not contain

‘c’. Thus, the move to (m+1) is warranted, and this in turn demonstrates in (m+2) that

T (Some P) q.
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The last lemma we need to demonstrate before proceeding with the proof of the Deduction

theorem is Lemma 5, which states we can eliminate the sentences containing witnessing

singular subject terms:

(Lemma 5): Suppose c is an SST that does not occur anywhere in T, (Some P), or q.

Then, if T, (Some P) ( (c) (c)P) q, then T q.

Lemma 5 – Proof:

By applying the deduction theorem on the argument T, (Some P) ( (c) (c)P) 

q, we obtain T  ( (Some P) ( (c) (c)P)) q. Then, by Lemma 3.2 we get the

statements that (1) T ( (Some P)) q and (2) T  ( (c) (c)P) q. Applying

Lemma 4 on (2) (and given our assumptions) we get (3) T (Some P) q. Finally,

applying Lemma 3.1 on (1) and (3), we obtain T q.

After these initial considerations, we can proceed with the proof of the Elimination Theorem

itself. We demonstrate it by induction on the number of sentences of H, call it k, that a proof

contains.

Elimination Theorem – Proof:

Elimination theorem - Basic step

If k =  0,  the  elimination  theorem  vacuously  holds  as  there  are  no  sentences  of  H  to

eliminate.
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Elimination Theorem - Inductive Step

We now wish to show that, if Elimination theorem holds for sentences whose proofs

contain k or less sentences of H, it also holds for any sentence S the (minimal) proof of

which contain k+1 sentences of H. There are two cases to consider here. First, if one of

the sentences of H in the proof is of the form H2-H6.2. As all the sentences of those

forms are theorems, it follows that this sentence is provable from 1,…, n and the

other k Henkin axioms. Therefore, by Proposition 1, the sentence S is provable from

1,…, n and the other k Henkin axioms alone. Then it follows, by the inductive

hypothesis, that it is provable just from 1,…, n. The second case is if all the Henkin

axioms in  the  (minimal)  proof  of  S  are  of  the  form H1.  In  that  case  we choose  one

instance of H1 the witnessing SST of which is of the same or greater date of birth than

any witnessing constant of any other instance of H1 within the proof. Since this

witnessing constant does not appear in any of the other axiom instances, and neither

does it appear in 1,…, n or S (as they are also sentences of the non-extended

language LQPS), by Lemma 5 it can be eliminated. We now have a proof with k

instances of the axioms of H, and by the inductive hypothesis these can be eliminated.

This concludes the demonstration of the Elimination Theorem.

If we now apply the Elimination theorem to the propositionally provable argument T, H  S,

it follows that T  S is provable in LQPS. Therefore, if an argument T  S is valid in LQPS,

it is also provable in LQPS. This concludes our non-model-theoretic completeness proof of

LQPS.
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Conclusion

This thesis has served to demonstrate three important points. First, as ubiquitous as it may be,

Frege’s logic is not the only way of formalizing the natural language. In fact, many other

systems are able to perform the function, while at the same time maintaining the surface

structure of the natural language in their respective logical forms. Therefore, the predicate

calculus represents an unnecessary mathematization of natural language. This is a fault that

LQPS avoids.

The  second  point  demonstrated  is  that  LQPS  retains,  and  in  fact  exceeds,  all  the

expressive power of the predicate calculus. It exceeds it in at least two ways. First, it is able to

formalize such linguistic procedures as copula negation and anaphors, for which the user of

Frege’s system must rely solely on her linguistic capabilities. Second, it allows for formal

demonstrations of certain valid inferences with a long-standing tradition in logic and

philosophy – including, but not limited to, some immediate inferences found in Aristotle’s

work, as well as the works of medieval logicians.

The  third  and  main  point  of  this  thesis  was  to  show  that  LQPS  possesses  the

metatheoretical properties expected of a modern logical natural deduction system. While the

soundness of Ben-Yami’s system has been previously established, the completeness proof

presented here represents a novel contribution in keeping with Ben-Yami’s suggestion for the

predicate calculus. It does away with standard model-theoretic proofs and rather opts for an

approach that does not straddle itself with so strong logical commitments.
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