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Preface

Parts of chapter 2-5 have been published in the Matyas and Balazsi[2011/12] CEU

working paper, presented at the 18th Panel Data Conference in Paris, and are the joint

work with Laszlo Matyas. Chapter 1 and 6 are solely my own work.
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Abstract

The aim of this thesis is to contribute to panel data econometrics by dealing with the most

frequently used three- and four-dimensional �xed e�ects panel data model speci�cations.

Within estimators are presented together with the optimal Within transformations. Also,

certain data problems are taken into account, namely no self-�ow and unbalanced data.

Possible Within transformations are proposed here as well, to threat such data problems.

Dynamic autoregressive models are also dealt with. Finally, some modi�cations are made

in the covariance structure of the disturbances, and its implications are being investigated.

The thesis ends with a brief conclusion.
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Chapter 1

Introduction

Econometric models have always been a workhorse of empirical justi�cation in many rele-

vant areas in economics. Meanwhile, in the last two decades the world experienced a rapid

growth in computer technology which highly a�ected economics itself. As the barriers of

regressing models with extreme sample sizes were keep disappearing, several new possi-

bilities presented themselves for econometricians. The reduction of computational costs

had been carried over to the never ending demand for new econometric models and tools.

Creating and testing such models bene�ts empirical researchers as well as policy makers,

opening up the way for a more complex and successful analysis.

Panel data is probably the most widely applicable data structure, allowing to measure

both the within group variation (between individuals) and the between group variation

(between time periods). Areas where both variations carry importance are typically ana-

lyzed using panel data. The most obvious candidate is international trade (some activity
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between county i and j at time t) but we can also �nd nice examples in monetary eco-

nomics.

In the last decade on panel data left its traditional 2-way (it) setup to give way to more

heterogeneous ones (ijt for example). Earlier contribution to this topic can be found in

Matyas[1997]. This new setup allows researchers for a more complex and colorful analysis

but also carries the dangers and pitfalls of a not properly speci�ed model. There are two

common problems that can emerge; �rstly, the number of �xed e�ects model speci�cations

are growing exponentially along with the dimensions, and secondly, higher dimensional

datasets are tend to be �more� incomplete. This incomplete nature of the data can distort

the regression outcome if not properly addressed. It is now clear that an extension from

two to three dimensions or further ahead should be treated with special attention. The

main aim of this thesis is to propose new mechanisms and econometric tools to deal

with such new models and the possible data problems. The thesis takes the proposed

models as given, and contributes to panel data econometrics by computing the Within

transformations of such �xed e�ects speci�cations together with the transformations when

data problems are present, or other extensions were proposed.

In chapter 2 the most frequently used three-way �xed e�ects models are presented

along with their Within transformations, mostly based on the work of Egger and Pfa�er-

mayr[2003], Baltagi, Egger, and Pfa�ermayr[2003], Baldwin and Taglioni[2006] and Baier

and Bergstrand[2007]. It is important to note that all these models are well-used trade

models carrying empirical importance. The reason why the Within transformations have

2
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extra importance is that LSDV would involve the estimation of that many parameters

that the regression could even be unfeasible. By properly transforming the models the

�xed e�ects can be eliminated as they are rarely lies in the center of the analysis. It is

also shown that the Within transformations are usually not unique therefore one might

choose the preferred one.

Chapter 3 investigates how these transformations should be modi�ed if certain data

problems are present, namely the lack of self-trade and unbalanced data. We speak about

no self-�ow if trade activity is unmeasured within a country. This means that some ob-

servations are missing from the dataset (though not randomly). After a short analysis it

is easy to see that even these small gaps can result biased and inconsistent estimators.

Dealing with unbalanced data is a reasonable step as several databases fell to this cat-

egory: usually the individuals are not measured throughout some general time period.

The results, apart from the basic algebra are supported by the work of Wansbeek and

Kapteyn[1989]. The authors presented a solution to the traditional two-way panel data

model where both individual- and time-wise �xed e�ects are present. Their solution is

unique in a sense that the traditional order of indexing had been changed to be able

to address any kind of incompletion in the data. The resulting projection matrix which

removes the �xed e�ects can be found both in matrix and scalar form. The advantage of

the latter is that inverting matrices with extreme sizes is avoided, reducing the calcula-

tions to a well-manageable amount. A great success of the Wansbeek and Kapteyn[1989]

projection matrix is that further generalizations are possible and quite straightforward. In
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fact, not the dimensions of the data that matters, but the number of �xed e�ects included

in the model: it uniquely determines the number of �iterating steps� has to be taken.

With these tools in hand, unbiased estimation is now possible both in �nite sample and

asymptotically when the data is incomplete.

Chapter 4 examines what happens when the observed models are dynamic, namely

have some sort of memory. Attention is restricted to pure dynamic autoregressive models

with �xed e�ects, but the inclusion of other explanatory variables does not change the

overall results. This chapter is mainly based on the famous results of Nickell[1981]. He

showed that in a two-way panel data model with individual-wise �xed e�ects the nonzero

correlation between the transformed lagged dependent variable and the transformed dis-

turbance results biased and inconsistent estimators. This phenomenon is present in many

3-way models as well, making their estimation more compelling. Unfortunately, Nick-

ell[1981] only shows the expected sign and the size of the bias, but fails to report a

solution to consistently estimate the problematic models.

However the good news is that several IV and GMM estimation methods are in hand

and can be widely used. One of the most popular estimator generalized by the thesis

was suggested by Arellano and Bond[1991]. Their approach is preferable both because

of its e�ciency and because of the large number of orthogonality conditions used. The

resulting linear GMM estimator is rather simple and also takes into account the non-

scalar nature of the covariance matrix of the disturbances. Moreover, as the required

orthogonality conditions easily can be found in higher dimensions, creating such estimators

4
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in a 3-dimensional setup is not that di�cult. In fact, the problematic models can either

be estimated directly by the Arellano and Bond[1991] GMM estimator or can easily be

transformed in such a way that the Arellano and Bond[1991] estimator is then feasible.

Other generalizations can be introduced as well. Chapter 5 is designed to deal with

a modi�ed correlation structure for the disturbances: the inclusion of cross-correlation.

The idea behind this is that at a given point in time some activity from country i to j

and from country i to k are not necessarily independent from each other. This is a very

reasonable generalization to make, resulting compelling algebra to estimate the additional

correlation coe�cients. As will be shown, the multiplicity of the Within transformations

plays a key role here, as it provides the extra amount of identifying conditions needed

to express the desired coe�cients. With the estimates in hand, FGLS estimation of the

models is then possible. An other �nding is that some of the models fails to stand for such

generalizations and the only way to deal with them is to impose some restrictions to this

new setup.

There is no point in stopping at the 3-dimensional setup; it is quite easy to go further

along the line and propose four-way �xed e�ects panel data models. Chapter 6 introduces

the most frequently applied 4-dimensional models along with the optimal Within trans-

formations. It is important to note that �xed e�ects in higher dimensional setups tend

to depend in less indexes, giving more degrees of freedom in coming up with other trans-

formations. One can immediately recognize its power: now certain data related problems

may well be avoided only by using a di�erent proper transformation (actually by project-
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ing into a di�erent subset of the four dimensional space). Just as before, the same type

of data problems are being analyzed. The following conclusion can be drawn: data prob-

lems are less and less present and easy to be �xed in higher-dimensional speci�cations,

and the same tools (Wansbeek and Kapteyn[1989] for example) can very well be used and

generalized further.

The thesis ends with a brief conclusion. Three- and four-way �xed e�ects panel data

speci�cations were being investigated. It was shown that it is rather easy to come up with

the Within estimators, and also that consistent estimation is possible even if certain data

problems are present. The models are �exible to other speci�cations (dynamic models) and

to di�erent correlation structures (inclusion of cross-correlation) as well. As the proposed

estimators can very well be applied in empirical work, future usage of this thesis and the

underlying working paper is possible and recommended.
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Chapter 2

Models with Di�erent Types of

Heterogeneity and the Within

Transformation

In three-dimensional panel data sets the dependent variable of a model is observed along

three indices such as yijt, i = 1, . . . , N1, j = 1, . . . , N2, and t = 1, . . . , T . As in economic

�ows such as trade, capital (FDI), etc., there is some kind of reciprocity, we assume to

start with, that N1 = N2 = N . Implicitly we also assume that the set of individuals in

the observation sets i and j are the same, then we relax this assumption later on. The

main question is how to formalize the individual and time heterogeneity, in our case the

�xed e�ects. Di�erent forms of heterogeneity yield naturally di�erent models. In theory

7
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any �xed e�ects three-dimensional panel data model can directly be estimated, say for

example, by least squares (LS). This involves the explicit incorporation in the model of the

�xed e�ects through dummy variables (see for example formulation (2.16) later on). The

resulting estimator is usually called Least Squares Dummy Variable (LSDV) estimator.

However, it is well known that the �rst moment of the LS estimators is invariant to

linear transformations, as long as the transformed explanatory variables and disturbance

terms remain uncorrelated. So if we could transform the model, that is all variables of

the model, in such a way that the transformation wipes out the �xed e�ects, and then

estimate this transformed model by least squares, we would get parameter estimates

with similar �rst moment properties (unbiasedness) as those from the estimation of the

original untransformed model. This would be simpler as the �xed e�ects then need not to

be estimated or explicitly incorporated into the model2. We must emphasize, however,

that these transformations are usually not unique in our context. The resulting di�erent

Within estimators (for the same model), although have the same bias/unbiasedness, may

not give numerically the same parameter estimates. This comes from the fact that the

di�erent Within transformations represent di�erent projection in the (i, j, t) space, so the

corresponding Within estimators may in fact use di�erent subsets of the three-dimensional

data space. Due to the Gauss-Markov and the Frisch-Waugh theorems (see, for example,

Gourieroux and Monfort[1989]), there is always an optimal Within estimator, exactly the

one which is based on the transformations generated by the appropriate LSDV estimator.

2An early partial overview of these transformations can be found in Laszlo Matyas and Konya[2011/05].
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Why to bother then, and not always use the LSDV estimator directly? First, because

when the data becomes larger, the estimation of a model with the �xed e�ects explicitly

incorporated into it is quite di�cult, or even practically impossible, so the use of Within

estimators can be quite useful. Then, we may also exploit the di�erent projections and

the resulting various Within estimators to deal with some data generated problems.

The �rst attempt the properly extend the standard �xed e�ects panel data model (see

for example Baltagi[1995] or Balestra and Krishnakumar[2008]) to a multidimensional

setup was proposed by Matyas[1997]. The speci�cation of this model is

yijt = β′xijt + αi + γj + λt + εijt i = 1, . . . , N j = 1, . . . , N, t = 1, . . . , T, (2.1)

where the α, γ and λ parameters are time and country speci�c �xed e�ects, the x variables

are the usual covariates, β (K×1) the focus structural parameters and ε is the idiosyncratic

disturbance term, for which (unless otherwise stated)

E(εijt) = 0, E(εijtεi′j′t′) =


σ2
ε if i = i′, j = j′ and t = t′

0 otherwise

(2.2)

and we also assume that the covariates and the disturbance terms are uncorrelated.

The simplest Within transformation for this model is

(yijt − ȳij − ȳt + ȳ) (2.3)

9
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where

ȳij = 1/T
∑

t yijt

ȳt = 1/N2
∑

i

∑
j yijt

ȳ = 1/N2T
∑

i

∑
j

∑
t yijt

However, the optimal Within transformation (which actually gives numerically the same

parameter estimates as the direct LS estimation of model (2.1), that is the LSDV estima-

tor) is in fact

(yijt − ȳi − ȳj − ȳt + 2ȳ) (2.4)

where

ȳi = 1/(NT )
∑

j

∑
t yijt

ȳj = 1/(NT )
∑

i

∑
t yijt

Let us note here that this model is suited to deal with purely cross sectional data as well

(that is when T = 1). In this case, there are only the αi and γj �xed e�ects and the the

appropriate Within transformation is (yij − ȳj − ȳi + ȳ) with ȳ = 1
N2

∑N
i=1

∑N
j=1 yij.

Another model has been proposed by Egger and Pfa�ermayr[2003] which takes into

account bilateral interaction e�ects. The model speci�cation is

yijt = β′xijt + γij + εijt (2.5)

where the γij are the bilateral speci�c �xed e�ects (this approach can easily be extended to

account for multilateral e�ects as well). The simplest (and optimal) Within transformation

10
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which clears the �xed e�ects now is

(yijt − ȳij) where ȳij = 1/T
∑
t

yijt (2.6)

It can be seen that the use of the Within estimator here, and even more so for the models

discussed later, is highly recommended as direct estimation of the model by LS would

involve the estimation of (N × N) parameters which is not very practical for larger N .

For model (2.14) this would even be practically impossible.

A variant of model (2.5) often used in empirical studies is

yijt = β′xijt + γij + λt + εijt (2.7)

As model (2.1) is in fact a special case of this model (2.7), transformation (2.3) can be

used to clear the �xed e�ects. While transformation (2.3) leads to the optimal Within

estimator for model (2.7), it is clear why it is not optimal for model (2.1): it �over-clears�

the �xed e�ects, as it does not take into account the parameter restrictions γij = αi + γi.

It is worth noticing that models (2.5) and (2.7) are in fact straight panel data models

where the individuals are now the (ij) pairs.

Several other forms of �xed e�ects were suggested by Baltagi, Egger, and Pfa�er-

mayr[2003], Baldwin and Taglioni[2006] and Baier and Bergstrand[2007]. A simpler model

11
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is

yijt = β′xijt + αjt + εijt (2.8)

The Within transformation which clears the �xed e�ects is

(yijt − ȳjt) where ȳjt = 1/N
∑
i

yijt (2.9)

Another variant of this model is

yijt = β′xijt + αit + εijt (2.10)

Here the Within transformation which clears the �xed e�ects is

(yijt − ȳit) where ȳit = 1/N
∑
j

yijt (2.11)

The most frequently used variation of this model is

yijt = β′xijt + αit + αjt + εijt (2.12)

The required Within transformation here is

(yijt − 1/N
∑
i

yijt − 1/N
∑
j

yijt + 1/N2
∑
i

∑
j

yijt)

12
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or in short

(yijt − ȳjt − ȳit + ȳt) (2.13)

Let us notice here that transformation (2.13) clears the �xed e�ects for model (2.1) as well,

but of course the resulting Within estimator is not optimal. The model which encompasses

all above e�ects is

yijt = β′xijt + γij + αit + αjt + εijt (2.14)

By applying suitable restrictions to model (2.14) we can obtain the models discussed

above. The Within transformation for this model is

(yijt −1/T
∑

t yijt − 1/N
∑

i yijt − 1/N
∑

j yijt + 1/N2
∑

i

∑
j yijt

+1/(NT )
∑

i

∑
t yijt + 1/(NT )

∑
j

∑
t yijt − 1/(N2T )

∑
i

∑
j

∑
t yijt)

or in a shorter form

(yijt − ȳij − ȳjt − ȳit + ȳt + ȳj + ȳi − ȳ) (2.15)

We can write up these Within transformations in a more compact matrix form using

Davis[2002]'s and Hornok[2011]'s approach. Model (2.14) in matrix form is

y = Xβ + D̃1γ + D̃2α + D̃3α∗ + ε (2.16)

where y, (N2T ×1) is the vector of the dependent variable, X, (N2T ×K) is the matrix of

13



C
E

U
eT

D
C

ol
le

ct
io

n

explanatory variables, γ, α and α∗ are the vectors of �xed e�ects with size (N2T ×N2),

(N2T ×NT ) and (N2T ×NT ) respectively,

D̃1 = IN2 ⊗ lT , D̃2 = IN ⊗ lN ⊗ IT and D̃3 = lN ⊗ INT

l is the vector of ones and I is the identity matrix with the appropriate size in the index.

Let D = (D̃1, D̃2, D̃3), QD = D(D′D)−1D′ and PD = I−QD. Using Davis[2002]'s method

it can be shown that PD = P1 −Q2 −Q3 where

P1 = (IN − J̄N)⊗ INT

Q2 = (IN − J̄N)⊗ J̄N ⊗ IT

Q3 = (IN − J̄N)⊗ (IN − J̄N)⊗ J̄T

J̄N = 1
N
JN , J̄T = 1

T
JT

and J is the matrix of ones with its size in the index. Collecting all these terms we get

PD =
[
(IN − J̄N)⊗ (IN − J̄N)⊗ (IT − J̄T )

]
= IN2T − (J̄N ⊗ INT )− (IN ⊗ J̄N ⊗ IT )− (IN2 ⊗ J̄T )

+(IN ⊗ J̄NT ) + (J̄N ⊗ IN ⊗ J̄T ) + (J̄N2 ⊗ IT )− J̄N2T

The typical element of PD gives the transformation (2.15). By appropriate restrictions

on the parameters of (2.16) we get back the previously analysed Within transformations.

14
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Now transforming model (2.16) with transformation (2.15) leads to

PDy︸︷︷︸
yp

= PDX︸ ︷︷ ︸
Xp

β + PDD̃1︸ ︷︷ ︸
=0

γ + PDD̃2︸ ︷︷ ︸
=0

α + PDD̃3︸ ︷︷ ︸
=0

α∗ + PDε︸︷︷︸
εp

and the corresponding Within estimator is

β̂W = (X ′pXp)
−1Xpyp

This in fact is the optimal estimator as PD is the Frisch-Waugh projection matrix, implying

the optimality of β̂W .

15
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Chapter 3

Some Data Problems

3.1 No Self Flow Data

As these multidimensional panel data models are frequently used to deal with �ow types

of data like trade, capital movements (FDI), etc., it is important to have a closer look

at the case when, by nature, we do not observe self �ow. This means that from the (ijt)

indexes we do not have observations for the dependent variable of the model when i = j

for any t. This is the �rst step to relax our initial assumption that N1 = N2 = N and

that the observation sets i and j are equivalent.

For most of the previously introduced models this is not a problem, the Within trans-

formations work as they are meant to and eliminate the �xed e�ects. However, this is not

the case unfortunately for models (2.1) (transformation (2.4)), (2.12) and (2.14). Let us

have a closer look at the di�culty. For model (2.1) and transformation (2.4), instead of

16
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canceled out �xed e�ects, we end up with the following remaining �xed e�ects

α∗i = αi − 1
(N−1)T · (N − 1)T · αi − 1

(N−1)T
∑N

i=1; i 6=j T · αi

− 1
N(N−1)

∑N
i=1 (N − 1) · αi + 2

N(N−1)T
∑N

i=1 (N − 1)T · αi

= αi − αi − 1
N−1

∑N
i=1; i 6=j αi + 1

N

∑N
i=1 αi = 1

N
αj − 1

N(N−1)
∑N

i=1; i 6=j αi

γ∗j = γj − 1
(N−1)T

∑N
j=1; j 6=i T · γj −

1
(N−1)T · (N − 1)T · γj

− 1
N(N−1)

∑N
j=1 (N − 1) · γj + 2

N(N−1)T
∑N

j=1 (N − 1)T · γj

= γj − 1
N−1

∑N
j=1; j 6=i γj − γj + 1

N

∑N
j=1 γj = 1

N
γi − 1

N(N−1)
∑N

j=1; j 6=i γj

and for the time e�ects

λ∗t = λt − 1
(N−1)T

∑T
t=1 (N − 1) · λt − 1

(N−1)T
∑T

t=1 (N − 1) · λt

− 1
N(N−1) ·N(N − 1)λt + 2

N(N−1)T
∑T

t=1N(N − 1) · λt =

= λt − 1
T

∑T
t=1 λt −

1
T

∑T
t=1 λt − λt + 2

T

∑T
t=1 λt = 0

So clearly this Within estimator now is biased. The bias is of course eliminated if we add

the (ii) observations back to the above bias formulae, and also, quite intuitively, when

N → ∞. On the other hand, luckily, transformation (2.3) as seen earlier, although not

optimal, leads to an unbiased Within estimator for model (2.1) and remains so even in

the lack of self �ow data.

As seen earlier model (2.1) is suited to deal with the purely cross sectional case. Then,

17
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however, the appropriate Within transformation that clears the �xed e�ects is in fact

yij − ȳj − ȳi +
N

N − 1
ȳ − 1

N − 1
yji

Now, let us continue with model (2.12). After the Within transformation (2.13), instead

of canceled out �xed e�ects we end up with the following remaining �xed e�ects

α∗it = αit − 1
N−1

∑N
i=1;i 6=j αit −

1
N−1(N − 1)αit + 1

N(N−1)
∑N

i=1 (N − 1)αit

= − 1
N(N−1)

∑N
k=1;k 6=j αkt + 1

N
αjt

and

γ∗jt = γjt − 1
N−1(N − 1)γjt − 1

N−1
∑N

j=1;j 6=i γjt + 1
N(N−1)

∑N
j=1 (N − 1)γjt

= − 1
N(N−1)

∑N
l=1;l 6=i γlt + 1

N
γit

As long as the α∗ and γ∗ parameters are not zero, the Within estimators will be biased.

Similarly for model (2.14), the remaining �xed e�ects are now

γ∗ij = γij − 1
T
T · γij − 1

N−1
∑N

i=1;i 6=j γij −
1

N−1
∑N

j=1;j 6=i γij

+ 1
N(N−1)

∑N
i=1

∑N
j=1;j 6=i γij + 1

(N−1)T
∑N

i=1;i 6=j Tγij

+ 1
(N−1)T

∑N
j=1;j 6=i Tγij −

1
N(N−1)T

∑N
i=1

∑N
j=1;j 6=i Tγij = 0
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but

α∗it = αit − 1
T

∑T
t=1 αit −

1
N−1

∑N
i=1;i 6=j αit −

1
N−1(N − 1)αit

+ 1
N(N−1)

∑N
i=1 (N − 1)αit + 1

(N−1)T
∑N

i=1;i 6=j
∑T

t=1 αit

+ 1
(N−1)T

∑T
t=1 (N − 1)αit − 1

N(N−1)T
∑N

i=1

∑T
t=1 (N − 1)αit

= 1
N(N−1)T

∑N
i=1;i 6=j

∑T
t=1 αit + 1

NT

∑T
t=1 αjt −

1
N(N−1)

∑N
i=1;i 6=j αit + 1

N
αjt

and, �nally

α̃∗jt = α̃jt − 1
T

∑T
t=1 α̃jt −

1
N−1(N − 1)α̃jt − 1

N−1
∑N

j=1;j 6=i α̃jt

+ 1
N(N−1)

∑N
j=1 (N − 1)α̃jt + 1

(N−1)T
∑T

t=1 (N − 1)α̃jt

+ 1
(N−1)T

∑N
j=1;j 6=i

∑T
t=1 α̃jt −

1
N(N−1)T

∑N
j=1

∑T
t=1 (N − 1)α̃jt

= 1
N(N−1)T

∑N
j=1;j 6=i

∑T
t=1 α̃jt + 1

NT

∑T
t=1 α̃it −

1
N(N−1)

∑N
j=1;j 6=i α̃jt + 1

N
α̃it

where in order to avoid confusion with the two similar α �xed e�ects αjt is now denoted

by α̃jt. It can be seen, as expected, these remaining �xed e�ects are indeed wiped out

when ii type observations are present in the data. When N → ∞ the remaining e�ects

go to zero, which implies that the bias of the Within estimators go to zero as well.

Fortunately, however, there is good news as well. For both models (2.12) and (2.14)

there is a transformation which wipes out the �xed e�ects, and so remains unbiased even

19



C
E

U
eT

D
C

ol
le

ct
io

n

in this case. For model (2.12) this can be written up as

yijt −ȳit − ȳjt + ȳt + 1
N−1 ȳt −

1
N−1yjit =

yijt −ȳit − ȳjt + N
N−1 ȳt −

1
N−1yjit

(3.1)

or in matrix form

(
IN(N−1)T − IN ⊗ J̄N−1 ⊗ IT − J̄N−1 ⊗ INT + J̄N(N−1) ⊗ IT

+ 1
N−1 J̄N(N−1) ⊗ IT − 1

N−1KN(N−1) ⊗ IT
)

=(
IN(N−1)T − IN ⊗ J̄N−1 ⊗ IT − J̄N−1 ⊗ INT + N

N−1 J̄N(N−1) ⊗ IT

− 1
N−1KN(N−1) ⊗ IT

)
whereKN(N−1) is the matrix with the following rows: the row corresponding to observation

ij is a row of 0-s with 1 in the ji th place, that is the ij th row is in fact

0, 0, . . . 0, 1︸︷︷︸
ji−th element

, 0, . . . , 0


For model (2.14) the appropriate transformation is

yijt −ȳjt − ȳit − ȳij + ȳt + ȳj + ȳi − ȳ − 1
N−1 ȳ + 1

N−1 ȳt + 1
N−1 ȳji −

1
N−1yjit =

yijt −ȳjt − ȳit − ȳij + N
N−1 ȳt + ȳj + ȳi − N

N−1 ȳ + 1
N−1 ȳji −

1
N−1yjit

(3.2)
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or, again, in matrix form

(
IN(N−1)T − J̄N−1 ⊗ INT − IN ⊗ J̄N−1 ⊗ IT − IN(N−1) ⊗ J̄T

+J̄N(N−1) ⊗ IT + J̄N−1 ⊗ IN ⊗ J̄T + IN ⊗ J̄(N−1)T − J̄N(N−1)T

− 1
N−1 J̄N(N−1)T + 1

N−1 J̄N(N−1) ⊗ IT + 1
N−1KN(N−1) ⊗ J̄T

− 1
N−1KN(N−1) ⊗ IT

)
=(

IN(N−1)T − J̄N−1 ⊗ INT − IN ⊗ J̄N−1 ⊗ IT − IN(N−1) ⊗ J̄T

+ N
N−1 J̄N(N−1) ⊗ IT + J̄N−1 ⊗ IN ⊗ J̄T + IN ⊗ J̄(N−1)T − N

N−1 J̄N(N−1)T

+ 1
N−1KN(N−1) ⊗ J̄T − 1

N−1KN(N−1) ⊗ IT
)

So overall, the self �ow data problem can be overcome by using an appropriate Within

transformation leading to an unbiased estimator.

Next, we can go further along the above lines and see what going is to happen if

the observation sets i and j are di�erent. If the two sets are completely disjunct, say

for example if we are modeling export activity between the EU and APEC countries,

intuitively enough, for all the models considered the Within estimators are unbiased,

even in �nite samples, as the no-self-trade problem do not arise. If the two sets are not

completely disjunct, on the other hand, say for example in the case of trade between the

EU and OECD countries, as the no-self-trade do arise, we are face with the same biases

outlined above. Unfortunately, however, transformations (3.1) and (3.2) do not work in

this case, and there are no obvious transformations that could be worked out for this
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scenario.

3.2 Unbalanced Data

Like in the case of the usual panel data sets (see Wansbeek and Kapteyn[1989] or Balt-

agi[1995], for example), just more frequently, one may be faced with the situation when

the data at hand is unbalanced. In our framework of analysis this means that for all the

previously studied models, in general t = 1, . . . , Tij,
∑

i

∑
j Tij = T and Tij is often not

equal to Ti′j′ . For models (2.5), (2.8), (2.10) and (2.12) the unbalanced nature of the data

does not cause any problems, the Within transformations can be used, and have exactly

the same properties, as in the balanced case. However, for models (2.1) and (2.14) we are

facing trouble.

In the case of model (2.1) and transformation (2.3) we get for the �xed e�ects the

following terms (let us remember: this in fact is the optimal transformation for model

(2.7))

α∗i = αi − 1
Tij

∑Tij
t=1 αi − 1

N2

∑N
i=1Nαi + 1∑N

i=1

∑N
j=1 Tij

∑N
i=1

∑N
j=1

∑Tij
t=1 αi

= − 1
N

∑N
i=1 αi + 1

T

∑N
i=1

(
αi ·

∑N
j=1 Tij

)
= 1

NT

∑N
i=1 αi · (N

∑N
j=1 Tij − T )
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γ∗j = γj − 1
Tij

∑Tij
t=1 γj − 1

N2

∑N
j=1Nγj + 1∑N

i=1

∑N
j=1 Tij

∑N
i=1

∑N
j=1

∑Tij
t=1 γj

= − 1
N

∑N
j=1 γj + 1

T

∑N
j=1

(
γj ·

∑N
i=1 Tij

)
= 1

NT

∑N
j=1 γj · (N

∑N
i=1 Tij − T )

and

λ∗t = λt − 1
Tij

∑Tij
t=1 λt − 1

N2N
2λt + 1

T

∑N
i=1

∑N
j=1

∑Tij
t=1 λt

= λt − 1
Tij

∑Tij
t=1 λt − λt + 1

T

∑N
i=1

∑N
j=1

∑Tij
t=1 λt

= − 1
Tij

∑Tij
t=1 λt + 1

T

∑N
i=1

∑N
j=1

∑Tij
t=1 λt

These terms clearly do not add up to zero in general, so the Within transformation does

not clear the �xed e�ects, as a result this Within estimator will be biased. (It can easily

checked that the above α∗i , γ
∗
j and λ

∗
t terms add up to zero when ∀i, j Tij = T .) As (2.3) is

the optimal Within estimator for model (2.7), this is bad news for the estimation of that

model as well. We, unfortunately, get very similar results for transformation (2.4) too.

The good news is, on the other hand, as seen earlier, that for model (2.1) transformation

(2.13) clears the �xed e�ects, and although not optimal in this case, it does not depend

on time, so in fact the corresponding Within estimator is still unbiased in this case.

Unfortunately, no such luck in the case of model (2.14) and transformation (2.15). The

remaining �xed e�ects are now
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γ∗ij = γij − 1
Tij

∑Tij
t=1 γij − 1

N

∑N
i=1 γij −

1
N

∑N
j=1 γij + 1

N2

∑N
i=1

∑N
j=1 γij+

+ 1∑N
i=1 Tij

∑N
i=1

∑Tij
t=1 γij + 1∑N

j=1 Tij

∑N
j=1

∑Tij
t=1 γij − 1

T

∑N
i=1

∑N
j=1

∑Tij
t=1 γij

= γij − γij − 1
N

∑N
i=1 γij −

1
N

∑N
j=1 γij + 1

N2

∑N
i=1

∑N
j=1 γij + 1∑N

i=1 Tij

∑N
i=1 γijTij+

+ 1∑N
j=1 Tij

∑N
j=1 γijTij −

1
T

∑N
i=1

∑N
j=1 γijTij

= − 1
N

∑N
i=1 γij −

1
N

∑N
j=1 γij + 1

N2

∑N
i=1

∑N
j=1 γij + 1∑N

i=1 Tij

∑N
i=1 γijTij+

+ 1∑N
j=1 Tij

∑N
j=1 γijTij −

1
T

∑N
i=1

∑N
j=1 γijTij

α∗it = αit − 1
Tij

∑Tij
t=1 αit − 1

N

∑N
i=1 αit −

1
N

∑N
j=1 αit + 1

N2

∑N
i=1

∑N
j=1 αit+

+ 1∑N
i=1 Tij

∑N
i=1

∑Tij
t=1 αit + 1∑N

j=1 Tij

∑N
j=1

∑Tij
t=1 αit − 1

T

∑N
i=1

∑N
j=1

∑Tij
t=1 αit

= αit − 1
Tij

∑Tij
t=1 αit − 1

N

∑N
i=1 αit − αit + 1

N

∑N
i=1 αit+

+ 1∑N
i=1 Tij

∑N
i=1

∑Tij
t=1 αit + 1∑N

j=1 Tij

∑N
j=1

∑Tij
t=1 αit − 1

T

∑N
i=1

∑N
j=1

∑Tij
t=1 αit

= − 1
Tij

∑Tij
t=1 αit + 1∑N

i=1 Tij

∑N
i=1

∑Tij
t=1 αit + 1∑N

j=1 Tij

∑N
j=1

∑Tij
t=1 αit−

− 1
T

∑N
i=1

∑N
j=1

∑Tij
t=1 αit
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and

α∗jt = αjt − 1
Tij

∑Tij
t=1 αjt − 1

N

∑N
i=1 αjt −

1
N

∑N
j=1 αjt + 1

N2

∑N
i=1

∑N
j=1 αjt+

+ 1∑N
i=1 Tij

∑N
i=1

∑Tij
t=1 αjt + 1∑N

j=1 Tij

∑N
j=1

∑Tij
t=1 αjt − 1

T

∑N
i=1

∑N
j=1

∑Tij
t=1 αjt

= αjt − 1
Tij

∑Tij
t=1 αjt − αjt − 1

N

∑N
i=1 αjt + 1

N

∑N
i=1 αjt + 1∑N

i=1 Tij

∑N
i=1

∑Tij
t=1 αjt+

+ 1∑N
j=1 Tij

∑N
j=1

∑Tij
t=1 αjt − 1

T

∑N
i=1

∑N
j=1

∑Tij
t=1 αjt

= − 1
Tij

∑Tij
t=1 αjt + 1∑N

i=1 Tij

∑N
i=1

∑Tij
t=1 αjt + 1∑N

j=1 Tij

∑N
j=1

∑Tij
t=1 αjt−

− 1
T

∑N
i=1

∑N
j=1

∑Tij
t=1 αjt

These terms clearly do not cancel out in general, as a result the corresponding Within

estimator is biased. Unfortunately, the increase of N does not deal with the problem,

so the bias remains even when N → ∞. It can easily be checked, however, that in the

balanced case, i.e., when each Tij = T/N2 the �xed e�ects drop out indeed from the above

formulations. Therefore, from a practical point of view, the estimation of both models

(2.7) and (2.14) is quite problematic. However, luckily, the Wansbeek and Kapteyn[1989]

approach can be extended to these cases. In the case of model (2.7), picking up the

notation used in (2.16), D̃1 and D̃2 have to be modi�ed to re�ect the unbalanced nature

of the data. Recall that t goes from 1 to some Tij, and we assume
∑

ij Tij ≡ T and

let max{Tij} ≡ T ∗ Then let the Vt-s be the sequence of IN2 matrixes, (t = 1 . . . T ∗) in

which the following adjustments were made: for each ij observation, we leave the row

(representing ij) in the �rst Tij matrixes untouched, but delete them from the remaining
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T ∗ − Tij matrixes. In this way we end up with the following dummy variable setup

D1 = [V ′1 , V
′
2 . . . V

′
T ∗ ]
′ , (T ×N2) ;

Da
2 = diag {V1 · lN2 , V2 · lN2 . . . , VT ∗ · lN2} , (T × T ∗);

So the complete dummy variable structure now is Da = (D1, D
a
2). Let us note here, that

in this case, just as in Wansbeek and Kapteyn[1989], index t goes �slowly� and ij �fast�.

Let now

∆N2 ≡ D′1D1 , ∆T ∗ ≡ Da′

2 D
a
2 , Aa ≡ Da′

2 D
a
1 ,

and

D̄a ≡ Da
2 −D1∆

−1
N2A

a′ =
(
IT −D1 (D′1D1)

−1D′1
)
Da

2

Qa ≡ ∆T ∗ − Aa∆−1N2A
a′ = Da′

2 D̄
a

Note that in the original balanced case ∆N2 = T · IN2 , ∆T ∗ = N2 · IT and Aa = lT ⊗ l′N2 .

So �nally, the appropriate transformation for model (2.7) is

P a =
(
IT −D1∆

−1
N2D

′
1

)
− D̄aQa−D̄a′ (3.3)

where Qa− denotes the generalized inverse, as, like in case ofWansbeek and Kapteyn[1989],

the Qa matrix has no full rank. We can re-write transformation (3.3) using scalar notation

for the ease of computation. For y let φ̄a ≡ Qa−D̄a′y. In that way, a particular element
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(ijt) of P ay can be written up as

[P ay]ijt = yijt −
1

Tij

Tij∑
t=1

yijt − φ̄at +
1

Tij
aa
′

ij φ̄
a,

where aaij is the ij-th column of matrix Aa (Aa has N2 columns), and φ̄at is the t-th element

of the (T ∗ × 1) column vector φ̄a. (Note that we only have to calculate the inverse of a

(T ∗ × T ∗) matrix, which is easily doable.)

Let us continue with model (2.14) and let now the matrix of dummy variables for the

�xed e�ects be Db = (D1, D
b
2, D3) where D1 is de�ned as above,

Db
2 = diag {U1, . . . UT ∗}

with the Ut-s being the IN ⊗ lN matrixes at time t but modi�ed in the following way:

we leave untouched the rows corresponding to observation ij in the �rst Tij matrix, but

delete them from the other T ∗ − Tij matrixes, and

D3 = diag {W1, . . .WT ∗}

with the Wt-s being the lN ⊗IN matrixes at time t, with the same modi�cations as above.
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De�ning the partial projector matrixes B and C as

B ≡ IT −D1(D
′
1D1)

−1D′1 and

C ≡ B − (BDb
2)[(BD

b
2)
′(BDb

2)]
−(BDb

2)
′

the appropriate transformation for model (2.14) now is

P b ≡ C − (CD3)[(CD3)
′(CD3)]

−(CD3)
′ (3.4)

It can easily be veri�ed that P b is idempotent and P bDb = 0, so all the �xed e�ects are

indeed eliminated.

It is worth noting that both transformations (3.3) and (3.4) are dealing in a natural

way with the no-self-�ow problem, as only the rows corresponding to the i = j observations

need to be deleted from the corresponding dummy variables matrixes (in the unbalanced

case, in fact from the D1, D
a
2 and D1, D

b
2, D3 matrixes 3).

Transformation (3.4) can also be re-written in scalar form. First, let

φ̄b ≡
(
Qb
)− (

D̄b
)′
y where Qb ≡

(
Db

2

)′
D̄b and D̄b ≡

(
IT −D1(D

′
1D1)

−1D′1
)
Db

2,

ω̄ ≡ Q̃−(CD3)
′y where Q̃ ≡ (CD3)

′(CD3)

3Let use make a remark here. From a computational point of view the calculation of matrix B, more
precisely D1(D

′
1D1)

−1D − 1′ is by far the most resource requiring. Simpli�cations related to this can
reduce dramatically CPU and Storage requirements.This topic, however, is beyond the limits of this
paper, and the expertise of the authors.
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and lastly

ξ̄ ≡
(
Qb
)− (

D̄b
)′
D3ω̄

Now the scalar representation of transformation (3.4) is

[
P by

]
ijt

= yijt −
1

Tij

Tij∑
t=1

yijt +
1

Tij

(
abij
)′
φ̄b − φ̄bit − ω̄jt +

1

Tij
ã′ijω̄ + ξ̄it −

1

Tij

(
abij
)′
ξ̄

where abij and ãij are the column vectors corresponding to observations ij from matrixes

Ab ≡
(
Db

2

)′
D1 and Ã ≡ D′3D1 respectively. φ̄bit is the it-th element of the (NT ∗ × 1)

column vector, φ̄b. ω̄jt is the jt-th element of the (NT ∗× 1) column vector, ω̄, and �nally,

ξ̄it is the element corresponding to the it-th observation from the (NT ∗×1) column vector,

ξ̄.
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Chapter 4

Dynamic Models

In the case of dynamic autoregressive models, the use of which is unavoidable if the data

generating process has partial adjustment or some kind of memory, the Within estimators

in a usual panel data framework are biased. In this section we generalize these well known

results to this higher dimensional setup. We derive the �nite sample bias for each of the

models introduced in Chapter 2.

In order to show the problem, let us start with the simple linear dynamic model with

bilateral interaction e�ects, that is model (2.5)

yijt = ρyijt−1 + γij + εijt (4.1)
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With backward substitution we get

yijt = ρtyij0 +
1− ρt

1− ρ
γij +

t∑
k=0

ρkεijt−k (4.2)

and

yijt−1 = ρt−1yij0 +
1− ρt−1

1− ρ
γij +

t−1∑
k=0

ρkεijt−1−k

What needs to be checked is the correlation between the right hand side variables of

model (4.1) after applying the appropriate Within transformation, that is the correla-

tion between (yijt−1 − ȳij−1) where ȳijt−1 = 1/T
∑

t yijt−1 and (εijt − ε̄ij) where ε̄ij =

1/T
∑

t εij. This amounts to check the correlations (yijt−1ε̄ij), (ȳij−1εijt) and (ȳij−1ε̄ij)

because (yijt−1εijt) are uncorrelated. These correlations are obviously not zero, not even

in the semi-asymptotic case when N →∞, as we are facing the so called Nickell-type bias

(Nickell[1981]). This may be the case for all other Within transformations as well.

Model (4.1) can of course be expanded to have exogenous explanatory variables as

well

yijt = ρyijt−1 + x′ijtβ + γij + εijt (4.3)

Let us turn now to the derivation of the �nite sample bias and denote in general

any of the above Within transformations by ȳtrans. Using this notation we can derive the

general form of the bias using Nickell�type calculations. Starting from the simple �rst
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order autoregressive model (4.1) introduced above we get

(yijt − ȳtrans) = ρ(yijt−1 − ȳtrans−1) + (εijt − ε̄trans) (4.4)

Using OLS to estimate ρ, we get

ρ̂t =

∑N
i=1

∑N
j=1 (yijt−1 − ȳtrans−1) · (yijt − ȳtrans)∑N
i=1

∑N
j=1 (yijt−1 − ȳtrans−1)2

(4.5)

So in the expectations we have

E(ρ̂− ρ) =

∑N
i=1

∑N
j=1E (yijt−1 − ȳtrans−1) (εijt − ε̄trans)∑N
i=1

∑N
j=1E (yijt−1 − ȳtrans−1)2

(4.6)

Continuing with model (4.1) and using now the appropriate (2.6) Within transforma-

tion we get

(yijt − ȳij) = ρ(yijt−1 − ȳij−1) + (εijt − ε̄ij)

For the numerator of the bias in (4.6) from above we get

E[yijt−1εijt] = 0

E[yijt−1ε̄ij] = E

[(
t−1∑
k=0

ρkεijt−1−k

)
·

(
1

T
·

T∑
t=1

εijt

)]
=
σ2
ε

T
· 1− ρt−1

1− ρ
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E[ȳij−1εijt] = E

[(
1

T

T∑
t=1

t−1∑
k=0

ρkεijt−1−k

)
· (εijt)

]
=
σ2
ε

T
· 1− ρT−t

1− ρ

E[ȳij−1ε̄ij] = E

[(
1

T

T∑
t=1

t−1∑
k=0

ρkεijt−1−k

)
·

(
1

T
·

T∑
t=1

εijt

)]
=
σ2
ε

T
·
(

1

1− ρ
− 1

T
· 1− ρT

(1− ρ)2

)

And for the denominator of the bias in (4.6)

E[y2ijt−1] = E

( t−1∑
k=0

ρkεijt−1−k

)2
 = σ2

ε ·
1− ρ2t

1− ρ2

E[yijt−1ȳij−1] = E
[(∑t−1

k=0 ρ
kεijt−1−k

)
·
(

1
T

∑T
t=1

∑t−1
k=0 ρ

kεijt−1−k

)]
=

= σ2
ε

T (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)

E[ȳ2ij−1] = E

[(
1
T

∑T
t=1

∑t−1
k=0 ρ

kεijt−1−k

)2]
=

= σ2
ε

T (1−ρ)2

(
1− 2ρ(1−ρT )

T (1−ρ2) + 2ρT+2−ρ2(T+1)−ρ2
1−ρ2

)
So the �nite sample bias for this model is

E [ρ̂− ρ] =
−σ2

ε

T
·
(

1−ρt−1

1−ρ

)
− σ2

ε

T
·
(

1−ρT−t
1−ρ

)
+ σ2

ε

T
·
(

1
1−ρ −

1
T
· 1−ρT
(1−ρ)2

)
σ2
ε ·
(

1−ρ2t
1−ρ2

)
− A∗ +B∗

where

A∗ =
2σ2

ε

T (1− ρ2)

(
1− ρt

1− ρ
+ ρ

1− ρT−t

1− ρ
− ρt+1 · 1 + ρT

1− ρ

)

and

B∗ =
σ2
ε

T (1− ρ)2

(
1− 2ρ(1− ρT )

T (1− ρ2)
+

2ρT+2 − ρ2(T+1) − ρ2

1− ρ2

)
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It can be seen that these results are very similar to the original Nickell results, and

the bias is persistent even in the semi-asymptotic case when N →∞.

Let us turn now our attention to model (2.1). In this case the Within transformation

(2.3) leads to

(yijt − ȳij − ȳt + ȳ) = ρ · (yijt−1 − ȳij−1 − ȳt−1 + ȳ−1) + (εijt − ε̄ij − ε̄t + ε̄)

After lengthy derivations (see the Appendix) we get for the �nite sample bias

E [ρ̂− ρ] =

(
1−N2

N2

)
σ2
ε

T
1−ρt−1

1−ρ +
(

1−N2

N2

)
σ2
ε

T
1−ρT−t
1−ρ + A∗(

N2−1
N2

)
· σ2

ε
1−ρ2t
1−ρ2 −B∗ + C∗

where

A∗ =

(
N2 − 1

N2

)
σ2
ε

T

(
1

1− ρ
− 1

T

1− ρT

(1− ρ)2

)

B∗ = 2

(
N2 − 1

N2

)
· σ2

ε

T (1− ρ2)

(
1− ρt

1− ρ
+ ρ

1− ρT−t

1− ρ
− ρt+1 · 1 + ρT

1− ρ

)

and

C∗ =

(
N2 − 1

N2

)
σ2
ε

T (1− ρ)2

(
1− 2ρ(1− ρT )

T (1− ρ2)
+

2ρT+2 − ρ2(T+1) − ρ2

1− ρ2

)

It is worth noticing that in the semi-asymptotic case as N → ∞ we get back the bias

derived above for model (4.1).
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As seen earlier, the optimal Within transformation for model (2.1) is in fact (2.4)

(yijt − ȳi − ȳj − ȳt + 2ȳ)

For this Within estimator the bias is (see the derivation in the Appendix)

E [ρ̂− ρ] =

(
2−2N
N2

)
· σ

2
ε

T
· 1−ρt−1

1−ρ +
(
2−2N
N2

)
· σ

2
ε

T
· 1−ρT−t

1−ρ + A∗∗(
N2−1
N2

)
· σ2

ε
1−ρ2t
1−ρ2 +B∗∗ + C∗∗

where

A∗∗ =

(
2N − 2

N2

)
· σ

2
ε

T
·
(

1

1− ρ
− 1

T
· 1− ρT

(1− ρ)2

)

B∗∗ =

(
4− 4N

N2

)
· σ2

ε

T (1− ρ2)

(
1− ρt

1− ρ
+ ρ

1− ρT−t

1− ρ
− ρt+1 · 1 + ρT

1− ρ

)

and

C∗∗ =

(
2N − 4

N2

)
σ2
ε

T (1− ρ)2

(
1− 2ρ(1− ρT )

T (1− ρ2)
+

2ρT+2 − ρ2(T+1) − ρ2

1− ρ2

)

It can be seen as N → ∞ the bias goes to zero, so this estimator is semi-asymptotically

unbiased (unlike the previous one).

As the optimal Within transformation for model (2.7) is in fact (2.3), we get the same

bias in this case as for model (2.1).

Let us now continue with models (2.8), (2.10) and (2.12) which can be considered as
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the same models from this point of view. Writing up model (2.8)

yijt = ρyijt−1 + αjt + εijt

and applying the Within transformation to it we get

yijt − ȳjt = ρ (yijt−1 − ȳjt−1) + (εijt − ε̄jt)

The bias then can be expressed as

E [ρ̂− ρ] =
E [yijt−1εijt]− E [yijt−1ε̄jt]− E [ȳjt−1εijt] + E [ȳjt−1ε̄jt]

E
[
y2ijt−1

]
− 2 · E [yijt−1ȳjt−1] + E

[
ȳ2jt−1

]
It can easily be seen that the expected value of the numerator is zero, as both yijt−1 and

ȳjt−1 depend on the ε-s only up to time t − 1, and are necessarily uncorrelated with the

t-th period disturbance, εijt. So as the denominator is �nite, the bias is in fact nil. The

same arguments are valid for models (2.10) and (2.12) as well.

And �nally, let us turn to model (2.14)

yijt = ρyijt−1 + γij + αit + αjt + εijt
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The Within transformation gives

(yijt − ȳij − ȳjt − ȳit + ȳt + ȳj + ȳi − ȳ)

so we get

(yijt − ȳij −ȳjt − ȳit + ȳt + ȳj + ȳi − ȳ) =

= ρ · (yijt−1 − ȳij−1 − ȳjt−1 − ȳit−1 + ȳt−1 + ȳj−1 + ȳi−1 − ȳ−1)+

+(εijt − ε̄ij − ε̄jt − ε̄it + ε̄t + ε̄j + ε̄i − ε̄)

And for the �nite sample bias of this model we get

E[ρ̂− ρ] =

(
−(N−1)2

N2

)
· σ

2
ε

T
· 1−ρt−1

1−ρ +
(
−(N−1)2

N2

)
· σ

2
ε

T
· 1−ρT−t

1−ρ + A∗(
(N−1)2
N2

)
σ2
ε
1−ρ2t
1−ρ2 +B∗ + C∗

where

A∗ =

(
(N − 1)2

N2

)
· σ

2
ε

T 2
·
(
T · 1− ρt−1

1− ρ
− ρ+ (t− 1)ρt+1 − tρt

(1− ρ)2

)

B∗ =

(
−2(N − 1)2

N2

)
σ2
ε

T (1− ρ2)

(
1− ρt

1− ρ
+ ρ

1− ρT−t

1− ρ
− ρt+1 · 1 + ρT

1− ρ

)

and

C∗ =

(
(N − 1)2

N2

)
σ2
ε

T (1− ρ)2

(
1− 2ρ(1− ρT )

T (1− ρ2)
+

2ρT+2 − ρ2(T+1) − ρ2

1− ρ2

)

It is clear that if N goes to in�nity and T is �nite, we get back the bias of model (2.5).
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As seen above, we have problems with the estimation and N inconsistency of models

(2.5), (2.7) and (2.14) in the dynamic case (see Table 2 in the appendix). Luckily, many

of the well known instrumental variables (IV) estimators developed to deal with dynamic

panel data models can be generalized to these higher dimensions as well, as the number

of available orthogonality conditions increases together with the dimensions. Let us take

the example of one of the most frequently used, the Arellano and Bond IV estimator (see

Arellano and Bond[1991] andMark N. Harris and Sevestre[2005] p. 260) for the estimation

of model (2.5).

The model is written up in �rst di�erences, such as

yijt − yijt−1 = ρ (yijt−1 − yijt−2) + (εijt − εijt−1) , t = 3, . . . , T

or

∆yijt = ρ∆yijt−1 + ∆εijt, t = 3, . . . , T

The yijt−k, (k = 2, . . . , t− 1) are valid instruments for ∆yijt−1, as ∆yijt−1 is N asymptot-

ically correlated with yijt−k, but yijt−k are not with ∆εijt. As a result, the full instrument
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set for a given cross sectional pair, (ij) is

zij =



yij1 0 · · · · · · 0 · · · 0

0 yij1 yij2 0 0 · · · 0

... · · · ...
... · · · ...

0 · · · 0 0 yij1 · · · yijT−2


((T−2)× (T−1)(T−2)

2
)

The resulting IV estimator of ρ is

ρ̂AB =
[
∆Y ′−1ZAB (Z ′ABΩZAB)

−1
Z ′AB∆Y−1

]−1
∆Y ′−1ZAB (Z ′ABΩZAB)

−1
Z ′AB∆Y,

where ∆Y and ∆Y−1 are the panel �rst di�erences, ZAB = [z′11, z
′
12, . . . , z

′
NN ]′ and Ω =

IN2 ⊗ Σ is the covariance matrix, with known form

Σ =



2 −1 0 · · · 0

−1 2 −1 · · · 0

0
. . . . . . . . . 0

0 · · · −1 2 −1

0 · · · 0 −1 2


((T−2)×(T−2))

The generalized Arellano-Bond estimator is behaves exactly in the same way as the �orig-

inal� two dimensional one, regardless the dimensionality of the model.
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In the case of models (2.7) and (2.14) to derive an Arellano-Bond type estimator we

need to insert one further step. After taking the �rst di�erences, we implement a simple

transformation in order to get to a model with only (ij) pairwise interaction e�ects,

exactly as in model (2.5). Then we proceed as above as the ZAB instruments are going to

be valid for these transformed models as well. Let us start with model (2.7) and take the

�rst di�erences

yijt − yijt−1 = ρ(yijt−1 − yijt−2) + (λt − λt−1) + (εijt − εijt−1)

Now, instead of estimating this equation directly with IV, we carry out the following

transformation

(yijt −yijt−1)− 1
N

∑N
i=1 (yijt − yijt−1) = ρ

[
(yijt−1 − yijt−2)− 1

N

∑N
i=1 (yijt−1 − yijt−2)

]
+

+
[
(λt − λt−1)− 1

N

∑N
i=1 (λt − λt−1)

]
+
[
(εijt − εijt−1)− 1

N

∑N
i=1 (εijt − εijt−1)

]

or introducing the notation ∆ỹjt = 1
N

∑N
i=1 (yijt − yijt−1) and, also, noticing that the λ-s

had been eliminated from the model

(∆yijt −∆ỹjt) = ρ(∆yijt−1 −∆ỹjt−1) + (∆εijt −∆ε̃jt)

We can see that the ZAB instruments proposed above are valid again for ∆yijt−1−∆ỹjt−1

as well, as they are uncorrelated with ∆εijt −∆ε̃jt, but correlated with the former. The
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IV estimator of ρ, ρ̂AB again has the form

ρ̂AB =
[
∆Ỹ ′−1ZAB(Z ′ABΩZAB)−1Z ′AB∆Ỹ−1

]−1
∆Ỹ ′−1ZAB(Z ′ABΩZAB)−1Z ′AB∆Ỹ .

Continuing now with model (2.14), the transformation needed in this case is

∆yijt − 1
N

∑N
i=1 ∆yijt − 1

N

∑N
j=1 ∆yijt + 1

N2

∑N
i=1

∑N
j=1 ∆yijt =

= ρ
[
∆yijt−1 − 1

N

∑N
i=1 ∆yijt−1 − 1

N

∑N
j=1 ∆yijt−1 + 1

N2

∑N
i=1

∑N
j=1 ∆yijt−1

]
+

+
[
∆αit − 1

N

∑N
i=1 ∆αit − 1

N

∑N
j=1 ∆αit + 1

N2

∑N
i=1

∑N
j=1 ∆αit

]
+

+
[
∆αjt − 1

N

∑N
i=1 ∆αjt − 1

N

∑N
j=1 ∆αjt + 1

N2

∑N
i=1

∑N
j=1 ∆αjt

]
+

+
[
∆εijt − 1

N

∑N
i=1 ∆εijt − 1

N

∑N
j=1 ∆εijt + 1

N2

∑N
i=1

∑N
j=1 ∆εijt

]
Picking up the previously introduced notation and using the fact that the �xed e�ects are

cleared again we get

(∆yijt−∆ỹjt−∆ỹit+∆ỹt) = ρ(∆yijt−1−∆ỹjt−1−∆ỹit−1+∆ỹt−1)+(∆εijt−∆ε̃jt−∆ε̃it+∆ε̃t)

The ZAB instruments can be used again, on this transformed model, to get a consistent

estimator for ρ.
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Chapter 5

Further Extensions

We assumed so far throughout the paper that the idiosyncratic disturbance term ε is in

fact a well behaved white noise, that is, all heterogeneity is introduced into the model

through the �xed e�ects. In some applications this may be an unrealistic assumption, so

next we relax it in two ways. We introduce heteroscedasticity and a simple form of cross

correlation into the disturbance terms, and see how this impacts on the transformations

introduced earlier. So far the approach has been to transform the models in such a way

that the �xed e�ects drop out, and then estimate the transformed models with OLS. Now,

however, after the appropriate transformation the model has to be estimated by Feasible

GLS (FGLS) instead of OLS, as we have to take into account its covariance structure.

First, we derive the covariance matrix of the model and analyze how the di�erent

transformations introduced earlier impact on it. Then, we derive estimators for the vari-

ance components of the transformed model, in order to be able to use FGLS instead of
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OLS for the estimation.

5.1 Covariance Matrixes and the Within Transforma-

tions

The initial Assumption (2.2) about the disturbance terms now is replaced by

E (εijεkl) =



σ2
εi if i = k, j = l,∀t

ρ(1) if i = k, j 6= l,∀t

ρ(2) if i 6= k, j = l,∀t

0 otherwise

Then the covariance matrix of all models introduced in Section 2 takes the form

Υ ≡ LN ⊗ INT −
(
ρ(1) + ρ(2)

)
· IN2T + ρ(1) · IN ⊗ JN ⊗ IT + ρ(2) · JN ⊗ IN ⊗ IT ,

where

LN =



σ2
ε1 0 · · · 0

0 σ2
ε2 · · · 0

...
...

. . .
...

0 0 · · · σ2
εN


N×N
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This covariance matrix is altered, depending on the Within transformation used to get

rid of the �xed e�ects.

In the case of transformation (2.3) the PD projection matrix is

PD = IN2T −
1

T
IN2 ⊗ JT −

1

N2
JN2 ⊗ IT +

1

N2T
JN2T

and we get

PDΥPD = Υ− 1
T
LN ⊗ IN ⊗ JT + 1

T
(ρ(1) + ρ(2)) · IN2 ⊗ JT

− 1
N2LNJN ⊗ JN ⊗ IT − 1

N2

(
(N − 1)ρ(1) + (N − 1)ρ(2)

)
· JN2 ⊗ IT

+ 1
N2T

LNJN ⊗ JNT + 1
N2T

(
(N − 1)ρ(1) + (N − 1)ρ(2)

)
· JN2T

−ρ(1)
T
· IN ⊗ JNT −

ρ(2)
T
· JN ⊗ IN ⊗ JT

For transformation (2.4) we get

PD = IN2T −
1

NT
IN ⊗ JNT −

1

NT
JN ⊗ IN ⊗ JT −

1

N2
JN2 ⊗ IT +

2

N2T
JN2T
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and

PDΥPD = Υ− 1
NT
LN ⊗ JNT − 1

NT

(
(N − 1)ρ(1) − ρ(2)

)
· IN ⊗ JNT

− 1
NT
LNJN ⊗ IN ⊗ JT − 1

NT

(
−ρ(1) + (N − 1)ρ(2)

)
· JN ⊗ IN ⊗ JT

− 1
N2LNJN ⊗ JN ⊗ IT − 1

N2

(
(N − 1)ρ(1) + (N − 1)ρ(2)

)
· JN2 ⊗ IT

+ 2
N2T

LNJN ⊗ JT + 1
N2T

(
(N − 2)ρ(1) + (N − 2)ρ(2)

)
· JN2T

For transformation (2.6) we have

PD = IN2T −
1

T
IN2 ⊗ JT

and

PDΥPD = Υ− 1
T

(LN ⊗ IN ⊗ JT ) + 1
T

(ρ(1) + ρ(2)) · IN2 ⊗ JT −
ρ(1)
T
· IN ⊗ JNT

−ρ(2)
T
· JN ⊗ IN ⊗ JT

For transformation (2.9) we get

PD = IN2T −
1

N
JN ⊗ INT

and

PDΥPD = Υ− 1
N

(LNJN ⊗ INT ) + 1
N

(ρ(1) + (1−N)ρ(2)) · JN ⊗ INT

−ρ(1)
N
· JN2 ⊗ IT
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For transformation (2.13) we get

PD = IN2T −
1

N
JN ⊗ INT −

1

N
IN ⊗ JN ⊗ IT +

1

N2
JN2 ⊗ IT

and

PDΥPD = Υ− 1
N
LNJN ⊗ INT − 1

N

(
−ρ(1) + (N − 1)ρ(2)

)
· JN ⊗ INT

− 1
N
LN ⊗ JN ⊗ IT − 1

N

(
(N − 1)ρ(1) − ρ(2)

)
· IN ⊗ JN ⊗ IT

+ 1
N2T

LNJN ⊗ JN ⊗ IT + 1
N2

(
−ρ(1) − ρ(2)

)
· JN2 ⊗ IT

And �nally, for transformation (2.15) we get

PD = IN2T − 1
N
JN ⊗ INT − 1

N
IN ⊗ JN ⊗ IT − 1

T
IN2 ⊗ JT

+ 1
NT
JN ⊗ IN ⊗ JT + 1

NT
IN ⊗ JNT + 1

N2JN2 ⊗ IT − 1
N2T

JN2T

and

PDΥPD = Υ− 1
N
LNJN ⊗ INT − 1

N

(
−ρ(1) + (N − 1)ρ(2)

)
· JN ⊗ INT

− 1
N
LN ⊗ JN ⊗ IT − 1

N

(
(N − 1)ρ(1) − ρ(2)

)
· IN ⊗ JN ⊗ IT

+ 1
N2LNJN ⊗ JN ⊗ IT + 1

N2

(
−ρ(1) − ρ(2)

)
· JN2 ⊗ IT

− 1
T
LN ⊗ IN ⊗ JT − 1

T

(
−ρ(1) − ρ(2)

)
· IN2 ⊗ JT

+ 1
NT
LN ⊗ JNT + 1

NT

(
−ρ(1) − ρ(2)

)
· IN ⊗ JNT

+ 1
NT
LNJN ⊗ IN ⊗ JT + 1

NT

(
−ρ(1) − ρ(2)

)
· JN ⊗ IN ⊗ JT

− 1
N2T

LNJN ⊗ JNT − 1
N2T

(
−ρ(1) − ρ(2)

)
· JN2T
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5.2 Estimation of the Variance Components and the

Cross Correlations

What now remains to be done is to estimate to variance components in order to make

the GLS feasible. However, as we are going to see, so di�culties lay ahead. Let us start

with the simples case, model (2.5). Applying transformation (2.6) leads to the following

model to be estimated

(yijt − ȳij) = (xijt − x̄ij)β′ + (εijt − ε̄ij)

Let us denote the transformed disturbance terms by uijt. In this way now

E
[
u2ijt
]

= E
[
(εijt − ε̄ij)2

]
=
T − 1

T
σ2
εi

These are in fact N equations for N unknown parameters, so the system can be solved:

1
NT

∑N
j=1

∑T
t=1 û

2
ijt = T−1

T
σ̂2
εi

σ̂2
εi = 1

N(T−1)
∑N

j=1

∑T
t=1 û

2
ijt

where û is the OLS residual from the estimation of the transformed model. We also have

to estimate the two cross correlations, ρ(1) and ρ(2). This is done by taking the averages
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of the residuals with respect to i and j. Let us start with ρ(1)

E

( 1

N

N∑
j=1

uijt

)2
 = E

[
ū2it
]

=
T − 1

NT
σ2
εi +

(N − 1)(T − 1)

NT
ρ(1)

As we already have an estimator for σ2
εi,

ρ̂(1) = NT
(N−1)(T−1)

(
E
[
ˆ̄u2it
]
− T−1

NT
σ̂2
εi

)
=

= 1
N2(N−1)(T−1)

∑N
i=1

∑T
t=1

(∑N
j=1 ûijt

)2
− 1

N(N−1)
∑N

i=1 σ̂
2
εi

Now for ρ(2),

E

( 1

N

N∑
i=1

uijt

)2
 = E [ūjt] =

T − 1

N2T

N∑
i=1

σ2
εi +

(N − 1)(T − 1)

NT
ρ(2),

and so

ρ̂(2) = NT
(N−1)(T−1)

(
E
[
ˆ̄u2jt
]
− T−1

N2T

∑N
i=1 σ̂

2
εi

)
=

= 1
N2(N−1)(T−1)

∑N
j=1

∑T
t=1

(∑N
i=1 ûijt

)2
− 1

N(N−1)
∑N

i=1 σ̂
2
εi

For the other models the above exercise is slightly more complicated. Let us continue

with model (2.1). For this model there were three transformations put forward in this
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paper, here we are using two of them (2.3) and (2.13):

E
[
u2ijt
]

= E
[
(εijt − ε̄ij − ε̄t + ε̄)2

]
=

= (N2−2)(T−1)
N2T

σ2
εi + T−1

N3T

∑N
i=1 σ

2
εi −

(N−1)(T−1)
N2T

(
ρ(1) + ρ(2)

)
E
[
u∗2ijt
]

= E
[
(εijt − ε̄it − ε̄jt + ε̄t)

2] =

= (N−2)(N−1)
N2 σ2

εi + N−1
N3

∑N
i=1 σ

2
εi −

(N−1)2
N2

(
ρ(1) + ρ(2)

)
Let us notice notice that if we subtract T−1

T (N−1) times the second equation from the �rst,

we get

E
[
u2ijt
]
− T − 1

T (N − 1)
E
[
u∗2ijt
]

= −(N − 1)2

N
σ2
εi

As a result

σ̂2
εi = − 1

(N − 1)2T

N∑
j=1

T∑
t=1

û2ijt +
N(T − 1)

(N − 1)3T

N∑
j=1

T∑
t=1

û∗2ijt

Just as with the previous model, we can estimate ρ(1) and ρ(2) by taking the averages of

the residuals. For ρ(2)

E
[
ū2jt
]

= E
[
(ε̄jt − ε̄j − ε̄t + ε̄)2

]
=

= (N−1)(T−1)
N3T

∑N
i=1 σ

2
εi −

(N−1)(T−1)
N2T

ρ(1) + (N−1)2(T−1)
N2T

ρ(2)

Now we are ready to express ρ̂(2)

(N − 1)(T − 1)

NT
ρ(2) =

[
E
[
ū2jt
]
− T − 1

(N − 1)T

1

N

N∑
i=1

E
[
u∗2ijt
]]
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This leads to

ρ̂(2) = NT
(N−1)(T−1)

[
1
NT

∑N
j=1

∑T
t=1

(
1
N

∑N
i=1 ûijt

)2
− T−1

N2(N−1)T 2

∑N
i=1

∑N
j=1

∑T
t=1 û

∗2
ijt

]
=

= 1
N2(N−1)(T−1)

∑N
j=1

∑T
t=1

(∑N
i=1 ûijt

)2
− 1

N(N−1)2T
∑N

i=1

∑N
j=1

∑T
t=1 û

∗2
ijt

Doing the same for ρ(1) gives

E [ū2it] = E
[
(ε̄it − ε̄i − ε̄t + ε̄)2

]
= (N−2)(T−1)

N2T
σ2
εi + T−1

N3T

∑N
i=1 σ

2
εi−

− (N−1)(T−1)
N2T

ρ(2) + (N−1)2(T−1)
N2T

ρ(1)

And so

(N − 1)(T − 1)

NT
ρ(1) =

[
E

[
1

N

N∑
i=1

ū2it

]
− T − 1

(N − 1)T

1

N

N∑
i=1

E
[
u∗2ijt
]]

which leads to

ρ̂(1) = NT
(N−1)(T−1)

[
1
NT

∑N
i=1

∑T
t=1

(
1
N

∑N
j=1 ûijt

)2
− T−1

N2(N−1)T 2

∑N
i=1

∑N
j=1

∑T
t=1 û

∗2
ijt

]
=

= 1
N2(N−1)(T−1)

∑N
i=1

∑T
t=1

(∑N
j=1 ûijt

)2
− 1

N(N−1)2T
∑N

i=1

∑N
j=1

∑T
t=1 û

∗2
ijt

Let us continue with model (2.7). In this case we need to use two new Within trans-

formations, and calculate the variances of the resulting transformed disturbance terms
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(denoted by ua and ub)

E
[
(uaijt)

2
]

= E
[
(εijt − ε̄ij − ε̄it + ε̄i)

2] = (N−1)(T−1)
NT

σ2
εi −

(N−1)(T−1)
NT

ρ(1)

E
[
(ubijt)

2
]

= E
[
(εijt − ε̄ij − ε̄jt + ε̄j)

2] =

= (N−2)(T−1)
NT

σ2
εi + T−1

N2T

∑N
i=1 σ

2
εi −

(N−1)(T−1)
NT

ρ(2)

Now, in order to express ρ(1) from the equations one has to transform further ubijt by

taking the averages with respect to j, and then take the average of the obtained variances

with respect to i

1
N

∑N
i=1E

[
(ūbit)

2
]

= 1
N

∑N
i=1E

[
(ε̄it − ε̄i − ε̄t + ε̄)2

]
=

= (N−1)(T−2)
N3T

∑N
i=1 σ

2
εi + (N−1)2(T−2)

N2T
ρ(1) − (N−1)(T−2)

N2T
ρ(2)

It can be noticed that

ρ̂(1) = N2T
(N−1)2(T−2)

{
1
N

∑N
i=1E

[
(¯̂ubit)

2
]
− (T−2)

N2(T−1)
∑N

i=1E
[
(ûbijt)

2
]}

=

= 1
N(N−1)2(T−2)

∑N
i=1

∑T
t=1

(∑N
j=1 û

b
ijt

)2
− 1

N(N−1)2(T−1)
∑N

i=1

∑N
j=1

∑T
t=1 (ûbijt)

2

The other components can easily be derived

σ̂2
εi = ρ̂(1) +

NT

(N − 1)(T − 1)
E
[
(ûaijt)

2
]

= ρ̂(1) +
1

(N − 1)(T − 1)

N∑
j=1

T∑
t=1

(ûaijt)
2
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ρ̂(2) = 1
N

∑N
i=1 σ̂

2
εi − NT

(N−1)(T−1)E
[
(ûbijt)

2
]

=

= 1
N

∑N
i=1 σ̂

2
εi − 1

N(N−1)(T−1)
∑N

i=1

∑N
j=1

∑T
t=1 (ûbijt)

2

Unfortunately, we are not that lucky with the other models. The di�culty is that

we are not able to transform the residuals or come forward with other transformations,

which produce new, linearly independent equations to estimate the variance components.

Instead we need to impose further restrictions on the models. Let us assume from now on

that ρ(1) = ρ(2) = ρ.

For model (2.8) we have

E
[
u2ijt
]

= E
[
(εijt − ε̄jt)2

]
=
N − 2

N
σ2
εi +

1

N2

N∑
i=1

σ2
εi −

N − 1

N
ρ

Just like before, taking averages of uijt with respect to j leads to

E
[
ū2it
]

= E
[
(ε̄it − ε̄t)2

]
=
N − 2

N2
σ2
εi +

1

N3

N∑
i=1

σ2
εi +

(N − 1)(N − 2)

N2
ρ

In this way we can estimate ρ

ρ̂ = N2

(N−1)2
[
E
[
¯̂u2it
]
− 1

N
E
[
û2ijt
]]

=

= N
(N−1)2T

∑N
i=1

∑T
t=1

(
1
N

∑N
j=1 ûijt

)2
− 1

N(N−1)2T
∑N

i=1

∑N
j=1

∑T
t=1 û

2
ijt =

= 1
N(N−1)2T

{∑N
i=1

∑T
t=1

(∑N
j=1 ûijt

)2
−
∑N

i=1

∑N
j=1

∑T
t=1 û

2
ijt

}
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and now we can move to estimate σ2
εi

σ̂2
εi = N2

N−2

{
E
[
¯̂u2it
]
− 1

N2(N−1)
∑N

i=1E
[
û2ijt
]
− (N−1)(N−2)+1

N2 ρ̂
}
− =

= N2

(N−2)T
∑T

t=1

(
1
N

∑N
j=1 ûijt

)2
− 1

N(N−1)(N−2)T
∑N

i=1

∑N
j=1

∑T
t=1 û

2
ijt−

− (N−1)(N−2)+1
N−2 ρ̂ =

= 1
(N−2)T

∑T
t=1

(∑N
j=1 ûijt

)2
− 1

N(N−1)(N−2)T
∑N

i=1

∑N
j=1

∑T
t=1 û

2
ijt−

− (N−1)(N−2)+1
N−2 ρ̂

Let us continue next with model (2.10). Now we have

E
[
u2ijt
]

= E
[
(εijt − ε̄it)2

]
=
N − 1

N
σ2
εi −

N − 1

N
ρ

We can transform uijt further by taking the averages with respect to i and then compute

the respective variances

E
[
ū2jt
]

= E
[
(ε̄jt − ε̄t)2

]
=
N − 1

N3

N∑
i=1

σ2
εi +

(N − 1)(N − 2)

N2
ρ

So we can estimate ρ as

ρ̂ = N2

(N−1)2

[
E
[
¯̂u2jt
]
− 1

N2

∑N
i=1E

[
û2ijt
]]

=

= N
(N−1)2T

∑N
j=1

∑T
t=1

(
1
N

∑N
i=1 ûijt

)2
− 1

N(N−1)2T
∑N

i=1

∑N
j=1

∑T
t=1 û

2
ijt =

= 1
N(N−1)2T

{∑N
j=1

∑T
t=1

(∑N
i=1 ûijt

)2
−
∑N

i=1

∑N
j=1

∑T
t=1 û

2
ijt

}
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and σ2
εi as

σ̂2
εi = ρ̂+

1

(N − 1)T

N∑
j=1

T∑
t=1

û2ijt

We still have two models, namely (2.12) and (2.14), to deal with. For these, however,

unfortunately it is not possible to estimate any cross correlation at all. So we have to

assume zero cross correlation and focus only on the heteroscedasticity and the estimation

of the σ2
εi variances.

For model (2.12) we have

E
[
u2ijt
]

= E
[
(εijt − ε̄it − ε̄jt + ε̄t)

2] =
(N − 1)(N − 2)

N2
σ2
εi +

N − 1

N3

N∑
i=1

σ2
εi

Taking the averages with respect to i

1

N

N∑
i=1

E
[
u2ijt
]

=
(N − 1)2

N3

N∑
i=1

σ2
εi

As a result,

σ̂2
εi = N2

(N−1)2(N−2)

{
(N − 1)E

[
û2ijt
]
− 1

N

∑N
i=1E

[
û2ijt
]}

=

= N
(N−1)(N−2)T

∑N
j=1

∑T
t=1 û

2
ijt − 1

(N−1)2(N−2)T
∑N

i=1

∑N
j=1

∑T
t=1 û

2
ijt
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We can proceed likewise for model (2.14)

E
[
u2ijt
]

= E
[
(εijt − ε̄it − ε̄jt − ε̄ij + ε̄i + ε̄j + ε̄t − ε̄)2

]
=

= (N−1)(N−2)(T−1)
N2T

σ2
εi + (N−1)(T−1)

N3T

∑N
i=1 σ

2
εi

Again,

1

N

N∑
i=1

E
[
u2ijt
]

=
(N − 1)2(T − 1)

N3T

N∑
i=1

σ2
εi

and as a result,

σ̂2
εi = N2T

(N−1)2(N−2)(T−1)

{
(N − 1)E

[
û2ijt
]
− 1

N

∑N
i=1E

[
û2ijt
]}

=

= N
(N−1)(N−2)(T−1)

∑N
j=1

∑T
t=1 û

2
ijt − 1

(N−1)2(N−2)(T−1)
∑N

i=1

∑N
j=1

∑T
t=1 û

2
ijt

Let us stop here a minute to make one last comment in this chapter. In previous chapters it

is shown that many data problems may in�uence the consistency of the Within estimators.

It would be nice to carry out the GLS (FGLS) estimator for such models if the no self-�ow

or the unbalanced data problem is present. Unfortunately we have no such luck estimating

the variance components. Two things can happen: there is not enough identifying condition

to express the variance components, or the underlying equations are so complex that it

can not be computed by hand. However there is good news as well: Models (2.5), (2.8) and

(2.10) are una�ected by both data problems, consequently the estimation of the variance

components shall be done exactly as before.
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Chapter 6

The 4-dimensional Setup

So far ijt-type observations had been treated, denoting for example an export activity

from country i to country j at time t. In international trade however, it is more and

more common to meet �rm- or product level data. This extra information encourages

researchers to modify the traditional 3-way ijt setup to a more suitable ijst-type obser-

vations. Naturally, this more detailed setup can be used to investigate economic problems

in depths or even to address new ones.

This chapter is designed to introduce the most frequently used 4-dimensional �xed

e�ects panel models and their Within transformations. Just as before, two common data

problems are also treated, namely the lack of self trade and unbalanced data. Two conclu-

sions will be drawn. Firstly, the �xed e�ects are generally depending on just a few indexes,

meaning that usually multiple Within estimators can be chosen. Secondly, for the same

reason, it is very well possible that the models can be transformed in such a way that the
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bias due to the data problem is eliminated.

6.1 The Models and the Within Transformations

The empirical meaning of such ijst-type observations is for example export from country

i to country j of �rm s (or of product s) at time t. Both i and j are assumed to go from

1 . . . N , as they denote the same set of countries involved in trade; s goes from 1 to some

Ns and �nally, t goes from 1 . . . T . Let us now have a closer look at the most relevant

models and their optimal Within transformations. Davis[2002]'s method can be used to

obtain such optimal Within transformations, even though in 4-dimensions this involves

several �iterating� steps and the lengthy manipulation of more complex matrix forms. This

procedure is illustrated for model (6.9), included in the appendix. Just as noted before,

the optimal Within estimator is actually coincides with the LSDV estimator but as the

number of parameters to be estimated grows rapidly, LSDV becomes unfeasible. It is more

convenient then to transform the model �rst and then estimate it with OLS, giving the

Within estimator.

The model extension of the traditional αi + λt �xed e�ects structure takes the form

yijst = β′xijst + αijs + λt + εijst, (6.1)

where y and x stand for the dependent- and the set of explanatory variables respec-

tively and ε is the usual vector of disturbances. We can remove them with a simple linear
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transformation

yijst − ȳt − ȳijs + ȳ, (6.2)

where

ȳt = 1
N2Ns

∑N
i=1

∑N
j=1

∑Ns
s=1 yijst

ȳijs = 1
T

∑T
t=1 yijst

ȳ = 1
N2NsT

∑N
i=1

∑N
j=1

∑Ns
s=1

∑T
t=1 yijst,

and naturally the x-s should be transformed in the same way. One can also come up with

several other transformations as well, but (6.2) is the suggested due its optimality.

The next model

yijst = β′xijst + αi + αj + αs + λt + εijst (6.3)

captures all indexes in a separate �xed e�ect. The optimal transformation which wipes

them out is

yijst − ȳi − ȳj − ȳs − ȳt + 3ȳ, (6.4)

where

ȳi = 1
NNsT

∑N
j=1

∑Ns
s=1

∑T
t=1 yijst

ȳj = 1
NNsT

∑N
i=1

∑Ns
s=1

∑T
t=1 yijst

ȳs = 1
N2T

∑N
i=1

∑N
j=1

∑T
t=1 yijst.
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One possible extension of the 3-dimensional bilateral Model (2.5) is

yijst = β′xijst + αij + αis + αjs + εijst (6.5)

with its Within transformation

yijst − ȳjs − ȳis − ȳij + ȳs + ȳj + ȳi − ȳ, (6.6)

where

ȳjs = 1
NT

∑N
i=1

∑T
t=1 yijst

ȳis = 1
NT

∑N
j=1

∑T
t=1 yijst

ȳij = 1
NsT

∑N
s=1

∑T
t=1 yijst.

Also, we can present a variant of the above model as

yijst = β′xijst + αij + αis + αjs + λt + εijst, (6.7)

and its optimal transformation

yijst − ȳjs − ȳis − ȳij + ȳs + ȳj + ȳi − ȳt. (6.8)
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One can also come up with the extension of Model (2.12) in the form of

yijst = β′xijst + αit + αjt + αst + εijst. (6.9)

The optimal transformation clearing out all the �xed e�ects parameters is

yijst − ȳit − ȳjt − ȳst + 2ȳt, (6.10)

where

ȳit = 1
NNs

∑N
j=1

∑Ns
s=1 yijst

ȳjt = 1
NNs

∑N
i=1

∑Ns
s=1 yijst

ȳst = 1
N2

∑N
i=1

∑N
j=1 yijst.

The last but possibly the most important model extension is the all encompassing

model

yijst = β′xijst + αijs + αit + αjt + αst + εijst. (6.11)

The optimal (and only) Within transformation which successfully cancels out all the �xed

e�ects is

yijst− ȳijs− ȳjst− ȳist− ȳijt + ȳst + ȳjt + ȳjs + ȳit + ȳis + ȳij − ȳt− ȳs− ȳj − ȳi + ȳ, (6.12)
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where

ȳjst = 1
N

∑N
i=1 yijst

ȳist = 1
N

∑N
j=1 yijst

ȳijt = 1
Ns

∑Ns
s=1 yijst.

Let us stop here for a minute to stress out once more why it is so important to propose

the Within estimators for all the above models. Just as in the 3-dimensional space but

even more signi�cantly, the number of parameters to be estimated is huge and computa-

tionally unfeasible: in case of model (6.1) for example, we should estimate k +N2Ns + T

parameters with LSDV (k is the number of explanatory variables), but only k with the

Within estimator. This number is incredibly high even for moderate individual sizes.

6.2 No Self-Flow

Just as in the 3-dimensional case, it may well happen that within-country trade �ows are

unobservable and so missing from the database. From our point of view this means that

for each jst we lack observations where i = j. We have already seen that several models

had lost the unbiased and consistent properties of their respective estimators, but it was

also shown, that there exist possible transformations (though not optimal), with which

the remaining �xed e�ects are successfully wiped out. As it turns out, working in the

4-dimensional space brings even better results: as the lack of self-�ow a�ects through only

i and j, an extra index s is now present which also can be used to �average out� the �xed
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e�ects (remember that in the 3-dimensional case only t operated as this �extra� index).

For models (6.1), (6.3), (6.11) the optimal Within transformations can be applied and

so the Within estimators produce unbiased and consistent estimators. The problematic

models are (6.5), (6.7), (6.9) (to see this why, check chapter 3), but coming up with other

transformations treats the problem. For model (6.5) the transformation which addresses

the no self-�ow problem is as simple as

yijst − ȳijs. (6.13)

For model (6.7) transformation (6.2) can be applied and �nally for model (6.9) coming

up with transformation

yijst − ȳjst − ȳijt + ȳjt (6.14)

solves the problem and it is easy to see that all the remaining �xed e�ects are in fact

dropped out. Going further up with the dimensions, the lack of self trade causes less and

less trouble as the additional indexes can be used to average out the �xed e�ects regardless

of the incomplete nature of the data.

6.3 Unbalanced Data

Just as with traditional panel data, it is uncommon to �nd complete datasets in the real

world, where all individuals are observed through the exact same time scope. It would be
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a more realistic setup if all ijs observations are measured for 1 . . . Tijs, rather than some

general T . Just for this section it is assumed that
∑

i

∑
j

∑
s Tijs ≡ T . It is important

to note that Tijs = 0 for many ijs individual (it is very unlikely for example that each

ij country pair trades with every s product), however this does not a�ect the upcoming

results. In the previous chapters it has already been shown that the unbalanced nature of

the data left untouched some of the models, while for others either other transformation

had to be presented or where it was impossible, the results ofWansbeek and Kapteyn[1989]

had to be generalized. Our �ndings are somewhat similar to the no self-�ow case in

a sense that moving to higher dimensions improves the results: most models and their

respective transformations are either perfectly usable in the unbalanced case or it is rather

simple to propose a proper transformation. Let us see them in details. For model (6.9)

unbalanced data does not cause any problem. For model (6.5) just like in the no self-�ow

case transformation (6.13) should be used whereas for models (6.3) and (6.7) the same

transformation can be applied taking the form

yijst − ȳjst − ȳist − ȳijt + ȳst + ȳjt + ȳit − ȳt. (6.15)

Unfortunately this is not the case for models (6.1) and (6.11). It is impossible to �nd such

nice linear transformations, instead the method proposed byWansbeek and Kapteyn[1989]

should be applied. Let us now formalize it �rst for model (6.1), then for model (6.11). One

should keep in mind that just as in their original paper, index t goes �slowly� and ijs fast

63



C
E

U
eT

D
C

ol
le

ct
io

n

(in their original order), allowing to model the Wansbeek and Kapteyn[1989] projection

matrix. The dummy matrices D̃c
1 = l∗T ⊗ IN2Ns and D̃c

2 = I∗T ⊗ lN2Ns should be then

modi�ed in the following way to re�ect the unbalanced nature of the data. Let Rt-s be

IN2Ns matrices for each t, where we do the following: for all ijs observation, the rows

corresponding to observation ijs are left untouched in the �rst Tijs matrix but are deleted

from the rest T ∗ − Tijs matrices, where T ∗ ≡ max {Tijs}. In that way we de�ne Dc
1 and

Dc
2 as

Dc
1 ≡ [R′1, R

′
2, . . . , R

′
T ∗ ]
′ (T ×N2Ns)

Dc
2 ≡ diag {R1, R2, . . . , RT ∗} (T × T ∗).

Furthermore we introduce the following notations

∆N2Ns ≡ Dc′

1 D
c
1, ∆c

T ∗ ≡ Dc′

2 D
c
2, Ac ≡ Dc′

2 D
c
1

and

D̄c ≡ Dc
2 −Dc

1∆
−1
N2Ns

Ac
′
=
(
IT −Dc

1(D
c′
1 D

c
1)
−1Dc′

1

)
Dc

2

Qc ≡ ∆c
T ∗ − Ac∆−1N2Ns

Ac
′
= Dc′

2 D̄
c.

Now with these formulas in hand we are ready to de�ne the projection matrix

P c = (IT −Dc
1∆
−1
N2Ns

Dc′

1 )− D̄cQc−D̄c′ , (6.16)
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where Qc− denotes the generalized inverse of Qc, as it has no full rank in general. For

computational convenience it is important to also present the scalar version of the above

transformation.

yijst −
1

Tijs

Tijs∑
t=1

yijst − φ̄ct +
1

Tijs
ac
′

ijsφ̄
c,

where φ̄c ≡ Qc−D̄c′y and acijs denotes the column representing the ijs observation of

matrix Ac (note that Ac has N2Ns columns). Notice the huge di�erence between the two

formulas: with the matrix notation one has to compute the inverse of an N2Ns × N2Ns

matrix which might be computationally costly or even unfeasible, but picking up the

scalar notation we only have to calculate a T ∗ × T ∗ inverse which is easily manageable.

Now let us turn our attention to the other problematic model, model (6.11). Essentially

the same procedure has to be done, only it will be slightly more compelling due to the

number of dummy matrices. Following the above notation, the dummy matrices D̃c
1 =

l∗T ⊗ IN2Ns , D̃
d
2 = I∗T ⊗ IN ⊗ lNNs , D̃d

3 = I∗T ⊗ lN ⊗ IN ⊗ lNs and D̃d
4 = I∗T ⊗ lN2 ⊗ INs should

be modi�ed to address the unbalanced nature of the data. Let us de�ne V d
t = IN ⊗ lNNs ,

W d
t = lN ⊗ IN ⊗ lNs and Ud

t = lN ⊗ IN ⊗ lNs with the following modi�cations: for all 3 set

of matrices, for all ijs, the rows corresponding to observation ijs should be left untouched

in the �rst Tijs matrix but be removed from the rest T ∗ − Tijs. With this in hand, the

new dummy matrices can be de�ned which will be used to set up the projection matrix
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later on:

Dc
1 ≡ [R′1, R

′
2, . . . , R

′
T ∗ ]
′ (T ×N2Ns)

Dd
2 ≡ diag

{
V d
1 , V

d
2 , . . . , V

d
T ∗

}
(T ×NT ∗)

Dd
3 ≡ diag

{
W d

1 ,W
d
2 , . . . ,W

d
T ∗

}
(T ×NT ∗)

Dd
4 ≡ diag

{
Ud
1 , U

d
2 , . . . , U

d
T ∗

}
(T ×NsT

∗)

The projection matrix P d should be built up in 4 steps using partial projection matrices

in the following way:

Ba ≡ IT −Dc
1(D

c′
1 D

c
1)
−1Dc′

1

Bb ≡ Ba − (BaDd
2)[(BaDd

2)′(BaDd
2)]−(BaDd

2)′

Bc ≡ Bb − (BbDd
3)[(BbDd

3)′(BbDd
3)]−(BbDd

3)′

and �nally the appropriate transformation is the outcome of the 4th step in the form

P d = Bc − (BcDd
4)[(BcDd

4)′(BcDd
4)]−(BcDd

4)′. (6.17)

Summing up the results: just as in the 3-dimensional space, a very limited number

of models are hard to be estimated consistently, but there exist tools readily available

(though needed to be modi�ed) to consistently estimate the problematic models as well.

It should be noticed that in both 3- and 4-dimensions the same class of models perform

badly; the coexistence of the all-individual �xed e�ect and some time-dependent one

making the optimal Within estimator unbiased when the data is unbalanced. A summary
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containing the above results for all the models and their respective transformations can

be found in Table 3 in the appendix.
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Conclusion

This thesis was designed to deal with the most signi�cant 3-way speci�cations of the �xed

e�ects panel data models. It was easy to see that direct estimation of the models with

LSDV could be very costly or even unfeasible as it involves the estimation of too many

parameters. The obvious choice was then to use the Within estimator to deal with such

�xed e�ects models. As it was shown, this generalization from the two-dimensional setup

is not that straightforward and may involve rather complex algebra. It was also indicated

that certain data problems can emerge while going up with the dimensions. Two had been

analyzed in detail: the no self-�ow, where the within-country observations are missing,

and the unbalanced data case, where each individual observation is observed for a di�erent

time period. Some basic algebra showed that if these data related problems are present,

several models can not be estimated consistently with the optimal Within estimator. To

solve this, the following ideas had been presented. Firstly, as oppose to the two-way �xed

e�ects models, where the Within transformations are mostly uniquely determined, in the

three-way setup and further ahead there are multiple choices to operate with. Using an
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other Within transformation instead might avoid the data problem itself. Secondly, after

some more complex calculus, more complex linear transformations could be found for the

models where no self-�ow still caused consistency problems. And �nally, the application

of Wansbeek and Kapteyn[1989]'s incomplete data results completed the analysis and left

us with nothing less, but with all the models perfectly working from the consistency point

of view. In later chapters dynamic models were examined and were concluded that the so-

called Nickell[1981] bias is present in many models. To solve this, Arellano and Bond[1991]

instrumental variable approach had been used, which led to the consistent estimation of

all the corresponding models.

It was also obvious that the proposed models are quite �exible to further generaliza-

tions (four-dimensional �xed e�ect speci�cations had been just as easily analyzed as their

three-dimensional counterparts) as well as to changes in the correlation structure of the

disturbances.

It can be said then, that the thesis has successfully met its original goal: to give a guide

to both theoretical and empirical researchers in how to work with the three- and four-way

speci�cations of �xed e�ects panel data models. The main contribution of the thesis is

that all the corresponding models can be estimated consistently even if some sort of data

problem is present. As several di�erent models had been taken into account, the thesis

gives a heads up in how to estimate a new (not present here) model consistently. Higher

dimensional generalizations are also possible (as it is shown in the thesis from three to

four dimensions), hopefully opening up the way toward many nice future applications.
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Appendix

Finite sample bias derivations for the dynamic model.

Model (2.1)

Now for model (2.1) transformation (2.3) leads to

(yijt − ȳij − ȳt + ȳ) = ρ · (yijt−1 − ȳij−1 − ȳt−1 + ȳ−1) + (εijt − ε̄ij − ε̄t + ε̄)

Deriving the expected values, in the numerator we �nd

E[yijt−1εijt] = E[yijt−1ε̄t] = E[ȳt−1εijt] = E[ȳt−1ε̄t] = 0

E[yijt−1ε̄ij] = σ2
ε

T
1−ρt−1

1−ρ

E[yijt−1ε̄] = E[ȳt−1ε̄ij] = E[ȳt−1ε̄] = σ2
ε

N2T
1−ρt−1

1−ρ

E[ȳij−1εijt] = σ2
ε

T
1−ρT−t
1−ρ

E[ȳij−1ε̄t] = E[ȳ−1εijt] = E[ȳ−1ε̄t] = σ2
ε

N2T
1−ρT−t
1−ρ

E[ȳij−1ε̄ij] = σ2
ε

T
·
(

1
1−ρ −

1
T
· 1−ρT
(1−ρ)2

)
E[ȳij−1ε̄] = E[ȳ−1ε̄ij] = E[ȳ−1ε̄] = σ2

ε

N2T
·
(

1
1−ρ −

1
T
· 1−ρT
(1−ρ)2

)
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and in the denominator

E[y2ijt−1] = σ2
ε ·

1−ρ2t
1−ρ2

E[yijt−1ȳt−1] = E[ȳ2t−1] = σ2
ε

N2 · 1−ρ
2t

1−ρ2

E[yijt−1ȳij−1] = σ2
ε

T (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)
E[yijt−1ȳ−1] = E[ȳij−1ȳt−1] =

E[ȳt−1ȳ−1] = σ2
ε

N2T (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)
E[ȳ2ij−1] = σ2

ε

T (1−ρ)2

(
1− 2ρ(1−ρT )

T (1−ρ2) + 2ρT+2−ρ2(T+1)−ρ2
1−ρ2

)
E[ȳij−1ȳ−1] = E[ȳ2−1] = σ2

ε

N2T (1−ρ)2

(
1− 2ρ(1−ρT )

T (1−ρ2) + 2ρT+2−ρ2(T+1)−ρ2
1−ρ2

)
The bias of this Within estimator for (2.1) is therefore the following

E [ρ̂− ρ] =

(
1−N2

N2

)
σ2
ε

T
1−ρt−1

1−ρ +
(

1−N2

N2

)
σ2
ε

T
1−ρT−t
1−ρ +

(
N2−1
N2

)
σ2
ε

T 2 · A∗(
N2−1
N2

)
· σ2

ε
1−ρ2t
1−ρ2 −B∗ + C∗

where

A∗ =

(
N2 − 1

N2

)
σ2
ε

T

(
1

1− ρ
− 1

T

1− ρT

(1− ρ)2

)

B∗ = 2

(
N2 − 1

N2

)
· σ2

ε

T (1− ρ2)

(
1− ρt

1− ρ
+ ρ

1− ρT−t

1− ρ
− ρt+1 · 1 + ρT

1− ρ

)
and

C∗ =

(
N2 − 1

N2

)
σ2
ε

T (1− ρ)2

(
1− 2ρ(1− ρT )

T (1− ρ2)
+

2ρT+2 − ρ2(T+1) − ρ2

1− ρ2

)
Now for the same model (2.1) transformation (2.4) leads to the following terms. For

the numerator

yijt − ȳi − ȳj − ȳt + 2ȳ = ρ (yijt−1 − ȳi−1 − ȳj−1 − ȳt−1 + 2ȳ−1) + (εijt − ε̄i − ε̄j − ε̄t + 2ε̄)
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which yields the following terms. For the numerator

E[yijt−1εijt] = E[yijt−1ε̄t] = E[ȳt−1εijt] = E[ȳt−1ε̄t] = 0

E[yijt−1ε̄i] = E[yijt−1ε̄j] = σ2
ε

NT
1−ρt−1

1−ρ

E[yijt−1ε̄] = E[ȳt−1ε̄i] = E[ȳt−1ε̄j] = E[ȳt−1ε̄] = σ2
ε

N2T
1−ρt−1

1−ρ

E[ȳi−1εijt] = E[ȳj−1εijt] = σ2
ε

NT
· 1−ρT−t

1−ρ

E[ȳi−1ε̄t] = E[ȳj−1ε̄t] = E[ȳ−1εijt] = E[ȳ−1ε̄t] = σ2
ε

N2T
· 1−ρT−t

1−ρ

E[ȳi−1ε̄i] = E[ȳj−1ε̄j] = σ2
ε

NT
·
(

1
1−ρ −

1
T
· 1−ρT
(1−ρ)2

)
E[ȳi−1ε̄j] = E[ȳj−1ε̄i] = E[ȳi−1ε̄] = E[ȳj−1ε̄] = E[ȳ−1ε̄i] = E[ȳ−1ε̄j] =

E[ȳ−1ε̄] = σ2
ε

N2T
·
(

1
1−ρ −

1
T
· 1−ρT
(1−ρ)2

)
and for the denominator

E[y2ijt−1] = σ2
ε ·

1−ρ2t
1−ρ2

E[yijt−1ȳt−1] = E[ȳ2t−1] = σ2
ε

N2 · 1−ρ
2t

1−ρ2

E[yijt−1ȳi−1] = E[yijt−1ȳj−1] = σ2
ε

NT (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)
E[yijt−1ȳ−1] = E[ȳi−1ȳt−1] = E[ȳj−1ȳt−1] =

E[ȳt−1ȳ−1] = σ2
ε

N2T (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)
E[ȳ2i−1] = E[ȳ2j−1] = σ2

ε

NT (1−ρ)2

(
1− 2ρ(1−ρT )

T (1−ρ2) + 2ρT+2−ρ2(T+1)−ρ2
1−ρ2

)
E[ȳi−1ȳ−1] = E[ȳj−1ȳ−1] = E[ȳ2−1] =

σ2
ε

N2T (1−ρ)2

(
1− 2ρ(1−ρT )

T (1−ρ2) + 2ρT+2−ρ2(T+1)−ρ2
1−ρ2

)
Taking into account the sign and the frequency of the above elements the bias of this

Within estimator is

E [ρ̂− ρ] =

(
2−2N
N2

)
· σ

2
ε

T
· 1−ρt−1

1−ρ +
(
2−2N
N2

)
· σ

2
ε

T
· 1−ρT−t

1−ρ + A∗∗(
N2−1
N2

)
· σ2

ε
1−ρ2t
1−ρ2 +B∗∗ + C∗∗
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where

A∗∗ =

(
2N − 2

N2

)
· σ

2
ε

T
·
(

1

1− ρ
− 1

T
· 1− ρT

(1− ρ)2

)

B∗∗ =

(
4− 4N

N2

)
· σ2

ε

T (1− ρ2)

(
1− ρt

1− ρ
+ ρ

1− ρT−t

1− ρ
− ρt+1 · 1 + ρT

1− ρ

)
and (

2N − 4

N2

)
σ2
ε

T (1− ρ)2

(
1− 2ρ(1− ρT )

T (1− ρ2)
+

2ρT+2 − ρ2(T+1) − ρ2

1− ρ2

)
Model (2.14)

Finally, let us turn to model (2.14)

yijt = ρyijt−1 + γij + αit + αjt + εijt

The Within transformation gives

(yijt − ȳij − ȳjt − ȳit + ȳt + ȳj + ȳi − ȳ),

so we get

(yijt − ȳij −ȳjt − ȳit + ȳt + ȳj + ȳi − ȳ) =

= ρ · (yijt−1 − ȳij−1 − ȳjt−1 − ȳit−1 + ȳt−1 + ȳj−1 + ȳi−1 − ȳ−1)+

+(εijt − ε̄ij − ε̄jt − ε̄it + ε̄t + ε̄j + ε̄i − ε̄)
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The expected value of the components in the numerator are the following

E[yijt−1εijt] = E[yijt−1ε̄it] = E[yijt−1ε̄jt] = E[yijt−1ε̄t] = E[ȳit−1εijt] = E[ȳjt−1εijt] =

E[ȳit−1ε̄it] = E[ȳjt−1ε̄jt] = E[ȳit−1ε̄jt] = E[ȳjt−1ε̄it] = E[ȳit−1ε̄t] = E[ȳjt−1ε̄t] =

E[ȳt−1εijt] = E[ȳt−1ε̄jt] = E[ȳt−1ε̄it] = E[ȳt−1ε̄t] = 0

E[yijt−1ε̄ij] = σ2
ε

T
· 1−ρt−1

1−ρ

E[yijt−1ε̄i] = E[yijt−1ε̄j] = E[ȳit−1ε̄ij] = E[ȳjt−1ε̄ij] = E[ȳit−1ε̄i] = E[ȳjt−1ε̄j] =

σ2
ε

NT
· 1−ρt−1

1−ρ

E[yijt−1ε̄] = E[ȳit−1ε̄j] = E[ȳjt−1ε̄i] = E[ȳit−1ε̄j] = E[ȳjt−1ε̄i] = E[ȳit−1ε̄] =

E[ȳjt−1 ε̄] = E[ȳt−1ε̄ij] = E[ȳt−1ε̄i] = E[ȳt−1ε̄j] = E[ȳt−1ε̄] = σ2
ε

N2T
· 1−ρt−1

1−ρ

E[ȳij−1εijt] = σ2
ε

T
· 1−ρT−t

1−ρ

E[ȳij−1ε̄jt] = E[ȳij−1ε̄it] = E[ȳi−1εijt] = E[ȳj−1εijt] = E[ȳi−1ε̄it] =

E[ȳj−1ε̄jt] = σ2
ε

NT
· 1−ρT−t

1−ρ

E[ȳij−1ε̄t] = E[ȳi−1ε̄jt] = E[ȳj−1ε̄it] = E[ȳi−1ε̄t] = E[ȳj−1ε̄t] =

E[ȳ−1εijt] = E[ȳ−1ε̄jt] = E[ȳ−1ε̄it] = E[ȳ−1ε̄t] = σ2
ε

N2T
· 1−ρT−t

1−ρ

E[ȳij−1ε̄ij] = σ2
ε

T
·
(

1
1−ρ −

1
T
· 1−ρT
(1−ρ)2

)
E[ȳij−1ε̄j] = E[ȳij−1ε̄i] = E[ȳi−1ε̄ij] = E[ȳj−1ε̄ij] =

E[ȳi−1ε̄i] = E[ȳj−1ε̄j] = σ2
ε

NT
·
(

1
1−ρ −

1
T
· 1−ρT
(1−ρ)2

)
E[ȳij−1ε̄] = E[ȳi−1ε̄j] = E[ȳj−1ε̄i] = E[ȳi−1ε̄] = E[ȳj−1ε̄] = E[ȳ−1ε̄ij] =

E[ȳ−1ε̄i] = E[ȳ−1ε̄j] = E[ȳ−1ε̄] = σ2
ε

N2T
·
(

1
1−ρ −

1
T
· 1−ρT
(1−ρ)2

)
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And in the denominator

E[y2ijt−1] = σ2
ε ·

1−ρ2t
1−ρ2

E[yijt−1ȳit−1] = E[yijt−1ȳjt−1] = E[ȳ2it−1] = E[ȳ2jt−1] = σ2
ε

N
· 1−ρ2t

1−ρ2

E[yijt−1ȳt−1] = E[ȳit−1ȳjt−1] = E[ȳit−1ȳt−1] = E[ȳjt−1ȳt−1] = E[ȳ2t−1] =

σ2
ε

N2 · 1−ρ
2t

1−ρ2

E[yijt−1ȳij−1] = σ2
ε

T (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)
E[yijt−1ȳi−1] = E[yijt−1ȳj−1] = E[ȳij−1ȳit−1] = E[ȳij−1ȳjt−1] =

E[ȳit−1ȳi−1] = E[ȳjt−1ȳj−1] = σ2
ε

NT (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)
E[yijt−1ȳ−1] = E[ȳij−1ȳt−1] = E[ȳit−1ȳj−1] = E[ȳjt−1ȳi−1] = E[ȳit−1ȳ−1] =

E[ȳjt−1ȳ−1] = E[ȳt−1ȳi−1] = E[ȳt−1ȳj−1] = E[ȳt−1ȳ−1] =

σ2
ε

N2T (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)
E[ȳ2ij−1] = σ2

ε

T (1−ρ)2

(
1− 2ρ(1−ρT )

T (1−ρ2) + 2ρT+2−ρ2(T+1)−ρ2
1−ρ2

)
E[ȳij−1ȳi−1] = E[ȳij−1ȳj−1] = E[ȳ2i−1] = E[ȳ2j−1] =

σ2
ε

NT (1−ρ)2

(
1− 2ρ(1−ρT )

T (1−ρ2) + 2ρT+2−ρ2(T+1)−ρ2
1−ρ2

)
E[ȳij−1ȳ−1] = E[ȳi−1ȳj−1] = E[ȳi−1ȳ−1] = E[ȳj−1ȳ−1] = E[ȳ2−1] =

σ2
ε

N2T (1−ρ2)

(
1−ρt
1−ρ + ρ1−ρT−t

1−ρ − ρ
t+1 · 1+ρT

1−ρ

)
To sum up the bias we get for this model is

E[ρ̂− ρ] =

(
−(N−1)2

N2

)
· σ

2
ε

T
· 1−ρt−1

1−ρ +
(
−(N−1)2

N2

)
· σ

2
ε

T
· 1−ρT−t

1−ρ + A∗(
(N−1)2
N2

)
σ2
ε
1−ρ2t
1−ρ2 +B∗ + C∗

where

A∗ =
(N − 1)2

N2
· σ

2
ε

T

(
1

1− ρ
− 1

T
· 1− ρT

(1− ρ)2

)

B∗ =
−2(N − 1)2

N2
· σ2

ε

T (1− ρ2)

(
1− ρt

1− ρ
+ ρ

1− ρT−t

1− ρ
− ρt+1 · 1 + ρT

1− ρ

)
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and

C∗ =

(
(N − 1)2

N2

)
σ2
ε

T (1− ρ)2

(
1− 2ρ(1− ρT )

T (1− ρ2)
+

2ρT+2 − ρ2(T+1) − ρ2

1− ρ2

)

Davis[2002]'s method for Model (6.9)

The dummy matrices are

D1 = IN ⊗ lNNs ⊗ IT
D2 = lN ⊗ IN ⊗ lNs ⊗ IT
D3 = lN2 ⊗ INsT ,

where just as before I is identity matrix, l is the column of ones. According to the proce-

dure the projection matrix can be obtained in the form of PD = Q1 − P2 − P3, where

Q1 = IN2NsT −D3(D
′
3D3)

−1D′3

P2 = (Q1D2)[D
′
2Q1D2]

−1(Q1D2)
′

P3 = (Q2Q1D1)[D
′
1(Q2Q1)D1]

−1(Q2Q1D1)
′,

where Q2 = IN2NsT − P2. We can compute each of the three projection matrix in turn.

Q1 = IN2NsT − J̄N2 ⊗ INsT ,

where J̄ stands as before.

P2 = J̄N ⊗ IN ⊗ J̄Ns ⊗ IT − J̄N2Ns ⊗ IT ,
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and �nally

P3 = IN ⊗ J̄NNs ⊗ IT − J̄N2Ns ⊗ IT .

Putting together the results:

PD = Q1 − P2 − P3

= IN2NsT − J̄N2 ⊗ INsT − J̄N ⊗ IN ⊗ J̄Ns ⊗ IT + J̄N2Ns ⊗ IT−

−IN ⊗ J̄NNs ⊗ IT + J̄N2Ns ⊗ IT
= IN2NsT − J̄N2 ⊗ INsT − J̄N ⊗ IN ⊗ J̄Ns ⊗ IT − IN ⊗ J̄NNs ⊗ IT + 2J̄N2Ns ⊗ IT ,

equivalently in scalar form

yijst − ȳst − ȳjt − ȳit + 2ȳt.
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Table 2: The Behavior of the Proposed Within Transformations in Case of Dynamic
Models

Model (2.1) (2.5) (2.7) (2.8) (2.10) (2.12) (2.14)
Transformation (2.3) (2.4) (2.6) (2.3) (2.9) (2.11) (2.13) (2.15)

Finite N , T - - - - + + + -
Finite T , N →∞ - + - - + + + -

A-B GMM + + + +

where + stands for no bias, A-B for the Arellano and Bond[1991] GMM estimator
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