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Abstract

In this thesis I develop a model which is able to capture the complexity of games

and predict the depth of reasoning performed by the players across di�erent games.

I use a modi�ed version of a Turing machine and measure the complexity of a level-k

strategy with the number of moves the machine has to make to compute the given

strategy using the parameters of the game as inputs. This analyzing framework is

able to explain some part of the variation in the observed cognitive type distribution

found out by experimental papers.
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1 Introduction

The equilibrium approach used in game theory often fails to explain the outcomes of games

played by real subjects during an experiment. This well-known fact inspired several schol-

ars to think about non-equilibrium approaches to explain the outcomes of the experiments

and to have a better understanding of strategic thinking. This �eld of research developed

several new alternative models. The examples are equilibrium with noise, level-k models

(Nagel, 1995; Stahl and Wilson, 1994, 1995) and the closely related cognitive hierarchy

model (Camerer, Ho and Chong, 2004), and quantal response equilibrium (McKelvey and

Palfrey, 1995). Crawford, Costa-Gomes and Iriberri (2013) provide a survey of both the-

oretical and empirical papers about these models; based on these �ndings they suggest

that the level-k models should be added to the analyst's tools since they can explain a

large fraction of empirical results.

The model of level-k reasoning was �rst introduced in the 1990's by Nagel (1995) and

Stahl and Wilson (1994, 1995). The model assumes a distribution of cognitive types of

the players, all type is a level-k type with di�erent k. All of the k types play their best

response to the type k−1's actions. The level-0 type is a nonstrategic one that chooses its

actions without any reasoning about the strategic situation. The de�nition of the level-0

strategy is the crucial step in the construction of a level-k model. According to Crawford,

Costa-Gomes and Iriberri (2013) there are two methods in the literature for de�ning the

level-0 strategy; one of them is uniform randomness and the other is attraction to salience.

There is an extensive experimental literature which tests the goodness-of-�t of the

predictions of a level-k models. Besides the experimental literature, there are some recent

theoretical advances related to the level-k reasoning. Strzalecki (2011), Heifetz and Kets

(2012), Kets (2012), and Pintér and Udvari (2012) provide type spaces which are able to
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express �nite belief hierarchies (and therefore level-k reasoning).

Despite the large body of empirical papers using level-k models to explain results of

experiments, the determinants of the distribution of the cognitive types with level-k depth

has not received much attention. In the experimental papers the distribution of the level-k

types was assumed to be exogenous and never depended on the parameters of the game

played, neither on the subject pool.

To the best of my knowledge, Alaoui and Penta (2013a,b) were the �rst who inves-

tigated this question. Alaoui and Penta (2013b) use an axiomatic approach to provide

a theoretical framework in which the reasoning process in a game is an outcome of a

cost-bene�t analysis. In their model, the costs of reasoning are exogenous and depend on

the cognitive abilities of the players, while the bene�ts are determined by the payo�s of

the game played.

They test their theory with an experiment in Alaoui and Penta (2013a). Their subjects

played a modi�ed version of the 11-20 game introduced by Arad and Rubinstein (2012)

which is the most suitable among game types to a level-k analysis. Their experimental

design enabled them to examine how the sophistication (higher analytical skills), beliefs

about the opponent's sophistication, incentives (higher rewards) and beliefs about the

opponent's incentives in�uence the depth of reasoning of the players. They found support

that the underlying process which determines the depth of reasoning can be modeled as

a cost-bene�t analysis.

The work of Alaoui and Penta thus successfully applied classical economic concepts

to model the initial responses for a given game, however, the further speci�cation of

the cost function was outside their paper's focus. They suggested future research for

the speci�cation of the cost function which would enable to make predictions about the
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depth of knowledge across di�erent games. This thesis contributes toward this direction

of research.

Here I assume that the costs of the reasoning are determined � given the cognitive

ability of the player � by the computational complexity of the game played. Joining the

research line which started with Rubinstein (1986) I use a kind of automaton (it is named

game machine) to capture the complexity of the level-k strategies of di�erent games. The

game machine introduced here can capture more of the computational complexity than

the �nite automaton used by Rubinstein (1986). After the review of the level-k studies

about di�erent games, I apply the game machine to evaluate the computational costs of

calculating level-k best responses for the game types I investigate. The new model can

provide new insights into the strategic thinking process and able to explain some of the

variation in the results of experiments.

This thesis is organized as follows. Section 2 summarizes the results of experimental

level-k studies. Section 3 describes the models of computational complexity and introduces

the game machine model. Section 4 uses the newly developed game machine model to

evaluate the games described in Section 2. Section 5 conducts the overall analysis across

games, Section 6 concludes and provides recommendations for an empirical study.

3
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2 Overview of experimental results

In this section I overview the experimental �ndings about the distribution of level-k types

of players in di�erent games. The goal is not to summarize all of the game theoretic

experiments conducted so far, I only focus to the empirical papers which concentrated on

the estimation of the distribution of level-k type players. I do not include papers lacking

the description of the level-k distribution.

Di�erent types of games are analyzed in di�erent subsections. In the case of all game

types, �rst I brie�y introduce the game in question. The description is followed by the

summary of experiment results including the important details of experiment designs. I do

not refer to another details of research designs if they are not important for the purposes

of this thesis. At the end of each experiment description I present a table which contains

the relative frequencies of the identi�ed types reported by the authors.

Subsection 2.1 deals with the Beauty Contest-like outguessing games, Subsection 2.2

with other normal form games with two players. Hide-and-seek games are included in

Subsection 2.3, and Subsection 2.4 covers the most recent 11-20 money request game.

2.1 Beauty Contest games

Beauty Contest games are extremely useful tools to analyze the subjects' depth of think-

ing. The name of this type of game originates with Keynes (1936). Keynes (1936) compared

the activity of professional investors to a newspaper competition where the competitors

have to choose six faces of hundred photographs, and the winner is the one whose choice

is the nearest to the average choice of all competitors. In the conducted experiments the

subjects' task is less complicated: they have to pick a number from an interval [a, b], and

the winner is whose choice is the nearest to the average times p, where p is a positive num-

4



C
E

U
eT

D
C

ol
le

ct
io

n

ber. So the players have to guess the average of the other players' choices. The parameters

a, b and p, as well as the number of participants varies across experiments.

This kind of game has many attractive features for a level-k analysis. First, the game

has unique symmetric equilibrium for all p 6= 1, which can be found by iterated dominance.

If p < 1, then the symmetric equlibrium guess is a;and it is b if p > 1. Knowing the

clear prediction of the equlibrium concept, it is easy to compare the predictions of the

equilibrium and the level-k approaches.

Second, there is a natural way to de�ne the level-0 strategy. A non-strategic player

chooses a number randomly or choose a number which is salient to him � for example

his favorite number (Nagel, 1995). Therefore the average of guesses by a population of

level-0 players will be the expected value of the numbers in [a, b]. With such natural

level-0 strategy it is easy to �nd the level-1 and higher order players' actions. A level-1

player best responding to the level-0 players actions will guess p times the average, and

level-n players will guess pn times the average respectively. Given the large strategy space

(another advantage of this game type) and the sharp identi�cation of the level-0 strategy

� and the higher level strategies implied by that � these outguessing games are excellent

for a level-k analysis.

Outguessing games are extensively discussed by the literature, but most of the papers

concentrate only on the winning number in di�erent settings and not the distribution

of level-k types. This subsection covers the �ndings of Nagel (1995), Ho, Camerer and

Wiegelt (1998) and Costa-Gomes and Crawford (2006) as they explicitly focused on the

type distribution.

5



C
E

U
eT

D
C

ol
le

ct
io

n

2.1.1 Nagel (1995)

The experiment run by Nagel (1995) was the �rst which examined the level-k distribution

in outguessing games. The interval was [0, 100] in each sessions, but three di�erent p was

used: 1
2
, 2

3
and 4

3
. Nagel (1995) allowed some noise during the identi�cation of the level-k

guesses, she looked at neighborhoods of the 50pn guesses not only the points 50pn. The

relative frequency of level-k guesses is presented by Table 1 (the results are from Figure

2 of Nagel (1995)).

Table 1: Results of Nagel (1995)

p L0 L1 L2 L3
1/2 24% 28% 41% 7%

2/3 12% 45% 38% 5%

4/3 4% 59% 20% 18%

A very similar experiment was ran by Ho, Camerer and Wiegelt (1998). In their

analysis the authors categorized all the guesses as a level-k guess according to intervals

which contain level-k undominated guesses. This method led to too much noise in the data.

It is hard to imagine such high frequency (34-49%) of the L3 type they found while in

other papers the frequency of L3 is almost always (well) below 10%. Due to that outlying

results I do not include Ho, Camerer and Wiegelt (1998) in my analysis.

2.1.2 Costa-Gomes and Crawford (2006)

Another article I include is Costa-Gomes and Crawford (2006) which analyzed guessing

games played by two players. Costa-Gomes and Crawford (2006)'s subjects played a series

of 16 similar games without any feedback of the results, which excluded learning e�ects.

The series of games allowed a more precise identi�cation of players' types. In addition, the
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two-player setting made sure that the players consider themselves and their own actions

as in�uencing factors in the environment.

Another di�erence from Nagel (1995)'s and Ho, Camerer and Wiegelt (1998)'s design

is that the two players had di�erent intervals and di�erent targets (though they were

aware of the other player's interval and target as the structure was publicly announced).

It was possible that both of the targets are above 1, both of the targets are below 1, or

they were mixed. The equilibrium is determined by the product of the two targets and

always exists if that product is not equal to 1 (and it never happened in the design).

The authors chose this variable structure to help the understanding of the game by the

subjects and let them concentrating on the predictions, therefore reduce the noisiness of

the guesses.

The experimental design described above enabled to separate the cognitive types of

players more reliably. Their estimation included six di�erent types: L1, L2, L3, D1, D2

and Equilibrium. The Dk types are similar to Lk+ 1 types, the di�erence between them

is that the Lk + 1 simply best responds to Lk, while Dk best responds to a distribution

of lower-level types. At the end the authors rejected the Dk types in favor of the Lk + 1

types. Subjects with L0 guesses were not found at all in this experiment.

Costa-Gomes and Crawford (2006) was able to reliable identify guesses of 43 subjects

out of 88 that are exactly corresponding to a hypothetical type. The results are presented

on Table 2.

Table 2: Reliably identi�ed types (Costa-Gomes and Crawford, 2006)

Type L0 L1 L2 L3
Frequency 0% 56% 34% 10%
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2.2 Two-person matrix games

The two-person normal form games were also among the game types that became subjects

of the level-k analysis (Stahl and Wilson, 1994, 1995). This subsection covers three arti-

cles which analyzed two-person matrix games: Stahl and Wilson (1994), Stahl and Wilson

(1995) and Costa-Gomes, Crawford and Broseta (2001). The strategy space of these sim-

ple matrix games are much coarser than the strategy space of Beauty Contest games.

To ensure the identi�cation of the players' depth of thinking, in all of the experiments

presented below the subjects played multiple games in the experiment sessions (similarly

as in Costa-Gomes and Crawford (2006)).

Again, there are lots of another papers about normal form game experiments, here I

present the papers which explicitly concentrate on the estimation of the k-distributions

(this statement is also true for the hide-and-seek games, though I will not mention it

again).

2.2.1 Stahl and Wilson (1994)

In the experiment of Stahl and Wilson (1994) the subjects played 10 symmetric 3 × 3

matrix games, all of them as a row player, and after that the actions were matched.

After considering multiple econometrical estimations, 35 subjects had very high proba-

bility to being one type. The authors found the following type distributions (notice that in

the case of 3×3 matrix games, L3 plays the equilibrium; L0 subjects were not identi�ed).

Table 3 presents the results.

Table 3: Findings of Stahl and Wilson (1994)

Type L0 L1 L2 L3
Frequency 0% 24% 51% 25%
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In an other paper, Stahl andWilson (1995) conducted an analysis with improved exper-

imental design and econometric analysis. In that setting the authors included a new type,

they called it 'worldly', which corresponds to a level-4 player. 38 subjects out of 48 found

to be one of these types with at least 0.9 posterior probability, and 17 of them found to be

a worldly type. The high number of worldly players is striking. However, this estimation

method received criticism in Costa-Gomes, Crawford and Broseta (2001) and Crawford,

Costa-Gomes and Iriberri (2013). These authors argue that the over-parametrization of

Stahl and Wilson (1995)'s model led to the rejection of L2 types in favor of worldly.

Costa-Gomes, Crawford and Broseta (2001) got more similar results to Stahl and Wilson

(1994) - which does not include the Worldly type - than the results to Stahl and Wilson

(1995), despite that the designs of Stahl and Wilson (1994) and Stahl and Wilson (1995)

were very similar to each other. I agree to the criticism of Crawford, Costa-Gomes and

Iriberri (2013) and due to the irregularly high level of L4 types I do not include the results

of Stahl and Wilson (1995) into my analysis.

2.2.2 Costa-Gomes, Crawford and Broseta (2001)

The subjects there played 18 matrix games, there were 2 × 2, 2 × 3 and 2 × 4 games

that were designed to enable separating the choices of strategic and nonstrategic types as

much as possible.

The authors included several types in their estimation, but all of their identi�ed types

coincide with one of the Lk types of Stahl andWilson (1994). According to the econometric

analysis of the authors, 58 subjects out of 72 found to be one type with at least 0.9

posterior probability. The results are presented by Table 4.

9
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Table 4: Costa-Gomes, Crawford and Broseta (2001)

Type L0 L1 L2 L3
Frequency 7% 24% 59% 10%

2.3 Hide-and-seek games

The hide-and-seek games �rst introduced by Rubinstein, Tversky and Heller (1996) are

two-person games in normal form with zero-sum payo�s. One of the players is the "hider",

her task is to hide a "treasure" in one of the four locations (boxes), while the "seeker"

player's task is to �nd it. The hider wins if the seeker picks a box which is not the one

that selected by the hider and vice versa. Therefore the interests of the two players are

completely con�icting. (Note that the game is still a simultaneous move game even if the

hider acts �rst since the action is not observed by the seeker).

Another important feature of the game is the non-neutral framing of the boxes. The

four boxes are signed by letters A,B,A,A respectively. The standard game theoretical

prediction is that all four locations will be chosen with equal probability (mixed strategy

equilibrium, notice that the letters do not a�ect payo�s). However, as Rubinstein, Tversky

and Heller (1996) found out, it is not true. The framing makes some locations more salient

to the players causing deviations from the equilibrium. Rubinstein, Tversky and Heller

(1996) argues that besides the box denoted by B (which is trivially salient) the A boxes

at the two ends are also can be salient, so the least salient location is the central A.

Using the salience concept, we can identify the L0 choice as the salient location and

conduct a level-k analysis. In this subsection I present two level-k analysis of experimental

hide-and-seek games, Crawford and Iriberri (2007) and Penczynski (2011).

10
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2.3.1 Crawford and Iriberri (2007)

The paper by Crawford and Iriberri (2007) was the �rst that proposed a level-k analysis to

explain the results of Rubinstein, Tversky and Heller (1996), and their other goal was to

explore the correct speci�cation of level-k models for games with non-neutral landscapes.

The authors assumed that L0 is attracted to the salient locations, and the salient locations

are the same for both hiders and seekers (they called it role-symmetric L0).

In their model the L0 player chose the locations A,B,A,A with probabilities p
2
, q, 1−

p − q, p
2
respectively such that p > 1

2
and q > 1

4
. With this L0 speci�cation they get the

results on Table 5.1

Table 5: Hide-and-seek games in Crawford and Iriberri (2007)

Type L0 L1 L2 L3 L4
Frequency 0% 19% 32% 24% 25%

2.3.2 Penczynski (2011)

The main feature of Penczynski (2011)'s paper that he speci�ed the L0 beliefs asymmet-

rically for hiders and seekers. Penczynski (2011) concentrated only on the salience related

to B, and level-0 hiders were assumed to B-averse, level-0 seekers were attracted by B.

The played game was the original hide-and-seek game of Rubinstein, Tversky and

Heller (1996). The subjects were divided into teams with two members, who were con-

nected by the chat module of the experiment software, and they could send only one

message to their team partner with their suggested decisions. After that, they had to

state their �nal decision individually. Given that the messages were observable for the

experimenter, this additional information was useful for the examination of reasoning

1Crawford and Iriberri (2007) claims that despite the high frequency of L4 subjects found, their
frequency is not well identi�ed in the distribution.
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processes and revealed the salient boxes for the given student. Penczynski (2011) classi-

�ed the messages according to the corresponding k-level.

The estimated level distribution were given by Table 6.

Table 6: Hide-and-seek games in Penczynski (2011)

Type Hiders Seekers All
L0 0.35 0.15 0.27
L1 0.4 0.34 0.37

L2 0.17 0.4 0.27

L3 0.06 0.08 0.07

L4 0.02 0.04 0.03

2.4 The 11-20 money request game

The most recently developed game type which was used to level-k analysis is the 11-20

money request game introduced by Arad and Rubinstein (2012). This game type was

designed to be the proper framework to study level-k behavior. The original description

of the game from (Arad and Rubinstein, 2012, p. 3562):

"You and another player are playing a game in which each player requests an amount

of money. The amount must be (an integer) between 11 and 20 shekels. Each player will

receive the amount he requests. A player will receive an additional amount of 20 shekels

if he asks for exactly one shekel less than the other player.

What amount of money would you request?"

There are several aspects of that game that make it ideal for the level-k study. First of

all, there is a natural level-0 speci�cation: choosing the 20 is clearly the most salient to a

non-strategic player since it ensures the highest guaranteed amount. Second, given the Lk

strategy, the best response of a Lk+1 type is straightforward: choosing the number which

12
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is smaller than the Lk request by 1. And in addition the type speci�cations are robust to

the type distribution; for example, 19 is best response for a wide range of distributions

where 20 is the most likely strategy, and this is true for the higher levels as well.

Putting everything together, it is natural to use the level-k reasoning model to this

game. The requests 20, 19, ... correspond to L0, L1, ... types respectively. The relative

frequency of requests are presented by Table 7.

Table 7: Results � 11-20 game of Arad and Rubinstein (2012)

Request 20 19 18 17 16 15 14 13 12 11
Frequency 6% 12% 30% 32% 6% 1% 6% 3% 0% 4%

Looking at the �ndings of the papers describing experiments with di�erent types of

games, we can see signi�cant di�erences between the reported level-k type distributions

(for instance consider the level-3 types were the rarest in the case of Beauty Contest

games while they were the most common in the 11-20 game); and we can also recognize

a similarity of the type distribution between similar games. In addition, there were no

signi�cant di�erences in terms of payo�s (the reward amounts were fairly similar) or in

terms of subject pool (the subjects were undergraduates from economics, business our

�nance courses without any game theory study in practically every cases). Therefore it

seems possible that the di�erent level of the complexity of the di�erent games can explain

these di�erences.

13
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3 Models of computational complexity

Computer scientists use the automata theory to study complexity (see for example Hopcroft

and Ullman (1979)). The automata theory has already been applied in Economics and

Game Theory to examine the complexity of choice processes or strategies. To the best of

my knowledge all of these applications used the �nite automaton (FA) model described

later. Rubinstein (1986) and Abreu and Rubinstein (1988) used the FA model to analyze

strategies in repeated games, while Salant (2011) used the it to study the complexity of

procedural choice methods.

In all of these papers, the authors used the total number of needed states in the

automaton as measure of complexity. This approach has a drawback, it is explicitly stated

in (Abreu and Rubinstein, 1988, p. 1265): "The measure neglects the desire of players to

simplify their calculations during the course of play." In other words, the measure does

not re�ect the computational costs occur during the play of the game. This drawback

makes the FA model inappropriate for our purposes, since it does not make any di�erence

in the costs related to di�erent games. In the case of level-k analysis, the levels can be

interpreted as states, and a FA which plays a level-k strategy needs exactly k+1 states to

work regardless of the game type. Performing an analysis across game types is impossible

with a model that cannot distinguish between game types.

Here I present a new automaton model which re�ects the computation costs that

occur during the rounds of iterations and de�ne a complexity measure similar to the

time complexity function de�ned in Hopcroft and Ullman (1979). In this section, �rst I

introduce two models used in Computer Science based on Hopcroft and Ullman (1979):

the �nite automaton model (Subsection 3.1, this kind of model was used by Rubinstein

(1986); Abreu and Rubinstein (1988) and Salant (2011)) and the Turing machine model

14
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with the time complexity function (Subsection 3.2). Subsection 3.3 presents the game

machine model with the strategy complexity measure.

3.1 The �nite automaton model

A �nite automaton is a system with discrete inputs and outputs which can be in a �nite

number of di�erent internal states. The behavior of the system is determined by the

history of past inputs, and the states contain the necessary information about past inputs.

I provide here the de�nition of an extension of the baseline FA model, the so-called Moore

machine. The Moore machine di�ers from the baseline FA model in an important notion:

the Moore machine has outputs as well, while the FA does not (or only binary outputs).

The formal de�nition presented below are based on the de�nition in Hopcroft and Ullman

(1979).

De�nition 3.1. A Moore machine is given by a 6-tuple (Q,Σ,∆, δ, λ, q0) where Q is the

�nite set of states, Σ is the set of inputs, ∆ is the set of outputs, δ : Q × Σ → Q is the

transition function, λ : Q→ ∆ is the output function and q0 ∈ Q is the initial state.

I demonstrate the �nite automata with the example of repeated game strategies dis-

cussed in Rubinstein (1986).

Example 3.2. Consider a baseline 2×2 Prisoner's Dilemma game with actions C(ooperate)

and D(eviate) and look at the "Tit-for-Tat" strategy (start with C, then play C if and

only if the other player played C in the previous period). In this case

• Q = {qC , qD};

• Σ = {C,D}, the other player's action in the given period;

• ∆ = {C,D}, the player's action in the given period;

15
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• δ(·, i) = qi, where i ∈ {C,D};

• λ(qi) = i, where i ∈ {C,D}; and

• q0 = C.

The automaton has two states, the transition map is represented by Figure 1. The

circles denote the states, the arcs are the transitions, and the letters on the arcs denote

the input (other player's action) that triggers the transition. The output function simply

assigns C to qc and D to qD.

Figure 1: The transition mapping of the Tit-for-Tat automaton by Rubinstein (1986)

We can see from both of the de�nition and the example that the FA does not "com-

pute" anything but just changes states according to the inputs, and cannot deduce any-

thing from the information it gets. Therefore while it is a proper tool for analyzing strate-

gies in repeated games and choices from a list, it is not able to express the computational

cost of a level-k best reply in a game.2

2Hopcroft and Ullman (1979) do not de�ne any complexity measure for �nite automata
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3.2 The Turing machine model

There are many versions of the FA model, but none of them are appropriate for the

purposes of this thesis as the possible complexity measures de�ned on them does not

capture the the di�erence of computational costs across games. However, a modi�ed ver-

sion of the time complexity function de�ned on a Turing machine is able to capture the

computational complexity in question. Here I present the Turing machine and the time

complexity function according to Hopcroft and Ullman (1979), but I do not include formal

descriptions or details that are unnecessary for our purposes.

The Turing machine consists of an input tape divided into cells and a tape head that

is able to scan the inputs on the tape, one cell at a time. The set of the input symbols

is �nite. Contrary to the FA, the Turing machine (TM) is able to print out symbols

depending on the state of the machine and the inputs. This feature makes possible the

computation. Another important di�erence is that the Turing machine makes moves not

just changes states as the FA. In one move the Turing machine can change state, print

out an output symbol and shift its head left or right one cell.

There are lots of modi�ed versions of the baseline TM model, such as multitape ma-

chines. One can construct Turing machines for a given procedure (for example, computing

a function). The machine scans the input symbols, changes states and prints out output

symbols and halts when the procedure is �nished. Hopcroft and Ullman (1979) provide

examples of this kind of computing TM. If a reader wants to imagine such a TM, for

example, she can think of a TM with binary input and output symbols that has an input

tape with m and n zero symbols separated with an one symbol such that m > n, and it

gives an output of m− n zeros when it halts.

Machines can be classi�ed by computational complexity regarding the amount of time,
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space or other resources the machine uses for its task. There are several possible measures;

here we focus on the time complexity measure. The time complexity measure T (n) is the

maximum number of moves the machine makes before halting for every input with n

symbols.

The TM is a very general tool which �ts for all computational problem. However, the

construction of a Turing machine for a given procedure can be very cumbersome. To avoid

these complexities, I construct a new model for analyzing the computational complexity

of level-k best responses in games which is similar to the Turing machine concept. This

model is described in the next subsection.

3.3 The game machine model

The game machine model receives a game as an input and gives a played strategy as

an output. The input is a description of a game including the set of players, the set of

strategies and the payo� functions. The played strategy is always a strategy played by a

level-k type player. The machine (similarly to the FA and the TM) has states as well, the

state qk refers to the level-k strategy, that is, the state determines the output strategy.

The strategy played in q0 is also speci�ed by the machine.

The game machine can also make moves conditional on its input (the game played); the

purpose of these moves is to compute the next level best response to the strategy played

in the current state. After each move, the machine prints out what is in its 'memory': a

strategy, a computed number etc. When the machine prints out the strategy that best

responds to the one played in the current state, then its moves to the next state.

At a given state qk a move the machine can perform exactly one step of the following:

• Recognize that the other players also play the same strategy at qk;
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• Perform an algebraic calculation (computing a product or an average, deciding which

is the smallest/largest number in a given set etc.); or

• Choose a strategy from the strategy set.

The computational complexity C(k) is the minimum number of required moves to reach

state qk (it is straightforward that this number depends on the game).

It is true that the moves described above may not require the same mental e�orts (e.

g. it can be easier to compute the product of two numbers than recognizing that the other

players think the same), however, since it is very hard to specify the relative cognitive cost

of these moves, I maintain the discrete structure of the assumed mental process without

distinguishing among the di�erent discrete steps. The model is not perfect, but captures

more of the computational complexity than any of the models previously used in game

theory.

Another drawback of the model is that it ignores the increasing return to scale of

thinking, which is intuitively possible. The model can be extended in a way to taking this

increasing return to scale into account; however the same speci�cation problem will occur

that we have during the comparison the di�erent moves (if there is increasing return to

scale, it is di�cult to specify how large is that exactly).

The formal de�nition of the game machine is given below.

De�nition 3.3. A game machine G is given by a 4-tuple 〈Γ, Q, f, si〉, where Γ = (N,Si, ui)

contains the description of the input game: N is the set of players; Si is the set of strate-

gies for player i ∈ N ; ui is the payo� function of player i ∈ N ; Q is the set of states,

each of them represents a level-k type; f : Γ×Q→ Q is the transition function using the

moves described above; and si : Q → Si is the output function which chooses the played

strategy for all players i ∈ N in a given state q ∈ Q.
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I illustrate the game machine with an example of the Beauty Contest game with n

players, interval [a, b] and parameter p < 1.

Example 3.4. We have a game machine G = 〈Γ, Q, f, si〉, where

• Γ = (N,Si, ui); N = {1, ..., n}; Si is the numbers in [a, b] for all i ∈ N ; ui is positive

if si is the closest to p ·
∑

j∈N sj/n and zero otherwise,

• Q = {q0, q1, ...},

• si(q0) = x and si(qk) = pkE(x) for all i ∈ N and k > 0 where x is a random variable

with uniform distribution on [a, b].

The transition mapping is presented in Figure 2. The circles are the states, the arcs

represent moves and the squares contain the numbers printed out by the machine after a

given move. Note that here the strategies are numbers, but that is not true for all types

of games (i. e. the move of choosing the strategy pE(x) after computing and printing out

the number pE(x) is not redundant).

Figure 2: The transition mapping of the game machine playing a Beauty Contest game
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4 Analysis of the computational complexity in games

In this section I use the game machine model introduced in Subsection 3.3 to evaluate

the games described in Section 2 in terms of computational complexity. I examine how

much moves were required to calculate the di�erent level-k strategies and for all of the

experiments I provide a table which contains the C(k) computational costs for each level-k

type that was identi�ed by the authors of the given experimental analysis. In this section

I report only the complexity values, I discuss in Section 5.

4.1 Beauty Contest games

The Beauty Contest game played in Nagel (1995) and Ho, Camerer and Wiegelt (1998)

is exactly the same baseline Beauty Contest game in Example 3.4. Therefore the C(k)

values can be computed according to the moves in Figure 2. In the experiment of Costa-

Gomes and Crawford (2006) there was an additional step in the reasoning process at the

�rst level: the players had to compute the overall target which is the product of the two

individual targets. Table 8 presents the results.

Table 8: C(k) in the Beauty Contest game

0 1 2 3
Baseline 0 4 7 10
Costa-Gomes and Crawford (2006) 0 5 8 11

4.2 Two-person matrix games

In Stahl and Wilson (1994) the players play 3 × 3 matrix games. The level-0 type plays

a strategy randomly, a level-1 strategy best responds to a random play. Therefore, the

level-1 player computes three averages for her three strategies, decides which one is the
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highest then picks a strategy for which this average is the highest. So the game machine

makes �ve steps to choose the level-1 strategy (one for reasoning about the other player,

one for each average and one for choosing a strategy). The level-2 player only has to reason

about the other player's choice and pick a strategy best responds to that comparing three

numbers with each other (three steps for the machine: reason, compare, choose). That is

the same three additional moves to the level-3 strategy.

In Costa-Gomes, Crawford and Broseta (2001) the design was somewhat di�erent. Here

the players played 4 2 × 2, 12 2 × 3 and 2 2 × 4 matrix games. While all computations

above level 1 are the same as in the 3 × 3 case, the computation of the level-1 strategy

is di�erent with di�erent number of strategies. In the 2 × 2 case the players only had to

compute two averages instead of three, so four moves were needed for the level-1 strategy.

Similarly, in the other two cases on average 4.5 and 5 steps were needed to the level-1

strategy in the 2×3 and 2×4 cases respectively. So on average the computation of level-1

needed 4.45 moves from a game machine.

Table 9 represents the C(k) costs for the di�erent levels identi�ed by the authors.

Table 9: C(k) in two-person matrix games

0 1 2 3
Stahl and Wilson (1994) 0 5 8 11
Costa-Gomes, Crawford and Broseta (2001) 0 4.45 7.45 10.45

4.3 Hide-and-seek games

In the case of hide-and-seek games there are natural best replies for each strategies. The

hiders want to pick a di�erent box they think that seekers will choose and the seekers want

to pick same as the seekers. In the role symmetric speci�cation of Crawford and Iriberri
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(2007), therefore, reaching each of the states need only two moves from the previous state:

the �rst of them is reasoning about the other player's choice, and the second is picking a

box according to that.

In the role-asymmetric speci�cation of Penczynski (2011), when hiders and seekers

have di�erent level-0 strategies, the players have to think di�erently about the game than

in Crawford and Iriberri (2007). In order to reach the �rst level, instead of the two moves,

the players need three. If a player recognizes that the other player is also level-0, unlike

in the other games (due to role asymmetry) an additional move is needed to recognize

that the other player's level-0 strategy is di�erent from her. Similarly, at higher states qk

after recognizing that the other player also plays a level-k strategy, an additional move is

needed to identify the opponent's level-k strategy and another to �nd the best response in

that. Therefore with role asymmetry three moves are needed for each level. Note that this

increase in the computation cost can explain the striking di�erence between the results

of Crawford and Iriberri (2007) and Penczynski (2011). Despite that the players played

a similar game, with the assumed role asymmetry Penczynski (2011) found much lower

average k. If the players also assumed the role asymmetry, they faced higher computation

costs. Table 10 contains the C(k) values.

Table 10: C(k) in hide-and-seek games with and without role symmetry

0 1 2 3 4
Crawford and Iriberri (2007) 0 2 4 6 8
Penczynski (2011) 0 3 6 9 12
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4.4 11-20 game

Similarly to the hide-and-seek game in Crawford and Iriberri (2007), the 11-20 game also

has a natural best reply for each level-k strategy. Therefore in this game type also only

two moves needed to reach a higher state. Table 11 reports the number of game machine

moves needed for each level.

Table 11: C(k) the 11-20 game

0 1 2 3 4
0 2 4 6 8

Now we have all the data (both observed frequencies of level-k types and the compu-

tational costs related to them) to analyze the results across games.
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5 Overall analysis across games

While the data I work with is extremely noisy due to the di�erent econometric identifying

approaches used by the authors of the papers reviewed in Section 2, I am still able to

conduct some simple analyses. In this section I present them.

For instance, we can look at the average k across di�erent games with di�erent cogni-

tive costs. I computed the average k for each experimental result and the average cognitive

cost related to a given game (I summed the cognitive costs of the level-k strategies which

were played in that experiment and divided that sum with the number of levels identi�ed).

A scatter plot with regression line is in Figure 3. The clear negative relationship reveals

that the game machine approach can make sense: more complex the game is, on average

fewer reasoning steps are performed by the players.

Figure 3: Average k and average cognitive costs across games

There is another possibility for examining the predictions of the game machine model.

Consider the cost-bene�t framework of reasoning process according to Alaoui and Penta

(2013a). Since the rewards are the same for all player, the bene�ts are identical for each
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players. At the cost side there is a cognitive cost of thinking for each player, and that cost

is determined by two factors. One of them is the player's cognitive ability, and the other

is the complexity of the task the player faces.

Look at a given player i. The player's cognitive ability is described by an increasing

and convex cognitive cost function κi which is de�ned on the complexity of the task player

i faces. Thus, if the player has to calculate a level-k strategy in a given game, then the

complexity of the task she faces is C(k); therefore she faces a cognitive cost of κi(C(k)).

When playing a game, the player chooses the strategy for which her marginal cost of

thinking equals to the marginal bene�t of thinking. More precisely, since the thinking is

assumed to be a stepwise procedure and C(k) has discrete values, the player will perform

exactly k∗ steps where k∗ is the highest level when the marginal cost of thinking does not

greater than the marginal bene�t (the marginal bene�t is assumed to be constant). Of

course, di�erent players can have di�erent κi cognitive costs.

Consider a situation when a group of players play the same game and have the same

expected rewards (a game experiment is exactly a situation like that). Since the bene�ts

are the same for each players, the depth of reasoning is determined by the player's cognitive

costs. If the thinking is more costly to a player then she will perform fewer steps of

thinking, therefore will play a lower level-k strategy. From the other direction, if we have

the distribution of level-k strategies from the results of an experiment, we can approximate

the distribution of players regarding their cognitive costs.

Take the results of Arad and Rubinstein (2012) which are the most reliable due to

the natural application of level-k approach and it has the �nest level-cost structure (the

di�erences between the levels are the smallest in this game type) we can approximate the

cognitive ability distribution of the subjects.
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The bene�ts are identical to each player, assuming that the marginal bene�t is constant

and it is equal to x. We know that computing the level-k strategy has exactly 2k in the

case of the 11-20 game. The players for which κ′(2) > x will play the level-0 strategy,

the players for which κ′(2) ≤ x < κ′(4) will play the level-1 strategy and so on. If we

know from the results that 6% of the players played the level-0 strategy, then it implies

that for the 6% of the players do not worth to make two "game machine moves" since

the cognitive cost is to high for that players. Using the results of Arad and Rubinstein

(2012), the players can be classi�ed by the number of the maximum moves they willing

to perform for the rewards. The players can be arranged into intervals of length 2 since

2 is the di�erence between the complexity of the levels. The frequency of players in these

intervals can be seen on the Table 12.

Table 12: Approximated cognitive ability distribution using the results of Arad and Ru-
binstein (2012)

Maximum moves [0,2] (2,4] (4,6] (6,8] (8,10] (10,∞)
Frequency 6% 12% 30% 32% 6% 14 %

From now we assume that the bene�t side and the distribution of players' cognitive

abilities identical in all experiments I presented in Section 2 (it is not overly restrictive

since the rewards and the educational background of the subject pools were similar). Now

the only parameters that can cause variation in the level-k distribution is the di�erence

in the complexity of the games.

Using the distribution from Table 12 and assuming this is the same for the subject pools

in the other experiments, we can predict the level-k distribution of the other experiments

as well.

Table 13 presents the predicted values for each experiment I analyzed with the ob-
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served values in the parentheses. The numbers in the top row refer to Nagel (1995),

Costa-Gomes and Crawford (2006), Stahl and Wilson (1994), Costa-Gomes, Crawford

and Broseta (2001), Crawford and Iriberri (2007) and Penczynski (2011) respectively. (I

assumed uniform distribution within the intervals.)

Table 13: Predicted and observed distributions

Experiment (1) (2) (3) (4) (5) (6)
L0 18(13) 33(0) 33(0) 25(7) 6(0) 18(27)
L1 46(44) 47(46) 47(24) 46(24) 12(25) 36(37)
L2 22(33) 13(28) 13(51) 16(59) 30(43) 36(27)
L3 14(10) 7(7) 7(25) 13(18) 32(32) 10(7)

We can see from the table that the predictions are somewhat good for the Nagel

(1995), Crawford and Iriberri (2007) and Penczynski (2011) experiments, so for the base-

line Beauty Contest and the hide-and-seek games. There are major di�erences between

the actual and predicted frequencies for the Costa-Gomes and Crawford (2006) version of

Beauty Contest games and for the normal-form games, especially at the lower levels. Over-

all, there is a positive correlation between the predicted and actual levels (the correlation

coe�cient is 0.26).

These two descriptions presented above show that the game machine model can ex-

plain some fraction of the variances in the level-k type distribution estimated in previous

experiments. Of course, it is not so strong support to the model due to the noisiness I

mentioned before. For a precise testing of the model we need to conduct a speci�c ex-

periment. I give some recommendations for that kind of experiment in the concluding

section.
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6 Conclusion and recommendations for an experimen-

tal analysis

In this thesis I investigated the open question of predicting endogenously the di�erences in

the depth of reasoning performed by players across di�erent games. Using the cost-bene�t

framework introduced by Alaoui and Penta (2013a,b), I focused on the cost side of the

analysis and classi�ed the level-k strategies of the di�erent games by the computational

complexity of the given strategy. I used a modi�ed version of a Turing machine to evaluate

the computational complexity of the played strategies. The model was able to explain a

part of the variation observed in the level-k distribution by authors of experimental papers.

This model is the �rst step made in this research area and it is somewhat rudimentary.

One can improve it by incorporating the increasing return to scale in thinking and the

distinction between the cognitive cost of the di�erent type of moves of the machine.

However, as I mentioned I do not see a straightforward way to these extensions.

Although I tested the model using the data from previous experiments, a proper test

would require conducting its own experiment. The subjects must have identical educa-

tional background and in all games the expected reward must be the same to ensure that

the di�erences in the level-k distributions would come from the di�erence in the games.

I recommend dividing the subjects into (at least) eight di�erent sessions. Two sessions

would play each of the game types (Beauty Contest game, matrix games, hide-and-seek

game and the 11-20 game) with di�erent amount of time available to choose strategies.

The reasoning is assumed to be stepwise, therefore with more time available we can expect

higher number of performed reasoning steps. The outcomes of an experiment like this can

reliably test the game machine model and can shed light to its strong and weak points.
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