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Introduction

In statistics it is important to estimate the parameters of a data set if the family
of the background distribution is known. The easiest way to do so is the well
known Maximum Likelihood method. However, sometimes some part of the data
is not known or the likelihood function cannot be maximized explicitly. In this
case one needs to use iterative algorithms. One of the methods is the Expectation-
Maximization (EM) algorithm.

The EM algorithm, first published by Dempster, Rubin and Laird [3], is an
iterative algorithm scheme that is applicable for several purposes in statistics
and also in other sciences, like computational neuroscience. This is not a proper
algorithm in terms of the computer science, since it does not describe the exact
steps of the algorithm. Rather it is a scheme, though, we will refer to it as an
algorithm. The implementations vary widely.

The main advantage of the algorithm is the fact that it converges in a wide
variety of cases. The disadvantages are that it may converge to a local maximum
and the rate of convergence could be slow. In practice, in case of not properly
chosen initial parameters, it converges to a wrong solution.

Briefly, the setting of the algorithm is the following. Let Y be the space of
the observed data and X be that of the directly not observed data. We assume
a parametric distribution f(·|θ) on the complete space where θ is a parameter.
Choose an arbitrary θ(0) in the parameter space as an initialization. Then the
iterative steps of the algorithm are as follows.

E-step Given θ(m) calculate Q(θ|θ(m)) = E(log f(X|Y, θ)|θ(m))

M-step Let θ(m+1) be such that maximizes Q(θ|θ(m)).
In the thesis we describe the EM algorithm. First, we examine it in the
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exponential families of distributions as a special case. Then we present a gener-
alization of the algorithm (GEM) where E-step cannot be done easily, based on
[3].

An application of the EM algorithm that we present is the mixture models. In
mixture models a set of data points is given, the points are coming from different
distributions randomly. Our task is to find the parameters of the distributions
of the components if the parametric family of distributions and the number of
different components are known.

We apply the EM algorithm for mixtures of normally distributed random
variables. We would like to estimate the parameters of each normal and the
mixing multinomial distribution. We implement the algorithm in Octave and
run simulations on data produced by random number generator. We examine
how the results depend on the initialization.

A new application of the EM algorithm is clustering of generalized random
graphs. The model is the following. Consider n vertices of a graph. We put each
of them independently to one of the k clusters with multinomial distribution.
Then consider each pair of vertices. If one of the vertices is from the ith cluster
and the other is from the jth cluster then there is an edge between them with
probability pij, independently (i, j = 1, . . . , k). However, we do not know the
cluster memberships. We only know the adjacency matrix of a given graph as an
incomplete data specification. The algorithm is applied to get the classification
of the vertices.

The structure of the thesis is the following. In Chapter 2 we present the
theory of the EM algorithm. Then in Chapter 3 we show directions to implement
the algorithm for mixture models, and implement the algorithm for Gaussian
mixtures. Then in Chapter 4 we present the model of generalized random graphs
and implement the EM algorithm for clustering them.
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Chapter 2

The EM algorithm and its

theoretical background

In this chapter after introducing the basic statistical setting, we give the theo-
retical steps of the EM in case of exponential families in Section 2.1. Then in
Section 2.2 we describe the algorithm more generally and give some properties of
it regarding the convergence.

The Expectation Maximization algorithm is an algorithm scheme that is used
to find the maximum likelihood estimates of parameters of a data given a model
that the data comes from. It is used in those cases that something is missing ac-
cording to a model or for some reasons the usual maximum likelihood estimations
cannot be performed.

First of all, we have two sample spaces. Let Y be the space of observed
data. Then we choose a model for the specific problem. The model specifies the
complete data space X . We define a mapping from X to Y , in most of the cases
this maps several points from X to the same y ∈ Y . Let us denote this mapping
by x→ y(x). Conversely, X (y) = {x : Y(x) = y}.

The chosen model should contain a parametric family of distributions f(·|θ)
for the complete data X and the parameter space Θ. The supposed distribution
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of Y is given by the integral

g(y|θ) =

∫
X (y)

f(x)dx.

Our task is to find the parameter θ which fits the data the best. So we would
like to maximize the loglikelihood function,

L(θ) = log g(y|θ). (2.1)

To do this, first, we initialize the algorithm by some θ(0) ∈ Θ. Then by the
iteration the estimate approaches the true parameter value θ∗. In Section 2.1 we
describe the iteration steps of the algorithm for the special case of distributions
of exponential family.

2.1 The EM algorithm for exponential families

First we introduce the EM algorithm in case of distributions belonging to the
exponential family. The reason for doing this is the simplicity of the description
and the ease of computation in this case. We define the exponential families of
distributions as in [6].

Definition 1 (Exponential Family). Let f(·|θ) be a parametric density function,
with parameter θ = (θ1, θ2, . . . θk)

T . We say that f(·|θ) is of exponential family,
if it can be written as

f(x|θ) =
b(x)et

T (x)h(θ)

a(θ)
,

where t(x) is a q-dimensional (coloumn) function of x, h is a q-dimensional
function of θ, a(θ) is the normalizing factor

a(θ) =

∫
X
b(x)et

T (x)h(θ).

If h is the identity function, we say that θ is the natural parameter of the distri-
bution f .

From now on, we consider only natural parameters without loss of generality.
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Now we can describe the EM algorithm for exponential families. First, choose
an arbitrary θ(0) ∈ Θ as initialization of the algorithm. Then the iterative steps
of the algorithm are as follows.

Let us suppose that after m steps of the algorithm an estimation for the
parameter θ is given as θ(m). Then the (m+ 1)th iteration of the algorithm is the
following.

E-step: If θ(m) is given, let t(m+1) = E(t|Yθ(m)).
M-step: Solve the equation E(t(X)|θ) = t(m+1) for θ, let θ(m+1) be the solu-

tion. Here, E stands for the conditional expectation, M stands for maximization
of the likelihood function. Note that in case of exponential distributions the
M-step is equivalent to performing a maximum likelihood estimate on the pa-
rameter θ given the statistic t(m). To see that, we use the notation of Definition
1. Differentiating by components,

∂ ln(f(x|θ))
∂θ

= t(x)− ∂ ln(a(θ))

∂θ
= 0,

where the second term is:

∂ ln(a(θ))

∂θ
=

1

a(θ)

∂a(θ)

∂θ
=

1

a(θ)

∫
X

∂

∂θ
b(x)et

T (x)θd(x) = (2.2)

=
1

a(θ)

∫
X

t(x)b(x)et
T (x)θd(x) = E(t(x)|θ).

So the solution for the equation

E(t(X)|θ) = t(m+1) (2.3)

is the ML estimate for θ. Note that in the M-step we maximize ln f(x|θ) =

ln b(x) + tT (x)θ− ln a(θ), which is equivalent to maximize tT (x)θ− ln a(θ). Now
we would like to show that by repeated steps of the iteration, θ tends to the place
of the maximum of (2.1).

We introduce some notations. The conditional density of X given Y and θ is

k(x|y, θ) =
f(x|θ)
g(y|θ)

,
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so L(θ) can be written as

L(θ) = ln f(x|θ)− ln k(x|y, θ). (2.4)

k(x|y, θ) can be computed by the definition of g:

k(x|y, θ) =
f(x|θ)∫

X (y)
f(x|θ)dx

=

b(x) exp(tT (x)θ)
a(θ)R

X (y) b(x) exp(tT (x)θ)dx

a(θ)

=

=
b(x) exp(tT (x)θ)∫

X (y)
b(x) exp(tT (x)θ)dx

Therefore the conditional density is also of exponential form. We introduce
the notation a(θ|y) =

∫
X (y)

b(x) exp(tT (x)θ)dx.
By differentiating ln a(θ|y) similarly to (2.2) we get

∂ ln(a(θ|y))

∂θ
=

1

a(θ|y)

∂a(θ|y)

∂θ
=

1

a(θ|y)

∫
X

∂

∂θ
b(x)et

T (x)θd(x) =

=
1

a(θ|y)

∫
X (y)

t(x)b(x)et
T (x)θd(x) = E(t(x)|y, θ). (2.5)

Using (2.4) we get

L(θ) = − ln(a(θ)) + b(x)θ − (b(x)θ − ln a(θ|y)) = − ln a(θ) + ln a(θ|y). (2.6)

Differentiating (2.6) componentwise and using (2.2) and (2.5)

∂L(θ)

∂θ
= −E(t(x)|θ) + E(t(x)|y, θ).

So if L has a global maximum at θ′ in the interior of Θ, then

0 = −E(t(x)|θ′) + E(t(x)|y, θ′). (2.7)

So if θ(m) converges to a maximum point θ∗ then θ∗ is a fixed point of the
algorithm. Therefore, by the E-step, t∗ = E(t(x)|Y, θ∗). On the other hand, by
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(2.3) t∗ = E(t(x)|θ∗) in the M-step. By this two, we have

E(t(x)|y, θ∗) = E(t(x)|θ∗),

which is exactly the solution of the equation (2.7).

2.2 EM in general

In this section we introduce the EM in a general setting of which EM is a special
case.

We describe the EM algorithm for an arbitrary distribution and also relax
the maximization step. Now we have a parametric distribution function f(·|θ) as
above. We define a bivariate function Q of θ and θ′:

Q(θ′|θ) = E(log(f(x|θ′))|y, θ)

which is assumed to exist for all pairs (θ′, θ) ∈ Θ×Θ, and the log function denotes
the logarithm of base 2.

The iteration θ(m) → θ(m+1) described in [3] is the following.
E-step Compute the function Q(θ|θ(m)).
M-step Choose θ(m+1) ∈ Θ to maximize Q(θ|θ(m)).
Remarks. In case of exponential families

Q(θ|θ(m)) = E(log(f(x|θ))|Y, θ(m)) =

= E(log(b(x))|y, θ(m)) + E(tT (x)θ|y, θ(m))− E(log(a(θ))|y, θ(m)) (2.8)

In order to maximize (2.8) in θ we can omit the first term. Because of the
conditional expectation and θ being independent of y and θ(m), the second term
can be written as E(tT (x)θ|y, θ(m)) = tT (m)θ. In the third term a(θ) does not
depend on the conditions therefore we can simply write E(log(a(θ))|y, θ(m)) =

log a(θ). Therefore, tT (m)θ − log a(θ) is to be maximized as in M-step of EM for
exponential families.

In practice, it is not convenient to maximize Q(θ|θ(m)) in every step for every
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θ, sometimes it is not even possible. So Dempster et al. in [3] defined an iteration
which can be used in an easier way.

Definition 2. We assume everything as in the description of EM algorithm.
Let us have a mapping M : Θ → Θ, θ 7→ M(θ). The mapping M defines a
Generalized EM (GEM) algorithm if

Q(M(θ)|θ) ≥ Q(θ|θ)

for every θ ∈ Θ.

The GEM algorithm increases the value of Q instead of maximizing it. The
convergence property does not change.

Definition 3 (Kullback–Leibler divergence). Let (X ,F , P ) be a probability space
and let pdf ’s f and g be defined on it. The Kullback–Leibler divergence (or relative
entropy) DKL of f and g is

DKL(f ||g) =

∫
X

log
f(x)

g(x)
f(x)dx.

First, we introduce the notation

H(θ′|θ) = E(log k(x|y, θ′)|y, θ),

which is similar to the K-L divergence.
The following easy lemma is important to prove the convergence of the GEM.

Lemma 1. The Kullback–Leibler divergence is nonnegative and equality occurs
if and only if f = g almost everywhere:

DKL(f ||g) ≥ 0. (2.9)

Proof. By basic analysis we know that

log x ≤ x− 1,
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with equality if and only if x = 1. We substitute x by f(x)
g(x)

we get

− (f(x) log
f(x)

g(x)
) = f(x) log

g(x)

f(x)
≤ f(x)(

g(x)

f(x)
− 1) = g(x)− f(x). (2.10)

Multiplying both side by −1 and integrating over X we get the inequality.∫
X
f(x) log

f(x)

g(x)
≥
∫
X

(f(x)− g(x))dx = 0.

In the equality, the only if part is easy as f(x) = g(x) almost everywhere then
in the inequality 2.10, equality occurs for almost every x ∈ X . For the other
direction, we prove it by contradiction. If f(x) 6= g(x) almost everywhere, then
f(x) log f(x)

g(x)
> 0 on a set whose measure is larger than 0. Therefore the integral

of that nonnegative function is strictly larger than 0.

Corollary 1.

H(θ′|θ) ≤ H(θ|θ) (2.11)

Proof. By Lemma 1 we can see that

H(θ|θ)−H(θ′|θ) = E(log k(x|y, θ)|y, θ)− E(log k(x|y, θ′)|y, θ)

E(log k(x|y, θ)− log k(x|y, θ′)|y, θ) = E(log
k(x|y, θ)
k(x|y, θ′)

|y, θ).

The last expected value is the K–L divergence between k(x|y, θ) and k(x|y, θ′)
thus is positive.

Another important property of H(θ′|θ) is the following:

Q(θ′|θ)−H(θ′|θ) = L(θ′). (2.12)

To show (2.12) we expand both Q and H.

Q(θ′|θ)−H(θ′|θ) = E(log f(x|θ′)|y, θ)− E(log k(x|y, θ′)|y, θ)

= E(log f(x|θ′)|y, θ)− E(log f(x|θ′)− log g(y|θ′)|y, θ) = E(log g(y|θ′)|y, θ),

since g(y|θ′) is measurable with respect to y, we can simply write E(g(y|θ′)),
which is L(θ′) by definition.

10
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The main advantage of GEM to other iterative algorithms that the conver-
gence is proved for a wide range of settings. In particular, GEM increases the
likelihood and the maximum point is a fixed point of the mapping. This is dis-
cussed by the following theorem by Dempster et al.

Theorem 2. For every GEM algorithm

L(M(θ)) ≥ L(θ) ∀θ ∈ Θ,

with equality if and only if the following two equations hold,

Q(M(θ)|θ) = Q(θ|θ)

and
k(x|y,M(θ)) = k(x|y, θ)

almost everywhere.

Proof. We would like to show that L(M(θ))− L(θ) ≥ 0. To do so we expand it
as in (2.4),

L(M(θ))− L(θ) = Q(M(θ)|θ)−H(M(θ)|θ)− (Q(θ|θ)−H(θ|θ)) =

= [Q(M(θ)|θ)−Q(θ|θ)] + [H(θ|θ))−H(M(θ)|θ)]

The first term is nonnegative by the definition of GEM. The second term is
larger than 0, by Lemma 1 with equality if and only if k(x|y,M(θ)) = k(x|y, θ).

The following statements are obvious consequences of Theorem 2

Corollary 2. Suppose for some θ∗ ∈ Θ, L(θ∗) ≥ L(θ) for all θ ∈ Θ, then for
every GEM,

1. L(M(θ∗)) = L(θ∗),

2. Q(M(θ∗)|θ∗) = Q(θ∗|θ∗),

11
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3. k(x|y,M(θ∗)) = k(x|y, θ∗) almost everywhere.

Proof. Statement 1 is trivial as θ∗ maximizes L. Statement 2 and 3 are immediate
consequences of the Theorem 2, because these are the two conditions for attaining
equality.

Moreover, if there is a unique global maximum, the following is also true.

Corollary 3. If there is a global maximum θ∗ of L(θ), then for every GEM
algorithm

M(θ∗) = θ∗.

Proof. An iteration step cannot decrease the value of L, which is bounded as it
has a global maximum at θ∗

We present further properties of the EM algorithm. Wu in [7] proved the
convergence properties of the GEM algorithm. That article contains some further
general assumptions, namely, Θ ⊂ R, L is continuous in Θ and differentiable in
the interior of Θ, and the set Θθ0 = {θ ∈ Θ : L(θ) ≥ L(θ0)} is compact for any
θ0 such that L(θ0) > −∞.

Lemma 3. Having the three assumption, any sequence {L(θ(m))}m≥0 defined by
a GEM is bounded from above.

Proof. By the compactness, and Theorem 2, {θ(m))}m≥0 is in a compact subset
of Θ. Therefore, we can regard L as a continuous function on a compact subset
of R. Thus, it has a maximum.

By Lemma 3 and Theorem 2, for every sequence θ(m) given by a GEM, L(θ(m))

converges.
Wu gives a definition of point-to-set maps.

Definition 4. Let X be a set, a mapping from X to the subsets of X is called
a point-to-set map. It is said to be closed at a point x if xk → x and yk → y,
yk ∈ A(xk) then y ∈ A(x).

12
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In case of point-to-set maps continuity implies closedness.
So we can consider that in a GEM, the iterative step M is a point-to-set map

which maps to the subset of Theta for which L is larger. And we can choose an
arbitrary point in order to get a sequence of a GEM. Wu’s Theorem 1 is based
on Zangwill’s Global convergence theorem.

Theorem 4. Let the sequence {xk} be generated by xk+1 ∈ M(xk), where M is
a point-to-set map on X. Let a solution set Γ ⊂ X be given and suppose that:

1. all points xk are contained in a compact set S ⊂ X;

2. M is closed over the complement of Γ:

3. there is a continuous function α on X such that if x 6∈ Γ, then α(y) > α(x)

for all y ∈ Γ and if x ∈ Γ, then α(y) > α(x) for all y ∈M(x)

Then all the limit points of {xk} are in the solution set Γ and a(xk) converges
monotonically to α(x) for some x ∈ Γ.

Wu considers the following two subsets. Let M be a point-to-set map in a
GEM iteration and α is the loglikelihood L here. The solution sets are

M = {x : x is a local maximum in the interior of Θ}

and
I = {x : x is a stationary point in the interior of Θ}.

Theorem 5. Let θ(m) be a sequence generated by a GEM, θ(m+1) ∈M(θ(m)) and
suppose that (i) M is a closed point-to-set map over the complement of I(orM),
(ii) L(θ(m+1)) > L(θ(m)) for all θ(m) 6∈ I (or M). Then all the limit points of
{θ(m)} are stationary points (or local maxima) of L, and {L(θ(m))} converges
monotonically to L∗ = L(θ∗) for some θ∗ ∈ I (orM).

So under some mild conditions on the L function, the EM algorithm converges
to a local maximum.

There is an information theoretic result given by Csiszár and Shields in
[2]. This only applies when X = An and Y = Bn, where |A| and|B| are fi-
nite. They introduce a special case of KL divergence for these finite distribu-
tions, the I-divergence, denoted by D(P ||Q). The description of steps are as
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follows. First, choose a distribution Q(0) on the complete data space A. In
the (m + 1)th iteration in the E-step, by the conditional expectation of the
complete data, we can calculate an empirical distribution P̂ (m+1) on the com-
plete data. Then by the M-step we perform a usual ML estimate on the data.
Since the ML estimate minimizes the KL divergence between the empirical dis-
tribution, and the possible distributions in the parametric family, in the M-step
D(P (m+1)||Q(m)) ≥ D(P (m+1)||Q(m+1)). Moreover, they prove in the E-step, that
D(P (m+1)||Q(m)) ≥ D(P (m)||Q(m)) So we get a non-increasing sequence of diver-
gences, hence a convergent sequence. Let us denote the empirical distribution of
the incomplete data by P T and the distribution of the incomplete data by Q(m)T

if the distribution of the complete data Q(m) is given. If the possible distribu-
tions Q is compact and convex then Q(m) converges to a minimizer distribution
of D(P T ||QT ), that is, again by the divergence minimization property of the ML
estimator, the ML estimator of the incomplete data.

So in the finite case, the conditions for converging to the true ML estimator
of the incomplete data are easy to check.

14
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Chapter 3

Mixtures

The EM algorithm is a good tool for missing data analysis. Here not necessarily
the data is missing but there may be latent variables. A typical missing data
setting is when there are a number of hidden variables. Several models use hidden
variables in a wide variety of fields. One specific class of such models are finite
mixtures. Mixtures are studied by a number of articles for example by Fraley
and Raferty [4] and by Celeux and Goavert [1].

3.1 Finite mixtures

Mixture models in general can be described as follows. We have a set of observa-
tions, the data Y = (Y1, . . .Yn). It is known that each data point comes from
a distribution Fi (i = 1, . . . , k), with pdf fi, where fi’s are from a parametric
family of distributions.

The number of categories k is assumed to be known and usually much smaller
than the number of data points. We also assume a parametric family of distri-
butions for fi. Our task is to infer the parameters of fi and say something about
the distribution of a specific data point.

In the most simple model the mixing variable is from a multinomial distri-
bution. So in the model, for each data point Yi belongs a hidden variable ∆i.
For the simplicity of notation, ∆i is a random vector, with zero elements ex-
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cept for one entry, which is 1. We denote the jth entry of ∆i by ∆ij. This
is the indicator that the sample point Yi comes from the distribution fi. Let
θ = (φ1, . . . φk, π1, . . . , πk), where φi’s correspond to the distributions fi, and πi
are mixing parameters.

The likelihood of the model is given by

g(y|θ) =
n∏
i=1

k∑
j=1

πjfj(yi),

while the likelihood of the complete data is given by

f(x|θ) =
n∏
i=1

k∑
j=1

∆ijπjfj(yi).

In the complete likelihood, the sum is only for convenience of the notation, it
contains only one nonzero summand. So by taking the logarithm we get

log f(x|θ) =
n∑
i=1

k∑
j=1

∆ij log πj +
n∑
i=1

k∑
j=1

∆ij log fj(yi). (3.1)

So the EM algorithm for mixtures in the (m+ 1)th step is the following.
Initialization: choose an arbitrary θ(0) ∈ Θ.
E-step: Calculate the function Q(θ|θ(m)) = E(log f(X|θ)|Y, θ(m))

M-step: Maximize Q(θ|θ(m)) in θ, and let it be θ(m+1).
Remark: The choice of the initial value of θ can lead to false results during the

iteration. So the initialization of the parameters should be somewhat realistic.
For example, in case of normal variables we have to choose different mean to
each initial distribution as we want to distinguish between them. Looking at the
histogram of the data can give us a hint.

By (3.1) the E-step is to calculate

E(
n∑
i=1

k∑
j=1

∆ij log πj +
n∑
i=1

k∑
j=1

∆ij ln fj(Yi|θ)|Y, θ(m)).

It is enough to calculate E(∆ij|Y, θ(m)) since the function in the expectation only

16
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depends on the random variables ∆i. By Bayes therorem

E(∆i,j|Yi, θ(m)) = P (∆i,j = 1|Yi = yi, θ
(m)) (3.2)

=
fj(Yi)P (∆i,j = 1|θ(m))∑k
l=1 fl(Yi)P (∆i,l = 1|θ(m))

=
fj(Yi)π

(m)
j∑k

l=1 fl(Yi|θ)π
(m)
l

. (3.3)

Note that
k∑
j=1

π
(m)
ij = 1 (3.4)

for all i = 1 . . . n. Then the function Q is the following

Q(θ|θ(m)) =
n∑
i=1

k∑
j=1

π
(m+1)
ij log πj +

n∑
i=1

k∑
j=1

π
(m+1)
ij log fj(Yi|φj). (3.5)

We should maximize it with respect to πj and φj. Since πj appears only
in the first sum, φj in the second sum, we can maximize them separately. In
this generality we can only maximize the first sum. The second sum has to be
maximized on a case-by-case basis.

So the first sum is
n∑
i=1

k∑
j=1

π
(m+1)
ij log πj

with constraint
∑k

j=1 πj = 1, which can be maximized by Lagrange multiplier.
Introducing the Lagrange function

L(π1, . . . , πk, λ) =
n∑
i=1

k∑
j=1

π
(m+1)
ij log πj + λ(

k∑
j=1

πj − 1),

the partial derivatives are

∂L(π1, . . . , πk, λ)

∂πl
=

∑n
i=1 pi

(m)
il

πl
− λ

and
∂L(π1, . . . , πk, λ)

∂λ
=

k∑
j=1

πj − 1

17
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The first equation to be zero we get

λ =

∑n
i=1 π

(m)
il

πl

Therefore the left hand side must be the same for all l. So the solution is

πl =

∑n
i=1 π

(m)
il∑n

i=1

∑k
j=1 π

(m)
ij

=

∑n
i=1 π

(m)
il

n
, (3.6)

with last step by (3.4).

3.2 Normal mixtures

Two-component mixture of normals are studied by Hastie, Tibshirani, Friedman
in [5], where they give the algorithm for the mixture of two normals without
calculations. In case of normal mixtures we have a data of mixture of k normally
distributed random variables. The distributions are N (µj, σ

2
j ).

The likelihood function of the observed data in case of univariate normals is

Lθ(Y) =
n∏
i=1

k∑
j=1

πj
1√

2πσ2
j

e
−

(Yi−µj)
2

2σ2
j .

The parameter set in this case is θ = (µ1, . . . , µk, σ
2
1, . . . , σ

2
k, π1, . . . , πk). The

incomplete data is Y, the data points we get. The complete data is the (∆,Y)

pair, where ∆ contains the row vectors ∆i, where ∆i’s are the hidden variables.
The initialization of the algorithm is to choose a θ(0). For this case, we need

to choose a mixing parameter set π(0) and for each group a parameter set µ(0)
i

and a σ2(0)
i for the given normal distribution.

Now we describe the iterative steps of the algorithm in details. The E-step is
as it is described in (3.5).

By the arguments of Section 3.1 we only have to find the responsibilities as
conditional expectations, calculating Q is redundant for the implementation of
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the algorithm. Thus in the E-step we calculate

π
(m+1)
i,j = E(∆i,j|Yi = yi, θ) =

fj(yi)π
(m)
j∑k

l=1 fl(yi)π
(m)
l

. (3.7)

In the M-step we maximize Q(θ|θ(m)) with respect to θ. The maximization
with respect to the mixing variables are given by (3.6). Our task is find the
maximizer parameters of

n∑
i=1

k∑
j=1

π
(m+1)
ij log

(
1√

2πσ2
j

e
−

(yi−µj)
2

2σ2
j

)
.

We calculate this as in case of the usual ML estimate of a simple Gaussian data.

∂
∑n

i=1

∑k
j=1 π

(m+1)
ij

(
− log

(√
2πσ2

j

)
− (yi−µj)2

2σ2
j

)
∂µl

=
n∑
i=1

π
(m+1)
il

2(yi − πl)
2σ2

j

= 0

So

µ
(m+1)
l =

∑n
i=1 π

(m+1)
ij yi∑n

i=1 π
(m+1)
ij

, l = 1, . . . , k. (3.8)

The maximum with respect to σ2
l :

∂
∑n

i=1

∑k
j=1 π

(m+1)
ij

(
− log

(√
2πσ2

j

)
− (yi−µj)2

2σ2
j

)
∂σ2

l

=

=
n∑
i=1

π
(m+1)
ij

(
− 1

2σ2
l

+
(yi − µj)2

2(σ2
l )

2

)
=

n∑
i=1

π
(m+1)
ij

(
− 1 +

(yi − µl)2

σ2
l

)
= 0

So the solution for σ2
l is

∑n
i=1 π

(m+1)
ij (yi − µl)2∑n
i=1 π

(m+1)
ij

= σ2
l .

19



C
E

U
eT

D
C

ol
le

ct
io

n

Since the maximum point with respect to µl was independent of σ2
j we get

(σ2
l )

(m+1) =

∑n
i=1 π

(m+1)
ij (yi − µ(m+1)

l )∑n
i=1 π

(m+1)
ij

, l = 1, . . . , k. (3.9)

To sum up, (3.7) gives the E-step, (3.8) and (3.9) gives the M-step of an
implementation of the EM algorithm for univariate normal mixtures. For multi-
variate normal mixtures, the E-step is almost the same, with substituting to the
multivariate density function. The M-step is similar, we have to calculate the
weighted average and the weighted variance of the data.

3.3 Simulation results

Here are some simulation results with the EM algorithm for normal mixtures.
The simulation was processed by GNU Octave version 3.2.4. Four separate ex-
periments are given. In the first part of the program random data is generated
with the following parameters. In all the four cases the random data is a mixture
of four normals, there are 50 data point from each distribution. The expected
values in the four cases are 2, 4, 6 and 8, respectively. In each component variance
is equal. In the first case the variance is 1, in the second case the variance is 0.5,
in the third case the variance is 0.3, and in the last case the variance is 0.1.

In Figure 3.1 we can see the histograms of the data in the four cases.
In the upper left figure we can see the histogram for variance 1. It is not even

clear that the data is a mixture of four normals. The data with variance 0.5 is on
the upper right histogram. There are some peaks in it,therefore, it is somewhat
obvious that it is a mixture. On the lower left histogram we can see the data with
variance 0.3. It is clear that it comes form four different distributions. On the
lower right histogram we can see that in case of variance 0.1, the data points can
be distinguished easily by inspection. The reason for examining the four different
cases is testing the performance of the algorithm in four different setting, starting
with a data with the four categories being almost invisible, to a data with clearly
visible categories.

The statistician can set up a initial value of the mean of distribution by looking
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Figure 3.1: Histogram of the observed data
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at the data range. The choice of the initial means must be realistic.
After 100 iteration of the algorithm, in Figure 3.3 we can see which distribu-

tion each data point is the most likely in. On the upper left figure the membership
is not really clear. In fact, we cannot expect so, because in case of variance 1

and mean distance 2, the normal data points overlap, and it is easy to see that
in case of mixture of normals with given parameters, sections and half lines gives
the categories for each data points which category is the most probable. In the
upper right figure, there are less misclassifications of the algorithm, In the lower
left figure there are only a few wrong decisions, and on the lower right there is
no misclassification at all.

We can see this results on the confusion matrix. The confusion matrix is
defined by elements. If C is the confusion matrix, Cij is the number of data
points that originally comes from the ith distribution and after the iteration it
gets to the jth distribution.
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Figure 3.2: Clusters after the iteration
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In figure 3.3 we can see the how the value of loglikelihood increases during

the iteration.

Figure 3.3: The loglikelihood during the iteration
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Chapter 4

Generalized random graphs

In this chapter we are introducing the concept of generalized random graphs and
applying the the EM algorithm to divide them into homogeneous clusters. The
implementation of the EM algorithm is similar to the one of normal mixtures.

Definition 5. Let G = (V,E) be a graph on n vertices. Let k < n be fixed.
There is a hidden partition V1, . . . Vk of V and each vertex belongs to Vj ran-
domly and independently with probability πj (j = 1 . . . , k). Knowing the cluster
memberships, vertices form Vi and Vj are connected randomly and independently
with probability pij (pij = pji). A random graph given by this model is called
generalized random graph(GRG).

Note that connections are possible within the clusters. The word cluster is
used to distinguish homogeneous subsets of V , not maximal connected subgraphs.

In case of k = 1, it is the well-known G(n, p) Erdős–Rényi random graph. Ex-
amining the generalized random graphs is important in some real-life problems,
such as modeling social networks. Finding homogeneous groups is the main direc-
tion of research in GRG. We would like to apply the EM algorithm to obtain the
clusters of the generalized random graphs, and get the connection probabilities.

In our case the adjacency matrix and the number of clusters are given, the
cluster membership is unknown. So the observed data is the adjacency matrix
A of the graph. The unobserved data in this model is the cluster memberships.
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We introduce a hidden vector variable ∆i for each vertex vi ∈ V as in Chapter
3. The parameter is θ = (π1, . . . πk, prs, 1 ≤ r, s ≤ k).

The likelihood of the complete data is

f(X,∆|θ) =

( n∏
i=1

k∑
j=1

∆ijπj

)
·
( ∏

1≤i<j≤n

k∑
r,s=1

∆ir∆jsp
aij
rs (1− prs)1−aij

)

The incomplete data likelihood is the sum of likelihood of the complete data on
all the possible ∆’s:

∑
∆

[( n∏
i=1

k∑
j=1

∆ijπj

)
·
( ∏

1≤i<j≤n

k∑
r,s=1

∆ir∆jsp
aij
rs (1− prs)1−aij

)]

As above we would like to maximize the likelihood of the incomplete data with
respect to πi and prs. In order to do that we use the iteration given by the EM
algorithm. The initialization step is as usual, choose an arbitrary θ(0).

In the E-step we would like to calculate the function Q(θ|θ(m)).

Q(θ|θ(m)) = E(log f(X|θ)|A, θ(m)) = E

( n∑
i=1

k∑
r=1

∆ir log πr +

+
n−1∑
i=1

n∑
j=i+1

k∑
r=1

k∑
s=1

∆ir∆js log(paijrs (1− prs)1−aij)|A, θ(m)

)

Taking the expected value inside the sums and evaluating the logarithm we
get

n∑
i=1

k∑
r=1

E(∆ir log πr|A, θ(m)) +

n−1∑
i=1

n∑
j=i+1

k∑
r=1

k∑
s=1

E(∆ir∆js(aij log prs + (1− aij) log(1− prs))|A, θ(m))

Since we take the conditional expectation of constant multiples of ∆ir and
∆ir∆js, moreover, ∆ir and ∆js are independent when i 6= j, we can take the
conditional expectation of ∆ir and substitute it to the function log f(x|θ).

We define the responsibilities π(m+1)
ir = E(∆ir|A, θ(m)). So the conditional
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expectation is

π
(m+1)
ir = E(∆ir|A, θ(m)) = P (∆ir = 1|A, θ(m)). (4.1)

Since ∆ir is independent of ∆j if i 6= j, and ajl only depends on ∆j and ∆l, in the
condition A those entries, neither of the endpoints of which is i , are redundant.
Therefore, we can only take pairs of vertices {(i, j) : j 6= i} as a condition. Let
us denote this by Si. So by the Bayes theorem

P (∆ir = 1|Si, θ(m)) =
P (Si|∆ir = 1, θ(m))P (∆ir = 1|θ(m))∑k
s=1 P (Si|∆is = 1, θ(m))P (∆is = 1|θ(m))

, (4.2)

where P (∆ir = 1|θ(m)) = π
(m)
r and

P (Si|∆ir = 1, θ(m)) =
∑

∆
∆ir=1

∏
j 6=i

k∑
t=1

∆jtπt
∏
j 6=i

k∑
t=1

∆jt(p
(m)
rt )aij(1− p(m)

rt )1−aij

=
∏
j 6=i

k∑
t=1

πt(p
(m)
rt )aij(1− p(m)

rt )1−aij .

Hence the essential part of the E-step is given by

π
(m+1)
ir =

∏
j 6=i
∑k

s=1 πs(p
(m)
rs )aij(1− p(m)

rs )1−aijπr∑k
s=1

∏
j 6=i
∑k

t=1 πt(p
(m)
st )aij(1− p(m)

st )1−aijπs
, i = 1 . . . n, r = 1, . . . , k.

The M-step is to maximize

n∑
i=1

k∑
r=1

π
(m+1)
ir log πr +

n−1∑
i=1

n∑
j=i+1

k∑
r=1

k∑
s=1

π
(m+1)
ir π

(m+1)
js (aij log prs + (1− aij) log(1− prs))

with respect to πr and prs. Similarly to the case of normal mixtures, the
two subset of parameters are independent, and the function to maximize is a
sum that separately contains the two kinds of parameters, therefore we could
maximize them separately.
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The first one is

n∑
i=1

k∑
r=1

π
(m+1)
ir log πr (4.3)

with the constraint
∑k

s=1 πs = 1. We can see that (4.3) is the same as the first
sum in case of normal mixtures. Therefore, we can write

π(m+1)
r =

∑n
i=1 π

n+1
ir

n
r = 1, . . . k.

To get p(m+1)
uv we have to maximize

n−1∑
i=1

n∑
j=i+1

k∑
r=1

k∑
s=1

π
(m+1)
ir π

(m+1)
js (aij log(prs) + (1− aij) log(1− prs)) (4.4)

The partial derivative of (4.4) with respect to puv at the maximum is 0:

n−1∑
i=1

n∑
j=i+1

π
(m+1)
ir π

(m+1)
js (aij

1

puv
− (1− aij)

1

1− puv
) = 0

n−1∑
i=1

n∑
j=i+1

π
(m+1)
ir π

(m+1)
js (aij(1− puv)− (1− aij)puv) = 0

∑n−1
i=1

∑n
j=i+1 π

(m+1)
ir π

(m+1)
js aij∑n−1

i=1

∑n
j=i+1 π

(m+1)
ir π

(m+1)
js

= prs (4.5)

So (4.5) gives us p(m+1)
uv .

The implementation of the EM algorithm for GRG is somewhat similar to the
one of mixtures. Introducing the responsibilities saves some computational time,
as in the E-step it is enough to calculate them. And using the responsibilities, Q
can be maximized formally, without calculating Q itself.
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Conclusion

Our thesis have presented the EM algorithm and shown the most important
properties of it regarding the convergence. Then we have described by a typical
model, the finite mixtures, how to implement the algorithm for a hidden variable
model. The simulation results have shown that it is not always convenient to
use the EM algorithm, however, if the analysis of the data indicates that it is a
mixture, the simulations yield good results. We have given the implementation
of the algorithm for generalized random graphs.
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