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Abstract

The main result of this thesis is the following: any family of the translates of the open (resp.

closed) unit square F is ω-decomposable over the points which are covered ω-fold by F .

To get this result we prove several one dimensional covering decomposition results and

finally we construct some examples to examine the sharpness of our main result.
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1 Introduction

1.1 General introduction

Let λ, κ be cardinals and F ⊆ P(X) such that F covers every point of

X at least κ times. Can we decompose F into λ many disjoint covers of

X?

In this thesis we deal with a version of this question. By choosing the parameters: X, F ,

λ, κ this problem has a long-standing history. Let us briefly summarize some of the results.

Finite covers:

A well understood question in this context is when X is a finite set and F is a family of

hyperedges of a graph on X. Almost optimal solutions of the relevant problems have already

been found long ago.

However if the cardinality of X is not finite, then the answer is not so clear. Pach in [4]

posed the above question in the following form: let X be the plane, and let P be a convex

planar set, then can we find a finite number κ such that if F is a set of translates of P then

we can decompose F into two covers of the plane?

Note that if P is a polygon, then the affirmative answer has been found in [5] and [3].

However the related question for e.g. circles is a much harder one. We do not know the solu-

3
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4 CHAPTER 1. INTRODUCTION

tion, but we note that a positive answer is claimed in a more than 100 page-long manuscript

of Mani-Levitska and Pach, however this is still not published.

Infinite covers:

In this direction - κ can be infinite - the first result where the underlying set X had

geometric properties (and so would be relevant to us) appeared in [1]:

Theorem 1.1.1. (Aharoni, Hajnal, Milner) If κ is a cardinal, X is a linearly ordered set

and F is a set of intervals such that each point of X is covered by (at least) κ many elements

of F , then F is the disjoint union of κ many covers.

After this result, a question of Pach whether any infinite-fold cover of the plane by axis-

parallel rectangles can be decomposed into two disjoint subcovers, inspired the authors of [2]

to start a systematic study of ’infinite-fold covering problems’(see the exact definition later)

and achieved numerous results about them. E.g.:

Theorem 1.1.2 ([2], Theorem 7.4). Let κ > ω be a cardinal and F a family of closed polygons

in the plane such that each point of the plane is covered by at least κ-many elements of F .

Then F can be decomposed into κ many disjoint covers of the plane.

This theorem is not true for κ = ω:

Theorem 1.1.3 ([2], Theorem 7.2). There exists a countable family F of axis-parallel closed

rectangles in R2 such that F is an ω-fold cover of R2 without two disjoint subcovers.

We note that using similar techniques the authors of [2], we can construct a family F of

closed unit squares in R2 such that F is an ω-fold cover of R2 without two disjoint subcovers

(see Theorem 1.3.9).

However after Theorem 1.1.2 and Theorem 1.1.3 it was natural to ask the following ques-

tion:

Question 1.1.4 ([2], Problem 8.6.1.). Is it true that if each point of Rn is covered ω-many

times by F , a set of translates of the closed unit cube, then F can be decomposed into two

disjoint covers of Rn?
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To answer for this question was the starting point of our investigations. The main result

of this thesis answers this question in the affirmative for n = 2.

1.2 Notation, easy facts

1.2.1 Notation

• Let us denote by R the set of real numbers.

• Let us denote by E the axis-parallel open unit square.

• Let us denote by P(X) the power set of X.

• Let ord(x,F) := |{F : x ∈ F ∈ F}|.

• Let κ be an infinite cardinal. We say that

F is a κ-fold cover of X if κ ≤ ord(x,F) for each x ∈ X.

• Let κ be a cardinal. Then let (F)κ := {x ∈ X : κ ≤ ord(x,F)}.

(Using this notation Y ⊆ (F)κ means that F is a κ-fold cover of Y .)

• Let κ be a cardinal. Then [X]κ, [X]≤κ, [X]<κ stand for the set of

subsets of X which have cardinalities κ,≤ κ,< κ respectively.

• We say that F is disjoint if F ∩G = ∅ for all F,G ∈ F .

Definition 1.2.1. Let κ be a cardinal. We say that F is κ-decomposable over X

if there is G ∈ [P(F)]κ disjoint s.t. each G ∈ G is a cover of Y .

Remark.

(1) Note that for a fixed infinite cardinal κ the following statements are equivalent:

(i) F is κ-decomposable over X;

(ii) there is H ∈ [P(F)]κ disjoint with X ⊆ (H)κ for all H ∈ H.
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6 CHAPTER 1. INTRODUCTION

(2) Note also that for any map c : F → κ, {c−1({j}) : j < κ} ∈ [P(F)]κ is disjoint. So

to prove that F is κ-decomposable over X, it is enough to construct a surjection c : F → κ

such that c−1({j}) is a cover of X for all j < κ.

• If (X, τ) is a topological space and A ⊆ X then ∂A denotes the boundary of A and

int(A) denotes the interior of A.

• For A ⊆ R2 let us denote by projx(A) (projy(A)) the projection of A to the x (resp. y)

axis.

• For C ⊆ R2 we denote by TC the set of the translates of C.

• For a function f : X → Y and F ⊆ P(X) let f(F) = {f(F ) : F ∈ F}.

• We use ∪∗ to denote disjoint union.

• For 〈s(0), s(1), ..., s(i)〉 = s ∈ ω<ω and 〈t(0), t(1), ..., t(j)〉 = t ∈ ω<ω we denote

〈s(0), ..., s(i), t(0), ..., t(j)〉 ∈ ω<ω by s _ t.

1.2.2 Easy facts

Lemma 1.2.2. Let (X, τ) be a topological space and F ⊆ τ . If Y ⊆ X is σ-compact with

Y ⊆ (F)ω then F is ω-decomposable over Y .

Proof. Let {Ki : i ∈ ω} be an increasing sequence of compact sets with ∪i∈ωKi = Y .

We define Fs inductively. For s ∈ ω let

Fs ∈ [F \ ∪i<sFi]<ω with Ks ⊆ ∪Fs.

Choose ϕ : ω → ω × ω arbitrary bijection, then

{∪{Fu : ϕ(u) = 〈m,n〉, n ∈ ω} : m ∈ ω}

proves the lemma.
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Lemma 1.2.3. For Y ⊆ (F)ω the following is true:

If each G ⊆ F with Y ⊆ (G)ω is the disjoint union of G1 and G2 with Y ⊆ (G1)ω ∩ (G2)ω,

then F is ω-decomposable over Y .

Proof. Let c0 : F → 2 be a coloring witnessing the condition for G = F , and for 0 < i ∈ ω let

ci : (ci−1)
−1({1})→ 2

witness the condition of the lemma for (ci−1)
−1({1}). Then {(ci)−1({0}) : i < ω} proves the

lemma.

1.3 Our main results

1.3.1 One dimensional results

Let I denote the set of open, nonempty (finite or infinite) intervals in R.

The following theorem is a special case of Theorem 5.1. in [2].

Theorem 1.3.1.

Let R ∈ [I]≤ω. Then R is ω-decomposable over (R)ω.

First we will prove the following strengthening of Theorem 1.3.1:

Theorem 1.3.2.

Let {Rn : n ∈ ω} ⊆ [I]≤ω. Then there is c : ∪n∈ωRn → ω such that for each n ∈ ω the

following is true:

(Rn)ω = ∩j∈ω ∪ (Rn ∩ c−1({j})).

Then we will prove Theorem 1.3.4, which is stronger result than Theorem 1.3.2 for certain

{Rn : n ∈ ω} ⊆ [I]≤ω. It has stronger requirements on the coloring, however we only prove

it for Rn ∈ [I]≤ω of special form.
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Definition 1.3.3.

Let R ∈ [I]≤ω, D ∈ [R ∪ {−∞,+∞}]ω with D ∩ ∪{∂R : R ∈ R} = ∅.

For p, q ∈ D let us define the following sets:

Rp,q,0 = {(a, b) ∈ R : a < p, b < q},

Rp,q,1 = {(a, b) ∈ R : a > p, b < q},

Rp,q,2 = {(a, b) ∈ R : a < p, b > q},

Rp,q,3 = {(a, b) ∈ R : a > p, b > q}.

Theorem 1.3.4.

Let R ∈ [I]≤ω and D ∈ [R ∪ {−∞,+∞}]ω with D ∩ ∪{∂R : R ∈ R} = ∅.

There is c : R→ ω such that for all p, q ∈ D and ε ∈ 4 the following statements hold:

(i) if |Rp,q,ε| = ω then |c−1({0}) ∩Rp,q,ε| = ω;

(ii) (Rp,q,ε)ω =
⋂
j∈ω ∪(c−1({j}) ∩Rp,q,ε).

Remark. Note that R = ∪∗p,q∈D,ε∈4Rp,q,ε, so the statement of Theorem 1.3.2 is a consequence

of Theorem 1.3.4 for the countable family {Rp,q,ε : p, q ∈ D, ε ∈ 4}.

The following example shows that we can not expect that Theorem 1.3.4 to hold for all

{Rn : n ∈ ω} ⊆ [I]≤ω. So this natural strengthening of Theorem 1.3.2 fails.

Example 1.3.5.

There is {Rn : n ∈ ω} ⊆ [I]≤ω such that we have no c : ∪n∈ωRn → ω with:

(i) if |Rn| = ω then |c−1({0}) ∩Rn| = ω for n ∈ ω;

(ii) (Rn)ω = ∩j∈ω ∪ (Rn ∩ c−1({j})) for n ∈ ω.

Proof.

Let ϕ : ω<ω → ω \ {0} be a bijection and for s ∈ ω<ω let Is ⊆ (0, 1) be an open interval

satisfying for s, t ∈ ω<ω:

•1 It ⊆ Is if t ⊇ s;
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•2 It ∩ Is = ∅ if s 6⊆ t and t 6⊆ s.

Let R0 = {Is : s ∈ ω<ω} and Rn = {Iϕ−1({n})_i : i ∈ ω} for n ∈ ω \ {0}. Now we prove

that either (i) or (ii) does not hold for c : ∪n∈ωRn → ω.

We prove it by contradiction. Suppose (ii) holds for c and Rn (n ∈ ω). Then we can

choose u ∈ ωω such that c(I〈u(0),u(1),...,u(j)〉) = 0 for all j ∈ ω. Then using •1 and •2 we have

∩j∈ωI〈u(0),u(1),...,u(j)〉 6= ∅ and ∩i∈ωI〈u(0),u(1),...,u(j)〉 is covered by Is iff s = 〈u(0), u(1), ..., u(j)〉

for some j ∈ ω. This contradicts to (i) with c and R0, hence we are done.

We will need the following one dimensional result in the proof of the two dimensional

decomposition results:

Lemma 1.3.6. Let {an, bn : n ∈ ω}, {An, Bn : n ∈ ω} ⊆ R such that:

(i) an 6= am, an < bn 6= bm, An 6= Am, An < Bn 6= Bm for all n,m ∈ ω different;

(ii) (an < am < bm < bn or An < Am < Bm < Bn) is false for all n,m ∈ ω;

(iii) an < am ≤ bn < bm iff An < Am ≤ Bn < Bm for all n,m ∈ ω;

(iv) an < am iff An < Am for all n,m ∈ ω.

Suppose that the following holds with some J ⊆ ω:

⋂
n∈J

(an, bn) ∩
⋂

n∈ω\J

(R \ (an, bn)) 6= ∅.

Then there exists J ⊇ J ′ with |J \ J ′ | < 3 satisfying:

⋂
n∈J ′

(An, Bn) ∩
⋂

n∈ω\J

(R \ (An, Bn)) 6= ∅.
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1.3.2 Two dimensional results

Our main theorem is the following:

Theorem 1.3.7. Recall that E is the axis-parallel open unit square.

(1) If F ⊆ TE, then F is ω-decomposable over (F)ω;

(2) If F ⊆ TE, then F is ω-decomposable over (F)ω.

Remark. Theorem 1.3.7 (2) gives the affirmative answer to Question 1.1.4 in the case of

translates of the closed unit square of R2.

1.3.3 Constructions

We will also provide three constructions showing the sharpness of Theorem 1.3.7:

Construction 1:

Let Rε (resp. Qε) be the set of axis-parallel closed (resp. open) rectangles with side

lengths between 1− ε and 1.

Theorem 1.3.8.

(1) For any ε > 0 there is R ∈ [Rε]ω which is not 2-decomposable over (R)ω.

(2) For any ε > 0 there is Q ∈ [Qε]ω which is not 2-decomposable over (Q)ω.

Construction 2:

Let Sε be the family of all sets of the form t(E) where for t is the composition of an

arbitrary translation of R2 and a rotation of R2 with angle at most ε.

Theorem 1.3.9. For any ε > 0 there is S ∈ [Sε]ω such that:

(i) S is an ω-fold cover of R2 (i.e. (S)ω = R2);

(ii) S is not 2-decomposable over (S)ω.
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Construction 3:

Let Uε be the set of all axis-parallel closed squares with side length between 1− ε and 1.

Theorem 1.3.10. For any ε > 0 there is U ∈ [Uε]ω which can not be decomposed into 2

disjoint ω-fold covers of (U)ω.

Remark. Theorem 1.3.10 easily implies that U is not ω-decomposable over (U)ω.
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2 Proof of the one dimensional results

2.1 Proof of Theorem 1.3.2 and Theorem 1.3.4

2.1.1 Choosing a subset of R

Definition 2.1.1. For R1, R2 ∈ {<,>,=} we denote by T (R1, R2) the set of A ∈ [I]ω

which has an enumeration: A = {(an, bn) : n ∈ ω} such that anR1am ∧ bnR2bm for all

n < m. For R ∈ {<,>,=} let T (R, .) = ∪Q∈{<,>,=}T (R,Q), T (., R) = ∪Q∈{<,>,=}T (Q,R)

and T (., .) = ∪R∈{<,>,=}T (R, .).

Remark. If A ∈ T (., .) then there is exactly one enumeration witnessing this.

We mention 3 easy claims without proof:

Claim 2.1.2. For each A ∈ [I]ω there is B ∈ [A]ω with B ∈ T (., .).

Claim 2.1.3. If A ∈ T (., .) and B ∈ [A]ω then we have (A)ω = (B)ω.

Claim 2.1.4. If A ∈ T (., <) with a ∈ ∩A, b ∈ R ∪ {+∞} and [a, b) ⊆ ∪A

then [a, b) ⊆ ∪B for each B ∈ [A]ω.

Lemma 2.1.5. For R ∈ [I]≤ω with (a, b) = ∪R ∈ I there exist pairwise disjoint

R0,R1,R2 ⊆ R

satisfying:

(i) if there is c ∈ (a, b) with (a, c) ∈ R then R0 = ∅;

13
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14 CHAPTER 2. PROOF OF THE ONE DIMENSIONAL RESULTS

if R0 6= ∅ then R0 ∈ T (>, .);

(ii) if there is c ∈ (a, b) with (c, b) ∈ R then R1 = ∅;

if R1 6= ∅ then R1 ∈ T (., <);

(iii) R2 6= ∅ and (R2)10 = ∅;

(iv) (∩Ri) ∩ ∪R2 6= ∅ for i ∈ 2 (note that ∩∅ = R);

(v) ∪(Q0 ∪Q1 ∪R2) = (a, b) for all Q0 ∈ [R0]ω and Q1 ∈ [R1]ω;

(vi) for all R ∈ R we have |{Q ∈ R2 : Q ⊆ R}| ≤ 4.

Proof. For x ∈ (a, b) let:

f(x) = sup{d : x ∈ (c, d) ∈ R}, and

g(x) = inf{c : x ∈ (c, d) ∈ R}.

(f (0)(x) = x and f (n)(x) = f(f(...(︸ ︷︷ ︸
n

x))).)

Claim 2.1.6. For any x ∈ (a, b) the following statements are true:

(f) there is k ∈ ω with f (k)(x) = b or limn→∞ f
(n)(x) = b;

(g) there is k ∈ ω with g(k)(x) = a or limn→∞ g
(n)(x) = a.

Proof of Claim 2.1.6. We prove (f), the proof of (g) is similar.

We prove this by contradiction. Suppose there is no k ∈ ω with f (k)(x) = b. Then, since

f (0)(x) < f (1)(x) < ... < b,

there is y ∈ (a, b] with limn→∞ f
(n)(x) = y.

If y < b then there is (c, d) ∈ R with y ∈ (c, d), so y < d. But there is m ∈ ω satisfying

c < f (m)(x), so we have y < d ≤ f (m+1)(x) < y. Contradiction, hence y = b.

We are done with the proof of Claim 2.1.6.
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Claim 2.1.7. For any x ∈ (a, b) the following statements are true:

(f) if f (n)(x) ∈ (a, b) for all n ∈ ω, then there is R2,r ⊆ R with (R2,r)5 = ∅

and ∪R2,r ⊇ [x, b);

(g) if g(n)(x) ∈ (a, b) for all n ∈ ω then there is R2,l ⊆ R with (R2,l)5 = ∅

and ∪R2,l ⊇ (a, x].

Remark. In Claim 2.1.7 the r, l superscript means that we choose these intervals going

toward the right or left endpoint of (a, b).

Proof of Claim 2.1.7. We prove (f), the proof of (g) is similar.

For i ∈ ω choose (a0i , b
0
i ), (a

1
i , b

1
i ) ∈ R satisfying the following conditions:

(1) (a0i , b
0
i ) 3 f (i)(x);

(2) (a1i , b
1
i ) 3 f (i+1)(x);

(3) (a0i , b
0
i ) ∩ (a1i , b

1
i ) 6= ∅.

We can choose (a1i , b
1
i ) ∈ R (i ∈ ω) satisfying (2) (since f (i+1)(x) ∈ (a, b)) and after this

(a0i , b
0
i ) ∈ R satisfying (1) with (a1i , b

1
i ) ∩ (a0i , b

0
i ) 6= ∅ for each i ∈ ω, because of f (i+1)(x) =

f(f (i)(x)). So the chosen interval system will satisfy (1)− (3).

Let

R2,r := {(a0i , b0i ) : i ∈ ω} ∪ {(a1i+1, b
1
i+1) : i ∈ ω}.

If f (i)(x) ∈ (c, d) ∈ R for i > 0 then f (i−1)(x) ≤ c and d ≤ f (i+1)(x) and if x ∈ (c, d) ∈

R then d ≤ f (1)(x) by the definition of f , so if 0 < i then [f (i)(x), f (i+1)(x)] meets only

(a1i−1, b
1
i−1), (a

0
i , b

0
i ), (a

1
i , b

1
i ), (a

0
i+1, b

0
i+1) and only (a0i , b

0
i ), (a

1
i , b

1
i ), (a

0
i+1, b

0
i+1) if i = 0, hence

(R2,r)5 = ∅.

∪R2,r ⊇ [x, b) is true by the fact that limn→∞f
(n)(x) = b by Claim 2.1.6 and that

[f (i)(x), f (i+1)(x)] ⊆ (a0i , b
0
i ) ∪ (a1i , b

1
i ) for all i ∈ ω.

We are done with the proof of Claim 2.1.7.
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Claim 2.1.8. If f (k)(x) = b for x ∈ (a, b) and k ∈ ω then there are

R2,r,R1,r ⊆ R

with the following properties:

(A) R2,r ∩R1,r = ∅;

(B) (R2,r)5 = ∅;

(C) if there is c ∈ (a, b) with (c, b) ∈ R then R1,r = ∅, and

if R1,r 6= ∅ then R1,r ∈ T (., <);

(D) ∪R2,r
⋂∩R1,r 6= ∅;

(E) (∪B) ∪ (∪R2,r) ⊇ [x, b) for all B ∈ [R1,r]ω;

(F ) |{Q ∈ R2,r : Q ⊆ R}| ≤ 2 for all R ∈ R.

Proof of Claim 2.1.8.

Case 1:

There is c ∈ (a, b) with (c, b) ∈ R.

In this case f (k−1)(x) ∈ (c, b) (note that k > 0 as f (0)(x) = x ∈ (a, b)) and we can choose

intervals {(aji , b
j
i ) : i ∈ k− 1, j ∈ 2} for {f (i)(x) : i ∈ k− 1} as in the proof of Claim 2.1.7. Let

R2,r := {(aji , b
j
i ) : i ∈ k−1, j ∈ 2}∪(c, b) and R1,r := ∅. (A)−(E) are trivially satisfied. (F ) is

true by the fact that each interval in R2,r contains f (i)(x) for some i ∈ k. So if R ∈ R contains

an interval from R2,r, it must contain f (i)(x) for some i ∈ k. But |{i ∈ ω : f (i)(x) ∈ R}| ≤ 1

for all R ∈ R and x ∈ (a, b) by the definition of f . So (a00, b
0
0), (c, b) if i = 0, (a1i−1, b

1
i−1) and

(a0i , b
0
i ) if 0 < i < k − 2 and (a1k−2, b

1
k−2), (c, b) if i = k − 1 are the only intervals from R2,r

which can be contained in R.

Case 2:

There is no c ∈ (a, b) with (c, b) ∈ R.

We can choose intervals {(aji , b
j
i ) : i ∈ k − 1, j ∈ 2} for {f (i)(x) : 0 ≤ i ≤ k − 1} as in the

proof of Claim 2.1.7 and let R2,r := {(aji , b
j
i ) : i ∈ k − 1, j ∈ 2}. Since f (k)(x) = b and we are
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not in Case 1, there exists A = {(cn, dn) : n ∈ ω} ⊆ R with:

• A ∩R2,r = ∅;

• limn→∞ dn = b;

• f (k−1)(x) ∈ (cn, dn) for all n ∈ ω.

By Claim 2.1.2 there exists R1,r ⊆ A with R1,r ∈ T (., <). Then

(A)− (C) of the lemma are trivially satisfied,

(D) is true, since f (k−1)(x) ∈ ∩R1,r ∩ (a1k−1, b
1
k−1),

(E) is true by Claim 2.1.4,

(F ) is true similarly as in Case 1.

We are done with the proof of Claim 2.1.8.

Claim 2.1.9. If g(k)(x) = b for x ∈ (a, b) and k ∈ ω then we can find

R2,l,R0,l ⊆ R

with the following properties:

(A) R2,l ∩R0,l = ∅;

(B) (R2,l)5 = ∅;

(C) if there is d ∈ (a, b) with (a, d) ∈ R then R0,l = ∅, and

if R0,l 6= ∅ then R0,l ∈ T (>, .);

(D) ∪R2,l
⋂∩R0,l 6= ∅;

(E) (∪B) ∪ (∪R2,l) ⊇ (a, x] for all B ∈ [R0,l]ω;

(F ) |{Q ∈ R2,l : Q ⊆ R}| ≤ 2 for all R ∈ R.

Proof of Claim 2.1.9. The proof is similar to the proof of Claim 2.1.8 and left to the reader.
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Let’s continue the proof of Lemma 2.1.5 by choosing arbitrary x ∈ (a, b). Use Claim 2.1.6

first and then Claim 2.1.7 or Claim 2.1.8 together with Claim 2.1.9 to choose R2,r, R1,r, R2,l

and R0,l. Let

R2 = R2,l ∪R2,r,

and let

R0 ∈ [R0,l]ω,R1 ∈ [R1,r]ω

with R0 ∩R1 = ∅ if |R0,l| = |R1,r| = ω and let R0 = R0,l,R1 = R1,r otherwise.

Now we want to prove that (i)− (vi) of Lemma 2.1.5 are satisfied:

• (i), (ii) of Lemma 2.1.5 are satisfied by Claim 2.1.8 (C), Claim 2.1.9 (C) and the

fact that if A is in T (., .) then any subset of cardinality ω is in the same class,

• (iii) of Lemma 2.1.5 is true by Claim 2.1.8 (B), (D) and Claim 2.1.9 (B), (D)

and Claim 2.1.7,

• (iv) of Lemma 2.1.5 is true by Claim 2.1.8 (D) and Claim 2.1.9 (D),

• (v) of Lemma 2.1.5 is true by Claim 2.1.8 (E) and Claim 2.1.9 (E),

• (vi) of Lemma 2.1.5 is true by Claim 2.1.8 (F ) and Claim 2.1.9 (F ).

We are done with the proof of Lemma 2.1.5.

Lemma 2.1.10. Let Q,Qn ∈ [I]≤ω for n ∈ ω. We can find K ⊆ Q satisfying the following

properties:

(1) ∪K = Q and (Q \ K)ω = (Q)ω;

(2) (Qn \ K)ω = (Qn)ω for all n ∈ ω.

Proof. Let D = {(ak, bk) : k ∈ |D|} be the set of components of ∪Q. For j ∈ 3, k ∈ |D| let Tjk

be the set provided by Lemma 2.1.5 for {Q ∈ Q : Q ⊆ (ak, bk)}. For k ∈ |D|, j ∈ 2 we know

that Tjk ∈ T (., .), so using Claim 2.1.3 we can find Ljk ⊆ Tjk with:

(1) (Q \ Ljk)ω = (Q)ω and (Qn \ Ljk)ω = (Qn)ω for n ∈ ω;
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(2) ∪k∈|D|,j∈2 Ljk
⋃∪k∈|D|T2

k = ∪Q.

Note that since for k 6= l ∈ |D|, j ∈ 2 (∪Ljk) ∩ (∪Ljl ) = ∅ and (T2
k)10 = ∅ for k ∈ |D|

∪k∈|D|,j∈2Ljk
⋃
∪k∈|D|T2

k = K

fulfills the requirements of the statement.

Corollary 2.1.11. For R ∈ [I]≤ω there exist Ri ⊆ R pairwise disjoint for i ∈ ω with:

(i) ∪R = ∪R0;

(ii) (R)ω = (Ri)ω for i > 0.

Proof. By induction on j choose Rj ⊆ R \ ∪i<jRi satisfying ∪Rj = ∪(R \ ∪i<jRi) and

((R)ω =)(R \ ∪i<jRi)ω = (R \ ∪i≤jRi)ω using Lemma 2.1.10.

2.1.2 Proof of Theorem 1.3.2

Proof of Theorem 1.3.2. Let A = {Rn : n ∈ ω} and let {R′n : n ∈ ω} be an enumeration of

A satisfying |{n : R′n = A}| = ω for all A ∈ A. In the jth step we define sets Kj by applying

Lemma 2.1.10 for

(R′j \
⋃
i<j

Ki) = Q and (R′n \
⋃
i<j

Ki) = Qn (n ∈ ω).

Let

c(K) =

 l if K ∈ Kj and R′j is the lth appearance of some Rn,

0 otherwise.

This coloring proves the theorem.

We are done with the proof of Theorem 1.3.2.
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2.1.3 Proof of Theorem 1.3.4

Claim 2.1.12. If R ∈ [I]ω and (R)ω = ∅ then we can find R+ ∈ [R]ω that is either disjoint

(R ∩Q = ∅ for all different R,Q ∈ R+) or nested (R ⊆ Q or Q ⊆ R for all R,Q ∈ R+).

Proof. Let {Rt : t ∈ ω} be an enumeration of R. Let JR0 = {t ∈ ω : ∂R0∩Rt 6= ∅}. |JR0 | < ω

since (R)ω = ∅. Let t1 = min {ω \ (JR0 ∪ {0})}. Define JRt1
similarly and continue this

process in ω steps.

Let R− = {Rts : s ∈ ω}. R− ∈ [I]ω and by our choice for all A,B ∈ R− the following

is true: A ⊆ B or B ⊆ A or A ∩ B = ∅. Then by ω → (ω)22 we are done with the proof of

Claim 2.1.12.

Definition 2.1.13. For R ∈ [I]ω let

(R)
′

=

 {R ∈ R : R ∩ (R)ω 6= ∅} if (R)ω 6= ∅,

R otherwise.

We mention the following two claims without proof:

Claim 2.1.14. |(R)
′ | = ω and ((R)

′
)ω = (R)ω for all R ∈ [I]ω.

Claim 2.1.15. Rp,q,ε \ K = Rp,q,ε \ Kp,q,ε for all R ∈ [I]≤ω, K ∈ [I]≤ω, p, q ∈ D, ε ∈ 4 with

D ∈ [R ∪ {−∞,+∞}]ω satisfying D ∩ ∪{∂R : R ∈ R ∪ K} = ∅.

Notation.

For R ∈ [I]ω and D ∈ [R ∪ {−∞,+∞}]ω with D ∩ ∪{∂R : R ∈ R} = ∅ we will use the

following notation:

A(R, D) := {(Rp,q,ε)
′

: p, q ∈ D, ε ∈ 4, |Rp,q,ε| = ω}.

Lemma 2.1.16. Let R ∈ [I]ω, D ∈ [R ∪ {−∞,+∞}]ω with D ∩ ∪{∂R : R ∈ R} = ∅. Let

L ∈ A(R, D) and {Ri : i ∈ ω} ⊆ A(R, D). Then we can choose K ⊆ L with (L)ω ⊆ ∪K, and

|K| = ω if (L)ω = ∅, such that the following statements hold for all i ∈ ω:
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(i) |Ri \ K| = ω;

(ii) (Ri \ K)ω = (Ri)ω.

Proof of Lemma 2.1.16.

∪L is an open subset of R so is the union of countably many open intervals. Let us denote

by C the set of components of ∪L and let γ = |C|. Fix {Ck : k ∈ γ}, a 1-1 enumeration of

the components. Then for m ∈ 3, k ∈ γ let us denote by Lmk the subset of {R ∈ L : R ⊆ Ck}

indexed by m in Lemma 2.1.5.

(An ’index dictionary’ for the proof: m ∈ 3 will always refer to subsets that come from

Lemma 2.1.5. i ∈ ω refers to the enumeration {Ri : i ∈ ω} and k denotes the index of a

component of ∪L.)

Case 1: (L)ω 6= ∅

Claim 2.1.17. For m ∈ 2, i ∈ ω, k ∈ γ there are

Qm
k,i ⊆ Lmk ∩Ri and Tmk ⊆ Lmk

satisfying:

(1) if (m, i, k) 6= (m
′
, i
′
, k
′
) then Qm

k,i ∩Qm
′

k′ ,i′
= ∅;

(2) Tmk ∩Qm
k,i = ∅;

(3) (Qm
k,i)ω = (Tmk ∩Ri)ω;

(4) (Tmk )ω = (Lmk )ω.

Proof of Claim 2.1.17.

Lmk ∈ T (., .) or empty for all m ∈ 2, k ∈ γ, and Lmk ∩ Lm
′

k′ = ∅ for all (m, k) 6= (m′, k′)

(m,m′ ∈ 2, k, k′ ∈ γ), so by the fact that we can choose disjoint infinite subsets of countable

many infinite subsets of ω and by Claim 2.1.3 we are done with the proof of Claim 2.1.17.
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Now put

K =
⋃

m∈2,k∈γ
Tmk ∪

⋃
k∈γ

L2
k.

and prove that K fulfills the requirements of Lemma 2.1.16:

• the proof of (L)ω ⊆ ∪K:

We know that ∪K = ∪L, since ∪(∪m∈2Tmk ∪ L2
k) = ∪(∪m∈3Lmk ) for all k ∈ γ by (v) of

Lemma 2.1.5. As (L)ω ⊆ ∪L, we are done with the proof of (L)ω ⊆ ∪K.

• the proof of (ii) of Lemma 2.1.16:

(Ri \ K)ω ⊆ (Ri)ω is obvious.

We prove the other direction by contradiction.

Assume that x ∈ (Ri)ω \ (Ri \K)ω. Clearly then x ∈ (Ri ∩K)ω. By the structure of K we

know that there exists k ∈ γ and m ∈ 2 with x ∈ (Ri ∩ Tmk )ω. We also know that

◦1 (Ri ∩ Tmk )ω ⊆ (Ri ∩ Lmk )ω by the definition of Tmk ,

◦2 (Ri ∩ Lmk )ω = (Qm
k,i)ω by Claim 2.1.17 (3),

◦3 (Qm
k,i)ω ⊆ (Ri \ K)ω by the definition of Qm

k,i and Claim 2.1.17 (2).

So x ∈ (Ri \ K)ω which is a contradiction.

We are done with the proof of (ii) of Lemma 2.1.16.

• the proof of (i) of Lemma 2.1.16:

We prove by contradiction. Suppose |Ri \ K| < ω for some i ∈ ω.

Case A: (Ri)ω 6= ∅.

If |Ri \ K| < ω then there are m ∈ 2 and k ∈ γ with (Ri ∩ Tmk )ω 6= ∅. Using ◦1 and ◦2
above we know that (Ri ∩Tmk )ω ⊆ (Ri ∩Lmk )ω = (Qm

k,i)ω 6= ∅ so |Qm
k,i| = ω. But K∩Qm,k

i = ∅

by the definition of K implying |Ri \ K| = ω.
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Case B: (Ri)ω = ∅.

Apply Claim 2.1.12 to Ri to obtain R+
i that is nested or disjoint.

Subcase B1:

R+
i ∈ [Ri]

ω is nested.

In this subcase |R+
i \ ∪k∈γL2

k| = ω, since (∪k∈γL2
k)10 = ∅ and R+

i is nested. So if

|R+
i \ K| < ω then |R+

i ∩ ∪m∈2,k∈γTmk | = ω. As R+
i is nested we know that there is k ∈ γ

with ∪R+
i ⊆ Ck and the sets ∪⋃m∈2 T

m
k are pairwise disjoint for k ∈ γ, so there are m ∈ 2

and k ∈ γ with |R+
i ∩ Tmk | = ω. But this is impossible since (R+

i ∩ Tmk )ω ⊆ (Ri)ω = ∅ (as

we are in Case B), and we also know that R+
i ∩ Tmk ∈ [Lmk ]ω implying (R+

i ∩ Tmk )ω 6= ∅ by

Claim 2.1.3. Contradiction, hence |Ri \ K| = ω in Subcase B1.

Subcase B2:

R+
i ∈ [Ri]

ω is disjoint.

There is X ∈ [Ri
+]ω such that the order type of the left endpoints of the intervals in X

is either ω or ω∗. By symmetry we can assume that this order type is ω. As it is enough to

prove that |X \ K| = ω, arguing indirectly, we can assume that X ⊆ K.

Let {(an, bn) : n ∈ ω} be the enumeration of X such that n < v ∈ ω implies bn ≤ av.

Since (an, bn) ∈ L = (RpL,qL,εL)
′

(with some pL, qL ∈ D and εL ∈ 4), where (L)ω 6= ∅, there is

xn ∈ (an, bn) ∩ (L)ω for all n ∈ ω. So we can find {(ynu , znu) : n ∈ ω, u ∈ ω} ∈ [L]ω such that

xn ∈ (ynu , z
n
u) for all n, u ∈ ω. Since (Ri)ω = ∅ we may assume that {(ynu , znu) : n ∈ ω, u ∈

ω} ∩Ri = ∅.

Let A := supn∈ωan = supn∈ωbn.

Claim 2.1.18. For n ∈ ω \ {0} and u ∈ ω we have (ynu , z
n
u) 6⊆ (b0, A) or equivalently: ynu < b0

or A < znu .

Proof of Claim 2.1.18.

By contradiction. Suppose (ynu , z
n
u) ⊆ (b0, A) for some n ∈ ω\{0}, u ∈ ω and Ri = (Rp,q,ε)

′

for some p, q ∈ D and ε ∈ 4. Recall that yun, z
u
n 6∈ D for all u, n ∈ ω.
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(1) If ε = 0 then A ≤ p,A ≤ q. So if (ynu , z
n
u) ⊆ (b0, A) then (ynu , z

n
u) ∈ Ri, which is

impossible.

(2) If ε = 1 then p < a0, A ≤ q. So if (ynu , z
n
u) ⊆ (b0, A) then (ynu , z

n
u) ∈ Ri, which is

impossible.

(3) If ε = 2 then A ≤ p, q < b0. So if (ynu , z
n
u) ⊆ (b0, A) then (ynu , z

n
u) ∈ Ri (n ∈ ω \ {0}),

which is impossible.

(4) If ε = 3 then p < a0, q < b0. So if (ynu , z
n
u) ⊆ (b0, A) then (ynu , z

n
u) ∈ Ri, which is

impossible.

We are done with Claim 2.1.18.

Note that by definition xn ∈ (an, bn)∩(ynu , z
n
u) for all n, u ∈ ω. Let C = {(ynu , znu) : A < znu}

and D = {(ynu , znu) : ynu < b0}. Note that C∪D ⊇ {(ynu , znu) : n ∈ ω\{0}, u ∈ ω} by Claim 2.1.18

and A ∈ ∩C, b0 ∈ ∩D. So there are k1, k2 ∈ γ with ∪((X \ {(a0, b0)}) ∪ C ∪D) ⊆ Ck1 ∪ Ck2 .

Suppose |{I ∈ X \ {(a0, b0)} : I ⊆ Ck1}| = ω. Since Ck1 is an open interval, the order

type of the left endpoints of the intervals in X is ω and X is disjoint, there is N ∈ ω such

that (an, bn) ⊆ Ck1 for all n > N . By the fact that ∩L0
k1
6= ∅ and ∩L1

k1
6= ∅ and X

is disjoint, we have |(L0
k1
∪ L1

k1
) ∩ X| ≤ 2, and X \ (L0

k1
∪ L1

k1
) ⊆ L2

k1
as X ⊆ K. Consider

S = {(xN+8
u , yN+8

u ) : u ∈ ω}. Each interval in S contains the point xN+8 and either xN+8
u < b0

or A < yN+8
u . By this each of the intervals in S contains (a1, b1), (a2, b2), ..., (a7, b7) or

(aN+9, bN+9), ..., so at least 5 intervals contained in L2
k1

, which is impossible by Lemma 2.1.5

(vi) since the elements of S are in L.

Case 2: (L)ω = ∅.

In this case we use without proof the following claim:

Claim 2.1.19. We can find K ∈ [L]ω and {Ui : i ∈ ω} such that for all i ∈ ω the following

statements are true:

(1) Ui ⊆ Ri ∩ L;
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(2) Ui ∩ Uj = ∅ for i 6= j ∈ ω;

(3) K ∩ Ui = ∅;

(4) If |Ri ∩ L| = ω then |Ui| = ω.

For the K obtained in Claim 2.1.19, (i) of Lemma 2.1.16 is the only not trivially satisfied

requirement:

if (Ri)ω = ∅ then if |Ri ∩ L| = ω, Ui ∈ [Ri]
ω and |Ui ∩ K| = ∅.

We are done with the proof of Lemma 2.1.16.

We prove a claim, that we will use in the proof of Lemma 2.1.21.

Claim 2.1.20. Let Q ∈ [I]ω and D ∈ [R ∪ {−∞,+∞}]ω with D ∩ ∪{∂R : R ∈ Q} = ∅.

Suppose p, q ∈ D and ε ∈ 4 satisfy (Qp,q,ε)
′ ∈ A(Q, D). Let K ⊆ Q be such that |(Qp,q,ε)

′\K| =

ω and ((Qp,q,ε)
′ \ K)ω = ((Qp,q,ε)

′
)ω. Then ((Q \ K)p,q,ε)

′ ∈ A(Q \ K, D).

Proof. We have to prove that |(Q \ K)p,q,ε| = ω. We will use the fact that Qp,q,ε \ Kp,q,ε =

(Q \ K)p,q,ε without mentioning.

If ((Qp,q,ε)
′
)ω 6= ∅, then using the assumption of the claim we have

∅ 6= ((Qp,q,ε)
′
)ω = ((Qp,q,ε)

′ \ K)ω ⊆ (Qp,q,ε \ Kp,q,ε)ω = ((Q \ K)p,q,ε)ω

So in this case we are done.

If ((Qp,q,ε)
′
)ω = ∅, then (Qp,q,ε)

′
= Qp,q,ε. So by the assumptions we know that

ω = |(Qp,q,ε)
′ \ K| = |Qp,q,ε \ K| ≤ |Qp,q,ε \ Kp,q,ε| = |(Q \ K)p,q,ε|.

So we are done with the proof of Claim 2.1.20.
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Lemma 2.1.21. Let R ∈ [I]ω and D ∈ [R ∪ {−∞,+∞}]ω with D ∩ ∪{∂R : R ∈ R} = ∅.

Let {Ri : i ∈ ω} be an ω-abundant enumeration of A(R, D). Then there exists {Ki : i ∈ ω}

pairwise disjoint such that for all i, s ∈ ω the following statements hold:

(i) Ki ⊆ Ri;

(ii) if (Ri)ω = ∅ then |Ki| = ω;

(iii) (Ri)ω ⊆ ∪Ki;

(iv) |Rs \ ∪l≤iKl| = ω and (Rs \ ∪l≤iKl)ω = (Rs)ω.

Proof. For all i ∈ ω let p(i), q(i) ∈ D and ε(i) ∈ 4 be such that Ri = (Rp(i),q(i),ε(i))
′
.

We choose Kj by induction on j ∈ ω:

Assume we have defined {Kl : l < j} so that (i) − (iv) of Lemma 2.1.21 are satisfied for

all s ∈ ω and i < j. Let us use the following notation:

• R(j) = R \ ∪l<jKl.

By the fact that (iv) of Lemma 2.1.21 is satisfied with i = j − 1, s ∈ ω and Claim 2.1.20

we have {((R(j))p(i),q(i),ε(i))
′

: i ∈ ω} ⊆ A(R(j), D).

Now we apply Lemma 2.1.16 with R(j), L = ((R(j))p(j),q(j),ε(j))
′

and {((R(j))p(i),q(i),ε(i))
′

:

i ∈ ω}. Let Kj be the K provided by Lemma 2.1.16 with these settings.

We prove that (i)− (iv) of Lemma 2.1.21 hold for j and s ∈ ω:

(i) and (ii) are trivially satisfied. We know that (Rj)ω = ((R(j))p(j),q(j),ε(j))ω holds by

(iv) for j − 1, ((R(j))p(j),q(j),ε(j))ω = (((R(j))p(j),q(j),ε(j))
′
)ω holds by Claim 2.1.14 and that

(((R(j))p(j),q(j),ε(j))
′
)ω ⊆ ∪Kj holds by Lemma 2.1.16. By these we have that (iii) is satisfied

for j.

Finally by Lemma 2.1.16 we have ω = |((R(j))p(s),q(s),ε(s))
′ \Kj | ≤ |(R(j))p(s),q(s),ε(s) \Kj | =

|Rs \ ∪l≤jKl| and (((R(j))p(s),q(s),ε(s))
′ \ K)ω = (((R(j))p(s),q(s),ε(s))

′
)ω = ((R(j))p(s),q(s),ε(s))ω =

(Rs \ ∪l<jKl)ω = (Rs)ω. The last equality holds by (iv) for s and i = j − 1. So we have (iv)

for j.

So as {Kj : j ∈ ω} are pairwise disjoint by the construction, we are done with the proof

of Lemma 2.1.21.
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Proof of Theorem 1.3.4. We use the Lemma 2.1.21 to construct such colorings. Let {Ri :

i ∈ ω} be an ω-abundant enumeration of {(Rp,q,ε)
′

: p, q ∈ D, ε ∈ 4, |(Rp,q,ε)
′ | = ω} and

{Kj : j ∈ ω} be the sets provided in Lemma 2.1.21.

Let:

c(K) =


l if K ∈ Kj , (Rj)ω 6= ∅ and

Rj is the lth appearance of (Rp,q,ε)
′

in {Ri : i ∈ ω} for p, q ∈ D, ε ∈ 4,

0 otherwise.

Now Theorem 1.3.4 (i) holds by Lemma 2.1.21 (iii), and

Theorem 1.3.4 (ii) holds by Lemma 2.1.21 (ii).

We are done with the proof of Theorem 1.3.4.

As we would like to apply a theorem similar to Theorem 1.3.4 for bijective images of

R ∪ {−∞,+∞} we state it as a corollary:

Corollary 2.1.22.

Let ϕ : R∪{−∞,+∞} → X be a bijection, E ∈ [X]ω and Q ⊆ P(X) such that ϕ−1(Q) ∈

[I]≤ω and ϕ−1(E) ∩ ∪{∂R : R ∈ ϕ−1(Q)} = ∅ and let Qp,q,ε = ϕ−1(U)ϕ−1(p),ϕ−1(q),ε for all

p, q ∈ E and ε ∈ 4.

There is c : Q→ ω such that the following statements hold for all p, q ∈ E and ε ∈ 4:

(i) if |Qp,q,ε| = ω then |(c)−1({0}) ∩Qp,q,ε| = ω;

(ii)
⋂
j∈ω((c)−1({j}) ∩Qp,q,ε)ω = (Qp,q,ε)ω.
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2.2 Proof of Lemma 1.3.6

Proof of Lemma 1.3.6. Let J ⊆ ω be such that there is

x ∈
⋂
n∈J

(an, bn) ∩
⋂

n∈ω\J

(R \ (an, bn)).

Let J1 = {n ∈ ω \ J : bn ≤ x} and J2 = {n ∈ ω \ J, x ≤ an}. So ω = J ∪∗ J1 ∪∗ J2 and we

know that:

(1) supn∈Jan(≤ x) ≤ infn∈Jbn,

(2) supn∈J1bn(≤ x) ≤ infn∈J2an,

(3) supn∈J1bn(≤ x) ≤ infn∈Jbn,

(4) supn∈Jan(≤ x) ≤ infn∈J2an.

using the conditions the same (certainly without x) follows for A′ns and B′ns:

(1)
′
supn∈JAn ≤ infn∈JBn is true since otherwise there would be n( 6=)m ∈ J such that

Bn < Am. But then by (ii) and (iii) bn < am would be true contradicting (1).

(2)
′
, (3)

′
, (4)

′
are true similarly.

Let m = max{supn∈J1Bn, supn∈JAn} and M = min{infn∈JBn, infn∈J2An}

By (1)
′ − (4)

′
we know that m ≤M and let y ∈ [m,M ] arbitrary.

Let I = {n ∈ ω : An = y or Bn = y}. By (i) |I| ≤ 2. Let J
′

= J \ I.

Then

y ∈
⋂
n∈J ′

(An, Bn) ∩
⋂

n∈ω\J

(R \ (An, Bn)).

Let ϕ : R ∪ {−∞,+∞} → X arbitrary bijection. Let us define <ϕ on X in the following

way. For x, y ∈ X let

x <ϕ y iff ϕ−1(x) < ϕ−1(y).

The following lemma is an immediate consequence of Lemma 1.3.6.
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Corollary 2.2.1. Let ϕ1 : R ∪ {−∞,+∞} → X, ϕ2 : R ∪ {−∞,+∞} → Y be arbitrary

bijections. Suppose that {an, bn : n ∈ ω} ⊆ X, {An, Bn : n ∈ ω} ⊆ Y are satisfying:

(i) an 6= am, an <ϕ1 bn 6= bm, An 6= Am, An <ϕ2 Bn 6= Bm for all n,m ∈ ω different;

(ii) (an <ϕ1 am <ϕ1 bm <ϕ1 bn or An <ϕ2 Am <ϕ2 Bm <ϕ2 Bn) is false for all

n,m ∈ ω;

(iii) an <ϕ1 am ≤ϕ1 bn <ϕ1 bm iff An <ϕ2 Am ≤ϕ2 Bn <ϕ2 Bm for all n,m ∈ ω;

(iv) an <ϕ1 am iff An < Am for all n,m ∈ ω.

Suppose that ⋂
n∈J

(an, bn)<ϕ1
∩

⋂
n∈ω\J

(X \ (an, bn))<ϕ1
6= ∅

for some J ⊆ ω.

Then there exists J ⊇ J ′ with |J \ J ′ | < 3 with

⋂
n∈J ′

(An, Bn)<ϕ2
∩

⋂
n∈ω\J

(Y \ (An, Bn)<ϕ2
) 6= ∅.
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3 The proof of the two dimensional results

In this chapter we prove Theorem 1.3.7. We fix for the rest of this chapter

S ∈ [TE ]ω

with o ∈ int(∩S) containing an open square T around the origin of side length ε. We denote

the elements of S by S.

3.1 Notation

Let us introduce some more notation.

• We will work with subsets of R2, and use boldface letters to denote points of R2, e.g.

x,y ∈ R2. For λ ∈ R and (x1, x2) = x ∈ R2 let us denote (λx1, λx2) ∈ R2 by λx. The closed

(open, half closed) segment between x and y (x,y ∈ R2) will be denoted by [x,y]

((x,y), [x,y), (x,y] respectively).

• The vertices of E will be denoted by

(0, 1) = v1(E), (1, 1) = v2(E), (1, 0) = v3(E), (0, 0) = v4(E).

(the labeling of the vertices is clockwise oriented and it is mod 4 (meaning that e.g. 4+1=1 )).

For S ∈ TE let us denote by vi(S) the translate of vi(E).

31



C
E

U
eT

D
C

ol
le

ct
io

n
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v1(S) v2(S)

v4(S) v3(S)

T
o

S

R2
1

R2
2

R2
3

R2
4

Figure 3.1: o, S, T , vi(S) and R2
i

• We use the following notation for the quadrants of R2:

R2
1 = {(x, y) ∈ R2 : x ≤ 0, 0 ≤ y},R2

2 = {(x, y) ∈ R2 : 0 ≤ x, 0 ≤ y},

R2
3 = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 0},R2

4 = {(x, y) ∈ R2 : x ≤ 0, y ≤ 0}.

3.2 Limit squares

In this introductory technical part we introduce a new notion: the limit square. The definition

and the main properties of the limit squares will help us to understand the geometry of (S)ω.

Definition 3.2.1.

• Let {Qi : i ∈ ω} ⊆ TE . Then let

R = limi→∞Qi iff v4(R) = limi→∞v4(Qi) for R ∈ TE .

• For Q ⊆ TE let (Q)lim = {R ∈ TE : R = limi→∞Qi for some {Qi : i ∈ ω} ∈ [Q]ω},

the set of limit squares of Q.
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Remark.

1) Note that R = limi→∞Qi iff (Qi)i∈ω converges to R in the Hausdorff metric.

2) In the sequel we will denote by R the elements of (S)lim.

Let us start with some basic properties of the limit squares:

Claim 3.2.2. The following statements hold:

(1) (Q)lim 6= ∅ for Q ∈ [S]ω;

(2) (Qlim)lim = Qlim for Q ∈ [S]ω;

(3) ∩S ⊆ ∩{R : R ∈ (S)lim};

(4) int(∩S) ⊆ ∩{R : R ∈ (S)lim}.

Proof.

(1) follows by the fact that {v4(S) : S ∈ Q} lies in a bounded part of the plane since each

S contains the origin.

(2) follows by the obvious analogue lemma for points (for the vertices).

(3) is true by an easy convergence argument.

(4) follows by (3).

The most important properties of limit squares of S are summarized in the following

theorem:

Theorem 3.2.3.

(1) ∪{R : R ∈ (S)lim} = int (S)ω;

(2) ∪{R : R ∈ (S)lim} = (S)ω.

Proof. First we prove a lemma.

Lemma 3.2.4. For R ∈ (S)lim we have R ⊆ (S)ω.

Proof. Let z ∈ R ∈ (S)lim. By the definition of a limit square, there is {Qi : i ∈ ω} ∈ [S]ω

with R = limi→∞Qi. As R is an open set (translate of the open unit square) there is N(z)

satisfying z ∈ Qn for all N(z) < n, hence z ∈ (S)ω.
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Using the fact that R is open, we have the following corollary of Lemma 3.2.4, that proves

⊆ in (1) and (2):

Corollary 3.2.5. For R ∈ (S)lim we have R ⊆ int(S)ω and R ⊆ (S)ω.

We prove ⊇ in (2):

Choose x ∈ (S)ω. By the definition of (S)ω there are {xi : i ∈ ω} ⊆ (S)ω and

{Qi,j : i, j ∈ ω} ∈ [S]ω satisfying limj→∞xi = x and xi ∈ Qi,j for all i, j ∈ ω. Since Qi,j

contains the origin for all i, j ∈ ω, we can find s ∈ ωω satisfying limi→∞Qi,s(i) = R with

R ∈ (S)lim. We are done with ⊇ in (2).

Now we prove a lemma.

Lemma 3.2.6. If x ∈ (S)ω then (x,o] ⊆ int(S)ω.

Proof. By the above observation we know that there is R ∈ (S)lim with x ∈ R. By Claim 3.2.2

(3) we have (x,o] ⊆ R, so by Corollary 3.2.5 we are done.

Finally the proof of ⊇ in (1):

For x ∈ int(S)ω there is λ > 1 with λx ∈ (S)ω. By Lemma 3.2.6 and the fact that

x ∈ (λx,o], we are done with ⊇ in (1).

We are done with the proof of Theorem 3.2.3.

Lemma 3.2.7.

(1) int(S)ω = int(S)ω;

(2) ∂(S)ω = ∂(S)ω.

Proof. (2) is an easy consequence of (1). So let us prove (1).

⊇ is trivial, so pick any x ∈ int(S)ω. Then there is λ > 1 with λx ∈ (S)ω. By Lemma 3.2.6

and the fact that x ∈ (λx,o] we are done with Lemma 3.2.7.

Notation. In the sequel we will denote ∂(S)ω(= ∂(S)ω) by ∂.
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3.3 Structure theorems

3.3.1 The structure of (S)ω

Definition 3.3.1.

1) We call A ⊆ R2 horizontally/vertically convex, if for all [x,y] horizontal/vertical(resp.)

segment with x,y ∈ A, [x,y] ⊆ A holds.

2) We call A ⊆ R2 star-like around x, if x ∈ A and [x,y] ⊆ A holds for each y ∈ A.

Theorem 3.3.2. The following statements hold:

(1) If l is a horizontal (vertical) line which intersects (S)ω, then l ∩ (S)ω is a horizontal

(vertical, resp.) segment with length at least 1;

(2) (S)ω is star-like around o.

Proof. The proof of (1):

We only prove that if l is a horizontal line which intersects (S)ω, then l ∩ (S)ω is a

horizontal segment with length at least 1. The proof of the other case is similar.

Suppose l∩(S)ω 6= ∅ and let x,y ∈ l∩(S)ω. We can choose Rx, Ry ∈ (S)lim with x ∈ Rx

and y ∈ Ry by Theorem 3.2.3 (2). We know that o ∈ Rx∩Ry by Claim 3.2.2 (3) and we also

know that the union of two intersecting translates of the closed unit square is horizontally

convex. By this we have [x,y] ⊆ Rx ∪ Ry. As Rx ∪ Ry ⊆ (S)ω, we have that l ∩ (S)ω is a

horizontal segment. As l ∩Rx ⊆ l ∩ (S)ω, we have that the length of l ∩ (S)ω is at least 1.

The proof of (2):

Let x ∈ (S)ω. By Theorem 3.2.3 (2) we can find Rx ∈ (S)lim with x ∈ Rx. As o ∈ Rx

by Claim 3.2.2 (4) and Rx is a translate of the open unit square, we have [x,o] ⊆ Rx. As

Rx ⊆ (S)ω, we are done with (2).

We are done with the proof of Theorem 3.3.2.
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3.3.2 The structure of ∂

S1 = {(x, y) ∈ R2 : x2 + y2 = 1} ⊆ R2 is the unit circle. First let us define g : S1 → R in the

following way:

g(x) := sup{λ : λx ∈ (S)ω}.

Then let f : S1 → R2 be defined by

f(x) := g(x)x.

Theorem 3.3.3. f is a homeomorphism between S1 and ∂.

Proof. First we prove that {f(x) : x ∈ S1} = ∂(S)ω.

Note that for x ∈ S1 we have f(x) ∈ ∂ by the definition of f , so {f(x) : x ∈ S1} ⊆ ∂.

To prove that {f(x) : x ∈ S1} ⊇ ∂ first note that for y ∈ ∂ we have [o,y) ⊆ int(S)ω by

Lemma 3.2.6. By this fact there are no 0 < λ1 6= λ2 with λ1x, λ1x ∈ ∂, hence

{f(x) : x ∈ S1} ⊇ ∂. We are done with {f(x) : x ∈ S1} = ∂.

As a continuous bijection from compact to Hausdorff space is a homeomorphism, and

S1 ⊆ R2 is compact, ∂ ⊆ R2 is Hausdorff, it is enough to prove that f is continuous.

Claim 3.3.4. f is continuous.

Proof. If limn→∞xn = x for x,xn ∈ S1, then we have limn→∞f(xn) ∈ ∂ since f(xn) ∈ ∂ and

∂ is closed. Hence we have limn→∞f(xn) = f(x) by the fact that there are no 0 < λ1 6= λ2

with λ1x, λ1x ∈ ∂(S)ω.

We are done with Theorem 3.3.3.
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Notation

• We know that ∂ is homeomorphic to S1, so we can talk about the clockwise orientation

of ∂. For x,y ∈ ∂ let us denote by

∂(x,y), ∂[x,y], ∂[x,y), ∂(x,y]

the open, closed, half-closed clockwise arc of ∂ between x and y. Note that ∂(x,y), ∂[x,y], ∂[x,y)

and ∂(x,y] are homeomorphic image of (0, 1), [0, 1], [0, 1) and (0, 1] respectively.

3.3.3 The structure of S ∩ ∂ for S ∈ S

We divide S into finitely many parts:

Definition 3.3.5.

(1) For a ∈ P({1, 2, 3, 4}) let Sa = {S ∈ S : i ∈ a⇔ vi(S) 6∈ (S)ω}.

(2) Let E1 = [4]1;

E2,n = {{1, 2}, {2, 3}, {3, 4}, {4, 1}} (n refers to neighbouring vertices);

E2,o = {{1, 3}, {2, 4}} (o refers to opposite vertices);

E3 = [4]3.

Remark. As S ∈ S is open, S ⊆ int(S)ω for all S ∈ S∅ and so S ∩ ∂ = ∅.

Claim 3.3.6. S{1,2,3,4} = ∅.

Proof. Consider any R ∈ (S)lim and S ∈ S{1,2,3,4}. Since both S and R contains T , a vertex

of S must be contained in R, hence S{1,2,3,4} = ∅.



C
E

U
eT

D
C

ol
le

ct
io

n

38 CHAPTER 3. THE PROOF OF THE TWO DIMENSIONAL RESULTS

∂ ∂

S1

S2

T T

S3

S4

Figure 3.2: S1 ∈ S{1}, S2 ∈ S{1,2}, S3 ∈ S{1,3}, S4 ∈ S{2,3,4}

Theorem 3.3.7. The following statements hold:

(1) For a ∈ E1 ∪ E2,n ∪ E3 and S ∈ Sa

∂ ∩ S := I(S)

is an arc of ∂;

(2) For a ∈ E2,o and S ∈ Sa

∂ ∩ S := I(S) ∪ J(S)

is the disjoint union of two arcs of ∂.

Proof. We prove only (1) for a = {1}, the proof of other cases of a ∈ E1 ∪ E2,n ∪ E3 and the

proof of (2) are similar.

Let S ∈ S{1}, so v1(S) 6∈ (S)ω and v2(S),v3(S),v4(S) ∈ (S)ω. By horizontal and vertical

convexity of (S)ω (see Theorem 3.3.2 (1)) we know that [v2(S),v3(S)]∪[v3(S),v4(S)] ⊆ (S)ω.

We also know that the intersection of a horizontal or a vertical line with (S)ω is (closed)

segment. Let x be that endpoint of l∩(S)ω, which is closer to v1(S), where [v1(S),v4(S)] ⊆ l.



C
E

U
eT

D
C

ol
le

ct
io

n

3.3. STRUCTURE THEOREMS 39

∂

S

T

v1(S) v2(S)

v4(S)

x

y

I(S) = ∂(x,y)

Figure 3.3: The definition of I(S) for S ∈ S{1}

And let y be that endpoint of l ∩ (S)ω, which is closer to v1(S), where [v1(S),v2(S)] ⊆ l.

Now we prove that I(S) = ∂(x,y):

We know that f : S1 → R2 defined by f(x) := g(x)x (where g : S1 → R is defined by

g(x) := sup{λ : λx ∈ (S)ω}) is a homeomorphism between S1 and ∂.

Using that g(x) > 0 for x ∈ S1 and that (x,v1(S)] ∪ [v1(S),y) is in the complement of

(S)ω, we have ∂(x,y) ⊆ S. To prove the other direction, suppose there is f(z) ∈ S ∩ ∂(x,y)

with some z ∈ S1. But then using that f(z) = g(z)z, there is λ > g(z) with λz ∈ (y,v2(S)]∪

[v2(S),v3(S)]∪[v3(S),v4(S)]∪[v4(S),x) and also know that λz is in the complement of (S)ω,

since λ > g(z). Which is a contradiction, since (y,v2(S)] ∪ [v2(S),v3(S)] ∪ [v3(S),v4(S)] ∪

[v4(S),x) ⊆ (S)ω.

By this we know that S ∩ ∂ = ∂(f(y), f(x)).

We are done with Theorem 3.3.7.
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Now we state when does I(S) determine S.

Lemma 3.3.8.

(1) If a ∈ E1 ∪ E2,o ∪ E3 and S1, S2 ∈ Sa are different, then I(S1) 6= I(S2).

Proof. First we prove the following claim:

Claim 3.3.9. If vi(S) ∈ (S)ω and vi+1(S) 6∈ (S)ω (or vi+1(S) ∈ (S)ω and vi(S) 6∈ (S)ω)

for some S ∈ S and i ∈ {1, 2, 3, 4}, then (vi(S),vi+1(S)) ∩ (S)ω 6= ∅.

Proof. Suppose that vi(S) ∈ (S)ω, vi+1(S) 6∈ (S)ω for some S ∈ S and i ∈ {1, 2, 3, 4}.

Choose Rvi(S) ∈ (S)lim with vi(S) ∈ Rvi(S) by (2) of Theorem 3.2.3. As vi(S) ∈ int(R2
i ),

vi+1(S) ∈ int(R2
i+1) (since T ⊆ S), Rvi(S) is axis-parallel and contains the origin we have

(vi(S),vi+1(S)) ∩ (S)ω 6= ∅. We are done.

The statement of the lemma follows by the fact that the endpoints of I(S) determines S.

3.3.4 Summary

Let us briefly summarize in the following table, that we have achieved in the Structure theo-

rems section:

a Does S ∩ ∂ determine S

for S ∈ Sa?

For S ∈ Sa S ∩ ∂ is ...

E1 ∪ E3 Yes. an open arc.

E2,n No. an open arc.

E2,o Yes. union of two disjoint

open arcs.
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3.4 Construction of the coloring

3.4.1 Notation, definitions

(1) For a ⊆ {1, 2, 3, 4} let

∂a = ∂ ∩ ∪i∈aR2
i .

(2) We have f : S1 → ∂ homeomorphism, and let

f
′

: S1 → ∂

be defined by f
′
((x1, x2)) = f((x1,−x2)) for x = (x1, x2) ∈ S1.

(2.1.) For a ∈ E1 ∪ E2,n ∪ E3 let

•1 fa : S1 ∩∪i∈aR2
i → ∂a be the restriction of f to S1 ∩∪i∈aR2

i , and let <a be

the pushforward (by fa) of the clockwise ordering on S1 ∩ ∪i∈aR2
i .

•2 Let I(a) = {I(S) : S ∈ Sa}.

(2.2.) •1 Let f
′

{1,3} : S1 ∩R2
2 → ∂{3} be the restriction of f

′
to S1 ∩R2

2;

•2 ≺′{1,3} be the pushforward (by f
′

{1,3}) ordering on ∂{3}; and

•3 <{1,3}:=<{1} ∪ ≺
′

{1,3}.

•4 Let f
′

{2,4} : S1 ∩R2
1 → ∂{4} be the restriction of f

′
to S1 ∩R2

1;

•5 ≺′{2,4} be the pushforward (by f
′

{2,4}) ordering on ∂{4}; and

•6 <{2,4}:=<{2} ∪ ≺
′

{2,4}.
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With the just introduced notations we state a lemma.

Lemma 3.4.1. The following statements hold:

(i)1 the endpoints of I(S) (S ∈ Sa) are in int(∪i∈aR2
i ) for a ∈ E1 ∪ E3 ∪ E2,n,

(i)2 the endpoints of I(S) (S ∈ Sa) are in int(R2
1) for a = {1, 3} and in int(R2

2) for

a = {2, 4};

(ii) if (x1, y1), (x2, y2) ∈ ∂{i} and x1 < x2, then y1 ≤ y2 if i = 1, 3, and y1 ≥ y2 if i = 2, 4.

Proof. We only prove (i)1, the proof of (i)2 is similar:

We know (see the proof of Theorem 3.3.7), that an endpoint of I(S) is the endpoint

of [vi(S),vi+1(S)] ∩ (S)ω, which is closer to vi(S) if vi(S) 6∈ (S)ω and vi+1(S) ∈ (S)ω,

and the endpoint of [vi(S),vi+1(S)] ∩ (S)ω, which is closer to vi+1(S) if vi(S) ∈ (S)ω and

vi+1(S) 6∈ (S)ω. W.l.o.g. we can assume that vi(S) 6∈ (S)ω and vi+1(S) ∈ (S)ω. Choose

R ∈ (S)lim with vi(S) ∈ R. As T ⊆ R, R is axis parallel and R ∩ [vi(S),vi+1(S)] ⊆ (S)ω,

we have that the endpoint is in int(R2
i+1). We are done with (i)1.

Proof of (ii):

We prove the statement for i = 1, the proofs of the other cases are similar. Choose

R ∈ (S)lim with (x1, y1) ∈ R. As T ⊆ R and R is axis parallel and we have that (x2, y) ∈ R

for all y < y1. As R ⊆ int((S)ω) by Corollary 3.2.5, we are done with (ii).

Remark. Note that as an easy consequence of Lemma 3.4.1 (i)1 we have that the elements of

I(a) are arcs of ∂a for a ∈ E1∪E3∪E2,n. As (∂a, <a) is isomorphic to (R∪{−∞}∪{+∞}, <)

for a ∈ E1 ∪ E3 ∪ E2,n, by Definition 1.3.3 we have the definition of I(a)p,q,ε for p,q ∈ ∂a and

ε ∈ 4, where neither p nor q is an endpoint of an element of I(a).

(We will define I(a) as a subset of {I(S) : S ∈ Sa} for a ∈ E2,o, so similarly by Lemma 3.4.1

(i)2 and Definition 1.3.3 we have the definition of I(a)p,q,ε for p,q ∈ ∂a and ε ∈ 4, where

neither p nor q is an endpoint of any element of I(a).)
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3.4.2 The statement

The aim of the following 3 sections is to prove the following theorem:

Theorem 3.4.2. For a ⊆ {1, 2, 3, 4} there is da : Sa → ω with:

(i) (Sa)ω ⊆ ((da)−1({0}))ω;

(ii) ∂ ∩ (Sa)ω ⊆ ∩j∈ω((da)−1({j}))ω.

Proof. Before going into the details we sketch the proof:

1) we choose D ∈ [∂]ω with appropriate properties;

2) (with the help of Corollary 2.1.22) we construct da for a ∈ E2,n;

3) we choose Ma ⊆ Sa and define I(a) = {I(S) : S ∈ Sa} for a ∈ E2,o;

4) for a ∈ E1 ∪ E3 ∪ E2,o we apply Corollary 2.1.22 with ∂a, I(a) and D ∩ ∂a getting

ea : I(a) → ω, that satisfies (i) and (ii) of Corollary 2.1.22, and define da(S) = ea(I(S)) for

S ∈ Sa. And finally we prove that this coloring satisfies (i) and (ii) of Theorem 3.4.2.

Now we start the proof.

Let us introduce some notation. Let

• XM = max{x : there is y with (x, y) ∈ (S)ω};

• Xm = min{x : there is y with (x, y) ∈ (S)ω};

• YM = max{y : there is x with (x, y) ∈ (S)ω};

• Ym = min{y : there is x with (x, y) ∈ (S)ω}.

• Let us denote by ∂I the set of all endpoints of I(S) and J(S) for all S ∈ S.

• Fix D ∈ [∂]ω for the rest of the proof such that:

(◦1) (XM , 0), (Xm, 0), (0, YM ), (0, Ym) ∈ D and D ∩ ∂I = ∅;

and for i = 1, 2, 3, 4 :

(◦2) projx(D ∩ ∂{i}) \ projx(∂I ∩ ∂{i}) ⊆ projx(∂{i}) dense;

(◦3) projy(D ∩ ∂{i}) \ projy(∂I ∩ ∂{i}) ⊆ projy(∂{i}) dense.

We can choose such D by Lemma 3.4.1 (i) and by |S| = ω.
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3.4.3 The construction of da for a ∈ E2,n (Step 2) of the strategy)

We construct d{1,2}, the construction of da for a ∈ E2,n are similar by rotation.

So by the definition of S{1,2} we have v1(S),v2(S) 6∈ (S)ω and v3(S),v4(S) ∈ (S)ω for

S ∈ S{1,2}.

We know that (0, YM ) ∈ (S)ω and let [x,y] ⊆ (S)ω be the horizontal segment through

(0, YM ). We also know that (v1(S), u(S)) = v1(S) ∈ R2
1, (v2(S), u(S)) = v2(S) ∈ R2

2 and

the length of [x,y] is at least 1(by Theorem 3.3.2 (1)), so u(S) > YM for all S ∈ S{1,2}. This

easily implies the following:

Fact 3.4.3. If R ∈ (S{1,2})lim, then [v1(R),v2(R)] ⊆ [x,y].

Lemma 3.4.4. For all z ∈ (S{1,2})ω there is z∗ ∈ [x,y] satisfying that z ∈ S iff z∗ ∈ S for

all but finitely many S ∈ S{1,2}.

Proof. If z = (z1, z2), then let z∗ := (z1, YM ).

Using the fact that each S ∈ S{1,2} is axis-parallel, we know that if z ∈ S then z∗ ∈ S for

all S ∈ S{1,2}. As z ∈ (S{1,2})ω, we have |z2−YM | < 1. Then we are done by the fact above.

Fix S{1,2}+ ⊆ S{1,2} with I(S1) 6= I(S2) for S1, (6=)S2 ∈ S{1,2}+ and

{I(S) : S ∈ S{1,2}+} = {I(S) : S ∈ S{1,2}}.

Apply Corollary 2.1.22 with X = ∂{1,2}, E = D ∩ ∂{1,2},Q = I({1, 2}) and so we have

c{1,2} : I({1, 2})→ ω satisfying (I({1, 2}))ω ⊆ ∩j∈ω((c{1,2})−1({j}))ω ((ii) of Corollary 2.1.22

with p = (Xm, 0),q = (XM , 0), ε = 1), and let d{1,2}(S) := c{1,2}(I(S)) for S ∈ S{1,2}+.
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T

z

z∗

Q1

Q2

Q3

Figure 3.4: The definition of z∗ and Q1, Q2, Q3 ∈ S(I)

Lemma 3.4.5. For z ∈ (S)ω we have:

z ∈ ∩j∈ω((d{1,2})−1({j}))ω or z 6∈ (S{1,2}+)ω.

Proof. For z ∈ (S{1,2}+)ω we can choose z∗ ∈ ∂ satisfying Lemma 3.4.4. Then we are done

by the assumption on c{1,2}.

Let I ∈ I({1, 2}) be such that S(I) = {S ∈ (S \ S{1,2}+) : S ∩ ∂ = I} is infinite. For

each such I we color the squares in S(I) the following way:

For R ∈ (S(I))ω a side of R is a subset of [x,y] by the fact above. Choose an enumeration

{Qn : n ∈ ω} = S(I) with the property that the y coordinate of v4(Qn) is not increasing.

Then we can easily find

d{1,2} : {Qn : n ∈ ω} → ω

satisfying ∩j∈ω((d{1,2})−1({j}))ω = ({Qn : n ∈ ω})ω. Let d{1,2} be 0 for the still uncolored

squares in S{1,2}.
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Lemma 3.4.6. (S{1,2})ω = ∩j∈ω((d{1,2})−1({j}))ω.

Proof. For z ∈ (S{1,2})ω choose z∗ by Lemma 3.4.4. Then either there is I ∈ I({1, 2})

with z∗ ∈ (S(I))ω or z∗ ∈ (I({1, 2}))ω. In both cases we are easily done by the above

observations.

By Lemma 3.4.6 we have that d{1,2} fulfills (i) and (ii) of Theorem 3.4.2.

3.4.4 Choosing a subset of Sa for a ∈ E2,o (Step 3) of the strategy)

In this section we choose

Ma ⊆ Sa

for a ∈ E2,o which is:

•1 regular enough to be able to apply Corollary 2.2.1 (see Lemma 3.4.7 •1);

•2 big enough that the intersections of the squares with the boundary cover ω-fold exactly

the points which are covered ω-fold by squares in Sa (see Lemma 3.4.7 •2).

Now we start the construction of Ma:

Lemma 3.4.7.

Suppose |Sa| = ω for a ∈ E2,o. Then there is {Sn : n ∈ ω} = Ma ∈ [Sa]ω with

I(Sn) = ∂(An,Bn), J(Sn) = ∂(bn,an) such that

•1 {An,Bn} ⊆ (∂{1}, <{1,3}) and {an,bn} ⊆ (∂{3}, <{1,3}) fulfill conditions (i) − (iv) of

Corollary 2.2.1;

•2 (Ma)ω ∩ ∂ = (Sa)ω ∩ ∂.
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Proof. By symmetry it is enough to prove our statement for a = {1, 3}.

Claim 3.4.8. There are ⊆-maximal elements in every subset of {I(S) : S ∈ S{1,3}}.

Proof of the claim.

Observe first that since a = {1, 3}, if I(S1) ⊆ I(S2) for S1, S2 ∈ S{1,3} then v1(S1) ∈ S2.

Then we argue by contradiction. If there would be I(S1) ( I(S2) ( ..., then v1(S1) ∈ Sn
for all n ∈ ω, therefore v1(S1) ∈ (S)ω. Since S1 ∈ S{1,3} it is a contradiction, hence we are

done.

Now let

M{1,3} = {S ∈ S{1,3} : I(S) is ⊆ -maximal in {I(S) : S ∈ S{1,3}}}.

Claim 3.4.9. (M{1,3})ω ∩ ∂ = (S{1,3})ω ∩ ∂.

Proof of the claim.

Assume on the contrary that there is x ∈ ((S{1,3})ω ∩ ∂) \ ((M{1,3})ω ∩ ∂),

i.e. |{S ∈ S{1,3} : x ∈ S}| = ω and |{S ∈ M{1,3} : x ∈ S}| < ω. By Claim 3.4.8 there is

S ∈ M{1,3} with |{Q ∈ S{1,3} : I(Q) ⊆ I(S)}| = ω. But I(Q) ⊆ I(S) implies v3(S) ∈ Q

meaning v3(S) ∈ (S)ω, which is a contradiction by S ∈ S{1,3}.

So we verified •2 of Lemma 3.4.7.

To continue our proof, let S1, S2 ∈ M{1,3} be different. Note that the boundary of S1

and S2 intersect in 2 points. Let us denote them by q1 and q2. Let (x1, y1) = v1(S1) and

(x2, y2) = v1(S2). We know that y1 = y2 can not stand by the definition of M{1,3} so by

symmetry we can assume y1 > y2. From this x1 > x2 holds again by the definition of M{1,3},
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T

v1(S1)

q1

∂

v1(S2)

v4(S1)

v2(S2)

v3(S1)

v3(S2)

q2

Figure 3.5: The definition of q1 and q2

so

q1 = [v1(S1),v4(S1)] ∩ [v1(S2),v2(S2)] and q2 = [v3(S1),v4(S1)] ∩ [v3(S2),v2(S2)].

Claim 3.4.10. The following statements are true:

(a) q1 ∈ (S)ω iff q2 ∈ (S)ω,

(b) q1,q2 6∈ ∂.

Proof.

(a): If q1 ∈ (S)ω then by Theorem 3.2.3 (2) there is R ∈ Slim with q1 ∈ R. Since

v1(S1),v1(S2) 6∈ R (as they are 6∈ (S)ω), q2 ∈ R so by Corollary 3.2.5 q2 ∈ (S)ω. And vice

versa.

(b): By contradiction. If e.g. q1 ∈ ∂ then there is R ∈ Slim with q1 ∈ ∂R. But then

either v3(S1) ∈ R or v3(S2) ∈ R. Contradiction.

We are done with Claim 3.4.10.
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Claim 3.4.11. For S1, S2 ∈M{1,3} the following statements are equivalent:

(1) I(S1) ∩ I(S2) = ∅,

(2) J(S1) ∩ J(S2) = ∅.

Proof of the claim.

(1)⇔ q1 ∈ (S)ω ⇔ q2 ∈ (S)ω ⇔ (2).

• (i) and (ii) of Corollary 2.2.1 is true by the definition of M{1,3}.

• (iii) of Corollary 2.2.1 is true by Claim 3.4.11.

• (iv) of Corollary 2.2.1 is true by Lemma 3.4.1 (2) using that y1 > y2 and x1 > x2 for

(x1, y1) = v1(S1) and (x2, y2) = v1(S2).

We finished the proof of Lemma 3.4.7.

After this lemma we give the definition of I(a) for a ∈ E2,o:

Definition 3.4.12.

For a ∈ E2,o let

I(a) = {I(S) : S ∈Ma}.

3.4.5 Step 4) of the strategy

We will use the following trivial facts:

Fact 3.4.13. Suppose 1 ≤ i ≤ 4, (x, y) = x ∈ R2
i and (v, w) = vi(S) with some S ∈ S. Then

the following statements are equivalent:

(i) x ∈ S;

(ii) |x| < |v| and |y| < |w|.
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Fact 3.4.14.

(1) Let (x, y) = x ∈ R2
1 and (v, w) = v1(S) for some S ∈ S. Then the following

statements are equivalent:

(i) |x| < |v| and |y| < |w|;

(ii) v < x and y < w.

(2) Let (x, y) = x ∈ R2
2, (z, w) = v1(S) and (v, w) = v2(S) for some S ∈ S. Then the

following statements are equivalent:

(i) |x| < |v| and |y| < |w|;

(ii) x < z + 1 and y < w.

(3) Let (x, y) = x ∈ R2
3, (z, u) = v1(S) and (v, w) = v3(S) for some S ∈ S. Then the

following statements are equivalent:

(i) |x| < |v| and |y| < |w|;

(ii) x < z + 1 and u− 1 < y.

(4) Let (x, y) = x ∈ R2
4, (v, u) = v1(S) and (v, w) = v4(S) for some S ∈ S. Then the

following statements are equivalent:

(i) |x| < |v| and |y| < |w|;

(ii) v < x and u− 1 < y.

For 0 ≤ r let us define the horizontal line y = r by h(r) and for r ≤ 0 let us define the

vertical line x = r by u(y).

h(r) ∩ (S)ω is a horizontal segment if it is not empty and let us define its endpoints

by h1(r) = (h1, r) ∈ ∂{1} and h2(r) = (h2, r) ∈ ∂{2}. If h(r) ∩ (S)ω is empty then let

h1(r) = h2(r) = (0, YM ).

Similarly u(r)∩ (S)ω is a vertical segment if it is not empty and let us define its endpoints

by u1(r) = (r, u1) ∈ ∂{1} and u2(r) = (r, u2) ∈ ∂{4}. If u(r) ∩ (S)ω is empty then let

u1(r) = u2(r) = (Xm, 0).

With these notation using Lemma 3.4.1 (2) we have the following fact:



C
E

U
eT

D
C

ol
le

ct
io

n

3.4. CONSTRUCTION OF THE COLORING 51

∂T

h(r)

u(r)

h1(r) h2(r)

u1(r)

u2(r)

Figure 3.6: The definition of h1(r),h2(r) (0 ≤ r ≤ YM ) and u1(r),u2(r) (Xm ≤ r ≤ 0)

Fact 3.4.15.

(1) r1 < r2 with 0 ≤ r1 ≤ YM ⇔ h1(r1) <{1} h1(r2)⇔ h2(r2) <{2} h2(r1);

(2) r1 < r2 with Xm ≤ r2 ≤ 0⇔ u1(r1) <{1} u1(r2)⇔ u2(r2) <{4} u2(r1).

Lemma 3.4.16. Let D ∈ [∂]ω satisfying (◦1)− (◦3) and a ∈ E1 ∪ E2,o ∪ E3. Let

X (a) := {x ∈ int(S)ω : ∃p,q ∈ D and ε ∈ 4 such that x ∈ S ⇔ I(S) ∈ (∂a)p,q,ε}.

Then X (a) is dense in int(S)ω.

Proof. By rotation it is enough to prove the lemma for a = {1}, {1, 3} and {2, 3, 4}.

Choose V ⊆ int(S)ω open, nonempty.

• a = {1}:

1) Suppose we have a point, (x, y) = x ∈ R2
1 ∩ int(S)ω. By Fact 3.4.13 and Fact 3.4.14

we know that the following is true for all S ∈ S{1} and (v, w) = v1(S):

x ∈ S ⇔ v < x and y < w.
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Xm ≤ v ≤ 0 so by Fact 3.4.15 (2) we have v < x⇔ u1(v) <{1} u1(x). 0 ≤ w ≤ YM so by

Fact 3.4.15 (1) we have h1(y) <{1} h1(w). Note that u1(v) and h1(w) are the endpoints of

I(S).

If R2
1 ∩ V 6= ∅, then by the assumptions on D we can find (x, y) = x ∈ R2

1 ∩ V such that

u1(x),h1(y) ∈ D. So

p = u1(x),q = h1(y) and ε = 2.

proves the statement in this case.

The proof of the other cases are similar to 1) using Fact 3.4.13, Fact 3.4.14 and Fact 3.4.15,

so we just define p,q and ε in these cases:

2) If R2
2 ∩ V 6= ∅ then we can find (x, y) = x ∈ R2

2 ∩ V such that u1(x− 1),h1(y) ∈ D, so

p = u1(x− 1),q = h1(y) and ε = 3

proves the statement in this case.

3) If R2
3∩V 6= ∅ then we can find (x, y) = x ∈ R2

3∩V such that u1(x− 1),h1(y+ 1) ∈ D,

so

p = u1(x− 1),q = h1(y + 1) and ε = 1

proves the statement in this case.

4) If R2
4 ∩ V 6= ∅ then we can find (x, y) = x ∈ R2

4 ∩ V such that u1(x),h1(y+ 1) ∈ D, so

p = u1(x),q = h1(y + 1) and ε = 0

proves the statement in this case.

The definition of the points and the proof of the statement for a = {1, 3} is exactly the

same.
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Using that (∂{2}, <{2}) and (∂{4}, <{4}) are the restrictions of (∂{2,3,4}, <{2,3,4}) to ∂{2}

and ∂{4} respectively we can define the points for a = {2, 3, 4} similarly to the a = {1} case.

The proofs are also similar.

• a = {2, 3, 4}:

1) If R2
1 ∩ V 6= ∅ then we can find (x, y) = x ∈ R2

1 ∩ V such that u2(x),h2(y) ∈ D, so

p = u2(x),q = h2(y) and ε = 1

proves the statement in this case.

2) If R2
2 ∩ V 6= ∅ then we can find (x, y) = x ∈ R2

2 ∩ V such that u2(x− 1),h2(y) ∈ D, so

p = u2(x− 1),q = h2(y) and ε = 0

proves the statement in this case.

3) If R2
3∩V 6= ∅ then we can find (x, y) = x ∈ R2

3∩V such that u2(x− 1),h2(y+ 1) ∈ D,

so

p = u2(x− 1),q = h2(y + 1) and ε = 2

proves the statement in this case.

4) If R2
4 ∩ V 6= ∅ then we can find (x, y) = x ∈ R2

4 ∩ V such that u2(x),h2(y+ 1) ∈ D, so

p = u2(x),q = h2(y + 1) and ε = 3

proves the statement in this case.

We are done with the proof of Lemma 3.4.16.

Now finish Step 4) and the proof of Theorem 3.4.2.

For a ∈ E1 ∪ E3 apply Corollary 2.1.22 with X = ∂a, Q = I(a) and E = D ∩ ∂a.

For a = {1, 3} apply Corollary 2.1.22 with X = ∂{1}, Q = I({1, 3}) and E = D ∩ ∂{1}.
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For a = {2, 4} apply Corollary 2.1.22 with X = ∂{4}, Q = I({2, 4}) and E = D ∩ ∂{2}.

So for a ∈ E1 ∪ E3 ∪ E2,o we have ea : I(a) → ω satisfying (i) and (ii) of Corollary 2.1.22

and let

da(S) = ea(I(S))

for S ∈ ∪a∈E1∪E3Sa
⋃∪a∈E2,oMa, and let d(S) = 0 for S ∈ ∪a∈E2,o(Sa \Ma).

Now we want to prove that da satisfies (i) and (ii) of Theorem 3.4.2:

• Proof of (ii) of Theorem 3.4.2:

◦ for a ∈ E1 ∪ E3 choose p and q as the endpoints of ∂a and ε = 1, and apply (ii) of

Corollary 2.1.22 for ea. This proves the statement.

◦ For a = {1, 3} we know that ∂ ∩ (M{1,3})ω = ∂ ∩ (S{1,3})ω by •2 of Lemma 3.4.7 and

choosing p and q as the endpoints of ∂{1} and ε = 1 and applying (ii) of Corollary 2.1.22 for

e{1,3} proves the statement on ∂{1}.

◦ On ∂{3} the statement is true by •1 and •2 of Lemma 3.4.7 and Corollary 2.1.22, since

for x ∈ ({J(S) : S ∈M{1,3}})ω we can find y(x) ∈ ∂{1}∩{I(S) : S ∈M{1,3}})ω such that with

finitely many exceptions the same squares in M{1,3} contains x and y(x) by Corollary 2.2.1.

Then we are done by (ii) of Corollary 2.1.22 as above.

• Proof of (i) of Theorem 3.4.2:

if x ∈ (Sa)ω ∩ ∂, then we are done as above. If x ∈ (Sa)ω ∩ int(S)ω then we can find

Rx ∈ (Sa)lim with x ∈ Rx by (1) of Theorem 3.2.3. If x ∈ R2
i , then by Fact 3.4.13 and

Lemma 3.4.16 we can find y ∈ Rx and p,q ∈ D ∩ ∂a and ε ∈ 4 such that for all S ∈ Sa we

have

I(S) ∈ (∂a)p,q,ε ⇔ y ∈ S ⇒ x ∈ S.

As y ∈ Rx we have |(I(a))p,q,ε| = ω, then by (i) and (ii) of Corollary 2.1.22 we are done.

We are done with Theorem 3.4.2.
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Theorem 3.4.17. There exists c : S→ ω such that (S)ω = ∩j∈ω(c−1({j}))ω.

Proof. There exists d : S→ ω satisfying (i) and (ii) of Theorem 3.4.2.

So

∂ ∩ (S)ω = ∩j>1(d
−1({j}))ω and int(S)ω = int(d−1({0}) ∪ d−1({1}))ω

by (ii) of Theorem 3.4.2.

Let

S1 = {int(S)ω ∩R : R ∈ S \ ∪j>1d
−1({j})}.

By the fact that an open subset of the plane is a σ-compact space and by Lemma 1.2.2 there

exists d1 : S1 → ω with int(S)ω = ∩j∈ω(d−11 ({j}))ω.

Let

c(R) =

 d1(R ∩ int(S)ω) if R ∈ (d−1({0}) ∪ d−1({1}));

d(R)− 2 if R ∈ ∪j>1d
−1({j}).

which fulfills the requirements of the theorem.

Theorem 3.4.18. Suppose T ∈ [TC ]≤ω. Then T is ω-decomposable over (T)ω.

Proof. Consider a grid with distance 1/3 and put an open square with length of side 1/3 onto

each point of the grid. Let {Qi : i ∈ ω} be the set of these squares of side length 1/3. Let

T
′
i = {S ∈ S : Qi ⊆ S}, and consider Ti ⊆ T

′
i which are disjoint, and ∪i∈ωTi = ∪i∈ωT′i. By

elementary geometry the following statements are true:

(1) for S ∈ T there is i ∈ ω such that S ∈ Ti;

(2) for x ∈ (T)ω there is i ∈ ω with x ∈ (Ti)ω.

By Theorem 3.4.17 there is ci : Ti → ω with (Ti)ω = ∩j∈ω(c−1i ({j}))ω for all i ∈ ω.

By (1) and (2) c = ∪i∈ωci proves the statement of the theorem.
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3.5 Closed square case

3.6 Back to the open case

Theorem 3.6.1. Suppose C ∈ [TE ]≤ω. Then C is ω-decomposable over (C)ω.

Proof. We will denote the elements of C by U . For U ∈ C let us denote the set of vertices

of U by v(U) and let U−v = U \ v(U). For D ∈ [TE ]≤ω let D−v = {U−v : U ∈ D} and

int(D) = {int(U) : U ∈ D}.

Note that (D−v)ω = (D)ω for D ∈ [TE ]≤ω, since the multiplicity of each translate is 1.

• Let

X = (C−v)ω \ (int(C))ω.

For x ∈ X pick l(x), an axis-parallel line with x ∈ l(x), let L = {l(x) : x ∈ X} and write

L = {lu : u ∈ |L|} (we know that |L| ≤ ω as |C| = ω).

• First we choose disjoint subsets {Ci : i ∈ ω} of C in the following way: for i ∈ ω let

Ci = {S ∈ C \ ∪k<iCk : a side of S is a subset of li}.

• Then let

tri = {S−v ∩ li : S ∈ Ci}.

By applying Corollary 2.1.11 on each components of ∪tri, we know that there exists a

partition

∪∗s∈ωtri,s = tri

with:

(1) ∪tri,0 = ∪tri;

(2) (tri,u)ω = (tri)ω for u ≥ 1.
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For i, s ∈ ω let

Ci,s = {V ∈ Ci : V −v ∩ li ∈ tri,s}.

Note that (1) and (2) above and elementary geometry imply that

(a) ∪Ci,0 = ∪Ci;

(b) (Ci,u)ω = (Ci)ω for u ≥ 1.

Also note that ∪i∈ω(Ci)ω ⊇ X.

• Now we provide c : C→ ω proving Theorem 3.6.1.

By Theorem 3.4.18 we know that there exists

d : int(C \ ∪i∈ω,s≥1Ci,s)→ ω

with

(int(C \ ∪i∈ω,s≥1Ci,s))ω = ∩j∈ω(d−1({j}))ω.

Let us define c : C→ ω the following way:

c(U) =

 s− 1 if U ∈ Ci,s for some i ∈ ω, s ≥ 1;

d(int(U)) if U ∈ C \ ∪i∈ω,s≥1Ci,s.

We prove that this coloring satisfies the requirement of Theorem 3.6.1.

Claim 3.6.2. The following statement holds:

(C)ω = ∪i∈ω(Ci)ω ∪ (int(C \ ∪i∈ω,s≥1Ci,s))ω.

Proof of the claim. ⊆ is trivial, so we want to prove ⊇.
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Let x ∈ (C)ω. By the definition of Ci either there is i ∈ ω with x ∈ (Ci)ω or x ∈

(C \ ∪i∈ω,s≥1Ci,s)ω.

Suppose x ∈ (C \ ∪i∈ω,s≥1Ci,s)ω \ ∪i∈ω(Ci)ω. We prove that x ∈ (int(C \ ∪i∈ω,s≥1Ci,s))ω
holds. Suppose by contradiction that x ∈ ((C\∪i∈ω,s≥1Ci,s)ω\∪i∈ω(Ci)ω)\(int(C\∪i∈ω,s≥1Ci,s))ω =

((C \ ∪i∈ω,s≥1Ci,s)ω \ (int(C \ ∪i∈ω,s≥1Ci,s))ω) \ ∪i∈ω(Ci)ω. Using this we have that x ∈ X,

which is a contradiction, since ∪i∈ω(Ci)ω covers X. Hence we are done with the statement.

So we proved the claim.

By Claim 3.6.2 and by the definition of c we are done with Theorem 3.6.1.

3.7 The proof of Theorem 1.3.7

Proof.

Proof of (1): by hereditarily Lindelöfness of the plane choose Gj ∈ [F \ ∪i<jGi]≤ω with

∪Gj = ∪F \ ∪i<jGi for j ∈ ω. Note that (∪Gj)ω = (F)ω. So by applying Theorem 3.4.18 for

∪Gj we are done.

Proof of (2): Note that (H−v)ω = (H)ω for any H ⊆ TE . The following fact is well-known:

Fact 3.7.1. Let C be a set of closed polygons without vertices. Then there is C′ ∈ [C]≤ω with

∪C = ∪C′.

Apply this fact to choose Gj ∈ [F \ ∪i<jGi]≤ω with ∪G−vj = ∪(F \ ∪i<jGi)−v for j ∈ ω.

Note that (∪Gj)ω = ((∪Gj)−v)ω = (F−v)ω = (F)ω. So by applying Theorem 3.6.1 for ∪Gj we

are done.

We are done with Theorem 1.3.7.
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4 Constructions

In this section we describe constructions, showing the sharpness of Theorem 1.3.7.

Each construction works similarly:

• first we describe an elementary statement, then

• using the elementary statement we construct A ⊆ R2 in ω steps and a covering of A,

which can not be decomposed.

4.1 Axis-parallel rectangles with side length between

1− ε and 1

Proof of Theorem 1.3.8. We prove (1), the proof of (2) is similar.

Let l be the x = −y line and −→v be the vector from the origin to (1, 1), and for A ⊆ R2,

λ ∈ R let A+ λ−→v be the translation of A with λ−→v .

We will use the following elementary geometric statement repeatedly:

Lemma 4.1.1. For all ε > 0 there are ε1 and ε2 with the following property:

For all I ⊆ l interval with |I| < ε1 and for all I1 ⊆ I, I2 ⊆ I + (1− ε2)−→v closed (open)

intervals there is R ∈ Rε (R ∈ Qε) with

R ∩ (l ∪ (l + (1− ε2)−→v )) = I1 ∪ I2.

59
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(1− ε2)
−→v

l

l + (1− ε2)
−→v

I

I1

I2

I + (1− ε2)
−→v

R

Figure 4.1: Lemma 4.1.1

Proof. The proof is immediate by Figure 4.1 and left to the reader.

We construct A and R such that A ⊆ (R)ω and R is not 2 decomposable over A:

1.) Fix ε1, ε2 for ε satisfying Lemma 4.1.1.

2.) Let I ⊆ l with |I| < ε1 arbitrary and let I0 = I, J0 = I + (1− ε2)−→v .

3.) Let ω<ω0 = {〈s0, s1, ..., sj〉 ∈ ω<ω : s0 = 0}.

4.) For j ≥ 1 and s = 〈s0, s1, ..., sj〉 ∈ ω<ω0 let s− = 〈s0, s1, ..., sj−1〉 and |s| = j.

In the jth step (j ≥ 1) for all s ∈ ω<ω0 with |s| = j choose (see Figure 4.2) :

•1 Is ⊆ (I0 \ ∪1≤|s′|≤j,s′ 6=sIs′) closed intervals with with
∑

1≤|s|≤j |Is| <
|I0|
2 , and

•2 Js ⊆ Js− closed intervals with J〈s−,i〉 ∩ J〈s−,j〉 = ∅ for all i 6= j ∈ ω.

In the jth step (j ≥ 2) for all s ∈ ω<ω0 with |s| = j choose:
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R〈s,0〉

R〈s,1〉

Rs

Is

Is−

J〈s,0〉

J〈s,1〉

Figure 4.2: The jth step

•3 choose Rs ∈ Rε with Rs ∩ (l ∪ (l + (1− ε2)−→v )) = Is− ∪ Js by Lemma 4.1.1.

And finally let

•4 A = ∩j≥2 ∪|s|=j Js
⋃∪|s|≥1Is and R = {Rs : s ∈ ω<ω0 , |s| ≥ 2}.

First we prove that A and R satisfies (1.1):

Claim 4.1.2. A ⊆ (R)ω.

Proof.

• Is ⊆ Rt if t = 〈s, i〉 for i ∈ ω.

• for x ∈ ∩j≥2 ∪|s|=j Js one can choose 〈t0(x), t1(x), ...〉 ∈ ωω with x ∈ J〈t0(x),t1(x),...,tj(x)〉
for all j ≥ 1 meaning x ∈ R〈t0(x),t1(x),...,tj(x)〉 by •3.
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Now we want to prove that A and R satisfies (1.2):

Claim 4.1.3. For all partition R1 ∪∗ R2 = R either ∪R1 6⊇ A or ∪R2 6⊇ A.

Proof. By •1 and •3.1 for s, t ∈ ω<ω0 with |s|, |t| ≥ 1 the following is true:

a) Is ⊆ Rt if t = 〈s, i〉 for i ∈ ω and Is ∩Rt = ∅ if t 6= 〈s, i〉 for i ∈ ω.

So by the fact that (∩j≥2 ∪|s|=j Js) ∩ (∪|s|≥1Is) = ∅ for all s ∈ ω<ω0 , |s| ≥ 1 and for any

c : R → 2 with ∪c−1({k}) ⊇ ∪|s|≥1Is (k ∈ 2) one can find n(s) ∈ ω with Is ⊆ R〈s,n(s)〉 and

c(R〈s,n(s)〉) = 0. Let {ti ∈ ωi : i ≥ 1 with ti+1 = 〈ti, n(ti)〉}.

By •2 for x ∈ ∩i≥1Jti if x ∈ Js for some s ∈ ωv then s = tv, meaning, that A 3 x 6∈

∪c−1({1}).

We are done with Theorem 1.3.8.

Note that in the construction of A in the proof of Theorem 1.3.8 we can choose

Is (|s| ≥ 1) and Js (|s| ≥ 1) with:

◦1 ∩j≥2 ∪|s|=j Js ⊆ (l + (1− ε2)−→v ) is a closed set minus countably many points.

◦2 ∪|s|≥1Is ⊆ l is also a closed set minus one point.

Choosing ε2 small enough we can choose R1 ∈ [Rε]ω with ∪R1 ⊆ R2 \ A ⊆ (R1)ω,

resulting in a bit strengthening of Theorem 4.1.5:

Theorem 4.1.4. For all ε > 0 there is R ∈ [Rε]ω with:

(i) (R)ω ⊇ R2;

(ii) R is not 2-decomposable.
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Remark. Note that Theorem 4.1.4 is a strengthening of the following:

Theorem 4.1.5. ([2], Theorem 7.2)

There exists R, a countable family of axis-parallel closed rectangles with:

(i) (R)ω ⊇ R2;

(ii) R is not 2-decomposable.

4.2 Closed unit squares with small rotation

The proof of Theorem 1.3.9 is similar to Theorem 1.3.8, we only need to use points in-

stead of the intervals Is (s ∈ ω<ω0 ) and to use the following elementary statement instead of

Lemma 4.1.1:

Let l be the x = −y line, −→v be the vector from the origin to (1, 1).

Lemma 4.2.1. For any ε > 0 we can choose ε1 > 0 such that for any I ⊆ l + (1 − ε1)−→v

and A ⊆ l finite set, we can find {Ii : i ∈ ω} ⊆ I disjoint intervals, {Si : i ∈ ω} ⊆ Sε and

p ∈ (l \A) such that for all i ∈ ω:

•1 v4(Si) = p;

•2 Si ∩ (l + (1− ε1)−→v ) = Ii.

4.3 Axis-parallel closed squares with side length between 1−ε

and 1

Proof of Theorem 1.3.10. Let C be the closed unit square, 1
4 > ε > 0 and let

T (C, ε) = {Ci : i ∈ ω}

a set of axis-parallel closed squares with:
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•1 C0 = C,

•2 the side length of Ci is less than the side length of Ci−1 minus εi+1 (i ≥ 1),

•3 the
−−−−−−−−−−−→
v4(Ci−1)v4(Ci) vector is the

−−−−−−−→
(0, 0)(0, εi) vector.

Using the construction T (C, ε), let us introduce some notation:

◦1 Let p(T (C, ε)) = (0, ε
1−ε). Note that p(T (C, ε)) ∈ Ci for all i ∈ ω, since ε < 1

4 .

◦2 Let A(T (C, ε)) = {Ai : i ∈ ω}, the following set of open rectangles:

◦2.1 let A0 be the open square with (1, 1) and (1− ε2, 1− ε2) as opposite vertices.

Note that A0 ⊆ C0 \ (∪j∈(ω\{0})Cj),

◦2.2 let Ai = int(Ci \ (∪j∈(ω\{i})Cj)) for i ≥ 1.

◦3 For any transformation t of R2 let

◦3.1 T (t(C), ε) = {t(Ci) : i ∈ ω},

◦3.2 p(T (t(C), ε)) = t(p(T (C, ε))),

◦3.3 A(T (t(C), ε)) = {t(Ai) : i ∈ ω}.

Let us denote by B(x, r) the 2 dimensional ball around x with radius r. Let us mention

the following easy fact witout proof:

Fact 4.3.1. For any t, a transformation of R2 with t(C) axis-parallel and ε > 0 there is t1,

a transformation of R2 and ε1 > 0 with:

(i) t1(C) is axis-parallel,

(ii) int(t(C)) ⊇ T (t1(C), ε1),

(iii) B(v4(t(Ci)), ε) ⊇ p(T (t1(C), ε1)),

(iv) B(v2(t(Ci)), ε) ⊇ A(T (t1(C), ε1)).

We start to describe our construction:

• Let ω<ω0 = {〈s0, s1, ..., sj〉 ∈ ω<ω : s0 = 0}, and

• For j ≥ 1 and s = 〈s0, s1, ..., sj〉 ∈ ω<ω0 let s− = 〈s0, s1, ..., sj−1〉, |s| = j and
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C0
s

C1
s

C2
s

A0
s

A1
s

C i
s

p(T (ts(C), εs))

Figure 4.3: The construction of T (ts(C), εs)

let s|i = 〈s0, s1, ..., si−1〉 for i < |s|.

In the jth step (j ≥ 1) for s ∈ ω<ω0 , |s| = j we define

T (ts(C), εs),

where ts is a transformation of R2. To do this for s ∈ ω<ω0 , |s| = j, (j ≥ 1) we define:

1.) xs and ys, for

v4(ts(C)) = (
∑
j≤|s|

xs|j ,
∑
j≤|s|

ys|j),

2.) |ts(C)|, and

3.) εs.

Now we write down what assumptions do we need on 1.)- 3.):
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C i−1
s

C i
s

C i+1
s

p(T (t〈s,i〉(C), ε〈s,i〉))C0
〈s,i〉

Figure 4.4: A step

For s ∈ ω<ω0 and i ∈ ω let Ai,s = ts(Ai) and Ci,s = ts(Ci).

If s = 〈s−, i〉 = 〈s0, s1, ..., sw, 0, 0, ..., 0, i〉 with sw 6= 0 let:

a0) T (ts(C), εs) ⊆ Uε

a1) Ci,s− ⊇ ts(C, εs),

a2) Ai,s− ⊇ A(T (ts(C), εs)),

b) ys + εs
1−εs < εi+1

s− , and

c) x〈s−,0〉 > x〈s−,1〉 > ... with

∑
j≤|s|

x〈s−,0〉|j <
∑

j≤w−1
x〈s0,s1,...,sw−1,0...0〉|j .

Using Fact 4.3.1 we can easily choose xs, ys, |ts(C)| and εs satisfying a1)-c).

Note that
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Claim 4.3.2. p(T (ts(C), εs)) ∈ Cj,r ⇔

1.) r = s|k for some k < |s| and j ≤ sk, or

2.) r = s and i ∈ ω.

Proof. It can be easily seen by induction using b) and c).

Let

A = ∪s∈ω<ω
0

p(T (ts(C), εs))
⋃
∩j≥1 ∪|s|=j,s∈ω<ω

0
A(T (ts(C), εs)), and

U = ∪s∈ω<ω
0
T (ts(C), εs).

Lemma 4.3.3. The following statements are true:

a) A ⊆ (∪s∈ω<ω
0
T (ts(C), εs))ω,

b) A 6⊆ ∩j∈2c−1({j})ω for all c : ∪s∈ω<ω
0
T (ts(C), εs)→ 2.

Proof. a) is immediate by the construction.

b) by Claim 4.3.2 for all s ∈ ω<ω0 there are infinitely many i ∈ ω with c(Ci,s) = 0, so we

can choose t ∈ ωω with c(Ct|i) = 0 for all i ∈ ω. But then ∩i∈ωAt|i 6⊆ c−1({1})ω.

We are done with Theorem 1.3.10.
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5 Open questions

However we think that with much more work we could prove our main result for (open or

closed) convex symmetric polygons instead of the (open or closed) unit square we do not

know the following:

Question 5.0.4. Let P be an open convex polygon and F ⊆ TP (resp.TP ). Is F ω-decomposable

over (F)ω?

Or can we prove something for disks?

Question 5.0.5. Let D be the open unit disk and F ⊆ TD (resp.TD). Is F ω-decomposable

over (F)ω?

Finally it worth to pose as a question the ω-fold and generalized version of Pach’s conjec-

ture:

Question 5.0.6. Let C be a convex planar set and F ⊆ TC . Is F ω-decomposable over (F)ω?
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