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Introduction

This thesis is devoted to the problem of pricing American options. An option is a contract
that gives his holder the right to buy or sell the underlying security at an agreed moment
of time (maturity date) at an agreed amount of money (exercise price). There are two basic
types of options, European and American. The European option can be exercised at an
exact moment of time. As for American option, it can be exercised at any moment of time
up to maturity date. The price of the option is the maximal expected payoff the holder
can get from exercising this option. For European options the closed-form solution exists,
but for American ones the solution does not exist. Since trading the options is an everyday
occurrence, this problem is important and highly investigated by many researches.

More specifically, the problem of pricing the options is the optimal stopping problem.
We have to find that moment of time when we should stop the price process in order to
receive the maximal payoff. That exact moment of time will be the optimal stopping time.
Unfortunately, the future prices of the asset are unknown in advance. Therefore, the price
of the option cannot be calculated straightforwardly. We can use the simulation methods
together with advanced regression techniques to get the approximation of the solution.

When trying to solve this problem, we introduce the continuation value function. It gives
the maximal expected payoff if we do not exercise the option at time t knowing the price
at this time. The form of the optimal stopping time is given by the theorem in Shiryaev
(2007). It is exactly the first moment of time when the payoff from immediate exercising the
option is higher than the payoff from continuation. If the continuation values were known,
we would be able to determine the optimal stopping time, and hence, the price of the option.
Therefore, the problem of pricing is reduced to the problem of estimation of the continuation
values. Continuation function is a true regression function.

Three different regression representations for the continuation function were introduced
in Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (1999). These representations
allow direct or recursive computation of the continuation values by computing conditional
expectations. Longstaff and Schwartz (2001) suggested to use the Least Squares Monte Carlo
algorithm. This method gives the estimations of the asset prices using known parameters.
After, the final estimate of the option price is given using the received estimation of the
prices. Nevertheless, a false price estimate can be received if the parameter estimates are
biased. The representation given by Tsitsiklis and Van Roy (1999) gives us the backward
recursive scheme for the computation of the continuation values.

For option pricing, Carriér (1996) was the first who suggested to apply methods of non-
parametric regression estimation for the continuation function. These methods do not assume
parameter estimation. Therefore, they do not have errors occurring at this step. The first
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article where the theoretical examination of nonparametric methods of regression estimation
was conducted was Egloff (2005). However, the estimates that were defined there, were hard
to compute in practice. The truncation of the estimator was firstly suggested in Egloff et al.
(2007).

The article of Györfi et al. (2012) serves as a starting point for my thesis. In that article
the comparison of performance of the various algorithms (Longstaff-Schwartz, parametric,
nonparametric) was made. Furthermore, the authors made the comparison of the Markov
and memoryless models. The main conclusion of those experiments is that, although the
mean of the prices is almost the same, the variance of the prices is the smallest if we work
under assumptions of the memoryless model. Notwithstanding, the estimator for the con-
tinuation function that was received was not correct. When the authors tested the results
on the real data, they used more data than was available at the exact moment of time, as if
we knew the data some time in advance. We present the simulation results for the changed
estimator in which we use the data only available up to exact moment of time. In addition,
we prove that the continuation values function in the memoryless model is non-increasing.
This proves that the optimal stopping time should be exactly the first moment when the
immediate payoff is higher than the payoff from continuation.

The structure of this thesis is the following. Chapter 1 contains the theory that enables
us to introduce the problem of pricing further in the thesis. Chapter 2 gives the statement of
the option pricing problem and the form of the optimal stopping times. Afterwards, it leads
the reader to the idea of the empirical pricing methods. Chapter 3 gives the general setup
for the regression problem and discusses the methods of local averaging estimates of the true
regression function. Finally, chapter 4 shows two basic models that were investigated and
demonstrates the empirical results that were received in this thesis.
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Chapter 1

Theoretical background

This chapter contains the theoretical part that is necessary to introduce the problem of
pricing the options. Here we are following Shiryaev (2007). As we will see in the next
chapters, in order to find the price of the option, we need to find the optimal stopping time.
Section 1.1 gives us the definition and the main properties of the stopping times.

1.1 Markov times

Let (Ω,F) be a measure space, let T = [0,∞), and let F = {Ft}, t ∈ T be a non-decreasing
sequence of sub-σ-algebras, i.e., Fs ⊆ Ft ⊆ F for s ≤ t.

Definition 1.1.1 The random variable τ = τ(ω) with values in T̄ = [0,∞] is said to be a
Markov time with respect to the system F = {Ft}, t ∈ T if for each t ∈ T

{ω : τ(ω) ≤ t} ∈ Ft.

Markov times can be interpreted as random variables independent of the future.

Definition 1.1.2 The Markov time τ = τ(ω) defined in a probability space (Ω,F , P ) is said
to be a stopping time or a finite Markov time if

P{τ(ω) <∞} = 1.

With each Markov time τ = τ(ω) we may associate σ-algebra Fτ of τ -past. This σ-algebra
consists of the sets A ∈ F such that A ∩ {ω : τ(ω) ≤ t} ∈ Ft for all t ∈ T .

Claim 1.1 Fτ is σ-algebra.

Proof. We will prove this fact by checking the axioms of σ-algebra.

(a) Ω ∈ Fτ , since
{Ω ∩ {ω : τ(ω) ≤ t}} = {ω : τ(ω) ≤ t} ∈ Ft.

The last set is in the σ-algebra Ft because τ is Markov time. Hence, the set Ω is in the
σ-algebra Fτ .
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(b) If Ai ∈ Fτ , then {Ai ∩ {ω : τ(ω) ≤ t}} ∈ Fτ . It follows

⋃
i

(Ai ∩ {ω : τ(ω) ≤ t}) =

(⋃
i

Ai

)
∩ {ω : τ(ω) ≤ t}.

Hence,
⋃
i

Ai ∈ Fτ

(c) If A ∈ Fτ , then Ā ∈ Fτ , because

Ā ∩ {ω : τ(ω) ≤ t} = {ω : τ(ω) ≤ t} \ (A ∩ {ω : τ(ω) ≤ t}) .

The first event {ω : τ(ω) ≤ t} ∈ Ft, because τ is Markov time. The second set
(A ∩ {ω : τ(ω) ≤ t}) ∈ Ft, because the set A ∈ Fτ .

We see that all the axioms are held. That is why Fτ is indeed the σ-algebra.

The σ-algebra Ft can be interpreted as the totality of events related to some physical
process and observed before time t. Therefore one can interpret the σ-algebra Fτ as the
totality of events that can be observed over the random time τ .

Definition 1.1.3 The system of σ-algebras F = {Ft}, t ∈ T , is said to be a right continuous
system if for each t ∈ T

Ft = Ft+,

where Ft+ = ∩s>tFs

Lemma 1.2 Let τ be a Markov time. Then the events {τ < t} and {τ = t} belong to Ft for
each t ∈ T .

Proof.
Event {τ < t} can be written as:

{τ < t} =
∞⋃
k=1

(
τ ≤ t− 1

k

)
,

where each of the events (
τ ≤ t− 1

k

)
∈ Ft−1/k ⊆ Ft.

Thus, {τ < t} ∈ Ft, as a union of events from Ft. The same reasoning applies to {τ = t} =
{τ ≤ t} \ {τ < t} ∈ Ft.

Lemma 1.3 If τ and ρ are Markov times, then

(a) τ ∧ ρ = min(τ, ρ),

(b) τ ∨ ρ = max(τ, ρ),

(c) (τ + ρ)
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are also Markov times.

Proof. If τ and ρ are Markov times, then it follows that {τ ≤ t} ∈ Ft and {ρ ≤ t} ∈ Ft,
then the following properties can be received:

(a)
{τ ∧ ρ ≤ t} = {τ ≤ t} ∪ {ρ ≤ t} ∈ Ft,

(b)
{τ ∨ ρ ≤ t} = {τ ≤ t} ∩ {ρ ≤ t} ∈ Ft,

(c) To prove that (τ + ρ) ∈ Ft, we start from the complement of this event:

{τ + ρ > t} = {τ = 0, τ + ρ > t} ∪ {0 < τ < t, τ + ρ > t} ∪ {τ ≥ t, τ + ρ > t}
= {τ = 0} ∩ {ρ > t}+ {0 < τ < t, τ + ρ > t}+ {τ > t} ∩ {ρ = 0}
+ {τ ≥ t} ∩ {ρ > 0},

where
{τ = 0} ∩ {ρ > t} ∈ Ft,

{τ > t} ∩ {ρ = 0} ∈ Ft,

{τ ≥ t} ∩ {ρ > 0} = {τ ≥ t} ∩ {ρ = 0}c ∈ Ft,

{0 < τ < t, τ + ρ > t} =
⋃

r∈(0,1)∩Q

({r < τ < t} ∩ {ρ > t− r}) ∈ Ft.

Consequently, we have shown that the complement of the set {τ + ρ ≤ t} is in Ft,
therefore the original set is also in Ft.

1.2 Conditional Expectations

Conditional expectations and their properties are used extensively throughout the thesis.
Hence, in this section we collect all the facts that we will need further. The theory of condi-
tional expectations can be found in most advanced probability books, but we are following
the ideas of Shreve (2004) to give basic definitions and properties.

Let (Ω,F , P ) be the probability space, and X is the random variable defined on this
space. Let G be a sub-σ-algebra of F . If random variable X is independent of G, we cannot
say anything about its value. If X is measurable with respect to G, we can determine its
value. In the intermediate case we can only estimate the value of X based on the information
available at G. Such an estimate is the conditional expectation of X given G.

Definition 1.2.1 Let (Ω,F , P ) be a probability space, let G be a sub-σ-algebra of F and let
X be a random variable that is either nonnegative or integrable. The conditional expectation
of X given G, denoted E{X | G}, is any random variable that satisfies
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1. Measurability
E{X | G} is G −measurable,

2. Partial averaging∫
A

E{X | G}(ω)dP(ω) =

∫
A

X(ω)dP(ω) for all A ∈ G

The partial averaging property can be rewritten in the following way:

E{E{X | G} IA} = E{X IA} (1.1)

Note that E{X | G} is random variable. It can be seen from the first property that the value
of this variable can be determined from the information that is contained in the σ-algebra G.
The second property tell us that the conditional expectation E{X | G} is indeed an estimate
of the random variable X, because it gives the same average as X over all subsets of G.

The conditional expectation exists, and it is unique. This fact is nontrivial, and its proof
can be found for example in Klenke (2008).

Theorem 1.4 Let (Ω,F , P ) be the probability space and let G be a sub-σ-algebra of F .

(a) (Linearity of conditional expectations) If X and Y are integrable random variables
and c1 and c2 are constants, then

E{c1X + c2Y | G} = c1E{X | G}+ c2E{Y | G}. (1.2)

This equality holds if we assume that X and Y are nonnegative (rather than integrable)
and c1 and c2 are positive, although both sides may be +∞.

(b) (Taking out what is known) If X and Y are integrable random variables, Y and XY
are integrable, and X is G-measurable, then

E{XY | G} = XE{Y | G}. (1.3)

This equality holds if we assume that X is positive and Y is nonnegative (rather than
integrable), although both sides may be +∞.

(c) (Iterated conditioning) If H is a sub-σ-algebra of G and X is an integrable random
variable, then

E{E{X | G} | H} = E{X | H}. (1.4)

This equality holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +∞.

(d) (Independence) If X is integrable and independent of G, then

E{X | G} = E{X}. (1.5)

This equality holds if we assume that X is nonnegative (rather than integrable), although
both sides may be +∞.

The proof of this theorem is a standard machinery, and it can be found, for example in
Klenke (2008).
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Chapter 2

Pricing of American Put Options

2.1 The problem

We want to find the price of American put option. An option is a contract on an underlying
security which allows its holder to trade in a fixed number of shares of a specified stock at an
agreed amount of money at any time on or before the specified day. The act of making this
transaction is known as exercising the option. The last day when the option can be traded
is called expiration date or maturity date. The fixed price at which the option is traded is
called the strike price. A put option is such an option that gives its holder the right to sell
the asset. American option can be exercised at any time up to maturity date. It is well-
known that in complete and arbitrage-free markets the price of the option can be expressed
as the expected value of the payoff with respect to the equivalent martingale measure, see
for instance Shreve (2004). So that, let us formalize the problem of option pricing.

Let

• X0, X1, . . . , XT be a R -valued Markov process containing the information about the
prices of the underlying asset,

• Ft be the σ-algebra generated by asset prices,

• K be the strike price,

• r be the discount rate,

• T be the maturity date,

• T [0, . . . , T ] be the set of all possible stopping times with values in [0, T ],

• τ ∈ T [0, . . . , T ] be a stopping time.

The payoff function ft of American put option , with discount factor e−rt is

ft(Xt) = e−rt(K −Xt)
+.

The task of pricing the option is to determine the value

V0 = sup
τ∈T [0,...,T ]

E{fτ (Xτ )}.

8
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The computation of this value can be done by choosing the optimal stopping time τ ∗ ∈
T [0, . . . , T ] satisfying

V0 = sup
τ∈T [0,...,T ]

E{fτ (Xτ )} = E{fτ∗(Xτ∗)}.

Unfortunately, the future prices of the asset are not known in advance. Therefore, the
price can not be calculated straightforwardly and so analytical solution can not be found
for this problem. However, what we can do, is to use the simulation methods together with
advanced regression techniques to get the approximation of the solution.

First, it is necessary to reformulate this problem in a more convenient form to work with.
For 0 ≤ t < T let

qt(x) = sup
τ∈T [t+1,...,T ]

E{fτ (Xτ ) | Xt = x} (2.1)

be the so-called continuation value. This is the payoff the holder will get if he continues to
keep the option alive knowing that at time t the price of the asset is x.

For t = T we define the corresponding continuation value as

qT (x) = 0,

because T is the expiration date of the option, and we will not get any money if we sell it
after this time.

As we will se further, the optimal stopping time has the following form:

τ ∗ = inf{s ∈ {0, . . . , T} : qs(Xs) ≤ fs(Xs)}. (2.2)

The right-hand side of this equation is well defined, since qT (x) = 0 and fT (x) ≥ 0. There
will always be some moment of time s for which qs(Xs) ≤ fs(Xs) holds.

We should understand the optimal stopping time in the following way. The holder of
the option optimally compares the payoff from continuation with payoff from immediately
exercising the option, and he exercises the option if the immediate payoff is higher.

2.2 Optimal Stopping Time

This chapter contains the proof that τ ∗ defined in (2.2) is indeed the optimal stopping time,
when the holder will get the maximal payoff if he stops the price process. Moreover, the
theorem shows the important role of the continuation values. We will see that it is enough
to find them in order to determine the optimal stopping time. Further the techniques from
the general theory of optimal stopping from Shiryaev (2007) and Chow et al. (1971) will be
used.

Theorem 2.1 Kohler (2010) Let T (t, t + 1, . . . , T ) be the subset of T (0, . . . , T ) consisting
of all stopping times which take on values only in {t, t+ 1, . . . , T} and let

Vt(x) = sup
τ∈T (t,t+1,...,T )

E{fτ (Xτ )|Xt = x} (2.3)
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be the value function that describes the expected value we get if we sell the option in the
optimal way after time t− 1 given that Xt = x.

For t ∈ {−1, 0, . . . , T − 1} define

τ ∗t = inf{s ≥ t+ 1 : qs(Xs) ≤ fs(Xs)} (2.4)

Under the above assumptions we have that for any t ∈ {0, . . . , T − 1} and all x ∈ Rd:

Vt(x) = E{fτ∗t−1
(Xτ∗t−1

)|Xt = x}. (2.5)

and
V0 = E{fτ∗(Xτ∗)}. (2.6)

In this theorem we want to show that

sup
τ∈T (t,t+1,...,T )

E{fτ (Xτ )|Xt = x} = E{fτ∗t−1
(Xτ∗t−1

)|Xt = x}.

This formula shows that the maximal expected payoff will be reached at time τ ∗t−1 ∈ T (t, t+
1, . . . , T ), at the first moment of time when our expected payoff will be greater than the
payoff from the continuation. To prove this formula, we will use the next logic:

if a = c and b = c ⇒ a = b,

where

a = sup
τ∈T (t,t+1,...,T )

E{fτ (Xτ )|Xt = x},

b = E{fτ∗t−1
(Xτ∗t−1

)|Xt = x},
c = max{ft(Xt), qt(Xt)}.

The whole proof goes by induction on time t. In the proof we use the definition of the
stopping time, the fact the the asset price process (Xt) is Markov process and such properties
of conditional expectations as ”taking out what is known” and iterated conditioning. Proof.

• First step. In this step we want to show that for t = T the formula 2.5 holds.
From (2.4) we get:

τ ∗T−1 = {inf s ≥ T : qs(Xs) ≤ fs(Xs)} = T. (2.7)

We take infinum over all possible stopping times, but in this case there is only one
possible choice left, which is T , otherwise we will get 0 for sure.

τ ∈ T (t, . . . , T ) = T (T )⇒ τ = T.

Using (2.3) in the first equality, the fact that t = T , and (2.7) in the last equality, we
get:

VT (x) = sup
τ∈T (T )

E{fτ (Xτ ) | XT = x}

= E{fT (XT ) | XT = x}
= E{fτ∗T−1

(Xτ∗T−1
)|XT = x}.

10
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Next we assume Vs(x) = E{fτ∗s−1
(Xτ∗s−1

)|Xs = x} holds for any t < s ≤ T and t ∈
0, . . . , T . In order to prove that (2.5) holds for any t, we have to make several additional
steps.

• Second step. Here we have to show that

E{fτ (Xτ )} ≤ max{ft(Xt),E{Vt+1(Xt+1) | Xt}}

holds for arbitrary τ ∈ T (t, . . . , T ). Observe that

fτ (Xτ ) = fτ (Xτ ) · I{τ=t} + fτ (Xτ ) · I{τ>t}
= ft(Xt) · I{τ=t} + fmax{τ,t+1}(Xmax{τ,t+1}) · I{τ>t}. (2.8)

Using the representation (2.8) and the fact that (Xt)0≤t≤T is a Markov process we have:

E{fτ (Xτ ) | Xt} =

= E{ft(Xt) · I{τ=t} | Xt}+ E{fmax{τ,t+1}(Xmax{τ,t+1}) · I{τ>t} | Xt}
= E{ft(Xt) · I{τ=t} | X0, . . . , Xt}
+ E{fmax{τ,t+1}(Xmax{τ,t+1}) · I{τ>t} | X0, . . . , Xt}. (2.9)

Since τ is a stopping time, then {τ = t} and {τ > t} = Ω \ {τ ≤ t} are measurable
with respect to X0, . . . , Xt. It follows that I{τ=t} and I{τ>t} are also measurable with
respect to X0, . . . , Xt. Consequently, we can take the measurable variables out of the
conditional expectation:

E{ft(Xt) · I{τ=t} | X0, . . . , Xt} = ft(Xt) · I{τ=t}. (2.10)

The same arguments work for the second expectation:

E{f{max τ,t+1}(X{max τ,t+1}) · I{τ>t} | X0, . . . , Xt}
= I{τ>t}E{f{max τ,t+1}(X{max τ,t+1}) | X0, . . . , Xt}
= I{τ>t}E{f{max τ,t+1}(X{max τ,t+1}) | Xt}
= I{τ>t}E{E{f{max τ,t+1}(X{max τ,t+1}) | Xt+1} | Xt},

(2.11)

where in the second step we used Markov property, and in the third one the iterated
conditioning property.

As max{τ, t+ 1} ∈ T (t+ 1, . . . , T ), the value

E{f{max{τ,t+1}}(X{max{τ,t+1}}) | Xt+1} ≤ Vt+1(Xt+1)

because Vt+1 is supremum over all possible stopping times by its definition in (2.3).

Hence from (2.11) we get:

I{τ>t}E{E{f{max τ,t+1}(X{max τ,t+1}) | Xt+1} | Xt} ≤ I{τ>t}E{Vt+1(Xt+1)|Xt}. (2.12)
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Collecting the results we got in 2.10 and in 2.12, we can rewrite (2.9) in the following
way:

E{fτ (Xτ ) | Xt} ≤ ft(Xt) · I{τ=t} + I{τ>t}E{Vt+1(Xt+1)|Xt}

=


0, if {τ < t}

ft(Xt), if {τ = t}
E{Vt+1(Xt+1)|Xt}, if {τ > t}

≤ max{ft(Xt),E{Vt+1(Xt+1)|Xt}}. (2.13)

• Third step. In this step we want to receive the representation of the value function
at time τ = τ ∗t−1. Substituting τ = τ ∗t−1 in 2.9 we have:

E{fτ∗t−1
(Xτ∗t−1

) | Xt} = E{ft(Xt) · I{τ∗t−1=t} | Xt}
+ E{fmax{τ∗t−1,t+1}(Xmax{τ∗t−1,t+1}) · I{τ∗t−1>t} | Xt}. (2.14)

Using Markov property for (Xt)0≤t≤T , we can continue (2.14) in the following way:

E{fτ∗t−1
(Xτ∗t−1

) | Xt} = E{ft(Xt) · I{τ∗t−1=t} | X0, . . . , Xt}
+ E{fmax{τ∗t−1,t+1}(Xmax{τ∗t−1,t+1}) · I{τ∗t−1>t} | X0, . . . , Xt}
= ft(Xt) · I{τ∗t−1=t} + I{τ∗t−1>t}E{fmax{τ∗t−1,t+1}(Xmax{τ∗t−1,t+1}) | Xt}. (2.15)

In the last step of (2.15) we have used that I{τ∗t−1=t} and I{τ∗t−1>t} are measurable with
respect to X0, . . . , Xt.

If {τ ∗t−1 > t}, that means that we did not stop the process (Xt)0≤t≤T before and at
time t. Hence, the possible stopping time will start from t + 1. And in (2.4) we have
denoted the optimal stopping time as τ ∗t . Therefore, max{τ ∗t−1, t + 1} = τ ∗t on the set
{τ ∗t−1 > t}. We can rewrite (2.15) in the next way:

E{fτ∗t−1
(Xτ∗t−1

) | Xt} =

= ft(Xt) · I{τ∗t−1=t} + I{τ∗t−1>t}E{fτ∗t (Xτ∗t
) | Xt}

= ft(Xt) · I{τ∗t−1=t} + I{τ∗t−1>t}E{E{fτ∗t (Xτ∗t
) | Xt+1} | Xt}

= ft(Xt) · I{τ∗t−1=t} + I{τ∗t−1>t}E{Vt+1(Xt+1) | Xt}. (2.16)

• Fourth step. Here we want to show that

E{Vt+1(Xt+1) | Xt} = qt(Xt). (2.17)

Since τ ∗t ∈ T (t+ 1, . . . , T )

E{Vt+1(Xt+1) | Xt} = E{E{fτ∗t (Xτ∗t
) | Xt+1} | Xt}

= E{fτ∗t (Xτ∗t
) | Xt}

≤ sup
τ∈T (t+1,...,T )

E{fτ (Xτ ) | Xt} = qt(Xt). (2.18)

12



C
E

U
eT

D
C

ol
le

ct
io

n

On the other hand, we have

E{Vt+1(Xt+1) | Xt} = E{ sup
τ∈T (t+1,...,T )

E{fτ (Xτ ) | Xt+1} | Xt}

≥ sup
τ∈T (t+1,...,T )

E{E{fτ (Xτ ) | Xt+1} | Xt}

= sup
τ∈T (t+1,...,T )

E{fτ (Xτ ) | Xt} = qt(Xt). (2.19)

Combining (2.18) and (2.19) together, we get (2.17). Using this proved fact, we can
rewrite (2.16) in the following way:

E{fτ∗t−1
(Xτ∗t−1

) | Xt} =

= ft(Xt) · I{τ∗t−1=t} + I{τ∗t−1>t}E{Vt+1(Xt+1) | Xt}
= ft(Xt) · I{τ∗t−1=t} + I{τ∗t−1>t}qt(Xt). (2.20)

We know that τ ∗t−1 is a stopping time. By equivalent formulation, that is the first time
t when ft(Xt) ≥ qt(Xt). For all other t < τ ∗t−1 we have ft(Xt) < qt(Xt). Therefore,
from (2.20) we have:

E{fτ∗t−1
(Xτ∗t−1

) | Xt} =

= ft(Xt) · I{τ∗t−1=t} + I{τ∗t−1>t}qt(Xt)

= max{ft(Xt), qt(Xt)}. (2.21)

• Fifth step. From (2.13),(2.17) and (2.21) we get:

E{fτ (Xτ ) | Xt = x} ≤ max{ft(Xt),E{Vt+1(Xt+1) | Xt = x}}
= max{ft(Xt), qt(Xt)}
= E{fτ∗t−1

(Xτ∗t−1
) | Xt = x}, (2.22)

where τ ∈ T (t, . . . , T ) and τ ∗t−1 ∈ T (t, . . . , T ). And finally we can conclude that

Vt(x) = sup
τ∈T (t,...,T )

E{fτ (Xτ ) | Xt = x} = E{fτ∗t−1
(Xτ∗t−1

) | Xt = x}. (2.23)

In order to show (2.6) we use previous results and receive:

V0 = sup
τ∈T (0,...,T )

E{fτ (Xτ )}

= sup
τ∈T (0,...,T )

E{f0(X0)I{τ=0} + fmax{τ,1}(Xmax{τ,1})I{τ>0}}

= E{f0(X0)I{f0(X0)≥q0(X0)} + fτ∗0 (Xτ∗0
)I{f0(X0)<q0(X0)}}

= E{f0(X0)I{f0(X0)≥q0(X0)} + E{V1(X1) | X0}I{f0(X0)<q0(X0)}}
= E{f0(X0)I{f0(X0)≥q0(X0)} + q0(X0)I{f0(X0)<q0(X0)}}
= E{max{f0(X0), q0(X0)}}
= E{f ∗τ (X∗τ )}.
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We have received that in order to find the price of the option, we have to determine the
optimal stopping time, for which task we need to find the continuation value function.

The theorem also showed us that the continuation values and the values of the value
function are closely related. We have proved in (2.17) and (2.21):

qt(x) = E{Vt+1(Xt+1) | Xt = x}

and
Vt(x) = max{ft(x), qt(x)}.

This remark shows that qt(Xt) ≤ ft(Xt) is equivalent to Vt(Xt) ≤ ft(Xt). Therefore, the
optimal stopping time can be expressed as

τ ∗ = inf{s ∈ {0, . . . , T} : Vs(Xs) ≤ fs(Xs)} (2.24)

Though it can be expressed using Vt, we will work with qt functions. For explaining the
reasons of this decision, we have to prove some more facts.

Theorem 2.2 Kohler (2010) Under the above assumptions, we have that for any t ∈ {0, . . . , T−
1} and all x ∈ Rd:

(a)
qt(x) = E{fτ∗(Xτ∗) | Xt = x}

(b)
qt(x) = E{max{ft+1(Xt+1), qt+1(Xt+1) | Xt = x}

Proof.

(a)

qt(Xt) = E{Vt+1(Xt+1) | Xt} (from (2.17))

= E{E{fτ∗(Xτ∗) | Xt+1} | Xt} (from (2.21))

= E{E{fτ∗(Xτ∗) | X0, . . . , Xt+1} | X0, . . . , Xt} (Markov property)

= E{fτ∗(Xτ∗) | X0, . . . , Xt} (Iterated conditioning)

= E{fτ∗(Xτ∗) | Xt} (Markov property).

(b) We can receive Vt+1(Xt+1) from (2.21):

Vt+1(Xt+1) = max{ft+1(Xt+1), qt+1(Xt+1)}.

From (2.17) we have:

qt(x) = E{Vt+1(Xt+1) | Xt = x} = E{max{ft+1(Xt+1), qt+1(Xt+1)} | Xt = x}.
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Now we can compare the regression representations for the continuation values

qt(x) = E{max{ft+1(Xt+1), qt+1(Xt+1)} | Xt = x}

with the regression representation for the value function

Vt(Xt) = max{ft(Xt),E{Vt+1(Xt+1) | Xt = x}}.

In the last expression the maximum is outside of the expectation, therefore the value function
can be in general not differentiable. Comparing the representation for the continuation value,
we see that the maximum is inside of the expectation, so the function is smooth. Therefore,
we will concentrate on the continuation value function because it is easier to get regression
estimates for smooth functions.

2.3 Backward recursive scheme

In the previous section the final formula for calculation of the continuation value function
was received.

qt(x) = E{max{ft+1(Xt+1), qt+1(Xt+1)} | Xt = x}.

Substituting the payoff function for American Put option and doing several transforma-
tions, we receive:

qt(x) = E{max{ft+1(Xt+1), qt+1(Xt+1)} | Xt = x}
= E{max{e−r(t+1)(K −Xt+1)

+, qt+1(Xt+1)} | Xt = x}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt

Xt

)+

, qt+1

(
Xt+1

Xt

Xt

)}
| Xt = x

}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt

x

)+

, qt+1

(
Xt+1

Xt

x

)}
| Xt = x

}
. (2.25)

Therefore we see, that there is a backward recursive scheme that can be used to calculate
the values of the continuation function. We start with qT (x) = 0, and using the formula
(2.25) we can find all the previous values.

2.4 Upper and lower bounds of the continuation func-

tion

As we already know that the analytical solution does not exist, we need to estimate contin-
uation values and receive the estimated price of the American Put option. We can do the
estimation using the backward recursive scheme, but at first we have to answer the following
question: if we have an approximate solution, how far is it from the true one? Using the
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backward recursion, the estimation errors will be accumulated, therefore, we need to control
them. For the evaluation of the approximate solution we introduce upper and lower bounds
for qt(x) as in Györfi et al. (2012).

First we introduce an upper bound. For τ ∈ T (t+ 1, . . . , T ), we have that

fτ (Xτ ) ≤ max
s∈{t+1,...,T}

fs(Xs).

This upper bound is rather trivial. We assume that we know all the data in advance, and
we just choose that moment of time when the payoff will be maximal.

Therefore, using the definition of qt(x) given in (2.1), we have

qt(x) = sup
τ∈T (t+1,...,T )

E {fτ (Xτ ) | Xt = x} ≤ E
{

max
s∈{t+1,...,T}

fs(Xs) | Xt = x

}
.

We introduce the notation

q
(u)
t (x) := E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
, (2.26)

and this value will be an upper bound.
Now we introduce a lower bound of qt(x):

q
(l)
t (x) = max

s∈{t+1,...,T}
E {fs(Xs)|Xt = x} . (2.27)

In the last equation, maximum is taken over deterministic stopping times {t+ 1, . . . , T},
which is the subset of T (t+ 1, . . . , T ). That is why it is a lower bound

q
(l)
t (x) ≤ qt(x).

To summarize, we have received the next combination of the lower an upper bounds:

max
s∈{t+1,...,T}

E {fs(Xs)|Xt = x} ≤ qt(x) ≤ E
{

max
s∈{t+1,...,T}

fs(Xs) | Xt = x

}
. (2.28)

2.5 Empirical pricing and optimal exercising of Amer-

ican options

In a real life problem we have a single historical data sequence X1, . . . , XN . We have to
generate sample paths in order to be able to perform regression estimation. We need i.i.d
copies of the historical data sequence, i.e.:

Xi,1, . . . , Xi,T , i = 1, ...n. (2.29)

There exist several ways to receive sample paths, for example, the Monte Carlo method,
disjoint, sliding or bootstrap sampling. In Györfi et al. (2012) a comparison of the behaviour
of these sampling schemes was made. The range of the option price is smaller for sampling
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schemes mentioned above than for the Monte Carlo method. The behaviour of the sliding
sample is almost the same compared to disjoint and bootstrap, but it is easier in calculations.
Therefore, later on we will use sliding sample scheme.

For sliding sampling the sample path can be found as

Xi,t :=
Xi+t

Xi

, (2.30)

i = 1, . . . , n = N − T .
If the continuation values qt(x), t = 1, . . . T were known, then the optimal stopping time

τi for path Xi,1, . . . , Xi,T can be calculated:

τi = min {1 ≤ s ≤ T : qs (Xi,s) ≤ fs (Xi,s)} .

Therefore, the price V0 can be estimated by the average of the payoff received at stopping
times for each path:

1

n

n∑
i=1

fτi (Xτi) . (2.31)

Unfortunately, the continuation values qt(x), t = 1, . . . T are unknown, therefore, one has
to generate estimates qt,n(x), t = 1, . . . T .

As the continuation values are regression functions, we are going to apply nonparametric
methods of estimation to receive the result. The empirical methods use only the available
data (known prices from the past) and do not assume parameter estimation.
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Chapter 3

Nonparametric regression estimation

This chapter contains the introduction to general regression problem (section 3.1). In further
sections it is shown how to estimate the regression function empirically, i.e. from the data
we observe. The regression problem and its solution is defined as in Györfi et al. (2002).

3.1 The regression problem

Let us consider a random vector (X, Y ), where X is Rd-valued and Y is R-valued. We are
interested how the values of the response variable Y depend on the value of the observation
vector X. This means that we have to find a function f : Rd → R, such that f(X) is a good
approximation of Y , f(X) should be close to Y . This implies making |f(X)− Y | as small
as possible. This value is random because X and Y are random vectors. Hence, we require
the mean squared error of f

E |f(X)− Y |2

to be as small as possible.

Definition 3.1.1 A function m∗ : Rd → R that minimizes the L2 risk, or

E |m∗(X)− Y |2 = min
f :Rd→R

E |f(X)− Y |2

is called the regression function.

The regression function can be obtained explicitly:

m(x) = E{Y | X = x}.

Let us show that it indeed minimizes the L2 risk.
For an arbitrary f : Rd → R the mean squared error can be rewritten in the following

way:

E |f(X)− Y |2 = E |f(X)−m(X) +m(X)− Y |2

= E |f(X)−m(X)|2 + E |m(X)− Y |2

+ E{(f(X)−m(X))(m(X)− Y )}.
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The last term of the sum is equal to zero because:

E{(f(X)−m(X))(m(X)− Y )}
= E{E{(f(X)−m(X))(m(X)− Y ) | X}}(iterated conditioning property)

= E{(f(X)−m(X))E{(m(X)− Y ) | X}} ( the term f(X)−m(X) is X measurable )

= E{(f(X)−m(X))(m(X)−m(X))}
= 0.

Consequently,

E |f(X)− Y |2 =

∫
Rd

|f(x)−m(x)|2 µ(dx) + E |m(X)− Y |2 , (3.1)

where µ denotes the distribution of X.
The term

∫
Rd

|f(x)−m(x)|2 µ(dx) is called the L2 error of function f . It is always non-

negative as integral of nonnegative function and equals zero when f(x) = m(x). That is why
m∗(x) = m(x). The optimal approximation of Y by the function of X is given by m(X).

3.2 Estimation of the regression function

To predict the values of Y we need to build the regression function. For this purpose we need
to know the distribution of the random vector (X, Y ). However, in practice the distribution
is usually unknown. That is why we cannot receive explicitly the regression function, and
we are unable to predict the values of Y using this function. The only thing we can do is to
estimate the values of this function by numerically observing some data.

There are two approaches for the estimation of the regression function, the parametric
and nonparametric methods. In the parametric model one assumes that the structure of
the model is known. There are finitely many unknown parameters and there is a need to
estimate them using the observed data. The most popular example of parametric regression
estimation is a linear regression. The main assumption here is that the regression function
is a linear combination of its components, and applying the principle of the least squares it
is possible to estimate parameters from data and receive the results. Usually, the advantage
of such an approach is that the number of parameters is quite few. This method can be used
even for small amounts of data if parametric model is chosen appropriately. The parameters
of the model are always easy to interpret.

However, in general, the parametric method behaves poorly in comparison to the non-
parametric one. If, for example, the true regression function cannot be approximated by
linear function, the error of linear estimate will be big. The next difficulty is how we can
deal with multivariate observable variable X. It is not easy to visualize it, therefore it will
be hard to find a parametric model that fits well. As a result, the error of the estimate
will be big. In contrast to parametric methods, nonparametric estimation methods do not
assume any parametric model, meaning that there is no assumption that the regression func-
tion can be described using finitely many parameters. This is one of the reasons, why the
nonparametric regression plays a crucial role in prediction of time series.
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How can we do this estimation? We observe some data.
Let us denote by (X, Y ), (X1, Y1), (X2, Y2), . . . independent and identically distributed

random variables with EY 2 <∞. Let Dn be the set of observed data defined by

Dn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}.

Then we want to use the data from the set Dn for the construction of estimator
mn : Rd → R of regression function m. Here mn(x) = mn(x,Dn) is a measurable func-
tion of x and the data.

The estimators are not unique and they are not equal to the regression function. We
need to compare them somehow, which is why we introduce the error criterion, which will
help us to distinguish between the quality of the estimators. By quality of the estimator we
mean the difference between the regression function and an arbitrary estimate mn.

There are several different error criteria that are used in the literature:

1. The pointwise error

|mn(x)−m(x)| for some fixed x ∈ Rd,

2. The supremum norm error

‖mn −m‖∞ = sup
x∈C
|mn(x)−m(x)| for some fixed set C ⊆ Rd,

which is mostly used for d = 1 where C is a compact subset of R,

3. The Lp error ∫
C

|mn(x)−m(x)|p dx,

where the integration is with respect to the Lebesgue measure, C is a fixed subset of
Rd, and p ≥ 1 is arbitrary.

Introducing the regression function, our aim is to find function f such that the mean
squared error E |f(X)− Y |2 is as small as possible. This fact leads naturally to usage of an
L2 error criterion for measuring the performance of the regression function estimate. The
minimal value of this L2 risk is E |m(X)− Y |2, and it is achieved by the regression function
m. The L2 risk of an estimate mn can be found as:

E{|mn(X)− Y |2 | Dn} =

∫
Rd

|mn(x)−m(x)|2 µ(dx) + E |m(X)− Y |2 ,

The proof of this fact is absolutely similar to what we have done before. Thus the L2 risk of
an estimate mn is close to the optimal value if and only if the L2 error∫

Rd

|mn(x)−m(x)|2 µ(dx) (3.2)

is close to zero. Therefore, it is possible to use L2 error (3.2) for measuring the quality of an
estimate. The L2 error is random since the estimate mn depends on the data in the set Dn.

The first and the weakest property the estimator should have is that, as the sample size
grows, it should converge to the estimated quantity.
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Definition 3.2.1 The estimator is called consistent if it has the property that the error
estimation converges to zero as the sample size grows to infinity.

We are interested in the convergence of the the expectation of the random variable (3.2)
to zero.

Definition 3.2.2 A sequence of regression function estimates {mn} is called weakly consis-
tent for a certain distribution of (X, Y ), if

lim
n→∞

E
{∫

(mn(x)−m(x))2µ(dx)

}
= 0

Definition 3.2.3 A sequence of regression function estimates {mn} is called strongly con-
sistent for a certain distribution of (X, Y ), if

lim
n→∞

E
{∫

(mn(x)−m(x))2µ(dx)

}
= 0 with probability one.

The estimator is better if it is consistent for a larger class of distributions.
We use nonparametric estimates mainly when there is no information available about the

distribution of the random vector (X, Y ). Therefore, the concept of universal consistency is
important in the nonparametric regression. It is essential to have estimator that performs
well for all distributions because of the lack of information about the true distribution. The
requirement of universal goodness can be formulated in the following way:

Definition 3.2.4 A sequence of regression function estimates {mn} is called weakly univer-
sally consistent if it is weakly consistent for all distributions of (X, Y ) with E{Y 2} <∞.

Definition 3.2.5 A sequence of regression function estimates {mn} is called strongly uni-
versally consistent if it is strongly consistent for all distributions of (X, Y ) with E{Y 2} <∞.

If an estimate is universally consistent, then, regardless of the true underlying distribution
of (X, Y ), the L2 error of the estimate converges to zero if a sample size tends to infinity.

It is desirable that the estimator error tends to infinity as fast as possible. To answer the
question what the rate of convergence for this estimator is, we take a look at the expectation
of the L2 error:

E
∫
|mn(x)−m(x)|2 µ(dx). (3.3)

Unfortunately, the estimators for which (3.3) converges to zero at some fixed, nontrivial
rate for all distributions do not exist. If one needs to get nontrivial rates, he should restrict
the class of distributions. One possible variant of restriction is to assume some smoothness
property of the regression function.

Suppose that the data can be written as

Yi = m(Xi) + εi, (3.4)

where the error term εi = Yi−m(Xi) satisfies E{εi | Xi} = 0. Thus Yi can be considered as
the sum of the value of the regression function at point Xi and some error term with expected
value zero. As Xi’s are random variables, we call our problem regression estimation with
random design. The main properties of this model are:
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• The error term εi depends on Xi, thus it is not independent of Xi and its kind of
distribution can be changed with Xi,

• The points in the set Dn are independent identically distributed,

• The dimension d of random vector X is often much larger than two.

As the data can be written as in (3.4), this motivates the construction of the estimates
by local averaging, i.e., estimation of m(x) by the average of those Yi where Xi is ”close” to
x. Such an estimate can be written as

mn(x) =
n∑
i=1

Wn,i(x) · Yi,

where the weights Wn,i(x) = Wn,i(x,X1, . . . , Xn) ∈ R depend on X1, . . . , Xn. The weights
are nonnegative and Wn,i is small if Xi is far from x.

3.3 Local averaging estimate

The first example of the local averaging estimate is the partitioning estimate. To build it,
first we need to choose the finite or countably infinite partition Pn = {An,1, An,2, . . . } of Rd,
where the sets An,j ⊆ Rd are Borel sets. For x ∈ An,j the estimate of the regression function
is the average of Yi’s with the corresponding Xi’s in An,j.

Definition 3.3.1 The partitioning estimate of the regression function m(x) is defined by

mn(x) =

∑n
i=1 I{Xi∈An,j}Yi∑n
i=1 I{Xi∈An,j}

for x ∈ An,j,

where IA is the indicator of the set A and the weight is

Wn,i(x) =
I{Xi∈An,j}∑n
i=1 I{Xi∈An,j}

for x ∈ An,j.

Here and further we use 0
0

= 0 for convention.
Under the following assumption the partitioning regression function estimate will be

weakly universally consistent:
If for each sphere S centred at the origin

lim
n→∞

max
j:An,j∩S 6=0

diam(An,j) = 0

and

lim
n→∞

|j : An,j ∩ S 6= 0|
n

= 0.

The proof of this fact can be found in Györfi et al. (2002).
The second example of local averaging estimate is the Nadaraya-Watson kernel estimate.

Let K : Rd → R+ be a kernel function, let h > 0 be a bandwidth.
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Definition 3.3.2 The kernel estimate of the regression function m(x) is defined by

mn(x) =

∑n
i=1K

(
x−Xi

h

)
Yi∑n

i=1K
(
x−Xi

h

)
The weight is

Wn,i(x) =
K
(
x−Xi

h

)∑n
i=1K

(
x−Xi

h

) .
One can use naive kernel estimate (or window kernel) where the kernel function is K(x) =
I{‖x‖≤1}, and we can rewrite the regression estimator as

mn(x) =

∑n
i=1 I{‖x−Xi‖≤h}Yi∑n
i=1 I{‖x−Xi‖≤h}

(3.5)

Here we estimate m(x) taking the average of those Yi’s for which the distance between the
Xi and x is not greater than h. This concept can be generalized in the next way. One can
use the weighted average of the Yi, where the weight depends on the distance between Xi

and x.
Assume that there are balls S0,r of radius r and balls S0,R of radius R centred at the origin

(0 < r < R), and constant b > 0 such that

I{x∈S0,R} ≥ K(x) ≥ bI{x∈S0,r}.

If hn → 0 and nhdn →∞, then the kernel estimate is consistent. The proof of this fact can
be found in Györfi et al. (2002).

The last example of local averaging estimate is the k-nearest neighbour estimate. Gen-
erally speaking, we determine the k nearest Xi’s to x in terms of distance ‖x−Xi‖ and
estimate m(x) by the average of the corresponding Yi’s.

For x ∈ Rd, let

{(X(1)(x), Y(1)(x)), (X(2)(x), Y(2)(x)), . . . , (X(n)(x), Y(n)(x))}

be a permutation of
{(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}

such that ∥∥x−X(1)

∥∥ ≤ ∥∥x−X(2)

∥∥ ≤ · · · ≤ ∥∥x−X(n)

∥∥ .
Definition 3.3.3 The k-nearest neighbour estimate of the regression function is defined by

mn(x) =
1

k

k∑
i=1

Y(i)(x).
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Here the weight Wn,i(x) equals

Wn,i(x) =


1

k
, if Xi is among the k-nearest neighbours of x

0, otherwise

If kn →∞, kn
n
→ 0, then the kn nearest neighbour regression function estimate is weakly

consistent for all distributions of (X,Y) where ties occur with probability zero and EY 2 <∞.
The proof of this fact can be found in Györfi et al. (2002).

The rate of convergence E{‖mn −m‖2} of all showed estimates is

E{‖mn −m‖2} = O(n−
2

d+2 ).

The kernel estimate is relatively easy and has less computational complexity compared to
other methods. For this reason, we will apply it further in our models.
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Chapter 4

Empirical results

In the second chapter we have received that for determining the option price it is enough
to work with the continuation values. As we can not receive the prices explicitly, we want
to estimate them using nonparametric methods. In the third chapter we discussed how
the estimation can be done. Now we are going to consider two models, making different
assumptions on the asset price process, and see the results.

4.1 Markov modelling

One of the models that appears naturally is the Markov model, where we assume that the
price process follows the Markov process. Here we can apply the kernel estimate and get

qt,n(x) =

∑n
i=1 max {ft+1(Xi,t+1), qt+1,n(Xi,t+1)} I{|Xi,t−x|≤H/2}∑n

i=1 I{|Xi,t−x|≤H/2}
, (4.1)

where I denotes the indicator, and 0/0 = 0 by definition. All the estimators are used as in
Györfi et al. (2012).

Recall from section 2.5, that Xi,1, . . . , Xi,T , i = 1, . . . , n is the sample path prices
generated from the historical data sequence X1, . . . , XN using the sliding sampling:

Xi,t =
Xi+t

Xi

, i = 1, . . . , N − T.

In section (2.4) we received the combination of lower and upper bounds (2.28), which is

max
s∈{t+1,...,T}

E {fs(Xs) | Xt = x} ≤ qt(x) ≤ E
{

max
s∈{t+1,...,T}

fs(Xs) | Xt = x

}
.

Both of these bounds are true regression functions.
The lower bound can be estimated in the following way

q
(l)
t,n(x) = max

s∈{t+1,...,T}

∑n
i=1 fs(Xi,s)I{|Xi,t−x|≤H/2}∑n

i=1 I{|Xi,t−x|≤H/2}
.
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And an estimate of the upper bound is

q
(u)
t,n (x) =

∑n
i=1 maxs∈{t+1,...,T} fs(Xi,s)I{|Xi,t−x|≤H/2}∑n

i=1 I{|Xi,t−x|≤H/2}
.

The empirical results for this model were received in Kohler (2010). The average of the
prices, given by Markov model, is almost the same in comparison to other models, but the
variance of the prices is higher. Consequently, it makes sense to investigate more closely
another model, the memoryless model, which was shown to be better above.

4.2 Memoryless modelling

This section introduces the memoryless model to the reader, giving the detailed analysis of
the continuation function that was received under the assumptions of the memoryless model.

Definition 4.2.1 The process {Xt} is called of memoryless multiplicative increments, if
X1/X0, X2/X1, . . . are independent random variables.

Definition 4.2.2 The process {Xt} is called of stationary multiplicative increments, if the
sequence X1/X0 = X1, X2/X1, . . . is strictly stationary.

From now on we will assume that the price process {Xt} has memoryless and stationary
multiplicative increments. These properties imply that, for s > t, Xs

Xt
and Xt are independent,

and Xs

Xt
and Xs−t

X0
= Xs−t have the same distribution.

From backward recursive scheme (2.25) for t < T we receive

qt(x) = E {max {ft+1 (Xt+1) , qt+1 (Xt+1)} | Xt = x}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt

x

)+

, qt+1

(
Xt+1

Xt

x

)}
| Xt = x

}

= E

{
max

{
e−r(t+1)

(
K − Xt+1

Xt

x

)+

, qt+1

(
Xt+1

Xt

x

)}}
= E

{
max

{
e−r(t+1) (K −X1x)+ , qt+1 (X1x)

}}
, (4.2)

where

• in the second step we have substituted the payoff function,

• in the third step we used the fact that the increments possess a memoryless property,
which is why we can forget about the condition in the expectation,

• in the last step we used that the increments are stationary.

Claim 4.1 The continuation value function that was derived for the memoryless model is
non-increasing.
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Proof.
We are going to use method of mathematical induction. From section 2.1 we know that

qT (x) = 0

• First step Let us prove that qT−1(x) is non-increasing.

Suppose that x1 < x2,

qT−1(x1) = E{e−rT (K −X1x1)
+},

qT−1(x2) = E{e−rT (K −X1x2)
+}.

The expressions inside of the expectations are:

(K −X1x1)
+ =

K −X1x1, if x1 <
K

X1

0, otherwise

,

(K −X1x2)
+ =

K −X1x2, if x2 <
K

X1

0, otherwise

.

(a) Let x1 < x2 <
K
X1

, then

qT−1(x1)− qT−1(x2) = E{e−rT (K −X1x1)} − E{e−rT (K −X1x2)}
= e−rTK − x1E{X1} − e−rTK + x2E{X1}
= E{X1} (x2 − x1) > 0.

(b) Let x1 <
K
X1

< x2, then

qT−1(x1)− qT−1(x2) = E{e−rT (K −X1x1)} > 0.

(c) Let K
X1

< x1 < x2, then
qT−1(x1)− qT−1(x2) = 0.

Thus, we have proved that qT−1(x) is a non-increasing function. Making inductive
step, we assume that the functions qT−2(x), . . . , qT−n(x) are non-increasing.

• Second step Let us prove that the function qT−n−1(x) is non-increasing. We are going
to look at the sign of the difference qT−n−1(x1) − qT−n−1(x2), which should always be
positive. Suppose that x1 < x2,

qT−n−1(x1) = E{max{e−r(T−n) (K −X1x1)
+ , qT−n(X1x1)}},

qT−n−1(x2) = E{max{e−r(T−n) (K −X1x2)
+ , qT−n(X1x2)}}.
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As x1 < x2, then X1x1 < X1x2, and since the function qT−n(x) is non-increasing, we
have

qT−n(X1x1) > qT−n(X1x2). (4.3)

The next observation is, as

K −X1x1 > K −X1x2,

it follows that
(K −X1x1)

+ > (K −X1x2)
+ ,

and

e−r(T−n) (K −X1x1)
+ > e−r(T−n) (K −X1x2)

+ . (4.4)

– First case Suppose that

e−r(T−n) (K −X1x1)
+ > qT−n(X1x1) (4.5)

then
qT−n−1(x1) = E{e−r(T−n) (K −X1x1)

+}.

We have two possible situations for the value of qT−n−1(x2): either

qT−n−1(x2) = E{e−r(T−n) (K −X1x2)
+} (4.6)

or

qT−n−1(x2) = E{qT−n(X1x2)}. (4.7)

If (4.6) is true, then the difference is

qT−n−1(x1)− qT−n−1(x2)
= E{e−r(T−n) (K −X1x1)

+} − E{e−r(T−n) (K −X1x2)
+}

= E{e−r(T−n) (K −X1x1)
+ − e−r(T−n) (K −X1x2)

+} > 0.

The last inequality holds because of (4.4).

If (4.7) is true, then the difference is

qT−n−1(x1)− qT−n−1(x2)
= E{e−r(T−n) (K −X1x1)

+} − E{qT−n(X1x2)}
= E{e−r(T−n) (K −X1x1)

+ − qT−n(X1x2)} > 0.

The last difference is positive because of (4.3) and (4.5).
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– Second case Suppose

e−r(T−n) (K −X1x1)
+ ≤ qT−n(X1x1), (4.8)

then
qT−n−1(x1) = E{qT−n(X1x1)}.

Again, we have the same cases for the function qT−n−1(x2) as (4.6) and (4.7).

If (4.6) is true, then the difference is

qT−n−1(x1)− qT−n−1(x2)
= E{qT−n(X1x1)} − E{e−r(T−n) (K −X1x2)

+}
= E{qT−n(X1x1)− e−r(T−n) (K −X1x2)

+} > 0.

The last inequality holds because of (4.4) and (4.8).

If (4.7) is true, then the difference is

qT−n−1(x1)− qT−n−1(x2)
= E{qT−n(X1x1)} − E{qT−n(X1x2)}
= E{qT−n(X1x1)− qT−n(X1x2)} > 0.

The last difference is positive because of (4.3). Therefore, the continuation value
function qt(x) is indeed non-increasing.

This claim shows us that the payoff from continuation is getting less with time, and there
is no sense in waiting infinitely long. Also, this is another argument for the fact that the
optimal stopping time should be exactly the first moment of time where the payoff from
immediate exercising the option is higher than the payoff from continuation.

4.3 Estimators in memoryless model

If we are given data X1, . . . , XN , i = 1, . . . , N then, for any fixed t the continuation value
function can be estimated by simple average. Let qt+1,N(x) be an estimate of qt+1(x). Es-
timators of the continuation function, lower bound and upper bound are used as in Györfi
et al. (2012). Using the backward recursive representation we have:

qt,N(x) =
1

N

N∑
i=1

max
{
e−r(t+1) (K − xXi/Xi−1)

+ , qt+1,N(xXi/Xi−1)
}
. (4.9)

As we are using the recursion, here the errors are likely to accumulate, and so we need
to control this. Therefore, we introduce the estimates of the lower and upper bounds of the
continuation values.
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For memoryless process, the lower bound (2.27) of qt(x) has a simple form:

q
(l)
t (x) = max

s∈{t+1,...,T}
E {fs(Xs)|Xt = x}

= max
s∈{t+1,...,T}

e−rsE

{(
K − Xs

Xt

Xt

)+

| Xt = x

}

= max
s∈{t+1,...,T}

e−rsE

{(
K − Xs

Xt

x

)+

| Xt = x

}

= max
s∈{t+1,...,T}

e−rsE

{(
K − Xs

Xt

x

)+
}

= max
s∈{t+1,...,T}

e−rsE
{

(K −Xs−tx)+
}
,

where we are using the same arguments as in the formula (4.2) (memoryless and station-
ary multiplicative increments).

Thus,
q
(l)
t (x) = sup

s∈{t+1,...,T}
e−rsE

{
(K −Xs−tx)+

}
.

If we are given the sample path Xi,1, . . . , Xi,T , i = 1, ...n then the estimate of q
(l)
t (x)

would be

q
(l)
t,n(x) = max

s∈{t+1,...,T}
e−rs

1

n

n∑
i=1

(K −Xi,s−tx)+ .

As previously we agreed to use the sliding sample scheme, then in this case n = N − T .
For the upper bound we can use the same arguments as before and receive

q
(u)
t (x) = E

{
max

s∈{t+1,...,T}
fs(Xs) | Xt = x

}
= E

{
max

s∈{t+1,...,T}
e−rs(K −Xs)

+ | Xt = x

}
= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt

Xt

)+

| Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt

x

)+

| Xt = x

}

= E

{
max

s∈{t+1,...,T}
e−rs

(
K − Xs

Xt

x

)+
}

= E
{

max
s∈{t+1,...,T}

e−rs (K −Xs−tx)+
}
.

If we are given sample path Xi,1, . . . , Xi,T , i = 1, ...n, then the estimate of q
(u)
t (x) would

be

q
(u)
t,n (x) =

1

n

n∑
i=1

max
s∈{t+1,...,T}

e−rs (K −Xi,s−tx)+ .
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The combination of the lower and upper bounds is

max
s∈{t+1,...,T}

E
{
e−rs (K −Xs−tx)+

}
≤ qt(x) ≤ E

{
max

s∈{t+1,...,T}
e−rs (K −Xs−tx)+

}
.

Using the estimates of the lower and upper bound, the following truncation of the esti-
mates of the continuation value is suggested in Györfi et al. (2012):

q̂t,N(x) =


q
(u)
t,n (x) if q

(u)
t,n (x) < qt,N(x),

qt,N(x) if q
(u)
t,n (x) ≥ qt,N(x) ≥ q

(l)
t,n(x),

q
(l)
t,n(x) if qt,N(x) < q

(l)
t,n(x).

(4.10)

The last formula gives us an improved estimator of the continuation value function.
The problem with the estimator of the continuation function is the following. We are

using the whole amount of data we have, the whole historical data sequence, but in real
life we do not know all the prices in advance. Therefore, this estimator has to be slightly
changed. At each moment of time t we have to use only the prices available up to this exact
moment. Suppose that at initial moment of time when we make a contract, we know A
prices. Then at the moment of time t, where t = 1, . . . , T (T is the maturity date of the
option), we know N ′ = A+t prices. Consequently, the changed estimator takes the following
form:

qt,N ′(x) =
1

N ′

N ′∑
i=1

max
{
e−r(t+1) (K − xXi/Xi−1)

+ , qt+1,N ′(xXi/Xi−1)
}
, (4.11)

and qT,N ′(x) = 0.
The lower and upper bounds essentially remain the same. The only thing we have to

change is the amount of data we use for generating sample paths. Therefore, the maximal
number of sample paths will be n = A + t − T = N ′ − T . We will refer to all these values
as changed lower bounds, changed upper bounds and changed truncated estimator.

4.4 Simulations

This section contains the simulation results that we have performed using the Python soft-
ware. The main aim of these simulations is to compare the behaviour of two estimators, with
changes and without changes. We used daily NYSE data available at Log-optimal portfolio
homepage. We selected the asset coke, which contains daily returns during the 44 years
period from 1966 to 2006. We fixed the time unit equal to one week. The expiration time is
T = 20, the strike price is K = 110, the initial price is X0 = 100. Figures 1 and 2 illustrate
the estimates for the memoryless model for t = 4 and t = 16, taking into account the changes
that we have made. The curves on the pictures are:

• the dark blue curve is qt,n(x) without correction (4.11),

• the yellow curve is q
(l)
t,n(x) (changed),
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• the red curve is q
(u)
t,n (x) (changed),

• the light blue curve is qt,n(x) with correction (changed).

These figures show us that the lower bounds are really close to the estimates of the true
continuation functions, but the upper bounds are loose. The results that were received for
the estimates of the continuation function and its bounds in Györfi et al. (2012) were the
same. That means that the upper bounds still need to be improved.

Figures 3, 4, 5 and 6 show us the behaviour of the estimator with changes denoted by
light-blue curve, and without changes by red curve. Figures 5 and 6 are zoomed marked
areas on Figure 3 and 4, respectively. We see in the figures that the two functions do not
differ significantly. Hence, the changes we made did not influence much the payoff from
continuation, and as a consequence, the price of the option. However, the changes were
crucial and enable us to use those estimates for data in a real life.
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Figure 4.1: Estimates for memoryless modelling, t = 4

Figure 4.2: Estimates for memoryless modelling, t = 16

33



C
E

U
eT

D
C

ol
le

ct
io

n

Figure 4.3: Original and changed estimates, t=4

Figure 4.4: Original and changed estimates, t = 16
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Figure 4.5: Original and changed estimates, zoomed part, t = 4

Figure 4.6: Original and changed estimates, zoomed part, t = 16
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Conclusion

This thesis has built the general setup for the problem of pricing the American options. We
have used empirical methods to receive the price of the options. The empirical approach
means that we use the known prices from the past to receive the estimate of the future price
of the options. We summarized the results developed by different researchers, making full,
self-contained survey of this problem.

We have performed the simulations to evaluate the behaviour of the changed estimator
that is suited for the real life problems. We saw that the estimates for the continuation
value are almost the same as in Györfi et al. (2012). This shows that the previously received
results are truthful.

In addition, we proved that the continuation function in memoryless model is non-
increasing, and this explains the intuition behind the optimal stopping time.
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