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Introduction

Many nonlinear operator equations (inclusions) are of the form 0 ∈ A(x), where A is
a (possibly set-valued) monotone operator in a Hilbert space H. There are different
iterative methods that are used to approximate the solutions of this equation. One
of the most popular methods is the so-called proximal point algorithm (PPA), first
introduced by B. Martinet (1970) and later developed extensively by R.T. Rockafel-
lar and many other researchers. The researchers have investigated the convergence of
this iterative process and in some cases gave the rate of convergence of this method.
Many applications have been investigated as well. In particular, this algorithm is
used to approximate the solutions of some variational inequalities or minimizers of
convex cost functionals.

Let us first describe the PPA, as formulated by Rockafellar. Let A : D(A) ⊂ H → H
be a (possibly set-valued) maximal monotone operator.
Starting from an arbitrary x0 ∈ H, the PPA generates recursively a sequence of
points {xn} as follows

xn+1 = (I + βnA)−1(xn) + en, for all n ≥ 0,

where {βn} ⊂ (0,∞) and {en} is the error sequence.

Rockafellar proved in 1976 that for (βn) bounded below away from zero and∑∞
n=0 ‖en‖ < ∞, the sequence {xn} generated by the above PPA converges weakly

in H to a zero of A, whenever the set of zeros is nonempty.

In this thesis, we first provide a description of the particular case introduced by Mar-
tinet. Then, it is shown how Rockafellar derived the general PPA from Martinet’s
algorithm. Unfortunately, the sequence {xn} converges only weakly, as shown by
O. Güler (1991). Many mathematicians (M. V. Solodov and B. F. Svaiter [26], S.
Kamimura and W. Takahashi [15], H. K. Xu [28] and others) have tried to modify
the PPA in such a way that the new iterative methods generate strongly convergent
sequences. On the other hand, the above summability condition on errors is too
strong from a numerical point of view. This summability condition can be relaxed
and there are already several results in this direction (for examples, see [16]). Fur-
thermore, there are extensions of the PPA to the case of two monotone operators A
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and B. These extensions are generalizations of the old method of alternating pro-
jections introduced by J. von Neumann in early thirtieths.

The structure of the thesis is organized as follows. In Chapter 1, we recall some
fundamental concepts, notations and results, which will be used in the following
chapters. Chapter 2 presents a short introduction to the proximal point algorithms.
Then, in Chapter 3, we include some important results regarding the boundedness
and convergence of the sequences generated by the PPA. In Chapter 4, we discuss
some generalizations of the regularization method. In particular, the modified two
parameter method as well as the modified four parameter method will be discussed.
Finally, Chapter 5 is concerned with the method of alternating resolvents, i.e., the
proximal point algorithm involving two monotone operators.
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Chapter 1

Preliminaries

In this chapter, we recall some definitions, notations, and results which will be useful
tools in proving the results in the following chapters.

1.1 Some concepts and results in nonlinear anal-

ysis

Let H be a real Hilbert space with scalar product (., .) and the corresponding Hilber-
tian norm ‖x‖ =

√
(x, x).

Definition 1.1 An operator A : D(A) ⊂ H → H is said to be monotone (strongly
monotone) if (x1−x2, y1−y2) ≥ 0 ((x1−x2, y1−y2) ≥ α‖x1−x2‖2, for some α > 0,
respectively), for all [x1, y1], [x2, y2] ∈ A, i. e., [x1, y1], [x2, y2] ∈ {(x, y) ∈ H × H :
x ∈ D(A), y ∈ Ax}.
We also say that A is a monotone subset of H ×H.
An operator A is said to be maximal monotone if in addition to being a monotone
operator, A ⊂ H × H is not properly included in any other monotone subset of
H ×H.
Obviously, if A is maximal monotone, so is A−1.
If A is a maximal monotone operator, we define the resolvent and Yosida approxi-
mation of A as follows:
Resolvent : Jt = (I + tA)−1, t > 0,
Yosida approximation: At = t−1(I − Jt), t > 0.

We also recall that a map T : H → H is called nonexpansive if for every x, y ∈ H,
we have

‖Tx− Ty‖ ≤ ‖x− y‖.

T is said to be firmly nonexpansive if or every x, y ∈ H, we have

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2.
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It is clear that firmly nonexpansive mappings are also nonexpansive. To characterize
a firmly nonexpansive mapping, we use the following lemma.

Lemma 1.2 ([12]). T is firmly nonexpansive if and only if 2T − I is nonexpansive.

It is worth noting that for a maximal monotone operator A, the resolvent of A,
Jt, t > 0, is well defined on the whole space H, and is single-valued. One can also
see that the projection operator and the resolvent of A are firmly nonexpansive for
every t > 0. Moreover, the Yosida approximation of A is maximal monotone for
every t > 0.

We shall now give an important definition.

Definition 1.3 Let ϕ : H → (−∞,∞] be a proper, convex, and lower semicontinu-
ous function. The subdifferential of ϕ is the operator ∂ϕ : H → H defined by

∂ϕ(x) = {ω ∈ H : ϕ(x)− ϕ(v) ≤ (ω, x− v), for all v ∈ H}.

We will also use the following lemma, its proof can be found in many books (see,
e.g., [23], page 5).

Lemma 1.4 ([24]). Let C be a nonempty subset of H. Assume that the sequence
(xn) satisfies the conditions
(a) lim

n→∞
‖xn − q‖ = ρ(q) exists, for all q ∈ C,

(b) any weak cluster point of (xn) belongs to C.
Then, there exists a point p ∈ C such that (xn) converges weakly to p.

The following inequality is important in proving some theorems in the following
chapters.

Lemma 1.5 (Subdifferential Inequality). For all x, y ∈ H, we have

‖x+ y‖2 ≤ ‖y‖2 + 2(x, x+ y).

We also need the following inequality:

Lemma 1.6 ([27]). For any x ∈ H, and µ ≥ β > 0,

‖x− Jβx‖ ≤ 2‖x− Jµx‖,

where Jt, t > 0, denotes the resolvent of a maximal monotone operator A : D(A) ⊂
H → H.
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1.2 Some results on sequences and series of real

numbers

We start with the following lemma:

Lemma 1.7 Suppose (an) and (bn) are positive sequences such that
∞∑
n=0

bn =∞ and

lim
n→∞

an
bn

= α ∈ R. Then lim
m→∞

m∑
n=1

an

m∑
n=1

bn
= α.

Lemma 1.8 Suppose (an), (bn), and (yn) are positive sequences satisfying the fol-
lowing inequality:

bnyn ≤ yn−1 − yn + an.

Then we have:
(i) If (an

bn
) is bounded, then the sequence (yn) is bounded;

(ii) If lim
n→∞

an
bn

= 0, then there exists lim
n→∞

yn;

(iii) If lim
n→∞

an
bn

= 0 and
∞∑
n=0

bn =∞, then lim
n→∞

yn = 0.

Lemma 1.9 (O. A. Boikanyo and G. Moroşanu). Let (sn) be a sequence of nonneg-
ative real numbers satisfying

sn+1 ≤ (1− αn)(1− λn)sn + αnbn + λncn + dn, n ≥ 0,

where (αn), (λn), (bn), (cn), and (dn) satisfy the conditions:

(i) αn, λn ∈ [0, 1], with lim
n→∞

αn = 0, and
∞∑
n=0

αn =∞;

(ii) lim sup
n→∞

bn ≤ 0;

(iii) lim sup
n→∞

cn ≤ 0;

(iv) dn ≥ 0 for all n ≥ 0 with
∞∑
n=0

dn <∞.

Then lim
n→∞

sn = 0.

For λn = 0, ∀n ≥ 0, we obtain

Lemma 1.10 ([28]). Let (sn) be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− αn)sn + αnbn + cn, n ≥ 0,

where (αn), (bn), and (cn) satisfy the conditions:

(i) an ∈ [0, 1], with with lim
n→∞

αn = 0, and
∞∑
n=0

αn =∞;
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(ii) cn ≥ 0 for all n ≥ 0,
∞∑
n=0

cn <∞;

(iii) lim sup
n→∞

bn ≤ 0.

Then lim
n→∞

sn = 0.

Lemma 1.11 ([18]). Let (sn) be a sequence of real numbers that does not decrease
that infinity, in the sense that there exists a susequence (sni) of (sn) such that sni ≤
sni+1 for all i ≥ 0. Define an integer sequence (τ(n))n≥n0 as

τ(n) = max{n0 ≤ k ≤ n : sk < sk+1}.

Then lim
n→∞

τn = 0 and for all n ≥ n0, max{sτ(n), sn} ≤ sτ(n)+1.

7
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Chapter 2

Description of the Proximal Point
Algorithm

Let H be a real Hilbert space with scalar product (., .) and the Hilbertian norm
‖x‖ :=

√
(x, x). Let T : H → H be a single - valued, monotone and hemicontinuous

operator (i.e., for all x, y ∈ X, lim
λ→0

T (x+ λy) = Tx with respect to the weak topology

of H). Let C ⊂ H be a nonempty, convex, closed set.
Let us assume that there exists at least a solution of the variational inequality

x ∈ C and (Tx, v − x) ≥ 0 for all v ∈ C. (2.1)

In 1970, B. Martinet [20] formulated the following algorithm:
Given xn ∈ C one determines xn+1 ∈ C such that

(Txn+1, v − xn+1) + (xn+1 − xn, v − xn+1) ≥ 0 ∀v ∈ C (2.2)

for a given starting point x0 ∈ H.
It is easy to see that

xn+1 = (I + A)−1xn, n = 0, 1, 2, ... (2.3)

with A = T +NC , where NC(z) is the normal cone to C at z:

NC(z) = {w ∈ H : (z − v, w) ≥ 0 ∀v ∈ C}.

Obviously, if z ∈ IntC, then NC(z) = {0}.
It is well known that NC is a maximal monotone operator and therefore A = T +NC

is so (see [23], Theorem 1.4 and 1.6).
On the other hand, (2.1) can be rewritten as

0 ∈ Ax. (2.4)

According to Martinet [19], [20], the sequence xn generated by (2.2) (or (2.3)) is
weakly convergent to a solution of (2.1) (or (2.4)) for any starting point x0 ∈ H.
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Obviously, the result above works for cT instead of T with c > 0 arbitrary, so A in
(2.3) can be replaced by cA since

cT +NC = cT + cNC = cA.

Hence, Martinet’s result extends to the algorithm given by

xn+1 = (I + cA)−1xn, n = 0, 1, 2, ... (2.5)

where A = T +NC , c > 0.
R. T. Rockafellar [25] further extended this algorithm. More precisely, he considered
the following iterative scheme

xn+1 = (I + cnA)−1xn + en, n = 0, 1, 2, ... (PPA)

for a general maximal monotone operator A : D(A) ⊂ H → H, where (cn) is a
sequence of positive numbers, (en) ⊂ H is the sequence of computational errors, and
x0 ∈ H is a given starting point.
Following the terminology of J. J. Moreau [21], P = (I+cA)−1 is called the proximal
mapping associated with cA, so Rockaffellar called the algorithm above the proximal
point algorithm (denoted here (PPA)). In fact, (PPA) is a first order difference equa-
tion. Since cn > 0 (n = 0, 1, 2, ...), for each x0 ∈ H there exists a unique sequence
(xn) satisfying this difference equation.

In what follows, we elaborate on the concepts of proximal point and proximal map-
ping following J. J. Moreau [21].
Let f : H → (−∞,∞] be a proper, convex, lower semicontinuous function. It is well
known (see, e.g., [23], Theorem 1.12, p. 36) that its subdifferential, ∂f , is a maxial
monotone operator. Consider the function

ϕ(u) =
1

2
‖u− z‖2 + f(u), u ∈ H,

for a given z ∈ H. Obviously ϕ is proper, strictly convex, and lower semicontinuous.
Let x be its (unique) minimizer, i.e.,

0 ∈ ∂ϕ(x). (2.6)

It is easy to see that D(∂ϕ) = D(∂f) and

∂ϕ(u) = u− z + ∂f(u), ∀u ∈ D(∂f).

Thus, (2.6) can be written as

z − x ∈ ∂f(x)⇔ x = (I + ∂f)−1z.

9
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Point x is said to be the proximal point of z with respect to function f , and is
denoted x = proxfz. The mapping P = (I + ∂f)−1, i.e.,

z 7→ Pz = x ∀z ∈ H,

is called the proximal mapping associated with f (or ∂f). Rockafellar extended
these definitions to a general maximal monotone operator A. Thus xn+1 in (PPA)
represents the proximal point of xn with respect to cnA, calculated with some error,
denoted en.
If A is the subdifferential of a proper, convex, lower semicontinuous function f , then

xn+1 = arg min
u∈H

1

2
‖u− xn‖2 + cnf(u)

= arg min
u∈H

Φn(u), n = 0, 1, 2, ...

where

Φn(u) =
1

2cn
‖u− xn‖2 + f(u).

The main result provided by Rockafellar [25] is the following

Theorem 2.1 ([25]). Assume that A : D(A) ⊂ H → H is maximal monotone,

with 0 ∈ R(A); (cn) ⊂ (0,∞), and lim
n→∞

inf cn > 0;
∞∑
n=0

‖en‖ < ∞. Then for every

x0 ∈ H, the sequence (xn) generated by (PPA) converges weakly to a zero of A (i.e.,
a solution of (2.4)).

The proof of Theorem 2.1 is omitted here, since there is a better result due to H.
Brézis and P. L. Lions [9] that will be discussed later.

The study on (PPA) has shown that it has applications in nonlinear analysis and
convex optimization. In particular, (PPA) is an important iterative method that
can be used to approximate minimizers of convex functions. In the above case, xn+1

is exactly the minimizer of the function Φn, and, the sequence (xn) converges to a
minimizer of f .

The question whether the convergence of (xn) given by (PPA) is strong was left as
an open one by Rockafellar. Unfortunately, the answer is negative, as proved by O.

Güler [13]. On the other hand, the summability condition on errors (
∞∑
n=0

‖en‖ <∞)

is too strong from a numerical point of view. This summability condition can be
relaxed. In the next chapter, some important results regarding the PPA will be
presented.
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Chapter 3

Main Results on the Proximal
Point Algorithm

The aim of this chapter is to systematically present the most significant results con-
cerning the proximal point algorithm (PPA). The main results regarding the bound-
edness and convergence of the sequence generated by the PPA will be given in the
following sections. In addition, the rate of convergence to the minimum value of a
convex, proper, and lower semicontinuous (LSC) function will be discussed.

As usual, throughout this chapter, H is a real Hilbert space with scalar product (., .)
and the corresponding Hilbertian norm ‖x‖ =

√
(x, x). We denote here the weak

convergence by ⇀ and the strong convergence by →. In the sequel, A : D(A) ⊂
H → H is a maximal monotone operator. Recall that the PPA generates a sequence
(xn) as follows

xn+1 = (I + cnA)−1xn + en, n = 0, 1, 2, ... (PPA)

where (cn) ⊂ (0,∞), (en) ⊂ H is the sequence of computational errors, and x0 ∈ H
is a given starting point.

If we set zn = xn − en−1 and fn = −en−1 for all n = 1, 2, ..., (PPA) becomes

zn+1 = (I + cnA)−1(zn − fn), n = 0, 1, 2, ... (PPA’)

where (cn) ⊂ (0,∞), (fn) ⊂ H is the sequence of computational errors, and z0 =
x0 ∈ H is a given starting point.

For the purpose of stating the results on the boundedness and convergence of the
PPA, in this chapter, we shall consider both forms (PPA) and (PPA’).

11
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3.1 Boundedness

It is worth noting that in Theorem 2.1, Chapter 2, the sufficient condition provided
for the maximal monotone operator A was that A−10 6= ∅. This assumption is also
given in Theorems 3.6 and 3.9 in this Chapter. Rockaffelar [25], and later, B. Dja-
fari Rouhani and H. Khatbzadeh [11] showed that under the summability on the
error sequence and suitable conditions on the parameter sequence, the set A−10 is
nonempty if and only if the sequence generated by the PPA is bounded.

In the following, we state some results concerning the boundedness of the sequence
(xn) generated by the PPA, including the special case when A is the subdifferential
of a proper, convex, and LSC function. In particular, we will see in this section
that the boundedness of (zn) is possible without assuming summability of the error
sequence.

Morosanu [23] showed that the boundedness of (xn) can be obtained under reasonable
hypotheses on (cn) and (en).

Theorem 3.1 ([23]). Assume that A : D(A) ⊂ H → H is maximal monotone and
coercive, i.e., A satisfies

lim
‖ξ‖→∞
[ξ,µ]∈A

(µ, ξ)

‖ξ‖
=∞. (3.1)

Assume further that

cn ≥ ε > 0 and ‖en‖ < C, n = 0, 1, ... (3.2)

Then the (xn) given by (PPA) is bounded.

In 2012, H. Khathzadeh [16] extended Theorem 3.1 above. He showed the bounded-
ness of (zn) (equivalently, the boundedness of (xn)) under weaker conditions on the
errors and parameters.

Theorem 3.2 ([16]). Let A : D(A) ⊂ H → H be a coercive maximal monotone

operator. If the sequence

(
‖fn‖
cn

)
is bounded, then for every x0 ∈ H, the sequence

(zn) generated by (PPA’) is bounded.

Proof. There exists C > 0 such that for each n ≥ 0,
‖fn‖
cn

< C. Since A is coercive,

there is a K > 0, and z′ ∈ H such that for all [z, ω] ∈ A, with ‖z‖ > K,
(ω, z − z′)
‖z − z′‖

>

C.
Suppose that there exists n such that ‖zn+1 − z′‖ > K. By (PPA’), we have

zn − zn+1 − fn ∈ cnAzn+1. (3.3)

12
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which implies that

cnC + ‖zn+1 − z′‖ ≤ ‖zn − z′‖+ ‖fn‖. (3.4)

It follows that

‖zn+1 − z′‖ ≤ ‖zn − z′‖+ cn

(
‖fn‖
cn
− C

)
< ‖zn − z′‖

for each n ≥ 0, such that ‖zn+1 − z′‖ > K.
Thus, for all n ≥ 0,

‖zn+1 − z′‖ ≤ max{‖x0 − z′‖, K}.

The boundedness of (xn) generated by (PPA) leads to the interesting fact that pro-
vided A−10 6= ∅, under the suitable conditions on the errors, (PPA) is equivalent to
(PPA’).

Theorem 3.3 ([23]). Let (xn) be the sequence generated by (PPA), where A = ∂ϕ,
ϕ : H → (−∞,∞] is proper, convex, and LSC; F := A−10 6= ∅; (‖en‖) ∈ l2, cn ≥
ε > 0, n = 0, 1, ....
If in addition (xn) is bounded, then

lim
n→∞

ϕ(xn − en−1) = inf
z∈H

ϕ(z).

Proof. Setting zn = xn − en−1, (PPA) becomes{
zn + en−1 ∈ zn+1 + cnAzn+1, n = 1, 2, ...;

z0 = x0.
(3.5)

By multiplying (3.5) by zn+1− zn and using simple technical computations, one can
get

1

2cn
‖zn+1 − zn‖2 + ϕ(zn+1)− ϕ(zn) ≤ 1

2ε
‖en−1‖2, n = 1, 2, ... (3.6)

which implies that

ϕ(zn+1)−
1

2ε

n∑
i=0

‖ei‖2 ≤ ϕ(zn)− 1

2ε

n−1∑
i=0

‖ei‖2, n = 1, 2... (3.7)

Using the fact that inf
z∈H

ϕ(z) = ϕ(p) > −∞, ∀p ∈ F and (‖en‖) ∈ l2, by (3.7), one

can easily see that
lim
n→∞

ϕ(zn+1) = l ∈ R. (3.8)

From (3.6) and (3.8), it follows that

lim
n→∞

c
− 1

2
n ‖zn+1 − zn‖ = 0.

13
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Taking the limit in

0 ≤ ϕ(zn)− ϕ(p) ≤ (zn, zn − p), ∀p ∈ F

with noting that (zn) is bounded (since (xn) is so) one can get

lim
n→∞

ϕ(zn) = lim
z∈H

ϕ(z).

We shall see now that the boundedness of the sequences generated by either (PPA)
or (PPA’) guarantees F := A−10 6= ∅, under reasonable conditions on errors and
parameters. For the sequence generated by (PPA), we consider a refinement of the
following result due to Rockafellar [25].

Theorem 3.4 ([25]). Let A : D(A) ⊂ H → H be a maximal monotone operator,
with 0 ∈ R(A). Asumme that

∞∑
n=0

cn =∞; (3.9)

and
∞∑
n=0

‖en‖ <∞. (3.10)

Then the sequence (xn) generated by (PPA) is bounded if and only if A−10 =: F is
nonempty.

H. Khatibzadeh [16] showed that under the non-summability condition on the error
sequence, if the sequence generated by (PPA’) is bounded, then the set of all zeros
of A is nonempty.

Theorem 3.5 ([16]). Let (zn) be a bounded sequence generated by (PPA’). If

lim
n→∞

‖fn‖
cn

= 0 and
∞∑
n=0

cn =∞ then A−10 =: F is nonempty.

Remark 3.1.1. In the case when A = ∂ϕ where ϕ : H → (−∞,∞] is proper,
convex, and LSC; if lim

‖z‖→∞
ϕ(z) = ∞, and (‖en‖) ∈ l2, cn ≥ ε > 0, n = 0, 1, ...,

then the sequence (xn) generated by (PPA) is bounded for any given starting point
x0 ∈ H. Indeed, this conclusion can be shown by the same technical steps as in the
proof of Theorem 3.2, using the definition of the subdifferential.

Remark 3.1.2. It follows from Theorem 3.1 and Theorem 3.3 that the conclusion
of Theorem 3.3 still holds if we replace the boundedness of (xn) by the following
assumption

lim
‖u‖→∞

ϕ(u) =∞.

This assumption is the sufficient condition in order to get the boundedness of (xn),
which is essential in Theorem 3.3, according to Theorem 3.1. Furthermore, if F in
Theorem 3.3 is singleton, say F = {p}, then we can see that xn ⇀ p for any given
starting point x0 ∈ H.

14
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3.2 Convergence

3.2.1 Weak convergence

In this section, we shall first present the generalization of Rockfellar’s result due to
H. Brézis and P. L. Lions. The most general results on weak convergence of PPA
will also be stated.

Theorem 3.6 ([9]). Let A : D(A) ⊂ H → H be the subdifferential of a proper,
convex, and LSC function ϕ : H → (−∞,∞], with 0 ∈ R(A). Asumme that

∞∑
n=0

cn =∞; (3.11)

and
∞∑
n=0

‖en‖ <∞. (3.12)

Then the sequence (xn) generated by (PPA) converges weakly to some point p ∈
A−10 =: F .
This conclusion still holds if A is assumed to be a general maximal monotone oper-
ator, but replacing (3.11) by the stronger assumption

∞∑
n=0

c2n =∞. (3.13)

Proof. It is sufficient to prove the theorem in the exact case (i.e., en = 0, n =
0, 1, . . . ). Indeed, we assume that the theorem is proved in the exact case. For a
given k, let the sequence (ξn(k)) be defined by

ξ0(k) = xk, ξ1(k) = (I + ckA)−1xk, ..., ξn+1(k) = (I + cn+kA)−1(ξn(k)), ...,

where (xn) is the sequence generated by (PPA). Moreover, one can see that

‖ξn(k)− ξn+1(k − 1)‖ ≤ ‖ek−1‖ (3.14)

which implies
‖ξ(k)− ξ(k − 1)‖ ≤ ‖ek−1‖.

Thus, (ξn(k)) is a Cauchy sequence and, hence, converges to a point a.
Again, from (3.14), we have

‖xk − ξn+1(k − n− 1)‖ ≤
k−1∑

i=k−n−1

‖ei‖ for k > n.

15



C
E

U
eT

D
C

ol
le

ct
io

n

It follows that

‖xk+n − ξn+1(k − 1)‖ ≤
k+n−1∑
i=k−1

‖ei‖.

On the other hand,

xk+n − a = [xk+n − ξn+1(k − 1)] + [ξn+1(k − 1)− ξ(k − 1)] + [ξ(k − 1)− a].

Therefore, for k is large enough,

k+n−1∑
i=k−1

‖ei‖+ ‖ξ(k)− a‖ ≤ ε.

Then
lim sup
n→∞

|(xn+k − a, h)| ≤ ε‖h‖, ∀h ∈ H,

or xn ⇀ a.

In the following, (xn) denotes the sequence generated by (PPA) with en = 0, n =
0, 1, . . . .
We shall consider first the proof of the second part. We have

xn ∈ xn+1 + cnAxn+1, n = 0, 1, . . . (3.15)

Setting yn+1 = 1
cn

(xn+1−xn), n = 0, 1, ..., from (3.15) and the maximal monotonicity
of A, we get

(yn+1 − yn, yn) ≤ 0, n = 0, 1, . . .

which implies that the sequence (‖yn‖) is nonincreasing.
On the other hand, it follows from (3.15) that for every q ∈ F ,

‖xn+1 − q‖2 + c2n‖yn+1‖2 ≤ ‖xn − q‖2, n = 0, 1, . . . . (3.16)

Thus,

‖yn+1‖ ≤

(
n∑
i=0

c2i

)− 1
2

dist(x0, F ). (3.17)

From (3.13) and (3.17), yn → 0.
It follows from (3.16) that for any q ∈ F , the sequence (‖xn − q‖) is nonincreasing.
Applying Opial’s Lemma, there exists a p ∈ F such that xn ⇀ p.

Now, assume that A is the subdifferential of a proper, convex, and LSC function
ϕ : H → (−∞,∞] with F 6= ∅. Here, F is the set of all minimizers of ϕ. Note that
(ϕ(xn)) is a nonincreasing sequence. Indeed,

ϕ(xn+1)− ϕ(xn) ≤ (Axn+1, xn+1 − xn)

=
1

cn
(xn − xn+1, xn+1 − xn)

≤ 0, n = 1, 2, ...
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On the other hand, for any q ∈ F , we have

ck[ϕ(xk+1)− inf ϕ] = ck[ϕ(xk+1)− ϕ(q)]

≤ ck(Axk+1, xk+1 − q)
= (xk − xk+1, xk+1 − q)

≤ 1

2
‖xk − q‖2 −

1

2
‖xk+1 − q‖2,

which implies
n−1∑
k=0

ck[ϕ(xk+1)− inf ϕ] ≤ 1

2
‖x0 − q‖2.

Since (ϕ(xn)) is nonincreasing, it follows that

ϕ(xn)− inf ϕ ≤ ‖x0 − q‖
2

2
n−1∑
k=0

ck

.

Thus, ϕ(xn) → inf ϕ, which shows that every weak cluster point of (xn) belongs to
F . The conclusion follows by Opial’s Lemma.

Remark 3.2.1. It is clear that the second part of Theorem 3.6 is a significant
generalization of Theorem 2.1, Chapter 2. Indeed, instead of the assumption on
parameters as in (3.11), the weak convergence of (xn) can be obtained even with the
condition (3.13) only.

An interesting fact is that in the results on weak convergence of (xn) generated by
(PPA) mentioned above, the assumption F := A−10 6= ∅ was provided. However, it
was shown in Theorems 3.4 and 3.5 that the boundedness of (xn) ((zn) respectively)
implies the existence of a zero of A, under suitable assumptions on error and param-
eter sequences.

We are now concerned with the PPA in the form (PPA’). In the sequel, we denote
by yn the element zn−1−zn−fn−1

cn−1
∈ H, n ≥ 1.

Theorem 3.7 ([16]). Let (zn) be a bounded sequence generated by (PPA’), and
∞∑
n=0

c2n =∞. If
∞∑
n=0

‖fn‖2

c2n
<∞, and lim

n→∞

‖fn‖
c2n

= 0, then every weak cluster point of

(zn) belongs to A−10.

Proof. Since A is monotone,(
yn − yn+1, yn+1 +

fn
cn

)
≥ 0
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which implies that

‖yn+1‖2 ≤ ‖yn‖2 +
‖fn‖2

c2n
. (3.18)

Using the assumption
∞∑
n=1

‖fn‖2

c2n
< ∞ and applying the result of H. Khatibzadeh

[16] (see Theorem 4.1) we get that A−10 6= ∅. Assume p ∈ A−10. The monotonicity
of A implies that

(zn − zn+1 − fn, zn+1 − p) ≥ 0.

It follows that

‖zn+1 − zn‖2 ≤ ‖zn − p‖2 − ‖zn+1 − p‖2 +M‖fn‖,

where M := 2 sup
n≥0
‖zn − p‖.

Summing up from i = 0 to n, we have

n∑
i=0

c2i

(
‖yi+1‖2 +

‖fi‖2

c2i
− 2‖yi+1‖

‖fi‖
ci

)
≤ ‖x0 − p‖2 − ‖zn+1 − p‖2 +M

n∑
i=0

‖fi‖.

Thus,

n∑
i=0

c2i ‖yi+1‖2 ≤ 2L
n∑
i=0

ci‖fi‖+ ‖x0 − p‖2 − ‖zn+1 − p‖2 +M
n∑
i=0

‖fi‖,

where L := sup
n≥0
‖yn‖.

From (3.18), it is easy to see that for any i < n+ 1,

‖yn+1‖2 ≤ ‖yi+1‖2 +
n∑
j=i

‖fj‖2

c2j
.

Thus,

‖yn+1‖2
n∑
i=0

c2i ≤
n∑
i=0

c2i

n∑
j=i

‖fj‖2

c2j
+2L

n∑
i=0

ci‖fi‖+‖x0−p‖2−‖zn+1−p‖2+M
n∑
i=0

‖fi‖.

Applying Lemma 1.7, lim
n→∞

yn = 0. If znk ⇀ q, then q ∈ A−10 since A is demiclosed.

Theorem 3.8 ([16]). Let (zn) be a bounded sequence generated by (PPA’), and
A = ∂ϕ, where ϕ : H → (−∞,∞] is a proper, convex, and LSC function. If
∞∑
n=0

cn = ∞,
∞∑
n=0

‖fn‖2

cn
< ∞, and lim

n→∞

‖fn‖
cn

= 0, then every weak cluster point of

(zn) belongs to A−10, and lim
n→∞

ϕ(zn) = inf
z∈H

ϕ(z).

18
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The techniques for proving Theorem 3.8 are similar to those in proof of Theorem 3.7.
One can prove Theorem 3.8 by applying Lemma 1.7 starting from the subdifferential
inequality to get that A−10 is nonempty. The proof will be completed by using the
hypothesis to obtain that ϕ(zn) converges to ϕ(p) with p ∈ A−10.

Remark 3.2.2. Theorems 3.7 and 3.8 cannot guarantee the weak convergence of
(zn) to a point p ∈ A−10. However, if in addition to the hypotheses of Theorem 3.7,
A is strictly monotone, and if ϕ in Theorem 3.8 is strictly convex, in other words,
A−10 is singleton, then Theorems 3.7 and 3.8 show that zn ⇀ p, where p is the
unique element of A−10.

Remark 3.2.3. It is worth mentioning that the boundedness of (zn) is essential in
both Theorems 3.7 and 3.8. Besides, they cannot imply the weak convergence of (zn)
to some point p ∈ A−10 unless A and ϕ satisfy the conditions as mentioned above
such that A−10 is singleton. However, they improve the errors in the proximal point
algorithm. We can see in these theorems that under a suitable assumption on the
parameter sequence, the sequence of errors is allowed to be unbounded.

3.2.2 Strong convergence

Worth noticing is that an efficient algorithm should generate a strongly convergent
sequence. We will consider the strong convergence of the PPA in the form (PPA’).
H. Khatibzadeh [16] showed that under appropriate assumptions on errors and pa-
rameters without summability assumption on the error sequence, (PPA’) generates
a strongly convergent sequence.

Theorem 3.9 ([16]). Let (zn) be the sequence generated by (PPA’), and A be a

maximal monotone and strongly monotone operator. If
∞∑
n=0

cn =∞, and lim
n→∞

‖fn‖
cn

=

0 then (zn) converges strongly to the unique element p of A−10.

Proof. Applying Theorem 3.2, the sequence (zn) is bounded. The boundedness of
(zn) implies that A−10 is nonempty. In other words, A−10 has a unique element p,
by the strong monotonicity of A.
Since A is strongly monotone, for some α > 0

(zn − zn+1 − fn, zn+1 − p) ≥ αcn‖zn+1 − p‖2

which implies

2αcn‖zn+1 − p‖2 ≤ ‖zn − p‖2 − ‖zn+1 − p‖2 + 2M‖fn‖2,

where M := sup
n≥0
‖zn − p‖.

The proof is completed by applying Lemma 1.8.
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In the case when A is the subdifferential of a proper, convex, LSC, and even function,

H. Brézis and P. L. Lions showed that under the condition that
∞∑
n=1

‖en‖ <∞ only,

the sequence (xn) generated by (PPA) is strongly convergent. It is not sure that the

limit of the sequence (xn) is a zero of A unless the parameters satisfy
∞∑
n=1

cn = ∞.

More precisely, we have,

Theorem 3.10 ([9]). Let A = ∂ϕ where ϕ : H → (−∞,∞] is proper, convex, LSC,
and even. If

∞∑
n=0

‖en‖ <∞

then for every (cn) ⊂ (0,∞) and for every x0 ∈ H, (xn) generated by (PPA) is
strongly convergent. If in addition

∞∑
n=0

cn =∞

then xn → p ∈ A−10.

Remark 3.2.4. We can also see that, the sequence (xn) generated by (PPA) is
strongly convergent if in addition to the hypotheses of Theorem 3.6, one of the
following assumptions is satisfied:
1. Admitting that for some c > 0 (or, equivalently, for every c > 0) (I + cA)−1 is a
compact operator;
2. A is strongly monotone.

3.3 Rate of convergence

A rate of convergence to the minimum value of a proper, convex, and lower semicon-
tinuous function ϕ was first announced by Güler [13] with an important assumption
that the sequence (xn) generated by (PPA) with A = ∂ϕ converges strongly to a
minimizer p of ϕ. Recently, H. Khatibzadeh [16] generalized the result of Güler
without assuming xn → p, but assuming only the boundedness of (xn).

Theorem 3.11 ([16]). Let A = ∂ϕ where ϕ : H → (−∞,∞] is proper, convex, and
LSC. Suppose that the sequence (xn) generated by (PPA) with en = 0, n = 0, 1, ... is

bounded. If
∞∑
n=0

cn =∞ then

ϕ(xn)− ϕ(p) = o((
n−1∑
i=0

ci)
−1),

where p is a minimum point of ϕ.
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Proof. By the definition of subdifferential, we have

cn(ϕ(xn+1)− (p)) ≤ (xn − xn+1, xn+1 − p)

≤ 1

2
(‖xn − p‖2 − ‖xn+1 − p‖2)

which implies that
n∑
i=0

ci(ϕ(xi+1)− ϕ(p)) <
1

2
‖x0 − p‖2.

Since the sequence (ϕ(xn+1)− ϕ(p)) is nonincreasing the conclusion follows.
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Chapter 4

Modified Proximal Point
Algorithms

Based on the previous information that the proximal point algorithm fails to generate
a strongly convergent sequence in general (to a solution of the equation (inclusion)
0 ∈ Ax as mentioned above), many researchers have been studying in many direc-
tions in order to get an efficient algorithm. Modifying Rockafellar’s algorithm has
been such a way that the strong convergence can be ensured. One of the most fa-
mous methods is the so-called Tikhonov method or the regularization method. The
sequence (xn) is generated by this method as follows:

xn = Jβn(0), n = 0, 1, ... (4.1)

where (βn) ⊂ (0,∞), and lim
n→∞

βn =∞, and Jβ = (I + βA)−1 is the resolvent opera-

tor of A.

In their 1996 paper, Lehdili and Moudafi [17] introduced an algorithm which was
obtained by combining the regularization method of Tikhonov and the PPA. This
algorithm generates a sequence (xn) as follows:

xn+1 = Jβn(αnxn + en), n = 0, 1, ... (4.2)

where (βn) ⊂ (0,∞), (αn) ⊂ (0, 1), and lim
n→∞

αn = 1, (en) ⊂ H is the sequence of

computational errors, and x0 ∈ H is a given starting point.

Xu [27] extended the algorithm given by (4.2) to

xn+1 = Jβn(αnu+ (1− αn)xn + en), n = 0, 1, ... (4.3)

for given vectors x0, u ∈ H, (βn) ⊂ (0,∞), (αn) ⊂ (0, 1), and (en) ⊂ H is the com-
putational error sequence.
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It was shown that under the summability condition on the errors and reasonable con-
ditions on parameters, the sequences (xn) generated by either (4.2) or (4.3) strongly
converges to a zero of A. After that, much research has been devoted to generalize
Xu’s algorithm in order to get a more efficient algorithm.

In this chapter, we will discuss generalizations of the regularization method. We shall
start first with the convergence of the modified two parameter method under the
suitable conditions on the two parameters. Finally, a four parameter regularization
method will be discussed.

4.1 The two parameter regularization method

Recently, O. A. Boikanyo and G. Moroşanu [4] proposed a generalization of Xu’s
algorithm. This new algorithm generates a sequence (xn) as follows

xn+1 = Jβn(αnu+ (1− αn)(xn + en)), n = 0, 1, ... (4.4)

where (βn) ⊂ (0,∞), (αn) ⊂ (0, 1), and (en) ⊂ H is the sequence of computational
errors, for given vectors x0, u ∈ H.

Unsurprisingly, provided lim
n→∞

αn = 0, for n large enough, the argument of the resol-

vent operator in (4.4) becomes arbitrarily close to that in the PPA. Based on the
fact that for large β, Jβ approximates the zero of A which is the projection of u
onto F := A−10, the following theorem shows us a different approach. Instead of
lim
n→∞

αn = 0, O. A. Boikanyo and G. Moroşanu have proposed the assumption that

lim
n→∞

αn = 1, which implies that the argument of Jβn tends to u as n tends to infinity.

Theorem 4.1 ([4]). Assume that A : D(A) ⊂ H → H is a maximal monotone
operator, with F := A−10 6= ∅. For any fixed x0, u ∈ H, let the sequence (xn) be
generated by (4.4) where (βn) ⊂ (0,∞), and (αn) ⊂ (0, 1), for all n ≥ 0. If (en) is
bounded, lim

n→∞
αn = 1, and lim

n→∞
βn = ∞, then (xn) converges strongly to PFu, the

metric projection of u onto F .

Proof. The key idea to prove this theorem is to show that the sequence (xn) is
bounded. This is the conclusion of the following Lemma, given by O. A. Boikanyo
and G. Moroşanu [4].

Lemma 4.2 Assume that A : D(A) ⊂ H → H is a maximal monotone operator,
with F := A−10 6= ∅. For any fixed x0, u ∈ H, let the sequence (xn) be generated by

(4.4) where (βn) ⊂ (0,∞), and (αn) ⊂ (0, 1), for all n ≥ 0. If (1−αn)
αn
‖en‖ ≤ C for

some C > 0, then (xn) is bounded.
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We shall now prove the Lemmar 4.2 in order to prove the theorem. Setting zn =
αnu+ (1− αn)(xn + en), n = 0, 1, ... Since Jβn is nonexpansive, for each p ∈ F , we
have

‖xn+1 − p‖ = ‖Jβnzn − Jβnp‖ ≤ ‖zn − p‖.
Thus, it is sufficient to show that (zn) is bounded.

By the definition,

zn+1 = αn+1u+ (1− αn+1)en+1 + (1− αn+1)Jβnzn, n = 0, 1, ... (4.5)

There exists M > 0 such that for some p ∈ F ,

‖u− p‖+
1− αn
αn

‖en‖ ≤M and ‖z0 − p‖ ≤ 2M, for alln ≥ 0.

From (4.5), we obtain

‖zn+1 − p‖2 ≤ (1− αn+1)
2‖zn − p‖2 + 2Mαn+1‖zn+1 − p‖. (4.6)

Assuming that for some n, ‖zn − p‖ ≤ 2M, we get from (4.6)

(‖zn+1 − p‖ −Mαn+1)
2 ≤ (2M −Mαn+1)

2,

which shows that ‖zn+1 − p‖ ≤ 2M.
Therefore, (zn) is bounded.

Now we have that (xn) is bounded. Moreover, one can see that

‖xn+1 − PFu‖ ≤ ‖xn+1 − Jβnu‖+ ‖Jβnu− PFu‖
≤ (1− αn)‖xn − u+ en‖+ ‖Jβnu− PFu‖.

(4.7)

Using the result proved independently by R. E. Buck, Jr. [10] and G. Moroşanu [22],
we have lim

n→∞
‖Jβnu− PFu‖ = 0.

The proof is completed by passing to the limit in (4.7) as n tends to infinity.

We can see from the proof of Theorem 4.1 that xn+1 = Jβn(zn), n = 0, 1 .... However,
for (en) bounded and lim

n→∞
αn = 1, algorithms (4.4) and (4.5) are not equivalent.

Indeed, under the conditions provided in Lemma 4.2, the sequence (zn) is bounded,
and so is (xn). Consequently, for any u 6∈ F , (zn) converges strongly to u 6= PFu,
while PFu is the strong limit of (xn).

4.2 The four parameter regularization method

In this section, we shall discuss an algorithm for estimating the convergence rate of
a sequence that approximates minimum values of certain functionals. It is the four
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parameter proximal point algorithm introduced by O. A. Boikanyo and G. Moroşanu
[3]. This generalized regularization method generates a sequence (xn) as follows:

xn+1 = Jβn(αnu+ λnxn + γnTxn + en), n = 0, 1, ... (4.8)

where T : H → H is a nonexpansive map, (βn) ⊂ (0,∞), αn, λn, γn ∈ [0, 1], with
αn + λn + γn = 1, for all n ≥ 0.

It is worth noting that for λn = 0, n = 0, 1, ... and T is the identity operator, the
algorithm (4.8) is exactly the Xu’s regularization method ([27]) as given by (4.4).

They showed in [3] that under some reasonable conditions on the parameters and
errors, the sequence (xn) strongly converges to the projection of u on F := A−10,
provided that ∅ 6= F ⊂ FixT , where FixT = {x ∈ H : x = Tx} is the set of all
fixed points of T . Later, as in the following theorem, it was shown by the same
authors that under weaker assumptions on βn, αn, λn, γn and en, (4.8) can generate
a strongly convergent sequence (xn) whose limit is a zero of A nearest to u.

Theorem 4.3 ([2]). Let A : D(A) ⊂ H → H be a maximal monotone operator, and
T : H → H be a nanexpansive map with ∅ 6= F := A−10 ⊂ FixT , where FixT is
the fixed point set of T . For arbitrary but fixed x0, u ∈ H, let (xn) be the sequence
generated by (4.8), where (βn) ⊂ (0,∞), and αn, λn, γn ∈ [0, 1], with αn+λn+γn = 1,

for all n ≥ 0. Assume that lim
n→∞

αn = 0 with
∞∑
n=0

αn =∞ and βn ≥ β for some β > 0.

If either
∞∑
n=0

‖en‖ ≤ ∞ or lim
n→∞

‖en‖
αn

= 0, then (xn) converges strongly to PFu, the

metric projection of u onto F .

Proof. Denote by (zn) the sequence generated by (4.8) in the exact iterative process,
i.e., en = 0, n = 0, 1, ....

zn+1 = Jβn(αnu+ λnzn + γnTzn), n = 0, 1, ... (4.9)

We shall first show that (xn) is bounded and so is (zn). Indeed, assume that
∞∑
n=0

‖en‖ ≤ ∞. For some p ∈ F , we have

‖xn+1 − p‖ ≤ αn‖u− p‖+ (1− αn)‖xn − p‖+ ‖en‖,

which implies that

‖xn+1 − p‖ ≤

[
1−

n∏
k=0

(1− αk)

]
‖u− p‖+

n∏
k=0

(1− αk)‖x0 − p‖+
n∑
k=0

‖en‖.

This shows that (xn) is bounded.

Now, assume that lim
n→∞

‖en‖
αn

= 0. Then there is M > 0 such that for all n ≥ 0,

‖u− p‖+
‖en‖
αn
≤M.
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From (4.8) we have

‖xn+1 − p‖ ≤ αnM + (1− αn)‖xn − p‖.

By induction,

‖xn+1 − p‖ ≤

[
1−

n∏
k=0

(1− αk)

]
M +

n∏
k=0

(1− αk)‖x0 − p‖,

which implies the boundedness of (xn).
Thus, (zn) is bounded.
Since T is nonexpansive, we get

‖xn+1 − zn+1‖ ≤ (1− αn)‖xn − zn‖+ ‖en‖.

From Lemma 1.10, lim
n→∞

‖xn − zn‖ = 0. Therefore, it is sufficient to prove that (zn)

strongly converges to PFu.
Multiplying

αn(u− p) + λn(zn − p) + γn(Tzn − p) ∈ zn+1 − p+ βnAzn+1

by zn+1 − p, and using the monotonicity of A, we have

2‖zn+1 − p‖2 ≤(1− αn)(‖zn+1 − p‖2 + ‖zn − p‖2) + 2αn(u− p, zn+1 − p)
− λn‖zn+1 − zn‖2 − γn‖Tzn − zn+1‖2.

Thus

(1 + αn)‖zn+1 − p‖2 ≤(1− αn)‖zn − p‖2 + 2αn(u− p, zn+1 − p)
− λn‖zn+1 − zn‖2 − γn‖Tzn − zn+1‖2.

(4.10)

Set sn = ‖zn−PFu‖2, n = 0, 1, ... Since (zn) is bounded, it follows from (4.10) that

sn+1 − sn + λn‖zn+1 − zn‖2 + γn‖Tzn − zn+1‖2 ≤ αnM, (4.11)

for some M > 0.
On the other hand, from (4.9), we get:

‖zn+1 − Jβzn+1‖ ≤ 2(αn‖u− zn+1‖+ λn‖zn − zn+1‖+ γn‖Tzn − zn+1‖). (4.12)

We will consider the two possible cases of (sn) in order to complete the proof.

Case 1. (sn) is eventually decreasing, i.e., there is N ≥ 0 such that (sn) is decreasing
for all n ≥ N . In this case, (sn) is convergent. From (4.11) and (4.12), we have
lim
n→∞

‖zn − Jβzn‖ = 0.
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Thus, every weak cluster point of (zn) belongs to F . One can extract a subsequence
(znk) of (zn) such that (znk) converges weakly to some y ∈ F , and

lim
n→∞

sup(u− PFu, zn − PFu) = lim
k→∞

(u− PFu, znk − PFu) = (u− PFu, y − PFu) ≤ 0.

Then, from (4.10),

‖zn+1 − PFu‖2 ≤ (1− αn)‖zn − PFu‖2 + 2αn(u− PFu, zn+1 − PFu),

which implies that (zn) strongly converges to PFu.

Case 2. (sn) is not eventually decreasing, i.e., there exists a subsequence (sni) of
(sn) such that sni < sni+1, for all i ≥ 0.
Define an integer sequence (τ(n)) as in Lemma 1.11 so that for all n ≥ n0, sτ(n) ≤
sτ(n)+1.
From (4.11) and (4.12),

lim
n→∞

‖zτ(n)+1 − Jβzτ(n)+1‖ = 0,

which implies that

lim
n→∞

sup(u− PFu, zτ(n)+1 − PFu) ≤ 0.

Therefore, from (4.10), for n ≥ n0,

sτ(n)+1 ≤ (u− PFu, zτ(n)+1 − PFu).

Passing to the limit in the above inequality, lim
n→∞

sn = 0, or, in other words, xn → PFu

as n→∞.
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Chapter 5

Extensions to Proximal Point
Algorithms Involving Two
Monotone Operators

Let K1 and K2 be nonempty, closed, and convex subsets of a real Hilbert space H,
and K1 ∩K2 6= ∅. Consider the following convex feasibility problem:

find an x ∈ H such thatx ∈ K1 ∩K2. (5.1)

One of the methods for solving this problem in the particular case when K1 and
K2 are subspaces of H was introduced by von Neumann in 1933. It is an iterative
procedure of alternating projections defined as

H 3 x0 7→ x1 = PK1x0 7→ x2 = PK2x1 7→ x3 = PK1x2 7→ x4 = PK2x3 7→ .... (5.2)

As we shall see below, it was showed by von Neumann that this iterative process
strongly converges to the projection of x0 on K1∩K2, which is a solution of problem
(5.1).

The method of alternating projections in the general case has been an interesting
open topic. After years since von Neumann announced his strong convergence re-
sult, in 1965, Bregman [8] showed that in general, when K1 and K2 are two arbitary
nonempty, closed, and convex subests of H, with K1 ∩ K2 6= ∅, the sequence (xn)
generated by (5.2) is weakly convergent to a point in K1 ∩K2. Nearly four decades
later, H. Hundal [14], showed in his 2004 paper, that the strong convergence of this
iterative method fails to hold in general.

Let A : D(A) ⊂ H → H and B : D(B) ⊂ H → H be two maximal monotone
operators. We can restate the problem (5.1) as follows

find anx ∈ D(A) ∩D(B) such thatx ∈ A−10 ∩B−10. (5.3)
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We denote here the resolvent of a maximal monotone operator A by JAλ := (I+λA)−1,
λ > 0. Based on the fact that the projection operator is the resolvent of a normal
cone, an iterative method for solving the problem (5.3) was introduced. It is called
the method of alternating resolvents which is defined as follows: for βn, µn ∈ (0,∞),
and two maximal operators A and B,

x2n+1 = JAβn(x2n + en) for n = 0, 1, ...

x2n = JBµn(x2n−1 + e′n) for n = 1, 2, ....
(5.4)

where (en) and (e′n) are sequences of computational errors.

In 2005, Bauschke [6] gave a weak convergence result for the exact algorithm (5.4)
when en = e′n = 0 and βn = µn = λ > 0, n = 0, 1, .... He showed that the sequence
(xn) generated by (5.4) in the exact case converges weakly to one fixed point of the
composition mapping JAλ J

B
λ , provided the fixed set of JAλ J

B
λ is nonempty, which is

a solution of the problem (5.3). This conclusion still holds in the general case (5.4).
However, this process does not converge strongly in general.

In order to obtain strong convergence of the method of alternating resolvents, some
authors have generalized and modified the mentioned method. In this chapter, we
consider the iterative process given by O. A. Boikanyo [1] (2012). Precisely, for any
two maximal monotone operators A and B, the sequence (xn) is generated as follows:
for given x0, u ∈ H, αn, δn, γn, λn ∈ [0, 1] with αn+ δn+γn = 1 and βn, µn ∈ (0,∞),

x2n+1 = αnu+ δnx2n + γnJ
A
βnx2n + en for n = 0, 1, ...

x2n = JBµn(λnu+ (1− λn)x2n−1 + e′n) for n = 1, 2, ....
(5.5)

Now we will go back to the strong result given by von Newmann on two subspaces
with nonempty intersection.

Theorem 5.1 ([7]). Let K1 and K2 be closed linear subspaces of a real Hilbert space
H, and K1 ∩K2 6= ∅. Then the sequence (xn) defined by (5.2) strongly converges to
PK1∩K2x0.

Proof. The proof follows Bauschke [7].
For all n ≥ 0, we have

‖xn‖2 = ‖xn+1‖2 + ‖xn − xn+1‖2. (5.6)

In particular, (‖xn‖) is convergent since it is decreasing and nonnegative.
We shall show that for all n, k, l, with 1 ≤ k = l − n,

‖xk − xl‖2 ≤ ‖xk‖2 − ‖xl‖2. (5.7)
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Indeed, by induction on n, (5.7) holds for n = 0 and n = 1 (by (5.6)). Assume
that (5.7) holds for some n ≥ 1, take k, l such that 1 ≤ k = l − (n + 1). If n is
even, or n + 1 = l − k is odd, then xk+1 = PK1xk, xl = PK1xl−1 ∈ K1, whereas
xk − xk+1 = (I − PK1)xk ∈ K⊥1 . Hence,

(xk − xk+1, xk+1 − xl) = 0. (5.8)

Similarly, if l is even, one can get (5.8) by replacing K1 by K2.
Thus, from (5.6) and (5.8), we have (5.7).
In the case when n is odd, or n+ 1 = l − k is even, one can see that

(xk − xl, xl − xl−1) = 0.

Again, by the property of (‖xn‖) and using (5.6), we can get (5.7).
Therefore, (xn) is Cauchy, and hence convergent.
Let x = lim

n→∞
xn. Since (x2n+1) ⊂ K1 and (x2n) ⊂ K2, x ∈ K1 ∩K2, and

x = lim
n→∞

PK1∩K2xn.

Fix n and t ∈ R, and set z = (1− t)PK1∩K2xn + tPK1∩K2xn+1. Then z ∈ Fix(PK1) ∩
Fix(PK2), and PK1z = PK2z = z. Also, xn+1 ∈ {PK1xn, PK2xn}. Since, PK1 and PK2

are nonexpansive,
‖xn+1 − z‖ ≤ ‖xn − z‖,

which implies

(1− 2t)‖PK1∩K2xn+1 − PK1∩K2xn‖2 + ‖P(K1∩K2)⊥xn+1‖2 ≤ ‖P(K1∩K2)⊥xn‖
2.

Therefore, PK1∩K2xn = PK1∩K2xn+1, that is x = lim
n→∞

xn = PK1∩K2x0.

In the following, we shall consider the more general case when K1 and K2 are just
closed and convex subsets of H. In this case, the strong convergence of the sequence
(xn) generated by (5.5) shows us that (5.5) is an efficient algorithm. Under reasonable
assumptions on the parameters and errors, the inexact iterative process strongly
converges if the exact one does.

Theorem 5.2 ([1]). Let A : D(A) ⊂ H → H and B : D(B) ⊂ H → H be
two maximal monotone operators with A−10 ∩ B−10 := F 6= ∅. For any given
x0, u ∈ H, let the sequence (xn) be generated by (5.5), where αn, δn, γn, λn ∈ [0, 1]
with αn + δn + γn = 1 and βn, µn ∈ (0,∞). Assume that lim

n→∞
αn = 0, γn ≥ γ

for some γ > 0 and lim
n→∞

λn = 0, either
∞∑
n=0

αn = ∞ or
∞∑
n=0

λn = ∞, βn ≥ β and

µn ≥ µ for some β, µ > 0. Then (xn) converges strongly to the projection of u on
F , provided that any of the following conditions is satisfied:

(a)
∞∑
n=0

‖en‖ <∞ and
∞∑
n=1

‖e′n‖ <∞;
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(b)
∞∑
n=0

‖en‖ <∞ and lim
n→∞

‖e′n‖
αn

= 0;

(c)
∞∑
n=0

‖en‖ <∞ and lim
n→∞

‖e′n‖
λn

= 0;

(d) lim
n→∞

‖en‖
αn

= 0 and
∞∑
n=1

‖e′n‖ <∞;

(e) lim
n→∞

‖en‖
λn

= 0 and
∞∑
n=1

‖e′n‖ <∞;

(f) lim
n→∞

‖en‖
αn

= 0 and lim
n→∞

‖e′n‖
αn

= 0;

(g) lim
n→∞

‖en‖
αn

= 0 and lim
n→∞

‖e′n‖
λn

= 0;

(h) lim
n→∞

‖en‖
λn

= 0 and lim
n→∞

‖e′n‖
αn

= 0;

(i) lim
n→∞

‖en‖
λn

= 0 and lim
n→∞

‖e′n‖
λn

= 0;

(j) lim
n→∞

‖en‖
αn

= 0 and lim
n→∞

‖e′n‖
αn−1

= 0;

(k) lim
n→∞

‖en−1‖
λn

= 0 and lim
n→∞

‖e′n‖
αn−1

= 0;

(l) lim
n→∞

‖en−1‖
λn

= 0 and lim
n→∞

‖e′n‖
λn

= 0;

(m)
∞∑
n=0

‖en‖ <∞ and lim
n→∞

‖e′n‖
αn−1

= 0;

(n) lim
n→∞

‖en−1‖
λn

= 0 and
∞∑
n=1

‖e′n‖ < +∞.

Proof. Let the sequence (zn) be generated by (5.5) in the exact case, i.e.,

z2n+1 = αnu+ δnz2n + γnJ
A
βnz2n for n = 0, 1, ...

z2n = JBµn(λnu+ (1− λn)z2n−1) for n = 1, 2, ....
(5.9)

We will start with showing that the sequence (zn) strongly converges to the projection
of u onto F . First, we shall prove that (zn) is bounded. Indeed, with p ∈ F , since
JAβn and JBµn are nonexpansive, one can see that

‖z2n − p‖ ≤ λn‖u− p‖+ (1− λn)‖z2n−1 − p‖,

which implies that

‖z2n+1 − p‖ ≤ [1− (1− αn)(1− λn)]‖u− p‖+ (1− αn)(1− λn)‖z2n−1 − p‖.

By induction,

‖z2n+1−p‖ ≤

[
1−

n∏
k=1

(1− αk)(1− λk)

]
‖u−p‖+‖z1−p‖

n∏
k=1

(1−αk)(1−λk). (5.10)
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Thus, (zn) is bounded. Now, set sn := ‖z2n−1 − PFu‖2. We shall show that (sn)
converges strongly to zero. Since JAβn is firmly nonexpansive, we have

‖JAβnz2n − p‖
2 ≤ ‖z2n − p‖2 − ‖z2n − JAβnz2n‖

2,

which implies

(z2n − p, JAβnz2n − p) ≤ ‖z2n − p‖
2 − ‖z2n − JAβnz2n‖

2, (5.11)

and

‖δn(z2n − p) + γn(JAβnz2n − p)‖
2 ≤(1− αn)2‖z2n − p‖2

− γn(γn + 2δn)‖ z2n − JAβnz2n‖
2.

(5.12)

By the properties of norms, we have

‖z2n+1− p‖2 ≤ (1−αn)‖z2n− p‖2− ε‖z2n−JAβnz2n‖
2 + 2αn(u− p, z2n+1− p), (5.13)

where ε > 0 is such that ε ≤ γn(γn + 2δn). On the other hand, we can obtain from
(5.9) that

λn(u− p) + (1− λn)(z2n−1 − p) ∈ z2n − p+ µnBz2n. (5.14)

It follows form (5.14) that

‖z2n − p‖2 ≤ (1− λn)
[
‖z2n−1 − p‖2 − ‖z2n − z2n−1‖2

]
+ 2λn(u− p, z2n − p). (5.15)

From (5.13), one can get that

‖z2n+1 − p‖2 ≤(1− αn)(1− λn)‖z2n−1 − p‖2 − ε‖z2n − JAβnz2n‖
2

+ 2αn(u− p, z2n+1 − p)− (1− αn)(1− λn)‖z2n − z2n−1‖2

+ 2λn(1− αn)(u− p, z2n − p).
(5.16)

Therefore, for some M > 0, we have

sn+1 − sn + ‖z2n − z2n−1‖2 + ε‖z2n − JAβnz2n‖
2 ≤ (αn + λn)M. (5.17)

We consider the following two cases on the sequence (sn):

Case 1. (sn) is eventually decreasing, i.e., there is N ≥ 0 such that (sn)n≥N is
decreasing. In this case, (sn) is convergent. From (5.17), we have

lim
n→∞

‖z2n − z2n−1‖ = lim
n→∞

‖z2n − JAβnz2n‖ = 0. (5.18)

Since lim
n→∞

αn = 0, from (5.18), we have

lim
n→∞

‖z2n+1 − z2n‖ = lim
n→∞

(
αn‖u− JAβnz2n‖+ ‖JAβnz2n − z2n‖

)
= 0 (5.19)
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and
lim
n→∞

‖z2n − JAβ z2n‖ = lim
n→∞

2‖z2n − JAβnz2n‖ = 0. (5.20)

Since A−1β , the inverse of the Yosida approximation of A, is demiclosed, all the weak
cluster points of (z2n) belong to A−10.
On the other hand, since JBµ is nonexpansive, we have

‖z2n − JBµ z2n‖ ≤ 2‖z2n − JBµnz2n‖ ≤ 2(λn‖u− z2n−1‖+ ‖z2n−1 − z2n‖). (5.21)

Since B−1µ , the inverse of the Yosida approximation of B, is demiclosed, all the weak
cluster points of (z2n) belong to B−10. Thus, they belong to F . That is, there exists
a subsequence (ωk) of (z2n) weakly converging to some z ∈ F such that

lim sup
n→∞

(u− PFu, z2n − PFu) = lim sup
k→∞

(u− PFu, ωk − PFu)

= (u− PFu, z − PFu) ≤ 0.
(5.22)

From (5.19), we also get

lim sup
n→∞

(u− PFu, z2n+1 − PFu) ≤ 0. (5.23)

From (5.16), we have

‖z2n+1 − PFu‖2 ≤(1− αn)(1− λn)‖z2n−1 − PFu‖2

+ 2αn(u− PFu, z2n+1 − PFu)

+ 2λn(1− αn)(u− PFu, z2n − PFu).

(5.24)

Applying Lemma 1.9, we obtain lim
n→∞

‖z2n+1 − PFu‖ = 0. Passing to the limit in

(5.15), we get lim
n→∞

‖z2n − PFu‖ = 0 as well. That is, lim
n→∞

‖zn − PFu‖ = 0.

Case 2. (sn) is not eventually decreasing, i.e., there exists a subsequence (sni) of
(sn) such that sni < sni+1, for all i ≥ 0.
Define an integer sequence (τ(n))n≥n0 as in Lemma 1.11 so that for all n ≥ n0,
sτ(n) ≤ sτ(n)+1.
It follows from (5.17) that

lim
n→∞

‖z2τ(n) − z2τ(n)−1‖ = lim
n→∞

2‖z2τ(n) − JAβτ(n)z2τ(n)‖ = 0.

From (5.5), we also get

lim
n→∞

‖z2τ(n)+1−z2τ(n)‖ = lim
n→∞

(ατ(n)‖u−JAβτ(n)z2τ(n)‖+γτ(n)‖J
A
βτ(n)

z2τ(n)−z2τ(n)‖) = 0.

Arguing as in Case 1, one can see that all the weak cluster point of (z2τ(n)) belong
to F . Consequently,

lim sup
n→∞

(u− PFu, z2τ(n) − PFu) ≤ 0.
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It follows from (5.24) that, for some K > 0,

‖z2n+1 − PFu‖2 ≤(1− αn)(1− λn)‖z2n−1 − PFu‖2 + αnK‖z2n+1 − z2n‖
+ 2[λn(1− αn) + αn](u− PFu, z2n − PFu).

Therefore, for all n ≥ n0, we have

sτ(n)+1 ≤(1− ατ(n))(1− λτ(n))sτ(n) + ατ(n)K‖z2τ(n)+1 − z2τ(n)‖
+ 2[λτ(n)(1− ατ(n)) + ατ(n)](u− PFu, z2τ(n) − PFu)

≤ 2(u− PFu, z2τ(n) − PFu) +K‖z2τ(n)+1 − z2τ(n)‖.
(5.25)

Passing to the limit in (5.25), we get lim
n→∞

sτ(n)+1 = 0 which implies that lim
n→∞

sn = 0.

Thus, lim
n→∞

z2n+1 = PFu. Moreover, from (5.15) for some L > 0, we have

‖z2n − PFu‖2 ≤ (1− λn)‖z2n−1 − PFu‖2 + 2λnL,

which implies that lim
n→∞

z2n = PFu. Therefore, lim
n→∞

zn = PFu.

Finally, we shall show that lim
n→∞

‖xn − zn‖ = 0.

Since JAβn and JBµn are nonexpansive, we have

‖x2n − z2n‖ ≤ (1− λn)‖x2n−1 − z2n−1‖+ ‖e′n‖; (5.26)

and

‖x2n+1 − z2n+1‖ ≤ (1− αn)‖x2n − z2n‖+ ‖en‖
≤ (1− αn)(1− λn)‖x2n−1 − z2n−1|+ ‖e′n‖+ ‖en‖.

(5.27)

Therefore, if (en) and (e′n) satisfy any of the assumptions (a) to (i), by Lemma 1.9,
we obtain lim

n→∞
‖x2n+1 − z2n+1‖ = 0 and lim

n→∞
‖x2n − z2n‖ = 0.

Otherwise, if the parameters and the errors satisfy any of the other assumptions,
from (5.26) and (5.27), we get

‖x2n − z2n‖ ≤ (1− αn−1)(1− λn)‖x2n−2 − z2n−2‖+ ‖en−1‖+ ‖e′n‖.

Thus, lim
n→∞

‖x2n − z2n‖ = 0 and lim
n→∞

‖x2n+1 − z2n+1‖ = 0.

Remark. A result similar to Theorem 5.2 above holds for the following iterative
process:

x2n+1 = JAβn(αnu+ (1− αn)x2n + en) for n = 0, 1, ...

x2n = JBµn(λnu+ (1− λn)x2n−1 + e′n) for n = 1, 2, ....

The proof of this remark can be found in [5].

Obviously, for A = B, we reobtain the algorithm (4.4) (or algorithm (4.8) with
T = I) discussed in Chapter 4.
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