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INTRODUCTION 

The main goal of this paper is to describe the result of Goldston-Pintz-Yildirim [1], obtained by 

this group of authors in 2005, about the small gaps between prime numbers and makes this result 

more available to the reader. Namely, the following result will be described: 

      
   

   (
       

     
)                                                                     

where    is the  -th prime. In 2006 Motohashi [2] found easier proof of (1), and the final chapter 

of this paper will be based on his variant of proof. 

    Result (1) is the best known estimation of gap between two consecutive primes for today, but 

the smallest gaps of such type are generally believed to be 2, as predicted by the Twin Prime 

Conjecture. From this position the gap between (1) and general belief is still infinity. From the 

other side, the history of researches towards Twin Prime Conjecture says that result of type (1) is 

the breakthrough in this area. In general case, let us define 

      
   

   (
       

     
)                                                                    

First nontrivial unconditional result was obtained by Erdös in 1940 using Brun’s sieve: 

      

After appearing the Bombieri-Vinogradov theorem in 1965, Bombieri and Davenport made a 

breakthrough: 

     
 

 
 

Then Huxley made a several essential refinements and the last one (1984) was: 

     
 

 
  (

 

 
)                        

In 1988 Majer applied his own new method and got a solid result: 

                        

where   is Euler’s constant . In 2005 Goldston and Yildirim proved that 

   (√  
 

 
)
 

  

And finally in the same year Goldston, Pintz and Yildirim showed that 
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   (√   )
 
                  

    The principal idea which made the Goldston-Pintz-Yildirim work is the introduction of 

parameter   in the Selberg sieve with weight     (   
 

 
)
   

(see Chapter 6 of this paper). 

Appearance of additional parameter   plays the crucial role in several estimations in the proof. 

    Despite the complexity of problem, authors of [1] believe that mathematical society is not so 

far to show that  

      
   

                                                                       

The hypothesis stated in form (3) is called Bounded Gap Conjecture. Belief in inequality (3) has 

strong basis. Suppose we have the following inequality:  

∑    
       

   
   

|         
 

    
|

    

                                              

Statement which says that for a large   with any positive   
 

 
 inequality de (4) holds is called 

Bombieri-Vinogradov theorem. Statement which says that in (4) we can have     is known as 

Elliot-Halberstam Conjecture. Under this conjecture Goldston-Pintz-Yildirim proved in [1] that 

       

     

    This paper has 6 chapters. Chapter 1 is consisted of basic definitions, lemmas and theorems 

about the distribution of prime numbers, knowledge of which are required for understanding the 

next chapters. The theorems about a logarithmic order of Riemann zeta function in chapter 1 are 

necessary for estimations in Chapter 6. Chapters 2, 3, 4 are mainly auxiliary tools for proof of 

Bombieri-Vinogradov theorem, but also contain wide applicable and powerful methods. 

Chapters 5 and 6 contain complete proofs of Bombieri-Vinogradov and Goldston-Pintz-Yildirim 

theorems up to similar cases. 
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Chapter 1 

BASIC TOOLS IN ANALYTIC NUMBER THEORY 

 

1.1 Basic arithmetic functions and their properties 

Definition 1.1.1. A nonzero function       is multiplicative if                for all 

coprime   and  . If equality holds for all pairs of   and  , then   is completely multiplicative. 

Definition 1.1.2. Möbius function is a function of the form: 

     {
                                                                         

                                                  
                                                                       

 

Note 1.1.3. Möbius function is multiplicative. 

Lemma 1.1.4. Suppose that   and   are multiplicative functions. Then 

         ∑      
 

 
 

   

  

is also multiplicative. 

Lemma 1.1.5. Next equality is the famous property of Möbius function: 

∑    

   

 {
                    
                   

 

Proof. Suppose that   is squarefree and          , and            . Then  

∑    

   

 ∑     

   

 ∑       

   

 ∑     

   

 ∑       

   

     

Lemma 1.1.6 (Möbius inversion formula). Suppose that       and define      ∑          

then       and   is multiplicative if   is multiplicative. 

Proof. If       then  

∑      
 

 
 

   

 ∑∑      
 

 
 

      

 ∑∑    

   
   

   

 (
 

 
)  ∑ ∑       
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If     then sum over   is zero, so first claim is proved. Multiplicativity of   and Lemma 1.1.4 

give us the second claim.   

Lemma 1.1.7 (Abel summation formula). Suppose that      is continuously differentiable on 

      and    are complex numbers. Then 

∑                 ∫            

 

      

 

Where      = ∑          

Proof. We can apply the Stieltjes integration by parts on the sum above: 

∑       

     

 ∫          

  

  

           
  ∫         

 

 

  

And the result follows.   

Corollary 1.1.8. There is a constant   such that 

∑
 

 
   

                

Proof. This famous result can be obtained by applying Abel formula with      
 

 
  and      

for all    .   

Definition 1.1.9. The following function is called a von Mangoldt’s function: 

     {
                                    
                                                       

 

Note 1.1.10. Von Mangoldt’s function is multiplicative. 

Theorem 1.1.11 (Mertens). There is an absolute constant B such that 

∑
 

 
   

                        

Proof of this classical result can be found by reader in [3], page 12. 
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1.2 Dirichlet series and Perron’s formula 

Definition 1.2.1. Suppose that    are complex numbers and        is a complex variable. 

Then a series of the form 

∑      

 

   

  

is called Dirichlet series. The finite sum of the above form is called Dirichlet polynomial. 

Lemma 1.2.2. Suppose that           and the series ∑        
    converges. Then the sum 

∑       
     converges uniformly on the compact subsets of the half-plane          and the 

sum function      is holomorphic in that half-plane. 

Definition 1.2.3. Abscissa of convergence of the Dirichlet series ∑       
    is the number 

    {      ∑      

 

   

          } 

Abscissa of absolute convergence of Dirichlet series is called the abscissa of convergence of 

∑         
     

Lemma 1.2.4. Suppose that    and    are complex numbers and the following Dirichlet series 

are converge in         : 

     ∑      

 

   

                  ∑      

 

   

  

If           for         , then       for all  . 

Lemma 1.2.5 (Multiplication of Dirichlet series). Suppose that the following Dirichlet series are 

converge absolutely in         : 

     ∑      

 

   

                  ∑      

 

   

  

Then the Dirichlet series  

     ∑      
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with    ∑          is also absolutely convergent in          and              . 

Proofs of Lemmas 1.2.2, 1.2.4 and 1.2.5 can be found in [3] pp. 14-17. 

Lemma 1.2.6 (Perron’s formula). Suppose that    . Then 

 

   
∫

  

 
  

    

    

 

{
 

 
                                      
 

 
                                             

                                      

 

This variant of Perron’s formula can be obtained by using the contour integration. 

Corollary 1.2.7. Suppose that    is the abscissa of absolute convergence of ∑       
   , and   

is not integer. Also let      and      ∑       
   . Then 

∑   

   

 
 

   
∫            

    

    

  (
  

 
∑

       

|    
 
  |

 

   

)  

Proof.  Since   is not integer, we have 

∑    ∑     

 

      

  

where    is 1, if     and    is zero, when    . Let   
 

 
   then by Lemma 1.2.6: 

∑     

 

   

 ∑   

 

   
∫ (

 

 
)

   

 

    

    

 

   

   (
 

 
)
 

( |   (
 

 
)|   )   

 
 

   
∫   ∑      

  

 

 

   

 

    

    

 (
  

 
∑

       

|    
 
  |

 

   

)  

and Corollary is proved.   

 

1.3 Divisor functions and Euler function. 

In this section we consider several standard estimates for divisor function and for sum of 

reciprocal Euler functions. 

Definition 1.3.1. The divisor function      denotes the number of different divisors of integer  . 
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Definition 1.3.2. The generalized divisor function       denotes  the number of ways, in which 

integer   can be written as a product of   integers.  

Note 1.3.3. It is clear that             . 

Lemma 1.3.4 (Elementary bound for     ). For every integer n we have: 

      √   

Proof. Let       . If    √  then    √  , reverse is also true, hence 

     ∑ 

   

  ∑  

  √ 

  √   

Lemma is proved.   

Theorem 1.3.5. For      and any nonnegative integer   we have: 

∑
     

 
   

 (∑
 

 
   

)

  

  

Proof.  We will prove it by induction. Case when     is trivial. Assume inequality above holds 

for    . For     we can write: 

∑
       

 
   

 ∑
     

 
   

∑  

   

 ∑
      

  
    

 ∑
(        )

 

  
    

  

 ∑
(        )

 

  
   
   

 ∑
     

 
   

∑
     

 
   

 (∑
 

 
   

)

  

(∑
 

 
   

)

  

  

And result follows.   

Theorem 1.3.6. Suppose that   is nonnegative integer. Then 

∑      

   

  (∑
 

 
   

)

    

  

Proof. We will prove this theorem by induction again. Case when      is clear. Assume that 

    and do induction for     : 
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∑      

   

 ∑       

    

 ∑           

    

 ∑      

   

∑      

  
 
 

  

By induction hypothesis theorem: 

∑      

   

∑      

  
 
 

 ∑      

   

 

 
(∑

 

 
   

)

    

  ∑
     

 
   

(∑
 

 
   

)

    

  

By previous Theorem: 

 ∑
     

 
   

(∑
 

 
   

)

    

  (∑
 

 
   

)

  

(∑
 

 
   

)

    

  

And statement of the Theorem follows.   

Definition 1.3.7.  Euler totient function (or just Euler function)      is the number of positive 

integers, which are less then   and coprime with  . 

 

Lemma 1.3.8. For      two following statements hold: 

                                                            is multiplicative 

                                                                for prime   and    . 

The proof of Lemma 1.3.8 can be found in book of Apostol [9], page 28. 

Lemma 1.3.9. For any     we have 

∑
 

    
   

       

Proof.  It is easy to see that for a prime   and any nonnegative multiplicative function       

∑     

   

 ∏ ∑      

      

  

Hence by Theorem 1.1.11 and Lemma 1.3.8: 

∑
 

    
   

 ∏ ∑
 

     
      

 ∏(  ∑
 

         

 

   

)

   

    (∑
 

         

 

   

)   
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    (∑
 

 
 

   

 (∑
 

      

   

))        

Proof of Theorem is finished.   

 

1.4 Prime number theorem and Riemann zeta function. 

Definition 1.4.1. Prime counting function      is the function counting number of primes in 

interval      . 

Definition 1.4.2. Denote the Chebyshev function      as: 

     ∑     

   

  

The next theorem describes a classical result in analytic number theory, and appears in many 

important theorems about the distribution of prime numbers. 

Theorem 1.4.3 (Prime number theorem). 

   
   

    

      
    

Proof of PNT can be found in most books on analytic number theory, for example in 

Titchmarsh [4], in section 3. 

PNT has many alternative formulations, the next theorem is one of them. 

Theorem 1.4.4. There exists an absolute constant     such that for     

        (    (  √    ))  

Definition 1.4.5. For       define the Riemann zeta function as: 

     ∑    

 

   

  

Lemma 1.4.6. For       we have an Euler product for     : 
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     ∏(  
 

 
)
  

 

 

 

Note 1.4.7. We deduce from Lemma 1.4.6, that      doesn’t have zeroes in      . 

Lemma 1.4.8. For      the following equality holds: 

∑
    

  

 

   

 
 

    
  

Proof.  We have 

∑
    

  

 

   

∑
 

  

 

   

    

by Lemma 1.1.5 and property of multiplication of Dirichlet series.   

Theorem 1.4.9. The function      can be analytically continued to a regular function for all 

values of  , except    , where there is a simple pole with residue 1. Extended      satisfies the 

functional equation: 

              (
 

 
  )               

Zeroes of       in         are of special interest in analytic number theory. Existence a 

zero-free region of      in         gives many powerful properties to     , so the general 

problem in studying such zeroes is an extension of zero-free region to the left of      . A part 

of original proof of PNT was the next result: 

Theorem 1.4.10. There is a constant   such that      is not a zero for 

    
 

    
  

For           . 

Theorem 1.4.11. For any     and absolute positive constant A the following inequality holds: 

|
 

    
|  ∑
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Theorem 1.4.12.              uniformly in the region 

  
 

    
             

Theorem 1.4.13 In a region     
 

    
: 

 

    
          

Theorems 1.4.9-1.4.13 reader can find in book of Titchmarsh [4]: Theorem 1.4.9 on p. 13, 

Theorem 1.4.10 on p. 54, Theorem 1.4.11 on p. 45, Theorem 1.4.12 on p. 49, Theorem 1.4.13 on 

p. 60.  
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Chapter 2 

DIRICHLET CHARACTERS  

AND PÓLYA-VINOGRADOV INEQUALITY 

 

2.1 Group characters 

Definition 2.1.1. Let G be a finite commutative group of order m. A group homomorphism χ: 

 →   is called a character of G if                 for all       . 

Note 2.1.2. It can be easily established that        and that      is an  -th root of unity: 

                  . 

Note 2.1.3. Group characters      form a group  ̂ under pointwise multiplication:           

           for all    . Trivial character is the identity of  ̂:         for all    , and 

complex-conjugate character  ̅  is inverse of  . 

Theorem 2.1.4.    and  ̂ are isomorphic to each other. 

Proof.  Suppose that   is cyclic with generator  . Since every      is the  -th root of unity, 

     must be of the form:           
 

 
  for some integer  . If       then            

     
  

 
 . We can define          

  

 
  and see that all  ̂ is generated by    , which mean that  ̂ 

is cyclic of order  . 

 Now, let    be arbitrary finite abelian group.   can be represented as the direct product of cyclic 

groups,               . Consider                   . We can define     ̂ by 

                          for                    , here     is the character in   ̂ 

corresponding to   . So, we constructed now an isomorphism between   and  ̂. Theorem is 

proved.   

Corollary 2.1.5.  Let   be an abelian group of finite order and    ,     . Then there is a 

character    ̂ such that       . 

Proof.  Let write   as the direct product of cyclic groups,                and   

        . Some     is not identity, so let it be   . Let   be the generator of    . Consider the 

character   corresponding to      under the isomorphism from the Theorem 2.1.1. Character 

   .    
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Lemma 2.1.6. Let G be a finite abelian group and denote by    the trivial character of G. Then 

the following two relations hold: 

∑     

   

 {
            

                 
                                                         

∑     

    ̂ 

 {
           

                 
                                                        

Proof.  Clearly, when   is trivial, then (2.1.1) holds. Suppose now that   is nontrivial and for 

some   ,         . We can write 

     ∑     

   

 ∑        ∑     

        

 ∑     

   

  

Since        , the sum on the right side must be equal to 0. Thus (2.1.1) holds.  

    Clearly, when    , then (2.1.2)  holds. So, suppose that    . There is a         by 

Corollary 2.1.2. We can write 

     ∑     

    ̂

 ∑       

    ̂

 ∑     

      ̂

 ∑     

    ̂

  

Again, sum on the right side must be equal to zero. This establishes (2.1.2).   

2.2 Dirichlet Characters 

Let     be an integer. Let            be the multiplicative group of       . Then    is a 

cyclic group of order     , where      is Euler’s function. Let us introduce an extended 

function         if           , where   is a character of   .  

Definition 2.2.1. Extended function denoted above is a Dirichlet character modulo q, or just a 

Dirichlet character. 

Note 2.2.2. Dirichle characters are not group homomorphisms anymore, but they preserve 

multiplicativity:                 for all      . Also we will denote the extension of 

trivial group character    as principal character modulo q and preserve the notation   . 

Next lemma is a straightforward consequence of Lemma 2.1.6 

Lemma 2.2.3. If   is a Dirichlet character modulo q, then 
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∑      

 

   

{
                 
                      

                                                           

∑      

     

{
                    

                    
                                                 

where the sum on the right side is over all Dirichlet characters modulo q. 

     Let   be a non-principal character modulo  , let    be a proper divisor of q, and let    be a 

non-principal character modulo   , also let    be a principal character modulo q such that 

                   for all                                                    (2.2.3) 

Definition 2.2.2. We say that    induces  ,  if (2.2.3) holds.  

Definition 2.2.3. Dirichle character   is imprimitive, if we can find    and    as in (2.2.3), 

otherwise   is called primitive. 

Note 2.2.2. Principal characters are neither primitive, nor imprimitive. 

Definition 2.2.4. Let   be an imprimitive Dirichlet character modulo q. Conductor of   is the 

least modulus    such that there exists a (necessarily primitive) character    modulo   , which 

induces  .  

Note 2.2.3.  If   is primitive, we define its conductor to be equal to the modulus  , and if   is 

principal, we define the conductor to be equal to 1. 

2.3 Gaussian Sums 

Let   is an integer, and   is a Dirichlet character modulo  . Let us introduce the sum 

       ∑      (
  

 
)                                                        

      

 

Where the summation is over any complete system of residues modulo  . 

Lemma 2.3.1. Let   be a Dirichlet character modulo q and suppose that            or   is 

primitive. Then 

         ̅         .                                                       (2.3.2) 
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Proof.  Suppose that          If   runs through a complete system of residues modulo  , then 

so does   . Then 

        ̅   ∑       (
  

 
)

      

  ̅   ∑      (
 

 
)

      

  ̅           

    Now, suppose that   is primitive and            Obviously that  ̅    = 0. Let      , 

      . There exists such an integer   that        ,             ,        . Then 

           ∑       (
   

  
)

      

 ∑       (
    

  
)

      

         

It follows, that         , which establishes the claim of the lemma.   

Lemma 2.3.2. Let   be a Dirichlet character modulo q and    its conductor modulo   . Then 

        (
 

  
)   (

 

  
)                                                                

Moreover, if   is primitive, then        | = √ . 

Proof.  First, let   be primitive. Summing (2.3.2) over all   modulo  , we get 

         ∑        

       

 ∑          

       

  

∑ ∑        
  

 
 ∑  ̅    ( 

  

 
)  

                   

 

 ∑ ∑      ̅   ∑  (
      

 
)

                  

                                     

We know that  ∑  (
      

 
)       is the sum of all group characters, corresponding to cyclic 

group of order  , so it is   or 0 according as           or not. Hence, 

         ∑        

       

  ∑        

       

  

thus, the second claim of lemma holds. 

    Now turn to general case. Using the properties of möbius function in Lemma 1.1.5, we can 

write the principal character    modulo   as       ∑            . Thus, 
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       ∑      

      

      (
 

 
)  ∑      

      

 (
 

 
) ∑     

       

 

We can change an order of summation in the last sum, so first we will over     and then sum 

over       . But if      and                          
 

 
       

                 . So, we can replace         by         or          : 

       ∑    ∑        (
  

 
)  

            

 

 ∑         ∑       (
  

 
)

            

  

Note that all terms in last sum will be zero if         , so we may restrict the summation over 

d to the divisors of         : 

       ∑          ∑       (
  

 
)

             

  

Now our aim is to represent           as         Let write      
  and  

 

 
  

  

 
  . Thus   

runs over a complete system of residues modulo 
  

 
, and   runs over a complete system of 

residues modulo   . We can write 

       ∑          ∑ ∑           (
        

 
)

                       

  

 ∑          ∑           
  

 
 ∑  (

  

  
)

                       

  

Note that  ∑  (
  

  
)            vanishes when 

  

 
  , so       and result follows.   

2.4 The Pólya - Vinogradov inequality. 

Theorem 2.4.1. (Pólya – Vinogradov).  Suppose that   and   are positive integers and   is a 

non-principal Dirichlet character modulo  . Then 

| ∑     

       

|    √                                                                  

Proof.  First, let   be a primitive character. Then, by (2.3.2), 
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   ̅   ∑     

       

 ∑ ∑  ̅    (
  

 
)

             

 ∑  ̅   

      

∑  (
  

 
)

       

  

Applying Lemma 2.3.2 we can see that 

| ∑     

       

|    
 
 ∑ | ∑  (

  

 
)

       

|

   

   

                                       

Modulus of  ∑  (
  

 
)        is equal to: 

| ∑  (
  

 
)

       

|  |
     

      
  

     
 
 

 
| |  

  

 
 |  |

     
      

  

    
 
 

 
| 

Absolute value of     (
 

 
)  is: 

|   (
 

 
)|  √          (

 

 
)         (

 

 
)   √       (

 

 
)    |       

 

 
 |  

Similarly we can calculate modulus of     (
      

 
) . Thus, the inequality (2.4.2) will 

transform to 

| ∑     

       

|      ∑       (
 

 
)  

   

   

 

Now we apply the inequality             for            When       we can write 

∑       (
 

 
)

   

   

 ∑       (
 

 
)

   

   

 ∑       (
 

 
)

   

     

    

  ∑
 

 

   

   

    ∑
 

    

   

   

    ∑    (
    

    
)

   

   

    

                    

Here we used the fact,  that         is concave and             for all    . When   

    , we have 

∑       (
 

 
)

   

   

  ∑
 

 

 

   

  ∑    (
    

    
)

 

   

        

This establishes the theorem for primitive characters. 
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    If   is induced by a primitive character    modulo  ,    , we have 

∑     

       

 ∑      

       

∑     

       

 ∑     

   

    ∑      
 
 

   
   

 

  

The sum over m is bounded above by         ,  since    is primitive. Thus, 

| ∑     

       

|   
 
     ∑       

   

  (
 

 
)  

 
       

where the terms with         are equal to 0. If we use that       √   from Lemma 1.3.4, 

then the result follows.    
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Chapter 3 

AUXILIARY TOOLS IN ANALYTIC NUMBER THEORY 

 

3.1 Some generalized counting functions and primes in arithmetic progressions. 

Definition 3.1.1. For a Dirichlet character   define 

       ∑            .                                              (3.1.1) 

Definition 3.2.2. Define 

         ∑        
         

. 

Lemma 3.1.1. Suppose that   is a character modulo   induced by a primitive character    

modulo        . Also let    be a principal character modulo  . Then following three 

relations hold: 

                           .                                      (3.1.2)  

                      √                                          (3.1.3) 

         
 

    
∑  ̅                                                   (3.1.4) 

Proof.  First we will prove (3.1.2). We have 

                 ∑     
   

       

 ∑        

   

∑  

      

                           

which establishes (3.1.2). Using the Theorem 1.4.4 and (3.1.2) we can write for          

                                        √          

which proves (3.1.3). For right part of (3.1.4) we have 

 

    
∑  ̅   

      

        
 

    
∑  ̅   ∑         

         

  

 

    
∑     ∑  ̅       

         

  

If denote the   ̅  as inverse of   modulo  , and of we write   as      , then  ̅       ̅  and 

 ̅             ̅        ̅                 and the right part of last equality will be 

equal to 
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∑    ∑  ̅       

         

 
 

    
∑     
   

         

      

and the result follows.   

Theorem 3.1.2 (Siegel-Walfisz). Let   be a real fixed constant and          where   

         . Then exists a positive constant      depending only on   such that 

         
 

    
       (     √      )                                       

      Theorem 3.1.2 describes the asymptotic law of distribution of prime numbers in arithmetic 

progressions with best known error term. More about Siegel-Walfisz theorem can be found in 

book [5] of Davenport. 

 

3.2 Vaughan Identity 

Theorem 3.2.1 (Vaughan). Suppose that          Then 

∑              

     

                                                              

where                         

   ∑ ∑                 

         

           ∑ ∑         

          

 

   ∑ ∑             
   

    
   

 

with coefficients              and            

Proof.  Let us write a trivial identity 

      

    
                              

      

    
                       (3.2.2) 

We can choose      and      to be arbitrary functions, in particular Dirichlet polynomials: 

     ∑             and       ∑        
   . 

Our task is to compare the coefficients of     in the Dirichlet series representations of the left 

and right sides of (3.2.2) to obtain an identity for     . We have 
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∑        

 

   

 ∑        

   

 ∑        

   

∑         

 

   

 ∑        

   

∑        

   

∑    

 

   

 

  (∑        

 

   

 ∑        

   

) (           )   

 ∑              

    
   

 ∑            

     
       

 ∑        

   

 (           )  

From Lemmas 1.4.8 and 1.1.5 

∑         
            and     ∑             when    . 

Last summand from (3.2.2) can be written as 

∑     

   

   ∑        

 

   

∑        

   

 ∑     

   

   ∑        

    
   

  

∑     

   

   ∑         

    
       

  ∑     
  

       

    ∑          

    
   

  

So, for     we obtain the following identity for     : 

      ∑           
    
   

 ∑         
     

       

 ∑     
  

       

    ∑          

    
   

  

Multiplying both sides by      and summing over        we obtain Vaughan identity with 

   ∑         
    

       

                     ∑     
    

      

 

And, easy to see that      ∑                 and              

 

Vaughan identity was found by Vaughan in 1977, and can be used for decomposing sums over 

primes into double sums, which are easier to evaluate. One of the applications of the Vaughan 

identity is simplification of  proof of Bombieri-Vinogradov’s theorem; it will be demonstrated in 

Chapter 5 of this paper. 
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Chapter 4 

ONE RESULT FROM THE LARGE SIEVE 

 

4.1 Inequality, which is involving an exponential sum 

Theorem 4.1.1  Suppose that          – arbitrary complex numbers and 

     ∑        

 

    

  

Moreover, let be         – arbitrary real numbers and         ‖     ‖  where operator 

‖ ‖ means distance to the closest integer. Then 

∑       
 

 

   

               ∑      
 

    

  

Proof.  Let   be an arbitrary real number, such that     (
 

 
)       – real number, such that 

       and 

     ∑       

 

  

 

-  arbitrary Fourier series, which contains only cosines, and for which series ∑  
  converges, and 

function        when ‖ ‖   . Also suppose, that      when        Denote 

     ∑  
         

 

  

  

Then      is convolution of functions      and     , it means 

     ∫             

 

 

                   ∫              

 

  

 

After applying the Cauchy inequality we have 
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        ( ∫(    )
 

 

  

  )( ∫             

 

  

)  (∫(    )
 

 

 

  )( ∫            

   

   

)  

Let us replace now   by    and sum over all  . Intervals             doesn’t overlap 

        according to the definition of    and assumption that    (
 

 
)  . Thus, 

∑       
 

 

   

 (∫(    )
 

 

 

  )(∫           

 

 

)  (∑  
 

 

  

)(∑  
       

 

  

)  

Now we can denote function      by another way: 

     { 
        ‖ ‖            ‖ ‖    

                                       
 

Hence, coefficients    can be calculated according to Fourier formulas: 

   ∫            

 

 

     ∫                    

 

 

 

After integrating by parts we obtain that     
        

   
  . Moreover, 

∑  
 

 

  

 ∫(    )
 

 

 

    ∫              

 

 

 
 

 
     

So, previous inequality can be written as 

∑       
 

 

   

 
 

 
   ∑ (

   

        
)
 

     
 

    

  

Now suppose that          hence coefficient near        is maximal if     , because 

function           is monotonically increasing when        . Thus 

∑       
 

 

   

 
 

 
   (

   

        
)
 

∑      
 

    

  

The parameter   has only two restrictions:   (
 

 
)    and        , in other cases it is still 

arbitrary, so denote      , then 
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   (

   

        
)
 

 
 

 
  

  

          
  

Where   is arbitrary number, satisfying two conditions   (
 

 
)   and        

    Function               is decreasing, when   is increasing from 0 to   , where    is the 

unique solution of equation        
 

 
   , such that         . If     (

 

 
)    then 

denote     . Then 

 

 
  

  

          
 

 

 
  

  
 

           
   

If     (
 

 
)  ,  then denote    (

 

 
)     , in this case 

 

 
  

  

          
 

 

 
    

 

       
   

 

 
    

  

        
    

After calculations we find that           , it means that 

 

 
  

  
 

           
      

Theorem is proved.   

Lemma 4.1.2  Suppose that   and   are positive integers. Then 

∑ ∑ | ∑     
  

 
 

   

     

|

 

     
       

   

             ∑      
   

     

  

Proof.  First we will replace variable of summation    to    , where    is running between 

integers    and   . Denote    (
 

 
)  or  (

 

 
)        if   is even or odd, and        

      So, now    is running between    and   or    , in the last case we can create extra 

zero coefficient. 

    Now we can apply Theorem 4.1.1. Numbers          in this theorem will be rational 

numbers    , for which the smallest of possible denominators      Now, if           and 

we have 

‖
 

 
 

  

  
‖  

 

   
 

 

  
  

Hence,       and lemma is proved.   
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4.2 Main lemma 

 

Lemma 4.2.1. Suppose that       are positive integers. Then 

∑
 

    
   

∑ | ∑       

   

     

|

 

      

       ∑      
   

     

  

 Where        denotes a summation restricted to primitive characters. 

Proof. When   is primitive, from Lemmas 2.3.1 and 2.3.2 we can deduce that 

 | ∑       

   

     

|

 

 | ∑      ̅   

   

     

|

 

 || ∑  ̅     
 

 
 

     
       

||

 

  

Where      ∑         
                  Hence 

 

    
∑ | ∑       

   

     

|

 

 
 

    
∑ || ∑  ̅    (

 

 
)

     
       

||

 

            

  

 
 

    
∑   

  

 
   

  

 
 

̅̅ ̅̅ ̅̅ ̅

         
          

∑   

      

    ̅  ∑ | (
 

 
)|

 

     
       

  

Where   ̅ denotes the multiplicative inverse of    modulo q. Thus, the result follows after 

applying the Lemma 4.1.2.   

Lemma 4.2.1 plays an important role in estimating sums in Bombieri-Vinogradov theorem. 

More about large sieve reader can find in book of Davenport [5], p.151 and in Russian version of 

this book [6], p.147. 
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Chapter 5 

BOMBIERI-VINOGRADOV THEOREM 

 

5.1 Main theorem 

Bombieri-Vinogradov theorem is extremely important result in analytic number theory, which 

was proved  in 1965, and has various applications. Sometimes it is called just Bombieri theorem. 

Theorem 5.1.1 (Bombieri-Vinogradov). Suppose that   is real number and        Then 

for any fixed real number    , 

∑    
       

   
   

|         
 

    
|

   

             
 
          

Proof.  First define 

   {
                           
                              

 

By (3.1.4), 

         
 

    
 

 

    
∑  ̅

      

   (          )                                 

hence 

   
       

|         
 

    
|  

 

    
∑ |          |

      

  

Writing        for the left side of (5.1.1), we find that 

       ∑
 

    
   

∑    
   

|          |

      

        

where     denotes the contribution from the principal characters and    from all other characters. 

Lemma 1.3.9 says that 

∑                                                                      

   

 

By (3.1.3) and (5.1.2) we have 
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       (   √    ) ∑
 

    
   

            

Where     is the absolute constant. Let    be the primitive character inducing   modulo  . By 

(3.1.2), 

   ∑
 

    
   

∑    
   

         

      

           

Let        . Then we can estimate the sum over the characters by double sum, where the 

summation in first sum will be over all    , and summation in second will be over all 

primitive characters modulo  . We have 

   ∑ ∑    
   

        

         

∑
 

      
   

 
 

           

       ∑
 

    
   

∑    
   

        

       

                                         

where we have used (5.1.2) again. Now, our idea is to estimate the contribution from the “small” 

moduli  .  For this we can represent          in (3.1.4) as in Siegel-Walfisz theorem and 

       as in (3.1.3) for principal characters. We have 

   
   

             (   √    )  

For all primitive characters to moduli               , say. Hence 

∑
 

    
    

∑    
   

        

       

        (   √    )               

Combining this estimation and (5.1.3), we obtain 

                                                                          

where 

   ∑
 

    
      

∑    
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5.2 Decomposition into sums, using Vaughan identity 

Let U be a parameter to regulate. We can apply (3.2.1) with                  
 

   

                                       

Where         is corresponding to the sum    on the right side of Vaughan Identity. And, 

                

Where 

   ∑
 

    
      

∑    
   

|         |

       

               

Let estimate    first. For         we can write inequality: 

        ∑ | ∑           

      

|

   

       ∑ | ∑     

      

|

   

  

We can apply the Pólya-Vinogradov inequality for sum with characters, thus 

   
   

           
 
           

And for     we have: 

    
 

                                                                         

Now we will use large sieve for estimating   . Suppose that           and           are 

complex numbers. By Lemma 4.2.1 and Cauchy’s inequality: 

∑
 

    
   

∑ |∑ ∑          

 

   

 

   

|

      

  

 {∑
 

    
   

∑ |∑       

 

   

|

 

      

}

 
 

{∑
 

    
   

∑ |∑       

 

   

|

 

      

}

 
 

  

                   (∑     
 

   

)

   

(∑    
 

 

   

)

   

                           

Before applying (5.2.2) for bounding     we would like to make summation in         more 

straightforward. 
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5.3 Main estimation 

Interval          can be splitted into         subintervals        such that 

       Then we can choose    and   such that 

              | ∑ ∑            

    
 
 

      

|                                   

Next, we apply Perron’s formula (Corollary 1.2.7) with                 and   
 

  
. We 

get 

∑ ∑            

    
 
 

      

 
 

   
∫       

     

    
  

 

  

                           

Where 

       ∑ ∑            

    
 
 

      

                    
  

 
∑ ∑

        

|    
 

  
 |            

  

We can assume that { }  
 

 
   then |    

 

  
 |  

 

 
      PNT and Theorem 1.3.6 (where we using 

just Dirichlet polynomial) give us 

      ∑ ∑          

            

   ∑     ∑      

            

 

                ∑      

      

      

Also clear that  ∫           
 

  
     . Returning to (5.3.2): 

∑ ∑            

    
 
 

      

                    

For some         Combining this inequality and (5.3.1), we get  

   
   

                                       

Hence, 

          ∑
 

    
      

∑          

       

                                        

Now we can apply (5.2.2) for   , observing that 
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∑          

      

 ∑      

      

      ∑     

      

        

because of  PNT and 

∑      

        

     ∑      

        

                               

because of Theorem 1.3.6. Hence (5.2.2) yields 

∑
 

    
   

∑          

       

        (      
 
   

 
   )  

From this inequality and (5.3.3) a new inequality can be derived for    by using a dyadic 

decomposition: 

              
      

 
 (       

 
  )                                             

5.4 Completion of the proof 

We can still regulate parameter    now let      
 

 .  Then we can decompose         on 

two smaller sums, where in first sum     and in the second              

        ∑ ∑        

         

 ∑ ∑        

              

  

  
         

          say. 

We can estimate   
       right now: 

   
              ∑ | ∑       

      

|

   

  

So , clearly   
       can be bounded similarly to         , and   

        similarly to        , 

hence the contribution of   
             

        to    can be estimated similarly to    and to 

   respectively. Omitting all calculations, we can write for     

          ( 
 
      

      
 
   

 
  )                                         

So finally        can be estimated. For this we need to combine all bounds for       , we get 

              ( 
 
      

      
 
         

  
  )  

We can see that to satisfy the condition of theorem the next two inequalities must hold: 
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 Thus                
 

 
     and                  for which theorem is proved. Now 

suppose that       . Consider the trivial bound for       : 

∑    
       

   
   

|         
 

    
|

   

 ∑    
       

   
   

       

   

 ∑      

   

         

        

which is better,  then bound in the theorem for such  . Bombieri-Vinogradov theorem is 

proved.   

 

Proof of Bombieri-Vinogradov theorem introduced here is based on proof in [3], pp. 77-81.  

Alternative proof can be found in book of Huxley [7], pp.103-107 
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Chapter  6 

GOLDSTON-YILDIRIM-PINTZ THEOREM 

 

6.1 Main theorem and preparations 

Theorem 6.1.1 (Goldston-Pintz-Yildirim). Let    be the   –th prime. Then 

   
   

   (
       

     
)     

Proof. First let define all parameters, which will play essential role in a proof. Let   be an 

integer, which tends monotonically to infinity. Also define parameters          where  

                  

and   and   are some given integer constants, where   is large and   is much smaller. 

    Let   {          }  {   }      where all    are different. For a prime   let      be g 

the set of different residue classes among             , and let write        

              

    We will consider only those primes    which are sufficiently large and             

    Next we extend   multiplicatively. Suppose that   is square-free. Then we will write    

             for all      which is equivalent to condition                        

    Now we should define the weights, specific form of which will make our result to be true. 

First, let introduce functions 

        {

                                              

 

  
    (   

 

 
)
 

       
 

And 

          ∑        

      
   

 ∑
 

  
    (   

 

 
)

 

 

      
   

 

Also we will define auxiliary functions 

     ∏(  
      

 
)

 

(  
 

 
)

  

 

And 

     {
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Our main goal is to show that 

∑ ∑ (∑             

   

)

             
     

  
                                       

is positive. When it is true then exists          such that 

∑             

   

    

That means that there exist two primes                  such that             If we 

will show that we can make          where   is an arbitrary small number, then theorem 

will be proved. Positivity of sum in (6.1.1) follows from next three lemmas: 

 

Lemma 1. Assume that    
 

          with some large     depending on      Then 

∑   
          

      

 
    

       
(
  

 
)                                        

Denote an error term above as    . 

 

Lemma 2. Assume, in addition to the above, that also         where   is a parameter below 

     Then 

∑   
          

      

      

 

{
 

 
    { } 

       
(
  

 
)                                                

    

         
(
      

   
)                         

 

 

Lemma 3 (Gallagher 1976). Suppose that      Then 

 

∑     

       
     

 (      )    

where summation is over all ordered subsets of       of length  . 

Now we will combine all of this Lemmas to estimate sum in (6.1.1). Thus 

∑ ∑ ∑       

             
     

   

  
                ∑ ∑   
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 ∑ ∑ ∑       

             
     

   
   

  
           ∑ ∑ ∑       

             
     

   
   

  
           

      ∑ ∑   
          

             
     

  

 ∑ ∑
    { } 

       
(
  

 
)           

       
     

   
   

         

 

 ∑ ∑
    

         
(
      

   
)             

       
     

   
   

         

      ∑
    

       
(
  

 
)           

       
     

         

 
    

       
(
  

 
)            

   

         
(
      

   
)               

 

      
  

       
(
  

 
)             

  

       
(
  

 
)            (  

 

      

            

   
          )            

We can choose in (6.1.2)           [√ ]  and         . Then (6.1.2) will turn to 

  

       
(
  

 
)                                  

So with large   we can choose      to be arbitrary small, and   to be arbitrary close to    , 

hence   can be chosen arbitrary small to make sum in (6.1.1) positive, and statement of the 

theorem follows. Now we will prove Lemma 1. 

6.2 Proof of Lemma 1. 

Proof.  Let      . Then 

∑   
          

      

 ∑ ( ∑        

        

)
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 ∑         

    

        ∑  
      

               

 ∑         

    

        ∑  
      

   (   (     ))

  

 ∑         

    

        | (   (     ))|(
 

   (     )
     )   

  ∑         

    

        
| (   (     ))|

   (     )
  

  (∑         

    

        | (   (     ))|)  

Since | (   (     ))|                  and             , and Theorem 1.3.6 the error 

term in the sum above can be written as: 

 (∑         

    

        | (   (     ))|)  ∑                

    

               

Define            (     ). Then the sum in Lemma 1 is                , where 

  ∑         

    

        
           

      
  

We can write         
    

   
∫ (

 

 
)

   

       
, so for   we have: 

  
 

      
∫ ∫ ( ∑

           

        
    

  

     

)
      

         
      

      

  

Define            ∑
                     

        
    

       
. Using properties of Riemann zeta function and 

multiplicativity of      and         we can write the Euler product for              

           ∏(  
      

 
(

 

   
 

 

   
 

 

      
))

 

  

Also define our main auxiliary function in this proof: 

                     (
              

          
)
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The Euler product for            is: 

∏(  
      

     
 

      

     
 

      

        
)(  

 

     
)
  

(  
 

     
)
  

(  
 

        
)
  

 

  

We assumed earlier that           hence the logarithm of the corresponding Euler factor is 

   (  
 

     
 

 

     
 

 

        
)      (  

 

     
)      (  

 

     
)   

     (  
 

        
)                     

 

 
  

This logarithmic factor is equal to           . Hence for       
 

 
 and              the 

sum of this logarithms converge absolutely, i.e.            is holomorphic in this region. 

Moreover, we will note that               . For bounding            we will estimate its 

logarithmic sum: 

∑ (   (  
      

     
 

      

     
 

      

        
)      (  

 

     
)      (  

 

     
)  

   

     (  
 

        
))       ∑

 

                    
   

  

     ∑
 

 
   

                                  

Where                        
 

 
  and ∑

 

             by Merten’s theorem 

1.1.11. 

Hence                                        . So, again consider the T as 

  
 

      
∫ ∫ (          (

          

              
)
 

)
      

         
      

      

  

Now shift a contour from        to      
  

    
 and from        to      

  

     
, where 

       √     . Also we truncate   - integral to          and   - integral to        

    , and denote the results by    and    respectively. We didn’t obtain any new poles while 

shifting, so we only need to calculate truncated parts. Thus 

                                                                         

By Theorem 1.4.11 we have 

           √                                                              
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            √                            √                                 

                     (
       

    
)        (

 

√    
)           (√    )          

Combining (6.2.1)-(6.2.4) we have  

|(          (
          

              
)
 

)      |     ( √    )                       

For some constant    . So, we can write for truncated error: 

 

      
∬ (          (

          

              
)
 

)
      

         
      

         
      

  

    ( √    ) ∬                 

        

               
 
 

      

    ( √    ) ∫         

 

   

    ( √    )                               

for a sufficiently large  . Now let fix    and shift a contour from      
  

    
 to      

   

    
 

and denote the result by   . For calculating the error after shifting, we should admit that 

           is still holomorphic at the      hence bounded,                            

are the powers of      by Theorem 1.4.12, term       
     is also bounded here, and        

makes an error small: 

                 
   
    

 
   

       

   

√        (
       

√    
)     (   √    )          

where    is a positive constant. Similarly to the previous calculations the new error will be of 

   (   √    ). Denoting 

(          (
          

              
)
 

)
      

         
 

as          and applying (6.2.6) and (6.2.7) we can write for  : 

  
 

   
∫(       (        )           

          )

  

        (   √    )          

First, let calculate          
          . For this we will create a circle       with center in     

with sufficiently small radius. Then on      : 
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 √    
                

   

 √    
 

 

    
      

So                      
   

√    
. Hence 

                                                                                 

Also on       

                                                                          

Our task is to exclude the    from further calculations of          
          . Thus by Theorem 

1.4.13 we have 

           
                

   
           

      
                                

Hence, applying (6.2.9)-(6.2.11) 

         
(        )                        (

           

      
)

  
 

        
               

To calculate the contribution of          
(        ) in (6.2.8) we will write 

∫ (
           

      
)

  
 

        
   

  

 ∫ (
           

      
)

  
 

        
   

     
  

 √    

     
  

 √    

  

 

 ∫ (
           

      
)

  
 

        
   

     
  

 √    
  

 √    
       

 ∫ (
           

      
)

  
 

        
   

     
  

 √    

      

  

For the first integral in the sum above the following estimation will be true: 

 

∫ (
           

      
)

  
 

        
   

     
  

 √    

     
  

 √    

 ∫
 

        
   

     
  

 √    

     
  

 √    

  

 
 

√    
(√    )
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For the second integral we have: 

∫ (
           

      
)

  
 

        
   

     
  

 √    
  

 √    
       

 ∫
 

        
   

     
  

 √    
  

 √    
       

  

∫
  

     

 

 

√    

 (√    )
    

         
 
                                         

And the third integral can be bounded in the following way: 

∫ (
           

      
)

  
 

        
   

     
  

 √    

      

 ∫
            

        

 

 

                         

Combining (6.2.8) and (6.2.12)-(6.2.15) we have 

  
 

   
∫        (        )

  

                           
 
                      

We will call          the following function: 

                   (
                 

                  
)

 

  

Note, that          is holomorphic around       and                     .  Now shift 

the integration contour from    {     
  

     
      

 

 
} to    {     

   

    
      

 

 
}. 

This way we get 

                        
      

                 
  

 

    
∫ ∫         

      

                 
      

             

                        
 
   

where   is the positive small constant and error from shifting the contour can be calculated in 

similar way to (6.2.7), and is of order  (   (   √    ))  Let change the variables in double 

integral above:             Then 

 

    
∫ ∫         
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∫ ∫        

      

               
    

          

  

 
 

    
∫

 

          
∫        

       

       
    

          

                                 

To calculate the pole of       (       
       

       
)  we need to know the coefficient near     of 

Teylor series of      in neighborhood of zero, which has value 
      

       
                    

∑             
               , where                          . Substituting this value 

into (6.2.17) we get 

 

    
∫

 

          
∫        

       

       
    

          

  

 
 

   
∫

       

    

     

      

       
                                    

      

       
          

 

   
∫

       

    

     

                                        

We observe that  
       

     ∑ (  
 
) 

         , hence the pole of this function and integral in 

(6.2.18) will be equal to (  
 
). Hence 

  
      

       
(
  

 
)                                   

Remembering that the sum in Lemma 1 is                , we finishing proof of Lemma 1. 

  

 

 

6.3 Proof of Lemma 2. 

Proof.  We should make remark, that the sum in Lemma 2 doesn’t change if we replace   by 

  { }   This is because if        is not a zero then     is prime and  

          ∑
 

  
    (   

 

 
)
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so factor       doesn’t make a contribution to the sum above. We can assume that   doesn’t 

contain  . The sum in Lemma 2 is:  

∑   
          

      

       ∑           

    

          ∑      
      

               

   

 ∑           

    

          ∑ ∑       
      

               
           

                         

In (6.3.1)         denotes the           . The inner sum from above is 

∑       
      

               

 ∑    ̃     
     ̃     

 ̃                

∑    ̃ 

   ̃   
 ̃                

  

          ∑    ̃ 

   ̃   
 ̃                

                                               

The errors after replacing the (6.3.2) in (6.3.1) will add up to 

∑                                 

      

  

          ∑             

      

          ∑       

    

            

∑  
      

        

  

          ∑           

    

               

Main part in (6.3.1) will be equal to 

∑           

    

          ∑                  

           
                

  

where    ∑           
         

. So, the sum in (6.3.1) will equal to  

∑           

    

          ∑
 

          
           

                

 

plus an error term of size 
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∑           

    

          ∑ |                  
 

          
|

            
                

  

            ∑      

    

∑ |            
 

    
|

      

          

                            

Now we will decompose sum in (6.3.3) into two sums, where in first sum                 

and in the second                 for  , which should be sufficiently large. For a first sum 

we have: 

           ∑      

    

            
 
 

∑ |            
 

    
|

      

          

  

       
  
 ∑    

       

         

|            
 

    
|

    

                                    

For estimating the (6.3.4) Bombieri-Vinogradov theorem can be applied. For      we have: 

      
  
 ∑    

       

         

|            
 

    
|

    

       
  
 

 

       
 

 

      
 
 

             

For a second sum we can write: 

           ∑      

    

            
 
 

∑ |            
 

    
|

      

          

  

                  ∑
              

      
 
      

               
 
 ∑

     

 
   

  

 
 

      
 
 

                                                                       

It means that the sum in Lemma 2 is 

      (
 

      
 
 

)                                                              

where 
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    ∑
          

          
    

          ∑  

            
                

 

The innermost sum is by Chinese theorem: 

∑  

            

                

 ∏ ∑  

      

          
         

 ∏         

         

     

where         is the cardinality of the set {                     }. As before         

      We can calculate     similarly to   in Lemma 1 and    will have a following form: 

    
 

      
∫ ∫ ∏(  

         

   
(

 

   
 

 

   
 

 

      
))

       

      

           
        

Omitting the calculations we can write for    , when    : 

    
    { } 

       
(
  

 
)                                       

And when    : 

    
    

         
(
    

   
)                                       

Substituting the expression of     into (6.3.7) we will obtain the result of Lemma 2.   

 

    This chapter is based on paper of Motohashi [2], who found easier proof in 2006, then the 

original proof of  Goldston-Pintz-Yildirim, which reader can find in [1]. Proof of Gallagher 

Lemma can be found in [8]. 
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CONCLUSION 

In this work we introduced the complete proof of  Goldston-Pintz-Yildirim theorem – the best 

known result on estimating the small gaps between consecutive primes. Also various wide 

applicable inequalities were highlighted, such as Bombieri-Vinogradov theorem, Pólya-

Vinogradov inequality, large sieve method for character sums. Correlation and utility of analytic 

tools were presented – we showed the Vaughan identity as a simplifier in Bombieri-Vinogradov  

theorem’s proof, and Bombieri-Vinogradov result as crucial part of Goldston-Pintz-Yildirim 

theorem. 

The flexibility and variety of tools in analytic number theory demonstrate us, that many areas in 

prime number theory experience rapid development, and breakthrough is possible not only in 

bounding the small gaps between primes, but also in estimating the number of primes in short 

intervals, in Goldbach conjecture and other topics related to distribution of primes. 
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