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Abstract

The main result of this thesis is the following: any family of the translates of the open (resp.
closed) unit square F is w-decomposable over the points which are covered w-fold by F.
To get this result we prove several one dimensional covering decomposition results and

finally we construct some examples to examine the sharpness of our main result.
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1 Introduction

1.1 General introduction

Let A,k be cardinals and F C P(X) such that F covers every point of
X at least k times. Can we decompose F into A many disjoint covers of

X7

In this thesis we deal with a version of this question. By choosing the parameters: X, F,

A, k this problem has a long-standing history. Let us briefly summarize some of the results.

Finite covers:

A well understood question in this context is when X is a finite set and F is a family of
hyperedges of a graph on X. Almost optimal solutions of the relevant problems have already
been found long ago.

However if the cardinality of X is not finite, then the answer is not so clear. Pach in [4]
posed the above question in the following form: let X be the plane, and let P be a convex
planar set, then can we find a finite number x such that if F is a set of translates of P then
we can decompose F into two covers of the plane?

Note that if P is a polygon, then the affirmative answer has been found in [5] and [3].

However the related question for e.g. circles is a much harder one. We do not know the solu-

3
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tion, but we note that a positive answer is claimed in a more than 100 page-long manuscript

of Mani-Levitska and Pach, however this is still not published.

Infinite covers:

In this direction - x can be infinite - the first result where the underlying set X had

geometric properties (and so would be relevant to us) appeared in [1]:

Theorem 1.1.1. (Aharoni, Hajnal, Milner) If k is a cardinal, X is a linearly ordered set
and F is a set of intervals such that each point of X is covered by (at least) k many elements

of F, then F is the disjoint union of kK many covers.

After this result, a question of Pach whether any infinite-fold cover of the plane by axis-
parallel rectangles can be decomposed into two disjoint subcovers, inspired the authors of [2]
to start a systematic study of ’infinite-fold covering problems’(see the exact definition later)

and achieved numerous results about them. E.g.:

Theorem 1.1.2 ([2], Theorem 7.4). Let k > w be a cardinal and F a family of closed polygons
in the plane such that each point of the plane is covered by at least k-many elements of F.

Then F can be decomposed into k many disjoint covers of the plane.
This theorem is not true for x = w:

Theorem 1.1.3 ([2], Theorem 7.2). There ezists a countable family F of axis-parallel closed

rectangles in R? such that F is an w-fold cover of R? without two disjoint subcovers.

We note that using similar techniques the authors of [2], we can construct a family F of
closed unit squares in R? such that F is an w-fold cover of R? without two disjoint subcovers
(see Theorem 1.3.9).

However after Theorem 1.1.2 and Theorem 1.1.3 it was natural to ask the following ques-

tion:

Question 1.1.4 ([2], Problem 8.6.1.). Is it true that if each point of R™ is covered w-many
times by F, a set of translates of the closed unit cube, then F can be decomposed into two

disjoint covers of R™?¢
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1.2. NOTATION, EASY FACTS )

To answer for this question was the starting point of our investigations. The main result

of this thesis answers this question in the affirmative for n = 2.

1.2 Notation, easy facts

1.2.1 Notation

e Let us denote by R the set of real numbers.
e Let us denote by E the axis-parallel open unit square.

e Let us denote by P(X) the power set of X.

o Let ord(x,F):=|{F:xz € F € F}|.
e Let x be an infinite cardinal. We say that
F is a k-fold cover of X if k < ord(z,F) for each z € X.
e Let x be a cardinal. Then let (F), :={z € X : k < ord(z, F)}.

(Using this notation Y C (F), means that F is a k-fold cover of Y.)

e Let x be a cardinal. Then [X]®, [X]S*, [X]<* stand for the set of
subsets of X which have cardinalities x, < k, < k respectively.

e We say that F is disjoint if FNG =) for all F,G € F.

Definition 1.2.1. Let s be a cardinal. We say that F is xk-decomposable over X

if there is G € [P(F)]* disjoint s.t. each G € G is a cover of Y.

Remark.
(1) Note that for a fixed infinite cardinal s the following statements are equivalent:
(1) F is k-decomposable over X;

(7) there is H € [P(F)]" disjoint with X C (H), for all H € H.
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(2) Note also that for any map ¢ : F — &, {c ' ({j}) : j < k} € [P(F)]* is disjoint. So
to prove that F is k-decomposable over X, it is enough to construct a surjection ¢ : F — k

such that ¢=1({j}) is a cover of X for all j < k.

o If (X, 7) is a topological space and A C X then 0A denotes the boundary of A and

int(A) denotes the interior of A.

e For A C R? let us denote by proj,(A) (proj,(A)) the projection of A to the x (resp. y)

axis.

e For C C R? we denote by T¢ the set of the translates of C.

e For a function f: X =Y and F C P(X) let f(F) ={f(F): F € F}.
e We use U* to denote disjoint union.
e For (s(0),s(1),...,s(i)) = s € w<¥ and (¢(0),t(1),....t(j)) = t € w<* we denote

(5(0),...,8(7),t(0), ..., t(§)) € w<¥ by s ~ t.

1.2.2 Easy facts

Lemma 1.2.2. Let (X, 7) be a topological space and F C 7. If Y C X is o-compact with

Y C (F), then F is w-decomposable over Y .
Proof. Let {K; : i € w} be an increasing sequence of compact sets with U;e,K; =Y.

We define F; inductively. For s € w let
Fs € [F\ Uics Fi) =% with K; C UF;.
Choose ¢ : w — w x w arbitrary bijection, then
{U{Fu: o) ={m,n),n €w}:me w}

proves the lemma.
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Lemma 1.2.3. ForY C (F), the following is true:

If each G C F with Y C (G),, is the disjoint union of G and Gy with Y C (G1)w N (G2)w,

then F is w-decomposable over Y .

Proof. Let cg : F — 2 be a coloring witnessing the condition for G = F, and for 0 < ¢ € w let

C; . (Cifl)_l({l}) — 2

witness the condition of the lemma for (c;—1)71({1}). Then {(¢;)71({0}) : i < w} proves the

lemma.

1.3 Our main results

1.3.1 One dimensional results

Let J denote the set of open, nonempty (finite or infinite) intervals in R.

The following theorem is a special case of Theorem 5.1. in [2].

Theorem 1.3.1.

Let R € [J]S%. Then R is w-decomposable over (R),,.

First we will prove the following strengthening of Theorem 1.3.1:

Theorem 1.3.2.
Let {R, :n € w} C [J]=¥. Then there is ¢ : Upco,Mn — w such that for each n € w the

following is true:

(%n)w = ﬂjau U (E)Q‘n N Cil({j}))

Then we will prove Theorem 1.3.4, which is stronger result than Theorem 1.3.2 for certain
{R, :n € w} C [J]=¥. It has stronger requirements on the coloring, however we only prove

it for R, € [J]=¥ of special form.
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Definition 1.3.3.

Let R € [J]=%, D € [RU{~0o0, +00}]* with DNU{OR : R € R} = 0.

For p,q € D let us define the following sets:

Rpq0={(a,b) €eR:a<pb<q},
Rpq1={(a,b) €eR:a>pb<ql},
9{1%%2 = {(CL?b) € % a <p7b > Q}7

Rpg3=1{(a,b) eR:a>pb>q}

Theorem 1.3.4.
Let R € [J]=% and D € [RU{—o00, +o0}]¥ with D NU{OR : R € R} = ().

There is ¢ : R — w such that for all p,q € D and € € 4 the following statements hold:
(1) if [Rpgel = w then [c7H({0}) N Ry gc| = w;

(1) (Rpgelo =Njew U(e ({7} N Rypge)-

Remark. Note that R = U;quﬁ@iRp’q,a, so the statement of Theorem 1.3.2 is a consequence

of Theorem 1.3.4 for the countable family {R, ;. :p,q € D, e € 4}.

The following example shows that we can not expect that Theorem 1.3.4 to hold for all

{R,, :n € w} C[J]=¥. So this natural strengthening of Theorem 1.3.2 fails.

Example 1.3.5.

There is {Ry, :n € w} C [I|=¥ such that we have no ¢ : Upey Ry — w with:
(1) if |Rn| = w then [ H({0}) NR,| = w forn € w;
(i1) (Rn)w = Njew U (Rn N H({j})) forn € w.

Proof.

Let ¢ : w<¥ — w \ {0} be a bijection and for s € w<“ let Iy C (0,1) be an open interval

satisfying for s,t € w<%:

o, I; C I ift Ds;
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o [ NIy=0ifsZtandt Z s.

Let Ro = {[s : s € w¥} and Ry, = {[,-1({n})~; 1 € w} for n € w\ {0}. Now we prove
that either () or (i¢) does not hold for ¢ : Upe Ry — w.

We prove it by contradiction. Suppose (i7) holds for ¢ and R, (n € w). Then we can
choose u € w* such that c({(y(0)u(1),....uj)) = 0 for all j € w. Then using e; and e; we have
Njcwl(w(©0),u(),...u()) 7 O and Nicwl(y(0),u(1),...u(s)) 18 covered by I iff s = (u(0), u(1), ..., u(4))

for some j € w. This contradicts to (i) with ¢ and g, hence we are done. O

We will need the following one dimensional result in the proof of the two dimensional

decomposition results:

Lemma 1.3.6. Let {an, b, :n € w}, {An, By :n € w} C R such that:
i) p # G,y ap < by # by, Ap # Am, An < By # By, for all n,m € w different;
1) (an < am < by < by, or Ay < Ay < By, < By) is false for all n,m € w;

1) an < am < by < by iff Ay < Ay, < By, < By, for all n,m € w;

(
(
(
(1) an < am iff Ay < Ap, for alln,m € w.

Suppose that the following holds with some J C w:

M (@nba) 0 () R\ (an.ba)) # 0.

neJ new\J

Then there exists J D J with |J\ J'| < 3 satisfying:

N (An, By () (R\ (Ay, By)) # 0.

neJ’ new\J
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1.3.2 Two dimensional results
Our main theorem is the following:

Theorem 1.3.7. Recall that E is the axis-parallel open unit square.
(1) If F C Tg, then F is w-decomposable over (F),;
(2) If F C Tg, then F is w-decomposable over (F),.

Remark. Theorem 1.3.7 (2) gives the affirmative answer to Question 1.1.4 in the case of

translates of the closed unit square of R2.

1.3.3 Constructions

We will also provide three constructions showing the sharpness of Theorem 1.3.7:

Construction 1:

Let R. (resp. Q.) be the set of axis-parallel closed (resp. open) rectangles with side

lengths between 1 — ¢ and 1.

Theorem 1.3.8.

(1) For any € > 0 there is R € [Rc|* which is not 2-decomposable over (R),.

(2) For any € > 0 there is Q € [Q:]¥ which is not 2-decomposable over (Q)..

Construction 2:

Let S; be the family of all sets of the form ¢(£) where for ¢ is the composition of an
arbitrary translation of R? and a rotation of R? with angle at most ¢.
Theorem 1.3.9. For any ¢ > 0 there is S € [S.]¥ such that:

(1) S is an w-fold cover of R? (i.e. (S), = R?);

(13) S is not 2-decomposable over (S),.



CEU eTD Collection

1.3. OUR MAIN RESULTS 11
Construction 3:
Let U, be the set of all axis-parallel closed squares with side length between 1 — ¢ and 1.

Theorem 1.3.10. For any ¢ > 0 there is U € [Ue]“ which can not be decomposed into 2

disjoint w-fold covers of (U),,.

Remark. Theorem 1.3.10 easily implies that ¢ is not w-decomposable over (U).,.
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2 Proof of the one dimensional results

2.1 Proof of Theorem 1.3.2 and Theorem 1.3.4

2.1.1 Choosing a subset of R

Definition 2.1.1. For Ri, Ry € {<,>,=} we denote by T'(R;, R2) the set of A € [J]*
which has an enumeration: A = {(an,b,) : n € w} such that apRia, A byRaby, for all
n <m. For R € {<,>,=}let T(R,.) = Uge(<>T(R,Q), T(,,R) = Uge(<>=T(Q, R)
and T'(.,.) = Ure(< > 1 T(R, ).

Remark. If 20 € T'(.,.) then there is exactly one enumeration witnessing this.
We mention 3 easy claims without proof:

Claim 2.1.2. For each 2 € [J]¥ there is B € [/A]* with B € T'(.,.).

Claim 2.1.3. If A € T'(.,.) and B € [A]¥ then we have (), = (B)..

Claim 2.1.4. If A € T(.,<) with a € N2, b € RU {+0o0} and [a,b) C UA
then [a,b) C UB for each B € [A].

Lemma 2.1.5. For R € [J]=¥ with (a,b) = UR € J there exist pairwise disjoint
RO RE K2 C R

satisfying:
(1) if there is c € (a,b) with (a,c) € R then R° = ();

13
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if RO # 0 then RO € T'(>,.);
(ii) if there is ¢ € (a,b) with (c,b) € R then R = ();
if R #£ () then R € T(., <);
(iii) K2 # 0 and (R?)10 = 0;
(iv) (NRY) NUR2 #£ O fori € 2 (note that N = R);
(v) U(Q°U QT UR?) = (a,b) for all Q° € [R)¥ and Q' € [R]¥;

(vi) for all R € R we have |[{Q € R? : Q C R}| < 4.

Proof. For z € (a,b) let:

f(z) =sup{d:z € (c,d) € R}, and

g(z) =inf{c:z € (¢,d) € R}.

(fO(x) = 2 and £ (2) = f(f(.())).)
——

n

Claim 2.1.6. For any z € (a,b) the following statements are true:

(f) there is k € w with ) (x) = b or limy, 0 f(")(x) = b;

(9) there is k € w with ¢®®)(2) = a or lim, 0 g™ (z) = a.

Proof of Claim 2.1.6. We prove (f), the proof of (g) is similar.

We prove this by contradiction. Suppose there is no k € w with f (k) (x) = b. Then, since
FO) < D) < ... < b,

there is y € (a,b] with lim, ., £ (z) = v.
If y < b then there is (¢,d) € R with y € (¢,d), so y < d. But there is m € w satisfying
c < fM(z), so we have y < d < f("+1 () < y. Contradiction, hence y = b.

We are done with the proof of Claim 2.1.6. O
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Claim 2.1.7. For any z € (a,b) the following statements are true:

(f) if ™) (z) € (a,b) for all n € w, then there is R2" C R with (R>")5 =
and UR" D [z, b);
(9) if g™ (z) € (a,b) for all n € w then there is |>! C R with (K25 = 0

and UR?! D (a, z].

Remark. In Claim 2.1.7 the r,l superscript means that we choose these intervals going

toward the right or left endpoint of (a,b).

Proof of Claim 2.1.7. We prove (f), the proof of (g) is similar.

For i € w choose (a?,b?), (al,b}) € M satisfying the following conditions:

1771

(1) (a3, 89) > fO(2);

177

(2) (a},b}) > fFV(2);

177

(3) (a?,89) N (al,b}) # 0.

R R

We can choose (al,b}) € R (i € w) satisfying (2) (since f0t)(z) € (a,b)) and after this

177

(af,b?) € M satisfying (1) with (a},b}) N (a?,b?) # O for each i € w, because of f0F1)(z) =

f(f@(x)). So the chosen interval system will satisfy (1) — (3).

Let

R27 = {(a,80) i € w} U {(aly1. L) 1 i € w).

If fO(z) € (¢,d) € R for i > 0 then fO~D(z) < cand d < f0*)(z) and if = € (¢, d) €
M then d < f1)(z) by the definition of f, so if 0 < i then [f@(x), fG+1)(z)] meets only
(a1, b5-1) (af, b9), (a7, b7), (a1, b3, 1) and only (a7, b?), (a;,0}), (afy1,00,) if @ = O, hence
(R27)5 = 0.

UR?" D [z,b) is true by the fact that lim, oo f"(z) = b by Claim 2.1.6 and that
[fO (), fO+H) ()] C (a?,09) U (a},b}) for all i € w.

We are done with the proof of Claim 2.1.7.
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Claim 2.1.8. If f*)(z) = b for x € (a,b) and k € w then there are
%2,7"’ ml,r CR

with the following properties:

(A) R2"NRL" = 0

(B) (R?7)5 = 0;

(C) if there is ¢ € (a,b) with (c,b) € R then R\ = ), and
if RL" #£ 0 then RY" € T'(., <);

(D) UR>" N NRLT™ £ 0;

(E) (UB) U (UR?) D [,b) for all B € [RLT]¥;

(F) {Q e R*" : Q C R}| <2 for all R € R.

Proof of Claim 2.1.8.

Case 1:

There is ¢ € (a,b) with (¢, b) € A.

In this case f#~D(z) € (¢,b) (note that k > 0 as fO(z) =z € (a,b)) and we can choose
intervals {(a?,b)) i € k—1,j € 2} for {f(x) :i € k—1} as in the proof of Claim 2.1.7. Let

R2T = {(a{, b{) ci€k—1,7 € 2}U(c,b) and RV := (). (A)—(E) are trivially satisfied. (F) is
true by the fact that each interval in 82" contains f()(x) for some i € k. So if R € 9 contains
an interval from 932", it must contain f(*)(z) for some i € k. But [{i € w: f¥(z) e R}| < 1
for all R € R and = € (a,b) by the definition of f. So (a3,83), (c,b) if i =0, (a} ;,b} ;) and
(a2, 89) if 0 <i < k—2 and (a}_,,b}_,), (¢,b) if i = k — 1 are the only intervals from R>"

which can be contained in R.

Case 2:

There is no ¢ € (a,b) with (¢, b) € .
We can choose intervals {(al, b)) :i € k —1,j € 2} for {fD(z):0<i < k—1} as in the

proof of Claim 2.1.7 and let R2" := {(a,b/) : i € k — 1,5 € 2}. Since f®)(z) = b and we are

P07
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not in Case 1, there exists A = {(c,, dy) : n € w} C R with:

o ANNRE" =
o lim;, o0 dyy = b;

o fE=1(x) € (cn,dy) for all n € w.
By Claim 2.1.2 there exists RY" C 2 with RY" € T(., <). Then

A) — (C) of the lemma are trivially satisfied,

(
(D) is true, since f&=1)(z) € NRY N (af_,, bk 1),
(E) is true by Claim 2.1.4,

(F') is true similarly as in Case 1.

We are done with the proof of Claim 2.1.8.

Claim 2.1.9. If ¢¥)(2) = b for 2 € (a,b) and k € w then we can find
SRQ’Z 9{0,[ C R

with the following properties:

(A) R2E RO = )

(B) (R*')5 = 0;

(C) if there is d € (a,b) with (a,d) € R then RO = (), and
if RO £ () then RO € T(>,.);

(D) URE N NMOL £

(E) (UB) U (UR?!) D (a,z] for all B e [RO«;

(F) {Qe N> :Q C R} <2forall RN

Proof of Claim 2.1.9. The proof is similar to the proof of Claim 2.1.8 and left to the reader.
O
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Let’s continue the proof of Lemma 2.1.5 by choosing arbitrary € (a,b). Use Claim 2.1.6

first and then Claim 2.1.7 or Claim 2.1.8 together with Claim 2.1.9 to choose 2", RL", K21

and RO, Let
%2 — m?,l U m?,r’

and let
%0 c [%O,Z]w’%1 c [ml,r]w

with RO N R = 0 if RO = |RY"| = w and let RO = RO R = R otherwise.

Now we want to prove that (i) — (vi) of Lemma 2.1.5 are satisfied:

e (i), (i7) of Lemma 2.1.5 are satisfied by Claim 2.1.8 (C), Claim 2.1.9 (C) and the

fact that if 2 is in T'(.,.) then any subset of cardinality w is in the same class,

e (i7i) of Lemma 2.1.5 is true by Claim 2.1.8 (B), (D) and Claim 2.1.9 (B), (D)

and Claim 2.1.7,

e (iv) of Lemma 2.1.5 is true by Claim 2.1.8 (D) and Claim 2.1.9 (D),
e (v) of Lemma 2.1.5 is true by Claim 2.1.8 (E) and Claim 2.1.9 (E),

e (vi) of Lemma 2.1.5 is true by Claim 2.1.8 (F) and Claim 2.1.9 (F).

We are done with the proof of Lemma 2.1.5.
O

Lemma 2.1.10. Let Q,9Q, € [J]=¥ for n € w. We can find & C Q satisfying the following

properties:
(1) UR =9 and (Q\ Ry = (Q)w;
(2) (Qn \ R)w = (Qn)w for alln € w.

Proof. Let D = {(ag,by) : k € |D|} be the set of components of UQ. For j € 3,k € |D| let fi
be the set provided by Lemma 2.1.5 for {Q € Q : Q C (ax,b)}. For k € |D|, j € 2 we know

that ‘Z{C e T(.,.), so using Claim 2.1.3 we can find S{C C Ti with:

(1) (Q\ L) = (Q)w and (25, \ L) = (Qn)w for n € w;
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(2) Ukeip),je2 Si U Uke|D|T% =uQ.

Note that since for k # 1 € |D|, j € 2 (UL]) N (UL])) = 0 and (33)10 = 0 for k € D)
Ureipl.je28h | Ureip T4 = &

fulfills the requirements of the statement.

O
Corollary 2.1.11. For R € [J]|=¥ there exist R; C R pairwise disjoint for i € w with:
(1) UR = URop;
(i1) (R = (Ri)u for i > 0.
Proof. By induction on j choose :; C R\ U;<;M; satisfying UR; = U(R \ U;j<;R;) and
((%)w :)(% \ Uz'<j%i)w =M \ Uigj%i)w using Lemma 2.1.10.
O

2.1.2 Proof of Theorem 1.3.2

Proof of Theorem 1.3.2. Let A = {R,, : n € w} and let {R], : n € w} be an enumeration of
A satistying [{n : R], = A}| = w for all A € A. In the jth step we define sets & by applying

Lemma 2.1.10 for

R\ | &) = Q and (%, \ &) = Qn (n € w).

1<J 1<j

[ it K € & and Dfi; is the Ith appearance of some R,

0 otherwise.

This coloring proves the theorem.

We are done with the proof of Theorem 1.3.2.
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2.1.3 Proof of Theorem 1.3.4

Claim 2.1.12. If R € [J]“ and (R), = 0 then we can find RT € [R]¥ that is either disjoint

(RN Q = 0 for all different R, Q € R™) or nested (R C Q or Q C R for all R,Q € RT).

Proof. Let {R; : t € w} be an enumeration of R. Let Jp, = {t € w: ORyNR; # 0}. |Jg,| <w
since (R)y, = 0. Let t1 = min {w\ (Jg, U{0})}. Define Jg, similarly and continue this
process in w steps.

Let R~ = {Ry, : s € w}. \M~ € [J]¥ and by our choice for all A, B € R~ the following
is true: A C Bor BC Aor ANB = (. Then by w — (w)3 we are done with the proof of

Claim 2.1.12.

Definition 2.1.13. For R € [J]“ let

(9%),— {ReER:RN(R), #0} if (R), #0,
R otherwise.

We mention the following two claims without proof:

!

Claim 2.1.14. |(R)'| = w and ((R)")., = (R),, for all R € [J).

Claim 2.1.15. R, ;.\ &= R4 \ Kpqe for all R € [J]=9, & € [J]=¥, p,q € D, € € 4 with

D € [RU{—00,+00}]¥ satisfying D NU{OR : R € RU R} = (.

Notation.
For R € [J]¥ and D € [RU {—o00,+00}* with DNU{OR : R € R} = () we will use the

following notation:
AR, D) := {(Rpqe) :0.q € Dye € 4,|Ry 4| = wh.
Lemma 2.1.16. Let R € [J]¥, D € [RU {—00,+o0}|* with DNU{OR : R € R} = . Let

£e AR, D) and {R; :i € w} C AR, D). Then we can choose & C £ with (£), C UK, and

IR =w if (&) =0, such that the following statements hold for all i € w:
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(1) 9\ 8] = w;

(1) (Ri\ R)w = (Ri)w-
Proof of Lemma 2.1.16.

UL is an open subset of R so is the union of countably many open intervals. Let us denote
by C the set of components of UL and let v = |C|. Fix {Ck : k € v}, a 1-1 enumeration of

the components. Then for m € 3,k € 7 let us denote by £]* the subset of {R € £: R C C}}

indexed by m in Lemma 2.1.5.

(An ’index dictionary’ for the proof: m € 3 will always refer to subsets that come from
Lemma 2.1.5. ¢ € w refers to the enumeration {R; : i € w} and k denotes the index of a

component of UL.)

Case 1: (£), #10

Claim 2.1.17. For m € 2,7 € w, k € y there are
ki © Lg NR; and T" C L1

satisfying:
J,ﬁmmjg¢mﬁﬁywmmagmng,:&

(1)

(2) TP n Ay, =0;

(3) (Q)w = (T NRy)w;
(4)

4) (T)w = (£)e-

Proof of Claim 2.1.17.
£ € T(.,.) or empty for all m € 2, k € v, and £ N LYY = 0 for all (m, k) # (m', k)
(m,m' € 2,k, k" € ), so by the fact that we can choose disjoint infinite subsets of countable

many infinite subsets of w and by Claim 2.1.3 we are done with the proof of Claim 2.1.17.

O]
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Now put

f= |J -rul ek

me2,key key
and prove that K fulfills the requirements of Lemma 2.1.16:

e the proof of (£), C UK:

We know that UR = UL, since U(Upe2T" U £3) = U(Upesl) for all k € v by (v) of

Lemma 2.1.5. As (£),, C UL, we are done with the proof of (£), C UR.

e the proof of (ii) of Lemma 2.1.16:

(Ri \ R)w € (R))w is obvious.
We prove the other direction by contradiction.

Assume that x € (R;), \ (R \ R),. Clearly then x € (R; N R),. By the structure of K we

know that there exists k € v and m € 2 with x € (R; N T}"),,. We also know that
o1 (MiNTP)w € (RiNLY)w by the definition of T},
03 (R N L) = (QF)w by Claim 2.1.17 (3),
o3 (Q;)w € (R \ R)w by the definition of QF; and Claim 2.1.17 (2).
So x € (R; \ R),, which is a contradiction.
We are done with the proof of (i7) of Lemma 2.1.16.

e the proof of (i) of Lemma 2.1.16:

We prove by contradiction. Suppose |R; \ & < w for some i € w.

Case A: (R;), # 0.

If |R; \ 8] < w then there are m € 2 and k € y with (; N T"), # 0. Using o and o9
above we know that (9% NT")w C (RN LM )w = (Q)w # 0 s0 [QF;| = w. But RNQM =0

by the definition of K implying |R; \ R = w.
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Case B: (R;), = 0.
Apply Claim 2.1.12 to R; to obtain f)f{j that is nested or disjoint.

Subcase Bl:

R € [R]* is nested.

In this subcase |R \ Upe,£2] = w, since (Uger£2)10 = 0 and R} is nested. So if
IR\ &| < w then |R N Upe2ker, T = w. As R is nested we know that there is k €
with Ui)%;r C Cy and the sets UJ,,co T}' are pairwise disjoint for k& € 7, so there are m € 2
and k € v with |R NT"| = w. But this is impossible since (R N TP), C (R;)w = 0 (as
we are in Case B), and we also know that ;" N T € [ implying (RN T)w # 0 by

Claim 2.1.3. Contradiction, hence |R; \ K| = w in Subcase B1.

Subcase B2:
R € M) is disjoint.
There is X € [R;T]¥ such that the order type of the left endpoints of the intervals in X

is either w or w*. By symmetry we can assume that this order type is w. As it is enough to

prove that |X \ & = w, arguing indirectly, we can assume that X C &.

Let {(an,bn) : n € w} be the enumeration of X such that n < v € w implies b, < a,.
Since (an,bn) € £ = (Rpggerce) (with some pe,ge € D and ¢ € 4), where (£),, # 0, there is
Ty, € (ap,bp) N (L), for all n € w. So we can find {(y!,2') : n € w,u € w} € [£]¥ such that
xy € (yl, 22) for all n,u € w. Since (R;), = 0 we may assume that {(y}},2) : n € w,u €

w} NR; = 0.
Let A .= SUPpewln = SUPncwbn.

Claim 2.1.18. For n € w\ {0} and u € w we have (yi}, zl') € (bo, A) or equivalently: y;! < by

or A< z,.
Proof of Claim 2.1.18.

By contradiction. Suppose (y;!, z;;) C (bg, A) for some n € w\{0}, u € wand R; = (R, qc)

for some p,q € D and ¢ € 4. Recall that y*, 2" ¢ D for all u,n € w.
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(1) If e = 0 then A < p,A < q. Soif (y!,2]) C (bo,A) then (y,2]) € R;, which is
impossible.

(2) If e = 1 then p < ap, A < q. So if (y,z1) C (by, A) then (yiI,2!') € R;, which is
impossible.

(3) If e = 2 then A < p,q < by. So if (y',2') C (by, A) then (y,z) € R; (n € w\ {0}),
which is impossible.

(4) If ¢ = 3 then p < ag, ¢ < bg. So if (y!,2) C (by, A) then (yi,z) € MR;, which is

impossible.

We are done with Claim 2.1.18.

Note that by definition x,, € (an, bn)N(yil, 21t) for all n,u € w. Let € = {(yi}, zl1) : A < 20}
and © = {(y}l, zl!) : yIl < bp}. Note that €UD D {(y}l, zl) : n € w\{0},u € w} by Claim 2.1.18
and A € NE, by € ND. So there are ki, ky € v with U((X \ {(ao,b0)}) UCUD) C Ck, U C,.
Suppose [{I € X\ {(aop,bp)} : I C Ck, }| = w. Since Cy, is an open interval, the order
type of the left endpoints of the intervals in X is w and X is disjoint, there is N € w such
that (an,bn) C Cy, for all n > N. By the fact that Ng) # 0 and Ng; # 0 and X
is disjoint, we have [(£) U £, )NX| <2, and X\ (£, UL, ) C £ as X C K& Consider
S = {(xN*+8 yN+8) . 4 € w}. Each interval in S contains the point xxg and either x)Y +8 < by
or A < yN*t8. By this each of the intervals in S contains (ag,b;), (az,b2), ..., (a7,br) or
(aN+9,bN19), ..., SO at least 5 intervals contained in 221, which is impossible by Lemma 2.1.5

(vi) since the elements of S are in £.

Case 2: (£), = 0.

In this case we use without proof the following claim:

Claim 2.1.19. We can find & € [£]* and {{l; : i € w} such that for all i € w the following

statements are true:

(1) & CRNE
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(Q)Miﬂilj:(i)fori;éjew;
(3) RN = 0;
(4) If |R; N £| = w then || = w.

For the R obtained in Claim 2.1.19, (i) of Lemma 2.1.16 is the only not trivially satisfied

requirement:

if (Ri)e, = 0 then if [R; N €] = w, L € [Ri]* and |8 N K| = 0.

We are done with the proof of Lemma 2.1.16.

We prove a claim, that we will use in the proof of Lemma 2.1.21.

Claim 2.1.20. Let Q € [J] and D € [RU {—o00,+00}]¥ with DNU{OR : R € Q} = 0.
Suppose p, ¢ € D and ¢ € 4 satisfy (Qp4.) € A(Q, D). Let & C Q besuch that [(Qp.4.) \&| =
w and ((Qpge) \ K)o = (Qpge) - Then (Q\ K)pge) € ARQ\ & D).

Proof. We have to prove that [(Q \ R)p 4| = w. We will use the fact that Qp .\ Rpqe =
(Q\ R)p,q,c without mentioning.

If ((Qp.ge) )w # 0, then using the assumption of the claim we have
0 (Qpge) o = (Qpge) \ R  (Qpge \ Fpge)o = (Q\ Rpge)e

So in this case we are done.

’ !/

If ((Qpge) )w =0, then (Qpq:) = Qpge- So by the assumptions we know that
w0 =(Qpge) \ Al = Qe \ &I < Qe \ Fpgel = [(2\ Apgeel-

So we are done with the proof of Claim 2.1.20.
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Lemma 2.1.21. Let R € [J] and D € [RU {—o0,+00}]* with D NU{OR : R € R} = 0.
Let {R; : i € w} be an w-abundant enumeration of A(R, D). Then there exists {R; : i € w}

pairwise disjoint such that for all i,s € w the following statements hold:

(i) R CRy;

(i1) if (Ry)w = 0 then || = w;

(1id) (Mi)w C UR;;

(iv) |Rs \ Uicifl] = w and (Re \ Ui = (Rs)w.

Proof. For all i € w let p(i),q(7) € D and (i) € 4 be such that R; = (mp(i),q(i),e(i))/'
We choose £&; by induction on j € w:

Assume we have defined {8; : [ < j} so that (i) — (iv) of Lemma 2.1.21 are satisfied for

all s € wand i < j. Let us use the following notation:

[ ] 9‘{ =R \ Ul<].ﬁl

By the fact that (iv) of Lemma 2.1.21 is satisfied with i = j — 1, s € w and Claim 2.1.20
we have {((m(j))p(i)yq(i)va(i)), t1Ew}l C A(SRU), D).

Now we apply Lemma 2.1.16 with %0), & = ((%(j))p(j),q(j),e(j))/ and {((m(j))p(i),q(i),e(i))/ :

i € w}. Let 8; be the R provided by Lemma 2.1.16 with these settings.
We prove that (i) — (iv) of Lemma 2.1.21 hold for j and s € w:

(i) and (i) are trivially satisfied. We know that (9;), = ((%(j))p(j%q(j)’a(j))w holds by
(iv) for j —1, ((m(]))p(j),q(j),s(j))w = (((%(’))p(]-%q(j)’g(j)) )w holds by Claim 2.1.14 and that
(((9%0))p(j)’q(j),s(j))’)w C UR; holds by Lemma 2.1.16. By these we have that (4i7) is satisfied
for j.

Finally by Lemma 2.1.16 we have w = | (R0 )p(s).a(s) ) \ & < |(R( )p(s (),e(s) \ Ryl =
1935\ Ui Rt| and ((RD)p5) g(s),(5) \ R = (((m(j))p(s),q(s),e(s)) Jo = (R)p(5).4(5) ()
(Rs \ Ui<jRi)w = (Rs)w. The last equality holds by (iv) for s and i = j — 1. So we have (iv)

for j.

So as {R; : j € w} are pairwise disjoint by the construction, we are done with the proof

of Lemma 2.1.21.
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Proof of Theorem 1.3.4. We use the Lemma 2.1.21 to construct such colorings. Let {fR; :
i € w} be an w-abundant enumeration of {(R,,c) : p,q € D, € € 4,|(Rpq) | = w} and

{8®j : j € w} be the sets provided in Lemma 2.1.21.

Let:

I if K € &, (Rj)w # 0 and
oK) = MR; is the [th appearance of (R,,.) in {:; i € w} for p,q € D,c € 4,

0 otherwise.
Now Theorem 1.3.4 (i) holds by Lemma 2.1.21 (i), and

Theorem 1.3.4 (i) holds by Lemma 2.1.21 (4i).

We are done with the proof of Theorem 1.3.4.

As we would like to apply a theorem similar to Theorem 1.3.4 for bijective images of

R U {—00,+00} we state it as a corollary:

Corollary 2.1.22.
Let o : RU{—00, +00} — X be a bijection, E € [X]* and Q C P(X) such that ¢~1(Q) €
[3]=¢ and " (E)NU{OR : R € ¢ (Q)} = 0 and let Qpge = ¢ (W) j-1() p1(g) e for all

p,q € E and e € 4.

There is ¢ : Q — w such that the following statements hold for all p,q € E and € € 4:
(1) if [Qpgel = w then ()7 ({0}) NQp gl = w5

(i) Mjew (O {7 N Qpge)o = (Qpge)w-
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2.2 Proof of Lemma 1.3.6

Proof of Lemma 1.5.6. Let J C w be such that there is

2 € [V(anbn) N () R\ (an,bn)).

neJ new\J

Let ={n€ew\J:b,<z}and o ={necw\Jz<a,} Sow=JU"J U*Jy and we

know that:

1 SupnGJan(< ZE) < infnesbn,

3 SuanJl (< .iL') < infnejbny

(1)
(2) SUpnejl (< $) < infnGJgaTu
(3)
(4) SuanJan(< x) < annEJzan

using the conditions the same (certainly without z) follows for A/ s and Bj,s:

(1)/ supnegAn < infneyBy is true since otherwise there would be n(#)m € J such that
B, < Ay,. But then by (ii) and (iii) b, < an, would be true contradicting (1).

(2)', (3)', (4)" are true similarly.

Let m = maz{supnej, Bn, supnejAn} and M = min{in fncsBn,infnes, An}
By (1) — (4)" we know that m < M and let y € [m, M] arbitrary.
Let [={necw:A,=yor B, =y}. By (i) |I| <2. Let J = J\ I.
Then
ye [ (AnBa)N (] R\ (4An, By)).

neJ’ new\J

Let ¢ : RU{—00,+00} — X arbitrary bijection. Let us define <, on X in the following

way. For z,y € X let

z<py iff o (@) <o (y)

The following lemma is an immediate consequence of Lemma 1.3.6.
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Corollary 2.2.1. Let 1 : RU{—00,+00} = X, 9o : RU{—00,40} — Y be arbitrary

bijections. Suppose that {an, by, :n € w} C X, {A4,,By:n €w} CY are satisfying:

(1) an # am, an <y, by # by, An # Am, Ap <g, Bn # B, for all n,m € w different;
(1) (an <p am <g, bm <y bn o1 Ap <gp A <py Bm <g, By) is false for all
n,mew,

(119) an <@, @m <g; bn <gp by iff An <oy Am <g Bn <@y Bm for alln,m € w;

(iv) an <y am iff Ap < Ay for alln,m € w.

Suppose that

) (@nbw)<, 0 () (XN (@, b)), #0

neJ new\J

for some J C w.

Then there exists J D J with |J\ J'| < 3 with

ﬂ (An’Bn)<<P2 N ﬂ (Y\ (Aann)<g,2) 7é 0.

neJ’ new\J
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3 The proof of the two dimensional results

In this chapter we prove Theorem 1.3.7. We fix for the rest of this chapter
S e [Tel”

with o € int(NG) containing an open square T" around the origin of side length £. We denote

the elements of & by S.

3.1 Notation

Let us introduce some more notation.

e We will work with subsets of R?, and use boldface letters to denote points of R?, e.g.
x,y € R For A € R and (z1,22) = x € R? let us denote (Az1, Az2) € R? by Ax. The closed

(open, half closed) segment between x and y (x,y € R?) will be denoted by [x,y]
((x,¥), [x,¥), (x,y] respectively).

e The vertices of E¥ will be denoted by
(07 1) = VI(E)7 (17 1) = V2<E)7 (170) = V3(E)7 (070> = V4(E)'

(the labeling of the vertices is clockwise oriented and it is mod 4 (meaning that e.g. 4+1=1)).
For S € Tg let us denote by v;i(.S) the translate of v;(E).

31
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R? R}
v1(S) va(S)
T
0
S
v4(S) v3(.S)
R2
4 R§

Figure 3.1: o, S, T, vi(S) and R?
e We use the following notation for the quadrants of R?:

R} = {(z,y) eR*: 2 <0,0 < y},R3 = {(z,y) € R?: 0 < ,0 <y},

R:2={(z,y) cR*:0< 2,y <0},RI = {(x,y) € R*: 2 <0,y <0}

3.2 Limit squares

In this introductory technical part we introduce a new notion: the limit square. The definition

and the main properties of the limit squares will help us to understand the geometry of (&),,.

Definition 3.2.1.

o Let {Q; :i € w} CTg. Then let
R = limii)ooQi ’Lﬁ V4(R) = limii)oov4(Qi) fOT‘ ReTg.

e For Q C Tg let (Q)iim = {R € Tg : R = lim;—Q; for some {Q; : i € w} € [Q¥},

the set of limit squares of Q.
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Remark.
1) Note that R = lim;00Q; iff (Q;)icw converges to R in the Hausdorff metric.

2) In the sequel we will denote by R the elements of (&)g;,.
Let us start with some basic properties of the limit squares:

Claim 3.2.2. The following statements hold:
(1) (Q)iim # 0 for Q € [&]%;
(2) (Quim)tim = Quim, for Q € [&]¥;
(3) NS C N{R: R e (&)iim};
(4) int(N&) CN{R: R € (&)im}-

(1) follows by the fact that {v4(S) : S € Q} lies in a bounded part of the plane since each
S contains the origin.
(2) follows by the obvious analogue lemma for points (for the vertices).
(3) is true by an easy convergence argument.
(4) follows by (3).
O

The most important properties of limit squares of & are summarized in the following

theorem:

Theorem 3.2.3.
(1) {R: R € (O)lim} = int (6)y;
(2) U{R: R € (8)ym} = (6),.

Proof. First we prove a lemma.

Lemma 3.2.4. For R € (&), we have R C (6),,.

Proof. Let z € R € (&)y;,. By the definition of a limit square, there is {Q; : i € w} € [G]¥
with R = lim;,ocQ;. As R is an open set (translate of the open unit square) there is N(z)

satisfying z € @Q,, for all N(z) < n, hence z € (&), O
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Using the fact that R is open, we have the following corollary of Lemma 3.2.4, that proves

Cin (1) and (2):

Corollary 3.2.5. For R € (&), we have R C int(&),, and R C (&),.

We prove D in (2):

Choose x € (6),. By the definition of (&), there are {x; : i € w} C (&), and
{Qij +i,j € w} € [G]* satisfying lim; 00X = x and x; € Q;; for all 4,5 € w. Since Q; ;
contains the origin for all 7, j € w, we can find s € w satisfying lim;cQ; 5;) = R with

R € (6)im. We are done with D in (2).

Now we prove a lemma.

Lemma 3.2.6. Ifx € (8),, then (x,0] C int(S),.

Proof. By the above observation we know that there is R € (&), with x € R. By Claim 3.2.2

(3) we have (x,0] C R, so by Corollary 3.2.5 we are done.

Finally the proof of D in (1):

For x € int(8), there is A > 1 with Ax € (&),. By Lemma 3.2.6 and the fact that

x € (Ax, 0], we are done with D in (1).

We are done with the proof of Theorem 3.2.3.

Proof. (2) is an easy consequence of (1). So let us prove (1).

D is trivial, so pick any x € int(&),,. Then thereis A > 1 with A\x € (&),,. By Lemma 3.2.6

and the fact that x € (Ax, o] we are done with Lemma 3.2.7. O

Notation. In the sequel we will denote 9(&),, (= 9(6),) by 0.
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3.3 Structure theorems

3.3.1 The structure of (&),

Definition 3.3.1.

1) We call A C R2 horizontally/vertically convez, if for all [x,y] horizontal /vertical (resp.)

segment with x,y € A, [x,y] C A holds.

2) We call A C R? star-like around x, if x € A and [x,y] C A holds for each y € A.

Theorem 3.3.2. The following statements hold:

(1) If 1 is a horizontal (vertical) line which intersects (&), then 1N (&), is a horizontal

(vertical, resp.) segment with length at least 1;

(2) (8),, is star-like around o.

Proof. The proof of (1):

We only prove that if [ is a horizontal line which intersects (&), then [ N (&), is a
horizontal segment with length at least 1. The proof of the other case is similar.

Suppose [N (6), # @ and let x,y € IN(S),. We can choose RX, RY € (&), with x € RX
and y € RY by Theorem 3.2.3 (2). We know that o € RN RY by Claim 3.2.2 (3) and we also
know that the union of two intersecting translates of the closed unit square is horizontally
convex. By this we have [x,y] € RXURY. As RXURY C (&),,, we have that I N (&), is a

horizontal segment. As [N R* C 1N (&), we have that the length of I N (&),, is at least 1.

The proof of (2):

Let x € (6),. By Theorem 3.2.3 (2) we can find R* € (&), with x € RX. As o € RX

by Claim 3.2.2 (4) and R* is a translate of the open unit square, we have [x,0] C R¥. As

R* C (8),,, we are done with (2).

We are done with the proof of Theorem 3.3.2.
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3.3.2 The structure of 0

St = {(z,y) € R?: 22+ 9% =1} C R? is the unit circle. First let us define g : S' — R in the

following way:

g(x) = sup{\: \x € (6),}.

Then let f: S' — R? be defined by

Theorem 3.3.3. f is a homeomorphism between S and 0.

Proof. First we prove that {f(x): x € S'} = 9(6),.

Note that for x € S we have f(x) € 9 by the definition of f, so {f(x) : x € S'} C 0.
To prove that {f(x) : x € S'} D 9 first note that for y € 9 we have [o,y) C int(&),, by
Lemma 3.2.6. By this fact there are no 0 < A1 # A9 with A\1x, A\1x € 9, hence
{f(x):x € 81} D 9. We are done with {f(x) : x € S'} = 0.

As a continuous bijection from compact to Hausdorff space is a homeomorphism, and

S1 C R? is compact, 9 C R? is Hausdorff, it is enough to prove that f is continuous.

Claim 3.3.4. f is continuous.

Proof. If limy, 00X, = X for x,x, € S, then we have lim, .o f(x,) € 0 since f(x,) € 0 and

0 is closed. Hence we have lim, o f(%x,) = f(x) by the fact that there are no 0 < A1 # Ao

with \ix, \ix € 8(6)w

We are done with Theorem 3.3.3.
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Notation

e We know that 0 is homeomorphic to S', so we can talk about the clockwise orientation

of 0. For x,y € 0 let us denote by

A(x,y),0[x,yl,0[x,y), 0(xX,y]

the open, closed, half-closed clockwise arc of  between x and y. Note that 9(x,y), d[x,y], 9[x,y)
and 0(x,y| are homeomorphic image of (0,1),[0,1],[0,1) and (0, 1] respectively.
3.3.3 The structure of SNJ for S € &

We divide & into finitely many parts:

Definition 3.3.5.
(1) For a € P({1,2,3,4}) let 6 ={S € & :ica < vi(S) € (6)u}.

(2) Let & = [4]Y
Ean ={{1,2},{2,3},{3,4},{4,1}} (n refers to neighbouring vertices);
Ero={{1,3},{2,4}} (o refers to opposite vertices);

&3 = [4]3.

Remark. As S € G is open, S C int(&),, for all S € &? and so SN = 0.
Claim 3.3.6. {1234} = ¢,

Proof. Consider any R € (&), and S € &11234} Since both S and R contains T, a vertex

of S must be contained in R, hence Gi1:23:4} — ).
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P

Si

|
LH

Figure 3.2: §; € 611}, 5, e 6112} g5 € {13} 5, € G{2:34}

Theorem 3.3.7. The following statements hold:

(1) Fora € & Uy, UEs and S € G°
NS :=I(S)

is an arc of O;

(2) Fora € &, and S € &°
oNsS :=1I(S)uUJ(s)

is the disjoint union of two arcs of 0.

Proof. We prove only (1) for a = {1}, the proof of other cases of a € £ U &, U &3 and the
proof of (2) are similar.
Let S € 611 s0vi(S) ¢ (&), and vo(S), v3(S), va(S) € (&),. By horizontal and vertical

convexity of (&), (see Theorem 3.3.2 (1)) we know that [vo(S), v3(S)|U[v3(S),v4(S)] C (&)..

We also know that the intersection of a horizontal or a vertical line with (&), is (closed)

segment. Let x be that endpoint of IN(&),,, which is closer to vi(S), where [v1(S),v4(S)] C I.
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vi(S) va(S)

Figure 3.3: The definition of I(S) for S € Gt}

And let y be that endpoint of [ N (&), which is closer to vi(S), where [v1(S), va(S)] C L.

Now we prove that I(S) = 9(x,y):

We know that f : S' — R? defined by f(x) := ¢g(x)x (where g : S — R is defined by
g(x) := sup{\: \x € (8),,}) is a homeomorphism between S and 9.

Using that g(x) > 0 for x € S! and that (x,v1(S)] U [v1(S),y) is in the complement of

(6)w, we have 9(x,y) C S. To prove the other direction, suppose there is f(z) € SN I(x,y)

(-

with some z € S*. But then using that f(z) = g(2z)z, there is A > g(z) with Az € (y, v2(9)]

[va(S), v3(S)|U[vs(S), va(S)|U[va(S), x) and also know that Az is in the complement of (&),,,

since A > g(z). Which is a contradiction, since (y,va(S)] U [va(S),v3(S)] U [vs(S),va(S)| U

[v4(S5),x) C (S)..
By this we know that SN a9 = 9(f(y), f(x)).

We are done with Theorem 3.3.7.
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Now we state when does I(.S) determine S.

Lemma 3.3.8.
(1) Ifae &1 UE 0 UE3 and S1,S2 € & are different, then 1(S1) # 1(S2).

Proof. First we prove the following claim:

Claim 3.3.9. If v;(S) € (&), and v;11(S) € (&), (or vi;1(S)

€ (
for some S € & and i € {1,2,3,4}, then (v;(S), vi+1(S)) N (S), # 0.

Proof. Suppose that v;(S) € (&), vit1(S) &€ (&), for some S € & and i € {1,2,3,4}.
Choose RVi%) € (&), with v;(S) € RVi(S) by (2) of Theorem 3.2.3. As v;(S) € int(R?),

vit1(S) € int(RZ,;) (since T C S), Rvi(9) is axis-parallel and contains the origin we have

(vi(S),vit1(9)) N (&), # . We are done.

The statement of the lemma follows by the fact that the endpoints of I(.S) determines S.
O

3.3.4 Summary

Let us briefly summarize in the following table, that we have achieved in the Structure theo-

rems section:

a Does SN I determine S | For S € &% SNJis ...
for S € &7
EUEs Yes. an open arc.
Eam No. an open arc.
&0 Yes. union of two disjoint
open arcs.
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3.4 Construction of the coloring

3.4.1 Notation, definitions

(1) For a C {1,2,3,4} let

D = 0N Ui R2.

(2) We have f : S' — 0 homeomorphism, and let

f8' =0

be defined by f'((x1,22)) = f((z1, —x2)) for x = (21, 22) € S'.

(2.1.) Fora e & U gg’n U &3 let

(2.2.)

o f,: SN UieaRg — 0, be the restriction of f to SN UieaR?, and let <, be

the pushforward (by f,) of the clockwise ordering on S N U;c,R3.
o Let Z(a) = {I(S): S € &%}

o; Let f£1 3} STNR3 — g3 be the restriction of f to S'NR3;
o 4/{1 3} be the pushforward (by f£1 3}) ordering on dy3y; and

o3 <13y =< U -</{1’3}.

o, Let f£2’4} :STNRY — Op4y be the restriction of f to Stn R%;
o <l{274} be the pushforward (by f~;L2,4}) ordering on Jy4y; and

o <{274}I:<{2} U -</{2’4}.
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With the just introduced notations we state a lemma.

Lemma 3.4.1. The following statements hold:
(i)1 the endpoints of I(S) (S € &%) are in int(U;eaR?) for a € & U E3 U Eay,
(i)2 the endpoints of 1(S) (S € &%) are in int(R3) for a = {1,3} and in int(R3) for
a={2,4};

(4) if (x1,91), (22, 92) € Oy and v1 < w2, then y1 <ya ifi=1,3, and y1 > y2 if i = 2,4.

Proof. We only prove ()1, the proof of (i)2 is similar:

We know (see the proof of Theorem 3.3.7), that an endpoint of I(S) is the endpoint

of [vi(8S),vit1(S)] N (&), which is closer to vi(S) if vi(S) & (&), and vir1(S) € (&),

and the endpoint of [v;(5), viy1(S)] N (&), which is closer to vi;1(5) if vi(S) € (&), and
vir1(S) € (6),. W.lo.g. we can assume that vi(S) € (&), and vi1(S) € (&),. Choose

R € (&) with vi(S) € R. As T C R, R is axis parallel and R N [vi(9), viy1(9)] C (&),

we have that the endpoint is in int(RZ, ;). We are done with (i);.

Proof of (i7):
We prove the statement for ¢ = 1, the proofs of the other cases are similar. Choose
R € (6)}i, with (z1,11) € R. As T C R and R is axis parallel and we have that (z2,y) € R
for all y < y1. As R C int((6),) by Corollary 3.2.5, we are done with (ii).
O

Remark. Note that as an easy consequence of Lemma 3.4.1 (7); we have that the elements of
Z(a) are arcs of 0, for a € £;UE3UE2,,. As (0,4, <q) is isomorphic to (RU{—oo} U {+o0}, <)
for a € £ U &3 U &y, by Definition 1.3.3 we have the definition of Z(a)p,q, for p,q € J, and
e € 4, where neither p nor q is an endpoint of an element of Z(a).

(We will define Z(a) as a subset of {I(S) : S € &%} for a € &5, so similarly by Lemma 3.4.1
(1)2 and Definition 1.3.3 we have the definition of Z(a)p.q. for p,q € 0, and ¢ € 4, where

neither p nor q is an endpoint of any element of Z(a).)
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3.4.2 The statement

The aim of the following 3 sections is to prove the following theorem:

Theorem 3.4.2. For a C {1,2,3,4} there is d* : % — w with:
(1) (6%)w € ((d) "' ({O})w;
(”) on <6a)w - mjew((da)il({j}»w-

Proof. Before going into the details we sketch the proof:

1) we choose D € [0]¥ with appropriate properties;

2) (with the help of Corollary 2.1.22) we construct d* for a € & p;

3) we choose M* C & and define Z(a) = {I(S5) : S € &} for a € & ;

4) for a € & U & U &, we apply Corollary 2.1.22 with 0,, Z(a) and D N 9, getting
e’ : I(a) — w, that satisfies (i) and (iz) of Corollary 2.1.22, and define d*(S) = e*(I(.S)) for

S € 6. And finally we prove that this coloring satisfies (7) and (¢7) of Theorem 3.4.2.

Now we start the proof.

Let us introduce some notation. Let

e X = max{x: there is y with (z,y) € (&),};

e X,, = min{x : there is y with (z,y) € (8),};
}

e Yy = max{y : there is z with (z,y) € (8)u};

e Y, = min{y : there is x with (z,y) € (&), }.

e Let us denote by 0Z the set of all endpoints of I(S) and J(5) for all S € &.
e Fix D € [0]“ for the rest of the proof such that:

(o1) (Xar,0), (Xm,0),(0,Yar),(0,Yy,) € D and DN IZ = 0;

and for i =1,2,3,4:

(42) proja(D N 9y) \ proje (9 1 dpsy) € projin(dysy) denses

(03) projy(D N dgy) \ projy (0L N Ay ) < projy(dyy) dense.

We can choose such D by Lemma 3.4.1 (i) and by |&| = w.
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3.4.3 The construction of d* for a € &, (Step 2) of the strategy)

We construct d{m}, the construction of d* for a € & ;, are similar by rotation.

So by the definition of G112} we have vi(5),v2(S) € (6), and v3(S),v4(S) € (&), for
S € &tz

We know that (0,Ys) € (&), and let [x,y] C (&), be the horizontal segment through
(0,Yyr). We also know that (v1(S),u(S)) = v1(S) € R?, (v2(9),u(S)) = va(S) € R2 and
the length of [x,y] is at least 1(by Theorem 3.3.2 (1)), so u(S) > Yy for all S € G2}, This

easily implies the following:

Fact 3.4.3. If R € (6112, then [vi(R), v2(R)] C [x,¥].

Lemma 3.4.4. For all z € (G2}, there is z* € [x, y] satisfying that z € S iff z* € S for

all but finitely many S € &1},

Proof. If z = (21, z2), then let z* := (21, Yu).
Using the fact that each S € 6112} is axis-parallel, we know that if z € S then z* € S for

all S € 6112 Asz e (6{1’2})w, we have |22 — Yas| < 1. Then we are done by the fact above.
O

Fix 6112+ € &2} with 1(S)) # I(S2) for Sy, (#)S2 € G{12H and
{I1(S): S e&L2y ={1(9): 5 e a2,

Apply Corollary 2.1.22 with X = 91 9y, E = D N9y 2,2 = Z({1,2}) and so we have
12} 7({1,2}) = w satisfying (Z({1,2}))e C Njew ()1 ({j}))w ((ii) of Corollary 2.1.22
with p = (X;m,0),q = (Xu,0),e = 1), and let dt2}(S) := L2(1(9)) for S € G112,
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Figure 3.4: The definition of z* and Q1,Q2, Q3 € &(I)

Lemma 3.4.5. For z € (&), we have:
2 € Njew (A ({})w orz & (&),

Proof. For z € (6{1’2}+)w we can choose z* € 0 satisfying Lemma 3.4.4. Then we are done

by the assumption on ¢{%2}.

O]

Let I € Z({1,2}) be such that G(I) = {S € (& \ &113+) . §N 9 = I} is infinite. For
each such I we color the squares in S(I) the following way:

For R € (6(I)), aside of R is a subset of [x, y] by the fact above. Choose an enumeration
{Qn : n € w} = S&(I) with the property that the y coordinate of v4(Q,) is not increasing.

Then we can easily find

dV{Qinew) s w

satisfying N, (A2 ({1))w = ({Qn : 1 € w})y. Let di1?} be 0 for the still uncolored

squares in eitz},
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Lemma 3.4.6. (611:2}), = ﬂjew((d{l’Q})_l({j}))w-

Proof. For z € (&{12}), choose z* by Lemma 3.4.4. Then either there is I € Z({1,2})
with z* € (6(I)), or z* € (Z({1,2}))w. In both cases we are easily done by the above

observations. O
By Lemma 3.4.6 we have that dt'-2} fulfills (i) and (ii) of Theorem 3.4.2.

3.4.4 Choosing a subset of G* for a € &, (Step 3) of the strategy)

In this section we choose

for a € &, which is:

e; regular enough to be able to apply Corollary 2.2.1 (see Lemma 3.4.7 e1);

e, big enough that the intersections of the squares with the boundary cover w-fold exactly

the points which are covered w-fold by squares in &% (see Lemma 3.4.7 e3).

Now we start the construction of 9t%:

Lemma 3.4.7.

Suppose |6 = w for a € E,. Then there is {Sy : n € w} = M* € [G%]|* with

I(S,) = 0(An,By), J(S,) = 0(by,a,) such that

o {An, By} C (Opy, <qu3y) and {an, bn} C (93}, <q1,3y) fulfill conditions (i) — (iv) of

Corollary 2.2.1;

o (M), NI = (&%), N .
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Proof. By symmetry it is enough to prove our statement for a = {1, 3}.
Claim 3.4.8. There are C-maximal elements in every subset of {I(S) : S € G113},

Proof of the claim.

Observe first that since a = {1, 3}, if I(S1) C I(S3) for S1,S2 € S13} then v1(S1) € Ss.
Then we argue by contradiction. If there would be I(S1) € I(S2) € ..., then v1(S1) € S,
for all n € w, therefore v1(S;) € (S),,. Since S; € &3} it is a contradiction, hence we are

done.

Now let

i3t = {5 e g3 1(9) is C -mazimal in {I(S): S € G5

Claim 3.4.9. (M3, no = (63, na.

Proof of the claim.
Assume on the contrary that there is x € ((&13}), N )\ (M3, N o),
ie. [{S el xe S} =wand |[{S e M3} :x e S} <w By Claim 3.4.8 there is

S € mb3} with [{Q € 6113} . [(Q) C I(9)} = w. But I(Q) C I(S) implies v3(S) € @

meaning v3(S) € (&), which is a contradiction by S € Gi1:3},

So we verified o9 of Lemma 3.4.7.

To continue our proof, let Si,So € M3} be different. Note that the boundary of S
and Sy intersect in 2 points. Let us denote them by qi and q2. Let (z1,y1) = v1(S1) and
(x2,y2) = v1(S2). We know that y; = y2 can not stand by the definition of i3} so by

symmetry we can assume y; > yo. From this z; > x5 holds again by the definition of {3}
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Vl(Sl)
a1
vi(52) \ va ﬁ/vz(‘%)
1 0
T
V4 S ol

- 7 '\\Vg(sl)
q2

V3(SQ)

Figure 3.5: The definition of q; and q2

SO

a1 = [v1(51), va(S1)] N [v1(S2), v2(S2)] and g2 = [v3(S1), va(S1)] N [v3(S2), va(S2)].

Claim 3.4.10. The following statements are true:

(a) q1 € (6)., iff q2 € (6).,

(b) a1,qz2 & 0.

Proof.

(a): If q1 € (&), then by Theorem 3.2.3 (2) there is R € &;,, with q1 € R. Since

v1(S1),v1(S2) € R (as they are ¢ (S),), q2 € R so by Corollary 3.2.5 q2 € (&),,. And vice

versa.

(b): By contradiction. If e.g. q1 € O then there is R € &y, with q; € OR. But then

either v3(S;1) € R or v3(S2) € R. Contradiction.

We are done with Claim 3.4.10.
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Claim 3.4.11. For S;, S € M3} the following statements are equivalent:
(1) I(S1) NI(S2) =0,

(2) J(S1) N J(S2) =0.

Proof of the claim.

(e a1 €(8)yeaz € (6), & (2).

e (i) and (ii) of Corollary 2.2.1 is true by the definition of D13},
e (iii) of Corollary 2.2.1 is true by Claim 3.4.11.

e (iv) of Corollary 2.2.1 is true by Lemma 3.4.1 (2) using that y; > yo and x; > xy for

(z1,91) = v1(51) and (22, y2) = v1(S2).

We finished the proof of Lemma 3.4.7.

After this lemma we give the definition of Z(a) for a € & ,:

Definition 3.4.12.

For a € &, let
Z(a) ={I(S): S € M*}.

3.4.5 Step 4) of the strategy

We will use the following trivial facts:

Fact 3.4.13. Suppose 1 <i <4, (z,y) = x € R? and (v,w) = v;i(S) with some S € &. Then
the following statements are equivalent:
(1) x € S;

(1) |z| < |v] and |y| < |w].
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Fact 3.4.14.

(1) Let (z,y) = x € R} and (v,w) = v1(S) for some S € &. Then the following
statements are equivalent:

() |z < o] and Jy| < |wl;

(i) v <z and y < w.

(2) Let (z,y) = x € R3, (2,w) = v1(S) and (v,w) = v2(S) for some S € &. Then the
following statements are equivalent:

(i) [z < [o] and [y| < [w|;

(i) r<z4+1andy < w.

(3) Let (z,y) = x € R3, (2,u) = v1(S) and (v,w) = v3(S) for some S € &. Then the
following statements are equivalent:

(3) J2] < v] and || < Ju];

(i) x<z4+1andu—1<y.

(4) Let (z,y) = x € R2, (v,u) = v1(9) and (v,w) = v4(S) for some S € &. Then the
following statements are equivalent:

() |z < [v] and Jy| < |wl;

(i) v<z andu—1<y.

For 0 < r let us define the horizontal line y = r by h(r) and for » < 0 let us define the

vertical line x = r by u(y).

h(r) N (&), is a horizontal segment if it is not empty and let us define its endpoints

by hi(r) = (h1,7) € Oy and ha(r) = (ha,7) € Opgy. If h(r) N (&), is empty then let

h; (r) = ha(r) = (0, Y).

Similarly u(r)N (&), is a vertical segment if it is not empty and let us define its endpoints

by ui(r) = (r,u1) € 9gy and uz(r) = (r,uz) € Jrgy. If u(r) N (&), is empty then let
uy(r) = uz(r) = (X, 0).

With these notation using Lemma 3.4.1 (2) we have the following fact:
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hy(r) hy(r)
. % N h(r)
1 ﬁ
T ’ B
uz(T)N
o |

Figure 3.6: The definition of hy(r),ha(r) (0 < r <Y)ys) and uy(r),uz(r) (X, <r <0)

Fact 3.4.15.
(1) r1 < 1o with 0 <1y <Yy < hy(r) <{1} hy(r2) < ha(rs) <{2} ha(r);

(2) ry <ro with Xm<re<0& ul(n) <{1} ul(’l”g) <~ u2(7“2) <{4} 112(7‘1).

Lemma 3.4.16. Let D € [0]¥ satisfying (o1) — (03) and a € &4 U &, U E3. Let

X(a) :={x € int(6),:3Ip,q€ D and e € 4 such that x € S < I(S) € (0a)p,qe}-

Then X (a) is dense in int(S),,.
Proof. By rotation it is enough to prove the lemma for a = {1}, {1,3} and {2, 3,4}.

Choose V' C int(&),, open, nonempty.

ea={1}:
1) Suppose we have a point, (z,y) = x € R} Nint(S),. By Fact 3.4.13 and Fact 3.4.14

we know that the following is true for all S € &1} and (v, w) = v1(S):

xeSev<zandy < w.
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Xm < v <0so by Fact 3.4.15 (2) we have v < x & u1(v) <q13 uz(z). 0 <w < Y)y so by
Fact 3.4.15 (1) we have hy(y) <1} hi(w). Note that us(v) and hy(w) are the endpoints of
I(S).

If R2NV # 0, then by the assumptions on D we can find (z,y) = x € RNV such that

ug(z),ha(y) € D. So
p=1ui(z),q = hi(y) and € = 2.

proves the statement in this case.

The proof of the other cases are similar to 1) using Fact 3.4.13, Fact 3.4.14 and Fact 3.4.15,

so we just define p,q and ¢ in these cases:

2) If R2NV # () then we can find (z,y) = x € R2NV such that uy(z — 1), hy(y) € D, so
p=ui(z—1),g=hy(y) and e =3

proves the statement in this case.

3) If R3NV # () then we can find (z,y) = x € R3NV such that uy(x —1),h1(y+1) € D,

SO

p=w(r—1),g=hi(y+1)ande=1

proves the statement in this case.

4) If R3NV # 0 then we can find (x,y) = x € R3NV such that uz(z),hi(y+1) € D, so
p=ui(z),q=hi(y+1)ande=0

proves the statement in this case.

The definition of the points and the proof of the statement for a = {1,3} is exactly the

same.
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Using that (02, <q2)) and (94}, <{4}) are the restrictions of (0f234}, <f2,343) to Oqay
and Jy4y respectively we can define the points for a = {2, 3,4} similarly to the a = {1} case.

The proofs are also similar.

e a={23,4}:

1) If RINV # () then we can find (z,y) = x € R2 NV such that ua(x), ha(y) € D, so
p =uz(z),q=hz(y) ande =1

proves the statement in this case.

2) If R3NV # () then we can find (z,y) = x € R3NV such that uz(z — 1), ha(y) € D, so
p=1uz(z—1),a=ha(y) and e =0

proves the statement in this case.

3) If RNV # () then we can find (x,y) = x € R3NV such that ug(z —1),ha(y+1) € D,

SO

p=uz(z—1),q=ha(y+1) and e =2
proves the statement in this case.
4) If R2NV # 0 then we can find (z,y) = x € R2NV such that uz(z), ha(y +1) € D, so

p=1uz(z),q=ha(y+1)and e =3

proves the statement in this case.

We are done with the proof of Lemma 3.4.16.

Now finish Step 4) and the proof of Theorem 3.4.2.
For a € & U &3 apply Corollary 2.1.22 with X = 9,, Q =Z(a) and E = D N d,.

For a = {1,3} apply Corollary 2.1.22 with X = 91y, Q = Z({1,3}) and E = D N 9yy;.
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For a = {2,4} apply Corollary 2.1.22 with X = 043, Q = Z({2,4}) and E = D N dyy;.

So for a € & U & U &y, we have e : Z(a) — w satisfying (i) and (iz) of Corollary 2.1.22
and let
d*(5) = e*(1(.5))

for S € Useg,ue; 6 J Uaee, , M?, and let d(S) = 0 for S € Uses, , (6% \ M),

Now we want to prove that d* satisfies (i) and (i) of Theorem 3.4.2:

e Proof of (ii) of Theorem 3.4.2:

o for a € & U &3 choose p and q as the endpoints of 9, and € = 1, and apply (i) of
Corollary 2.1.22 for e®. This proves the statement.

o For a = {1,3} we know that & N (M3, = o n (&3, by ey of Lemma 3.4.7 and
choosing p and q as the endpoints of ¢y and € = 1 and applying (ii) of Corollary 2.1.22 for
etl3} proves the statement on 8{1}.

o On Jy3) the statement is true by e; and e of Lemma 3.4.7 and Corollary 2.1.22, since
for x € ({J(S): S € ML}, we can find y(x) € Opy{I(S): S e {134}, such that with
finitely many exceptions the same squares in M3} contains x and y(x) by Corollary 2.2.1.

Then we are done by (ii) of Corollary 2.1.22 as above.
e Proof of (i) of Theorem 3.4.2:

if x € (6%), N9, then we are done as above. If x € (&%), N int(S), then we can find
R* € (%), with x € R* by (1) of Theorem 3.2.3. If x € R?, then by Fact 3.4.13 and
Lemma 3.4.16 we can find y € R* and p,q € D N J, and ¢ € 4 such that for all S € &% we

have

I(S) € (Oa)pge©ycES=>%x€S.

As y € R* we have |(Z(a))p,q,c| = w, then by (i) and (ii) of Corollary 2.1.22 we are done.

We are done with Theorem 3.4.2.
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Theorem 3.4.17. There exists ¢ : & — w such that (&), = Njcw(cH({j}))w-
Proof. There exists d : & — w satisfying (i) and (i) of Theorem 3.4.2.

So
0N (6)y = Nj=1(d ({1}))w and int(&), = int(d~({0}) Ud ™ ({1}))w

by (ii) of Theorem 3.4.2.

Let
&1 = {int(6), NR: R € &\ Ujsrd ({j})}.

By the fact that an open subset of the plane is a o-compact space and by Lemma 1.2.2 there
exists dy : 61 — w with int(&), = Njew(d] ({4}))w-
Let
di(RNint(8),) if Re€ (d1({0})udt({1}));
d(R) — 2 if R € Ujs1d 1 ({j}).

which fulfills the requirements of the theorem.

Theorem 3.4.18. Suppose T € [To]=%. Then T is w-decomposable over (T),,.

Proof. Consider a grid with distance 1/3 and put an open square with length of side 1/3 onto
each point of the grid. Let {Q; : i € w} be the set of these squares of side length 1/3. Let
T, ={S € &:Q; C S}, and consider T; C ¥, which are disjoint, and Uje,T; = Uie,T;. By
elementary geometry the following statements are true:

(1) for S € T there is i € w such that S € T;;

(2) for z € (%), there is i € w with z € (%),

By Theorem 3.4.17 there is ¢; : ¥; — w with (%) = Njew(c; *({j}))w for all i € w.

By (1) and (2) ¢ = Ujewc; proves the statement of the theorem.



CEU eTD Collection

56 CHAPTER 3. THE PROOF OF THE TWO DIMENSIONAL RESULTS

3.5 Closed square case

3.6 Back to the open case

Theorem 3.6.1. Suppose € € [T|=*. Then € is w-decomposable over (€),,.

Proof. We will denote the elements of € by U. For U € € let us denote the set of vertices
of U by v(U) and let U™ = U \ v(U). For ® € [Tz]=¥ let D* = {U™" : U € D} and
int(®) = {int(U) : U € D}.

Note that (D7), = (D)., for D € [T5]=¥, since the multiplicity of each translate is 1.

e Let
X = (@) \ (inb(€)).

For z € X pick [(x), an axis-parallel line with x € I(z), let L = {l(z) : x € X} and write

L ={l,:ue€|L|} (we know that |L| <w as |€| = w).

e First we choose disjoint subsets {€; : i € w} of € in the following way: for i € w let

¢ ={9 € €\ Up; € : aside of S is a subset of ;}.

e Then let
tr; = {S_U Nni:Se Q:Z}

By applying Corollary 2.1.11 on each components of Utr;, we know that there exists a

partition

UZEwtri,s =1tr;
with:

(1) Utr; o = Utr;

(2) (triw)w = (tr;)y for u > 1.
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For i,s € w let

Q:,;’S = {V e, :V7'ni e tT’Z"S}.

Note that (1) and (2) above and elementary geometry imply that
(a) UQ:i,O = U¢;;
(b) (Q:i,u)w - (Q:z)w for u > 1.

Also note that U;c, (&) 2 X.

e Now we provide ¢ : € — w proving Theorem 3.6.1.

By Theorem 3.4.18 we know that there exists
d: int(Qﬁ \ Uie‘u,szlc:i’s) — w

with

(int(@ \ UiEw,SZIQ:i,s»w = iju)(d_l({j}))w'

Let us define ¢ : € — w the following way:

s—1 if U € ¢; ; for some i € w,s > 1;
o(U) =
d(ZTZL‘(U)) ifU e Q:\ UiEw,szlei,s-

We prove that this coloring satisfies the requirement of Theorem 3.6.1.

Claim 3.6.2. The following statement holds:

(Q:)w = Uiéw(ei)w U (mt((’:\ Ui€w,521€i,s))w-

Proof of the claim. C is trivial, so we want to prove 2.
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Let x € (€),. By the definition of €; either there is i € w with x € (&), or x €
(€\ Uicw,s>1¢€is)w-

Suppose x € (€ \ Uicw s>1%is)w \ Uicw(€i)w. We prove that x € (int(€ \ Ujcw s>1€is))w
holds. Suppose by contradiction that x € ((€\Uicw,s>1%i.s)w \Uicw(€i)w)\ (int(€\Uicw s>1€i s) )w
((€\ Uicw,s>1%is)w \ (int(€\ Uicw,s>1%is))w) \ Uicw(€i)w. Using this we have that x € X,

which is a contradiction, since U;c,(€;), covers X. Hence we are done with the statement.

So we proved the claim.

By Claim 3.6.2 and by the definition of ¢ we are done with Theorem 3.6.1.

3.7 The proof of Theorem 1.3.7

Proof.
Proof of (1): by hereditarily Lindeléfness of the plane choose G; € [F \ U;<;G;]=% with
UG; = UF \ Ui;G; for j € w. Note that (UGj), = (F)w. So by applying Theorem 3.4.18 for

UG, we are done.

Proof of (2): Note that (H™"), = (H). for any H C T5. The following fact is well-known:

Fact 3.7.1. Let C be a set of closed polygons without vertices. Then there is C' € [C]=* with
uc = uc'.

Apply this fact to choose G; € [F \ Ui<;Gi]=% with UG, " = U(F \ Uic;Gi) 7" for j € w.
Note that (UGj)w = ((UG;)™")w = (F")w = (F)w- So by applying Theorem 3.6.1 for UG; we

are done.

We are done with Theorem 1.3.7.
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In this section we describe constructions, showing the sharpness of Theorem 1.3.7.
Each construction works similarly:

e first we describe an elementary statement, then
e using the elementary statement we construct A C R? in w steps and a covering of A,

which can not be decomposed.

4.1 Axis-parallel rectangles with side length between

l—cand 1

Proof of Theorem 1.53.8. We prove (1), the proof of (2) is similar.

Let [ be the x = —y line and V be the vector from the origin to (1,1), and for A C R?,

A€ R let A+ AV be the translation of A with A\ V.

We will use the following elementary geometric statement repeatedly:

Lemma 4.1.1. For all € > 0 there are 1 and 2 with the following property:
For all I C 1 interval with |I| < e, and for all I; C I, Iy C I+ (1 —e3)¥ closed (open)

intervals there is R € R. (R € Q) with

RN(IU(I+(1—e)¥))=1UL.

99
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Figure 4.1: Lemma 4.1.1

Proof. The proof is immediate by Figure 4.1 and left to the reader.

We construct A and R such that A C (R),, and R is not 2 decomposable over A:

1.) Fix e1,¢e9 for ¢ satisfying Lemma 4.1.1.
2.) Let I C 1 with |I| < ) arbitrary and let Iy = I, Jo = I + (1 — &) V.
3.) Let wy® = {(s0, $1, ..., ;) € w<¥ : 59 = 0}.

4.) For j > 1 and s = (sg, $1, ..., $;) € ws® let s~ = (s0, 81, ..., sj_1) and |s| = j.

In the jth step (j > 1) for all s € wi® with |s| = j choose (see Figure 4.2) :
o1 Is C (Io \ Ur<js|<jsrss) closed intervals with with 37y o < [1s| < @, and

oy Js C Jy— closed intervals with J— 5 N Ji- 5y = () for all i # j € w.

In the jth step (j > 2) for all s € wi® with |s| = j choose:
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R,

/ Jis0)
I ff Jis1)

——Rs0)

1

f— R<371>

Figure 4.2: The jth step

o3 choose Ry € R with RyN (1U (14 (1 —&2)V)) = I,- U J, by Lemma 4.1.1.

And finally let

oy A=Nj> Uls|=j Js UU|S|2113 and R ={Rs:s€ w0<w, |s| > 2}.

First we prove that A and R satisfies (1.1):

Claim 4.1.2. A C (R),.

Proof.
o [, C Ry if t = (s,i) for i € w.
o for x € Nj>2 U=, Js one can choose (to(x),t1(x),...) € w* with X € Jisg(x) 11 (x),....t;(x))

for all j > 1 meaning X € Rz, (x),t; (x),....t;(x)) PY 3-
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Now we want to prove that A and R satisfies (1.2):

Claim 4.1.3. For all partition R; U* Ry = R either UR; 2 A or URy 2 A.

Proof. By 1 and 3 for s,t € wy* with |s|,|t| > 1 the following is true:
a) Is C Ry if t = (s,i) fori e wand Is;N Ry = (0 if ¢ # (s,4) for i € w.

So by the fact that (Nj>2 Ujsj=; Js) N (Upg>11s) = 0 for all s € wi®, [s| > 1 and for any
¢: R — 2 with Uc™ ({k}) D Ujg>1Ls (k € 2) one can find n(s) € w with Iy C Ry (5 and

C(R(s,n(s))) = 0. Let {ti cw i > 1 with t;41 = <tl,n(t1))}

By ey for x € N;>1J;, if x € Jg for some s € w” then s = ¢, meaning, that A > x ¢

U™t ({1}).

We are done with Theorem 1.3.8.

Note that in the construction of A in the proof of Theorem 1.3.8 we can choose
Is (|s| > 1) and Js (|s| > 1) with:

01 Nj>2 Upsj=j Js © (I + (1 - £9)V) is a closed set minus countably many points.
02 Ujg>14s € 1 is also a closed set minus one point.

Choosing £ small enough we can choose R € [R.]* with UR; C R?\ A C (R1)w,

resulting in a bit strengthening of Theorem 4.1.5:
Theorem 4.1.4. For all € > 0 there is R € [Rc]¥ with:

(i) (R)w 2 R?;

(13) R is not 2-decomposable.
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Remark. Note that Theorem 4.1.4 is a strengthening of the following:

Theorem 4.1.5. ([2], Theorem 7.2)

There exists R, a countable family of axis-parallel closed rectangles with:

(i) (R)w 2 R?;

(17) R is not 2-decomposable.

4.2 Closed unit squares with small rotation

The proof of Theorem 1.3.9 is similar to Theorem 1.3.8, we only need to use points in-
stead of the intervals I5 (s € ws®) and to use the following elementary statement instead of

Lemma 4.1.1:

Let [ be the z = —y line, ¥V be the vector from the origin to (1,1).

Lemma 4.2.1. For any € > 0 we can choose €1 > 0 such that for any I C [+ (1 — 51)7
and A C 1 finite set, we can find {I; : i € w} C I disjoint intervals, {S; : i € w} C S: and

p € (I\ A) such that for all i € w:
o1 v4(Si) =p;

o S;iNn(l+(1- 51)7) = 1.

4.3 Axis-parallel closed squares with side length between 1 —¢

and 1

Proof of Theorem 1.3.10. Let C be the closed unit square, i > ¢ > (0 and let
T(Cye)={C; :i € w}

a set of axis-parallel closed squares with:
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® CO :Ca

e, the side length of C; is less than the side length of C;_1 minus e+ (i > 1),

—
o3 the v4(Cy_1)v4(Ci) vector is the (0,0)(0, &%) vector.

Using the construction 7(C,¢), let us introduce some notation:
o1 Let p(7(C,¢)) = (0, é) Note that p(7(C,¢)) € C; for all i € w, since € < %.
o9 Let A(T(C,¢e)) = {A4; : i € w}, the following set of open rectangles:
0.1 let Ay be the open square with (1,1) and (1 — £2,1 — £2) as opposite vertices.
Note that Ag C Co \ (Uje(\f01)Ci)s
022 let A; = int(C; \ (Uje(u\(i})Cy)) for i > 1.
o3 For any transformation ¢ of R? let
o031 T(H(C),e) = {t(Cs) : i € w},
032 P(T(H(C),e)) = t(p(T(C,¢))),
o33 A(T(H(C),€)) = {t(A) : i € w}.

Let us denote by B(x,r) the 2 dimensional ball around x with radius r. Let us mention

the following easy fact witout proof:

Fact 4.3.1. For any t, a transformation of R? with t(C) awis-parallel and e > 0 there is t1,
a transformation of R? and &1 > 0 with:

(1) t1(C) is azis-parallel,

(id) int(t(C)) 2 T(t1(C), 1),

(iii) B(va(t(Ci)),e) 2 p(T (11(C), 1)),

(iv) B(v2(t(Ci)),e) 2 A(T (11(C), e1)).

We start to describe our construction:
o Let wi™ = {(s0,51,.... §j) € w<¥ : 59 =0}, and

e For j > 1 and s = (s, 51, ..., 5j) € wy* let s~ = (s0, 51, ..., Sj—1), |s| = j and



CEU eTD Collection

4.3. AXIS-PARALLEL CLOSED SQUARES WITH SIDE LENGTH BETWEEN 1—< AND 165

AU

Al

7
. C

p(T (t:(C), )

Figure 4.3: The construction of T (t5(C),es)
let s|i = (so, s1, ..., si—1) for @ < |s].
In the jth step (j > 1) for s € wg®, |s| = j we define
T(ts(C), e5),
where t; is a transformation of R%. To do this for s € wi®, |s| = 7, (j > 1) we define:

1.) x5 and ys, for

V4(tS(C)) = (Z Lslg> Z ys\j>7

J<ls] J<|s]

Now we write down what assumptions do we need on 1.)- 3.):
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|
1

4

- ___1¥

S

Clsi P(T (ts.(C),e154)))

Figure 4.4: A step

For s € wy® and i € w let A; s = t5(A;) and C; 5 = t5(C}).
If s = (s7,i) = (80,81, -y Sw, 0,0, ..., 0,7) with s,, # 0 let:
a0) T(ts(C),es) € Ue

al) C; s~ D ts(C,es),

a2) A; - 2 A(T (t:(C), €5)),

b) ys + 12 < &'’ and

C) T(s—,0) > T(s— 1) > ... with

Zx<5_70>|j < Z x(so,sl,...,sw—l,O...OHj'

J<lsl j<w—1

Using Fact 4.3.1 we can easily choose xs, ys, [ts(C)| and e, satisfying al)-c).

Note that

i+1
Cs
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Claim 4.3.2. p(T(t:(C),e,)) € Cjp <

1.) r = s|k for some k < |s| and j < sy, or

2)r=sand i€ w.

Proof. 1t can be easily seen by induction using b) and c).

Let
A= Uséwgwp(T(tS(C)v 55)) U mjzl U\s\:j,sew(fw A(T(ts(c)’ 55))7 and

U= UszEWT(tS(C)v 58)'

Lemma 4.3.3. The following statements are true:

a) AC (Usew(fwT(tS(C)ags))w

b) AZ Njeac  ({j})w for all c: Usewze T (ts(C), €5) — 2.
Proof. a) is immediate by the construction.

b) by Claim 4.3.2 for all s € wi® there are infinitely many i € w with ¢(C; 5) = 0, so we

can choose t € w* with ¢(Cy;) = 0 for all i € w. But then NiewAy; € ¢ H({1})w-

We are done with Theorem 1.3.10.
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5 Open questions

However we think that with much more work we could prove our main result for (open or
closed) convex symmetric polygons instead of the (open or closed) unit square we do not

know the following;:

Question 5.0.4. Let P be an open convex polygon and F C Tp (resp.Tp). Is F w-decomposable

over (F)y?
Or can we prove something for disks?

Question 5.0.5. Let D be the open unit disk and F C Tp (resp.Ty). Is F w-decomposable

over (F)y?

Finally it worth to pose as a question the w-fold and generalized version of Pach’s conjec-

ture:

Question 5.0.6. Let C be a convex planar set and F C To. Is F w-decomposable over (F)y, ?

69
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