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Abstract

One of the main questions in the theory of normal surface singularities is to un-

derstand the relations between their geometry and topology.

The lattice cohomology is an important tool in the study of topological properties

of a plumbed 3–manifold M associated with a connected negative definite plumbing

graph G. It connects the topological properties with analytic ones when M is realized

as a singularity link, i.e. when G is a good resolution graph of the singularity. Its

computation is based on the (Riemann–Roch) weights of the lattice points of Zs,

where s is the number of vertices of G.

The first part of the thesis reduces the rank of this lattice to the number of ‘bad’

vertices of the graph. Usually, the geometry/topology of M is codified exactly by

these ‘bad’ vertices and their number measures how far the plumbing graph stays

from a rational one.

In the second part, we identify the following three objects: the Seiberg–Witten

invariant of a plumbed 3–manifold, the periodic constant of its topological Poincaré

series, and a coefficient of an equivariant multivariable Ehrhart polynomial. For

this, we construct the corresponding polytope from the plumbing graph, together

with an action of H1(M,Z), and we develop Ehrhart theory for them. Moreover, we

generalize the concept of the periodic constant for multivariable series and establish

its corresponding properties.

The effect of the reduction appears also at the level of the multivariable topological

Poincaré series, simplifying the corresponding polytope and the Ehrhart theory as

well. We end the thesis with detailed calculations and examples.
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Chapter 1

Introduction

The subject of this thesis can be placed in the local singularity theory, which is

a meeting point in mathematics, where many areas come together, such as algebra,

geometry, topology and combinatorics, just to mention some of them.

Before we start to describe this subject, we would like to offer this chapter for

non–specialists as well, as a survey of this extremely active area of current research,

with challenging problems. Since a lot of results and directions were developed in the

last decades and the presentation of all of them would be too long, we have to pick

some pieces to present here, which make the overall clear, but they are also important

from our point of view. We hope that this chapter will give the frame of the whole

picture drawn by the thesis.

In algebraic geometry, the research on the smooth complex algebraic surfaces has

a history of more than a hundred years. It started with the classification of Enriques

and the Italian school. Then in the 60’s, a ‘modern’ classification was provided by

Kodaira, which uses the new techniques of algebraic geometry and topology, e.g.

sheaves, cohomologies and characteristic classes, with paying particular attention to

the relationships of the analytic structures with topological invariants of the under-

lying smooth 4–manifolds. Typical examples were the topological characterization of

1



C
E

U
eT

D
C

ol
le

ct
io

n

rational surfaces or of the K3 surfaces. Later, the works of Donaldson and Witten

(on 4–dimensional Seiberg–Witten theories) gave powerful tools for this comparison

research.

In parallel with these theories, the study of singular surfaces started, giving birth

to the local singularity theory too. This theory investigates the local behavior of the

singularities and has to solve new problems in the shadow of the old question:

what is the relation between the analytic and topological structures?

This is the guiding question of our research too, targeting normal surface singularities.

Definition. Let f1, . . . , fm : (Cn, 0) → (C, 0) be germs of analytic functions. Then

the germ of the common zero set

(X, 0) = ({f1 = · · · = fm = 0}, 0) ⊂ (Cn, 0)

is called a complex surface singularity, if the rank of the Jacobian matrix J(x) :=

(∂fi/∂zj(x))i,j is n− 2 for any smooth point x ∈ X. Moreover, if rank J(0) < n− 2,

but rank J(x) = n − 2 for any point x ∈ X \ 0 , we say that (X, 0) has an isolated

singularity at the origin.

In particular, if m = 1 we talk about 2–dimensional hypersurface singularities and

if m = n − 2, then our object is called a complete intersection surface singularity.

Notice that in general, m can be higher then n− 2 (cf. [67, 1.2]).

The local ring O(X,0) of analytic functions on (X, 0) is defined as the quotient of

the ring O(Cn,0) of power series, convergent in a small neighbourhood of 0, by the ideal

(f1, . . . , fm). Its unique maximal ideal is m(X,0) = (z1, . . . , zn). This ring determines

the singularity up to a local analytic isomorphism. Let us provide the following

example: assume that Zp acts on C2 by ξ ∗ (z1, z2) := (ξz1, ξ
−1z2). This induces an

action on O(C2,0) = C{z1, z2}, for which the ring of invariants is 〈zp1 , z1z2, z
p
2〉. This

2
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is isomorphic with C{u, v, w}/〈uw = vp〉, hence the geometric quotient (C2, 0)/Zp '

{(u, v, w) ∈ (C3, 0) : uw = vp} defines a surface singularity.

In any dimension, the normality condition means that we require O(X,0) to be

integrally closed in its quotient field, or equivalently, a bounded holomorphic function

defined on X \ 0 can be extended to a holomorphic function defined on X. In the

case of surface singularities, this condition implies that (X, 0) has at most an isolated

singularity at the origin (see [39, §3]).

One can define several invariants from the local ring in order to codify the type

of the singularity. For example, we mention the Hilbert–Samuel function, or, in par-

ticular, the embedding dimension and the multiplicity of (X, 0). For their definitions

and properties we refer to [67].

One may think of a normal surface singularity as an abstract geometric object

(X, 0) with its local ring O(X,0) and maximal ideal m(X,0), which codify the local

analytic type. Then the main approach to analyze (X, 0) is a ‘good’ resolution

π : (X̃, E) → (X, 0). Thus, X̃ is a smooth surface, π is proper and maps X̃ \ E

isomorphically onto X \ 0, where the exceptional divisor E = π−1(0) is a normal

crossing divisor. This means that the irreducible components Ei are smooth projec-

tive curves, intersect each other transversally and Ei∩Ej∩Ek = ∅ for distinct indices

i, j, k.

The numerical analytic invariants of this description might come from two different

directions. They can be ranks of sheaf–cohomologies of analytic vector bundles on

X̃. The most important in this category, from our viewpoint, is the geometric genus,

which can be defined by the following formula

pg := dimH1(X̃,OX̃),

cf. 2.2.1. Notice that pg can be expressed on the level of X as well, using holomorphic

3
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2–forms ([40], [67, 1.4]).

The other direction is based on the Hilbert–Poincaré series of O(X,0) associated

with π−1(0)–divisorial multi–filtration. We will give the definition of this invariants

in Section 4.1, since they serve a motivation for the topological counterpart, which

will be one of the main objects in Chapter 4.

The resolution makes a bridge with the topological investigation of the normal

surface singularity, which, as we will see in 2.1.1, is equivalent with the description

of its link. This is a special 3–manifold which can be constructed using the dual

resolution graph too, via the configuration of the exceptional irreducible curves Ei of

the resolution (see Section 2.1.1).

It raises the following natural questions:

Is it possible to recover some of the analytic invariants from the link, or

equivalently, from the resolution graph? What kind of statements can be

made about the analytic type of a singularity with a given topology?

Before we start to discuss the main questions, which motivated a huge amount

of work in the last decades, we stop for a moment and motivate the reason why we

choose the study of the surface singularities.

If (X, 0) is a curve singularity, then its link consists of as many disjoint copies of

the circle S1, as the number of irreducible components of the curve at its singular

point. Hence, it contains no other information about the analytic type of (X, 0).

We have the same situation in higher dimension too: from the point of view of the

main questions, the topological information codified by the link is rather poor. To

justify this sentence, consider the example of a Brieskorn singularity (X, 0) = {x2
1 +

x2
2 + x2

3 + x3
4 = 0} ⊂ (C4, 0). Brieskorn proved in [15], that the link is diffeomorphic

to S5, but X is far from being smooth. More examples can be found also in [16].

It turned out that the case of surfaces is much more interesting and complicated:

one can have many analytic types with a given topology. This suggests that we have to

4
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assume some conditions on the analytic side in order to investigate the connections.

H. Laufer in [41] (completing the work of Grauert, Brieskorn, Tjurina and Wagre-

ich) gives the complete list of those resolution graphs which have a unique analytic

structure. These are the so–called taut singularities. He classified even those resolu-

tion graphs, which support only a finitely many analytic structures, they are called

pseudo–taut singularities. This class is very restrictive, in the sense that almost all

of them are rational. Hence, in order to understand the case of more general reso-

lution graphs, we don’t need a complete topological description, just to characterize

topologically some of the discrete invariants of (X, 0).

Summerizing the above discussion, Artin and Laufer in 60’s and 70’s started to

determine some of the analytic invariants from the graph. They characterized topo-

logically the rational and minimally elliptic singularities. Laufer believed that this

program, called the Artin–Laufer program (Section 2.2), stops for more general cases.

After twenty years, Némethi [56] clarified the elliptic case completely, and proposed

the continuation of the program with some extra assumptions. This means that if we

pose some analytical and topological conditions on the singularities, there is a hope

to understand the connection between analytic and topological data further.

We believe that for the continuation of the Artin–Laufer program, i.e. to make

topological characterizations of some special analytic types, or their invariants, we

have to find and understand first the topological counterparts of the numerical ana-

lytic invariants.

In 2002, the work of Némethi and Nicolaescu ([69, 70, 71]) suggested a new ap-

proach. They formulated the so–called Seiberg–Witten invariant conjecture (see Sub-

section 2.3.2), which relates the geometric genus of the normal surface singularity

with the Seiberg–Witten invariant of its link. This generalizes the conjecture of Neu-

mann and Wahl ([79]), formulated for complete intersection singularities with integral

homology sphere links.

5
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They proved the relation for some ‘nice’ analytic structures, but later Luengo-

Velasco, Melle-Hernandez and Némethi showed that it fails in general (see 2.3.2 for

details). However, the corrected versions transfer us into the world of low dimensional

topology, and create tools to understand the Seiberg–Witten invariants via some

homology theories (2.3.1). For example, the Seiberg–Witten invariants appear as the

normalized Euler characteristic of the Seiberg–Witten Floer homology of Kronheimer

and Mrowka, and of the Heegaard–Floer homology introduced by Ozsváth and Szabó.

These theories had an extreme influence on modern mathematics of the last years,

and solved a series of open problems and old conjectures related to the classification

of the smooth 4–manifolds and the theory of knots.

Motivated by the work of Ozsváth and Szabó and the Seiberg–Witten invariant

conjecture, Némethi opened a new channel towards the continuation of the Artin–

Laufer program.

He constructed a new invariant, the graded root, which is a special tree–graph

with vertices labeled by integers. The main idea is that the set of topological types,

sharing the same graded root, form a family with uniform analytic behavior too.

Némethi conjectures that each family, identified by a root, can be uniformly treated

at least from the point of view of the analytic invariants as well. The graded roots

describe and give a model for the Heegaard–Floer homology in the rational and almost

rational cases, using the computation sequences of Laufer. This concept gave birth

to the theory of lattice cohomology, which is our main research subject in this thesis

(Section 2.4, Chapters 3 and 6).

It is a cohomological theory attached to a lattice defined by the resolution graph

of the singularity. The lattice cohomology is a topological invariant of the singularity

link, which has a strong relation with the geometry of the exceptional divisors in

the resolution. This has even more structures than the Heegaard–Floer homology.

Nevertheless, by disregarding these extra data, conjecturally they are isomorphic (see

6
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3.2.1 for the details about the conjecture).

Moreover, the normalized Euler characteristic of the lattice cohomology equals

the Seiberg–Witten invariant, and the non–vanishing of higher cohomology modules

explains the failure and corrects the Seiberg–Witten invariant conjecture in the patho-

logical cases (3.2.2).

The calculation of the lattice cohomology is rather hard, since it is based on the

weights of all the lattice points. In general, the rank of the lattice is large, it equals

the number of vertices in the resolution graph. However, one of the main results

of the thesis is the proof of a reduction procedure, which reduces the rank of the

lattice to a smaller number. This is the number of ‘bad’ vertices. It measures the

topological complexity of the graph (how far is from a rational graph) and codifies

the geometrical/topological structure of the singularity. This shows that the reduc-

tion procedure is not just a technical tool, but an optimal way to recover the main

geometric structure of the 3–manifold and to relate it with the lattice cohomology.

There is another concept which is strongly related to the Seiberg–Witten invariant

conjecture and connects the geometry with the topology. This is the theory of Hilbert–

Poincaré series associated with the singularities. Campillo, Delgado and Gusein-Zade

studied Hilbert–Poincaré series associated with a divisorial multi–index filtration on

O(X,0) (4.1.2). Then, Némethi unified and generalized the formulae of this concept

and defined the topological counterpart, the multivariable topological Poincaré series,

showing their coincidence in some ‘nice’ cases.

It was proven that the constant term of a quadratic polynomial associated with the

topological series equals the Seiberg–Witten invariant. This shows a strong analogy

with the analytic side, where the geometric genus can be interpreted in this way. This

analogy, together with the interactions between the analytical and topological series,

puts the Seiberg–Witten invariant conjecture in a new framework. Then, it is natural

7
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to ask whether the topological Poincaré series has a common generalization with

the lattice cohomology. A simpler question targets those cohomological information

which are codified by the Poincaré series.

The first step is to recover the Seiberg–Witten invariants from this series. This

subject contributes the second main part of this thesis (Chapters 4 and 5) and has

very interesting final outputs.

It turnes out that the Seiberg–Witten invariant is the multivariable periodic con-

stant of the Poincaré series. Moreover, the Ehrhart theory identifies the Seiberg–

Witten invariant with a certain coefficient of a multivariable equivariant Ehrhart

polynomial. Furthermore, the reduction procedure applies to this series as well and

reduces its variables to the variables associated with the bad vertices.

Using this approach, in the cases of series with at most two variables, one can give

precise algorithm for the calculation of the periodic constants, or equivalently, for

the Seiberg–Witten invariants. Moreover, the case of two variables has a surprising

relation with the theory of modules over semigroups and affine monoids.

8
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Chapter 2

Preliminaries

This chapter is devoted to the presentation of the classical definitions and results

regarding to the topology of normal surface singularities. It provides the first inter-

actions of the geometrical and topological settings, presents a conjecture regarding

these invariants, and last but not least, it motivates the subject of the next chapter

and of the thesis too, the lattice cohomology and its reduction. Besides the references

given in the body of this chapter, we recommend the following classical books and

lecture notes as well [53, 97, 26, 77, 67, 60].

2.1 Topology of normal surface singularities

In this section we give an introduction to the topology of normal surface singulari-

ties with the definition of the main object, the link of the singularity, and using its

key properties, we show how one can codify its topological data with combinatorial

objects.
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2.1.1 The link of (X, 0)

All this topological research area was started with a breakthrough of Milnor [53],

regarding complex hypersurfaces. Nevertheless, his argument works not only in the

hypersurface case, but also in general, when we consider an arbitrary complex analytic

singularity, see [44]. In the case of surfaces, the idea is the following.

We consider a normal surface singularity (X, 0) embedded into (Cn, 0). Then, if ε

is small enough, the (2n−1)–dimensional sphere S2n−1
ε intersects (X, 0) transversally

and the intersection

M := X ∩ S2n−1
ε

is a closed, oriented 3–manifold, which does not depend on the embedding and on ε.

M is called the link of (X, 0). Moreover, if B2n
ε is the 2n–dimensional ball of radius ε

around 0, then one shows that X ∩B2n
ε is homeomorphic to the cone over M , hence

the link characterizes completely the local topological type of the singularity.

An important discovery of Mumford [55] was that if M is simply connected, then

X is smooth at 0. Neumann [77] extended this fact as follows: the link of a normal

surface singularity can be recovered from its fundamental group except two cases,

which are completely understood. These exceptions are the Hirzebruch–Jung (or

cyclic quotient) and the cusp singularities.

The first connection between the analytical and topological properties of (X, 0)

is realized by the resolution of the singular point. The resolution of (X, 0) is a holo-

morphic map π : (X̃, E)→ (X, 0) with the properties, that X̃ is smooth, π is proper

and maps X̃ \ E isomorphically onto X \ 0. E := π−1(0) is called the exceptional

divisor with irreducible components {Ej}j. If, moreover, we assume that E is a nor-

mal crossing divisor, namely the irreducible components Ej are smooth projective

curves, intersect each other transversally and Ei ∩ Ej ∩ Ek = ∅ for distinct indices

i, j, k, then we talk about good resolution. One can define minimal (not necessarily
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good) resolutions as well, if there is no rational smooth irreducible component Ej

with self–intersection number bj := (Ej, Ej) = −1. But in almost all the cases in our

investigation we use the good resolution.

To codify the combinatorial data of a good resolution, one can associate to it the

dual resolution graph G(π) (usually we omit π from the notation). In this graph the

vertices correspond to the irreducible components Ej and the edges represent their

intersection points. Moreover, we add two weights for every vertex of G: the self–

intersection number bj and the genus gj of Ej. In this way we may also associate an

intersection form I whose matrix is (Ei, Ej)i,j, where (Ei, Ej) is the number of edges

connecting the two corresponding vertices for i 6= j.

The first result, originated from DuVal and Mumford, says that G is connected and

I is negative definite. Then a crucial work of Grauert [30] shows that every connected

negative definite weighted dual graph does arise from resolving some normal surface

singularity (X, 0).

π identifies ∂X̃, the boundary of X̃, with M . Hence, the graph G can be regarded

as a plumbing graph which makes M to be an S1–plumbed 3–manifold. Using the

plumbing construction (see e.g. [97, 1.1.9]), any resolution graph G determines M

completely. Conversely, we have to consider the equivalence class of plumbing graphs

defined by finite sequences of blow–ups and/or blow–downs along rational (−1)–

curves, since the resolution π and its graph are not unique. But different resolutions

provide equivalent graphs in the aforementioned sense. Then a result of Neumann

[77] shows that the oriented diffeomorphism type of M determines completely the

equivalence class of G.

Finally, we define two families of 3–manifolds, which we will be working with

throughout the thesis. M is called rational homology sphere (QHS) if H1(M,Q) = 0.

In particular, we say that it is an integral homology sphere (ZHS) if H1(M,Z) = 0.

Notice that H1(M,Q) vanishes if and only if the free part of H1(M,Z) vanishes. The
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plumbing construction says that the first Betti number b1(M) is equal to c(G) +

2
∑

j gj, where c(G) is the number of independent cycles of the graph G. Hence, the

final conclusion is that

M is QHS if and only if G is a tree and gj = 0 for all j.

2.1.2 Combinatorics of the resolution/plumbing graphs

Let G be a connected negative definite plumbing graph and denote the set of vertices

by J . As described in the previous section, it can be realized as the resolution graph

of some normal surface singularity (X, 0), and the link M can be considered as the

plumbed 3–manifold associated with G.

In the sequel we assume that M is a QHS.

Let X̃ be the smooth 4-manifold with boundary M obtained either by resolution

π : X̃ → X of (X, 0) with resolution graph G, or via plumbing disc bundles associated

with the vertices of G with Euler number bj (for more details on plumbings we refer

to [35, §8] or [97, 1.1.9]). Since X̃ has a deformation retract to the bouquet of |J |

copies of 2–spheres S2∨· · ·∨S2, the only non–vanishing homologies are H0(X̃,Z) = Z

and H2(X̃,Z) = Z|J |. Moreover, there is an intersection form I on H2(X̃,Z). Since

we identify the homology classes of the zero sections with {Ej}j∈J , the matrix of I

with respect to the basis {Ej}j∈J is given by

Iij =


bj if i = j

1 if i 6= j and the corresponding vertices are connected by an edge

0 if i 6= j otherwise.

We know that in our case I is non–degenerate, negative definite and makes L :=

H2(X̃,Z) to be a lattice generated by {Ej}j∈J . Let L′ := Hom(L,Z) be the dual of

L. The fact that the homology of X̃ has no torsion part and the Poincaré–Lefschetz
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duality imply that L′ ∼= H2(X̃,Z) ∼= H2(X̃,M,Z). Then the begining of the long

exact relative homology sequence for the pair (X̃,M) splits into the short exact

sequence

0 −→ L
ι−→ L′−→H −→ 0,

where H := L′/L = H1(M,Z). The morphism ι : L → L′ can be identified with

L → Hom(L,Z) given by l 7→ (l, ·). The intersection form has a natural extension

to LQ = L ⊗ Q and we can regard L′ as a sublattice of LQ in a way that L′ = {l′ ∈

L ⊗ Q : (l′, L) ⊆ Z}. For conventional reason, one may choose the generators of

L′ to be the (anti)dual elements E∗j defined via (E∗j , Ei) = −δji (the negative of the

Kronecker symbol). Clearly, the coefficients of E∗j are the columns of −I−1, and the

negative definiteness of I guarantees that

all the entries of E∗j are strict positive. (2.1)

We will also set det(G) := det(−I) to be the determinant associated with the graph

G.

2.1.2.1. Cycles. The elements of LQ are called rational cycles. There is a natural

ordering of them: l′1 ≤ l′2 if l′1j ≤ l′2j for all j ∈ J . Moreover, we say that l′ is effective if

l′ ≥ 0. If l′i =
∑

j l
′
ijEj for i ∈ {1, 2}, then we write min{l′1, l′2} :=

∑
j min{l′1j, l′2j}Ej.

Furthermore, if l′ =
∑

j l
′
jEj then we set |l′| := {j ∈ J : l′j 6= 0} for the support of l′.

2.1.2.2. Characteristic elements and spinc–structures of M .

We define the set of characteristic elements in L′ by

Char := {k ∈ L′ : (k, x) + (x, x) ∈ 2Z for any x ∈ L}.

There is a unique rational cycle kcan ∈ L′ which satisfies the system of adjunction
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relations

(kcan, Ej) = −bj − 2 for all j ∈ J , (2.2)

and it is called the canonical cycle. Then Char = kcan + 2L′ and there is a natural

action of L on Char by l∗k := k+2l, whose orbits are of type k+2L. Then H = L′/L

acts freely and transitively on the set of orbits by [l′] ∗ (k + 2L) := k + 2l′ + 2L.

Consider the tangent bundle TX̃ of the oriented 4–manifold X̃ (we can pick a

Riemannian metric as well). Then TX̃ determines an orthonormal frame bundle

(principal O(4)–bundle) which we denote by FO(X̃). It is well known that the ori-

entability of X̃ means that this bundle can be reduced to an SO(4)–bundle, making

the fibers connected. Can be thought in a way, that any trivialization of the bundle

over the disconnected 0–skeleton of X̃ can be extended to a trivialization over the

connected 1–skeleton. In this sense, spin and spinc–structures are generalizations of

the orientation.

A spin–structure on X̃ (more precisely on TX̃) means that the trivialization of

the tangent bundle can be extended to the 2–skeleton. Then the spinc–structure is

a ‘complexified’ version of that: we say that X̃ has a spinc–structure if there exists

a complex line bundle L so that TX̃ ⊕ L has a spin–structure. This L is called the

determinantal line bundle of the spinc–structure. If X̃ admits a spin–structure, then

using the fiber product one can construct a canonical spinc–structure as well. This

can be done also when an almost complex structure is given. (More details regarding

of these definitions and constructions can be found in [32, 48].)

By [32, Proposition 2.4.16], the fact that in our case L′ = H2(X̃,Z) has no 2–

torsion implies that L determines the spinc–structure, and the first Chern class (of

L) realizes an identification between the set of spinc–structures Spinc(X̃) on X̃ and

Char ⊆ L′. Moreover, Spinc(X̃) is an L′ torsor compatible with the above action of

L′ on Char.

If we look at the boundary, the image of the restriction Spinc(X̃) → Spinc(M)
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consists of exactly those spinc–structures on M , whose Chern classes are the restric-

tions L′ → H2(M,Z) ∼= H1(M,Z), i.e. are the torsion elements in H.

Therefore, in our situation, all the spinc–structures on M are obtained by restric-

tion, Spinc(M) is an H torsor, and the actions are compatible with the factorization

L′ → H. Hence, one has an identification of Spinc(M) with the set of L–orbits of

Char, and this identification is compatible with the action of H on both sets. In

this way, any spinc-structure of M will be represented by [k] := k + 2L ⊆ Char.

The canonical spinc–structure corresponds to [−kcan], moreover [k] has the form

kcan + 2(l′ + L) for some l′ ∈ L′.

2.1.2.3. The distinguished representatives of [k]. Notice that if we look at the

(anti)canonical spinc–structure [kcan], there is a special element in this orbit, namely

the canonical cycle kcan. In the following, we generalize this fact for all [k]: among

all the characteristic elements in [k] we will choose a very special one.

We define first the Lipman (or anti–nef) cone

S ′ := {l′ ∈ L′ : (l′, Ej) ≤ 0 for any j ∈ J }. (2.3)

Since I is negative definite, if l′ ∈ S ′ then l′ ≥ 0. Then we have the following lemma:

Lemma 2.1.2.4. ([61, 5.4]) If we fix [k] = kcan + 2(l′+L), there is a unique minimal

element l′[k] of (l′ + L) ∩ S ′.

Definition 2.1.2.5. ([61, 5.5]) For any class [k] we define the distinguished represen-

tative kr := kcan + 2l′[k].

For example, since the minimal element of L∩S ′ is the zero cycle, we get l′[kcan] = 0,

and the distinguished representative in [kcan] is the canonical cycle kcan itself. In

general, l′[k] ≥ 0. For their importance see Section 3.3, and further properties can be

found in [61, 64, 66]. This motivates also to partition the elements of the Lipman
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cone into different classes [k], therefore we define

S[k] := {l ∈ L : (l + l′[k], Ej) ≤ 0 for any j ∈ J }. (2.4)

2.2 The Artin–Laufer program. Case of rational

singularities

2.2.1 Algebro–geometric definitions and preliminaries

The aim of this section is to introduce some tools from the analytical (algebro)–

geometric point of view for the study of the normal surface singularity (X, 0). Since

our work restricts to the topology of (X, 0), this description will be rather sketchy:

we need just those parts, which motivate the names and notations in 2.1.2 and create

the main tools connecting the geometry and topology of (X, 0). For more details

regarding of this section, we recommend some general references such as [67] and [4].

2.2.1.1. We start with a resolution π : X̃ → X. The group of divisors Div(X̃) of X̃

consists of formal finite sums D =
∑

imiDi, where Di is an irreducible curve on X̃

and mi ∈ Z. For any divisor D, one can say that it is supported on |D| = ∪mi 6=0Di.

If we pick a meromorphic function f defined on X̃, then (f) =
∑

imiDi is a principal

divisor, where Di’s are irreducible components of the zeros and the poles of f , and

mi is the multiplicity (order of zero, resp. pole) of f along Di. Divisors supported on

the exceptional divisor E are called cycles, already defined in 2.1.2. We have seen,

that one can define a natural ordering, the effectiveness and the intersection of cycles,

which is determined by the resolution graph G.

The pullback f ◦ π of a given analytic function f : (X, 0)→ (C, 0) determines an

effective principal divisor div(f ◦π). Let mEj(f) be the multiplicity of div(f ◦π) along

Ej, then div(f ◦π) =
∑

j∈J mEj(f)Ej +St(f), where St(f) is supported on the strict
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transform π−1(f−1(0) \ 0) (closure of π−1(f−1(0) \ 0)) of the set f−1(0). Then, for

such an f and a resolution π (encoded by its resolution graph G) one can associate

the cycle

(f)G =
∑
j∈J

mEj(f)Ej.

In order to get some information on the local ring O(X,0) (i.e. about the structure

of analytic functions f : (X, 0) → (C, 0)) from the resolution, we may define the set

of cycles

San := {(f)G : f ∈ m(X,0)}. (2.5)

Then San is an ordered semigroup and if l1, l2 ∈ San, then l = min{l1, l2} (defined in

2.1.2.1) is an element of San too. This fact guarantees the existence of a unique non–

zero minimal element in San, which, according to S.S.-T. Yau, is called the maximal

ideal cycle of the singularity and it is denoted by Zmax. One can show that Zmax (or

the whole San) depends on the analytic structure of the (X, 0). In general, it can not

be recovered from the topology. However, there are some cases, when this situation

may happen.

Can be proven, that for any f ∈ m(X,0) one has (div(f ◦ π), Ej) = 0 for all j ∈ J .

This, together with (St(f), Ej) ≥ 0 imply that ((f)G, Ej) ≤ 0 for every j ∈ J . This

motivates the definition of the ‘topological candidate’ for San, namely

Stop := {l ∈ L : (l, Ej) ≤ 0 ∀j ∈ J }.

Notice that this is the same as the Lipman cone S[kcan] (2.4) defined for [kcan].

Stop shares the same properties as mentioned before for the analytic counterpart.

Hence, it has a unique non–zero minimal element Zmin, which was introduced by Artin

[2, 3] and we call it the minimal cycle or Artin’s (fundamental) cycle. Notice that,

since San ⊆ Stop, we have Zmin ≤ Zmax, where in general strict inequality appears.
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It turns out that Zmin can be calculated easily by an algorithm on the graph

G, established by Laufer [40]. This is fundamental from the point of view of the

generalized Laufer sequences which will be discussed in Section 3.3.1.

Laufer algorithm 2.2.1.2. One constructs a sequence {zn}tn=1 of cycles as follows.

1. Start with a cycle z1 = Ej for some j ∈ J .

2. If zn is already constructed for some n > 0 and there exists some Ej(n) for which

(zn, Ej(n)) > 0, then set zn+1 = zn + Ej(n).

3. If (zn, Ej) ≤ 0 for all j, then stop and zn gives Zmin.

2.2.1.3. Some invariants of the geometry can be deduced from the cohomology of

sheaves on X̃. For example, consider OX̃ , the sheaf of holomorphic functions on

X̃ and O∗
X̃

, the subsheaf of invertible functions. We may also consider the group

Pic(X̃) of holomorphic line bundles on X̃ (modulo isomorphism), which is naturally

isomorphic to H1(X̃,O∗
X̃

). Notice that the groups H1(X̃,OX̃), or H1(X̃,O∗
X̃

) does

not depend on the resolution π : X̃ → X.

The analytic invariant h1(X̃,OX̃) := dimH1(X̃,OX̃) is called the geometric genus

of the singularity and will be denoted by pg.

To any integral cycle l =
∑

jmjEj we can associate the line bundle O(−l), defined

by the invertible sheaf of holomorphic functions on X̃, which vanish of order mj on

Ej. One can define Ol := OX̃/O(−l) as well.

According to [4, §6], the short exact exponential sequence

0 −→ ZX̃ −→ OX̃
exp−→ O∗

X̃
−→ 0

gives rise to the long exact exponential cohomology sequence, which in our case (X̃
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is a smooth complex surface, M is QHS) splits into the short exact sequence

0 −→ Cpg −→ Pic(X̃)
c1−→ L′ −→ 0, (2.6)

where c1(L) is the first Chern class of L ∈ Pic(X̃). Notice that c1(O(−l)) = l, hence

c1 admits a group–section L → Pic(X̃) above the subgroup L of L′ which, in fact,

can be extended naturally to L′ → Pic(X̃) (see [68, 3.6]), defining the line bundles

O(−l′) for any l′ ∈ L′.

As an example, we denote by Ω2
X̃

the sheaf of holomorphic 2–forms on X̃. It is an

element of Pic(X̃), hence it corresponds to a class of divisors. Modulo the principal

divisors, this class well–defines the canonical divisor KX̃ . The adjunction formula

showes that the intersections with the exceptional divisor can be calculated via the

equations (KX̃ , Ej) = −bj − 2 for all j. KX̃ is analytic, but one can associate to it

the canonical cycle c1(Ω2
X̃

) ∈ L′, which is the same as kcan in 2.1.2.2.

Definition 2.2.1.4. We say that (X, 0) is Gorenstein if we can find a section ω̃ of

Ω2
X̃

whose divisor is supported on E. It is numerically Gorenstein if the coefficients

of kcan are integers.

Notice that the first definition is equivalent with the fact that there is a global section

of Ω2
X\0 which is nowhere vanishing on X \ 0, i.e. Ω2

X\0 is holomorphically trivial. On

the other hand, numerical Gorenstein property means that Ω2
X\0 is a topologically

trivial line bundle. Therefore, if (X, 0) is Gorenstein, then it is numerically Gorenstein

as well. The general theory says that numerical Gorenstein property is equivalent with

the fact that the first Chern class of Ω2
X̃

projected to H2(M,Z) = H2(X \ 0,Z) is

zero. In the sense of 2.1.2.2, this means that the class of kcan in H is zero, hence

kcan ∈ L.

As a generalization, one can define the Q–Gorenstein property as well, which

requires that some power of Ω2
X\0 should be holomorphically trivial.
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The formal neighbourhood theorem implies that pg = dimC lim←−l>0
H1(X̃,Ol),

hence if one wishes to compute pg, one has to understand dimCH
1(X̃,Ol) for l ∈ L

and l > 0. Then, by Riemann–Roch theorem, it is known that although dimCH
0(X̃,Ol)

and dimCH
1(X̃,Ol) are analytic,

χ(l) := χ(Ol) = dimCH
0(X̃,Ol)− dimCH

1(X̃,Ol) (2.7)

is topological and equal to −(l, l+kcan)/2. One can consider also the ‘twisted’ version,

i.e. we fix an L ∈ Pic(X̃) and write c1(L) = l′ ∈ L′ for its Chern class. If we set

k := kcan − 2l′, then χ(L ⊗Ol) = −(l, l + k)/2.

In this way, for any characteristic element k ∈ Char one defines a function

χk : L→ Z by χk(l) = −1

2
(l, l + k). (2.8)

This function will be the main ingredient defining the lattice cohomology in Chapter

3, and somehow hides a deep connection with this analytic theory.

In the sequel, we keep the notation χ associated with kcan.

2.2.2 Artin–Laufer program

As we mentioned in the introductory part, it is interesting to investigate special

families of normal surface singularities, where some of the analytic invariants (coming

from O(X,0)) are topological. Since one of the most important numerical analytic

invariants of (X, 0) is the geometric genus pg, we will localize our discussion around

it. However, at some point we will mention what is happening with some other

analytic invariants (defined in 2.2.1) as well.

The Artin–Laufer program has a long history, started with the work of Artin in

the 60’s. In [2, 3] he showed that the rational singularities can be characterized

completely from the graph (see also 2.2.3). He computed even the multiplicity and
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the embedding dimension of these singularities from the topological data.

Then Laufer [39, 40] developed further the theory. Among others, he found an

algorithm for finding the Artin’s cycle Zmin, which is now called the Laufer algorithm,

see 2.2.1.2, and extended the topological characterization of rational singularities to

minimally elliptic singularities ([42]) as well. He also noticed that for more compli-

cated singularities the program can not be continued.

However, Némethi’s work in [56] pointed out and conjectured that if we pose some

analytical and topological conditions, e.g. the Gorenstein and QHS conditions, then

some numerical analytic invariants (including pg) are topological. This was carried

out explicitly for elliptic singularities.

In order to achieve results in the topological characterization of the aforementioned

invariants, one has to find their ‘good’ topological candidate. E.g., in the case of pg one

has to find a topological upper bound for any normal surface singularities with QHS,

which is optimal in the sense that for some ‘nice’ singularities it yields exactly pg. A

good example for this phenomenon is the length of the elliptic sequence, the upper

bound valid for elliptic singularities, introduced and intensively studied by Laufer

[42] and S.S.-T. Yau [104]. In Section 2.3, we will expose another candidate for pg

and give some details on the development of results of the last ten years. Another

example can be found in Chapter 4, where we study the topological counterpart of

the Hilbert–Poincaré series associated with some filtrations on (X, 0).

But first, we recall the Artin–Laufer characterization of rational singularities, since

this class is the origo of our research in the topology of normal surface singularities.

2.2.3 Rational singularities

In general (without any assumption on the link), a normal surface singularity (X, 0)

is called rational if pg = 0. The formal neighbourhood theorem immediately implies

that this is equivalent with dimCH
1(X̃,Ol) = 0 for any l > 0. In particular, this
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induces the vanishing of all the genera gj and that G should be a tree. Hence the link

of a rational singularity is automatically a QHS.

Notice that somehow the definition of the rational singularity is motivated by the

short exact sequence 2.6, since if pg = 0, then Pic(X̃) is isomorphic to L′, hence

it is completely topological. Artin [2, 3] proved that in this case San = Stop and

Zmax = Zmin. These equalities were enough to calculate some analytic invariants,

such as the multiplicity, the embedding dimension and the Hilbert–Samuel function

in terms of Zmin, which shows how this cycle controls most of the geometry of the

rational singularities.

Moreover, Artin succeeded to replace the vanishing of dimCH
1(X̃,Ol) by a crite-

rion formulated in terms of χ(l), namely χ(l) ≥ 1 for all l > 0. However, in general

it is difficult to verify this criterion for all positive cycles. Therefore, another break-

through was that, in fact, it is enough to consider only the Artin’s cycle Zmin, since

it controls the criterion for all the other positive cycles as well. This fact can be

formulated also in terms of the Laufer algorithm.

In the next theorem we summarize the results of Artin and Laufer, characterizing

topologically the rational singularities.

Theorem 2.2.3.1 (Topological characterization of rational singularities). Let (X, 0)

be a normal surface singularity, then the following statements are equivalent:

1. pg = 0;

2. χ(l) ≥ 1 for any l > 0;

3. χ(Zmin) = 1;

4. In the Laufer algorithm 2.2.1.2 one has (zn, Ej(n)) = 1 for every n ≥ 1.

Starting from the topological point of view, we may set the following definition:
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Definition 2.2.3.2. If a resolution graph G satisfies one of the last three conditions

in the last theorem, we say that G is a rational graph.

The class of rational graphs is closed under taking subgraphs and decreasing the

self–intersections. We observe that Zmin ≥
∑

j∈J Ej, a fact which follows from the

Laufer algorithm and connectedness of G. If we have equality, we say that Zmin is a

reduced Artin’s cycle: in this case (X, 0) is called minimal rational and G is a minimal

rational graph.

Examples 2.2.3.3.

1. Let G be an arbitrary tree with all the genus decorations zero. For any vertex

j, we define the valency δj as the number of edges with endpoint j. Let

bj =

{
−δj if δj 6= 1

−2 if δj = 1
for any j ∈ J .

Then the intersection matrix I is automatically negative definite and with the

Laufer algorithm one can show that Zmin =
∑

j∈J Ej and χ(Zmin) = 1. Hence,

any (X, 0) with minimal resolution graph G is a minimal rational singularity.

2. Assume that (X, 0) is rational and numerically Gorenstein. We can show that

kcan = 0, hence the adjunction formulae 2.2 implies bj = −2 for all j. This

graphs are the minimal resolution graphs of rational double points (or ADE

singularities).

As we will see in Section 3.1.3, from topological point of view, the rationality can

be generalized and all the resolution graphs can be sorted into classes, where lattice

cohomology will serve as a measuring object for the topology of the corresponding

singularities.
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2.3 Seiberg–Witten invariants and a conjecture of

Némethi and Nicolaescu

Historically, the Seiberg–Witten invariants were defined for compact smooth 4–

manifolds. They were introduced by Witten [103] during his investigation with

Seiberg on the Seiberg–Witten gauge theory in theoretical physics. They are sim-

ilar to the invariants defined by the Donaldson theory, and they provide a strong

tool in proving key results of the smooth 4–manifolds. Their advantage is that the

main objects which define the numerical data, the moduli spaces of solutions of the

Seiberg–Witten equations, are mostly compact, hence can be avoided the problems

coming from the compactification of the moduli spaces in Donaldson theory.

Besides the original work of Witten, detailed presentation of the theory can be

found in the book of Nicolaescu [81], see also the book of Morgan [54].

2.3.1 Seiberg–Witten invariants for closed 3–manifolds

In our case, we analyze the Seiberg–Witten invariants for closed 3–manifolds. Con-

sidering an additional geometric data (g, η) on M , where g is a Riemannian metric and

η is a closed 2–form, one can define the Seiberg–Witten equations (we refer to [45, 83]

for precise definitions and details). Then for any spinc–structure σ on M , the space of

solutions divided by the gauge group defines the moduli space of (σ, g, η)–monopoles,

and the Seiberg–Witten invariant s̃wσ(M, g, η) is the signed count of them.

It turns out that, when b1(M) = 0 (i.e. M is a QHS), the situation is the worst,

since s̃wσ(M, g, η) depends on the choice of the parameters g and η, thus it is not an

invariant. However, altering by a counter term KSM(σ, g, η), called the Kreck–Stolz

invariant, solves the problem. Therefore we define the ‘modified’ Seiberg–Witten

invariant

swσ(M) :=
1

8
KSM(σ, g, η) + s̃wσ(M, g, η).
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Theorem 2.3.1.1 ([45]). If M is a connected 3–manifold with b1(M) = 0, then

sw : Spinc(M) −→ Q (more precisely Z[1/8|H|])

is an oriented diffeomorphism invariant of M .

In general, it is extremely difficult to compute swσ(M) using its analytic definition.

Therefore, there are some projects which aim to replace this definition with a different

one, or, to provide a topological/combinatorial calculation for the invariants:

• Answering a question of Turaev, Nicolaescu’s result [83] shows that swσ(M) is

the Reidemeister–Turaev torsion normalized by the Casson–Walker invariant.

This identification is based on the surgery formula for the monopole count given

by Marcolli and Wang [47], and for the Kreck–Stolz invariant contained in the

paper of Ozsváth and Szabó [85]. In terms of the graphG, combinatorial formula

for the Casson–Walker invariant is given in the book of Lescop [43], while the

Reidemeister–Turaev torsion is determined by Némethi and Nicolaescu in [69].

This formula for the torsion is based on a Dedekind–Fourier sum which, in most

of the cases, is still hard to determine.

On the other hand, Braun and Némethi [14] provides a cut–and–paste surgery

formula for the Seiberg–Witten invariants in the case of negative definite plumbed

3–manifold, motivated by Okuma’s formula [84] targeting analytic invariants of

splice–quotient singularities.

• Another program is the categorification of the invariants. The aim is to construct

homological theories whose ‘normalized Euler characteristic’ gives the Seiberg–

Witten invariant (with a suitable normalization). This interpretation also gives

several alternative definitions for the swσ(M).

For examples, with a generalization of the Seiberg–Witten monopoles, Kron-
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heimer and Mrowka [36] constructed the Seiberg–Witten Floer homology which,

in fact, is isomorphic to the Heegaard–Floer homology, developed by Ozsváth

and Szabó [87, 88, 86], and they categorify swσ(M). Moreover, as a con-

sequence of exact ‘triangles’, one also gets further surgery formulae for the

Seiberg–Witten invariants.

In [57], Némethi proved that the normalized Euler characteristic of the lattice

cohomology is also the Seiberg–Witten invariant. This proof uses the surgery

formula of [14].

We will give more details regarding the Heegaard–Floer homology and its relation

with the lattice cohomology in Sections 2.4 and 3.2.1. Moreover, Chapter 4 provides

an Ehrhart theoretical interpretation of the Seiberg–Witten invariants, which (at least

in special cases) calculates them by using the topological Poincaré series, without

knowing the Betti numbers of the lattice cohomology.

2.3.2 The Seiberg–Witten invariant conjecture

In the spirit of the Artin–Laufer program, the article [69] of Némethi and Nicolaescu

formulates the following conjecture, giving a possible topological counterpart for the

geometric genus. It is an extension of the Casson invariant conjecture of Neumann

and Wahl [79].

SWI Conjecture ([69]). Assume that (X, 0) is a normal surface singularity whose

link M is a QHS. Then the following facts hold:

1. There is a topological upper bound for pg, given by

pg ≤ swσcan(M)− k2
can + |J |

8
.

2. If (X, 0) is Q–Gorenstein, then in part 1 one has equality.
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This can be generalized in the following way:

GSWI Conjecture ([68]). We consider l′ ∈ L′ and define the characteristic element

k := kcan − 2l′ ∈ Char. Then

1. For any line bundle L ∈ Pic(X̃) with c1(L) = l′ one has

dimCH
1(X̃,L) ≤ −sw[k](M)− k2 + |J |

8
.

2. If L = OX̃(l′) and (X, 0) is Q–Gorenstein then in part 1 one has equality.

In particular, if L = OX̃ , then we get back SWI. The conjecture was verified first

in [69] for some families of rational, elliptic and hypersurface singularities. It was

proved also for singularities with good C∗–action [70] and for suspension singularities

(of type {f(x, y) + zn = 0} with f irreducible) [71]. Then [59] proves the validity of

the conjecture for splice–quotient singularities, a class which was defined by Neumann

and Wahl [80] and contains most of the other classes above.

Using the Heegaard–Floer homological interpretation of sw, Némethi verified

GSWI for all almost rational singularities (see 3.1.3 for their definition).

Unfortunately, the conjecture at this generality is not true. A paper of Luengo-

Velasco, Melle-Hernández and Némethi on superisolated singularities [46] gives coun-

terexamples even for the SWI case (Example 6.2.6). However, one can use lattice

cohomological methods to correct the upper bound, reinterpreting the topological

candidate for the geometric genus (or for dimCH
1(X̃,L)). We will return to this

discussion in Section 3.2.2.
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2.4 Motivation of the Lattice cohomology

2.4.1 Historical remark

In the continuation of the work on Heegaard–Floer theory (3.2.1), Ozsváth and Szabó

constructed in [86] a combinatorial Z[U ]–module H+(G, [k]) for any spinc–structure

[k] ∈ Spinc(M). They considered a ‘special’ class of graphs for which H+ serves as a

model for the original Z[U ]–module HF+(M, [k]).

Némethi [61] extended this special class to the so–called almost rational graphs

(3.1.3), a class whose definition was strongly influenced by the Artin–Laufer program

(2.2.2). They are characterized by the property that there exists a vertex such that

decreasing its Euler decoration we get a rational graph. Moreover, he proved that for

such graphs the isomorphism HF+(M, [k]) ∼= H+(G, [k]) is still valid, and provided a

precise combinatorial algorithm for the calculation of this module.

For this purpose, one has to define the notion of a graded root (Rk, χk) associated

with any connected, negative definite plumbing graph G and characteristic element k.

Since its grading χk is given by the Riemann–Roch formula 2.8, this object, in fact,

connects two different directions: the one coming from the Heegaard–Floer theory

(and through this from the Seiberg–Witten theory) with the other one, coming from

algebraic geometry. Conjecturally, (Rk, χk) guides the hierarchy of the topological

types of links of normal surface singularities, containing all the information about

the module H+(G, [k]). On the other hand, examples show that the computation

and results about H+(G, [k]) can not be extended to a larger class than the almost

rational graphs, hence this idea one had to be generalized.

This observation gave birth to the idea of the lattice cohomology, which was in-

troduced in [64] by Némethi, and its 0–th degree cohomology module H0 is given by

H+.
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2.4.2 Relation with other theories

Notice that, as can be seen in 3.1, the lattice cohomology is purely combinatorial.

Conjecturally, it contains all the information about the Heegaard–Floer homology of

M too. This would provide an alternative combinatorial definition for the theory of

Ozsváth and Szabó. We will present this conjecture and the active research around

it in 3.2.1.

As we already pointed out in 2.3.1, [57] proves that the lattice cohomology (sim-

ilarly as the Heegaard–Floer homology) categorifies the normalized Seiberg–Witten

invariant of the link M , i.e. it realizes by its normalized Euler characteristic the

Seiberg–Witten invariant. This provides a new combinatorial formula for the Seiberg–

Witten invariants as well.

From analytic point of view, the ranks of the lattice cohomology modules and

their Euler characteristic have subtle connection with certain analytic invariants of

analytic realizations of M as singularity links (3.2.2). For example, the existence of

the non–trivial higher cohomologies explain conceptually the failure of the Seiberg–

Witten invariant conjecture in the pathological cases, see [69, 70, 71, 72] and [46] for

counterexamples.

In this sense, the lattice cohomology makes a bridge between the analytic and

topological/combinatorial invariants of the singularity.

2.4.3 The reduction procedure

Usually, the explicit computation of the lattice cohomology is very hard. A priori, it

is based on the computation of the weights of all lattice points (of a certain Zs) and on

the description of those ‘regions’, where the weights are less than a fixed integer. The

lattice, which appears in the construction, has a very ‘large’ rank: it is the number

of vertices of the corresponding plumbing/resolution graph G of M .

The main result of the next chapter establishes a reduction procedure (Reduction
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Theorem 3.3.2.2), which reduces the rank of the lattice to ν, the number of ‘bad’

vertices (3.1.3) on the plumbing graph G. A graph has no bad vertices if it is rational.

Otherwise, if one has to decrease the self–intersection number of (at most) ν vertices

to get a rational graph, we say that these vertices are the ‘bad’ ones. This number

is definitely much smaller (usually it is even smaller than the number of nodes) and

provides some kind of ‘filtration’ on negative definite plumbing graphs/manifolds,

which measures how far the graph stays from a rational graph.

We wish to emphasize that the reduction to ‘bad’ vertices is not just a technical

procedure. Usually, the geometry of the singularity link, or the key information about

the structure of the 3–manifold, is coded by these vertices. In other words, by a good

choice of the bad vertices, we connect in a direct way the structure of the lattice

cohomology with the essential geometrical/topological structure of M .

For the illustration of this phenomenon, let us consider the following examples.

A minimal good star–shaped graph has at most one bad vertex, namely the central

one. In this case, the sequence x(i) (see 3.3.1) (i ∈ Z≥0) and the weights of its

terms are closely related with Dolgachev’s and Pinkham’s computation ([94]) of the

geometric genus and of the Poincaré series of weighted homogeneous singularities, see

e.g. [70, 61].

Or, let K be the connected sum of ν irreducible algebraic knots {Ki}νi=1 of S3.

Consider the surgery 3–manifold M = S3
−d(K) (d ∈ Z≥0). Then the minimal num-

ber of bad vertices is exactly ν, and they can be related with the knots, e.g., the

lattice cohomology associated with these vertices is guided by the semigroups of the

knot components Ki (for details see [75], where the Reduction Theorem already was

applied).

Even the ‘naive case of all nodes’ can be interesting in the right situation. If

the graph is minimal good, then reducing the weight of the nodes we get a minimal

rational graph (with reduced fundamental cycle), hence the set of all nodes might
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serve as set of bad vertices. This becomes especially meaningful when we consider,

e.g., the graph/link of a Newton non–degenerate hypersurface singularity. In this

case the nodes correspond to the faces of the Newton diagram (by toric resolution),

cf. [13]. Hence, this choice of the bad vertices establishes the connection with the

combinatorics of the source object, the Newton diagram.

The methods used in the Reduction Theorem 3.3.2.2 and in its proof have their

origin in [61, 64], although technically the general situation is more sophisticated.

The main ingredient is the generalization of the ‘special’ cycles and Laufer sequences

(3.3.1) defined by Némethi in [61, 7.6.] for almost rational graphs (i.e. when ν=1).

The effects of the reduction appear not only at the level of the cohomology mod-

ules. The lattice cohomology has subtle connections with a certain multivariable

topological Poincaré series, where the number of variables of this series is the number

of vertices of the plumbing graph. (This is defined combinatorially from the graph. It

resonates and sometimes equals the multivariable Poincaré series, associated with the

divisorial filtration indexed by all the divisors in the resolution, provided by certain

analytic realizations [58, 57, 59].) For example, the Seiberg–Witten invariant appears

as the periodic constant of this series [57, 14, 72] and can be interpreted via Ehrhart

theory, as we will present in Chapter 4.

One of the applications of the Reduction Theorem (and its proof) is that this series

‘reducts’ by eliminating all the variables except those, corresponding to the ‘bad’

vertices. The reduced series still contains all the lattice cohomological information.

The reduction recovers several known results as well: e.g. the vanishing of the

reduced lattice cohomology for rational graphs, proved in [64, §4]. More generally,

it implies the vanishing property Hq(M) = 0 whenever q ≥ ν. The original proof of

this fact can be found in [65] and 3.1.4, where the proof uses surgery exact sequences.

Notice that this vanishing is sharp, e.g. consider the connected sum K of ν copies

of the (2, 3)–torus knot, and take the (−d)-surgery of the 3–sphere S3 along K, for
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some d ∈ Z>0. Then Némethi and Román [75] proved that the minimal number of

bad vertices is ν, and Hν−1(S3
−d(K)) = Z (disregarding the U–action).
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Chapter 3

Lattice cohomology and its

reduction

In the beginning of this chapter we define the lattice cohomology and express its

important properties, and interaction with questions related to the topology of normal

surface singularities. Then in 3.1.3, we state the new characterization of rational

singularities, which motivates the topological generalization of the rationality. It is

worth to present a proof of the Vanishing Theorem 3.1.4.2, which is using an exact

sequence motivated by the work of Ozsváth and Szabó [87, 88, 86] on Heegaard–Floer

theory.

Némethi [64] formulated a conjecture which claims that lattice cohomology con-

tains all the information about the Heegaard–Floer modules in the case of singulari-

ties. Therefore, we walk around this connection and list the current results. Moreover,

in 3.2.2 we turn back to the GSWI conjecture and correct its inequality using a lattice

cohomological invariant. General reference for this part is the long list of papers by

Némethi, e.g. [61, 62, 66, 64, 76].

The end of the chapter presents one of the main result of our research [38], the
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Reduction Theorem for lattice cohomology, which was motivated already in 2.4.3.

Note that the theorem implies immediately the aforementioned characterization and

the Vanishing Theorem. Direct applications can be found in 4.5.2 and [75].

3.1 Definitions and Properties

3.1.1 General construction

3.1.1.1. Preliminaries, Z[U ]–modules. The lattice cohomology has a graded

Z[U ]–module structure. For its building blocks we will use the following notations,

cf. [86, 61].

Consider the graded Z[U ]–module Z[U,U−1], and denote by T +
0 its quotient by

the submodule U · Z[U ]. This has a grading in such a way that deg(U−d) = 2d

(d ≥ 0). Similarly, for any n ≥ 1, the quotient of Z〈U−(n−1), U−(n−2), . . . , 1, U, . . .〉

by U · Z[U ] (with the same grading) defines the graded module T0(n). Hence, T0(n),

as a Z–module, is freely generated by 1, U−1, . . . , U−(n−1), and has finite Z–rank n.

More generally, for any graded Z[U ]–module P with d–homogeneous elements Pd,

and for any r ∈ Q, we denote by P [r] the same module graded (by Q) in such a

way that P [r]d+r = Pd. Then set T +
r := T +

0 [r] and Tr(n) := T0(n)[r]. For example,

the Z[U ]–module Z〈Um, Um−1, . . . , Um−(n−1)〉 with this grading will be denoted by

T2m(n).

3.1.1.2. Lattice cohomology associated with Zs and a system of weights.

We fix a free Z–module, with a fixed basis {Ej}sj=1, denoted by Zs. It is also con-

venient to fix a total ordering of the index set J , which in the sequel will be denoted

by {1, . . . , s}. Using the pair (Zs, {Ej}j) and a system of weights, we determine a

cochain complex whose cohomology is our central object.

Zs⊗R has a natural cellular decomposition into cubes. The set of zero–dimensional

cubes is provided by the lattice points of Zs. Any l ∈ Zs and subset I ⊆ J of
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cardinality q define a q–dimensional cube, denoted by (l, I) (or only by �q) which has

its vertices in the lattice points (l +
∑

j∈I′ Ej)I′ , where I ′ runs over all subsets of I.

On each such cube we fix an orientation. For example, this can be determined by the

order (Ej1 , . . . , Ejq), where j1 < · · · < jq, of the involved base elements {Ej}j∈I . The

set of oriented q–dimensional cubes defined in this way is denoted by Qq (0 ≤ q ≤ s).

Let Cq be the free Z–module generated by the oriented cubes �q ∈ Qq. Clearly,

for each �q ∈ Qq, the oriented boundary ∂�q has the form
∑

k εk�
k
q−1 for some

εk ∈ {−1,+1}, where the (q − 1)–cubes {�k
q−1}k are the faces of �q. Then we have

∂ ◦ ∂ = 0, and the homology of the chain complex (C∗, ∂) is just the homology of Rs,

so we don’t get anything new.

However, if we encode ‘some phenomena’ on the cubes via a set of weight functions,

more interesting (co)homology can be obtained.

Definition 3.1.1.3. A set of functions wq : Qq → Z (0 ≤ q ≤ s) is called a set of

compatible weight functions if the following hold:

(a) for any integer k ∈ Z, the set w−1
0 ( (−∞, k] ) is finite;

(b) for any �q ∈ Qq and for any of its faces �q−1 ∈ Qq−1 one has wq(�q) ≥

wq−1(�q−1).

Example 3.1.1.4.

1. Assume that some w0 : Q0 → Z satisfies (a) for all k ∈ Z. For any q > 1 set

wq(�q) := max{w0(v) : v is a vertex of �q}.

Then {wq}q is a set of compatible weight functions.

2. Consider the function w0 : Z → Z such that w0(n) = [|n|/2] or w0(n) =

[|n|/2] + 4{|n|/2} (where [ ] and { } denote the integral and the rational part),

and define w1 as in the first example. Then {wq}q∈{0,1} is compatible.
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In the presence of a set of compatible weight functions {wq}q, one sets F q :=

HomZ(Cq, T +
0 ). Then F q is a Z[U ]–module by the action (p ∗ φ)(�q) := p(φ(�q))

where p ∈ Z[U ] and φ ∈ F q. It has a 2Z–grading: φ ∈ F q is homogeneous of degree

2d, if for each �q ∈ Qq with φ(�q) 6= 0, φ(�q) is a homogeneous element in T +
0 of

degree 2d− 2 · w(�q). (In the sequel we will omit the index q of wq.)

Next, we define the (co)boundary operator δw : F q → F q+1. For this, fix φ ∈ F q

and we show how δwφ acts on a cube �q+1 ∈ Qq+1. First write ∂�q+1 =
∑

k εk�
k
q , or

a more precise form of ∂ can be determined via the orientation given by the order of

the base elements: if �q+1 = (l, I) = (l, {j1, . . . , jq+1}), then

∂(l, I) =

q+1∑
n=1

(−1)n
(
Uw(l,I)−w(l,I\jn)(l, I \ jn)− Uw(l,I)−w(l+2Ejn ,I\jn)(l + 2Ejn , I \ jn)

)
.

In any case, we set

(δwφ)(�q+1) :=
∑
k

εk U
w(�q+1)−w(�kq ) φ(�k

q).

Then by an explicit calculation one has δw ◦ δw = 0, hence (F∗, δw) is a cochain com-

plex. Moreover, (F∗, δw) has an augmentation as well. Indeed, set mw := minl∈Zs w0(l)

and choose lw ∈ Zs such that w0(lw) = mw. Then one defines the Z[U ]–linear map

εw : T +
2mw −→ F

0 such that εw(U−mw−n)(l) is the class of U−mw+w0(l)−n in T +
0 for any

n ∈ Z≥0. [64, 3.1.7] shows that εw is injective, and δw ◦ εw = 0.

3.1.1.5. Definitions of the Lattice cohomology. The homology of the cochain

complex (F∗, δw) is called the lattice cohomology of the pair (Rs, w), and it is denoted

by H∗(Rs, w). The homology of the augmented cochain complex

0 −→ T +
2mw

εw−→ F0 δw−→ F1 δw−→ . . .

is called the reduced lattice cohomology of the pair (Rs, w), and it is denoted by
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H∗red(Rs, w). For any q ≥ 0, both Hq and Hq
red admit an induced graded Z[U ]–module

structure, and one has graded Z[U ]–module isomorphisms

H0 = T +
2mw ⊕H

0
red and Hq = Hq

red (for q > 0).

In the case when each Hq
red has finite Z–rank, one can define the normalized Euler

characteristic

eu(H∗(Rs, w)) := −mw +
∑

q(−1)q rankZHq
red(Rs, w). (3.1)

3.1.1.6. Modification. Instead of all the cubes of Rs we can consider an arbitrary

subset T of cubes in Rs (e.g. [0,∞)s, or the ‘rectangle’ R := [0, T1] × · · · × [0, Ts]

for some Ti ∈ Z≥0). In such a case, we write H∗(T,w) for the corresponding lat-

tice cohomologies, since the restriction map induces a natural graded Z[U ]–module

homomorphism r∗ : H∗(Rs, w)→ H∗(T,w).

Example 3.1.1.7. Consider a sequence γ = {xn}tn=0 (t can be∞) such that xn 6= xm

for n 6= m and xn+1 = xn±Ej(n) for 0 ≤ n < t. Let T be the union of 0–cubes marked

by the points {xn} and 1–cubes (segments) of type [xn, xn+1]. Repeating the above

construction, we get a graded Z[U ]–module H∗(T,w). It is called the path cohomology

associated with the ‘path’ γ and the compatible weights {w0, w1}. It will be denoted

by H∗(γ, w).

The construction implies that Hq(γ, w) = 0 for q ≥ 1. Hence, in ‘finite’ (H0
red has

finite Z–rank, or in particular, the length of γ is finite) cases one can define the Euler

characteristic

eu(γ, w) := eu(H∗(γ, w)) = −mw + rankZH0
red(γ, w).
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Then [64, 3.5.2] gives the formula

eu(γ, w) = −w0(0) +
t−1∑
n=0

w1([xn, xn+1])− w0(xn+1).

3.1.1.8. The geometric S∗–realization.

A more geometric realization of the modules H∗ can be given in the following way.

For each N ∈ Z, define SN = SN(w) ⊆ Rs as the union of all the cubes �q (of any

dimension) with w(�q) ≤ N . Clearly, SN = ∅, whenever N < mw. For any q ≥ 0, set

Sq(Rs, w) := ⊕N≥mwHq(SN ,Z).

Then Sq is 2Z–graded, the d = 2N–homogeneous elements Sqd consists of Hq(SN ,Z).

Also, Sq is a Z[U ]–module. The U–action is given by the restriction map rN+1 :

Hq(SN+1,Z) −→ Hq(SN ,Z), namely, U ∗ (αN)N := (rN+1αN+1)N . Moreover, for q =

0, a fixed basepoint lw ∈ Smw provides an augmentation H0(SN ,Z) = Z⊕ H̃0(SN ,Z),

hence an augmentation of the graded Z[U ]–modules

S0 = (⊕N≥mwZ)⊕ (⊕N≥mwH̃0(SN ,Z)) = T +
2mw ⊕ S

0
red.

The point is that this Z[U ]–module S∗ coincides with the lattice cohomology H∗.

More precisely, we have the following theorem.

Theorem 3.1.1.9. ([64, 3.1.12]) There exists a graded Z[U ]–module isomorphism,

compatible with the augmentations, between H∗(Rs, w) and S∗(Rs, w). Similar state-

ment is valid for H∗(T,w) for any T ⊆ Rs as in 3.1.1.6.

From now on we denote both realizations with the same symbol H∗, no matter

which one we use. In the next examples we illustrate how to use this realization for

the calculation of the lattice cohomology.
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Example 3.1.1.10. (a) Consider the first case from Example 3.1.1.4(2), when we

have the lattice Z ⊂ R and w0(n) = [|n|/2] for all n ∈ Z. Obviously mw = 0

and SN is the segment [−2N − 1, 2N + 1] which is contractible for all N ≥ 0.

Hence H0(R, w) = T +
0 .

(b) Let w0(n) = [|n|/2] + 4{|n|/2}. Then mw = 0 and one can show that if N ≥ 1,

SN has three components belonging to the ‘central’ component of SN+1 as it is

shown in Figure 3.1. Therefore, taking into account the Z[U ]–action, the lattice

cohomology can be written as H0(R,w) = T +
0

⊕
⊕N≥1T2N(1).

b b b b b b b b b b b b b

S0

S1S1

S1 S2

S2S2

S3

S3S3

Figure 3.1: The w0(n) = [|n|/2] + 4{|n|/2} case.

3.1.2 Case of the singularities

Let G be a negative definite plumbing graph as in 2.1.2. Let |J | = s be the number

of vertices. Then we can associate with L = Zs the free Z–module Cq generated by

oriented cubes �q ∈ Qq, as in 3.1.1.2.

To any k ∈ Char we associate weight functions {wq}q as follows. One can use the

function χk : L→ Z we have given in (2.8) by

χk(l) = −(l, l + k)/2,

and set mk := min {χk(l) : l ∈ L}. Then the weight functions are defined as in

3.1.1.4(1) via

w0 := χk and wq(�q) = max{χk(v) : v is a vertex of �q}.
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Definition 3.1.2.1. The associated lattice cohomologies with this weight functions

are called the lattice cohomology associated with the pair (G, k) and are denoted by

H∗(G, k) and H∗red(G, k). We write mk := mw = minl∈L χk(l).

Theorem 3.1.2.2. ([64, 3.2.4]) The Z[U ]–modules H∗red(G, k) are finitely generated

over Z, hence eu(H∗(G, k)) := eu(H∗(Rs, w)) is well–defined, cf. (3.1). In particular,

this implies that SN is contractible for N sufficiently large.

The proof (cf. [64, p.7]) of this theorem uses the techniques of 3.3.3.2, therefore

we omit here. We remark that Example 3.1.1.10(b) can not be the lattice cohomology

associated with some surface singularity, since H0
red is not finitely generated over Z.

Although, each k ∈ Char provides a different cohomology module, there are only

|H| essentially different ones. Indeed, assume that [k] = [k′], hence k′ = k + 2l for

some l ∈ L. Then one has the identity

χk′(x− l) = χk(x)− χk(l) for any x ∈ L,

which tells that the transformation x 7→ x′ := x−l realizes the following identification:

H∗(G, k′) = H∗(G, k)[−2χk(l)].

Therefore, up to this shift, we have well–defined modules H∗(G, [k]) for any spinc–

structure [k], and we may highlight uniformly a specific one, which representsH∗(G, [k]).

One way to do this is to choose the distinguished representative kr (2.1.2.5) for the

class [k], then H∗(G, kr) will represent the modules associated with [k].

Notice that the 3–manifold M can be given by many different negative definite

plumbing graphs G, but all these graphs can be connected by a finite sequence of

blow ups and blow downs of (−1)–vertices. In order to see the invariance of the

lattice cohomology, one has to check that the representative module H∗(G, kr) does
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not change under this calculus.

The next proposition emphasizes the advantage of the choice of kr for any spinc

structure [k], together with the invariance of H∗(G, [k]) under changing the negative

definite plumbing representation of M .

Proposition 3.1.2.3.

(a) H∗(G, kr) ∼= H∗([0,∞)s, kr) for any kr.

(b) The set {H∗(G, kr)}[kr] is independent on the plumbing representation G of the

3–manifold M , hence it associates a Z[U ]–module to any pair (M, [kr]), where

[kr] ∈ Spinc(M).

The property is proved in [64, 3.3.4 & 3.3.5 & 3.4]. Another interpretation of the

construction and the invariance can be found in [92].

One can consider also the sum

H∗(M) := ⊕[k]∈Spinc(M)H∗(M, [k]).

Example 3.1.2.4. Consider the most basic example, when the normal surface sin-

gularity is (C2, 0). It is smooth at the origin and its link is just an S3. We may pick

one of its negative definite plumbing representation given by: r−1
.

If E represents the vertex, then the lattice L = Z〈E〉 ∼= Z, E2 = −1 and the ad-

junction formula immediately gives kcan = E. The only spinc structure is [kcan], and

χ(n) = − ((n+1)E,nE)
2

= n(n+1)
2

for any n ∈ Z (i.e. for nE ∈ L). By 3.1.2.3(a), its

enough to look at Z≥0 on which χ is increasing. Hence, it follows that SN is con-

tractible to the point n = 0 for N ≥ 0, therefore the lattice cohomology is the trivial

one, H0(S3, kcan) = T +
0 and Hq(S3, kcan) = 0 for q > 0.
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3.1.3 ‘Bad’ vertices and the rationality of graphs

We continue the discussion held in 2.2.3 from the point of view of lattice cohomology.

Recall that a normal surface singularity is rational if its geometric genus is zero.

This vanishing property was characterized combinatorially by Artin’s criterion (see

Theorem 2.2.3.1):

rationality ⇐⇒ χ(l) > 0 for any l > 0, l ∈ L, (3.2)

where the notaion χ is associated with kcan. Subsection 2.2.3.2 defines the set of

rational graphs (resolution graphs of rational singularities), which is closed under

taking subgraphs and decreasing the weights of vertices.

The next theorem points out that the lattice cohomology of rational graphs is

trivial, and in this way it gives a new topological characterization of rational normal

surface singularities. The idea behind it is that one can produce a deformation retract

of the space Rs to the origin along which χk is decreasing (using the methods of

3.3.3.2), hence SN is contractible whenever is non–empty.

Theorem 3.1.3.1. (Némethi [61, 6.3] and [64, 4.1])

G is a rational graph if and only if H0(G, kcan) = T +
0 . Moreover, in this case,

Hq(G, kcan) = 0 for q ≥ 1, and one has the same result for any distinguished rep-

resentative kr ∈ Char as well.

Remark 3.1.3.2. One can say that a graph G is lattice cohomologically ‘weak’ if

the module H∗(G, kcan) associated with the spinc structure [kcan] dominates all the

others. E.g., by the previous theorem this is the case for rational graphs. We refer to

[64, 4.2], which shows the same phenomenon for the elliptic graphs too. Therefore,

one can ask the question whether there is any other graph with similar properties, or

in other words, what can we say about the maximal set of weak graphs in this sense?

See [64, 5.2.6] for further details in this direction.
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Any non–rational graph can be transformed into a rational one by decreasing some

of the decorations along some of its vertices. Indeed, if all the decorations of a graph

G are sufficiently negative (e.g. (Ej, E) ≤ 0 for any j), then G is rational. In order to

measure how far the given graph is from the ‘rationality’, one can give the following

definitions (see also [86, 61, 64, 65, 75, 38]).

Definition 3.1.3.3 (Family of bad vertices). We say that a graph has a family

of ν bad vertices, if one can find a subset of vertices {jk}νk=1, called bad vertices, such

that replacing their decorations bj = (Ej, Ej) by some more negative integers b′j ≤ bj

we get a rational graph.

There is a (usually non–unique) family of bad vertices with smallest cardinality.

If this cardinality is less than or equal to ν, then the graph is called ν–rational (or

type–ν as in [93]). The case ν = 1 appeared earlier in [61] and it was called almost

rational.

The main result of this chapter will show that the geometry encoded by the lattice

cohomology is concentrated to these vertices.

3.1.4 Exact sequence and vanishing

We are going to present an exact sequence, called the surgery exact sequence (or

surgery exact triangle), which was firstly proved by Ozsváth and Szabó in the context

of Heegaard–Floer homology. In order to understand the deep connection between

these theories (3.2.1), there was a desire to prove it for lattice cohomology as well.

This was done over Z2–coefficients by Greene [31], then Némethi [65] extended

over Z. Since the current subsection is a summary of parts of [65], we will omit the

proofs.

For any graph G and a fixed vertex j0, we may consider the graphs G \ j0 and

G+
j0

. The first one is obtained by deleting the vertex j0 and its adjacent edges, while
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the second is defined by replacing the decoration bj0 of j0 by bj0 + 1. The negative

definiteness of G implies that G \ j0 is negative definite too, but this is not true for

G+
j0

. However, G+
j0

is negative definite if and only if det(G) > det(G \ j0) (see also

[65, Lemma 6.1.1]). Indeed, we have

det(G) = det(G+
j0

) + det(G \ j0),

where det(G) and det(G \ j0) are positive. Conversely, if G+
j0

is negative definite then

G, hence G \ j0 is so. However, G \ j0 fails to be connected in a generic situation.

In order to speak about lattice cohomologies of these graphs, we have to extend

the definition. Notice that formally 3.1.2 allows to drop the connectedness and the

negative definiteness conditions, and assume only that the graphs are non–degenerate

(i.e. det(G) 6= 0). However, the effect of leaving the negative definite assumption is

more serious: we loose the geometric interpretation since SN may not necessarily be

compact. Moreover, the lattice cohomology may not be stable under the blow ups

and blow downs connecting the plumbing representation (for example and further

discussion see [65, 2.4]). Nevertheless, it is convenient to extend the definition in

order to have a larger flexibility for computations using the following surgery exact

sequence.

Theorem 3.1.4.1. ([65])

1. There exists a long exact sequence of Z[U ]–modules

. . . −→ Hq(G+
j0

) −→ Hq(G) −→ Hq(G \ j0) −→ Hq+1(G+
j0

) −→ . . . .

2. If G+
j0

is negative definite, then at the begining of the exact sequence

0 −→ H0(G+
j0

) −→ H0(G) −→ H0(G \ j0) −→ H1(G+
j0

) −→ . . . ,
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the canonical submodule T +(G \ j0) of H0(G \ j0) is mapped to zero.

A disadvantage of this sequence is that the operators mix the classes [k], hence it

is hard to calculate the modules H∗(G, [k]) separately. Still, one can provide an exact

sequence which connects the lattice cohomologies of G and G \ j0 with fixed classes,

making the concept of relative lattice cohomology. We omit the details here and refer

to [65, 4]. Nevertheless, using this surgery exact sequence we can prove the following

vanishing result of lattice cohomology.

Theorem 3.1.4.2 (Vanishing Theorem). Assume that G has a family of ν bad ver-

tices, then Hq(G) = 0 for q ≥ ν. (In particular, Hq(G, [k]) = 0 for any [k] too.)

Proof. It goes using induction over ν. When ν = 0, then all the components of G are

rational. Hence by 3.1.3.1, their reduced lattice cohomology is vanishing. Assume

that the statement is true for ν−1 and let G be a graph with ν bad vertices. Choose a

bad vertex j and form the graph Gj(−m) by replacing the decoration bj by bj−m for

m ≥ 0. The long exact sequence associated with Gj(−m−1), G+
j (−m−1) ≡ Gj(−m)

and G \ j and the inductive argument say that Hq(Gj(−m)) ∼= Hq(Gj(−m− 1)) for

q ≥ ν. Hence, induction over m shows that Hq(G) ∼= Hq(Gj(−m)) for all m and

q ≥ ν. Since for large enough m, Gj(−m) has only ν − 1 bad vertices, the result

follows.

3.2 Relation with other theories revisited

3.2.1 Heegaard–Floer homology and Némethi’s conjecture

First of all, we review some basic facts from the theory of Heegaard–Floer homology

(the HF+ version) introduced by Ozsváth and Szabó in [87, 88]. Besides the long

list of original papers of Ozsváth and Szabó, for more details on the definitions and

properties, we recommend the lecture notes [89, 90].
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Consider an oriented 3–manifold M , which we assume to be a rational homology

sphere. Then HF+(M) is an abelian group with a Z2–grading, and it splits as a

direct sum according to the spinc–structures on M . We may write

HF+(M) = ⊕[k]∈Spinc(M) HF
+(M, [k]),

and denote by HF+
even(M, [k]), respectively HF+

odd(M, [k]), the parts of HF+(M, [k])

with the corresponding parity. For any spinc–structure [k], HF+(M, [k]) admits a

Z[U ]–action which preserves the Z2–grading and gives the Heegaard–Floer homology

a Z[U ]–module structure. Since all the spinc–structures are torsion, the corresponding

components admit aQ–grading compatible with the Z[U ]-action, where deg(U) = −2.

One has a graded Z[U ]-module isomorphism

HF+(M, [k]) = T +
d(M,[k]) ⊕HF

+
red(M, [k]),

where d(M, [k]) is the smallest degree of non–trivial elements of HF+(M, [k]). The

reduced part HF+
red(M, [k]) has a finite Z-rank and an induced Z2–grading as well.

Therefore, one also considers the Euler characteristic

χ(HF+(M, [k])) := rankZHF
+
red,even(M, [k])− rankZHF

+
red,odd(M, [k]),

which, following [96], recovers the Seiberg–Witten invariant of (M, [k]), normalized

by d(M, [k])/2, i.e.

χ(HF+(M, [k])) = sw[k](M)− d(M, [k])/2.

With respect to the change of orientation the above invariants behave as fol-

lows: the spinc-structures Spinc(M) and Spinc(−M) are canonically identified (where
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−M denotes M with opposite orientation). Moreover, d(M, [k]) = −d(−M, [k]) and

χ(HF+(M, [k])) = −χ(HF+(−M, [k])).

In the case when M is a negative definite plumbed 3–manifold, its plumbing graph

G gives a cobordism from −M to S3 which induces a map

TG : HF+
even(−M) −→ H0(M), (3.3)

defined in [86]. By results of [86, 61], this creates an identification between the

Heegaard–Floer and lattice cohomology theories in the case when ν = 1, i.e. G is

almost rational. More precisely, for any [k] ∈ Spinc(M)

HF+
odd(−M, [kr]) = 0 and HF+

even(−M, [kr]) = H0(G, kr)
[
− k2

r + s

4

]
,

in particular d(M, [kr]) = maxk′∈[kr]
(k′)2+s

4
= k2r+s

4
− 2mkr .

In the spirit of this connection, one can predict the following identification as well

([64, 5.2.4]).

Némethi’s Conjecture. Let G be the negative definite plumbing representation of

M as before. Then for any distinguished representative kr one has

HF+
red,even(−M, [kr]) =

⊕
q even

Hq
red(G, kr)

[
− k2

r + s

4

]
and

HF+
red,odd(−M, [kr]) =

⊕
q odd

Hq
red(G, kr)

[
− k2

r + s

4

]
.

In [75], Némethi and Román prove the conjecture for 2–rational graphs associated

with the manifold S3
−d(K), obtained by (−d)–surgery of S3 along the connected sum

K of a collection of algebraic knots determined by irreducible plane curve singularities.

They use the Reduction Theorem 3.3.2.2 in order to split the exact sequence 3.1.4.1(1)

with the vanishing of H2(G). Their argument does not really require the specialty of
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the S3
−d(K) graph. Therefore, one can mimic the proof with the assumption that G

has to be the simplest 2–rational graph, in the sense that there exists a bad vertex so

that if we decrease its decoration by −1, we get an almost rational graph. The failure

of this argument in arbitrary case is based on the fact that at this moment there is

no natural morphisms connecting the modules of the two theories, except the level

q = 0. In this special case, the isomorphism between HF+
odd(−M) and H1(G) can be

induced by the 0–level morphisms.

There is an another approach, done by Ozsváth, Stipsicz and Szabó [91], which

constructs a spectral sequence converging to the Heegaard–Floer homology, and its

E2–term agrees with the lattice cohomology theory. As an application, they finished

the identification in this 2–rational case. Moreover, they considered the relative ver-

sion (for knots in M) of lattice cohomology too [92], and with its help they proved

in [93] the case, when G has a vertex v with the property that if we delete v and its

adjacent edges, we get a rational graph.

A different version of the relative lattice cohomology was defined by Gorsky and

Némethi [33], which is associated with local plane curve singularities and it is identi-

fied with the motivic Poincaré series of such germs.

3.2.2 Seiberg–Witten invariant conjecture revisited

We finished Section 2.3.2 with the promise that we return and correct the upper

bound given in GSWI conjecture. This can be done using path cohomological methods

3.1.1.7.

Consider the notations of 2.2.1.3 and pick a line bundle L ∈ Pic(X̃) with c1(L) =

l′. For simlicity, we use the notation h∗(L) for dimCH
∗(X̃,L). Then we need a

theorem which is a generalization of the Kodaira type Vanishing Theorem [67, pg.

301].

Theorem 3.2.2.1. (Laufer–Grauert–Riemenschneider, [64, 6.1.2]) If c1(L) ∈ kcan −
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S ′, then for any l ∈ L, l > 0 we have h1(L ⊗Ol) = 0, hence h1(L) = 0 as well.

If we choose a path γ = {xi}ti=0 so that x0 = 0, xi+1 = xi + Ej(i) and xt ∈

−l′ − kcan + S ′, then the exact sequence 0 −→ L⊗O(−xt) −→ L −→ L⊗Oxt −→ 0

and the theorem above imply that

h1(L) = h1(L ⊗Oxt),

i.e. h1(L) can be achieved restricting L to a cycle in the ‘special’ zone. Moreover,

one can prove the following property:

Proposition 3.2.2.2. ([64, 6.2.2]) For any 0 ≤ i < t one has

h1(L ⊗Oxi+1
)− h1(L ⊗Oxi) ≤ max{0, χk(xi)− χk(xi+1)}.

Then by summing up the inequalities we get h1(L) ≤
∑t−1

i=0 max{0, χk(xi) −

χk(xi+1)}. Notice that even if we expand the sequence arbitrarily long inside the

special zone −l′ − kcan + S ′, nothing will be changed. Therefore, if P is the set of

paths with connecting x0 = 0 with some elements in the special zone, then Example

3.1.1.7, together with the above discussion deduce the following inequality

h1(L) ≤ min
γ∈P

eu(γ, k),

where eu(γ, k) denotes the normalized Euler characteristic of the path cohomology

associated with γ and χk. Be aware that in general minγ∈P eu(γ, k) < eu(H0(G, k)),

see Example 6.2.2.
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3.3 Reduction Theorem

The goal of the present section is to show that the lattice cohomology of the lattice

L (or any rectangle of it) can be reduced to a considerably ‘smaller rank object’. The

main tool in this reduction is the theory of computation sequences, initiated by Laufer

([40]). In the first subsection we introduce the needed generalization, in the second

we state the main theorem and the third subsection presents the proof. Notice that

the idea of the Reduction Theorem is present already in [61].

The new lattice of rank ν will be associated with a family of bad vertices, the

new lattice points are associated with some important cycles of L as distinguished

members of Laufer–type computational sequences of L. We start with their definition.

3.3.1 Special cycles and generalized Laufer sequences

Suppose we have a family of distinguished vertices J := {jk}νk=1 ⊆ J (usually they

are defined by some geometric property). Then split the set of vertices J into the

disjoint union J tJ ∗. Furthermore, let {mj(x)}j denote the coefficients of a rational

cycle x, that is x =
∑

j∈J mj(x)Ej.

In order to simplify the notation we set i := (i1, . . . , ij, . . . , iν) ∈ Zν ; for any j ∈ J

we write 1j ∈ Zν for the vector with all entries zero except at place j where it is 1, and

for any I ⊆ J we define 1I =
∑

j∈I 1j. Similarly, for any I ⊆ J set EI =
∑

j∈I Ej.

Then the cycles x(i) = x(i1, . . . , iν) are defined via the next Proposition.

Proposition 3.3.1.1. Fix [k] and J ⊆ J as above. For any i ∈ (Z≥0)ν there exists

a unique cycle x(i) ∈ L satisfying the following properties:

(a) mj(x(i)) = ij for any distinguished vertex j ∈ J ;

(b) (x(i) + l′[k], Ej) ≤ 0 for every ‘non–distinguished vertex’ j ∈ J ∗;

(c) x(i) is minimal with the two previous properties.
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Moreover, (i) x(0, . . . , 0) = 0; (ii) x(i) ≥ 0; and (iii) x(i) +EI ≤ x(i + 1I) for any

I ⊆ J .

Proof. The proof is similar to the proof of [61, Lemma 7.6], valid for ν = 1 (or to the

existence of the Artin’s cycle which corresponds to ν = 0 and the canonical class).

First we verify the existence of an element x ∈ L with (a)–(b). By (the proof

of) [61, 7.3] there exists x̃ ≥
∑

j∈J Ej such that (x̃ + l′[k], Ej) ≤ 0 for any j ∈ J .

Take some a ∈ Z>0 sufficiently large so that (a − 1)l′[k] ∈ L, and hj := mj(ax̃ +

(a − 1)l′[k]) − ij ≥ 0 for any j ∈ J . Since l′[k] ≥ 0, this is possible. Then set

x := ax̃+(a−1)l′[k]−
∑

j∈J hjEj. Clearly mj(x) = ij for any j ∈ J and (x+l′[k], Ei) =

a(x̃+ l′[k], Ei)−
∑

j∈J hj(Ej, Ei) ≤ 0 for any i ∈ J ∗.

Next, we verify that there is a unique minimal element with (a)–(b). This follows

from the fact that if x1 and x2 satisfy (a)–(b), then x := min{x1, x2} does too.

Indeed, for any j ∈ J ∗, at least for one index n ∈ {1, 2} one has Ej 6∈ |xn− x|. Then

(x+ l′[k], Ej) = (xn + l′[k], Ej)− (xn − x,Ej) ≤ 0.

Finally, we verify (i)–(ii)–(iii). For (ii) write x(i) as x1 − x2 with x1 ≥ 0, x2 ≥ 0,

|x1|∩|x2| = ∅. Fix an index j ∈ J ∗. If j 6∈ |x1| then (l′[k]−x2, Ej) ≤ (l′[k]−x2+x1, Ej) ≤

0. If j ∈ |x1| then (l′[k] − x2, Ej) ≤ (l′[k], Ej) ≤ 0, cf. 2.1.2.4. Moreover, |x2| ⊂ J ∗

implies (−x2, Ej) ≤ 0 for any j ∈ J . Hence l′[k] − x2 ∈ (l′[k] + L) ∩ S ′, which implies

x2 = 0 by the minimality of l′[k]. This ends (ii) and shows (i) too. For (iii) notice that

(x(i + 1I) + l′[k], Ej)− (EI , Ej) ≤ 0 for any j ∈ J ∗, hence the result follows from the

minimality property (c) applied for x(i).

Remark 3.3.1.2. For the system of inequalities determining the cycles x(i) ∈ L, we

consider the 2 × 2 block structure of the intersection matrix I associated with the

decomposition L′ = L′⊕ (L′)∗. More precisely, we consider the intersection matrix in

the form (
A B

Bt C

)
,
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where A := (Ev, Ew)v,w∈J , B := (Ev, Ew)v∈J ,w∈J ∗ and C := (Ev, Ew)v,w∈J ∗ . Let

(l, l∗) to be the components (in Ej–basis) of some l′ ∈ L′ according to the decomposi-

tion. In particular, we write x(i) as (i, x(i)∗) and set l′[k] = (c, c∗). Then the property

3.3.1.1(b) reformulates as Bt(i + c) + C(x(i)∗ + c∗) ≤ 0.

These cycles satisfy the following universal property as well.

Lemma 3.3.1.3. Fix some i ∈ (Z≥0)ν. Assume that x ∈ L satisfies mj(x) = mj(x(i))

for all j ∈ J .

If x ≤ x(i), then there is a ‘generalized Laufer computation sequence’ connecting x

with x(i). More precisely, one constructs a sequence {xn}tn=0 as follows. Set x0 = x.

Assume that xn is already constructed. If for some j ∈ J ∗ one has (xn + l′[k], Ej) > 0

then take xn+1 = xn + Ej(n), where j(n) is such an index. If xn satisfies 3.3.1.1(b),

then stop and set t = n. Then this procedure stops after finite steps and xt is exactly

x(i).

Moreover, along the computation sequence χkr(xn+1) ≤ χkr(xn) for any 0 ≤ n < t.

Proof. We show by induction that xn ≤ x(i) for any 0 ≤ n ≤ t; then the minimality

property (c) of x(i) will finish the argument. For n = 0 this is clear. Assume it is

true for xn. Then we have to verify that mj(n)(xn) < mj(n)(x(i)). Suppose that this

is not true, that is mj(n)(x(i)− xn) = 0. Then (xn + l′[k], Ej(n)) = (x(i) + l′[k], Ej(n))−

(x(i)− xn, Ej(n)) ≤ 0, a contradiction.

Finally, notice that (xn + l′[k], Ej(n)) > 0 implies χkr(xn+1) ≤ χkr(xn).

Note that the generalized computation sequence usually is not unique, one can

make several choices for j(n) at each step n.

If the choice of the distinguished vertices J is guided by some specific geometric

feature, then the cycles x(i) will inherit further properties.

3.3.1.4. Therefore, in the sequel we fix a (non–necessarily minimal) set J of

bad vertices (that is, by modification of their decorations one gets a rational graph
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as in 3.1.3). Next, we start to list some additional properties satisfied by the cycles

x(i) associated with J . The first is an addendum of Lemma 3.3.1.3.

Lemma 3.3.1.5. Fix some i ∈ (Z≥0)ν. Assume that x ∈ L satisfies mj(x) = mj(x(i))

for all j ∈ J . Then χkr(x) ≥ χkr(x(i)).

Proof. Write x = x(i) − y1 + y2 with y1 ≥ 0, y2 ≥ 0, both yi supported on J ∗, and

|y1| ∩ |y2| = ∅. Then χkr(x) = χkr(x(i) − y1) + χkr(y2) + (y1, y2) − (x(i) + l′[k], y2).

Via this identity χkr(x) ≥ χkr(x(i)− y1). Indeed, (y1, y2) ≥ 0 by support–argument,

−(x(i) + l′[k], y2) ≥ 0 by definition of x(i), and χkr(y2) ≥ 0 since y2 is supported on

a rational subgraph (cf. [61, (6.3)]). On the other hand, by 3.3.1.3, χkr(x(i)− y1) ≥

χkr(x(i)).

The computation sequence of Lemma 3.3.1.3 is a generalization of Laufer’s com-

putation sequence 2.2.1.2 targeting Artin’s fundamental cycle Zmin (see 2.2.1.1). In

fact, for rational graphs, the algorithm is more precise. For further references we

repeat it here:

3.3.1.6. Laufer algorithm and criterion ([40] or 2.2.1.2). Let {zn}Tn=0 be the

computation sequence (similar as above with [k] = [kcan]) connecting z0 = Ej (for

some j ∈ J ) and the Artin’s fundamental cycle zT = Zmin. (This means that zn+1 =

zn + Ej(n) for some j(n), where (zn, Ej(n)) > 0.) Then the graph is rational if and

only if at every step 0 ≤ n < T one has (Ej(n), zn) = 1.

The same statement is true for a sequence connecting z0 = EI with zmin for any

connected EI .

(Both statement can be reinterpreted by the identity χ(EI) = χ(zmin) = 1.)

In some of the applications regarding the cycles x(i) we do not really need their

precise forms, rather the values χkr(x(i)). These can be computed inductively thanks

to the following.
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Proposition 3.3.1.7. For any kr ∈ Char, i ∈ (Z≥0)ν and j ∈ J one has

χkr(x(i + 1j)) = χkr(x(i)) + 1− (x(i) + l′[k], Ej).

Moreover, χkr(x(0, . . . , 0)) = 0.

Proof. We consider the computation sequence {xn}tn=0 connecting x(i)+Ej and x(i+

1j) and we prove that (xn + l′[k], Ej(n)) is exactly 1 for any 0 ≤ n < t. Indeed, we take

zn := xn−x(i) for 0 ≤ n ≤ t and one verifies that {zn}tn=0 is the beginning of a Laufer

sequence {zn}Tn=0 (with t ≤ T ) connecting Ej with zmin (as in 3.3.1.6). This follows

from (xn + l′[k], Ej(n)) > 0 and (x(i) + l′[k], Ej(n)) ≤ 0. Moreover, the values (zn, Ej(n))

will stay unmodified for every n if we replace our graph G with the rational graph

G̃ by decreasing the decorations of the bad vertices. Therefore, by Laufer’s Criterion

3.3.1.6, (zn, Ej(n)) = 1 in G̃, hence consequently in G too. This shows that

1 = (xn − x(i), Ej(n)) = (xn + l′[k], Ej(n))− (x(i) + l′[k], Ej(n)) ≥ (xn + l′[k], Ej(n)).

Since (xn + l′[k], Ej(n)) > 0, this number must equal 1.

This shows χkr(xn+1) = χkr(xn), or χkr(x(i + 1j)) = χkr(x(i) + Ej).

The next technical result about computation sequences is crucial in the proof of

the main result.

Proposition 3.3.1.8. Fix i ∈ (Z≥0)ν and a subset J ⊆ J . Let s(i, J) ⊆ J ∗ be the

support of x(i + 1J)− x(i)− EJ .

(I) For any subset s′ ⊆ s(i, J) one can find a generalized Laufer computation

sequence {xn}tn=0 as in Lemma 3.3.1.3 connecting x0 = x(i) + EJ + Es′ with xt =

x(i + 1J) with the property that there exists a certain ts (0 ≤ ts ≤ t) such that

(a) xts = x(i) + EJ + Es(i,J), and
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(b) χkr(xn) = χkr(x(i + 1J)) for any ts ≤ n ≤ t, or, (xn + l′[k], Ej(n)) = 1 for

ts ≤ n < t.

(II) Let s̃ be a subset of J ∗ such that

χkr(x(i) + EJ∪s̃) = χkr(x(i + 1J)). (3.4)

Then s̃ ⊆ s(i, J). Moreover, there exists a computation sequence {xn}tn=0 as in Lemma

3.3.1.3 connecting x0 = x(i)+EJ with xt = x(i)+EJ∪s̃ such that χkr(xn+1) ≤ χkr(xn)

for any 0 ≤ n < t.

(III) For any cycle l∗ > 0 with support |l∗| ⊆ J ∗ \ s(i, J), there exists a compu-

tation sequence {xn}tn=0 of type xn+1 = xn + Ej(n) (for n < t), x0 = x(i) + EJ∪s(i,J)

and xt = x(i) + EJ∪s(i,J) + l∗ such that χkr(xn+1) ≥ χkr(xn) for any 0 ≤ n < t (that

is, with (xn + l′[k], Ej(n)) ≤ 1).

Proof. (I) We will use the following notation: for any x ≥ x(i) + EJ we write ‖x‖

for the support |x− x(i)−EJ |. Note that Lemma 3.3.1.3 guarantees the existence of

a computation sequence connecting x(i) + EJ∪s′ with x(i + 1J). We consider such a

sequence {xn}tn=0 constructed in such a way that in the procedure of choices of j(n)’s

at the first steps we try to increase ‖xn‖ as much as possible. More precisely, for any

0 ≤ n < t1, the index j(n) ∈ J ∗ is chosen as follows:

 (xn + l′[k], Ej(n)) > 0

Ej(n) 6∈ ‖xn‖.
(3.5)

Assume that this stops for n = t1, that is, for n = t1 there is no index j(n) ∈ J ∗

which would satisfy (3.5). We claim that ‖xt1‖ = ‖x(i + 1J)‖ = s(i, J), hence ts = t1

satisfies part (a) of the proposition.

Indeed, assume that this is not the case. Then we continue the construction of

the sequence, and let t2 + 1 be the first index when ‖x‖ increases again, that is
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‖xn‖ = ‖xt1‖ for t1 ≤ n ≤ t2 and ‖xt2+1‖ = ‖xt1‖ ∪ {j∗} 6= ‖xt1‖ for some j∗ ∈ J ∗.

Hence j∗ = j(t2).

Since (xt2 +l′[k], Ej∗) > 0 and (xt1 +l′[k], Ej∗) ≤ 0, we get (xt2−x(i), Ej∗) > −(x(i)+

l′[k], Ej∗) ≥ (xt1−x(i), Ej∗). Since xt2−x(i) and xt1−x(i) have the same support, which

does not contain j∗, this strict inequality can happen only if (xt1 − x(i), Ej∗) > 0.

By the same argument, in fact, there exists a connected component C of the reduced

cycle xt1 − x(i) such that

((xt2 − x(i))|C , Ej∗) > (C,Ej∗) > 0. (3.6)

Next, we analyze the restriction of the sequence zn := xn − x(i) to C for t1 ≤ n ≤

t2. First note that (zn, Ej(n)) = (xn + l′[k], Ej(n)) − (x(i) + l′[k], Ej(n)) > 0. If Ej(n)

is supported by C then it does not intersect any other components of xt1 − x(i),

hence (zn|C , Ej(n)) > 0 too. Let us consider that subsequence z̃∗ of zn|C which is

obtained from zn|C by eliminating those steps from the computation sequence of

{xn}t2n=t1 which correspond to elements j(n) not supported by C. Then the sequence

starts with C, ends with (xt2 − x(i))|C , it is the beginning of a Laufer sequence

connecting the connected C with the fundamental cycle of C, but at the step t2 one

has (zt2|C , Ej(t2)) ≥ 2, cf. (3.6).

Note also that the sequence zn|C is reduced along J , hence along the procedure

we do not add any base element from J , hence if we decrease the self–intersections of

these vertices we will not modify the Laufer data along the sequence. Hence, we can

assume that C is supported by a rational graph. But this contradicts the existence

of z̃∗, cf. 3.3.1.6.

Part (b) uses the same argument. We fix a connected component of xts − x(i).

Since in the Laufer steps the components do not interact, we can even assume that

the support of xts − x(i) is connected. Then xn − x(i) for n ≥ ts is part of the
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computations sequence connecting the reduced connected xts−x(i) to its fundamental

cycle. Since we may assume that C is rational (since the steps do not involve J),

along the sequence we must have (xn− x(i), Ej(n)) = 1 by 3.3.1.6. This happens only

if (xn + l′[k], Ej(n)) = 1 and (x(i) + l′[k], Ej(n)) = 0.

(II) Assume that s̃ 6⊆ s(i, J), and set s′ := s̃ ∩ s(i, J) and ∆s := s̃ \ s(i, J). Take

a computation sequence {xn}tn=0 as in (I) connecting x(i) + EJ∪s′ with x(i + 1J).

Since χkr(xn) is non–increasing, cf. 3.3.1.3, 1 − (Ej(n), xn + l′[k]) ≤ 0. Therefore,

1 − (Ej(n), xn + E∆s + l′[k]) ≤ 0 too, since j(n) 6∈ ∆s. Since {xn + E∆s}n connects

x(i) + EJ∪s̃ with x(i + 1J) + E∆s, we get

χkr(x(i) + EJ∪s̃) ≥ χkr(x(i + 1J) + E∆s).

This together with assumption (3.4) and Lemma 3.3.1.5 guarantee that, in fact,

χkr(x(i + 1J) + E∆s) = χkr(x(i + 1J)). (3.7)

On the other hand,

χkr(x(i + 1J) + E∆s)− χkr(x(i + 1J)) = χ(E∆s)− (E∆s, x(i + 1J) + l′[k]) ≥ χ(E∆s),

where the last inequality follows from the definition of x(i + 1J). Since χ(E∆s) is

the number of connected components of E∆s, it is strictly positive, a fact which

contradicts (3.7).

For the second part we construct a computation sequence as in (I), applied for

s′ = 0, in such a way that first we choose only the j(n)’s from s̃. We claim that in

this way we fill in all s̃. Indeed, assume that this procedure stops at the level of xm;
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that is, x(i) + EJ ≤ xm < x(i) + EJ∪s̃ and

(Ej, xm + l′[k]) ≤ 0 for all j ∈ ∆s̃ := s̃ \ ||xm||. (3.8)

Then

χkr(x(i) + EJ∪s̃)− χkr(xm) = χ(E∆s̃)− (E∆s̃, xm + l′[k]) ≥ χ(E∆s̃),

where the last inequality follows from (3.8). Since χ(E∆s̃) > 0, the assumption (3.4)

imply χkr(xm) < χkr(x(i + 1J)), a fact which contradicts Lemma 3.3.1.5.

(III) The statement follows by induction from the following fact: if l∗ > 0, |l∗| ⊆

J ∗ \ s(i, J), then there exists j ∈ |l∗| so that

χkr(x(i) + EJ∪s(i,J) + l∗ − Ej) ≤ χkr(x(i) + EJ∪s(i,J) + l∗).

Indeed, if not, then (Ej, x(i) + EJ∪s(i,J) + l′[k] + l∗ − Ej) ≥ 2 for any j ∈ |l∗|. On

the other hand, (Ej, x(i) + EJ∪s(i,J) + l′[k]) ≤ 0, by the proof of part (I) (namely,

the choice of ts = t1), or by the definition of s(i, J). Therefore, (Ej, l
∗ − Ej) ≥ 2,

or, (Ej, l
∗ + kcan) ≥ 0 for all j. Summing up over the coefficients of l∗, we get

(l∗, l∗ + kcan) ≥ 0, which contradicts (3.2) since the subgraph generated by |l∗| is

rational.

3.3.2 The statement

Now we are ready to formulate the main result of this section: in the definition of

the lattice cohomology we wish to replace the (cubes of the) lattice L with cubes of

a smaller rank free Z–module associated with the bad vertices.

3.3.2.1. Definition of the (quadrant of the) new free Z–module. Let us fix

[k] and assume that the graph G admits a family of ν bad vertices as above. Then
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define L = (Z≥0)ν , and the function w0 : (Z≥0)ν → Z by

w0(i1, . . . , iν) := χkr(x(i1, . . . , iν)). (3.9)

Then w0 defines a set {wq}νq=0 of compatible weight functions depending on [k], defined

similarly as in 3.1.1.4, denoted by w[k].

Theorem 3.3.2.2 (Reduction Theorem). Let G be a negative definite connected

graph and let kr be the distinguished representative of a characteristic class. Suppose

J = {jk}νk=1 is a family of bad vertices and (L,w[k]) is the first quadrant of the new

weighted free Z–module associated with J and kr. Then there is a graded Z[U ]–module

isomorphism

H∗(G, kr) ∼= H∗(L,w[k]). (3.10)

Note that via 3.1.2.3, (3.10) is equivalent to the isomorphism:

H∗([0,∞)s, kr) ∼= H∗([0,∞)ν , w[k]). (3.11)

Remark 3.3.2.3. The reduction theorem immediately implies the Vanishing The-

orem 3.1.4.2 for lattice cohomology, in particular, the new classification of rational

surface singularities 3.1.3.1.

3.3.3 Proof of the Reduction Theorem

In this section we abbreviate kr into k, w[k] into w. Assume that there exists a pair

j, j′ ∈ J , j 6= j′, such that (Ej, Ej′) = 1. Then we can blow up the intersection

point Ej ∩Ej′ . We have to observe two facts. First, the lattice cohomology H∗(G, k)

is stable with respect to this blow up [64, 65]. Second, the ‘strict transform’ of the

set J can serve for a new set of bad vertices and the right hand side of (3.10) stays
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stable as well. Therefore, by additional blow ups, we can assume that

(Ej, Ej′) = 0 for every pair j, j′ ∈ J , j 6= j′. (3.12)

3.3.3.1. The first step. Comparing SN and SN .

We consider the projections φ : (Z≥0)s → (Z≥0)ν and φ : [0,∞)s → [0,∞)ν given

by (mj)j∈J 7→ (mj)j∈J . This induces a projection of the cubes too. If (l, I) ∈ Q(L)

is a cube of L, then write I as I ∪ I∗ where I = I ∩ J and I∗ = I ∩ J ∗. Then the

vertices of (l, I) are projected via φ into the vertices of the cube (φ(l), I) ∈ Q(L) of

L. It is convenient to write I := φ(I) and φ(l, I) := (φ(l), I).

By 3.3.1.5, we get that for any l ∈ (Z≥0)s we have w(l) ≥ w(φ(l)), hence

w((l, I)) ≥ w(φ(l, I)) for any cube (l, I) ∈ Q(L). (3.13)

Recall that for any N we define SN ⊆ [0,∞)s as the union of cubes of [0,∞)s of weight

≤ N . Similarly, let SN ⊆ [0,∞)ν be the union of cubes (i, I) with w(i, I) ≤ N . Then,

the statement of Theorem 3.3.2.2, via Theorem 3.1.1.9, is equivalent to the fact that

SN and SN have the same cohomology groups for any integer N . (3.14)

Note that by (3.13) φ(SN) ⊆ SN , and by construction φ|SN : SN → SN is a cubical

map. For any (i, I) ⊆ SN we consider φ∗N(i, I) ⊆ SN defined as the union of all cubes

(l, I) ⊆ SN with φ(l, I) = (i, I). [We warm the reader that this is not the inverse

image (φ|SN )−1(i, I), rather it is the closure of the inverse image of the interiour of

the cube (i, I); see also below.] If ψ : [0,∞)s → [0,∞)s−ν is the second projection

on the J ∗–coordinate direction, then φ∗N(i, I) is the product of ψ(φ∗N(i, I)) with the

cube (i, I); in particular, it has the homotopy type of ψ(φ∗N(i, I)).

A Mayer–Vietoris inductive (or Leray type spectral sequence) argument shows
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that (3.14) follows from

φ∗N(i, I) is non–empty and contractible for any (i, I) ∈ SN . (3.15)

3.3.3.2. Generalities about contractions. In the sequel we fix a cube (i, I) from

SN and we start to prove (3.15). For any such cube (i, I) we also consider the inverse

image φ−1(i, I) consisting of the union of all cubes (l, I) of [0,∞)s with φ(l, I) ⊆ (i, I)

(not necessarily from SN). We can also consider (φ|SN )−1(i, I), the union of cubes

(l, I) from SN with φ(l, I) ⊆ (i, I). Clearly,

φ∗N(i, I) ⊆ (φ|SN )−1(i, I) ⊆ φ−1(i, I).

Note that φ−1(i, I) is the product of the cube (i, I) with [0,∞)s−ν . Our goal is to

contract this ‘fiber direction space’ [0,∞)s−ν in such a way that along the contrac-

tion χk does not increase, and the contraction preserves the subspaces φ∗N(i, I) and

(φ|SN )−1(i, I) as well.

The cycles supported on J ∗ (‘fiber direction’) will be denoted by l∗ =
∑

j∈J ∗mjEj.

For any pair l∗1 and l∗2 with l∗1 ≤ l∗2 we consider the real s–dimensional rectangle

R(i,I)(l
∗
1, l
∗
2), the product of a rectangle in the (s − ν)–dimensional space with the

cube (i, I): it is the convex closure of the lattice points, which have the form

x(i) + EJ + l∗ with J ⊆ I and l∗ ∈ L, l∗1 ≤ l∗ ≤ l∗2.

We extend this notation allowing l∗2 to have all its entries ∞.

Note that the lattice points x(i) + EJ + l∗, being in [0,∞)s, are effective, hence

the relevant l∗ satisfies l∗ ≥ l∗1,min := −x(i) +
∑

j∈J ijEj (the projection of −x(i) on

the J ∗-components). In particular, R(i,I)(l
∗
1,min,∞) = φ−1(i, I) ⊆ [0,∞)s, and we can

assume that l∗1 and l∗2 satisfy l∗1,min ≤ l∗1 ≤ l∗2 ≤ ∞. Note also that l∗1,min ≤ 0.
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We start to discuss the existence of a contraction c : R(i,I)(l
∗
1, l
∗
2+Ej)→ R(i,I)(l

∗
1, l
∗
2)

for some j ∈ J ∗, acting in the direction of the J ∗–coordinates and having the property

that χk will not increase along it. The map c is defined as follows. If a lattice point

l is in R(i,I)(l
∗
1, l
∗
2), then c(l) = l. Otherwise l has the form l = x(i) + EJ + l∗ + Ej

for some l∗ with l∗1 ≤ l∗ ≤ l∗2 and mj(l
∗) = mj(l

∗
2). Then set c(l) = l − Ej. The next

criterion guarantees that χk does not increase along this contraction.

Lemma 3.3.3.3. Assume that for some l∗2 and j ∈ J ∗ one has

χk(x(i) + EI + l∗2 + Ej) ≥ χk(x(i) + EI + l∗2).

Then, for any l∗ with l∗1 ≤ l∗ ≤ l∗2 and mj(l
∗) = mj(l

∗
2), and for every J ⊆ I, one also

has

χk(x(i) + EJ + l∗ + Ej) ≥ χk(x(i) + EJ + l∗).

Therefore, χk(c(l)) ≤ χk(l) for any l ∈ R(i,I)(l
∗
1, l
∗
2 + Ej).

Proof. Use χk(z+Ej) = χk(z) + 1− (Ej, z+ l′[k]) and (Ej, EI −EJ + l∗2− l∗) ≥ 0.

The following lemma generalizes results of [64, § 3.2], where the case ν = 1 is

treated.

Lemma 3.3.3.4. Assume that for some fixed l∗2 there exists an infinite sequence of

cycles {x∗n}n≥0, x∗n =
∑

j∈J ∗mj,nEj, with x∗0 = l∗2 such that

(a) x∗n+1 = x∗n + Ej(n) for some j(n) ∈ J ∗, n ≥ 0;

(b) χk(x(i) + EI + x∗n+1) ≥ χk(x(i) + EI + x∗n) for any n ≥ 0.

(c) for any fixed j the sequence mj,n tends to infinity as n tends to infinity;

Then there exists a contraction of R(i,I)(l
∗
1,∞) to R(i,I)(l

∗
1, l
∗
2) along which χk is non–

increasing.
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Proof. Use Lemma 3.3.3.3 and induction over n.

Symmetrically, by similar proof, one has the following statements too.

Lemma 3.3.3.5.

(I) For any fixed l∗1 and j ∈ J ∗ with l∗1 − Ej ≥ l∗1,min if

χk(x(i) + l∗1 − Ej) ≥ χk(x(i) + l∗1),

then for any l∗ with l∗1 ≤ l∗ ≤ l∗2 and mj(l
∗) = mj(l

∗
1), and for every J ⊆ I, one also

has

χk(x(i) + EJ + l∗ − Ej) ≥ χk(x(i) + EJ + l∗).

Therefore, R(i,I)(l
∗
1−Ej, l∗2) contracts onto R(i,I)(l

∗
1, l
∗
2) such that χk does non increase

along the contraction.

(II) Assume that there exists a sequence of cycles {x∗n}tn=0 with x∗0 = l∗1,min and

x∗t = l∗1 such that for any 0 ≤ n < t one has

(a) x∗n+1 = x∗n + Ej(n) for some j(n) ∈ J ∗,

(b) χk(x(i) + x∗n) ≥ χk(x(i) + x∗n+1).

Then there exists a contraction of R(i,I)(l
∗
1,min, l

∗
2) to R(i,I)(l

∗
1, l
∗
2) along which χk is

non–increasing.

3.3.3.6. Contractions.

First we show the existence of a sequence of cycles {x∗n}tn=0 with x∗0 = l∗1,min and

x∗t = 0 which satisfies the assumptions of Lemma 3.3.3.5(II). This follows inductively

from the following lemma.

Lemma 3.3.3.7. For any x∗ with l∗1,min ≤ x∗ < 0 and supported on J ∗ there exists

at least one index j ∈ |x∗| such that

χk(x(i) + x∗) ≥ χk(x(i) + x∗ + Ej). (3.16)
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Proof. (3.16) is equivalent to (Ej, x(i) + l′[k] + x∗) ≥ 1 for some j ∈ |x∗|. Assume the

opposite, that is, (Ej, x(i) + l′[k] + x∗) ≤ 0 for every j ∈ |x∗|. On the other hand,

for j ∈ J ∗ \ |x∗| one has (Ej, x
∗) ≤ 0 and (Ej, x(i) + l′[k]) ≤ 0 by 3.3.1.1(b). Hence

(Ej, x(i) + l′[k] + x∗) ≤ 0 for every j ∈ J ∗. This contradicts the minimality of x(i) in

3.3.1.1(c).

In particular, Lemma 3.3.3.5(II) applies for l∗1 = 0 and any l∗2 ≥ 0 (including ∞).

Next, we search for a convenient small cycle l∗2 for which Lemma 3.3.3.4 applies

as well. First we show that l∗2 =∞ can be replaced by x(i + 1I)− x(i)− EI .

Lemma 3.3.3.8. There exists a sequence as in Lemma 3.3.3.4 with x∗0 = x(i + 1I)−

x(i)− EI .

Proof. First we show the existence of some l∗2, with all its coefficient very large, which

can be connected by a computation sequence to ∞ with properties (a)-(b)-(c) of

3.3.3.4. For this, consider the full subgraph supported by J ∗. Since it is negative

definite, it supports an effective cycle Z∗ such that (Z∗, Ej) < 0 for any j ∈ J ∗.

Consider any sequence {x∗n}tn=0, x∗n+1 = x∗n + Ej(n), such that x∗0 = 0 and x∗t = Z∗.

Then, there exists `0 ≥ 1 sufficiently large such that for any ` ≥ `0 and n one has

χk(x(i) + EI + `Z∗ + x∗n+1) ≥ χk(x(i) + EI + `Z∗ + x∗n).

Hence the sequence {`Z+xn}`≥`0, 0≤n≤t connects l∗2 = `0Z
∗ with∞ with the required

properties.

Next, we connect x(i + 1I)− x(i)− EI with this l∗2 via a sequence which satisfies

(a)-(b)-(c) of Lemma 3.3.3.4. Its existence follows from the following statement:

For any l∗ > 0 supported by J ∗ there exists at least one index j ∈ |l∗| such that

χk(x(i + 1I) + l∗ − Ej) ≤ χk(x(i + 1I) + l∗).
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Indeed, assume the opposite. Then (Ej, l
∗) ≥ E2

j + 2 for any j ∈ |l∗|. Hence (Ej, l
∗+

kcan) ≥ 0, or χ(l∗) ≤ 0, which contradict the rationality of the subgraph supported

by J ∗.

Finally, by Proposition 3.3.1.8(I) (applied for I = J and s′ = s(i, J)), the newly

determined ‘upper’ bound l∗2 = x(i + 1I)− x(i)− EI can be pushed down further to

its support s(i, I). Hence 3.3.1.8(I), 3.3.3.8 and 3.3.3.7 imply the following.

Corollary 3.3.3.9. There exists a deformation contraction of φ−1(i, I) to R(i,I)(0, Es(i,I))

along which χk is non–increasing. Moreover, its restriction induces a deformation

retract from (φ|SN )−1(i, I) to SN ∩ R(i,I)(0, Es(i,I)). Restricting further, it gives a de-

formation retract from φ∗N(i, I) to Φ∗N(i, I), where Φ∗N(i, I) is the product of the cube

(i, I) with

ψ(φ∗N(i, I)) ∩ {l∗ : 0 ≤ l∗ − ψ(x(i)) ≤ Es(i,I)}.

Note that this last space Φ∗N(i, I) is now rather ‘small’: it is contained in the cube

(x(i), I∪s(i, I)). Nevertheless, theN–filtration of this cube can be rather complicated!

The statement of the above corollary means that if Φ∗N(i, I) is empty if and only

if φ∗N(i, I) is empty, and when they are not empty then they have the same homotopy

type. Therefore, via (3.15), we need to show that

Φ∗N(i, I) is non–empty and contractible.

3.3.3.10. The non–emptiness of Φ∗N(i, I). Recall that we fixed an integer N and

a cube (i, I) which belongs to SN . By Definition 3.3.2.1 and Proposition 3.3.1.8(I)(b)

this reads as

χk(x(i + 1J)) = χk(x(i) + EJ∪s(i,J)) ≤ N for every J ⊆ I. (3.17)

The non-emptiness follows from the following statement.

65



C
E

U
eT

D
C

ol
le

ct
io

n

Proposition 3.3.3.11. For any fixed cube (i, I) ∈ SN there exists a cycle in L of the

form x(i) + Es̃(i,I) such that s̃(i, I) ⊆ s(i, I) and (x(i) + Es̃(i,I), I) ⊆ Φ∗N(i, I); that is

χk(x(i) + EJ∪s̃(i,I)) ≤ N for every J ⊆ I. (3.18)

Proof. The proof is long, it fills all this Subsection 3.3.3.10. It is an induction over

the cardinality of J , respectively of I. At start we reformulate it by keeping only

the necessary combinatorial data, and we also perform three reductions to simplify

the involved combinatorial complexity. We will also write s̃ := s̃(i, I) for the wished

cycle.

3.3.3.12. Starting the reformulation. Define (cf. Proposition 3.3.1.8(I))

N(G) := max
J⊆I

χk(x(i + 1J)) = max
J⊆I

χk(x(i) + EJ∪s(i,J)). (3.19)

N(G) is the smallest integer N for which (3.17) is valid; hence it is enough to prove

Theorem 3.3.3.11 only for N = N(G). Note that N(G) depends on (i, I), though in

its notation this is not emphasized.

In fact, even the weight χk(x(i)) — and partly the cycle x(i), cf. 3.3.3.13, — are

irrelevant in the sense that it is enough to treat a relative version of the statement.

Indeed, we can consider only the value ∆N(G) := N(G)−χk(x(i)), which equals (use

the last term of (3.19)):

∆N(G) = max
J⊆I

(
χ(EJ∪s(i,J))− (EJ∪s(i,J) , x(i) + l′[k])

)
. (3.20)

Then, cf. (3.18), we have to find s̃ ⊆ s(i, I), such that for any J ⊆ I one has

χ(EJ∪s̃)− (EJ∪s̃ , x(i) + l′[k]) ≤ ∆N(G). (3.21)
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Note also that for a reduced cycle Z of G (as EJ∪s(i,J) or EJ∪s̃), χ(Z) is the number

of components of Z, which sometimes will also be denoted by #(Z).

It is convenient to set the following notation. For any vertex j and J ⊆ J set

σj := 1− (Ej, x(i) + l′[k]) and σj(J) := σj − (Ej, EJ).

By definition of x(i), one has σj > 0 for any j ∈ J ∗. Note also that the information

needed in (3.20) and (3.21) about x(i) + l′[k] can be totally codified by the integers σj.

This permits to reformulate the statement of the paragraph 3.3.3.12 into the following

version:

3.3.3.13. Final Reformulation. Let G be a connected graph (e.g. a plumbing

graph whose Euler decorations are deleted), with J = J t J ∗, such that any two

vertices of J are not adjacent, and with additional decorations {σj}j∈J where σj > 0

for j ∈ J ∗. Fix I ⊆ J . For each J ⊆ I we define s(J) as the minimal support in J ∗

such that for any j ∈ J ∗ \ s(J) one has σj(J ∪ s(J)) > 0. [Clearly, s(J) corresponds

to s(i, J) in the original version, see also 3.3.1.8.]

The ‘modified’ Laufer algorithm to find s(J) (transcribed in the language of σj’s)

is the following. We construct the sequence of supports {sn}tn=0 by the next principle:

s0 = ∅, and if sn is already constructed and there exists some j(n) ∈ J ∗ \ sn such

that

σj(n)(J ∪ sn) = σj(n) − (Ej(n), EJ∪sn) ≤ 0 (3.22)

then take sn+1 := sn ∪ j(n); otherwise stop, and set t = n. [This again follows from

the fact that (Ej, x(i) + EJ∪sn + l′[k]) > 0 if and only if σj(J ∪ sn) ≤ 0.] Note that

s(∅) = ∅.

Then the statements form 3.3.3.12 (hence what we need to show) read as follows.
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For any J ⊆ I set

∆(J ;G) := #(EJ∪s(J)) +
∑

j∈J∪s(J)

(σj − 1), and ∆N(G) = max
J⊆I

∆(J ;G). (3.23)

Then there exists s̃ ⊆ s(I) which for any J ⊆ I satisfies

#(EJ∪s̃) +
∑
j∈J∪s̃

(σj − 1) ≤ ∆N(G). (3.24)

Before we formulate the reductions, we list some additional properties of this setup.

3.3.3.14. (P1) We analyze how the numerical invariants are modified along the

computation sequence {sn}tn=0 of 3.3.3.13. Note that if (3.22) occurs, since σj(n) > 0,

j(n) should be adjacent to J ∪ sn. If it is adjacent to only one vertex of J ∪ sn,

then necessarily σj(n) = 1. Furthermore, in any situation, #(EJ∪sn) is decreasing by

(Ej(n), EJ∪sn) − 1. Therefore, the sequence an(J) := #(EJ∪sn) +
∑

j∈J∪sn(σj − 1) is

modified during this step by

an+1(J)− an(J) = σj(n) − (Ej(n), EJ∪sn) ≤ 0.

(P2) For any J ⊆ I and vertex j ∈ I \ J one has

∆(J ∪ j;G) = ∆(J ;G) + σj − (Ej, Es(J)).

The proof runs as follows. Let {sn}tn=0 be the computation sequence for s(J). It

can be considered as the first part of a sequence for s(J ∪ j) too; let {sn}t
′
n=t+1 be

its continuation for s(J ∪ j). The coefficients an(J) and an(J ∪ j) for n ≤ t can be

compared. Indeed, a0(J ∪ j) = a0(J) + σj, and, similarly as in (P1), at(J ∪ j) =

at(J) + σj − (Ej, Es(J)), which is the right hand side of the above identity (since
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at(J) = ∆(J ;G)).

Next, we show that an(J ∪ j) is constant for any further value n ≥ t. First

take n = t. Then σj(t) − (Ej(t), EJ∪s(J)) > 0 (since s(J) is completed), but σj(t) −

(Ej(t), EJ∪s(J)∪j) ≤ 0 (since s(J ∪ j) is not completed). Hence (Ej, Ej(t)) = 1 and

(using (P1) too) at+1(J ∪ j)− at(J ∪ j) = σj(t) − (Ej(t), EJ∪s(J)∪j) = 0.

In general, set sjn := sn \ s(J), e.g. sjt = ∅. At every step, by induction, Ej∪sjn is

connected, hence (Ej(n), Ej∪sjn) can be at most one (since the graph contains no

loops). Hence, σj(n) − (Ej(n), EJ∪s(J)) > 0, and σj(n) − (Ej(n), EJ∪s(J)∪sjn∪j) ≤ 0 imply

(Ej(n), Ej∪sjn) = 1 and an+1(J ∪ j) = an(J ∪ j).

(P3) Fix a vertex j ∈ I with σj ≥ 1, and assume that for all realizations of ∆N(G)

as ∆(J,G) (as in (3.23)) one has J 3 j. Let G−1 be the graph obtained from G by

replacing the decoration σj by σj − 1. We claim that

∆N(G−1) = ∆N(G)− 1. (3.25)

Indeed, since {σj}j∈J ∗ is unmodified, the support s(J) for any J is the same de-

termined in G−1 or in G. If J 63 j then ∆(J,G−1) = ∆(J,G) by (3.23), hence

∆(J,G−1) < ∆N(G). If J 3 j then ∆(J,G−1) = ∆(J,G) − 1 by the same (3.23).

Since one such J realizes ∆N(G), the claim follows.

3.3.3.15. First Reduction: I = J . Consider J \ I = I
c

and the graph G \ Ic

obtained from the original graph G by deleting the vertices I
c

and adjacent edges.

The connected components of G \ Ic do not interact from the point of view of the

statement of the above theorem. Indeed, the Laufer algorithm does not propagate

along the bad vertices I
c
, and it is also enough to find supports s̃ for each component

independently. Hence, we may assume that I = J .

3.3.3.16. Second Reduction: σj > 0 for any j. Consider the situation from

3.3.3.13 with I = J , cf. 3.3.3.15. Assume that σj ≤ 0 for some j ∈ I = J , and
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consider the graph G \ j obtained from G by deleting the vertex j and its adjacent

edges. Note the following facts:

• The maximum ∆N(G) in (3.23) can be realized by a subset J which does not

contain j. In fact, for any J with j 6∈ J one has ∆(J ∪ j;G) ≤ ∆(J ;G). Indeed,

using the notations from 3.3.3.14, a0(J ∪ j) ≤ a0(J); the sequence sn associated with

J is good as the beginning of the sequence of J ∪ j, and during this inductive steps

an(J ∪ j) drops more than an(J); and finally, if the sequence of J ∪ j is longer, then

its an–values decrease even more (cf. 3.3.3.14).

• All the supports of type s(J) definitely are included in G \ j (since are subsets

of J ∗).

• If we find for each component of G \ j some s̃ satisfying the statements of the

theorem for that component, then their union solves the problem for G as well.

Therefore, having G with some σj ≤ 0, we can delete j and continue to search for

s̃ for G \ j: that support will work for G as well.

If we delete all vertices with σj ≤ 0 (j ∈ I) then we arrive to a situation when

σj > 0 for any j ∈ I, hence, a posteriori, σj > 0 for any j ∈ J .

Note that the wished reformulated statement from 3.3.3.13, even for all σj = 1,

when the problem depends purely on the shape of the graph, is far to be trivial.

3.3.3.17. Third Reduction: G = G−. Assume I = J , cf. 3.3.3.15. Let G− be

the minimal connected subgraph of G generated by the vertices I. Here the vertices

J (G−) have an induced disjoint decomposition into J (G−) = J and J ∗(G−) =

J (G−) ∩ J ∗. Moreover, each connected component of G \ G− is glued to G− via a

unique j ∈ I.

We claim that a solution s̃ for G− provides a solution for G too. Indeed, for any

J ⊆ I, the supports sG(J) and sG−(J) generated in G, respectively in G− satisfy the

following.

J∪sG(J) can be obtained from J∪sG−(J) by gluing some subtrees of G\G− along
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some elements of J . These subtrees are maximal among those connected subgraphs

of G (supported in J ∗ \ J (G−)) with all σj = 1 and adjacent to G−. In particular,

J ∪ sG−(J) ⊆ J ∪ sG(J), and their topological realizations are homotopy equivalent;

σj = 1 for any j ∈ sG(J) \ sG−(J); and the integers #EJ∪s(J) computed for G and

G− are the same.

Therefore, ∆N(G) = ∆N(G−), and a solution s̃ for G− is a solution for G too.

Hence, we can assume that G = G−.

This ends the possible reductions/preparations and we start the inductive argu-

ment.

3.3.3.18. The induction. The proof is based on inductive argument over σj– dec-

orated graphs (with I = J , σj > 0 and G = G−), where we will consider sub-

graphs (with induced decorations σj), and eventually we will decrease the decorations

{σj}j∈J .

If I is empty then ∆N(G) = 0; if I contains exactly one element j0, then by

(3.3.3.17) G = {j0} and by (3.23) ∆N(G) = σj0 . In both cases s̃ = ∅ answers the

problem.

3.3.3.19. The inductive step is based on the following picture. Recall that G agrees

with the smallest connected subgraph generated by J . Let j0 ∈ J be one of its

end–vertices (that is, a vertex which has only one adjacent vertex in G). Denote that

connected component of G \ J which is adjacent to j0 by G∗0.

If G\J = G∗0 then all the vertices from J are adjacent to G∗0 and J = I is exactly

the set of end–vertices of G. Then one verifies (use 3.3.3.14(P2)) that

• ∆(J ;G) is increasing function in J , hence ∆N(G) = ∆(I,G), and

• #(EJ∪s(I)) = #(EI∪s(I)), hence (3.24) holds for s̃ = s(I).

Next, assume that G \ J 6= G∗0. We may also assume (by a good choice of j0)

that there is only one vertex j of J which is simultaneously adjacent to G∗0 and to
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some other component of G \ J . Let {j0, j1, . . . , jk, j} be the elements of J which

are adjacent to G∗0. Then j0, j1, . . . , jk are end–vertices of G. Let G′ be obtained

from G be deleting G∗0, {j0, j1, . . . , jk} and all their adjacent edges. Figure 3.2 is the

schematic picture of G, where the vertices from J ∗ are not emphasized.

HH
�
�

...

. . .s s�
�

@
@

ss
@

@
@

@
@

@
sss

j j0

jk j1j2. . .

G∗0G′

s= elements of J

Figure 3.2: The inductive step

The inductive step splits in several cases (A and B, A splits into I and II, while

I has two subcases I.a and I.b).

3.3.3.20. A. Assume that ∆N(G) in (3.23) can be realized by some J with j0 6∈ J .

Fix such a J . Since σj0 ≥ 1 and ∆(J,G) ≥ ∆(J ∪ j0, G), from 3.3.3.14(P2) one

gets

σj0 = 1 and j0 is adjacent to a vertex of s(J). (3.26)

Assume that some j` (1 ≤ ` ≤ k) is not in J . Then again by ∆(J ∪ j`, G) ≤ ∆(J,G)

and 3.3.3.14(P2) we get that σj` = 1 and j` is adjacent to s(J). In particular,

∆(J∪j`, G) = ∆(J,G), and we can replace J by J∪j`. Hence, for uniform treatment,

in such a situation we can always assume that

{j1, . . . , jk} ⊆ J. (3.27)

Let s∗0 be the support generated by {j1, . . . , jk} via the (reformulated) Laufer algo-

rithm 3.3.3.13; then s∗0 ⊆ G∗0.
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We will need another fact too. Let J
′

be a subset of J (G′). Then

∆(J
′
, G′) = ∆(J

′
, G), (3.28)

that is, the ∆–invariants of J
′
in G′ and in G are the same. Indeed, if j 6∈ J ′, then the

identity is clear since J
′

generates the same supports s(J
′
, G′) = s(J

′
, G) in G′ and

G. Otherwise, s(J
′
, G) is the union of s(J

′
, G′) with the maximal element of those

connected subgraph of G∗0 which are adjacent to j and σj = 1 for all their vertices j.

Now, our discussion bifurcates into two cases: whether j is adjacent to s∗0 or not.

I. The case when j is not adjacent to s∗0.

We start with the following general statement, valid for any J ⊆ I, which does

not contain j0 but it contains {j1, . . . , jk}. For such J , whenever j is not adjacent to

s∗0 one has:

∆(J,G) = ∆({j1, . . . , jk}, G) + ∆(J ∩G′, G), (3.29)

where J ∩ G′ stands for J ∩ J (G′). For its proof run first the Laufer algorithm for

the vertices {j1, . . . , jk} getting s∗0, then add the remaining vertices from J ∩G′ and

continue the algorithm.

Therefore, for any J as in the assumption 3.3.3.20 (and with (3.27)) we get that

J ∩G′ realizes ∆N(G′). (Otherwise, we would be able to replace the subset J ∩G′ of

J by another subset of J ∩G′ which would give larger ∆(J ∩G′, G′) = ∆(J ∩G′, G),

cf. also with (3.28), which would contradict (3.29).) Hence, (3.29) combined with

(3.28) give:

∆N(G) = ∆N(G′) + ∆({j1, . . . , jk}, G).

I.a. Assume that ∆N(G′) can be realized by some J
′

in G′ which does not contain j.

Then, we can apply the above statements for J = J
′ ∪ {j1, . . . , jk}. Note that

the Laufer algorithm runs in two independent regions cut by j, namely in G∗0 and in
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G′ \ j. Hence (3.26) guarantees that j0 is adjacent to s∗0.

Furthermore, if s̃(G′) is a support answering the problem for G′, then s̃ = s̃(G′)∪s∗0

is a solution for G. Note also that in this case s∗0 coincides with the collection of

components of s(I) sitting in G∗0.

I.b. Assume that all realizations of ∆N(G′) by some J
′

in G′ contain j.

Let G′−1 be the graph obtained from G′ by replacing the decoration σj by σj − 1.

Then, by 3.3.3.14(P3), we get

∆N(G′−1) = ∆N(G′)− 1.

By induction, one can find a support s̃(G′−1) which solves the problem for G′−1. Let

st be the connected (minimal) string in G∗0 adjacent to both j and j0 (connecting

them).

If j0 is adjacent to s∗0 then s̃ = s̃(G′−1) ∪ s∗0 is a solution for G.

Otherwise s̃ = s̃(G′−1) ∪ s∗0 ∪ st is a solution for G.

II. The case when j is adjacent to s∗0.

Note that in this case by the combinatorics of the choice of j0 and by (3.26) we

get that j0 is adjacent to s∗0 too.

We claim that for G′−1 associated with the graph G′ and its vertex j one gets

∆N(G) = ∆N(G′−1) + ∆({j1, . . . , jk}, G).

Moreover, s̃ = s̃(G′−1) ∪ s∗0 is a solution for G.

3.3.3.21. B. Assume that for all realizations of ∆N(G) as ∆(J,G) one has j0 ∈ J .

Replace in G the decoration σj0 by σj0 − 1, find a solution for G−1, then that

solution works for G too.
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This ends the proof of Proposition 3.3.3.11. We continue with the contraction

part.

3.3.3.22. Additional properties of s̃.

Fix an integer N and (i, I) ∈ SN as in subsection 3.3.3.10. The cube (i, I) de-

termines the integer N(G) = maxJ⊆I χk(x(i + 1J)), cf. (3.19). Choose J̃ ⊆ I which

realizes this maximum: N(G) = χk(x(i + 1J̃)). N(G) is the smallest integer N for

which (i, I) ∈ SN .

Theorem 3.3.3.11 applied for (i, I) and N = N(G) provides a cycle x(i) +Es̃ with

s̃ ⊆ s(i, I) and

χk(x(i) + Es̃ + EJ) ≤ N(G) for any J ⊆ I. (3.30)

In the next paragraphs we will list some additional properties of s̃ and J̃ .

Lemma 3.3.3.23. (a) χk(x(i) +Es̃ +EJ̃) = N(G). In particular, the weight of the

cube (x(i) + Es̃, I) is N(G).

(b) (i) There exists a computation sequence {xn}tn=0 with x0 = x(i) + EJ̃ and

xt = x(i) + EJ̃ + Es̃ such that χk(xn+1) ≤ χk(xn) for any n.

(ii) There exists a computation sequence {yn}t
′
n=0 with y0 = x(i) + EJ̃ + Es̃ and

yt′ = x(i) + EJ̃ + Es(i,I) such that χk(xn+1) ≥ χk(xn) for any n.

(c) Using the notation σj(J) from 3.3.3.13, one has:

(i) σj(s̃) ≥ 0 if j ∈ J̃

(ii) σj(s̃) ≤ 0 if j 6∈ J̃ .

Proof. Note that

N(G)
(1)
= χk(x(i + 1J̃))

(2)

≤ χk(x(i) + Es̃ + EJ̃)
(3)

≤ N(G).

(1) follows from the definition of N(G) and the choice of J̃ , (2) from Lemma 3.3.1.5,
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and (3) from Theorem 3.3.3.11 applied for N = N(G). This proves (a). Identity

(a) together with Proposition 3.3.1.8(II) imply that s̃ ⊆ s(i, J̃). Then there exists

a computation sequence connecting x(i) + EJ̃ with x(i) + EJ̃ + Es̃ by 3.3.1.8(II), a

sequence connecting x(i) +EJ̃ +Es̃ with x(i) +EJ̃ +Es(i,J̃) by 3.3.1.8(I), and finally,

from x(i) + EJ̃ + Es(i,J̃) to x(i) + EJ̃ + Es(i,I) by 3.3.1.8(III). This ends part (b).

Part (c) follows from (a) and equation (3.30) applied for J̃ \ {j} (case j ∈ J̃),

respectively J̃ ∪ {j} (case j 6∈ J̃), and from the assumption 3.12, which guarantees

(Ej, EJ̃\{j}) = 0.

3.3.3.24. Let us recall what we already proved. For any fixed (i, I) ∈ SN the space

φ∗N(i, I) is non–empty, cf. 3.3.3.11, and it has the homotopy type of the product (cf.

3.3.3.9):

Φ∗N(i, I) = ψ(φ∗N(i, I)) ∩ {l∗ : 0 ≤ l∗ − ψ(x(i)) ≤ Es(i,I)} × (i, I).

If x ∈ Φ∗N(i, I) then x− x(i) is reduced. Moreover, Φ∗N(i, I) has in it a distinguished

|I|–dimensional cube {ψ(x(i)) +Es̃}× (i, I) = (x(i) +Es̃, I). Our goal is to construct

a deformation retract from Φ∗N(i, I) to this cube (acting in the fiber direction). This

will be more complicated than the ‘standard’ retractions 3.3.3.3–3.3.3.4–3.3.3.5. (Note

that the point x(i) + Es̃ + EJ̃ is not a χk–minimal point of Φ∗N(i, I), it is maximal

point in the direction J and a minimal point in the direction J ∗.)

To start with, we consider the connected components {Gα}α∈A of s̃, and the

connected components {Cβ}β∈B of s(i, I)\ s̃. During the contraction the supports Gα

should be ‘added’ and the supports Cβ should be ‘deleted’. According to this, it is

performed in several steps, during one step either we add one Gα–type component, or

we delete one Cβ–type component. At each step the fact that which type is performed,

or which Gα/Cβ is manipulated is decided by a technical ‘selection procedure’. This

is the subject of the next Proposition, which will be applied at any situation when the
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components {Gα}α∈A′ still should be added and the components {Cβ}β∈B′ still should

be deleted: it chooses an element of A′∪B′. The technical properties associated with

the corresponding cases will guarantee that the contraction stays below level N of χk.

Below, for any subset J ′ ⊆ J and i ∈ J ∗ we write J ′i := {j ∈ J ′ : (Ei, Ej) = 1}.

Proposition 3.3.3.25 (Selection Procedure). Fix subsets A′ ⊆ A and B′ ⊆ B such

that A′ ∪B′ 6= ∅. Then either there exists α ∈ A′ such that

(i) for every i ∈ |Gα| and every j ∈ J̃i one has σj((s̃ \ i) ∪ ∪β∈B′Cβ) > 0

or, there exists β ∈ B′ such that

(ii) for every i ∈ |Cβ| and every j ∈ I i \ J̃ one has σj((s̃ ∪ i) \ ∪α∈A′Gα) < 0.

Proof. Fix some α ∈ A′ and assume that it does not satisfy (i). Then there exists

iα ∈ |Gα| and jα ∈ J̃iα such that σjα((s̃ \ i) ∪ ∪β∈B′Cβ) ≤ 0. Note that σjα(s̃ \ i) =

σjα(s̃) + (Ejα , Eiα) > 0 by 3.3.3.23(c). These two combined prove the existence of

some β ∈ B′ and iβ ∈ |Cβ| with (Ejα , Eiβ) = 1.

Symmetrically, if for some β ∈ B′ (ii) is not true, then there exists iβ ∈ |Cβ|

and jβ ∈ I iβ \ J̃ with σjβ((s̃ ∪ iβ) \ ∪α∈A′Gα) ≥ 0. Since by 3.3.3.23(c) we have

σjβ(s̃ ∪ iβ) = σjβ(s̃) − (Ejβ , Eiβ) < 0, we get the existence of some α ∈ A′ and

iα ∈ |Gα| with (Ejβ , Eiα) = 1.

Now the proof runs as follows. Start with any α ∈ A′. If it satisfy (i) we are

done. Otherwise, as in the first paragraph, we get a β, such that Gα and Cβ are

connected by a length two path having the middle vertex in J̃ . If this β satisfy (ii)

we stop, otherwise we get by the second paragraph an α′ such that Cβ and Gα′ are

connected by a length two path whose middle vertex is not in J̃ . Since the graph G

has no cycles, α′ 6= α. Then we continue the procedure with α′. Either it satisfies

(i) or Gα′ is connected with some Cβ′ with β′ 6= β. Continuing in this way, all the
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involved α indices, respectively all the β indices are pairwise distinct because of the

non–existence of a cycle in the graph. Since A′ ∪ B′ is finite, the procedure must

stop.

3.3.3.26. Contraction of Φ∗N(i, I).

We will drop the symbol (i, I) from the notation Φ∗N(i, I): we write simply Φ∗N .

On the other hand, for any pair ∅ ⊆ s1 ⊆ s2 ⊆ s(i, I), we define

Φ∗N(s1, s2) := [ψ(φ∗N(i, I)) ∩ {l∗ : Es1 ≤ l∗ − ψ(x(i)) ≤ Es2}]× (i, I).

For example, Φ∗N(∅, s(i, I)) = Φ∗N , while Φ∗N(s̃, s̃) = {(ψ(x(i)) +Es̃)}× (i, I), the cube

on which we wish to contract Φ∗N .

If the Selection Procedure chooses some α′ ∈ A′ then we have to construct a

deformation retract

cα′ : Φ∗N(
⋃
α 6∈A′
|Gα| , s̃ ∪

⋃
β∈B′
|Cβ|) −→ Φ∗N(

⋃
α 6∈A′\α′

|Gα| , s̃ ∪
⋃
β∈B′
|Cβ|).

Otherwise, if some β′ ∈ B′ is chosen then we have to construct a deformation retract

cβ′ : Φ∗N(
⋃
α 6∈A′
|Gα| , s̃ ∪

⋃
β∈B′
|Cβ|) −→ Φ∗N(

⋃
α 6∈A′
|Gα| , s̃ ∪

⋃
β∈B′\β′

|Cβ|).

Their composition (in the selected order) provides the wished deformation retract

Φ∗N → Φ∗N(s̃, s̃). The two types of contractions have some asymmetries, hence we will

provide the details for both of them.

3.3.3.27. The construction of cα′. Let |Gα′ | = {j1, . . . , jt}. By the properties

of J̃ , cf. 3.3.3.23(b), we have a computation sequence with χk non–increasing from

x(i) + EJ̃ to x(i) + EJ̃∪s̃. Since the components {Gα}α do not interact, we can

permute elements belonging to different components Gα, hence we may assume that
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the first part completed the components ∪α 6∈A′Gα, then we complete Gα′ and the order

{j1, . . . , jt} is imposed by the computation sequence. Therefore, for any 1 ≤ n ≤ t,

σjn(J̃ ∪ ∪α 6∈A′|Gα| ∪ {j1, . . . , jn−1}) ≤ 0. (3.31)

The contraction cα′ will be a composition cα′,t ◦ · · · ◦ cα′,1, where cα′,n corresponds

to the completion of the cycles with Ejn (1 ≤ n ≤ t):

cα′,n : Φ∗N(
⋃
α 6∈A′
|Gα| ∪ {j1, . . . , jn−1} , s̃ ∪

⋃
β∈B′
|Cβ|) −→

Φ∗N(
⋃
α 6∈A′
|Gα| ∪ {j1, . . . , jn} , s̃ ∪

⋃
β∈B′
|Cβ|)

defined as follows. Write x = x(i) + EJ + l∗ (l∗ is reduced) with

∪α 6∈A′ |Gα| ∪ {j1, . . . , jn−1} ⊆ |l∗| ⊆ s̃ ∪
⋃
β∈B′
|Cβ|. (3.32)

Then

cα′,n(x) =

 x if jn ∈ |l∗|,

x+ Ejn if jn 6∈ |l∗|.

Note that for any l∗ as above with |l∗| 63 jn, the inequality (3.31) implies

σjn(J̃ ∪ |l∗|) ≤ 0. (3.33)

Fix such an l∗ with |l∗| 63 jn. Then, for any J ⊆ I, we have to prove

χk(x(i) + EJ + l∗ + Ejn) ≤ N. (3.34)

Set J(l∗) := {j ∈ I : σj(|l∗|) > 0}. We claim that if (3.34) is valid for J(l∗) then it is

valid for every J ⊆ I. This follows from the next identity whose second term is ≤ 0
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by the definition of J(l∗).

χk(x(i) + EJ + l∗ + Ejn)− χk(x(i) + EJ(l∗) + l∗ + Ejn)

=
∑

j∈J\J(l∗)

[
σj(|l∗|)− (Ej, Ejn)

]
−

∑
j∈J(l∗)\J

[
σj(|l∗|)− (Ej, Ejn)

]
.

(3.35)

On the other hand, using Selection Procedure (and its notations) we get J̃jn ⊆ J(l∗).

Indeed, by the choice of α′ in 3.3.3.25(i), for jn ∈ |Gα′| and for any j ∈ J̃jn one has

σj(s̃ \ jn ∪ ∪β∈B′Cβ) > 0. Then σj(|l∗|) > 0 by the support condition (3.32). Then

J̃jn ⊆ J(l∗) implies:

σjn(J(l∗) ∪ |l∗|)
(1)

≤ σjn(J̃jn ∪ |l∗|)
(2)
= σjn(J̃ ∪ |l∗|)

(3)

≤ 0. (3.36)

(1) follows from J̃jn ⊆ J(l∗), (2) from (Ejn , EJ̃jn ) = (Ejn , EJ̃), and (3) from (3.33).

Therefore,

χk(x(i) + EJ(l∗) + l∗ + Ejn)− χk(x(i) + EJ(l∗) + l∗) = σjn(J(l∗) ∪ |l∗|) ≤ 0.

Since χk(x(i) + EJ(l∗) + l∗) ≤ N (by induction), (3.34) is valid for J(l∗).

3.3.3.28. The construction of cβ′ . Let |Cβ′ | = V1 ∪ V2, where V1 := |Cβ′ | ∩

(s(i, J̃) \ s̃) and V2 := |Cβ′ | ∩ (s(i, I) \ s(i, J̃)). The Laufer computation sequence

given by 3.3.1.8(I) connecting x(i)+EJ̃ +Es̃ with x(i)+EJ̃ +Es(i,J̃) gives an ordering

on V1 = {j1, . . . , jts} with the property

σjn(J̃ ∪ {j1, . . . , jn−1}) = 0 (3.37)

for every 1 ≤ n ≤ ts. Similarly, applying 3.3.1.8(III) for Es(i,I)\s(i,J̃) we have an
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ordering on V2 = {jts+1, . . . , jt} such that

σjn(J̃ ∪ {j1, . . . , jn−1}) ≥ 0 (3.38)

for every ts + 1 ≤ n ≤ t.

The contraction cβ′ will be cβ′,1 ◦ . . . ◦ cβ′,t, where cβ′,n corresponds to the deletion

of the cycles with Ejn (1 ≤ n ≤ t), i.e.

cβ′,n : Φ∗N(
⋃
α 6∈A′
|Gα| , s̃ ∪

⋃
β∈B′
|Cβ| \ {jn+1, . . . , jt}) −→

Φ∗N(
⋃
α 6∈A′
|Gα| , s̃ ∪

⋃
β∈B′
|Cβ| \ {jn, . . . , jt})

defined in the following way. Write x = x(i) + EJ̃ + l∗ with

∪α6∈A′ |Gα| ⊆ |l∗| ⊆ s̃ ∪
⋃
β∈B′
|Cβ| \ {jn+1, . . . , jt}, (3.39)

then

cβ′,n(x) =

 x if jn 6∈ |l∗|,

x− Ejn if jn ∈ |l∗|.

Fix such an l∗ with jn ∈ |l∗|, then we have to prove

χk(x(i) + EJ + l∗ − Ejn) ≤ N (3.40)

for any J ⊆ I. In this case the inequalities (3.37) and (3.38) implies

σjn(J̃ ∪ |l∗| \ jn) ≥ 0. (3.41)

Here we set J(l∗) := {j ∈ I : σj(|l∗|) ≥ 0}. Then if (3.40) is valid for J(l∗) then
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it is so for any J ⊆ I. Indeed,

χk(x(i) + EJ + l∗ − Ejn)− χk(x(i) + EJ(l∗) + l∗ − Ejn)

=
∑

j∈J\J(l∗)

[
σj(|l∗|) + (Ej, Ejn)

]
−

∑
j∈J(l∗)\J

[
σj(|l∗|) + (Ej, Ejn)

]
≤ 0,

(3.42)

by the definition of J(l∗). By the selection of β′ via 3.3.3.25(ii), for jn ∈ |C ′β| and for

any j ∈ Ijn \ J̃ one has σj((s̃∪ jn) \ ∪α∈A′Gα) < 0, hence σj(|l∗|) < 0, in other words

J(l∗) ⊆ J̃ . Finally, from (3.41) we can deduce the inequality

χk(x(i) + EJ(l∗) + l∗ − Ejn)−χk(x(i) + EJ(l∗) + l∗) =

− σjn(J(l∗) ∪ |l∗| \ jn) ≤ −σjn(J̃ ∪ |l∗| \ jn) ≤ 0.
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Chapter 4

Seiberg–Witten invariants,

periodic constants and

Ehrhart coefficients

This chapter is devoted to the study of the Seiberg–Witten invariants. We in-

troduced the terminology in 2.3.1, where we mentioned that in the last years several

combinatorial expressions were established regarding these invariants. Recall that

[14] provides a surgery formula, which is not induced by a surgery exact sequence,

but — more in the spirit of the present chapter — involves the periodic constant of a

series with one variable.

The breakthrough, which is the starting point of the theory presented in this chap-

ter, is given in [57]. It says that the Seiberg–Witten invariant appears as the constant

term of a multivariable quadratic polynomial given by some special truncation of

a series. It is important to emphasize that the origin and main motivation of this

identity was an analytic identity. Several of the combinatorial objects have their an-

alytic counterparts, for example, the analogue of the topological series Z(t) (defined
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in 4.1.3) is the Hilbert–Poincaré series associated with the multivariable equivariant

divisorial filtration of the local ring of the singular germ, and its equivariant periodic

constants are the equivariant geometric genera. This will be described also in Section

4.1, where we motivate the results from the analytical and topological point of view

as well.

In the case of one–variable series, the afformentioned constant term is realized by

the concept of the periodic constant (of the corresponding function or its series), which

appeared first in [84, 73]. This original definition will be presented in Subsection 4.3.1.

Our aim is to extend this concept to the multivariable case (see 4.3.4) in order to

get a combinatorial computation of the Seiberg–Witten invariants. It turns out that

the right understanding of the multivariable periodic constant goes through multi-

variable Ehrhart theory, which is described in Section 4.2. It helps to understand how

the multivariable Poincaré series encodes this generalized periodic constant, explain-

ing the difficulties in the cases with ‘higher complexity level’. In fact, the complexity

level of the (non–convex) polytopes, associated by the Ehrhart theory, is ‘measured’

by the number of vertices of the corresponding graph. However, we will prove in 4.5

that this can be considerably reduced and measured with the number of nodes, or

even more, with the number of bad vertices. In this way, the Reduction Theorem

3.3.2.2 extends to the level of these invariants and their connections.

This gives the final output which is a nice identification of the Seiberg–Witten

invariants with certain coefficients of a multivariable Ehrhart polynomial (cf. 4.6).

The chapter is based on [37]. The terminology and results in Ehrhart theory,

relevant to the present discussion, can be found in [5, 6, 7, 8, 9, 10, 11, 12, 23, 25],

while for the connections with partition functions, see [18, 100, 99].
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4.1 Analytic and topological motivation

In this section we start with some useful notations and facts which will be used

throughout the chapter. Then we present definitions and results regarding the analytic

Hilbert–Poincaré series of normal surface singularities, which serve as a motivation for

the topological side. After this part, we continue with the definition and immediate

properties of the topological Poincaré series. A discussion regarding the statement of

Theorem 4.1.3.2 will serve as a motivation and it provides a short summary for the

connections between the three numerical datas: the Seiberg–Witten invariant, the

periodic constant and the Ehrhart coefficient.

4.1.1 Notations and facts (addendum to section 2.1.2)

Let (X, 0) be a complex normal surface singularity whose link M is a rational homol-

ogy sphere. Let π : X̃ → X be a good resolution with dual graph G whose vertices

will be denoted by V . Hence G is a tree and all the irreducible exceptional divisors

have genus 0.

Let δv be the valency of the vertex v. We distinguish the following subsets of

vertices: the set of nodes N = {v ∈ V : δv ≥ 3}, and the set of ends E = {v ∈ V :

δv = 1}. If we delete from G the nodes and their adjacent edges we get the collection

of (maximal) chains of the graph. A leg is a chain which is connected by only one

node. |V| or s stay for the number of vertices, while |N | and |E| for the number of

nodes and ends, and H := H1(M,Z).

We look at the combinatorics of the graph G according to Section 2.1.2. Recall

that the module L′ over Z is freely generated by the (anti)duals {E∗v}v, where we

prefer the convention (E∗v , Ew) = −1 for v = w, and 0 otherwise. It will be useful to

write det(G) := det(−I), where I is the negative definite intersection matrix. The

inverse of I has entries (I−1)vw = (E∗v , E
∗
w), all of them are negative. Furthermore,
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by a result of [29, page 83 and §20],

−|H| · (E∗v , E∗w) equals the determinant of the subgraph obtained

from G by eliminating the shortest path connecting v and w.

(4.1)

The canonical class kcan ∈ L′ was defined by the adjunction formulae (kcan+Ev, Ev)+

2 = 0 for all v ∈ V . The expression k2
can + |V| will appear as the normalization term

in several formulae. Therefore, we quote its combinatorial expression in terms of the

graph, cf. [69]:

k2
can + |V| =

∑
v∈V

(Ev, Ev) + 3|V|+ 2 +
∑
v,w∈V

(2− δv)(2− δw)I−1
vw, (4.2)

where δv is the valency of the vertex v.

Recall, that the Lipman cone is defined as S ′ = {l′ ∈ L′ : (l′, Ev) ≤ 0 for all v}.

It is generated over Z≥0 by the elements E∗v . Since all the entries of E∗v are strict

positive, cf. (2.1), for any fixed a ∈ L′ one has:

{l′ ∈ S ′ : l′ � a} is finite. (4.3)

For any class h ∈ H there exists a unique minimal element of {l′ ∈ L′ : [l′] =

h} ∩ S ′, cf. [61, 5.4] or Lemma 2.1.2.4, which will be denoted by sh in this chapter.

Nevertheless, if we look at it for a fixed class [k], we use the notation l′[k] as before.

Furthermore, we set � = {
∑

v l
′
vEv ∈ L′ : 0 ≤ l′v < 1} for the ‘semi–open cube’,

and for any h ∈ H we consider the unique representative rh ∈ � with [rh] = h. One

has sh ≥ rh, and usually sh 6= rh (see e.g. [66, 4.5.3]). Moreover, using the generalized

Laufer computation sequence of [66, 4.3.3] connecting −rh with −sh one gets

χ(sh) ≤ χ(rh). (4.4)
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One considers also the Pontrjagin dual Ĥ of H and denote by θ : H → Ĥ the

isomorphism [l′] 7→ e2πi(l′,·) between them.

4.1.2 Equivariant multivariable Hilbert series

of divisorial filtrations

We fix a resolution π of (X, 0) with resolution graph G. The lattice L defines a

divisorial multi–index filtration on O(X,0) in the following way: for any l =
∑

j ljEj ∈

L one can associate an ideal

F(l) := {f ∈ O(X,0) : (f)G ≥ l}.

The ususal way to describe this multi–index filtration is taking the Hilbert function

h(l) := dimO(X,0)/F(l) and its corresponding generating series, called the multivari-

able Hilbert series

H(t) =
∑

l=
∑
ljEj∈L

h(l)tl ∈ Z[[L]], (4.5)

where tl = tl11 · · · tlss and Z[[L]] stands for the Z[L]–submodule of formal power se-

ries Z[[t
±1/ det(I)
1 , . . . , t

±1/det(I)
s ]], generated by the monomials tl. More details and

informations can be read from [24, 21].

We may also define the multivariable Poincaré series, which is more close to the

topology of (X, 0). But first, let us present a more general interpretation defined in

[22, 58], which gives the equivariant version of this concept.

Let c : (Y, 0) → (X, 0) be the universal abelian cover of (X, 0) with Galois group

H = H1(M,Z), πY : Ỹ → Y the normalized pullback of π by c, and c̃ : Ỹ → X̃

the morphism which covers c, i.e. the induced finite map which makes the diagram

commutative. If we denote the pullback of the cycle l′ ∈ L′ by c̃ with c̃∗(l′), then [68,

3.3] proves that c̃∗(l′) is an integral cycle (an element of the lattice LY associated with
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Ỹ which is, in fact, a partial resolution of (Y, 0) with Hirzebruch–Jung singularities,

cf. [68, 3.2]).

Then O(Y,0) inherits the divisorial multi–index filtration:

F(l′) := {f ∈ OY,o : div(f ◦ πY ) ≥ c̃∗(l′)}.

The natural action of H on Y induces an action on O(Y,0) which keeps F(l′) invariant.

Hence, H acts onO(Y,0)/F(l′) and we can define h(l′) to be the dimension of the θ([l′])–

eigenspace of OY,o/F(l′), where θ([l′]) = e2πi(l′,·) is a multiplicative character in Ĥ (cf.

4.1.1). Then the equivariant multivariable Hilbert series is

H(t) =
∑
l′∈L′

h(l′)tl
′ ∈ Z[[L′]].

In H(t) the exponents l′ of the terms tl
′

reflect the H eigenspace decomposition too.

E.g.,
∑

l∈L h(l)tl corresponds to the H–invariants, hence it is the Hilbert series defined

at the beginning of this subsection.

If l′ is in the special ‘vanishing zone’ −kcan + S ′, then by vanishing (of a certain

first cohomology), and by the Riemann–Roch formula, one obtains (see [59]) that the

expression

h(l′) +
(K + 2l′)2 + |V|

8
(4.6)

depends only on the class [l′] ∈ L′/L of l′.

The key bridge connecting H(t) with the topology of the link and with G is

realized by defining the equivariant multivariable Poincaré series from H(t) (cf. [21,

22, 58, 59]):

P(t) = −H(t) ·
∏
v

(1− t−1
v ) ∈ Z[[L′]].

Notice that apparently P loses some analytic information of H. However, [59, (3.2.6)]

shows explicitly that the identity can be ‘inverted’. Namely, if we write P(t) =
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∑
l′ p̄l′t

l′ , then

h(l′) =
∑

l∈L, l 6≥0

p̄l′+l.

This is well–defined, since by [59, (3.2.2)] one has that P is supported on S ′, therefore

the sum in the formula is finite via 4.3. In particular, cf. (4.6),

∑
l∈L, l 6≥0

p̄l′+l = −const[−l′] −
(kcan + 2l′)2 + |V|

8
(4.7)

for any l′ ∈ −kcan + S ′, where const[−l′] depends only on the class [−l′] of −l′. The

right hand side can be thought as a ‘multivariable Hilbert polynomial’ of degree 2

associated with the series H(t) ( or with P(t)). Its constant term is the normalized

equivariant geometric genus of the universal abelian cover Y (see details in [59]), that

is

− const[−rh] = dim(H1(Ỹ ,OỸ )θ(h)) +
(kcan + 2rh)

2 + |V|
8

. (4.8)

The main point is that P(t) has a topological candidate, which is defined purely from

the graph G and will be the subject of the next subsection. The two series agree

for several singularities, see for example [22, 58, 59]. [59] proves that it is valid for

splice–quotient singularities as well.

It turns out that identification of their constant terms (for ‘nice’ analytic struc-

tures) is the subject of the Seiberg–Witten Invariant Conjecture 2.3.2, since the con-

stant term of the topological candidate will realize the Seiberg–Witten invariant (cf.

4.1.3.2). Hence, if the identification holds, then const[−l′] = sw[−l′]∗σcan(M) too, and

(4.8) creates the bridge between the combinatorial/ topological Seiberg–Witten the-

ory and the analytic counterpart.

89



C
E

U
eT

D
C

ol
le

ct
io

n

4.1.3 The topological Poincaré series and swσ(M)

Definition 4.1.3.1. Consider the following rational function

∏
v∈V

(1− tE
∗
v )δv−2. (4.9)

Then its multivariable Taylor expansion Z(t) =
∑
pl′t

l′ at the origin is called the

topological (combinatorial) Poincaré series associated with the plumbing graph G.

Since the Lipman cone S ′ is generated by the elements E∗v over Z≥0, Z(t) is

supported on S ′ (i.e. pl′ = 0 for every l′ /∈ S ′). Therefore, if we apply the same

special truncation as in the analytic case (4.7), then we get a finite sum

∑
l∈L, l 6≥0

pl′+l . (4.10)

One has a natural decomposition Z(t) =
∑

h∈H Zh(t), where Zh(t) =
∑

[l′]=h pl′t
l′

([l′] is the class of l′). Then the sum (4.10) involves only the part Z[l′] (sometimes we

also write Zl′ for Z[l′]).

As we already mentioned at the end of 4.1.2, Z(t) is the topological candidate

for P(t), since they agree for ‘nice’ analytic structures. This is the reason why (4.7)

motivated the birth of the next theorem, which proves that Z(t) codifies the Seiberg–

Witten invariants of the link M . Moreover, it is the starting point of the research of

the present chapter.

Theorem 4.1.3.2 ([57]). Fix some l′ ∈ L′. Assume that for any v ∈ V the E∗v–

coordinate of l′ is larger than or equal to −(E2
v + 1) for all v. Then

∑
l∈L, l 6≥0

pl′+l = −sw[−l′]∗σcan(M)− (kcan + 2l′)2 + |V|
8

, (4.11)

where ∗ denotes the torsor action of H on Spinc(M).
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The finite sum on the left hand side appears as a counting function of the co-

efficients of Z[l′] associated with the special truncation, while the right hand side is

a multivariable quadratic Hilbert polynomial whose constant term is the normalized

Seiberg–Witten invariant

−sw[−l′]∗σcan(M)− k2
can + |V|

8
.

In order to guarantee the validity of the formula, the vector l′ should sit in a special

chamber described by the inequalities of the assumption. This, after we establish the

necessary bridges, will read as follows:

‘the third degree’ coefficient of a multivariable Ehrhart quasipolynomial associated

with a certain polytope and specific chamber can be identified with the Seiberg–Witten

invariant.

In the followings, we will motivate and summarize the results of this chapter,

which explains the above highlighted sentence. The way how one recovers the needed

information from the series Z(t) can be done at several levels:

• The first one is entirely at the level of series. We develop a theory which

associates with any series the counting function of its coefficients (given by

the truncation of the monomials) — like the right hand side of (4.11). This

is usually a piecewise quasipolynomial. Once we fix a chamber, the free term

of the counting function is the so–called periodic constant (denoted by pc).

In this terminology, the Seiberg–Witten invariant can be interpreted as the

multivariable periodic constant pc(Z) (cf. 4.3.4) of the series Z(t), where the

chosen chamber is described by the inequalities of the assumption (a part of the

Lipman cone S ′). The ‘periodicity’ is related with the quasipolynomial behavior

of the counting function.

The periodic constant of one–variable series was introduced by Némethi and
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Okuma. Its idea, cf. [73, 84], will be detailed in 4.3.1. (For applications see e.g.

[72, 73, 57, 14].)

We create the general theory, which carries necessarily several difficult technical

ingredients. For example, one has to choose the ‘right’ truncation and summa-

tion procedure of the coefficients, which, in the context of general series, is not

automatically motivated, and also it depends on the chamber decomposition of

the space of exponents. The theory has some similarities with the theory of

vector partition functions as well.

• On the other hand, there is a more sophisticated way to generalize the iden-

tity (4.11) too. From any Taylor expansion of a multivariable rational function

with denominator of type
∏

i(1 − tai) we construct a polytope situated in a

lattice which carries also a representation of a finite abelian group H. As-

sociated with these data, we consider the equivariant multivariable Ehrhart

piecewise quasipolynomials, whose existence, main properties (like the Ehrhart–

MacDonald–Stanley type reciprocity law or chamber decompositions) will also be

established in 4.2. This applied to the series Z(t) above, and to the quasipoly-

nomial of those chambers which belong to the Lipman cone shows that the first

three top–degree Ehrhart coefficients (at least) will carry geometrical/topological

meaning, including the Seiberg–Witten invariants of the link M .

Figure 4.1 (cf. [37]) is helping to summarize these two points with a schematic picture

of these connections and areas we target.

4.1.4 A ‘classical’ connection between polytopes and gauge

invariants (and its limits).

The coefficient identification (4.6), and in fact (4.11) too, supply an additional adden-

dum to the intimate relationship between lattice point counting and the Riemann–
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theory

‘third coeff.’

?

?
Q[H]

Figure 4.1: The theories associated with G.

Roch formula, exploited in global algebraic geometry by toric geometry.

In the literature of normal surface singularities there is a sequence of results which

connect the topology of the link with the number of lattice points in a certain poly-

tope. Here we list some historical details on this subject.

The first is based on the theory of Newton non–degenerate hypersurface singu-

larities, see e.g. the second volume of the monograph of Arnold, Gussein–Zade and

Varchenko [1]. According to this, for such a germ one defines the Newton polytope

Γ−N using the non–trivial monomials of the defining equation of the germ. Then one

can prove that several invariants of the germ can be recovered from Γ−N . For example,

by a result of Merle and Teissier [51], the geometric genus pg equals the number of

lattice points in ((Z>0)3 ∩ Γ−N), see also the work of Braun and Némethi [13] into this

direction.

The second is provided by the Laufer–Durfee formula, which determines the sig-

nature of the Milnor fiber σ as −8pg−K2−|V| ([28]). Finally, there is a conjecture of

Neumann and Wahl [79], formulated for hypersurfaces with integral homology sphere

links, and proved for Brieskorn, suspension [79] and splice–quotient [73] singularities,

according to which σ/8 = λ(M), the Casson invariant of the link. Therefore, if all
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these steps run, for example as in the Brieskorn case, then the Casson invariant of

the link, normalized by K2 + |V|, can be expressed as the number of lattice points of

a polytope associated with the equation of the germ.

This correspondence has several deficiencies. First, even in simple cases, we do

not know how to extend the correspondence to the equivariant case, more precisely,

how to express the equivariant geometric genus from Γ−N . Second, the expected gener-

alization, the Seiberg–Witten invariant conjecture (see 2.3.2), which aims to identify

the Seiberg–Witten invariant of the link with pg (or σ), is still open in this case. And,

finally, this family of germs is rather restrictive.

The present chapter defines another polytope, which carries an action of the group

H, and its Ehrhart invariants determine the Seiberg–Witten invariant in any case.

It is not described from the equations of the germ, but from its multivariable ‘zeta–

function’ Z(t).

4.2 Equivariant multivariable Ehrhart theory

In this section we generalize the classical Ehrhart theory to the equivariant multi-

variable version, involving non–convex polytopes, which will fit with our comparison

with the equivariant multivariable series provided by plumbing graphs.

Let us start with a d–dimensional rational lattice X ⊂ Qd and a group homomor-

phism ρ : X → H to a finite abelian group H. We consider a rational vector–dilated

polytope with parameter l = (l1, . . . , lr), lv ∈ Zmv ,

P (l) =
r⋃

v=1

P (lv)
v , where P (lv)

v = {x ∈ Rd : Avx ≤ lv}, (4.12)

where Av is an integral mv × d matrix. If {Av,λi}λi and {lv,λ}λ are the entries of Av

and lv, then the inequality Avx ≤ lv in (4.12) reads as
∑d

i=1 xiAv,λi ≤ lv,λ for any

λ = 1, . . . ,mv.
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We will vary the parameter l in some ‘chambers’ (described below for the needed

cases) such that the polytopes P (l) remain combinatorially stable (or preserve their

combinatorial type) when l runs in the same chamber. This means that their face

lattices are isomorphic. (This implies that they are connected by homeomorphisms,

which preserve the stratification of the faces.) We also suppose that P (l) is homeomor-

phic to a d–dimensional manifold. Denote the set of all closed facets of P (l) by F and

let T be a subset of F , such that ∪F (l)∈T F
(l) is homeomorphic to a (d− 1)–manifold.

Then we have the following generalization to the equivariant version of results of

Stanley [98], McMullen [52] and Beck [7, 8].

Theorem 4.2.0.1. For any h ∈ H and T ⊂ F let

Lh(A, T , l) := cardinality of
((
P (l) \ ∪F (l)∈T F

(l)
)
∩ ρ−1(h)

)
. (4.13)

(a) If l moves in some region in such a way that P (l) stays combinatorially stable

then the expression Lh(A, T , l) is a quasipolynomial in l ∈ Z
∑
mv .

(b) For a fixed combinatorial type of P (l) and for a fixed T , the quasipolynomials

Lh(A, T , l) and L−h(A,F \ T , l) satisfy the Ehrhart–MacDonald–Stanley reciprocity

law

Lh(A, T , l) = (−1)d · L−h(A,F \ T , l)|replace l by −l. (4.14)

To avoid any confusion regarding the expression of (4.14) we note: the two

quasipolynomials in (4.14) are associated with that domain of definition (chamber)

which corresponds to the fixed combinatorial type. Usually for −l the combina-

torial type of P (l) is different, hence the right hand side of (4.14) need not equal

(−1)d · L−h(A,F \ T ,−l). This last expression is the value at −l of the quasipolyno-

mial associated with the chamber which contains −l.

For a reformulation of the identity (4.14) in terms of the fixed chamber see The-

orem 4.3.3.3(c).
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Proof. The statements for H = 0 are identical with those of Beck from [8]. Part (a)

above for arbitrary H can be proved identically as in [8] applied for the situation when

the parameters l run in an overlattice of Z
∑
mv , instead of Z

∑
mv . Equivalently, one

can apply [23], which considers the non–equivariant case, but the integral parameters

l of Beck are replaced by rational affine parameters.

For the convenience of the reader we provide the proof. First we notice that via

standard additivity formulae, cf. [8, § 2], it is enough to prove the statement for each

convex P
(lv)
v . But, considering P

(lv)
v and K := ker(ρ), for any r ∈ X one has the

isomorphism

{x ∈ K + r : Avx ≤ lv} ' {y ∈ K : Avy ≤ lv −Avr}.

Hence [23, Theorem 2] (or [8] for an overlattice of Z
∑
mv) can be applied, which shows

(a). Next, part (b) can also be reduced to [8]. Indeed, we can reduce the discussion

again to P
(lv)
v . We drop the index v, we choose rh ∈ X with ρ(rh) = h, and we fix

some l0. Then for x ∈ K ± rh with Ax ≤ l0 we take y := x∓ ry and k := l0 ∓Arh,

which satisfy y ∈ K and Ay ≤ k. Therefore, using [8] for this polytope, we obtain

Lh(A, T , l0) = L0(A, T ,k) = (−1)d · L0(A,F \ T ,k)|replace k by −k

= (−1)d · L−h(A,F \ T , l0)|replace l0 by −l0 ,

where the second and the third term is associated with the lattice K.

Definition 4.2.0.2. The quasipolynomial Lh(A, T , l) considered in Theorem 4.2.0.1,

associated with a fixed combinatorial type of P (l), is called the equivariant multivari-

able quasipolynomial associated with the corresponding data.

If we vary l in Z
∑
mv (hence we allow the variation of the combinatorial type) we

obtain the equivariant multivariable piecewise quasipolynomial Lh(A, T , l) (see also
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Theorem 4.3.3.3 and Corollary 4.3.3.4 below).

Remark 4.2.0.3. Parallel to the collection {Lh}h defined in (4.13) one can consider

their Fourier transforms as well: for any character ξ ∈ Ĥ = Hom(H, S1), one defines

Lξ(A, T , l) :=
∑

x∈P (l)\∪
F (l)∈T F

(l)

ξ−1(ρ(x)), (4.15)

which satisfies Lξ =
∑

h Lh · ξ−1(h), and |H| · Lh =
∑

ξ Lξ · ξ(h). Hence, the

above properties of Lh can be obtained from similar properties of Lξ as well. Hence,

Theorem 4.2.0.1 can be deduced from [18, § 4.3] too.

Remark 4.2.0.4. In the sequel we will not consider polytopes with this high gen-

erality: our polytopes will be special ones associated with the denominators of type∏
i(1−tai) of multivariable rational functions, or their Taylor series. In order to avoid

unnecessary technical details, the stability of the combinatorial type of P (l), and the

corresponding chamber decomposition of R
∑
mv will also be treated for this special

polytopes, see 4.3.3.2.

4.3 Multivariable rational functions and their

periodic constants

4.3.1 Historical remark: the one–variable case

The concept of the periodic constant for one–variable series was introduced by

Némethi and Okuma. One can find the details in [73, 3.9] and [84, 4.8(1)], how-

ever, we present it in the sequel.

Let S(t) =
∑

l≥0 clt
l ∈ Z[[t]] be a formal power series. Suppose that for some

positive integer p, the expression
∑pn−1

l=0 cl is a polynomial Pp(n) in the variable n.

Then the constant term Pp(0) of Pp(n) is independent of the ‘period’ p. We call Pp(0)
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the periodic constant of S and denote it by pc(S). For example, if l 7→ Q(l) is a

quasipolynomial and S(t) :=
∑

l≥0Q(l)tl, then one can take for p the period of Q,

and one shows that pc(
∑

l≥0Q(l)tl) = 0.

Assume that S(t) is the Hilbert series associated with a graded algebra/vector

space A = ⊕l≥0Al (i.e. cl = dimAl), and the series S admits a Hilbert quasipoly-

nomial Q(l) (that is, cl = Q(l) for l � 0). Since the periodic constant of
∑

lQ(l)tl

is zero, the periodic constant of S(t) measures exactly the difference between S(t)

and its ‘regularized series’ Sreg(t) :=
∑

l≥0Q(l)tl. That is: pc(S) = (S − Sreg)(1)

collecting all the anomalies of the starting elements of S.

Note that Sreg(t) can be represented by a rational function of negative degree

with denominator of type A(t) =
∏

i(1 − tai), and (S − Sreg)(t) is a polynomial.

Conversely, one has the following reinterpretation of the periodic constant [14, 7.0.2].

If
∑

l clt
l is a rational function B(t)/A(t) with A(t) =

∏
i(1 − tai), and one rewrites

it as C(t) +D(t)/A(t) with C and D polynomials and D(t)/A(t) of negative degree,

then pc(S) = C(1). From this fact one also gets that pc(S(t)) = pc(S(tN)) for any

N ∈ Z>0. We will refer to C(t) as the polynomial part of S.

As an example, consider a subset S ⊂ Z≥0 with finite complement. Then S(t) =∑
s∈S t

s rewritten is 1/(1− t)−
∑

s6∈S t
s, hence pc(S) = −#(Z≥0 \ S). In particular,

if S is the semigroup of a local irreducible plane curve singularity, then −pc(S) is the

delta–invariant of that germ. Our study below includes the generalization of this fact

to surface singularities.

4.3.2 Multivariable generalization

4.3.2.1. We wish to extend the definition of the periodic constant to the case of

Taylor expansions at the origin of multivariable rational functions of type

f(t) =

∑r
k=1 ιkt

bk∏d
i=1(1− tai)

(ιk ∈ Z). (4.16)
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Let us explain the notation. Let L be a lattice of rank s with fixed bases {Ev}sv=1.

Let L′ be an overlattice of it with same rank, L ⊂ L′ ⊂ L⊗Q with |L′/L| = d. Then,

in (4.16), {bk}rk=1, {ai}di=1 ∈ L′ and for any l′ =
∑

v l
′
vEv ∈ L′ we write tl

′
= t

l′1
1 . . . t

l′s
s .

We also assume that all the coordinates ai,v of ai are strict positive, Hence, in general,

the coefficients l′v are not integral, and the Laurent expansion Tf(t) of f(t) at the

origin is

Tf(t) =
∑
l′

pl′t
l′ ∈ Z[[t

1/d
1 , . . . , t1/ds ]][t

−1/d
1 , . . . , t−1/d

s ] := Z[[t1/d]][t−1/d].

We also consider the natural partial ordering of L ⊗ Q (defined as in 4.1.1). If all

vectors bk ≥ 0 then Tf(t) is in
∑

l′ pl′t
l′ ∈ Z[[t1/d]]. Sometimes we will not make

difference between f and Tf .

4.3.2.2. This will be extended to the following equivariant case. We fix a finite abelian

group G, and for each g ∈ G a series (or rational function) Tfg ∈ Z[[t1/d]][t−1/d] as in

4.3.2.1, and we set

Tf e(t) :=
∑
g∈G

Tfg(t) · [g] ∈ Z[[t1/d]][t−1/d][G].

Sometimes this equivariant extension is given automatically in the context of 4.3.2.1.

Indeed, if in 4.3.2.1 we set H := L′/L, and for

Tf =
∑
l′

pl′t
l′ we define Tfh :=

∑
[l′]=h

pl′t
l′ , (4.17)

we obtain a decomposition of Tf as a sum
∑

h Tfh ∈ Z[[t1/d]][t−1/d][H] (with d = |H|).

In our cases we always start with this group L′/L = H (hence f determines its

decomposition
∑

h fh). Nevertheless, some alterations will appear. First, we might

consider the non–equivariant case, hence we can forget the decomposition over H.

Another case appears as follows. In order to simplify the rational function we will

99



C
E

U
eT

D
C

ol
le

ct
io

n

eliminate some of its variables (e.g., we substitute ti = 1 for certain indices i), or we

restrict f to a linear subspace V . Then, after this substitution, the restricted function

f |ti=1 will not determine anymore the restrictions (fh)|ti=1 of the ‘old’ components

fh. That is, the new pair of lattices (LV , L
′
V ) = (L ∩ V, L′ ∩ V ) and the ‘old group’

H = L′/L become rather independent. In such cases we will keep the old group

H = L′/L (and the ‘old’ decomposition fh) without asking any compatibility with

L′V /LV .

4.3.2.3. Since all the coordinates ai,v of ai are strict positive, for any Tf(t) =∑
l′ pl′t

l′ we get a well–defined counting function of the coefficients,

l′ 7→ Q(l′) :=
∑
l′′ 6≥l′

pl′′ .

If Tf =
∑

h Tfh, then each Tfh determines a counting function Qh defined in the

same way.

If H = L′/L and Tf decomposes into
∑

h Tfh under the law from (4.17), then

∑
l′′ 6≥l′

pl′′ · [l′′] =
∑
h∈H

Qh(l
′)[h]. (4.18)

The definitions are motivated by formulae (4.11) and (4.7). The functions Qh(l
′) will

be studied in the next subsections via Ehrhart theory.

4.3.3 Ehrhart quasipolynomials associated with

denominators of rational functions

First we consider the case d > 0, the special case d = 0 will be treated in 4.3.3.6.

4.3.3.1. The polytope associated with {ai}di=1. In order to run the Ehrhart

theory we have first to fix the lattice X and the representation ρ : X → H, cf. section

4.2. First, we set X = Zd and α : X → L′ given by α(x) =
∑d

i=1 xiai ∈ L′. In the
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sequel we consider two possibilities for (H, ρ) which basically will cover all the cases

we wish to study (equivariant/non–equivariant cases combined with situations before

or after the reduction of variables, see the comment in 4.3.2.2):

(a) H = H = L′/L and ρ is the composition X α−→ L′ → L′/L.

(b) H = 0 and ρ = 0.

This choice has an effect on the equivariant decomposition f e =
∑

g fg[g] of f too.

In case (a) usually we have G = H and the decomposition is given by 4.17. In case (b)

we can take either G = 0 (this can happen e.g. when we forget the decomposition in

case (a), and we sum up all the components), or we can take any G (by specifying each

fg). In this latter case each fixed fg behaves like a function in the non–equivariant

case G = 0, hence can be treated in the same way.

Since the case (b) follows from case (a) (by forgetting the extra information from

H), in the sequel we provide the details for case (a). Hence let us assume H = G =

L′/L.

Consider the matrix A with column vectors |H|ai and write Av for its rows. Then

the construction of (4.12) can be repeated (eventually completing each Av to assure

the inequalities xi ≥ 0 as well). For l ∈
∑

v lvEv ∈ L consider

P /
v := {x ∈ (R≥0)d : |H| ·

∑
i

xiai,v < lv} and P / :=
s⋃

v=1

P /
v . (4.19)

The closure Pv of P /
v is a dilated convex (simplicial) polytope depending on the one-

dimensional parameter lv. Moreover, P / is described via the partial ordering of L⊗R

as the set {l :
∑

i xiai 6≥ l/|H|}. Since L′ ⊂ L/|H|, we can restrict ourself to the

lattice L′ (preserving all the general results of section 4.2). Hence for any l′ ∈ L′ we

set

P (l′),/ := {x ∈ (R≥0)d :
∑
i

xiai 6≥ l′}, P (l′) = closure of (P (l′),/). (4.20)
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The combinatorial type of P (l′) might vary with l′. Nevertheless, by definition, the

facets will be grouped for all different combinatorial types by the same principle: we

consider the coordinate facets Fi := P (l′) ∩ {xi = 0}, 1 ≤ i ≤ d, and we denote by T

the collection of all other facets. Hence P (l′),/ = P (l′) \∪F (l′)∈T F
(l′). The construction

is motivated by the summation from (4.11) (although in the general statements the

choice of T is irrelevant).

Then 4.1.3.2 and 4.3.1 lead to the next counting function defined in the group

ring Z[H] of H:

Le(A, T , l′) :=
∑
h∈H

Lh(A, T , l′) · [h] :=
∑

1 · [l′′] ∈ Z[H], (4.21)

where the last sum runs over l′′ ∈
(
P (l′) \ ∪F (l′)∈T F

(l′)
)
∩ L′ = P (l′),/ ∩ L′.

The corresponding non–equivariant counting function, corresponding to G = 0 is

denoted by

Lne(A, T , l′) :=
∑
h∈H

Lh(A, T , l′) ∈ Z.

Similarly, we set Le(A,F \ T , l′) too. For both of them Theorem 4.2.0.1 applies.

By the very construction, we have the following identity. Consider the equivariant

Taylor expansion at the origin of the function determined by the denominator of f ,

namely

f̃ e(t) =
1∏d

i=1(1− [ai]tai)
=
∑
l′′

p̃l′′t
l′′ · [l′′] ∈ Z[[t1/|H|]] [H]. (4.22)

Note that since all the {Ev}–coefficients of each ai are strict positive, for any l′ ∈ L′

the set {l′′ : p̃l′′ 6= 0, l′′ 6≥ l′} is finite. Then, by the above construction,

∑
l′′ 6≥l′

p̃l′′ · [l′′] = Le(A, T , l′). (4.23)

4.3.3.2. Combinatorial types, chambers. Next, we wish to make precise the

combinatorial stability condition. The result of Sturmfels [99], Brion–Vergne [18],
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Clauss–Loechner [23] and Szenes–Vergne [100] implies that Le from (4.23) (that is,

each Lh) is a piecewise quasipolynomial on L′: the parameter space L⊗R decomposes

into several chambers, the restriction of Le on each chamber is a quasipolynomial,

and Le is continuous. The chambers are described as follows.

Notice that the combinatorial type of P (l′) in (4.20) vary in the same way as the

closure of its convex complement in Rd≥0, namely

{x ∈ (R≥0)d :
∑
i

xiai ≥ l′}, (4.24)

since both are determined by their common boundary T . The inequalities of (4.24)

can be viewed as a vector partition
∑

i xiai +
∑

v yv(−Ev) = l′, with xi ≥ 0 and

yv ≥ 0. Hence, according to the above references, we have the following chamber

decomposition of L⊗ R.

Let M be the matrix with column vectors {ai}di=1 and {−Ev}sv=1. A subset σ of

indices of columns is called basis if the corresponding columns form a basis of L⊗R;

in this case we write Cone(Mσ) for the positive closed cone generated by them. Then

the chamber decomposition is the polyhedral subdivision of L ⊗ R provided by the

common refinement of the cones Cone(Mσ), where σ runs all over the basis. A

chamber is a closed cone of the subdivision whose interior is non–empty. Usually we

denote them by C, let their index set (collection) be C.

We will need the associated disjoint decomposition of L ⊗ R with relative open

cones as well. A typical element of this disjoint decomposition is the relative interior

of an intersection of type ∩C∈C′C, where C′ runs over the subsets of C. For these cones

we use the notation Cop.

Each chamber C determines an open cone, namely its interior. And, conversely,

each top dimensional open cone determines a chamber C, namely its closure.

The next theorem is the direct consequence of [18, 4.4], [100, 0.2] and (4.2.0.1)
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using the additivity of the Ehrhart quasipolynomial on the suitable convex parts of

P (l′). (We state it for our specific facet–collection T , the case which will be used

later, but it is true for any other facet–decomposition of the boundary whenever

∪F (l′)∈T F
(l′) is homeomorphic to a (d− 1)–manifold.)

Theorem 4.3.3.3. (a) For each relative open cone Cop of L ⊗ R, P (l′) is combina-

torially stable, that is, the polytopes {P (l′)}l′∈Cop have the same combinatorial type.

Therefore, for any fixed h ∈ H, the restrictions LCoph (A, T ) and LCoph (A,F \T ) to Cop

of Lh(A, T ) and Lh(A,F \ T ) respectively are quasipolynomials.

(b) These quasipolynomials have a continuous extension to the closure of Cop.

Namely, if C ′op is in the closure of Cop, then LC
′
op

h (A, T ) is the restriction to C ′op of the

(abstract) quasipolynomial LCoph (A, T ). (Similarly for LCoph (A,F \ T ).)

In particular, for any chamber C one has a well–defined quasipolynomial LCh(A, T ),

defined as LCoph (A, T ), where Cop is the interior of C, which equals Lh(A, T ) for all

points of C.

This also shows that for any two chambers C1 and C2 one has the continuity prop-

erty

LC1h (A, T )|C1∩C2 = LC2h (A, T )|C1∩C2 . (4.25)

(c) LCh(A, T ) and LC−h(A,F \ T ), as abstract quasipolynomials associated with a

fixed chamber C, satisfy the reciprocity

LCh(A, T , l′) = (−1)d · LC−h(A,F \ T ,−l′).

We have the following consequences regarding the counting function l′ 7→ Qh(l
′) of

f e(t) defined in (4.18):

Corollary 4.3.3.4. (a) Qh is a piecewise quasipolynomial. Indeed, for any h ∈ H
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and l′ ∈ L′

Qh(l
′) =

∑
k

ιk · Lh−[bk](A, T , l′ − bk). (4.26)

In particular, the right hand side of (4.26) is independent of the representation of

f as in (4.16) (that is, of the choice of {bk, ai}k,i), it depends only on the rational

function f .

(b) Fix a chamber C of L⊗R, cf. 4.3.3.3, and for any h ∈ H define the quasipoly-

nomial

Q
C
h(l
′) :=

∑
k

ιk · LCh−[bk](A, T , l′ − bk). (4.27)

Then the restriction of Qh(l
′) to ∩k(bk + C) is a quasipolynomial, namely

Qh(l
′) = Q

C
h(l
′) on

⋂
k(bk + C). (4.28)

Moreover, there exists l′∗ ∈ C such that l′∗ + C ⊂ ∩k(bk + C).

(Warning: LCh−[bk](A, T , l′ − bk) 6= Lh−[bk](A, T , l′ − bk) unless l′ − [bk] ∈ C.)

(c) For any fixed h ∈ H, the quasipolynomial Q
C
h(l
′) satisfies the following property:

for any l′ ∈ L′ with [l′] = h, and any q ∈ � (the semi-open unit cube), one has

Q
C
h(l
′) = Q

C
h(l
′ − q). (4.29)

In particular, by taking l′ = q = rh:

Q
C
h(rh) = Q

C
h(0). (4.30)

Proof. For (a) use (4.20) and the fact that bk +
∑
xiai 6≥ l′ if and only if

∑
xiai 6≥

l′ − bk. Since the coefficients of the Taylor expansion depend only on f , the second

sentence follows too.

For (b) use part (a) and the fact that C ∩
⋂
k(bk + C) contains a set of type l′∗+ C.
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(c) Consider those values l′ in some l′∗+C for which all elements of type l′−bk and

l′−q−bk are in C. For these values l′, (4.29) follows from the identity P (l′),/∩ρ−1(h) =

P (l′−q),/∩ρ−1(h) whenever [l′] = h. This is true since for any l′′ with [l′′] = [l′], l′′ ≥ l′

is equivalent with l′′ ≥ l′− q. Indeed, taking y = l′′− l′, this reads as follows: for any

y ∈ L, y ≥ 0 if and only if y ≥ −q.

Now, if two quasipolynomials agree on l′0 + C then they are equal.

Remark 4.3.3.5. Thanks to [100, Theorem 0.2], the continuity property 4.25 has

the following extension (coincidence of the quasipolynomials on neighboring strips).

Set �(A) :=
∑

i[0, 1)ai. Then for any two chambers C1 and C2, and S := (−�(A) +

C1) ∩ (−�(A) + C2)

LC1h (A, T )|S = LC2h (A, T )|S. (4.31)

4.3.3.6. The d = 0 case. All the above properties can be extended for d = 0 as

well. Although the polytope constructed in 4.20 does not exist, we can look at the

polynomial f(t) =
∑

k ιkt
bk itself. Then using notation of (4.18) we set

∑
h∈H

Qh(l
′)[h] =

∑
l′′ 6≥l′

pl′′ · [l′′] =
∑

{k : bk 6≥l′}

ιk[bk].

Moreover, we have the chamber decomposition of L⊗R defined by {−Ev}sv=1 via the

same principle as above. This means two chambers: C0 := R≥0〈−Ev〉 and C1, the

closure of the complement of C0 in Rs. Then Qh(l
′) =

∑
{k : [bk]=h} ιk on ∩k(bk + C1)

and 0 on ∩k(bk + C0).

4.3.4 Multivariable equivariant periodic constant

We consider the situation of 4.3.2.1 and 4.3.3.1(a). For each h ∈ H define rh ∈ L′ as

in 4.1.1.

Definition 4.3.4.1. Let K ⊂ L′⊗R be a closed real cone whose affine closure aff(K)

106



C
E

U
eT

D
C

ol
le

ct
io

n

has positive dimension. For any h ∈ H we assume that there exist

• l′∗ ∈ K

• a sublattice L̃ ⊂ L of finite index, and

• a quasipolynomial l′ 7→ Q̃h(l
′), defined on L̃ ∩ aff(K) such that

Qh(l
′) = Q̃h(l

′) for any L̃ ∩ (l′∗ +K). (4.32)

Then we define the equivariant periodic constant of f associated with K by

pce,K(f) =
∑
h∈H

pcKh (f) · [h] :=
∑
h∈H

Q̃h(0) · [h] ∈ Z[H], (4.33)

and we say that f admits a periodic constant in K. (Sometimes we will use the same

notation for the real cone K and for its lattice points K ∩ L′ in L′.)

Remark 4.3.4.2. The above definition is independent of the choice of the sublattice

L̃: it can be replaced by any sublattice of finite index. The advantage of such sublat-

tices is that convenient restrictions of Qh might have nicer forms which are easier to

compute. The choice of L̃ corresponds to the choice of p in 4.3.1, and it is responsible

for the name ‘periodic’ in the name of pce,K(f).

Proposition 4.3.4.3. (a) Consider the chamber decomposition of L ⊗ R given by

the denominator
∏

i(1 − tai) of f as in Theorem 4.3.3.3. Then f admits a periodic

constant in each chamber C and

pcCh(f) = Q
C
h(rh) = Q

C
h(0). (4.34)

(b) If two functions f1 and f2 admit periodic constant in some cone K, then the same

is true for α1f1 + α2f2 and

pcK(α1f1 + α2f2) = α1pcK(f1) + α2pcK(f2) (α1, α2 ∈ C).
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(c) If f admits periodic constants in two (top dimensional) cones K1 and K2, and

the interior int(K1 ∩ K2) of the intersection K1 ∩ K2 is non–empty, then pcK1(f) =

pcK2(f).

In particular, if {Ci}i=1,2 are two chambers as in (a), and f admits a periodic

constant in K, and int(Ci ∩ K) 6= ∅ (i = 1, 2), then pcC1(f) = pcC2(f).

Proof. For (a) use Corollary 4.3.3.4; (b) is clear. For (c) we can assume that K2 ⊂ K1

(by considering Ki and K1 ∩ K2). Then if Qh is quasipolynomial on l′1 + K1 (with

l′1 ∈ K1), then (l′1 + K2) ∩ K2 contains a set of type l′2 + K2 with l′2 ∈ K2, on which

one can take the restriction of the previous quasipolynomial.

Remark 4.3.4.4. Note that in the rational presentation of f we might assume that

ai ∈ L for all i. Indeed, take oi ∈ Z>0 such that oiai ∈ L, and amplify the fraction

by
∏

i(1− toiai)/(1− tai). Therefore, for each h we can write fh(t) in the form

fh(t) = trh
∑
k

ιk ·
tbk∏

i(1− tai)
,

where ai, bk ∈ L, hence fh(t)/trh ∈ Z[[t]][t−1]. Then if we consider the non–

equivariant periodic constant pcC of fh(t)/trh , 4.18, 4.28 and 4.34 imply that pcCh(f(t)) =

pcC(fh(t)/trh) for all chambers C associated with {ai}i.

Example 4.3.4.5. Assume that L = L′ = Z and K = R≥0, and consider S(t) as in

4.3.1. If S(t) admits a periodic constant in K, then pcK(S) = pc(S), where pc(S) is

the periodic constant defined in 4.3.1.

Example 4.3.4.6. (a) (The d = 0 case) Assume that f(t) =
∑r

k=1 ιkt
bk . Then,

using 4.3.3.6 (and its notation), pce,C0(f) = 0 and pce,C1(f) =
∑r

k=1 ιk[bk] ∈ Z[H].

(b) Assume that the rank is s = 2 and f(t) = tb/(1 − ta), with both entries

(a1, a2) of a positive. We assume that a ∈ L while b ∈ L′. Again, for h 6= [b] the

counting function, hence its periodic constant too, is zero. Assume h = [b], and write
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b = (b1, b2). Then the denominator provides three chambers: C0 := Z≥0〈−E1,−E2〉,

C1 := Z≥0〈a,−E2〉, C2 := Z≥0〈a,−E1〉. Then the three quasipolynomials for 1/(1−ta)

are LC0h = 0, LCih (n1, n2) = dni/aie; hence pcC0h (f) = 0, pcCih (f) = d−bi/aie (i = 1, 2).

In particular, pcCh(f), in general, depends on the choice of C.

(c) Assume that L = L′ and f(t) =
t
b1
1 t

b2
2

(1−t1t2)(1−t21t2)
. Then the chambers asso-

ciated with the denominator are: C0 := R≥0〈−E1,−E2〉, C2 := R≥0〈−E1, (1, 1)〉,

C := R≥0〈(1, 1), (2, 1)〉 and C1 := R≥0〈(2, 1),−E2〉. Then, by a computation,

LC0 = 0; LC2(l1, l2) =
l22
2

+ l2
2

;

LC(l1, l2) =
l21
2

+ l22 + l1
2
− l1l2; LC1(l1, l2) =

l21
4

+ l1
2

+ 1+(−1)l1+1

8
.

(4.35)

Hence, by Proposition 4.3.4.3 and (4.27), one has pcC∗(f) = LC∗(−b1,−b2).

Example 4.3.4.7. Normal affine monoids. Consider the following objects (cf.

4.3.2.1): a lattice L with fixed bases {Ev}dv=1 (hence s = d) and with induced partial

ordering ≤, L′ ⊂ L ⊗ Q an overlattice with finite abelian quotient H := L′/L and

projection ρ : L′ → H. Furthermore, let {ai}di=1 be linearly independent vectors in L′

with all their {Ev}–coordinates positive. Let K be the positive real cone generated

by the vectors {ai}i, and consider the Hilbert series of K

f(t) :=
∑

l′∈K∩L′
tl
′
.

Since K depends only on the rays generated by the vectors ai, we can assume that

ai ∈ L for all i.

Set �(A) =
∑d

i=1[0, 1)ai as above, and consider the monoid M := Z≥0〈ai〉 (cf.

e.g. [20, 2.C]). Then the normal affine monoid K ∩ L′ is a module over M and if we

set B := �(A) ∩ L′, [20, Prop. 2.43] implies that

K ∩ L′ =
⊔
b∈B

b+M.
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In particular, f(t) equals
∑

b∈B tb/
∏d

i=1(1 − tai) and has the form considered in

4.3.2. If the rank d is ≥ 3 then K usually is cut in more chambers. Indeed, take e.g.

d = 3, ai = (1, 1, 1) + Ei for i = 1, 2, 3. Then K is cut in its barycentric subdivision.

Nevertheless, if d = 2 then K consists of a unique chamber and f admits a periodic

constant in K. Indeed, one has:

Lemma 4.3.4.8. If d = 2 then pcKh (f) = 0 for all h ∈ H.

Proof. It is elementary to see that K is one of the chambers (use the construction

from 4.3.3.2). Take B = {bk}k, and write f =
∑

k fk, where fk = tbk/(1−ta1)(1−ta2).

The only relevant classes h ∈ H are given by {[bi] : bi ∈ B}, otherwise already the

Ehrhart quasipolynomials are zero (since ai ∈ L). Fix such a class h = [bi]. Let

LKh (T ) be the quasipolynomial associated with the chamber K and the denominator

of f . Then, by (4.34) and (4.27), pcKh (fk) = LK[bi−bk](T )(−bk). This, by Reciprocity

Law 4.3.3.3(c) equals LK[bk−bi](F \ T )(bk). Again, since the denominator is a series in

L, for [bk−bi] 6= 0 the series is zero; so we may assume [bk−bi] = 0. But, since bk ∈ K,

the value LK0 (F \ T )(bk) of the quasipolynomial carries its geometric meaning, it is

the cardinality of the set {m = n1a1 + n2a2 : n1 > 0, n2 > 0, m 6> bk}. But since for

any such m one has m ≥ a1 + a2 > bk, contradicting m 6> bk, this set is empty.

Example 4.3.4.9. General affine monoids of rank d = 2. Consider the situation

of Example 4.3.4.7 with d = 2, and let N be a submonoid of N̂ = K ∩ L′ of rank 2,

and we also assume that N̂ is the normalization of N . Set

f(t) :=
∑
l′∈N

tl
′
.

Then f(t) is again of type (4.16). Indeed, by [20, Prop. 2.35], N̂ \N is a union of a

finite family of sets of type (I) b ∈ N̂ , or (II) b+Zkai, where b ∈ N̂ , k ∈ Z≥0, i = 1 or

2. Obviously, two sets of type (II) with different i-values might have an intersection
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point of type (I). In particular,

f(t) =
∑
l′∈N̂

tl
′ −
∑
i

tbi,1

1− tki,1a1
−
∑
j

tbj,2

1− tkj,2a2
+
∑
k

(±tbk).

Note that the periodic constant of the first sum is zero by Lemma 4.3.4.8, and the

others can easily be computed (even with closed formulae) via Example 4.3.4.6, parts

(a) and (b).

The computation shows that the periodic constant carries information about the

failure of normality of N (compare with the delta-invariant computation from the

end of 4.3.1).

The situation is similar when we consider a semigroup of N̂ , that is, when we

eliminate the neutral element of the above N as well.

Example 4.3.4.10. Reduction of variables. The next statement is an example

when the number of variables of the function f can be reduced in the procedure of the

periodic constant computation. (For another reduction result, see Theorem 4.5.1.2.)

For simplicity we assume L′ = L.

Proposition 4.3.4.11. Let f(t) = tb∏d
i=1(1−tai ) and assume that b =

∑s
v=1 bvEv ∈ C,

where C is a chamber associated with the denominator.

We consider the subset Pos := {v : bv > 0} with cardinality p, and the pro-

jection Rs → Rp, defined by (rv)
s
v=1 7→ (rv)v∈Pos and denoted by v 7→ v†. Ac-

cordingly, we set a new function f †(z) := zb
†∏d

i=1(1−za
∗
i
†)

in p variables, and a new

chamber C† := R≥0〈{w†j}j〉, where wj are the generators of C = R≥0〈{wj}j〉. Then

pcC(f) = pcC
†
(f †).

Proof. This is a direct application of Theorem 4.2.0.1(b). Indeed, by the Ehrhart–

MacDonald–Stanley reciprocity law, we get pcC(f) = LC(A, T ,−b) = (−1)d·LC(A,F\

T , b). Since b ∈ C, by the very definition of LC(A,F \ T ), this (modulo the sign)

equals the number of integral points of P (b) \ ∪F (b)∈F\T F
(b) ⊂ Rd. But, if v /∈ Pos,
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i.e., bv ≤ 0, then in (4.12) P
(bv)
v has only non–positive integral points. Therefore we

can omit these polytopes without affecting the periodic constant. Then, this fact and

b† ∈ C† imply that pcC can be computed as (−1)dLC†(A†,F † \ T †, b†).

Remark 4.3.4.12. Under the conditions of Proposition 4.3.4.11 we have the following

application of the statement from Remark 4.3.3.5 (based on [100]): Assume that

b ∈ �(A) − C and b ≥ 0. Then pcC(f) = 0. Indeed, pcC(f) = LC(A, T ,−b) =

LC(−b)(A, T ,−b), where C(−b) is a chamber containing −b. But since −b ≤ 0 one

gets LC(−b)(A, T ,−b) = 0 by 4.3.4.11.

One of the key messages of the above examples (starting from 4.3.4.6) is the

following: ‘if b is small compared with the ai’s, then the periodic constant is zero’

(compare with 4.3.1 too).

4.3.5 The polynomial part in the d = s = 2 case

In this case rank(L) = 2, and we have two vectors in the denominator of f , namely

ai = (ai,1, ai,2), i = 1, 2. We will order them in such a way that a2 sits in the cone of a1

and E1, that is, det
(
a1,1 a1,2
a2,1 a2,2

)
< 0. The chamber decomposition will be the following:

C0 := R≥0〈−E1,−E2〉, C2 := R≥0〈−E1, a1〉, C := R≥0〈a1, a2〉 and C1 := R≥0〈a2,−E2〉

(the index choice is motivated by the formulae from 4.3.4.6(b)).

Our goal is to write any rational function (with denominator (1 − ta1)(1 − ta2))

as a sum of f+(t) and f−(t), such that f+ ∈ Z[L′] (the ‘polynomial part of f ’), and

pce,C(f−) = 0. This is a generalization of the decomposition in the one–variable case

discussed in 4.3.1, and will be a major tool in the computation of the periodic constant

in Section 5.2 for graphs with two nodes. The specific form of the decomposition is

motivated by Examples 4.3.4.6(b) and 4.3.4.7.

As above, we set �(A) = [0, 1)a1 + [0, 1)a2 and for i = 1, 2 we also consider the

112



C
E

U
eT

D
C

ol
le

ct
io

n

strips

Ξi := {b = (b1, b2) ∈ L⊗ R | 0 ≤ bi < ai,i}.

Theorem 4.3.5.1. (1) Any function f(t) =
(∑r

k=1 ιkt
bk
)
/
∏2

i=1(1− tai) (with ιk ∈

Z) can be written as a sum f(t) = f+(t) + f−(t), where

(a) f+(t) is a finite sum
∑

` κ`t
β`, with κ` ∈ Z and β` ∈ L′;

(b) f−(t) has the form

f−(t) =

∑r
k=1 ιkt

b′k∏2
i=1(1− tai)

+

∑n1

i=1 ιi,1t
bi,1

1− ta1
+

∑n2

i=1 ιi,2t
bi,2

1− ta2
, (4.36)

with b′k ∈ L′ ∩ �(A) for all k, and bi,j ∈ L′ ∩ Ξj for any i and j = 1, 2, and

ιk ιi,1, ιi,2 ∈ Z.

(2) Consider a sum

Σ(t) :=
Q(t)∏2

i=1(1− tai)
+

Q1(t)

1− ta1
+

Q2(t)

1− ta2
+ f+(t), (4.37)

where Q(t) :=
∑r

k=1 ιkt
b′k with b′k ∈ L′ ∩ �(A) for all k; Qj(t) =

∑n1

i=1 ιi,jt
bi,j with

bi,j ∈ L′ ∩Ξj for any i and j = 1, 2; and finally f+ ∈ Z[L′] is a polynomial as in part

(a) above.

Then, if Σ(t) = 0, then Q(t) = Q1(t) = Q2(t) = f+(t) = 0.

In particular, the decomposition in part (1) is unique.

(3) The periodic constant of f−(t) associated with the chamber C is zero. Hence,

in the decomposition (1) one also has pce,C(f) = pce,C(f+) =
∑

` κ`[β`] ∈ Z[H].

Proof. (1) For every bk ∈ L′ we have a (unique) b′k ∈ L′ ∩ �(A) such that bk − b′k ∈

Z〈a1, a2〉. Set Q(t) :=
∑r

k=1 ιkt
b′k . Then f(t)−Q(t)/

∏2
i=1(1− tai) is a sum of terms

of type tb
′
(tk1a1+k2a2 − 1)/

∏2
i=1(1 − tai). This decomposes as a sum with terms of

type tc/(1 − tai). Then for every such expression, there exists ci ∈ Ξi such that

(tc − tci)/(1− tai) is as in (a).
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Part (2) is again elementary. First we show that Q(t) = 0. For any b′ ∈ L′∩�(A)

consider Ξb′ := b′ + Z〈a1, a2〉. For any P (t) =
∑
ιkt

c′k write Pb′(t) =
∑

ck∈Ξb′
ιkt

c′k

for its part supported on Ξb′ . This decomposition can be done for Q, Q1, Q2 and

f+, hence for Σ(t). Note that it is enough to prove (2) for such Σb′(t), for a fixed

b′. Hence, we can assume that Σ(t) is supported on some Ξb′ , b
′ ∈ L′ ∩�(A). Since

Ξb′ ∩ �(A) = {b′}, in this case Q(t) = ι tb
′
. Multiplying Σ(t) by

∏2
i=1(1 − tai) and

substituting t1 = t2 = 1 we get ι = 0. Hence Q(t) = 0.

Next, consider the identity (1−ta2)Q1(t)+(1−ta1)Q2(t)+
∏2

i=1(1−tai)·f+(t) = 0.

Since Z[t1, t2] is UFD and the polynomials 1 − ta1 and 1 − ta2 are relative primes,

we get that 1 − tai divides Qi(t). This together with the support assumption of Qi

implies Qi = 0.

(3) The vanishing of the periodic constant of the first fraction of f− follows from

the proof of Lemma 4.3.4.8. The vanishing of pce,C of the other two fractions follows

from Example 4.3.4.6(b). For the last expression see Example 4.3.4.6(a).

Remark 4.3.5.2. (a) Part (a) of the proof provides an algorithm how one finds the

decomposition.

(b) Since pce,C(f−) = 0 by (3), the above decomposition f = f++f− is well–suited

for computing the periodic constant of f associated with chamber C via f+.

4.4 The case associated with plumbing graphs

4.4.1 The new construction. Applications of Section 4.3.

Consider the topological setup of a surface singularity, as in subsection 4.1.1. The

lattice L has a canonical basis {Ev}v∈V corresponding to the vertices of the graph G.

We investigate the periodic constant of the rational function Z(t), defined in 4.1.3

from G. Since Z(t) has the form (4.16), all the results of section 4.3 can be applied.

In particular, if E = {v ∈ V : δv = 1} denotes the set of ends of the graph, then A
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has column vectors av = E∗v for v ∈ E . Hence, the rank of the lattice/space where the

polytopes P (l′) = ∪vPv sit is d = |E|, and the convex polytopes {Pv} are indexed by

V . Furthermore, the dilation parameter l′ of the polytopes runs in a |V|–dimensional

space. In the sequel we will drop the symbol A from LCh(A, T , l′).

(The construction has some analogies with the construction of the splice–quotient

singularities [80]: in that case the equations of the universal abelian cover of the

singularity are written in Cd, together with an action of H. Nevertheless, in the

present situation, we are not obstructed with the semigroup and congruence relations

present in that theory.)

In this new construction, a crucial additional ingredient comes from singularity

theory, namely Theorem 4.1.3.2 (in fact, this is the main starting point and motivation

of the whole approach). This combined with facts from Section 4.3 give:

Corollary 4.4.1.1. Let S = SR be the (real) Lipman cone {x ∈ R|V| : (x,Ev) ≤

0 for all v}.

(a) The rational function Z(t) admits a periodic constant in the cone S, which

equals the normalized Seiberg–Witten invariant

pcSh(Z) = −(K + 2rh)
2 + |V|

8
− sw−h∗σcan(M). (4.38)

(b) Consider the chamber decomposition associated with the denominator of Z(t)

as in Theorem 4.3.3.3, and let C be a chamber such that int(C ∩ S) 6= ∅. Then Z(t)

admits a periodic constant in C, which equals both pcSh(Z) (satisfying (4.38)) and also

pcCh(Z) =
∑
k

ιk · LCh−[bk](T ,−bk) =
∑
k

ιk · LC[bk]−h(F \ T , bk). (4.39)

In particular, pcCh(Z) does not depend on the choice of C (under the above assump-

tion).
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Proof. Write l′ = l̃ + rh with l̃ ∈ L in (4.11). Since
∑

l∈L, l 6≥0 pl′+l =
∑

l′′ 6≥l̃, [l′′]=rh pl′′ ,

(a) follows from Theorem 4.1.3.2. For (b) use Corollary 4.3.3.4 and Proposition

4.3.4.3.

We note that the Lipman cone S can indeed be cut in several chambers (of the

denominator of Z). This can happen even in the simple case of Brieskorn germs.

Below we provide such an example together with several exemplifying details of the

construction.

Example 4.4.1.2. Lipman cone cut in several chambers. Consider the 3-

manifold S3
−1(T2,3) (where T2,3 is the right-handed trefoil knot), or, equivalently, the

link of the hypersurface singularity z2
1 +z3

2 +z7
3 = 0. Its plumbing graph G and matrix

−I−1 are:

r rr
r
E0 E3E1

E2

−1
−2 −7

−3

−I−1 =



42 21 14 6

21 11 7 3

14 7 5 2

6 3 2 1


where the row/column vectors of −I−1 are E∗0 , E∗1 , E∗2 and E∗3 in the {Ev} basis. The

polytopes defined in (4.12), or in (4.19), with parameter l = (l0, l1, l2, l3) ⊂ Z4, sit in

R3. Let u1, u2, u3 be the basis of R3. Then the polytopes are the following convex

closures:

P
(l)
0 = conv (0, (l0/21)u1, (l0/14)u2, (l0/6)u3)

P
(l)
1 = conv (0, (l1/11)u1, (l1/7)u2, (l1/3)u3)

P
(l)
2 = conv (0, (l2/7)u1, (l2/5)u2, (l2/2)u3)

P
(l)
3 = conv (0, (l3/3)u1, (l3/2)u2, (l3/1)u3) .

Since E∗0 + ε(−E0) is in the interior of the (real) Lipman cone for 0 < ε � 1, we

get that the Lipman cone is cut in several chambers. The periodic constant can
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be computed with any of them. In fact, by the continuity of the quasipolynomials

associated with the chambers, any quasipolynomial associated with any ray in the

Lipman cone, even if it is situated at its boundary, provides the periodic constant.

One such degenerated polytope provided by a ray on the boundary of S is of special

interest. Namely, if we take l = λE∗0 ∈ S for λ > 0, then P (l) =
⋃3
v=0 P

(l)
v is

the same as P
(l)
0 = conv(0, 2λu1, 3λu2, 7λu3). Moreover, if C is any chamber which

contains the ray R≥0E
∗
0 at its boundary, then for any l = λE∗0 one has LC(A, T , l) =

L(P̃0, T , λ), where the last is the classical Ehrhart polynomial of the tetrahedron

P̃0 := conv(0, 2u1, 3u2, 7u3). Here we witness an additional coincidence of P̃0 with the

Newton polytope G−N of the equation z2
1 + z3

2 + z7
3 .

We compute L(P̃0, T , λ) as follows. From (4.7)–(4.8) and Corollary 4.3.3.4, we

get that

χ(λE∗0)+geometric genus of {z2
1 +z3

2 +z7
3 = 0} = L(P̃0, T , λ)−L(P̃0, T , λ−1). (4.40)

Since this geometric genus is 1, and the free term of L(P̃0, T , λ) is zero (since for

λ = 0 the zero polytope with boundary conditions contains no lattice point), and

−K = 2E0 +E1 +E2 +E3, we get that L(P̃0, T , λ) = 7λ3 + 10λ2 + 4λ. We emphasize

that a formula as in (4.40), realizing a bridge between the Riemann–Roch expression χ

(supplemented with the geometric genus) and the Ehrhart polynomial of the Newton

diagram, was not known for Newton non–degenerate germs.

In the sequel we will provide several examples, when the Newton polytope is not

even defined.

4.4.2 Example. The case of lens spaces

As we will see in Theorem 4.5.1.2, the complexity of the problem depends basically

on the number of nodes of G. In this subsection we treat the case when there are
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no nodes at all, that is M is a lens space. In this case the numerator of the rational

function f(t) is 1, hence everything is described by the 2–dimensional polytopes

determined by the denominator. In the literature there are several results about lens

spaces fitting in the present program, here we collect the relevant ones completing

with the new interpretations. This subsection also serves as a preparatory part, or

model, for the study of chains of arbitrary graphs.

Assume that the plumbing graph is r r r r· · ·
−k1 −k2 −ks−ks−1

with all kv ≥

2, and p/q is expressed via the (Hirzebruch, or negative) continued fraction

[k1, . . . , ks] = k1 − 1/(k2 − 1/(· · · − 1/ks) · · · ). (4.41)

Then M is the lens space L(p, q). We also define q′ by q′q ≡ 1 mod p, and 0 ≤ q′ < p.

Furthermore, we set gv = [E∗v ] ∈ H. Then gs generates H = Zp, and any element of

H can be written as ags for some 0 ≤ a < p. Recall the definitions of rh and sh from

4.1.1 as well.

From the analytic point of view (X, 0) is a cyclic quotient singularity (C2, o)/Zp,

where the action is ξ ∗ (x, y) = (ξx, ξqy) (here ξ runs over p–roots of unity).

4.4.2.1. The Seiberg–Witten invariant. Since (X, 0) is rational, in this case

Z(t) = P (t) (cf. subsection 4.1.2). Moreover, in (4.8) H1(OỸ ) = 0, hence

sw−h∗σcan(M) = −(K + 2rh)
2 + |V|

8
= −K

2 + |V|
8

+ χ(rh). (4.42)

On the other hand, in [61, 64] a similar formula is proved for the Seiberg–Witten

invariant: one only has to replace in (4.42) χ(rh) by χ(sh). In particular, for lens

spaces, and for any h ∈ H one has

χ(rh) = χ(sh). (4.43)
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(Note that, in general, for other links, χ(rh) > χ(sh) might happen, see Exam-

ple 5.1.4.2. Here, (4.43) follows from the vanishing of the geometric genus of the

universal abelian cover of (X, 0).)

In general, the coefficients of the representatives sags and rags (0 ≤ a < p) are

rather complicated arithmetical expressions; for sags see [61, 10.3] (where gs is defined

with opposite sign). The value χ(sags) is computed in [61, 10.5.1] as

χ(sags) =
a(1− p)

2p
+

a∑
j=1

{jq′
p

}
. (4.44)

For completeness of the discussion we also recall that K = E∗1 +E∗s −
∑

v Ev and

(K2 + |V|)/4 = (p− 1)/(2p)− 3 · s(q, p), (4.45)

cf. [61, 10.5], where s(q, p) denotes the Dedekind sum

s(q, p) =

p−1∑
l=0

(( l
p

))((ql
p

))
, where ((x)) =

 {x} − 1/2 if x ∈ R \ Z

0 if x ∈ Z.

In particular, sw−h∗σcan(M) is determined via the formulae (4.42) – (4.45).

The non–equivariant picture looks as follows:
∑

h sw−h∗σcan = λ, the Casson–

Walker invariant of M , hence (4.42) gives

λ = −p(K2 + |V|)/8 +
∑

hχ(rh).

This is compatible with (4.45) and formulae λ(L(p, q)) = p ·s(q, p)/2 and
∑

h χ(rh) =

(p− 1)/4− p · s(q, p), cf. [61, 10.8].

4.4.2.2. The polytope and its quasipolynomial. We compare the above data

with Ehrhart theory. In this case Z(t) = (1−tE
∗
1 )−1(1−tE

∗
s )−1. The vectors a1 = E∗1

and as = E∗s determine the polytopes P (l′) and a chamber decomposition.
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For 1 ≤ v ≤ w ≤ s let nvw denote the numerator of the continued fraction

[kv, . . . , kw] (or, the determinant of the corresponding bamboo subgraph). For ex-

ample, n1s = p, n2s = q and n1,s−1 = q′. We also set nv+1,v := 1. Then pE∗1 =∑s
v=1 nv+1,sEv and pE∗s =

∑s
v=1 n1,v−1Ev.

In particular, for any l′ =
∑

v l
′
vEv ∈ S ′, the (non–convex) polytopes are

P (l′) =
s⋃

v=1

{
(x1, xs) ∈ R2

≥0 : x1nv+1,s + xsn1,v−1 ≤ pl′v

}
⊂ R2

≥0. (4.46)

The representation Z2 ρ−→ Zp is (x1, xs) 7→ (qx1 + xs)gs.

Though P (l′) is a plane polytope, the direct computation of its equivariant Ehrhart

multivariable polynomial (associated with a chamber, or just with the Lipman cone)

is still highly non–trivial. Here we will rely again on Theorem 4.1.3.2. On a subset of

type l′0 + S ′ the identity (4.11) provides the counting function. The right hand side

of (4.11) depends on all the coordinates of l′, hence all the triangles Pv contribute in

P (l′). Since this can happen only in a unique combinatorial way, we get that there is

a chamber C which contains the Lipman cone. Let Le,C be its quasipolynomial, and

Le,S its restriction to S. Since the numerator of Z(t) is 1, Q
C
h = LCh. Since this agrees

with the right hand side of (4.11) on a cone of type l′0 + S ′, and the Lipman cone is

in C, we get that

Qh(l
′) = Q

C
h(l
′) = LSh(l′) = −sw−h∗σcan(M)− (K + 2l′)2 + |V|

8
(4.47)

for any l′ ∈ (rh + L) ∩ S ′ and h ∈ H. Using the identity (4.42), this reads as

LSh(T , l′) = χ(l′)− χ(rh), l′ ∈ (rh + L) ∩ S ′. (4.48)

Note that for any fixed h and any l′ there exists a unique q = ql′,h ∈ � such that

l′+ q := l′′ ∈ rh +L. Indeed, take for q the representative of rh− l′ in �. Then (4.29)
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and (4.48) imply

LSh(T , l′) = LSh(T , l′′) = χ(l′ + ql′,h)− χ(rh). (4.49)

This formula emphasizes the quasi–periodic behavior of LSh(T , l′) as well.

If l′ is an element of L then ql′,h = rh, hence (4.49) gives in this case

LSh(T , l) = χ(l + rh)− χ(rh) = χ(l)− (l, rh) for l ∈ L ∩ S. (4.50)

In particular, pc(LSh(T )) = χ(rh)− χ(rh) = 0 (a fact compatible with H1(OỸ ) = 0).

Even the non–equivariant case looks rather interesting. Let LSne(T ) =
∑

h∈H LSh(T )

be the Ehrhart polynomial of P (l′) (with boundary condition T ), where we count all

the lattice points independently of their class in H. Then, (4.50) gives for l ∈ L ∩ S

LSne(T , l) = p · χ(l)− (l,
∑

hrh) = −p · (l, l)/2− p · (l,K)/2− (l,
∑

hrh). (4.51)

In fact,
∑

h rh can explicitly be computed. Indeed, set dv = gcd(p, n1,v−1) and pv =

p/dv. Then one checks that aE∗s =
∑

v n1,v−1
a
p
Ev, rh =

∑
v

{
n1,v−1

a
p

}
Ev and

∑
h rh =∑

v dv
pv−1

2
Ev.

The coefficients of the polynomial LSne(T , l) can be compared with the coefficients

given by general theory of Ehrhart polynomials applied for P (l). E.g., the leading

coefficient gives

−p · (l, l)/2 = Euclidian area of P (l).

Knowing that in P (l) all the Pv’s contribute, and it depends on s parameters, and the

intersection of their boundary is messy, the simplicity and conceptual form of (4.51)

is rather remarkable.
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4.5 Reduction theorems for Z(t)

The number of terms in the denominator
∏

i(1− tai) of the series equals the number

of variables of the corresponding partition function (associated with vectors ai), and

it is also the rank of the lattice where the corresponding polytope sit. In the case of

the series Z(t) associated with plumbing graph, this is the number of end vertices of

G. On the other hand, the number of variables of Z(t) is the number |V| of vertices

of G. Furthermore, in the Ehrhart theoretical part, the associated (non–convex)

polytope will be a union of |V| simplicial polytopes. Hence, the number of facets and

the complexity of the polytope increases considerably with the number of vertices as

well.

Nevertheless, the Theorem 4.5.1.2 eliminates a part of this abundance of parame-

ters: it says that from the periodic constant point of view, the number of variables of

the series, and also the number of simplicial polytopes in the union, can be reduced

to the number of nodes of the graph. Hence, in fact, the complexity level can be

measured by the number of nodes.

We can do even more: if we apply the machinery of the Reduction Theorem

3.3.2.2 from the previous chapter, one can reduce the number of variables of Z(t) to

the number of the chosen bad vertices of the graph G (in the sense of 3.1.3).

The first approach is purely combinatorial, using the specialty of G. However, the

second uses the Reduction Theorem 3.3.2.2, i.e. the hidden geometry which measures

the rationality of the graph.

4.5.1 Reduction to the node variables

Let N denote the set of nodes as above. Let SN be the positive cone R≥0〈E∗n〉n∈N

generated by the dual base elements indexed by N , and VN := R〈E∗n〉n∈N be its

supporting linear subspace in L⊗ R. Clearly SN ⊂ S. Furthermore, consider LN :=
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Z〈En〉n∈N generated by the node base elements, and the projection prN : L ⊗ R →

LN ⊗ R on the node coordinates.

Lemma 4.5.1.1. The restriction of prN to VN , namely prN : VN → LN ⊗ R, is an

isomorphism.

Proof. Follows from the negative definiteness of the intersection form of the plumbing,

which guarantees that any minor situated centrally on the diagonal is non–degenerate.

Our goal is to prove that restricting the counting function to the subspace VN ,

the non–node variables of Z(t) and Q(l′) became non–visible, hence they can be

eliminated. This fact will provide a remarkable simplification in the periodic constant

computation. But, before any elimination–substitution, we have first to decompose

our series Z(t) into
∑

h∈H Zh(t)[h] if we wish to preserve the information about all

the H invariants, cf. the comment at the end of 4.3.2.2.

Theorem 4.5.1.2. (a) The restriction of Leh(A, T , l′) to VN depends only on those

coordinates which are indexed by the nodes (that is, it depends only on prN (l′) when-

ever l′ ∈ VN ).

(b) The same is true for the counting function Qh associated with Zh(t) as well.

In other words, if we consider the restriction

Zh(tN ) := Zh(t)|tv=1 for all v 6∈ N

then for any l′ ∈ LN , the counting functions
∑

l′′ 6≥l′ pl′′ [l
′′] of Zh(t) and Zh(tN ) are

the same.

(c) Consider the chamber decomposition of SN by intersections of type CN :=

C∩SN , where C denotes a chamber (of Z) such that int(C∩S) 6= ∅, and the intersection
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of C with the relative interior of SN is also non–empty. Then

pcC(Zh(t)) = pcCN (Zh(tN )). (4.52)

The theorem applies as follows. Assume that we are interested in the computation

of pcCh(Z(t)) for some chamber C (e.g. when C ⊂ S, cf. Corollary 4.4.1.1). Assume

that C intersects the relative interior of SN . Then, the restriction to C ∩ SN of the

quasipolynomial associated with C has two properties: it still preserves sufficient

information to determine pcCh(Z(t)) (via the periodic constant of the restriction, see

(4.52)), but it also has the advantage that for these dilation parameters l′ the union

∪v∈VP (l′),/
v equals the union of significantly less polytopes, namely ∪n∈NP (l′),/

v .

For example, when we have only one node, one has to handle one simplex instead

of |V| many.

Proof. (a) We show that for any l′ ∈ VN one has the inclusions

P (l′),/
v ⊂

⋃
n∈N

P (l′),/
n for any v 6∈ N . (4.53)

We consider two cases. First we assume that v is on a leg (chain) connecting an end

e(v) ∈ E with a node n(v) (where e(v) = v is also possible). Then, clearly, (4.53)

follows from

P (l′),/
v ⊂ P

(l′),/
n(v) for any l′ ∈ SN . (4.54)

Let E∗uv = (E∗u)v = −(E∗u, E
∗
v) be the v–cordinate of E∗u. Note that E∗uv = E∗vu. Using

the definition of the polytopes, (4.54) is equivalent with the implication (cf. 4.3.3.1)

( ∑
e∈E

xeE
∗
ve < l′v

)
=⇒

( ∑
e∈E

xeE
∗
n(v)e < l′n(v)

)
for any l′ ∈ SN and xe ≥ 0. (4.55)

Let W be the set of vertices on this leg (including e(v) but not n(v)). Then, one
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verifies that there exist positive rational numbers α and {αw}w∈W , such that

E∗v = αE∗n(v) +
∑
w∈W

αwEw. (4.56)

The numbers α and {αw}w∈W can be determined from the linear system obtained

by intersecting the identity (4.56) by {Ew}w and En(v). Intersecting (4.56) by E∗e

(e ∈ E), we get that E∗ve = αE∗n(v)e for any e 6= e(v), and E∗v,e(v) = αE∗n(v),e(v) + αe(v).

Hence ∑
e∈E

xeE
∗
ve = α

∑
e∈E

xeE
∗
n(v)e + xe(v)αe(v). (4.57)

On the other hand, intersecting (4.56) with E∗n, for n ∈ N , we get E∗vn = αE∗n(v)n.

Since l′ is a linear combination of E∗n’s, we get that

− l′v = (l′, E∗v) = α(l′, E∗n(v)) = −αl′n(v). (4.58)

Since xe(v)αe(v) ≥ 0, (4.57) and (4.58) imply (4.55). This ends the proof of this case.

Next, we assume that v is on a chain connecting two nodes n(v) and m(v). Let

W be the set of vertices on this bamboo (not including n(v) and m(v)). Then we will

show that

P (l′),/
v ⊂ P

(l′),/
n(v) ∪ P

(l′),/
m(v) for any l′ ∈ SN . (4.59)

This follows as above from the existence of positive rational numbers α, β and

{αw}w∈W with

E∗v = αE∗n(v) + β E∗m(v) +
∑
w∈W

αwEw. (4.60)

(b) follows from (a) and from the fact that all bk entries in the numerator of Z(t)

belong to SN .

(c) If pcCZh(t) is computed as Q̃h(0) for some quasipolynomial Q̃h defined on

L̃ ⊂ L, then part (b) guarantees that pcCNZh(tN ) can be computed as (Q̃h|L̃∩SN )(0),
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which equals Q̃h(0).

Example 4.5.1.3. Consider the following graph G:

r r r rrrr
rr r

E0 E02 E2 E21E01E1E11

E03E12 E22

−1

−13

−1
−2

−3−2−3

−2

−1

−9

By Theorem 4.5.1.2 we are interested only in those polytopes Pv ⊂ R5 which are

associated with the nodes E1, E2 and E0. Let l ∈ SN , i.e. l = λ1E
∗
1 + λ2E

∗
2 + λ0E

∗
0 .

Then one can verify that SN is divided by the plane λ1 = (13/9)λ2. Hence, in general

SN can also be divided into several chambers. (On the other hand, for graphs with

at most two nodes this does not happen.)

4.5.2 An application of the Reduction Theorem 3.3.2.2

As we already discussed earlier, Némethi [57] proved that the normalized Euler char-

acteristics of the lattice cohomology also agrees with the Seiberg–Witten invariant.

This result together with Theorem 4.1.3.2 emphasize that the Seiberg–Witten invari-

ant can be recovered from the topological Poincaré series as well. The fact that (by

Reduction Theorem 3.3.2.2) the Euler characteristic can be replaced by the Euler

characteristic of the reduced lattice, suggests the existence of a reduction for the

series as well.

First of all, let us recall the theorem from [57] (same as 4.1.3.2) in a different form

which is more convenient for this subsection.

Theorem 4.5.2.1 ([57]). Fix one of the elements l′[k]. Then the following facts hold.

(1)

Zl′
[k]

(t) =
∑
l∈L

(∑
I⊆J

(−1)|I|+1w(l, I)
)

tl+l
′
[k] .
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(2) Fix some l ∈ L with l + l′[k] ∈ −kcan + interior(S ′). Then

∑
l∈L, l 6≥l

pl+l′
[k]

= χkr(l) + eu(H∗(G, kr).

(In [57] w(k) is defined as −(k2 + |J |)/8 for k ∈ Char. If k = kr + 2l then w(k) =

χkr(l) − (k2
r + |J |)/8. The last constant can be neglected in the sum of (1) since∑

I⊆J (−1)|I| = 0. The sum in (2) is finite since Z is supported in Z≥0〈E∗j 〉j and all

the entries of E∗j are strictly positive, cf. (2.1).)

Recall that J = J t J ∗, where J is an index set containing all the bad vertices.

Let φ : L→ L be the projection to the J –coordinates. We also write t = {tj}j∈J for

the monomial variables associated with L, and t
i

=
∏

j∈J t
ij
j for i = (i1, . . . , iν) ∈ L.

Therefore, tl
′ |tj=1, ∀ j∈J ∗ = t

φ(l′)
.

Definition 4.5.2.2. The reduced series. For any h ∈ H define

Zh(t) := Zh(t)|tj=1, ∀j∈J ∗ .

(We warn the reader that the reduced ‘non–decomposed’ series Z(t)|tj=1, ∀j∈J ∗

usually does not contain sufficient information to reobtain each term Zh(t) (h ∈ H)

from it.)

Fix one l′[k], and write Z l′
[k]

(t) =
∑

i∈L pi+φ(l′
[k]

)t
i+φ(l′

[k]
)
. Moreover, let S ′k be the

projection of S ′ ∩ (l′[k] + L). Then Zk(t) is supported on S ′k, and for any i the sum∑
i′�i pi′+φ(l′

[k]
) is finite (properties inherited from Z). Note that S := φ(S ′ ∩ L) is a

semigroup, and S ′k is an S–module.

Our next goal is to show that the series introduced above with reduced variables

preserves all these properties from Theorem 4.5.2.1: it can be recovered from the re-

duced weighted cubes and has all the information about the Seiberg-Witten invariant.

Theorem 4.5.2.3. Let (L,w[k]) be as in 3.3.2.1. Then
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(1)

Z l′
[k]

(t) =
∑
i∈L

(∑
I⊆J

(−1)|I|+1w(i, I)
)
t
i+φ(l′

[k]
)
.

(2) There exists i0 ∈ S (characterized in the next Lemma 4.5.2.4) such that for

any i ∈ i0 + S ∑
i′�i

pi′+φ(l′
[k]

) = w(i) + eu(H∗(L,w[k])).

Here w(i) is a quasipolynomial and eu(H∗(L,w[k])) equals eu(H∗(G, kr)).

Proof. (1) We abbreviate kr by k and w[k] by w. By 4.5.2.1(1) we get

Z l′
[k]

(t) =
∑
i∈L

∑
I⊆J

(−1)|I|+1
( ∑
l∗∈L∗

∑
I∗⊆J ∗

(−1)|I
∗|w(x(i) + l∗, I ∪ I∗)

)
t
i+φ(l′

[k]
)
,

where L∗ ⊂ L is the sublattice of J ∗–coordinates. For a fixed i and I ⊆ J , denote the

coefficient in the last bracket by T = T (i, I). Then we have to show that T = w(i, I).

We define a weighted lattice (L∗, w∗) as follows: the weight of a cube (l∗, I∗) in L∗

is w∗(l∗, I∗) := w(x(i) + l∗, I ∪ I∗) (hence it depends on (i, I)). This is a compatible

weight function on L∗ since w is so, moreover T =
∑

l∗∈L∗
∑

I∗⊆J ∗(−1)|I
∗|w∗(l∗, I∗).

Note also that for any fixed i there are only finitely many l∗ ∈ L∗ for which

(i, l∗) ∈ S ′ (use (2.1)). Hence, the sum in T is finite. Therefore, (cf. 3.3.3.2 and

3.3.3.6), we can find a ‘large’ rectangle R∗ = R∗(l∗1, l
∗
2) = {l∗ ∈ L∗ : l∗1 ≤ l∗ ≤ l∗2}

with certain l∗1 and l∗2 such that

T =
∑
l∗∈R∗

∑
I∗⊆J ∗

(−1)|I
∗|w∗(l∗, I∗) and H∗(L∗, w∗) = H∗(R∗, w∗).

Using the result and methods of [57, Theorem 2.3.7], for the counting function

M(t) :=
∑

l∗∈R∗
∑

I∗⊆J ∗(−1)|I
∗|tw

∗(l∗,I∗) we have

lim
t→1

M(t)− tmin(w∗|R∗ )

1− t
=
∑
q≥0

(−1)q rankZ(Hq
red(R

∗, w∗)).
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The Reduction Theorem 3.3.2.2 and its proof says that (L∗, w∗) has vanishing reduced

cohomology, in particular Hq
red(R

∗, w∗) = 0 for any q ≥ 0. Hence

T =
dM(t)

dt

∣∣
t=1

= min(w∗|R∗) = min
l∗∈L∗
{w(x(i)+l∗, I)} = min

l∗∈L∗
max
J⊆I
{χk(x(i)+l∗+EJ)}.

By Lemma 3.3.1.5 χk(x(i) + l∗ + EJ) ≥ χk(x(i + 1J)), hence

max
J⊆I

χk(x(i) + l∗ + EJ) ≥ max
J⊆I

χk(x(i + 1J)) = w(i, I). (4.61)

But, by Lemma 3.3.3.23(a) (for notations see also 3.3.3.22), the minimum over l∗ of

the left hand side is realized for l∗ = Es̃ with equality in (4.61), hence T = w(i, I).

We start the proof of part (2) by the following lemma, the analogue for (L,w) of

Lemmas 3.3.3.4 and 3.3.3.8, which identifies i0.

Lemma 4.5.2.4. (a) Fix l + l′[k] ∈ S ′ and take the projection i := φ(l). Then

x(i) + l′[k] ∈ S ′, hence w(i + 1j) > w(i) for every j ∈ J .

(b) There exists i0 ∈ S such that for any i ∈ i0 +S one has a sequence {in}n≥0 ∈ S

with

(i) i0 = i, in+1 = in + 1j(n) for certain j(n) ∈ J , and all entries of in tend to

infinity as n→∞;

(ii) for any n and 0 ≤ i′n ≤ in with the same j(n)-th coefficients, one has

w(i′n + 1j(n)) > w(i′n).

Proof. (a) Since l + l′[k] satisfies conditions (a)-(b) of 3.3.1.1 in the definition of x(i),

by the minimality of x(i) we get that l − x(i) is effective and is supported on J ∗.

Hence, (x(i) + l′[k], Ej) ≤ (l + l′[k], Ej) ≤ 0 for any j ∈ J . The last inequality follows

from 3.3.1.7.
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(b) The negative definiteness of the intersection from guarantees the existence of

i0 with (i). For (ii) note that if i = φ(l) as in (a), and 0 ≤ i′ ≤ i, such that their

j-entries agree, then automatically w(i′ + 1j) > w(i′). Indeed, x(i)− x(i′) is effective

and supported on J \ j, hence (x(i′) + l′[k], Ej) ≤ (x(i) + l′[k], Ej) ≤ 0 and 3.3.1.7

applies again.

We fix an i as in Lemma 4.5.2.4(b). Then similarly as in subsection 3.3.3.6, one

obtains

H∗(L,w) ∼= H∗(R(0, i), w), (4.62)

where R(0, i) = {i′ ∈ L : 0 ≤ i′ ≤ i}. In particular, if we set

E(R(0, i)) :=
∑

(i′,I)⊆R(0,i)

(−1)|I|+1w(i′, I)

(sum over all the cubes of R(0, i)), then [57, Theorem 2.3.7] ensures that

E(R(0, i)) = eu(H∗(R(0, i), w)). (4.63)

In the sequel we follow closely the proof of Theorem 4.5.2.1(2) from [57, Theorem

3.1.1]).

We choose a computation sequence {in}n≥0 as in 4.5.2.4 and set R′ := {i′ ∈ L :

i′ ≥ 0 and ∃ j ∈ J with (i′− i)j ≤ 0}. R′ is not finite, but R′∩S ′k is a finite set. Fix ñ

so that R′∩S ′k ⊆ R(0, iñ), and define R′(ñ) := R′∩R(0, iñ), ∂1R
′(ñ) := R′∩R(i, iñ),

and

∂2R
′(ñ) := {i′ ∈ R′(ñ) : ∃j ∈ J with (i′ − iñ)j = 0}.

Then by part (1) of the theorem we have

∑
i′�i

pi′+φ(l′
[k]

) = E(R′(ñ))− E(∂1R
′(ñ) ∪ ∂2R

′(ñ)).
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The right hand side is simplified as follows. First, notice that we may find ñ sufficiently

high in such a way, that if we choose a sequence {jm}tm=0 from j0 = 0 to jt = i with

jm+1 = jm + 1j(m), we have the following property:

for every j′ ∈ ∂2R
′(ñ) with j′ ≥ jm and (j′)j(m) = (jm)j(m) one has

w(j′ + 1j(m)) ≤ w(j′).

Indeed, (x(j′) + l′[k], Ej(m)) is increasing in j′ with fixed j(m)-th coefficient. (Any

j′ ∈ ∂2R
′(ñ) has ‘large’ entries corresponding to coordinates j when (j′ − iñ)j = 0,

and ‘small’ entry corresponding to j(m). Hence, when we increase the j(m)-th entry

by one, the positivity of the quantities (x(j′)+l′[k], Ej(m)) is guaranteed by the presence

of ‘large’ entries.)

Therefore, using the sequence {jm} and 3.3.3.5, there exists a contraction of

∂2R
′(ñ) to ∂1R

′(ñ) ∩ ∂2R
′(ñ) along which w is non–increasing. Then similarly as

in (4.63), one get E(∂2R
′(ñ)) = E(∂1R

′(ñ) ∩ ∂2R
′(ñ)), hence E(∂1R

′(ñ) ∪ ∂2R
′(ñ)) =

E(∂1R
′(ñ)) too.

Next, we claim that E(R′(ñ)) = E(R(0, i)). Indeed, using induction on the se-

quence {in}0≤n<ñ, it is enough to show that E(R′(n)) = E(R′(n + 1)). This follows

from 4.5.2.4, since for all I containing j(n) and each (i′, I) ∈ R′(n + 1) \ R′(n) we

have

ω(i′, I) = ω(i′ + 1j(n), I \ j(n)).

This ensures a combinatorial cancelation in the sum E(R′(n+ 1)), or an isomorphism

in the corresponding lattice cohomologies, which gives the expected equality.

With the same procedure applying to ∂1R
′(ñ)) we deduce the equality E(∂1R

′(ñ)) =

E(∂1R
′(0)) = −ω(i). Hence the identity follows.

Example 4.5.2.5. In the reduced case, the expression w(i) usually is a rather compli-

cated arithmetical quasipolynomial. E.g., assume thatG is a star–shaped graph whose

central vertex has Euler decoration b and the legs have Seifert invariants (αj, ωj)
`
j=1,
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0 < ωj < αj, gcd(αj, ωj) = 1. We fix the central vertex as the unique bad vertex.

Then the lattice cohomology is completely determined by the sequence {w(i)}i≥0, for

details see e.g. [61].

E.g., in the case of the canonical spinc–structure, w(0) = 0 and

w(i+ 1)− w(i) = 1− ib−
∑
j

⌈
iωj/αj

⌉
(i ≥ 0).

Remark 4.5.2.6. The fact that w(i) is a quasipolynomial can be seen as follows.

Choose l ∈ S ′ ∩ L, l = (l, l∗), such that (l, Ej) = 0 for any j ∈ J ∗. Then one checks

that x(i + nl) = x(i) + nl for any n ∈ Z≥0, hence w(i + nl) = χkr(x(i) + nl) is a

polynomial in n.

4.6 Ehrhart theoretical interpretation of the

Seiberg–Witten invariant

Let G be a negative definite plumbing graph, a connected tree as in 4.1.1. Let N

and E be the set of nodes and end–vertices as above. We assume that N 6= ∅. If δn

denotes the valency of a node n, then |E| = 2 +
∑

n∈N (δn − 2).

We consider the matrix J with entries Jnm := −(E∗n, E
∗
m) for n,m ∈ N . By (4.1.1)

it is a principal minor of −I−1 (with rows and columns corresponding to the nodes).

Another incarnation of the matrix J already appeared in subsection 5.2.5, as the

negative of the inverse of the orbifold intersection matrix. Indeed, let for any n ∈ N

take that component of G \ ∪m∈N\n{m} which contains n. It is a star–shaped graph,

let en be its orbifold Euler number. Furthermore, for any two nodes n and m which

are connected by a chain, let αnm be the determinant of that chain (not including

the nodes). Then define the orbifold intersection matrix (of size |N |) as Iorbnn = en,

Iorbnm = 1/αnm if the two nodes n 6= m are connected by a chain, and Iorbnm = 0
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otherwise; cf. [13, 4.1.4] or 5.2.1. One can show (see [13, 4.1.4]) that Iorb is invertible,

negative definite, and det(−Iorb) is the product of det(−I) with the determinants of

all (maximal) chains and legs of G. This fact and 4.1 imply that J = (−Iorb)−1.

4.6.1 The Ehrhart polynomial

In the sequel we assume that L = L′, that is H = 0.

By 4.4.1, P (l) sits in R|E|. Moreover, by Theorem 4.5.1, we can take l of the form

l =
∑

n∈N λnE
∗
n, from the subcone of the Lipman cone generated by {E∗n}n∈N .

Then 4.5.1 guarantees that the associated polytope is P (l) =
⋃
n∈N P

(ln)
n , P

(ln)
n

depending only on the component ln = −(l, E∗n). Note that the coefficients {λn}n and

the entries {ln}n are connected exactly by the transformation law (ln)n = J (λn)n.

Take any chamber C such that int(C∩S) 6= ∅, as in 4.4.1.1. Let L̂C(P, T , (λn)n) be

the Ehrhart quasipolynomial LC(P, T , (ln)n), associated with the denominator of Z,

after changing the variables to (λn)n via (ln)n = J (λn)n. It is convenient to normalize

the coefficient of
∏

n λ
mn
n by a factor

∏
nmn!, hence we write

L̂C(P, T , (λn)n) =
∑

∑
n mn≤|E|

mn≥0; n∈N

âC(mn)n

∏
n

λmnn
mn!

,

for certain periodic functions âC(mn)n
in variables (λn)n. By 4.11, 4.3.3.4 and 4.5.1.2

χ
(∑
n∈N

λnE
∗
n

)
+ pcS(Z) = ∆((λn)n), (4.64)

where

∆((λn)n) =
∑

0≤kn≤δn−2
∀n∈N

(−1)
∑
n kn
∏
n

(
δn − 2

kn

)
L̂C(P, T , (λn − kn)n) =
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∑
∑
n mn≤|E|

mn≥0; n∈N

( ∑
0≤pn≤mn
n∈N

(−1)
∑
n pn·

∏
n

(
mn

pn

)(δn−2∑
kn=0

(−1)kn
(
δn − 2

kn

)
kpnn

))
·âC(mn)n

∏
n

λmn−pnn

mn!
.

On the other hand, since χ(l) = −(K + l, l)/2, the left hand side of (4.64) is the

quadratic function

∑
n,m∈N

(Jnm/2)λnλm +
∑
n∈N

(−(K,E∗n)/2)λn + pcS(Z).

Now we identify these coefficients with those of ∆((λn)n) above. The additional

ingredient is the combinatorial formula (5.31), which also shows that for the non–

zero summands one necessarily has pn ≥ δn − 2 for any n. One gets the following

result.

Theorem 4.6.1.1.

âC(δn,(δm−2)m 6=n) = Jnn

âC(δn−1,δm−1,(δq−2)q 6=n,m) = Jnm for n 6= m

âC(δn−1,(δm−2)m 6=n) = −1
2
(K,E∗n) + 1

2

∑
m∈N (δm − 2)Jnm

âC(δn−2)n = pcS(Z)−
∑

n∈N
(δn−2)(K,E∗n)

4
+
∑

n∈N
(δn−2)(3δn−7)Jnn

24
+
∑

n,m∈N
m 6=n

(δn−2)(δm−2)Jnm
8

.

Recall that pcS(Z) = −(K2 + |V|)/8−λ(M), where λ(M) is the Casson invariant

of M . Hence âC(δn−2)n
equals the normalized Casson invariant modulo some ‘easy

terms’.

We emphasize that these formulae also show that the above coefficients are con-

stants (as periodic functions in (λn)n) and independent of the chosen chamber C in

the Lipman cone.
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Chapter 5

Seiberg–Witten and Ehrhart

theoretical computations and

examples

Applying the general theory developed in the previous chapter, we make detailed

computations for graphs with less than two nodes. As we have seen in 4.4.2, even

in the special case of graphs without nodes (that is, the case of lens spaces), the

description of the equivariant Ehrhart quasipolynomials is new.

In the one–node case (star–shaped graphs) we provide a detailed presentation of all

the involved (Seiberg–Witten and Ehrhart) invariants, and we establish closed formu-

lae in terms of the Seifert invariants. Here we make connection with already known

topological results regarding the Seiberg–Witten invariants of Seifert 3–manifolds,

and also with analytic invariants of weighted homogeneous singularities.

In the two node case again we make complete presentations in terms of the analogs

of the Seifert invariants of the chains and star–shaped subgraphs, including closed

formulae for sw(M). But, this case has a very interesting additional surprise in store.
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It turns out that the corresponding combinatorial series Z(t) associated with G,

reduced to the two variables of the nodes, is the Hilbert (characteristic) series of an

affine monoid of rank two (and some of its modules). In particular, the Seiberg–

Witten invariant appears as the periodic constant of Hilbert series associated with

affine monoids (and certain modules indexed by H), and, in some sense, measures

the non–normality of these monoids.

At the end of the chapter, we provide some examples in which we demonstrate

the calculation of the periodic constant (or equivalently, the normalized Euler char-

acteristic of the lattice cohomology as well as the Seiberg–Witten invariant) from the

topological Poincaré series Z(t).

5.1 The one–node case, star–shaped graphs

5.1.1 Seifert invariants and other notations

Assume that the graph is star–shaped with d legs. Each leg is a chain with normalized

Seifert invariant (αi, ωi), where 0 < ωi < αi, gcd(αi, ωi) = 1. We also use ω′i satisfying

ωiω
′
i ≡ 1 (mod αi), 0 < ω′i < αi.

If we consider the Hirzebruch/negative continued fraction expansion, cf. (4.41)

αi/ωi = [bi1, . . . , biνi ] = bi1 − 1/(bi2 − 1/(· · · − 1/biνi) · · · ) (bij ≥ 2),

then the ith leg has νi vertices, say vi1, . . . , viνi , with decorations −bi1, . . . ,−biνi , where

vi1 is connected by the central vertex. The corresponding base elements in L are

{Eij}νij=1. Let b be the decoration of the central vertex; this vertex also defines E0 ∈ L.

The plumbed 3–manifold M associated with such a star–shaped graph has a Seifert

structure. We will assume that M is a rational homology sphere, or, equivalently, the

central vertex has genus zero.
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The classes in H = L′/L of the dual base elements are denoted by gij = [E∗ij]

and g0 = [E∗0 ]. For simplicity we also write Ei := Eiνi and gi := giνi . A possible

presentation of H is

H = ab〈 g0, g1, . . . , gd | − b · g0 =
d∑
i=1

ωi · gi; g0 = αi · gi (1 ≤ i ≤ d)〉, (5.1)

cf. [78] (or use (5.3)). The orbifold Euler number of M is defined as e = b+
∑

i ωi/αi.

The negative definiteness of the intersection form implies e < 0. We write α :=

lcm(α1, . . . , αd), d := |H| and o for the order of g0 in H. One has (see e.g. [78])

d = α1 · · ·αd|e|, o = α|e|. (5.2)

Each leg has similar invariants as the graph of a lens space, cf. Example 4.4.2, and we

can introduce similar notation. For example, the determinant of the ith leg is αi. We

write nij1j2 for the determinant of the subchain of the ith leg connecting the vertices

vij1 and vij2 (including these vertices too). Then, using the correspondence between

intersection pairing of the dual base elements and the determinants of the subgraphs,

cf. (4.1) or [61, 11.1], one has

(a) (E∗0 , E
∗
ij − nij+1,νi

E∗iνi) = 0 (b) gij = nij+1,νi
giνi (1 ≤ i ≤ d, 1 ≤ j ≤ νi)

(c) (E∗i , E
∗
0) = 1

αie
(d) (E∗0 , E

∗
0) = 1

e
.

(5.3)

Part (b) also explains why we do not need to insert the generators gij (j < νi) in

(5.1).

For any l′ ∈ L′ we set c̃(l′) := −(E∗0 , l
′), the E0-coefficient of l′. Furthermore, if

l′ = c0E
∗
0 +

∑
i,j cijE

∗
ij ∈ L′, then we define its reduced transform by

l′red := c0E
∗
0 +

∑
i,j

cij · nij+1,νi
E∗i .
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By (5.3) we get [l′] = [l′red] in H, c̃(l′) = c̃(l′red), and if l′red =
∑d

i=0 ciE
∗
i , then c̃(l′red) is

c̃ :=
1

|e|
·
(
c0 +

d∑
i=1

ci
αi

)
. (5.4)

If h ∈ H, and l′h ∈ L′ is any of its lifting (that is, [l′h] = h), then l′h,red is also a

lifting of the same h with c̃(l′h) = c̃(l′h,red). In general, c̃ = c̃(l′h) depends on the

lifting, nevertheless replacing l′h by l′h ± E0 we modify c̃ by ±1, hence we can always

achieve c̃ ∈ [0, 1), where it is determined uniquely by h. For example, since rh ∈ �,

its E0–coefficient c̃(rh) is in [0, 1).

Finally, we consider

γ :=
1

|e|
·
(
d− 2−

d∑
i=1

1

αi

)
. (5.5)

It has several ‘names’. Since the canonical class is given by K = −
∑

v Ev +
∑

v(δv −

2)E∗v , by (5.3) we get that the E0–coefficient of −K is (K,E∗0) = γ + 1. The number

−γ is sometimes called the ‘log discrepancy’ of E0, γ the ‘exponent’ of the weighted

homogeneous germ (X, 0), and oγ is the Goto–Watanabe a–invariant of the universal

abelian cover of (X, 0), see [34, (3.1.4)] and [19, (3.6.13)]; while in [78] eγ appears as

an orbifold Euler characteristic.

5.1.2 Interpretation of Z(t)

By Theorem 4.52, for the periodic constant computation, we can reduce ourself to

the variable of the single node, it will be denoted by t.

First we analyze the equivariant rational function associated with the denominator

of Ze

Z/H(t) =
d∏
i=1

(
1− t−(E∗i ,E

∗
0 )[gi]

)−1
=

∑
x1,...,xd≥0

t
∑
i xi/(αi|e|)

[ ∑
i

xigi

]
∈ Z[[t1/o]][H].

The right hand side of the above expression can be transformed as follows (cf. [70,
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§3]). If we fix a lift
∑d

i=0 ciE
∗
i of h as above, then using the presentation (5.1) one

gets that
∑d

i=1 xigi equals h if and only if there exist `, `1, . . . , `d ∈ Z such that

(a) −c0 = `1 + · · ·+ `d − `b

(b) xi − ci = −ωi`− αi`i (i = 1, . . . , d).

Since xi ≥ 0, from (b) we get ˜̀
i :=

⌊
ci−ωi`
αi

⌋
− `i ≥ 0. Moreover, if we set for

c = (c0, c1, . . . , cd)

Nc(`) := 1 + c0 − `b+
d∑
i=1

⌊ci − ωi`
αi

⌋
, (5.6)

then the number of realizations of h =
∑

i cigi in the form
∑

i xigi is given by the

number of integers (˜̀
1, . . . , ˜̀

d) satisfying ˜̀
i ≥ 0 and

∑
i
˜̀
i = Nc(`) − 1. This is(

Nc(`)+d−2
d−1

)
. Moreover, the non–negative integer

∑
i xi/(αi|e|) equals `+ c̃. Therefore,

Z
/H
h (t) =

∑
`≥−c̃

(
Nc(`) + d− 2

d− 1

)
t`+c̃. (5.7)

This expression is independent of the choice of c = {ci}di=0. Similarly, for any function

φ, the expression
∑

`≥−c̃ φ(Nc(`))t
`+c̃ is independent of the choice of c, it depends only

on h =
∑

i cigi.

Furthermore, one checks that Nc(`) ≤ 1 + (` + c̃)|e|, hence if ` + c̃ < 0 then

Nc(`) ≤ 0, therefore
(
Nc(`)+d−2

d−1

)
= 0 as well. Hence, in (5.7) the inequality ` + c̃ ≥ 0

below the sum, in fact, is not restrictive.

Next, we consider the numerator (1− [g0]t1/|e|)d−2 of Ze(t). A similar computation

as above done for Ze(t) (see [78] and [70, §3]), or by multiplying (5.7) by the numerator

and using
∑d−2

k=0(−1)k
(
d−2
k

)(
N−k+d−2

d−1

)
=
(
N
1

)
, gives

Zh(t) =
∑
`≥−c̃

max{0, Nc(`)} t`+c̃. (5.8)

In order to compute the periodic constant of Zh(t) we decompose Zh(t) into its ‘poly-
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nomial and negative degree parts’, cf. 4.3.1. Namely, we write Zh(t) = Z+
h (t)+Z−h (t),

where

Z+
h (t) =

∑
`≥−c̃ max

{
0,−Nc(`)

}
t`+c̃ (finite sum with positive exponents)

Z−h (t) =
∑

`≥−c̃ Nc(`) t
`+c̃.

(5.9)

In Z−h it is convenient to fix a choice with c̃ ∈ [0, 1), hence the summation is over

` ≥ 0. Then a computation shows that it is a rational function of negative degree

Z−h (t) =
(1− ec̃

1− t
− e · t

(1− t)2
−

d∑
i=1

αi−1∑
ri=0

{ci − ωiri
αi

}
tri · 1

1− tαi
)
· tc̃. (5.10)

(This expression can be compared with the Laurent expansion of Zh at t = 1 which

was already considered in the literature. Dolgachev, Pinkham, Neumann and Wa-

greich [27, 94, 78, 101] determine the first two terms (the pole part), while [70, 61]

the third terms as well. Nevertheless the above Z+
h + Z−h decomposition does not

coincide with the ‘pole+regular part’ decomposition of the Laurent expansion terms,

and focuses on different aspects.)

Since the degree of Z−h is negative (or by a direct computation) pc(Z−h ) = 0, cf.

4.3.1.

On the other hand, since e < 0, in Z+
h (t) the sum is finite. (The degree of Z+

0 is

≤ γ, see e.g. [74]. Since Nc(rh,red)(`) ≥ N0(`), the degree of Z+
h is ≤ γ + c̃(rh) too).

By 4.3.1,

pc(Zh) = Z+
h (1) =

∑
`≥−c̃

max
{

0,−Nc(`)
}

(5.11)

for any lifting c of h =
∑

i cigi. In this sum the bound ` ≥ −c̃ is really restrictive.

We consider the non–equivariant version, the projection of Ze ∈ Z[[t1/o]][H] into
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Z[[t1/o]] too

Zne(t) =
∑
h

Zh(t) =
(1− t1/|e|)d−2∏d
i=1 (1− t1/(|e|αi))

∈ Z[[t1/o]].

We can get its Z+
ne + Z−ne decomposition either by summation of Z+

h and Z−h , or as

follows. Write

Zne(t) =
1

(1− t1/|e|)2

d∏
i=1

1− t1/|e|

1− t1/(|e|αi)
=

1

(1− t1/|e|)2

∑
0≤xi<αi
0≤i≤d

t
1
|e| ·S(x), (5.12)

where S(x) :=
∑

i
xi
αi

. Then its decomposition into Z+
ne(t) + Z−ne(t) is

Z−ne(t) =
∑

0≤xi<αi
0≤i≤d

t
1
|e| ·{S(x)} ·

( 1

(1− t1/|e|)2
− bS(x)c

1− t1/|e|
)

(5.13)

Z+
ne(t) =

∑
0≤xi<αi
0≤i≤d

t
1
|e| ·{S(x)} · t

1
|e| ·bS(x)c − bS(x)ct

1
|e| + bS(x)c − 1

(1− t1/|e|)2
. (5.14)

After dividing in Z+
ne(t) (or by L’Hospital rule), we get

pc(Zne) = Z+
ne(1) =

1

2
·
∑

0≤xi<αi
0≤i≤d

bS(x)c · bS(x)− 1c. (5.15)

5.1.3 Analytic interpretations

Rational homology sphere negative definite Seifert 3–manifolds can be realized an-

alytically as links of weighted homogeneous singularities, or by equisingular defor-

mations of weighted homogeneous singularities provided by splice–quotient equations

[78, 80].

Consider the smooth germ at the origin of Cd with coordinate ring C{z} =

C{z1, . . . , zd}, where zi corresponds to the ith end. Then H acts on it by the diagonal

action h∗zi = θ(gi)(h)zi. Similarly, we can introduce a multidegree deg(zi) = E∗i ∈ L′,

hence the Poincaré series of C{z} associated with this multidegree is
∏

i(1− tE
∗
i )−1.
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Moreover, considering the action of H on it, Z̃(t) =
∏

i(1 − [gi]t
E∗i )−1 is the equiv-

ariant Poincaré series of Cd, the invariant part Z̃0(t) being the Poincaré series of the

corresponding quotient space Cd/H.

In Cd one can consider the splice equations as follows. Consider a matrix {λij}ij

of full rank and of size d × (d − 2). Then the equations
∑d

i=1 λijz
αi
i = 0, for j ∈

{1, . . . , d − 2}, determine in Cd an isolated complete intersection singularity (Y, 0)

on which the group H acts as well. Then (X, 0) = (Y, 0)/H is a normal surface

singularity with the topological type of the Seifert manifold we started with. The

equivariant Poincaré series of (Y, 0) is Z(t) ([78]). For (X, 0), [14] proves the identity

P (t) = Z(t) mentioned in Subsection 4.1.2, hence Z(t) is also the Poincaré series of

the equivariant divisorial filtration associated with all the vertices.

Theorem 4.5.1.2 reduces the filtration to the Z–filtration: the divisorial filtration

associated with the central vertex. In the weighted homogeneous case this filtration is

also induced by the weighted homogeneous equations. Then, Z/H(t) is the Poincaré

series of Cd/H, Z(t) is the equivariant Poincaré series of Y , hence Z0(t) is the Poincaré

series of X, cf. [27, 78, 94].

By 4.1.2, {pc(Zh)}h∈H are the equivariant geometric genera of the universal abelian

cover Y of X, hence pc(Z0) and pc(Zne) are the geometric genera of X and Y respec-

tively, cf. [59].

5.1.4 Seiberg–Witten theoretical interpretations

Fix h ∈ H. Then, for any lifting
∑

i cigi of h, Corollary 4.4.1.1 and Equation 5.11

give

pc(Zh) =
∑
`≥−c̃

max
{

0,−Nc(`)
}

= −sw−h∗σcan(M)− (K + 2rh)
2 + |V|

8
. (5.16)
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Recall that
∑

h sw−h∗σcan(M) is the Casson–Walker invariant λ(M). Hence, for the

non–equivariant version we get

pc(Zne) =
1

2
·
∑

0≤xi<αi
0≤i≤d

bS(x)c · bS(x)− 1c = −λ(M)− d · K
2 + |V|

8
+
∑
h

χ(rh). (5.17)

For explicit formulae of λ(M) and K2 + |V| in terms of Seifert invariants see e.g. [70,

2.6]).

Remark 5.1.4.1. (5.16) can be compared with a known formulae of the Seiberg–

Witten invariants involving the representative sh. This will also lead us to an expres-

sion for χ(rh) − χ(rs) in terms of Nc(`). Let c(sh) = (c0, . . . , cd) be the coefficients

of sh,red, cf. 5.1.1. The set of all reduced coefficients c(sh), when h runs in H, is

characterized in [61, 11.5] by the inequalities

 c0 ≥ 0, αi > ci ≥ 0 (1 ≤ i ≤ d)

Nc(`) ≤ 0 for any ` < 0.
(5.18)

Moreover, for this special lifting c(sh) of h, in [61, §11] is proved

∑
`≥0

max
{

0,−Nc(sh)(`)
}

= −sw−h∗σcan(M)− (K + 2sh)
2 + |V|

8
. (5.19)

Using the discussion from the end of 5.1.1, this can be rewritten for any lifting c of

h as

∑
`≥−c̃+bc̃(sh)c

max
{

0,−Nc(`)
}

= −sw−h∗σcan(M)− (K + 2sh)
2 + |V|

8
. (5.20)

This compared with (5.16) gives for any lifting c of h

∑
−c̃+bc̃(sh)c>`≥−c̃

max
{

0,−Nc(`)
}

= χ(rh)− χ(sh). (5.21)
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Example 5.1.4.2. The sum in (5.21), in general, can be non–zero. This happens, for

example, in the case of the link of a rational singularity whose universal abelian cover

is not rational. Here is a concrete example, cf. [66, 4.5.4]: take the Seifert manifold

with b = −2 and three legs, all of them with Seifert invariants (αi, ωi) = (3, 1). For

h =
∑3

i=1 gi one has sh =
∑3

i=1E
∗
i , the E0-coefficient of sh is 1, rh = sh − E0, and

χ(sh) = 0, χ(rh) = 1.

5.1.5 Ehrhart theoretical interpretations

We fix h ∈ H as above and we assume that c̃ ∈ [0, 1). Note that Zh(t) has the

form tc̃
∑

`≥0 p`t
`; here the exponents {c̃ + `}`≥0 are the possible E0–coordinates of

the elements (rh + L) ∩ S ′.

Let us compute the counting function for Zh. If S(t) =
∑

r prt
r is a series, we

write Q(S)(r′) =
∑

r<r′ pr, for r′ ∈ Q≥0.

Lemma 5.1.5.1. For any n ∈ N≥0 one has the following facts.

(a) Q(Zh)(n) = Q(Zh)(n+ c̃).

(b) Q(Z+
h )(n) is a step function (hence piecewise polynomial) with

Q(Z+
h )(n) = pc(Zh) for n > deg(Z+

h ).

(c) Q(Z−h )(n) is a quasipolynomial:

Q(Z−h )(n) = (1− ec̃)n− e · n(n− 1)

2
−

d∑
i=1

αi−1∑
ri=0

{ci − ωiri
αi

}⌈n− ri
αi

⌉
(5.22)

= −en
2

2
+
en

2
(γ + 1− 2c̃)−

d∑
i=1

αi−1∑
ri=0

{ci − ωiri
αi

}({ri − n
αi

}
− ri
αi

)
.

In particular, if n = mα for m ∈ Z, and n > deg(Z+
h ), then the double sum is
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zero, hence

Q(Zh)(n) = −en
2

2
+
en

2
(γ + 1− 2c̃) + pc(Zh). (5.23)

This is compatible with the expression provided by Theorem 4.1.3.2 and Theorem

4.5.1.2. Indeed, let us fix any chamber C such that int(C ∩ S ′) 6= ∅, and C contains

the ray R = R≥0 ·E∗0 . Since the numerator of f(t) is (1− tE
∗
0 )d−2, all the bk–vectors

belong toR. In particular, ∩k(bk+C) intersectsR along a semi–lineR≥c = R≥const·E∗0

of R. Since Qh(l
′) is quasipolynomial on ∩k(bk + C), cf. (4.28), and a restriction of

it is determined by (4.11) whose right hand side is a quasipolynomial too, we obtain

that the identity (4.11) is valid on R≥c as well.

Recall that for any h ∈ H and l′ ∈ L′ we have a unique ql′,h ∈ � with l′ + ql′,h ∈

rh + L. Hence we get

Qh(l
′) = −sw−h∗σcan(M)− (K + 2l′ + 2ql′,h)

2 + |V|
8

(l′ ∈ R≥c). (5.24)

The term ql′,h is responsible for the non–polynomial behavior. Nevertheless, if we

assume that l′ = moE∗0 ∈ R≥c ∩ L, m ∈ Z, then ql′,h = rh, hence by (5.16)

Qh(l
′) = −(l′, l′ +K + 2rh)

2
+ pc(Zh). (5.25)

By Theorem 4.5.1.2 Qh(l
′) from (5.25) depends only on the E0-coefficient of l′ =

moE∗0 , which is exactly mα. One sees that in fact (5.25) agrees with (5.23) if we set

n = mα.

The non–equivariant version can be obtained by summation of (5.23). For this

we need
∑

h c̃(rh). Consider the group homomorphism ϕ : H → Q/Z given by

h 7→ [c̃(rh)], or [E∗v ] 7→ [−(E∗0 , E
∗
v)]. Its image is generated by the classes of 1/(αi|e|),

hence its order is o. Hence, c̃(rh) vanishes exactly d/o times (whenever h ∈ ker(ϕ)).

In all other cases c̃(rh) 6= 0, and c̃(rh)+c̃(r−h) = 1. In particular, 2
∑

h c̃(rh) = d−d/o.
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Therefore, the summation of (5.23) provides

Q(Zne)(n) = −den2

2
+

den

2

(
γ +

1

o

)
+ pc(Zne) (for n ∈ αZ). (5.26)

Next, we will identify the coefficients of (5.23) and (5.26) with the first three

coefficient of the Ehrhart quasipolynomial LCh(T ) via the identity (4.28).

For simplicity we will assume that o = 1, in particular all the bk–vectors belong

to L.

If l′ ∈ R, then by Theorem 4.5.1.2 the counting function LCh(T , l′) of the polytope

P (l′) depends only on the E0–coefficient of l′; let us denote this coefficient by l′0.

Hence, this LCh(T , l′0) is the Ehrhart quasipolynomial of the d–dimensional simpli-

cial polytope, being its h–class counting function. Via (5.3) the definition (4.19) of

this polytope becomes

P0 =
{

(x1, . . . , xd) ∈ (R≥0)d :
∑
i

xi
|e|αi

< l′0

}
. (5.27)

Let

LCh(T , l′0) =
d∑
j=0

ah,j(l
′
0) · (l′0)j

j!
(5.28)

be the coefficients of the Ehrhart quasipolynomial: each ah,j(l
′
0) is a periodic function

in l′0 and is normalized by 1/j!. Since the numerator of f is (1− t1/|e|)d−2, by (4.28)

we obtain for l′ ∈ R

Qh(l
′) =

d∑
j=0

ah,j(l
′
0) · 1

j!

d−2∑
k=0

(−1)k
(
d− 2

k

)(
l′0 −

k

|e|

)j
. (5.29)

This equals the expression (5.24) above. The non–polynomial behavior of these two

expressions indicate that aj(l
′
0) is indeed non–constant periodic, and can be deter-

mined explicitly.
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Since we are interested primarily in the Seiberg–Witten invariant, namely in

pc(Zh), we perform this explicit identification only via the expressions (5.23) and

(5.25). Hence, similarly as in these cases, we take l′ = moE∗0 ∈ R≥c ∩ L, and we

identify (5.23) with (5.29) evaluated for l′, whose E0–coefficient is l′0 = mα = n. In

this case ah,j(n) is a constant, denoted by ah,j, and

− en
2

2
+
ne

2
(γ+ 1− 2c̃) + pc(Zh) =

d∑
j=0

ah,j ·
1

j!

d−2∑
k=0

(−1)k
(
d− 2

k

)(
n− k

|e|

)j
. (5.30)

Here the following combinatorial expression is helpful (see e.g. [95, p. 7-8])

(−1)d

(d− 2)!
·
d−2∑
k=0

(−1)k
(
d− 2

k

)
kj =



0 if j < d− 2,

1 if j = d− 2,

(d− 2)(d− 1)/2 if j = d− 1,

(d− 2)(d− 1)d(3d− 5)/24 if j = d.

(5.31)

We obtain
ah,d
|e|d = 1

|e|
ah,d−1

|e|d−1 = d−2
2|e| −

1
2
(γ + 1− 2c̃)

ah,d−2

|e|d−2 = pc(Zh) + (d−2)(3d−7)
24|e| − d−2

4
(γ + 1− 2c̃).

(5.32)

In particular, the ah,d−2 can be identified (up to ‘easy’ extra terms) with pc(Zh)

(with analytical interpretation dim(H1(Ỹ ,OỸ )θ(h)) and Seiberg–Witten theoretical

interpretation (5.16)). The first coefficients can also be identified with the equivariant

volume of P0, (a fact already known in the non–equivariant cases). Usually (in the

non–equivariant case, and when we count the points of all the facets) the second

coefficient can be related with the volumes of the facets. Here we eliminate from this

count some of the facets, and we are in the equivariant situation as well.

In the non–equivariant case, if
∑d

j=0 aj
nj

j!
is the classical Ehrhart polynomial of
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P0, then
ad
|e|d =

∏
i αi

ad−1

|e|d−1 =
∏

i αi ·
(
− 1
α

+
∑

i
1
αi

)
/2

ad−2

|e|d−2 =
∏

i αi

(
pc(Zne)∏

i αi
− (d−2)(3d−5)

24
+ d−2

4
(− 1

α
+
∑

i
1
αi

)
)
.

(5.33)

In this non–equivariant case the identities (5.33) are valid even without the assump-

tion o = 1 by Theorem 4.6.1.1.

The formulae in (5.32) and (5.33) can be further simplified if we replace P0 by

|e|P0, or if we substitute in the Ehrhart polynomial the new variable λ := |e|l′0 instead

of l′0; cf. Section 4.6.

5.2 The two–node case

5.2.1 Notations and the group H

We consider the graph G from Figure 5.1.

r r · · · r r
r

Q

Q pppppp
r

�

�

ppp

r
�

�p p pppp
r

Q

Q

p p p
E0 E1 Es Ẽ0

E1

Ed

Ẽ1

Ẽd̃

G0 G̃0

Figure 5.1: Graph with two nodes

The nodes E0 and Ẽ0 have decorations b0 and b̃0 respectively. Similarly as in the

one–node case, we codify the decorations of maximal chains by continued fraction

expansions. In fact, it is convenient to consider the two maximal star–shaped graphs

G0 and G̃0, and the corresponding normalized Seifert invariants of their legs. Hence,

let the normalized Seifert invariants of the legs with ends Ei (1 ≤ i ≤ d) be (αi, ωi),

while of the legs with ends Ẽj (1 ≤ j ≤ d̃) be (α̃j, ω̃j).
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The chain connecting the nodes, viewed in G0 has normalized Seifert invariants

(α0, ω0), while viewed as a leg in G̃0, it has Seifert invariants (α0, ω̃0). One has

ω0ω̃0 = α0τ + 1. Clearly, α0 is the determinant of the chain, and

ω0 := det( )r r· · ·
E2 Es

ω̃0 := det( )r r· · ·
E1 Es−1

τ := det( ).r r· · ·
E2 Es−1

We denote the orbifold Euler numbers of the star–shaped subgraphs G0 and G̃0

by

e = b0 +
ω0

α0

+
∑
i

ωi
αi

and ẽ = b̃0 +
ω̃0

α0

+
∑
j

ω̃j
α̃j
.

Consider the orbifold intersection matrix Iorb =

 e 1/α0

1/α0 ẽ

, cf. [13, 4.1.4].

Then, the negative definiteness of I (or G) implies that Iorb is negative definite too,

hence

ε := detIorb = eẽ− 1

α2
0

> 0.

Then the determinant of the graph is det(G) = det(−I) = ε ·α0

∏
i αi
∏

j α̃j, cf. [13].

Using (4.1) we have the following intersection number of the dual base elements:

(E∗0)2 = ẽ
ε
; (Ẽ∗0)2 = e

ε
; (E∗0 , Ẽ

∗
0) = − 1

α0ε
; (E∗0 , E

∗
i ) = ẽ

αiε
;

(E∗0 , Ẽ
∗
j ) = − 1

α0α̃jε
; (Ẽ∗0 , E

∗
i ) = − 1

α0αiε
; (Ẽ∗0 , Ẽ

∗
j ) = e

α̃jε
.

(5.34)

Similarly as in 4.4.2 or 5.1.1, we can write nik1,k2 , ñ
j
k1,k2

resp. nk1,k2 for the determinant

of the sub–chains of the ‘left’ ith leg, ‘right’ jth leg and connecting chain connecting

the vertices vk1 and vk2 . Let νi and ν̃j be the number of vertices in the legs, cf. 5.1.1.

Then (with the standard notations, where Ei` and Ẽj` are the vertices of the legs)

one has the following slightly technical Lemma, but whose proof is standard based

on the arithmetical properties of continued fractions:

Lemma 5.2.1.1. (a) E∗i` = ni`+1,νi
E∗i +

∑
`<r≤νi

ni1,`−1n
i
r+1,νi

−ni1,r−1n
i
`+1,νi

αi
Eir for any

1 ≤ ` < νi.
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(There is a similar formula for Ẽ∗j`.)

(b) E
∗
k = n1,k−1E

∗
1 − n2,k−1E

∗
0 +

∑
1≤r<k

n1,r−1nk+1,s−n1,k−1nr+1,s

α0
Er , for 1 < k ≤ s.

(This is true even for k = s+ 1 with the identification E
∗
k+1 = Ẽ∗0 .)

Next, we give a presentation of H = L′/L. Set gi := [E∗i ] (1 ≤ i ≤ d), g̃j := [Ẽ∗j ]

(1 ≤ j ≤ d̃), g0 := [E∗0 ] and g̃0 := [Ẽ∗0 ]. Moreover we need to choose an additional

generator corresponding to a vertex sitting on the connecting chain: we choose g :=

[E
∗
1] (this motivates the choice in Lemma 5.2.1.1)(b) too). The above lemma implies

[E∗i`] = ni`+1,νi
gi, [Ẽ∗j`] = ñj`+1,ν̃j

g̃j and [E
∗
k] = n1,k−1g − n2,k−1g0; (5.35)

and similar arguments as in the star–shaped case provides the following presentation

for H

H = ab〈 g0, g̃0, gi, g̃j, g | g0 = αi · gi; g̃0 = α̃j · g̃j; α0 · g = ω0 · g0 + g̃0; (5.36)

−g − b0 · g0 =
∑

i ωi · gi; −ω̃0 · g + τ · g0 − b̃0 · g̃0 =
∑

j ω̃j · g̃j〉.

Moreover, for any l′ ∈ L′,

l′ = c0E
∗
0 + c̃0Ẽ

∗
0 +

∑
k ckE

∗
k +

∑
i,` ci`E

∗
i` +

∑
j` c̃j`Ẽ

∗
j`,

if we define its reduced transform l′red by

(c0−
∑
k>1

n2,k−1ck)E
∗
0 + c̃0Ẽ

∗
0 +(c1 +

∑
k>1

n1,k−1ck)E
∗
1 +
∑
i,`

ci`n
i
`+1,νi

E∗i +
∑
j,`

c̃j`ñ
j
`+1,ν̃j

Ẽ∗j ,

then, by Lemma 5.2.1.1, [l′] = [l′red] in H. Moreover, if for any l′ ∈ L′ we distinguish

the E0 and Ẽ0 coefficients, that is, we set c(l′) := −(E∗0 , l
′) and c̃(l′) := −(Ẽ∗0 , l

′), then

c(l′) = c(l′red) and c̃(l′) = c̃(l′red) as well. Lemma 5.2.1.1(b) (applied for k = s + 1)
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provide these coefficients for E1:

(E
∗
1, E

∗
0) =

1

εα0

(
ω0ẽ−

1

α0

)
, (E

∗
1, Ẽ

∗
0) =

1

εα0

(
e− ω0

α0

)
. (5.37)

We will use the coefficients c = (c0, c̃0, c, ci, c̃j) to write an element l′red = c0E
∗
0 +

c̃0Ẽ
∗
0 + cE

∗
1 +

∑
i ciE

∗
i +

∑
j c̃jẼ

∗
j . Then (5.34) and (5.37) imply that

(
c

c̃

)
=

(
c(l′red)

c̃(l′red)

)
= (−Iorb)−1 ·

(
A

Ã

)
=

1

ε

(
−ẽ 1/α0

1/α0 −e

)
·

(
A

Ã

)
, (5.38)

where

A := c0 +
∑
i

ci
αi

+
ω0

α0

c, Ã := c̃0 +
∑
j

c̃j
α̃j

+
1

α0

c.

Therefore, any h ∈ H has a lift of type l′h,red. Although the corresponding coefficients

c and c̃ depend on the lift, by adding ±E0 and ±Ẽ0 to l′h,red we can achieve c, c̃ ∈ [0, 1),

and these values are uniquely determined by h. For example, the reduced transform

(rh)red of rh satisfies c((rh)red) = c(rh) ∈ [0, 1) and c̃((rh)red) = c̃(rh) ∈ [0, 1) since

rh ∈ �.

As we will see, for different elements of h ∈ H, we have to shift the rank two

lattices by vectors of type (c, c̃), hence the vectors (c, c̃) will play a crucial role later.

5.2.2 Interpretation of Z(t)

If we wish to compute the periodic constant of Ze(t), by Theorem 4.5.1.2 we can

eliminate all the variables of Ze(t) except the variables of the nodes; these remaining

two variables are denoted by (t, t̃). Therefore the equivariant form of reciprocal of
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the denominator is

Z/H(t, t̃) =
∏
i

(
1− t−(E∗i ,E

∗
0 )t̃−(E∗i ,Ẽ

∗
0 )[gi]

)−1 ·
∏
j

(
1− t−(Ẽ∗j ,E

∗
0 )t̃−(Ẽ∗j ,Ẽ

∗
0 )[g̃j]

)−1

=
∑

xi,x̃j≥0

t
−ẽ
ε

∑
i
xi
αi

+ 1
α0ε

∑
j

x̃j
α̃j t̃

1
α0ε

∑
i
xi
αi

+−e
ε

∑
j

x̃j
α̃j
[∑

ixigi +
∑

jx̃j g̃j
]
.

We fix a lift c0E
∗
0 + c̃0Ẽ

∗
0 +cE

∗
1 +
∑

i ciE
∗
i +
∑

j c̃jẼ
∗
j of h. Then the class of

∑
i xiE

∗
i +∑

j x̃jẼ
∗
j equals h if and only if its difference with the lift is a linear combination of

the relation in 5.36. In other words, if there exist `0, ˜̀0, `, `i, ˜̀j ∈ Z such that

(a) −c0 =
∑

i `i − b0`0 + τ ˜̀0 + ω0` (c) xi − ci = −ωi`0 − αi`i (i = 1, . . . , d)

(b) −c̃0 =
∑

j
˜̀
j − b̃0

˜̀
0 + ` (d) x̃j − c̃j = −ω̃j ˜̀0 − α̃j ˜̀j (j = 1, . . . , d̃)

(e) −c = −`0 − ω̃0
˜̀
0 − α0`.

From (e) we deduce that

`0 + ω̃0
˜̀
0 ≡ c (modα0). (5.39)

Since xi, x̃j ≥ 0, (c) and (d) implies ci−ωi`0
αi

≥ `i,
c̃j−ω̃j ˜̀0
α̃j

≥ ˜̀
j. Recall also that

ω0ω̃0 = α0τ + 1. Therefore if we set mi := b ci−ωi`0
αi
c− `i and m̃j := b c̃j−ω̃j

˜̀
0

α̃j
c− ˜̀j non–

negative integers then the number of the realization of h in the form
∑

i xigi+
∑

j x̃j g̃j

is determined by the number of non–negative integral (d+d̃)–tuples (mi, m̃j) satisfying

Nc(`0, ˜̀0) := c0 + ω0

α0
c− (b0 + ω0

α0
)`0 − 1

α0

˜̀
0 +

∑
ib
ci−ωi`0
αi
c =

∑
imi ,

Ñc(`0, ˜̀0) := c̃0 + 1
α0
c− (̃b0 + ω̃0

α0
)˜̀0 − 1

α0
`0 +

∑
jb
c̃j−ω̃j ˜̀0

α̃i
c =

∑
j m̃j .

This number is
(
Nc(`0,˜̀0)+d−1

d−1

)(Ñc(`0,˜̀0)+d̃−1

d̃−1

)
if Nc and Ñc are non–negative, otherwise

it is 0. Note that (5.39) guarantees that both Nc and Ñc are integers. Furthermore,

(c) and (d) and (5.38) show that the exponent of t and t̃ in the formula of Z
/H
h (t, t̃)
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are equal to `0 + c and ˜̀0 + c̃ respectively. Hence

Z
/H
h (t, t̃) =

∑ (
Nc(`, ˜̀) + d− 1

d− 1

) (
Ñc(`, ˜̀) + d̃− 1

d̃− 1

)
t`+c t̃

˜̀+c̃,

where the sum runs over (`, ˜̀) ∈ Z2 with `+ ω̃0
˜̀≡ c (mod α0).

The numerator of Z(t, t̃) is
(
1−t−(E∗0 ,E

∗
0 )t̃−(E∗0 ,Ẽ

∗
0 )[g0]

)d−1 ·
(
1−t−(Ẽ∗0 ,E

∗
0 )t̃−(Ẽ∗0 ,Ẽ

∗
0 )[g̃0]

)d̃−1
.

Hence we get Ze by multiplying this expression by
∑

h Z
/H
h [h]. Recall that h =

c0g0 + c̃0g̃0 + c g +
∑

i cigi +
∑

j c̃j g̃j is paired with c. Set h′ := h + kg0 + k̃g̃0 which

corresponds to c′ = c + (k, k̃, 0, 0, 0). Hence Zh′ [h
′] is the next sum according to the

decompositions h′ = h+ kg0 + k̃g̃0:

d−1∑
k=0

(−1)k
(
d− 1

k

) d̃−1∑
k̃=0

(−1)k̃
(
d̃− 1

k̃

)
·

∑
h

( ∑
`+ω̃0

˜̀≡c (α0)

(
Nc(`, ˜̀) + d− 1

d− 1

)(
Ñc(`, ˜̀) + d̃− 1

d̃− 1

)
t`+c+

−ẽk+k̃/α0
ε t̃

˜̀+c̃+−ek̃+k/α0
ε

)
[h′]

=
d−1∑
k=0

(−1)k
(
d− 1

k

) d̃−1∑
k̃=0

(−1)k̃
(
d̃− 1

k̃

)
·

∑
h

( ∑
`+ω̃0

˜̀≡c (α0)

(
Nc′(`, ˜̀)− k + d− 1

d− 1

) (
Ñc′(`, ˜̀)− k̃ + d̃− 1

d̃− 1

)
t`+c

′
t̃
˜̀+c̃′
)

[h′].

Rearranging and using the combinatorial formula
∑d−1

k=0(−1)k
(
N−k+d−1

d−1

)(
d−1
k

)
= 1 for

N ≥ 0 and = 0 otherwise, we get the following.

Theorem 5.2.2.1. For any h ∈ H one has

Zh(t, t̃) =
∑

(`,˜̀)∈Sc
t`+c t̃

˜̀+c̃, where (5.40)

Sc :=
{

(`, ˜̀) ∈ Z2 : Nc(`, ˜̀) ≥ 0, Ñc(`, ˜̀) ≥ 0 and `+ ω̃0
˜̀≡ c (mod α0)

}
.

(5.41)
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It is straightforward to verify that the right hand side of (5.40) does not depend

on the choice of c, it depends only on h. The identity (5.40) is remarkable: it realizes

the bridge between the series Ze and the equivariant Hilbert series of affine monoids

and their modules.

5.2.3 The structure of Sc

Recall that for any h ∈ H we consider a lift of h identified by a certain c which

detemines the pair (c, c̃) (cf. (5.38)), and the integers Nc(l) and Ñc(l), where l =

(`, ˜̀) ∈ Z2. We define

Z2(c) := {(`, ˜̀) ∈ Z2 : `+ ω̃0
˜̀≡ c (mod α0)}.

If h = 0 then we always choose the zero lift with c = 0.

If, in the definition of Nc(l) and Ñc(l), we replace each [y] by y, we get the entries

of (
A− e`0 − ˜̀/α0

Ã− `0/α0 − ẽ˜̀0
)

= −Iorb
(
`+ c˜̀+ c̃

)
.

This motivates to define

Sc :=
{
l ∈ Z2(c) : −Iorb

(
`+ c˜̀+ c̃

)
≥ 0
}
. (5.42)

Clearly Sc ⊂ Sc. We also consider Corb, the real cone {l ∈ R2 : −Iorb · l ≥ 0}. Then

Sc =
(
Corb − (c, c̃)

)
∩ Z2(c).

Lemma 5.2.3.1. (1) S0 and S0 are affine monoids. S0 is the normalization of S0.

(2) Sc and Sc are finitely generated S0-modules, Sc is a submodule of Sc.

Proof. (1) is elementary. By Corollary [20, 2.12] Sc is finitely generated over S0, but

S0 itself is finitely generated as an S0 module.
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Lemma 5.2.3.2. There exists v1 and v2 elements of Z2 with the following properties:

(a) v1 and v2 belong to S0 and R≥0v1 + R≥0v2 = Corb.

(b) For any l ∈ Sc one has:

(i) Nc(l + v1) = Nc(l); (̃i) Ñc(l + v2) = Ñc(l);

(ii) Nc(l + v2) ≥ 0; (ĩi) Ñc(l + v1) ≥ 0.

Proof. We choose v1 and v2 such that Ñ0(v1) ≥ d̃− 1 and N0(v2) ≥ d− 1, and with

(A) v1 = (`1, ˜̀1) ∈ Z2(c) such that {−ωi`1/αi} = 0 for all i, and N0(v1) = 0;

(B) v2 = (`2, ˜̀2) ∈ Z2(c) such that {−ω̃j ˜̀2/α̃j} = 0 for all j, and Ñ0(v2) = 0.

Then v1 and v2 satisfy (a), and (b)(i), and (b)(̃i). Furthermore, note that Nc(l+v2) ≥

Nc(l) +N0(v2) and for any l ∈ Sc one has Nc(l) ≥ −(d− 1), hence all the conditions

will be satisfied.

Remark 5.2.3.3. Usually, the ‘universal restrictions’ Ñ0(v1) ≥ d̃− 1 and N0(v2) ≥

d− 1 in the proof of Lemma 5.2.3.2 provide rather ‘large’ vectors v1 and v2. Never-

theless, usually much smaller vectors also satisfy (a) and (b). Here is another choice.

Besides (A) and (B) we impose the following:

(C) Let � = �(v1, v2) = {l = q1v1 + q2v2 : 0 ≤ q1, q2 < 1} be the semi–open

cube in Corb. Then we require N0(v2) ≥ 0 and Nc(l� + v2) ≥ 0 for any l� ∈ (� −

(c, c̃)) ∩ Z2(c); and symmetrically: Ñ0(v1) ≥ 0 and Ñc(l� + v1) ≥ 0 for any l� ∈

(�− (c, c̃)) ∩ Z2(c).

The wished inequality for any l ∈ Sc then follows from Nc(l� +k1v1 +k2v2 +v2) =

Nc(l� + k2v2 + v2) ≥ Nc(l� + v2) + k2N0(v2) (and its symmetric version).

In the sequel the next two subsets of Sc will be crucial.

S−c,1 :=
{
l ∈ (�− (c, c̃)) ∩ Z2(c) : Nc(l) < 0

}
,

S−c,2 :=
{
l ∈ (�− (c, c̃)) ∩ Z2(c) : Ñc(l) < 0

}
.
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Again, both sets S−c,1 and S−c,2 are independent of the choice of c, they depend only

on h.

Proposition 5.2.3.4. Let v1 and v2 be as in Lemma 5.2.3.2. Then

(1) Sc =
⊔

l∈(�−(c,c̃))∩Z2(c)

l + Z≥0v1 + Z≥0v2

(2) Sc \ Sc =
( ⊔
l∈S−c,1

l + Z≥0v1

)
∪
( ⊔
l∈S−c,2

l + Z≥0v2

)
,

but
( ⊔
l∈S−c,1

l + Z≥0v1

)
∩
( ⊔
l∈S−c,2

l + Z≥0v2

)
=

⊔
l∈S−c,1∩S

−
c,2

l .

Proof. The statements follow from the choice of v1 and v2 and properties (a) and

(b) of Lemma 5.2.3.2. Compare also with the structure theorem [20, 4.36] of S0

modules.

5.2.4 The periodic constant and sw in the equivariant case.

Set t = (t, t̃). Using (5.40) and Proposition 5.2.3.4 one can write Zh(t)/t(c,c̃) in the

next form:

∑
l∈(�−(c,c̃))∩Z2∩(≡c)

tl

(1− tv1)(1− tv2)
−
∑
l∈S−c,1

tl

1− tv1
−
∑
l∈S−c,2

tl

1− tv2
+

∑
l∈S−c,1∩S

−
c,2

tl.

Next, we apply the decomposition established in subsection 4.3.5. Here it is

important to choose c in such a way that c ∈ [0, 1) and c̃ ∈ [0, 1).

Note that v1 ∈ R>0(1/α0,−e) and v2 ∈ R>0(−ẽ, 1/α0), hence v2 sits in the cone

determined by v1 and (1, 0). Then, as in 4.3.5, we set Ξ1 := {(`, ˜̀) : 0 ≤ ` <

first coordinate of v1} and Ξ2 := {(`, ˜̀) : 0 ≤ ˜̀< second coordinate of v2}, and for

any l ∈ S−c,i the unique nl,i such that l − nl,ivi ∈ Ξi, i = 1, 2. Then subsection 4.3.5
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provides the following decomposition

Z+
h (t) = t(c,c̃)

(∑
l∈S−c,1

∑nl,1

j=1 tl−jv1 +
∑

l∈S−c,2

∑nl,2

j=1 tl−jv2 +
∑

l∈S−c,1∩S
−
c,2

tl
)

Z−h (t) = t(c,c̃)
(∑

l∈(�−(c,c̃))∩Z2∩(≡c)
tl

(1−tv1 )(1−tv2 )
−
∑

l∈S−c,1
t
l−nl,1v1

1−tv1 −
∑

l∈S−c,2
t
l−nl,2v2

1−tv2

)
.

Therefore, by 4.3.4.4 and Theorem 4.3.5.1 we get

pcC
orb

h (Z) = pcC
orb

(Zh(t)/t(c,c̃)) = Z+
h (1, 1) =

∑
l∈S−c,1

nl,1 +
∑
l∈S−c,2

nl,2 + |S−c,1 ∩ S−c,2| .

Corollary 5.2.4.1. Choose c in such a way that c ∈ [0, 1) and c̃ ∈ [0, 1). Then one

has the following combinatorial formula for the normalized Seiberg–Witten invariant

of M

−(K + 2rh)
2 + |V|

8
− sw−h∗σcan(M) =

∑
l∈S−c,1

nl,1 +
∑
l∈S−c,2

nl,2 + |S−c,1 ∩ S−c,2|.

Proof. Use Corollary 4.4.1.1, the Theorem 4.5.1.2 and the above computation.

5.2.5 The periodic constant and λ(M) in the non–equivariant

case

Though the non–equivariant Zne can be obtained by the sum
∑

h Zh treated in the

previous subsection, here we provide a more direct procedure, which leads to a new

formula. Write J := (−Iorb)−1 and t(ab) for tat̃b. Applying the reduction 4.5.1.2 for

the definition (4.9) of Z, we get

Zne(t) =
(1− tJ(

1
0))d−1(1− tJ(

0
1))d̃−1∏

i(1− tJ(
1/αi
0 ))

∏
j(1− t

J( 0
1/α̃j

)
)
.
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Set S(x) :=
∑

i xi/αi and S̃(x̃) :=
∑

j x̃j/α̃j. Similarly as in 5.12, Zne(t) can be

written as

∑
0≤xi<αi,0≤i≤d
0≤x̃j<α̃j ,0≤j≤d̃

f(x, x̃), where f(x, x̃) =
t
J(S(x)S̃(x̃))

(1− tJ(
1
0))(1− tJ(

0
1))
.

By the substitution u1 = tJ(
1
0) and u2 = tJ(

0
1), f(x, x̃) transforms into u

S(x)
1 u

S̃(x̃)
2 /(1−

u1)(1−u2). The division of this fraction (with remainder) is elementary, hence f(x, x̃)

equals

t
J(Srat

S̃rat
)

Sint−1∑
n=0

S̃int−1∑
k=0

tJ(
n
k) −

Sint−1∑
k=0

tJ(
k
0)

1− tJ(
0
1)
−

S̃int−1∑
k̃=0

tJ(
0
k̃)

1− tJ(
1
0)

+
1

(1− tJ(
1
0))(1− tJ(

0
1))

 ,

where Sint := bS(x)c, S̃int := bS̃(x̃)c, Srat := {S(x)} and S̃rat := {S̃(x̃)}.

Then, by 4.3.4.8 pcC
orb

(t
J(Srat

S̃rat
)/(1− tJ(

1
0))(1− tJ(

0
1))) = 0. Moreover, 4.3.5 gives a

unique integer s(k) ≥ 0 for k ∈ {0, . . . , Sint − 1} such that t
J( k+Srat
−s(k)+S̃rat

)/1− tJ(
0
1) has

vanishing periodic constant with respect to Corb. It turns out that s(k) = b−ẽα0(k +

Srat) + S̃ratc. Similarly s(k̃) = b−eα0(k̃+ S̃rat) +Sratc in the case of t
J(−s(k̃)+Srat

k̃+S̃rat
)/1−

tJ(
1
0). Therefore, by 4.3.5.1, for

pc(Zne) = −λ(M)− d · K
2 + |V|

8
+
∑
h

χ(rh)

we get

∑
0≤xi<αi,0≤i≤d
0≤x̃j<α̃j ,0≤j≤d̃

(
SintS̃int+

Sint−1∑
k=0

b−ẽα0(k+Srat)+ S̃ratc+
S̃int−1∑
k̃=0

b−eα0(k̃+ S̃rat)+Sratc
)
.
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5.2.6 Ehrhart theoretical interpretation

In general, in contrast with the one–node case 5.1.5, the direct determination of

the counting function of Zh(t), or equivalently, of the complete equivariant Ehrhart

quasipolynomial associated with the corresponding polytope, is rather hard. Never-

theless, those coefficients which are relevant to us (e.g. those ones which contain the

information about the Seiberg–Witten invariants of the 3–manifold) can be identi-

fied using the right hand side of (4.11). The computation is more transparent when

L′ = L. In that case, the two–variable Ehrhart polynomial has degree d + d̃, and a

specific d+ d̃−2 degree coefficient is exactly the normalized Seiberg–Witten invariant

of the 3–manifold. We will not provide here the formulae, since this identification was

already established for any negative definite plumbing graph with arbitrary number

of nodes, see Section 4.6, where several other coefficients were computed as well.

5.3 Examples

Example 5.3.1. Consider the following plumbing graph.

r r r rr
r

r
rQ

Q
Q

�
�
�

�
�
�

Q
Q
QE2

E1

Ẽ2

Ẽ1

Ẽ3

−2

−3

−5

−5

−5

−1 −9 −1

Figure 5.2: Graph for Example 5.3.1.

The corresponding Seifert invariants are α1 = 2, α2 = 3, α̃j = 5, α0 = 9 and

ωi = ω̃j = ω0 = ω̃0 = 1 for all i and j. Hence e = −1/18, ẽ = −13/45 and
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ε = 1/(33 · 10). For h = 0 we choose c = 0. Then

S0 =



(`, ˜̀) ∈ Z2

8`− ˜̀+ 9 · ([−`
2

] + [−`
3

]) ≥ 0

8˜̀− `+ 27 · [−˜̀
5

] ≥ 0

`+ ˜̀≡ 0 (mod 9)


and S0 =



(`, ˜̀) ∈ Z2

`− 2˜̀≥ 0

−5`+ 13˜̀≥ 0

`+ ˜̀≡ 0 (mod 9)


.

If we take the generators v1 = (60, 30) and v2 = (26, 10) (via conditions (A)-(B)-(C)

following Lemma 5.2.3.2), one can calculate explicitly the sets

S−0,1 =



(13, 5), (19, 8), (25, 11),

(31, 14), (37, 17), (43, 20),

(49, 23), (55, 26), (61, 29),

(67, 32)


and S−0,2 =


(6, 3), (19, 8), (12, 6),

(25, 11), (24, 12), (37, 17),

(42, 21), (55, 26)

 .

This generates the next counting function of S0 \ S0, namely
∑

(`,˜̀)∈S0\S0 t`t̃
˜̀

=

∑
(`,˜̀)∈S0\S0 t`t̃

˜̀
= t13 t̃5+t19 t̃8+t25 t̃11+t31 t̃14+t37 t̃17+t43 t̃20+t49 t̃23+t55 t̃26+t61 t̃29+t67 t̃32

1−t60 t̃30 +

+ t6 t̃3+t12 t̃6+t19 t̃8+t24 t̃12+t25 t̃11+t37 t̃17+t42 t̃21+t55 t̃26

1−t26 t̃10 − t19t̃8 − t25t̃11 − t37t̃17 − t55t̃26 ,

which by 5.2.4 provides Z+
0 (t, t̃) = tt̃−1 + t3t̃2 + t−2t̃2 + t−1t̃+ t11t̃7 + t16t̃11 + t−10t̃+

t29t̃16 + t3t̃6 + t19t̃8 + t25t̃11 + t37t̃17 + t55t̃26. Hence pcC
orb

0 (Z) = Z+
0 (1, 1) = 13.

It can be verified that there exists a splice–quotient type normal surface singularity

whose link is given by the above graph. It is a complete intersection in (C4, 0) with

equations z3 + (y2 + 2y3)2− y1y2(2y2 + 3y3) = y5
1 + (2y2 + 3y3)y2y3 = 0. Its geometric

genus is 13 according to the above computation and [72].

Example 5.3.2. Let G be the graph in Figure 5.3.

The corresponding generalized Seifert invariants are αi = α̃j = 5, ω0 = ω̃0 =

ωi = ω̃j = 1, e = ẽ = −9/35 and ε = 8/(7 · 35) for all i, j ∈ {1, . . . , 3}. Let h ∈ H
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Ẽ2
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Figure 5.3: Graph for Example 5.3.2.

determined by the following coefficients: c0 = −2, c̃0 = 1, c = 2, ci = 3 and c̃j = −2

for any i, j. Then (c, c̃) = (3/4, 3/4) which is uniquely determined by the h. It is

immediate that

Sc =



(`, ˜̀) ∈ Z2

6`− ˜̀+ 21 · [3−`
5

] ≥ 12

6˜̀− `+ 21 · [−2−˜̀
5

] ≥ 9

`+ ˜̀≡ 2 (mod 7)


and Sc =



(`, ˜̀) ∈ Z2

9`− 5˜̀≥ −3

−5`+ 9˜̀≥ −3

`+ ˜̀≡ 2 (mod 7)


.

If we choose v1 := (5, 9) and v2 := (9, 5) as generators for Corb, one can calculate S−c,1

and S−c,2 explicitly, i.e.

S−c,1 = {(1, 1), (4, 5), (5, 4), (9, 7)} and S−c,2 = {(1, 1), (4, 5), (5, 4), (7, 9)} .

Therefore, the counting function of Sc \ Sc is

−t3/4t̃3/4
(
(tt̃+t4t̃5+t5t̃4+t9t̃7)/(1−t5t̃9)+(tt̃+t4t̃5+t5t̃4+t7t̃9)/(1−t9t̃5)−tt̃−t4t̃5−t5t̃4

)
.

Finally, using 5.2.4 we get Z+
h (t, t̃) = −t3/4t̃3/4(−t̃5−t4t̃−2−t−5−t−2t̃4−tt̃−t4t̃5−t5t̃4),

hence pcC
orb

h (Z) = Z+
h (1, 1) = 7.
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Chapter 6

Lattice cohomological calculations

and examples

Némethi’s very first article on lattice cohomology [61] presents a method, using

graded roots (see [61, §3]), to compute the lattice cohomology in the case when the

negative definite plumbing graph G is almost rational, i.e. has only one bad vertex.

In this case, as the Reduction Theorem 3.3.2.2 shows, L = Z≥0 and only H0 might

be non–zero. Moreover, one can find a bound im ∈ Z≥0, such that {w(i)}0≤i≤im

contains all the lattice cohomological data of G. Hence, it is enough to determine

how the function w behaves along the ‘interval’ [0, im].

As an example, one can look at the case, when M is a Seifert 3–manifold (G is star–

shaped). Then w(i+ 1)−w(i), hence the lattice cohomology itself, can be calculated

using the normalized Seifert invariants. Moreover, the sum
∑

max{0, w(i)−w(i+1)},

or equivalently, the Euler characteristic of the reduced lattice cohomology, equals the

Dolgachev–Pinkham invariant (cf. [94],[61, 11.14]). Therefore, it gives the geometric

genus of a normal surface singularity, which admits M as its link and a good C∗–

action.
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This example automatically connects us to the Seiberg–Witten invariant conjec-

ture (2.3.2 and 3.2.2). Note also that in this almost rational case, the interval [0, im]

can not be simplified further. In other words, one can say that [0, im] is the mini-

mal reduction of the original lattice L. On the other hand, in the case of more bad

vertices, a (multi)rectangle R(0, im) can be ‘reducted’ further.

In this chapter, we will make some calculations and illustrations of the lattice

cohomology for graphs having only two nodes. The first part applies the Reduction

Theorem 3.3.2.2, calculates the special cycles x(i, j) and their weights in terms of

the normalized Seifert invariants of the maximal star–shaped subgraphs. We con-

tinue with the characterization of the optimal bound im and prove that the rectangle

R(0, im) contains all the lattice cohomological informations. Notice that this can be

generalized to arbitrary bad vertices as well.

In the second part, we provide some examples with figures to illustrate their lattice

cohomology.

6.1 Graphs with 2 nodes

r r · · · r r
r

Q

Q pppppp
r

�

�

ppp

r
�

�p p pppp
r

Q

Q

p p p
E0

b0

{El
v}v∈1,sl

(αl, ωl)l∈1,d

{Ev}v∈1,s

(α, ω, ω̃)

Ẽ0

b̃0

{Ẽl
v}v∈1,s̃l

(α̃l, ω̃l)l∈1,d̃

G0

G̃0

Figure 6.1: Seifert invariants in the two–node case

Similarly as in Section 5.2, consider a negative definite plumbing graph G with

nodes E0 and Ẽ0, which have decorations b0 and b̃0 respectively (as it is shown in

Figure 6.1). One has d legs connected to E0, d̃ legs connected to Ẽ0, and a chain

connecting the two nodes.
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Recall that one can consider the two maximal star–shaped subgraphs G0 and G̃0,

and their normalized Seifert invariants: we codify the legs with vertices {El
v}v∈1,sl

by

(αl, ωl) for any l ∈ 1, d , while the legs with vertices {Ẽl
v}v∈1,s̃l

by (α̃l, ω̃l) for l ∈ 1, d̃.

For any 1 ≤ v ≤ w ≤ sl, we may define nlv,w as the determinant of the chain starting

from El
v and ending with El

w, and similarly ñlv,w as well. Notice that ωl = nl2,sl

and respectively ω̃l = ñl2,s̃l . We also set nlv,v−1 = ñlv,v−1 := 1 and nlv,w = ñlv,w := 0

for w < v − 1, cf. [61, 10.2]. The chain connecting the nodes, viewed in G0, has

normalized Seifert invariants (α, ω), while it has (α, ω̃), viewed as a leg in G̃0. One

satisfies ωω̃ = ατ + 1 and, if we define the integers nvw for this chain too, then

ω = n2,s, ω̃ = n1,s−1 and τ = n2,s−1.

The orbifold Euler numbers of the star–shaped subgraphs and the determinant of

G can be calculated via the formulae

e = b0 +
ω

α
+

d∑
l=1

ωl
αl
, ẽ = b̃0 +

ω̃

α
+

d̃∑
l=1

ω̃l
α̃l

and det(G) = ε · α0

d∏
l=1

αl

d̃∏
l′=1

α̃l′

where ε := detIorb = eẽ− 1
α2
0
> 0 (see 5.2.1).

6.1.1 Reduction and the cycles x(i, j)

Lemma 6.1.1.1. G is a 2–rational graph.

Proof. We may assume that for all the vertices of G, except E0 and Ẽ0, we have

−b ≥ δ, where b is the weight and δ is the valency of the vertex. Otherwise, we

blow down first all these non–nodes with weight −1. Then if we replace b0 and b̃0

with −d − 1 and −d̃ − 1, the Laufer algorithm 2.2.1.2 shows that we get a rational

graph.

Now we can apply the reduction procedure associated with the two bad vertices
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E0 and Ẽ0. This says that

H∗(G, kr) ∼= H∗(L,w[k]),

where L = Z2
≥0 and w[k](i, j) := χkr(x(i, j)) for all (i, j) ∈ Z2

≥0.

For simplicity, from now on we assume that [k] is the canonical class, hence kr =

kcan and l′[kcan] = 0. Since any kind of object will be associated with this class, we

will omit k from the notations.

In the sequel we start to determine the cycles x(i, j) and their χ–values.

Proposition 6.1.1.2. Assume that

x(i, j) = iE0 + jẼ0 +
s∑

v=1

mvEv +
∑

1≤v≤sl
1≤l≤d

ml
vE

l
v +

∑
1≤v≤s̃l
1≤l≤d̃

m̃l
vẼ

l
v,

where mv,m
l
v and m̃l

v denote the coefficients of the corresponding Ev, E
l
v and Ẽl

v (we

set also m0 = ml
0 = i and ms+1 = m̃l

0 = j). Then these coefficients can be calculated

by the following recursive formulae

(a) mv =

⌈
mv−1 · nv+1,s + j

nv,s

⌉
=

⌈
i+mv+1 · n1,v−1

n1,v

⌉
for v ∈ {1, . . . , s};

(b) ml
v =

⌈
ml
v−1 · nlv+1,sl

nlv,sl

⌉
for l ∈ {1, . . . , d} and v ∈ {1, . . . , sl};

(̃b) m̃l
v =

⌈
m̃l
v−1 · ñlv+1,s̃l

ñlv,s̃l

⌉
for l ∈ {1, . . . , d̃} and v ∈ {1, . . . , s̃l}.

Proof. We use the interpretation of x(i, j) from 3.3.1.2. This claims that x(i, j)∗ is

the minimal solution for the following system of inequalities:

− C · x(i, j)∗ ≥ −Bt ·

(
i

j

)
, (6.1)
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where C is the intersection matrix of the graph obtained from G by deleting the bad

vertices E0, Ẽ0 and all their adjacent edges. Hence we may write

C =


. . . 0 0

0 Ileg 0

0 0
. . .

 ,

where the diagonal of the block structure contains the intersection matrices of the

legs of G. Since these blocks/legs do not interact, one can split the system (6.1) and

look for each leg separately.

Therefore, the problem reducts to finding the minimal integral solutions of the

system 

k1 −1 0 0 0

−1 k2 −1 0 0

0 −1
. . . −1 0

0 0 −1 ks−1 −1

0 0 0 −1 ks


·



x1

x2

...

xs−1

xs


≥



a

0

...

0

b


, (6.2)

where −kt denotes the weight of Et on a chain with vertices {E1, . . . , Es}, a and b

are some integral parameters. We have to observe, that if we multiply the tth row by

nt+1,s and use the equality ktnt+1,s − nt+2,s = nt,s (consequence of Lemma 5.2.1.1 or

[61, 10.2]), then it gives an equivalent system

nt,sxt − nt+1,sxt−1 ≥ nt+1,sxt+1 − nt+2,sxt for 1 ≤ t ≤ s,

where we set x−1 := a and xs+1 := b. Its minimal solutions can be calculated

recursively. Indeed, the minimal solution for xt does depend only on xt−1 and it is

determined by the inequality nt,sxt − nt+1,sxt−1 ≥ b.

Therefore, xt = d(xt−1nt+1,s + b)/nt,se. In particular, x1 = d(aω + b)/αe. Notice
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that one can achieve the solutions from the other way around, if we multiply the

tth row by n1,t−1. In this case, we get xt = d(a + xt+1n1,t−1)/n1,te, in particular,

xs = d(a+ bω̃)/αe.

Then, it is straightforward that if we choose a = i and b = j, we find mv, for a = i

and b = 0 we get ml
v and finally a = 0 and b = j gives m̃l

v.

Remark 6.1.1.3. (a) We can compare this formula with [61, 11.11], since if we

take j = 0 (resp. i = 0) we get the special cycles x(i) (resp. x(j)) associated

with the almost rational graph G0 (resp. G̃0).

(b) Since one can get a recursive formula for mv from both directions (either starting

from E0 or from Ẽ0), this gives interesting arithmetical relations between the

coefficients.

(c) Notice that in general, the recursive formula for mv can not be simplified to

m′v := d(inv+1,s + jn1,v−1)/αe, except v ∈ {1, s}. E.g., one can imagine a leg

connecting to only one bad vertex E0 (that is j = 0), as it is shown in the next

picture.

s r r r r rE0 −2 −2 −3 −3 −3

Then if we choose i = 5, one can calculate easily that m2 = 3,m3 = 2 and

m4 = 1. But m′2 = 3,m′3 = 1 and m′4 = 1, which do not satisfy the needed

inequality −x2 + 3x3 − x4 ≥ 0.

(d) However, it turns out that the weight of the cycle x′(i, j) (with coefficients m′v)

equals the weight of x(i, j), since the only coefficients which contribute to the

weight, are the ones ‘around’ the bad vertices.

The general result 3.3.1.7 and the previous formula provides w(i, j) for any (i, j) ∈

L.
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Corollary 6.1.1.4.

(a) ∆1(i, j) := w(i+ 1, j)− w(i, j) = 1− ib0 −
⌈
iω+j
α

⌉
−
∑d

l=1

⌈
iωl
αl

⌉
and

(b) ∆2(i, j) := w(i, j + 1)− w(i, j) = 1− jb̃0 −
⌈
i+jω̃
α

⌉
−
∑d̃

l=1

⌈
jω̃l
α̃l

⌉
.

Moreover,

w(i, j) = i+ j − i(i− 1)

2
b0 −

j(j − 1)

2
b̃0 −

i−1∑
q=0

(⌈
qω + j

α

⌉
+

d∑
l=1

⌈
qωl
αl

⌉)

−
j−1∑
q=0

⌈qω̃
α

⌉
+

d̃∑
l=1

⌈
qω̃l
α̃l

⌉ .

Proof. The formulae follow from 3.3.1.1 and 6.1.1.2. The formula for w is calculated

by inductions on i and on j. Hence, when we change the order of the inductions, we

get a similar formula for w.

6.1.2 The optimal bound for the reduced lattice

Consider the subset Sol of L with the following definition:

Sol :=
{

(i, j) ∈ L>0 : ∆1(i− 1, j) < 0, ∆2(i, j − 1) < 0
}
. (6.3)

Set d(i) := 1− i(b0 +ω/α)−
∑d

l=1diωl/αle and similarly d̃(j) := 1− j(̃b0 + ω̃/α)−∑d̃
l=1djω̃l/α̃le. Then using the explicit formulae 6.1.1.4 of ∆1 and ∆2, one can see

that (i, j) ∈ Sol if and only if the following system of inequalities holds:

 i ≥ α · d̃(j − 1) + 1

j ≥ α · d(i− 1) + 1 .
(6.4)

Indeed, using the formulae from 6.1.1.4 and the definition of the ceiling function

d e, e.g., the first inequality ∆1(i − 1, j) < 0 is equivalent with ((i − 1)ω + j)/α >
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1−(i−1)b0−
∑d

l=0d(i−1)ωl/αle. Then we multiply by α and use that the expressions

on both sides are integers.

We write α0, respectively α̃0, for the least common multiple of the numbers αl for

any l ∈ 1, d, respectively of α̃l for all l ∈ 1, d̃. Then (i, j) can be written in the form

(α0q+ i0, α̃0q̃+ j0) for some q, q̃ ∈ Z≥0 and (i0, j0) ∈ {0, . . . , α0−1}×{0, . . . , α̃0−1}.

(6.4) implies that for a fixed (i0, j0), if (q, q̃) satisfies the system

 (αα0e) · q + α̃0 · q̃ ≥ α · d(i0 − 1)− (j0 − 1)

α0 · q + (αα̃0ẽ) · q̃ ≥ α · d̃(j0 − 1)− (i0 − 1) ,
(SI(i0,j0))

then (α0q + i0, α̃0q̃ + j0) belongs to Sol.

The next lemmas provide some important properties of this set and give the

optimal bound for the lattice cohomological data, in the sense mentioned in the

introductory part of this chapter.

Lemma 6.1.2.1. The number of elements in Sol is finite.

Proof. We multiply the first (resp. second) inequality in (SI(i0,j0)) with the posi-

tive number −αẽ (resp. −αe), and sum up the two inequalities. Then, using that

−α2α0ε < 0 (resp. −α2α̃0ε < 0), we get

q ≤ ϑ(i0, j0) and q̃ ≤ ϑ̃(i0, j0), (6.5)

where ϑ(i0, j0) :=
⌊(
α2ẽ · d(i0 − 1)− α(ẽ(j0 − 1) + d̃(j0 − 1)) + i0 − 1

)
/α2αε

⌋
, and

symmetrically one defines ϑ̃(i0, j0) as well. It is enough to look at the cases when

ϑ(i0, j0) and ϑ̃(i0, j0) are non–negative. The facts, that the number of possible pairs

(i0, j0) is finite and each of them can be completed with finitely many solutions

(q, q̃) ∈ {0, . . . , ϑ(i0, j0)} × {0, . . . , ϑ̃(i0, j0)}, proves that Sol has only finitely many

elements.
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Lemma 6.1.2.2. (a) If i1 = (i1, j1) and i2 = (i2, j2) are elements of Sol, then

max{i1, i2} := (max{i1, i2},max{j1, j2}) ∈ Sol too. In particular, there exists

an element im = (im, jm) which is the (unique) maximum of Sol.

(b) We have the isomorphism

H∗(G, kcan) ∼= H∗(R(0, im), w).

Proof. For part (a), notice that the formulae in Corollary 6.1.1.4 imply that ∆1(i1 −

1, j) < 0, ∆2(i, j1−1) < 0 for any j ≥ j1 and i ≥ i1. Similarly, one gets ∆1(i2−1, j′) <

0 and ∆2(i′, j2 − 1) < 0 for any j′ ≥ j2 and i′ ≥ i2. Hence, ∆1(max{i1 − 1, i2 −

1},max{j1, j2}) < 0 and ∆2(max{i1, i2},max{j1 − 1, j2 − 1}) < 0 as well.

In the case of (b), we pick an element (i, j) which does not belong to Sol. By

(6.3), it satisfies at least one of the inequalities: ∆1(i− 1, j) ≥ 0 and ∆2(i, j− 1) ≥ 0.

Without loss of generality, we may assume that ∆1(i− 1, j) ≥ 0.

Then one can consider the natural inclusion ι : R[0, (i− 1, j)] −→ R[0, (i, j)] and

its retract ρ : R[0, (i, j)] −→ R[0, (i− 1, j)], where ρ|R[0,(i−1,j)] is the identity map and

ρ(i, j′) = (i− 1, j′) for every 0 ≤ j′ ≤ j.

Since the explicit formula 6.1.1.4(a) implies ∆1(i− 1, j′) ≥ ∆1(i− 1, j) for j′ ≤ j,

for any N the inclusion ιN : SN ∩ R[0, (i − 1, j)] → SN ∩ R[0, (i, j)] and its retract

ρN : SN∩R[0, (i, j)]→ SN∩R[0, (i−1, j)] induce isomorphism at the level of simplicial

cohomology. Hence, 3.1.1.8 implies

H∗(R[0, (i, j)], w) ∼= H∗(R[0, (i− 1, j)], w).

Choose i ∈ L as in the Lemma 4.5.2.4, for which there exists a sequence {in =

(in, jn)}n≥0 with the following properties: i0 = i, in+1 is either (in+1, jn) or (in, jn+1),

in tends to the infinity, and for any i′n = (i′n, j
′
n) ≤ in with i′n = in (respectively
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j′n = jn), one has ∆1(in, jn) > 0 (respectively ∆2(in, jn) > 0). Moreover, we have

H∗(L,w) ∼= H∗(R(0, i), w) as well.

Therefore, if i ∈ Sol, then this argument implies that this is the maximum point

and we are done. Otherwise, we apply the above procedure. The procedure stops

after finitely many steps when arrives to im ∈ Sol (by the same argument as before)

and we get

H∗(R(0, i), w) ∼= H∗(R(0, im), w).

Remark 6.1.2.3. (a) Notice that, with the previous lemma, we give a ‘bound’ for

H∗(L,w). In other words, all the lattice cohomological data is concentrated into

R(0, im). Moreover, the proof emphasizes that this bound is optimal.

(b) If we look at χ(l) = −(l, l + kcan)/2 as a real function on L ⊗ R, then χ is

increasing if l ≥ −kcan. Hence, it can be shown that the lattice cohomology

is concentrated into R(0,−kcan). Let ican := (b(−kcan, E∗0)c, b(−kcan, Ẽ∗0)c), i.e.

the projection of b−kcanc (the floor function b c is taken componentwise) via

φ : L→ L. Therefore, R(0, ican) has the same lattice cohomology as L. Notice

that almost all the examples in 6.2 have the property im = ican, however, this

is not the case in general, see Example 6.2.2.

6.2 Examples

In this section we provide some examples and their lattice cohomology calculations

using illustrating pictures on the weight structure of the corresponding R(0, im).

These pictures have the lattice point (0, 0) at the lower left corner, the horizontal

direction is the direction of i, while the vertical is for j. The red frames highlight the

generators of H0 and the dashed red frames are for marking H1. We also display a
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chosen minimal reduction set, i.e. a (non–unique) subset of R(0, im), which contains

the lattice cohomology information, and it is a minimal set with respect to this prop-

erty. As a consequence, we read off eu(H∗), eu(H0) and eu(γmin) := minγ eu(γ, kcan),

where γ connects 0 with im, and in most cases, we discuss their relations.

Example 6.2.1. Let us consider the graph from Figure 6.2. The reduction of its

r r r rrrr
r
rQ

Q
Q

�
�

�

�
�
�

Q
Q
Q

−5

−5

−5

−5

−5

−5

−1 −11 −1

Figure 6.2: Graph for Example 6.2.1

lattice is simple in the sense that the bound (see Lemma 6.1.2.2) im = (7, 7) is small.

Notice that it is also equal to ican, since b(−kcan, E∗0)c = b(−kcan, Ẽ∗0)c = 7, where

E0 and Ẽ0 represent the nodes, as ususal. Therefore, Figure 6.3 presents R[0, (7, 7)],

from where one can read off the full lattice cohomological data. Hence,

H0(G, kcan) = T +
−10 ⊕ T−2(1)⊕ T0(1) and H1(G, kcan) = T0(1).

Moreover, these imply that eu(H0) = 7, eu(H∗) = 6 and the minimal reduction helps

us to see eu(γmin) = 6.

Example 6.2.2. Let G be similar as in the previous example, except we increase the

weights of the legs on the right side (Figure 6.4). Then, as we will see in the sequel,

the structure is much more tricky. Notice that the coefficients of −kcan corresponding

to the nodes are 122/9 and 83/9, hence ican = (13, 9). On the other hand, the

bound is (10, 7), which is, in this case, smaller than ican. One can read off the lattice

cohomology of R[0, (10, 7)] from Figure 6.5. Namely,

H0(G, kcan) = T +
−10 ⊕ T−10(1)⊕ T−8(1)3 ⊕ T0(1) and H1(G, kcan) = T−6(1).
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1 1 -1 -2 -2 -1 0 -1

1 1 -1 -2 -2 -1 1 0

-1 -1 -3 -4 -4 -3 -1 -1

-2 -2 -4 -5 -5 -4 -2 -2

-2 -2 -4 -5 -5 -4 -2 -2

-1 -1 -3 -4 -4 -3 -1 -1

1 1 -1 -2 -2 -1 1 1

0 1 -1 -2 -2 -1 1 1

Figure 6.3: Lattice cohomology of Example 6.2.1
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−5

−1 −11 −1

Figure 6.4: Graph for Example 6.2.2

1 1 -1 -2 -2 -1 -3 -4 -4 -3 -4

1 1 -1 -2 -2 -1 -2 -3 -3 -2 -3

-1 -1 -3 -4 -4 -3 -4 -4 -4 -3 -4

-2 -2 -4 -5 -5 -4 -5 -5 -4 -3 -4

-2 -2 -4 -5 -5 -4 -5 -5 -4 -2 -3

-1 -1 -3 -4 -4 -3 -4 -4 -3 -1 -1

1 1 -1 -2 -2 -1 -2 -2 -1 1 1

0 1 -1 -2 -2 -1 -2 -2 -1 1 1

Figure 6.5: Lattice cohomology for Example 6.2.2

Then eu(γmin) = eu(H∗) = 9 < eu(H0) = 10.

Example 6.2.3. In this example, we put two vertices on one of the legs and consider

the graph in Figure 6.6. The bound is (12, 7), R[0, (12, 7)] is shown by Figure 6.7,
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−1 −14 −1

Figure 6.6: Graph for Example 6.2.3

hence the lattice cohomology is

H0(G, kcan) = T +
−12 ⊕ T−12(1)⊕ T−8(1)3 ⊕ T0(1) and H1(G, kcan) = T−6(1).

Therefore, these formulae and the minimal reduction set shows that eu(γmin) =

eu(H∗) = 10 and eu(H0) = 11.

1 1 -1 -2 -3 -3 -2 -3 -3 -4 -4 -3 -4

1 1 -1 -2 -3 -3 -2 -3 -3 -3 -3 -2 -3

-1 -1 -3 -4 -5 -5 -4 -5 -5 -5 -4 -3 -4

-2 -2 -4 -5 -6 -6 -5 -6 -6 -6 -5 -3 -4

-2 -2 -4 -5 -6 -6 -5 -6 -6 -6 -5 -3 -3

-1 -1 -3 -4 -5 -5 -4 -5 -5 -5 -4 -2 -2

1 1 -1 -2 -3 -3 -2 -3 -3 -3 -2 0 0

0 1 -1 -2 -3 -3 -2 -3 -3 -3 -2 0 0

Figure 6.7: Lattice cohomology of Example 6.2.3

Example 6.2.4. Now, we take an example when the graph has two vertices on the

chain connecting the two nodes. Let G be as in Figure 6.8. Then, R[0, (20, 14)]

r r r rr
r

r
rQ

Q
Q

�
�

�

�
�
�

Q
Q
Q

−2

−3

−2

−3

−1 −1−7 −8

Figure 6.8: Graph for Example 6.2.4
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has to be checked for the lattice cohomology calculation, as it is in Figure 6.9. The

cohomology is

H0(G, kcan) = T +
−2 ⊕ T−2(1)3 ⊕ T0(1) and H1(G, kcan) = T0(1)2.

However, the minimal set for the reduction is much more interesting: contains the set

R[(6, 6), (14, 8)], which can not be reduced further and contains the twoH1 generators.

Together with the cohomology modules show that

eu(H∗) = 4 < eu(γmin) = 5 < eu(H0) = 6.

2 2 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0

2 2 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0

1 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0

1 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0

1 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0

1 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0

1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1

0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1

0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1

0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1

0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 2 2

0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 2 2

Figure 6.9: Lattice cohomology of Example 6.2.4

Example 6.2.5. In the previous examples, the generators of H1 have a very special

‘shape’ (that is, the loop is the smallest possible, containing only one lattice point).
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We provide a graph, shown in Figure 6.10, which is interesting in this sense, i.e. it

has more complicated H1 generators. Since the bound for the reduced lattice is big

r r r rrrr
r
rQ

Q
Q

�
�

�

�
�
�

Q
Q
Q

−3

−4

−5

−3

−4

−5

−1 −10 −1

Figure 6.10: Graph for Example 6.2.5

and can not be illustrated here with a picture, we give only the cohomology modules.

H0(G, kcan) = T +
−48 ⊕ T0(1) ⊕ T−26(1) ⊕ T−30(1) ⊕ T−36(1) ⊕ T−42(1) ⊕ T−44(1)2 ⊕

T−46(1)2 and H1(G, kcan) = T−24(1)⊕T−40(1)⊕T−42(1)⊕T−44(1), where the last three

components are generated by the 1–cycles from Figure 6.11. The lower left corners

of the blocks are in positions (24, 24), (39, 39) and (44, 44).

-20 -20 -21 -22 -21 -21 -21 -22 -22 -22 -22 -23

-20 -19 -20 -21 -21 -20 -20 -21 -22 -21 -21 -22

-20 -19 -19 -20 -22 -21 -20 -21 -23 -22 -21 -22

-21 -20 -20 -20 -23 -22 -21 -21 -24 -23 -22 -22

Figure 6.11: The ‘shape’ of some H1 generators in Example 6.2.5

Example 6.2.6. The last example provides a counterexample for the SWI Conjec-

ture. In other words, for the graph G given in Figure 6.12, there exists an analytic

realization for which the pg > eu(H∗). This example appeared in [46, pg. 6] and [64,

r r r r r rrr
r r

−2−2

−4 −2

−3 −2 −2−1 −31 −1

Figure 6.12: Graph for Example 6.2.6

7.3.3], since this topological type admits a superisolated hypersurface singularity with
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geometric genus p
(si)
g = 10. On the other hand, if we take the complete intersection

{z3
1 + z4

2 + z5
3z4 = z7

3 + z2
4 + z4

1z2 = 0} ⊂ (C4, 0) divided by the diagonal Z5–action

(p2, p4, p, p), we get a splice–quotient type singularity with geometric genus p
(sq)
g = 8.

For other ‘generic’ analytic types, pg drops even more.

Then we can analyze the lattice cohomological structure using the reduction to

the nodes. The bound is (30, 34). Hence, in Figure 6.13 we show how the weight

structure of R[0, (30, 34)] looks like. Since this rectangle is rather big, the figure is

constructed in a way that the point (0, 0) stays at the upper left corner, the vertical

direction stands for i and the horizontal is the direction of j. Moreover, the chosen

minimal reduction set is visualized by the bold face characters. One can read that

H0(G, kcan) = T +
−10 ⊕ T−10(3)⊕ T0(1)2 and H1(G, kcan) = T−4(1)2.

This implies that eu(H0) = 10, eu(H∗) = 8 and by traveling along the minimal

reduction set one calculates eu(γmin) = 10. Therefore, p
(si)
g = eu(γmin) > eu(H∗),

which also shows that the superisolated hypersurface structure is ‘extremal’ in the

sense that its geometric genus hits the maximum of possible values (cf. 3.2.2).
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0 1 0 0 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 0 0 1 1 2 3 4 5 6 7 8 9 111214151616

1 1 0 0 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 0 0 1 1 2 3 4 5 6 7 8 9 111214141515

0 0 -1 -1 -2 -2-3-3-3-3-3-3-3-3-3 -2 -2 -1 -1 0 0 1 2 3 4 5 6 7 8 101112121313

-1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -2 -2 -1 -1 0 1 2 3 4 5 6 7 9 9 10101111

-1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -2 -2 -1 -1 0 1 2 3 4 5 6 7 8 8 9 9 1010

-1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -2 -2 -1 -1 0 1 2 3 4 5 6 6 7 7 8 8 9 9

-2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2 -1 0 1 2 3 4 4 4 5 5 6 6 7 7

-2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2 -1 0 1 2 3 3 3 3 4 4 5 5 6 6

-2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2 -1 0 1 2 2 2 2 2 3 3 4 4 5 5

-2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2 -1 0 1 1 1 1 1 1 2 2 3 3 4 4

-2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2 -1 0 0 0 0 0 0 0 1 1 2 2 3 3

-2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 2 2

-2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5-4-4-3-3-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 0 0 1 1

-1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4-3-3-2-2-1-2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 0 0 1 1

-1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4-3-3-2-2-2-3 -3 -3 -3 -3 -3 -3 -3 -3 -2 -2 -1 -1 0 0

-1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4-3-3-2-3-3-4 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -2 -2 -1 -1

0 0 -1 -1 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3-2-2-2-3-3-4 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -2 -2 -1 -1

1 1 0 0 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2-1-2-2-3-3-4 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -2 -2 -1 -1

1 1 0 0 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2-2-3-3-4-4-5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2

2 2 1 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2

3 3 2 2 1 1 0 0 0 0 0 0 0 -1 -2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2

4 4 3 3 2 2 1 1 1 1 1 1 0 -1 -2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2

5 5 4 4 3 3 2 2 2 2 2 1 0 -1 -2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2

6 6 5 5 4 4 3 3 3 3 2 1 0 -1 -2 -2 -3 -3 -4 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -4 -3 -3 -2 -2

7 7 6 6 5 5 4 4 4 3 2 1 0 -1 -2 -2 -3 -3 -4 -4 -5-5-5-5-5-5-5-5-5 -4 -4 -3 -3 -2 -2

9 9 8 8 7 7 6 6 5 4 3 2 1 0 -1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -2 -2 -1 -1

1010 9 9 8 8 7 6 5 4 3 2 1 0 -1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -3 -3 -2 -2 -1 -1

11111010 9 9 7 6 5 4 3 2 1 0 -1 -1 -2 -2 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4-3 -3 -2 -2 -1 -1

131312121110 8 7 6 5 4 3 2 1 0 0 -1 -1 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -2 -2 -1 -1 0 0

151514141211 9 8 7 6 5 4 3 2 1 1 0 0 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 0 0 1 1

161615141211 9 8 7 6 5 4 3 2 1 1 0 0 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 0 0 1 0

Figure 6.13: Lattice cohomology of Example 6.2.6
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