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Introduction

The theory of Markovian Decision Processes (MDPs) provide a popular framework to
model operation research and control problems. As an illustrative example, consider an
inventory control problem (Puterman (1994); Szepesvári (2010)). We control an inventory
of a fixed maximal size and every day we have to order the quantity for the next day
and, afterwards, we observe stochastic demand. Our revenue on each day depends on
the demand and on the prices at which products are sold. The goal is to maximize
the expected total future income. There are several key features that distinguishes this
problem. Among them there are the sequential fashion of decision making, the stochastic
nature of the reward (revenue) we receive and the cumulative form of the objective we
want to maximize.

In general, Markovian Decision Process models the interaction between an agent (in-
ventory manager) and the environment (market). In each time step (day) the agent
observes the current state of the environment (the current size of the inventory, past
prices and demands) and then makes a decision about the next action (order) that it
sends to the environment. The environment then samples the new state based on the
previous one and the action received (this corresponds to the assumption that demand
and prices change stochastically). The agent then observes the reward (or, alternatively,
the loss) for this round. The goal of an agent is to maximize (minimize, in case of losses)
the expected cumulative reward (loss) up to some finite horizon.

MDPs have been successfully applied to many real world problems (Sutton and Barto
(1998)). However, there are some aspects of real life that Markovian models fail to
address. For example, in the inventory control problem, prices can depend on a lot
of unobservable events and, thus, change arbitrarily. To address this issue, Even-Dar
et al. (2004, 2009) propose a way to relax the assumption that the states are completely
Markovian (i.e. that the next state of the environment depends on the previous state and
action). Instead, they assume that there are external factors that can not be modelled,
however, they only influence the rewards that the agent receives, but not the transitions
between the states. This naturally leads to a formulation of the problem that enjoy
similar properties with the framework of online prediction with expert advice (or, in
short, experts framework).

In the experts framework (Cesa-Bianchi and Lugosi (2006)) we face the sequential
decision problem of choosing an decision-making experts from some finite set. Afterwards,
we obtain the reward of the expert chosen and the goal is to perform not worse than the
best fixed expert chosen in hindsight. If we allow arbitrary rewards in MDP, then it is
natural to aim to perform not worse than some reference class of agents. A good reference
class, as proposed in Even-Dar et al. (2004, 2009), is the class of so-called stochastic
stationary policies, since there is always a member of this class that achieves the best
possible performance (Puterman (1994)). The difference between our cumulative reward
and the cumulative reward of the best member of the class is called a regret. Therefore,
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following the ideas of the experts framework, we set the goal of minimizing the regret.
The resulting problem is called an online learning problem in MDPs.

In the experts problems the performance guarantees for the algorithms are stated as
bounds on the regret. These bounds depend on different parameters, but the one that we
are interested the most is the dependence on the total number of the time steps T (which
is fixed in advance). The desired property of the algorithms is Hannan-consistency, i.e. a
sublinear growth of the regret, which guarantees vanishing average regret. However, the
rate of growth is also a quantity of the interest.

Bringing some more ideas from the experts framework, we introduce two types of the
main problem: the full-information and the bandit one. They differ in the amount of the
information available to the learner (agent) after each round of the interaction. In the
full-information case the agent observes the rewards for all state-action pairs that could
possibly occur. It is obvious that this is a very strong requirement, since, for example, in
the inventory control problem this corresponds to the knowledge of the demand and prices
if we would have chosen a different amount to order. Hence, we also need to consider the
so-called bandit version, when we observe only the reward for the actual state and action.
However, even if quite unrealistic, the full-information case is an important problem, since
it provides us with the useful insight to the problem and usually serves as an intermediate
step towards the solution of the bandit case.

In their seminal paper Even-Dar et al. (2004, 2009) consider the full-information case
and the provide an algorithm that obtains the optimal O(

√
T ) bound. Later, Yu et al.

(2009) present a new algorithm and prove O(T 3/4+ε) bound for the full-information case.
While the regret of their algorithm is higher, it has less computation complexity.

A related work is due to Yu and Mannor (2009a,b). Their problem is more general
than ours, since they assume that the transition probabilities can also change arbitrarily
(while we require them to be fixed). In addition, as pointed out in Neu et al. (2010a), their
analysis seems to have gaps and, therefore, we can rely only on the Hannan-consistent
property of their algorithm.

In the bandit setting the first Hannan-consistent algorithm is given by Yu et al. (2009).
Subsequently, Neu et al. (2010b) extend the algorithm of Even-Dar et al. (2004, 2009) to
the bandit case and prove suboptimal O(T 2/3) bound.

In this work we also consider another modification of the original problem, which is
called an online stochastic shortest path problem and can be thought of as an extension of
the stochastic shortest path problem (Bertsekas and Tsitsiklis (1996)) to the online setting
and as a stochastic version of the online shortest path problem (György et al. (2007)).
In this problem the interaction between the agent and the environment is divided into
episodes, and the rewards are allowed to change arbitrarily between the episodes. This is
an important problem, since it naturally models some real life situation like the routing in
virtual networks. The problem was first considered by Neu et al. (2010a). They introduce
loop-free assumption on MDP and provide an algorithm that achieves O(L2

√
T ) bound

on the regret in the full-information case, where L is the number of layers. Assuming
that all states are reachable with probability α > 0 under all policies, they also show
O(L2

√
T/α) bound in the bandit case. A related problem in the full-information case is

presented by Neu et al. (2012) with the difference that they relax the assumption that the
stochastic model of the environment is known. They give an algorithm with an O(L

√
T )

bound on the regret.
The motivation for this thesis is to study the application of the Proximal Point Algo-

rithm to the problems described. Our work is inspired by the insightful article of Peters
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et al. (2010), who present a new approach called REPS. Motivated by the need to con-
strain the information loss, they derive the algorithm and compare it numerically with
the existing approaches. Our study shows that the idea the authors came up with is an
instance of the Proximal Point Algorithm, a deeply investigated algorithm from the field
of online linear optimization.

The primal idea of the algorithm is, at each time step, to choose a policy which
maximizes the previously observed reward (on average) and, at the same time, is not too
far from the previous choice. We present the complete theory underlying the algorithm
and, at first, show how to apply it to the both versions of the online stochastic shortest
path problem. We show that it achieves the regret of order O(L

√
T ) in both cases, which

is a vast improvement over previously known result in terms of the dependence on L
and α. Next, we present the O-REPS algorithm, the application of the Proximal Point
Algorithm to the online learning problem in more general MDPs. We prove the optimal
O(
√
T ) order of the regret, but with smaller additional terms than in the previously

known results.
The rest of the thesis is structured as follows. In Chapter 1 we present the theory

underlying the Proximal Point Algorithm and show how it is applied to the online linear
optimization and multi-armed bandit problems. In Chapter 2 we present the problems
described above formally. Then we show how the algorithm works in episodic problems
and prove the corresponding regret bounds. Finally, we derive the closed form of O-REPS
for the online learning in MDPs and show its performance guarantees.

4
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Chapter 1

Online linear optimization

The problem we consider in this chapter comes as a natural generalization of a multi-
armed bandit problem. Bandit online linear optimization is a very general framework
that is used not only in applications, but also as a building block in algorithms for more
complex problems. We are following the exposition presented in Szepesvári et al. (2011)
and Cesa-Bianchi and Lugosi (2006).

1.1 The problem description

The problem is described as follows: there is a learner (algorithm) that interacts with
some environment. We do not make any assumptions on the nature of the environment,
except that it is non-adaptive, but it can be adversarial in the game theoretic sense.
Interaction goes in rounds up to some prescribed finite horizon T . At each round, the
environment chooses a loss function `t(·) : Rd → R, but does not reveal it to the learner.
The algorithm then chooses a vector dt ∈ D, where D ⊆ Rd is called a decision set. Then
the learner suffers a loss `t(dt). The goal of the learner is to achieve a small cumulative
loss

L̂T =
T∑
t=1

`t(dt).

We measure our performance by the so-called regret. First, let LT (p) be a cumulative
loss of a fixed point p ∈ D

LT (p) =
T∑
t=1

`t(p).

Then we define the regret RT (p) with respect to some fixed point p

RT (p) = L̂T − LT (p).

Therefore, the ultimate goal is to minimize the following notion of the regret, which is
equivalent to minimizing the learner’s cumulative loss

RT = sup
p∈D
RT (p) = L̂T − inf

p∈D
LT (p).

The important issue is the information available to the learner at the end of each round.
We distinguish between two important cases of the problem. The first one is the full-
information case, when the learner receives the loss function `t(·) itself. The second one
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Parameters: decision set D, finite horizon T .
Environment chooses points f1, ..., fT ∈ Rd.
for t = 1 to T :

1. Learner chooses point dt ∈ D.

2. ft (full information) or 〈dt, ft〉 (bandit information) is revealed.

3. Learner suffers loss 〈dt, ft〉.

Figure 1.1: (Bandit) linear online optimization problem

is the bandit case, when the algorithm learns only the loss in the point chosen, that is,
`t(dt).

The problem described above is a (bandit) online optimization problem. We will
be interested in the particular case of it when `t(d) = 〈d, ft〉, where ft ∈ Rd and 〈·, ·〉
denotes a dot product (〈x, y〉 =

∑d
i=1 xiyi, where xi and yi are the components of the

corresponding vectors).
We already mentioned that we assume that the environment is non-adaptive. In

other words, we disallow the environment to choose loss functions at round t based on
the choices of the algorithm in the previous rounds, i.e. on d1, .., dt−1. In this case, we
can assume that all the loss functions are chosen in advance, before the actual interaction
starts. The summary of the resulting problem is given in Figure 1.1.

In the next sections we will describe a Proximal Point Algorithm that solves this
problem and which will be a core for our approaches for solving MDP problems. This
method was originally discovered in the context of convex optimization by Martinet
(1970). To define it and to derive the regret bounds, we will need some definitions and
results from convex analysis.

1.2 Bregman divergences

The Proximal Point Algorithm (PPA) is based on the notion of Bregman divergences.
They were introduced in Bregman (1967) as a base for the method of finding common
points of convex sets. First, we need a definition of a Legendre function.

Definition 1.1 (Legendre function). A function R : A→ R is called a Legendre function
if it satisfies the following conditions.

1. A ⊆ Rd, A 6= ∅ and A◦ is convex (A◦ denotes the interior of A)

2. R is strictly convex

3. partial derivatives ∂R
∂xi

exist and are continuous for all i = 1, .., d

4. any sequence (yn) ∈ A converging to a boundary point of A satisfies

lim
n→∞

||∇R(yn)|| =∞.

In the classical text of Rockafellar (1970) such functions are called essentially smooth.
The strict convexity and “blowing up” of the gradient at the border ensures the existence
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and uniqueness of the minimum of R inside A, a property that will be of big importance
for PPA. In the definition we do not specify the norm used, since the convergence in one
norm implies the convergence in any other norm due to the norm equivalence in Rd.

Definition 1.2 (Bregman divergence). Let R : A→ R be a Legendre function, then the
Bregman divergence corresponding to R is a function DR : A× A◦ → R defined by

DR(u, v) = R(u)−R(v)− 〈∇R(v), u− v〉.

In other words, the Bregman divergence is just the difference between function R(u)
and its first-order Taylor expansion around point v. It can also be seen as a generalization
of a notion of a ”distance” to arbitrary convex functions. In fact, the squared euclidean
distance is a particular case of a Bregman divergence.

Example 1.1. Let us consider the simplest case when d = 1. If we take R(u) = u2 and
A = R, then the corresponding divergence is DR(u, v) = u2 − v2 − 2v(u− v) = (u− v)2.

Example 1.2. Now turn to d-dimensional space. Take R(u) = ||u||22 and A = Rd, then
DR(u, v) = ||u||22 − ||v||22 − 〈2v, u− v〉 = ||u− v||22.

Example 1.3. The next divergence will be of great importance for us. We start with
R(u) =

∑d
i=1 ui lnui −

∑d
i=1 ui. This R is called un-normalized negative entropy and it

is a Legendre function on A = Rd
+ =

{
x ∈ Rd : xi > 0, i = 1, .., d

}
. The corresponding

Bregman divergence is the un-normalized Kullback-Leibler divergence.

DR(u, v) =
d∑
i=1

ui lnui −
d∑
i=1

ui −
d∑
i=1

vi ln vi +
d∑
i=1

vi −
d∑
i=1

ln vi(ui − vi)

=
d∑
i=1

ui ln
ui
vi

+
d∑
i=1

(vi − ui).

As we already mentioned, Bregman divergences enjoy some similar properties as met-
rics. These properties are summarized in the following proposition.

Proposition 1.1. Let R : A→ R be a Legendre function and DR(u, v) is the correspond-
ing Bregman divergence. Then the following holds

1. DR(u, v) ≥ 0 for all u ∈ A, v ∈ A◦

2. DR(u, v) = 0⇐⇒ u = v

Proof. From its definition, the Bregman divergence is the difference between R(u) and
its first-order Taylor expansion of R around v. Then the first point follows from the
convexity of R.

Since R is also strictly convex, it is equal to its linear approximation around v only
in that very point, which is the content of the second claim.

However, the Bregman divergence is not a metric, since it is not symmetric, and the
triangle inequality does not hold. The next proposition establishes a connection between
the divergences of three arbitray points. This can be thought of as a generalization of
“law of cosines”.
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Proposition 1.2 (Generalized law of cosines). Let R : A → R be a Legendre function.
Then for all u ∈ A, and v, w ∈ A◦

DR(u, v) +DR(v, w) = DR(u,w) + 〈∇R(w)−∇R(v), u− v〉.

Proof. The statement can be proved by the following direct computation:

DR(u, v) +DR(v, w) = R(u)−R(v)− 〈∇R(v), u− v〉
+R(v)−R(w)− 〈∇R(w), v − w〉
= R(u)−R(w)− 〈∇R(w), u− w〉+ 〈∇R(w), u− w〉
− 〈∇R(v), u− v〉 − 〈∇R(w), v − w〉
= DR(u,w) + 〈∇R(w), u− v〉 − 〈∇R(v), u− v〉
= DR(u,w) + 〈∇R(w)−∇R(v), u− v〉.

An interesting property of a Legendre function is that if we add a linear function to
it, the resulting function will also be Legendre with the same divergence. In particu-
lar, this implies that Bregman divergences of Legendre functions are Legendre functions
themselves.

Proposition 1.3. Let R : A → R be a Legendre function. For any α ∈ Rd and β ∈ R
define R̂(u) = R(u) + 〈α, u〉+ β. Then the following holds

1. R̂ is a Legendre function

2. DR(u, v) = DR̂(u, v)

Proof. The domain of R̂ is the same as the domain of R, hence the first condition in
the definition of Legendre function is satisfied. R̂ is a combination of strictly convex and
linear functions, hence it is strictly convex. From the definition of R̂ we can compute

∇R̂(u) = ∇R(u) + α.

We conclude that the continuity of partial derivatives is preserved.
For the proof of the fourth condition take a sequence (yn) ∈ A that approaches the

boundary of A. Then we have

||∇R̂(yn)|| = ||∇R(yn) + α||
≥ ||∇R(yn)|| − ||α||,

and because ||α|| is a constant, the limn→∞ ||∇R(yn)|| =∞ implies limn→∞ ||∇R̂(yn)|| =
∞. This concludes the proof that R̂ is Legendre.

The second claim follows from direct computation:

DR̂(u, v) = R̂(u)− R̂(v)− 〈∇R̂(v), u− v〉
= R(u) + 〈α, u〉+ β −R(v)− 〈α, v〉 − β − 〈∇R(u) + α, u− v〉
= R(u)−R(v)− 〈∇R(v), u− v〉
= DR(u, v).
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Corollary 1.1. Let R : A → R be a Legendre function. Then DR(·, v) is a Legendre
function for any fixed v ∈ A◦.

The next important notion for PPA is a Bregman projection. We start with a defini-
tion.

Definition 1.3 (Bregman projection). Let R : A → R be a Legendre function and
K ⊆ Rd be a closed convex set, such that K ∩ A 6= ∅. Then a Bregman projection
corresponding to R and K is a function ΠR,K : A◦ → K ∩ A defined by

ΠR,K(w) = argmin
u∈K∩A

DR(u,w).

It is not clear from the definition if is it well-defined or not. This is the content of the
following lemma.

Lemma 1.1. For all Legendre functions R : A → R with bounded partial level sets, i.e.
with {u ∈ A : DR(u, v) ≤ α} bounded for all v ∈ A◦ and all α ∈ R, for all closed convex
sets K ⊆ Rd such that A∩K 6= ∅, and for all w ∈ A◦, the Bregman projection of w onto
K exists and unique.

As noted in Bauschke and Borwein (1997), the boundedness of partial level sets is not
required for this lemma. However, in this case the proof is complex and based on some
advanced tools from convex analysis. We present the simpler version from Censor and
Zenios (1998), which is sufficient for our needs, since our functions of interest satisfy the
stated requirement.

Proof of Lemma 1.1. We start with the proof of existence. First, we observe thatDR(·, w)
is a continuous function, since it is a combination of continuous and linear functions. Then
fix any v ∈ A ∩K. The set

L = {u ∈ A : DR(u,w) ≤ DR(v, w)}

is bounded by the assumption. It is also closed because of the continuity of DR(·, w).
Now we define another set B = A∩K ∩L. From the facts that v ∈ A∩K and v ∈ L

it follows that v ∈ B. So B is non-empty. B is also bounded, because it is a subset of
bounded set L and B is closed as an intersection of closed sets. We conclude that B
is compact, therefore, by the extreme value theorem, the continuous function DR(·, w)
attains its infimum over B in w′ = argminu∈BDR(u,w).

For any u ∈ A ∩ K outside B, i.e. such that u /∈ L, DR(w′, w) < DR(u,w) by the
definition of L. Hence, w′ = argminu∈A∩K DR(u,w).

The next thing we need to show is uniqueness. Assume there are u, v ∈ A ∩K, such
that

DR(u,w) = DR(v, w) = min
x∈A∩K

DR(x,w)

and u 6= v. Then the point u+v
2
∈ A∩K by the convexity of A∩K. From strict convexity

of R we get

DR(
u+ v

2
, w) = R(

u+ v

2
)−R(w)− 〈∇R(w),

u+ v

2
− w〉

<
1

2
R(u) +

1

2
R(v)−R(w)− 1

2
〈∇R(w), u− w〉 − 1

2
〈∇R(w), v − w〉

=
1

2
DR(u,w) +

1

2
DR(v, w)

= min
x∈A∩K

DR(x,w).

9
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Thus, we arrived at contradiction, since the value of DR(·, w) in u+v
2

can not be smaller
than the minimum over the whole set.

Example 1.4. Of course, R(u) = ||u||22 has bounded partial level sets. In this case these
sets take the next form for some v ∈ Rd{

u ∈ A : ||u− v||22 ≤ α
}
,

and these sets are just balls in Rd.

Example 1.5. In this example we will show that un-normalized negative entropy also
satisfies conditions of Lemma 1.1. For this we need log sum inequality, which can be
found in Cover and Thomas (1991), for example. It states that for any u, v ∈ Rd

+

d∑
i=1

ui ln
ui
vi
≥

(
d∑
i=1

ui

)
ln

∑d
i=1 ui∑d
i=1 vi

Just for reminder, R(u) =
∑d

i=1 ui lnui −
∑d

i=1 ui and A = Rd
+. Since we need to show

boundedness for some norm (which would imply boundedness in any norm), we will use
`1-norm and note that on Rd

+: ||u||1 =
∑d

i=1 |ui| =
∑d

i=1 ui. Again we are proving the
boundedness of sets in the following form (for some v ∈ A◦){

u ∈ A :
d∑
i=1

ui ln
ui
vi

+
d∑
i=1

(vi − ui) ≤ α

}
.

To prove boundedness, we can prove that if ||u||1 →∞, then DR(u, v)→∞. Using the
log sum inequality

DR(u, v) =
d∑
i=1

ui ln
ui
vi

+
d∑
i=1

(vi − ui)

≥ ||u||1 ln
||u||1
||v||1

+ ||v||1 − ||u||1

= ||u||1
(

ln
||u||1
||v||1

− 1

)
+ ||v||1. (1.1)

And when ||u||1 →∞, (1.1) goes to infinity.

Since Lemma 1.1 holds in general case, further we will omit the requirement for
bounded partial level sets. In the next few lemmas we present the important properties
of Bregman projections.

Lemma 1.2 (Generalized pythagorean inequality). Let R : A → R be a Legendre func-
tion. For all closed and convex sets K ⊆ Rd, such that K ∩ A 6= ∅

DR(u,w) ≥ DR(u,ΠR,K(w)) +DR(ΠR,K(w), w)

for all u ∈ K and w ∈ A◦.
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Proof. Denote w′ = ΠR,K(w). Let F (v) = DR(v, w)−DR(v, w′). Then we have

F (v) = DR(v, w)−DR(v, w′)

= R(v)−R(w)− 〈∇R(w), v − w〉 −R(v) +R(w′) + 〈∇R(w′), v − w′〉
= R(w′)−R(w) + 〈∇R(w′), v − w′〉 − 〈∇R(w), v − w〉.

And we observe that F (v) is a linear function. Hence, if we fix u ∈ K and take h(α) =
αu+ (1− α)w′ for α ∈ [0, 1], then F (h(α)) = αF (u) + (1− α)F (w′). In other words,

DR(h(α), w)−DR(h(α), w′) = α(DR(u,w)−DR(u,w′)) + (1− α)DR(w′, w).

For α 6= 0, this is equivalent to

DR(u,w)−DR(u,w′)−DR(w′, w) =
DR(h(α), w)−DR(h(α), w′)−DR(w′, w)

α
. (1.2)

By the definition of w′, DR(w′, w) ≤ DR(x,w) for all x ∈ K. From the facts that
u ∈ K, w′ ∈ K and convexity of K it follows that h(α) ∈ K for α ∈ [0, 1]. Thus,
DR(w′, w) ≤ DR(h(α), w) for α ∈ [0, 1]. Combining with (1.2)

DR(u,w)−DR(u,w′)−DR(w′, w) ≥ −DR(h(α), w′)

α
. (1.3)

Let us define G(x) = DR(x,w′). Then the right-hand side of the last inequality is −G(h(α))
α

.
Now we take a limit and rewrite (without minus sign, for the moment)

lim
α→0+

G(h(α))

α
= lim

α→0+

G(h(α))−G(w′)

α

= lim
α→0+

G(w′ + α(u− w′))−G(w′)

α
. (1.4)

Observe that (1.4) is just a definition of the directional derivative of G in the direction
u−w′ in the point w′. Denote it as ∇u−w′G(w′). We need to ensure that it exists. First,
we note that G(x) is continuously differentiable in A◦, because R is Legendre. Therefore,
∇u−w′G(x) exists for every point x ∈ A◦. Second, w′ ∈ A◦, again, because R is Legendre
and the condition 4 of its definition ensures that w′ does not belong to the boundary.
Now we use the relation between the directional derivative and the gradient of a function:

∇u−w′G(w′) = (u− w′)∇G(w′).

Therefore, we need to compute ∇G(w′). G(x) is non-negative function and G(w′) = 0,
in other words, it attains its minimum in the point w′. Since it is differentiable, all this
implies that ∇G(w′) = 0. Hence, (1.4) is zero. Substituting this into (1.3) we obtain the
desired inequality.

We also would like to note that if K is a hyperplane in Rd, then inequality in Lemma
1.2 holds with equality. However, we do not need this result further, so we will not prove
it.

The next lemma is useful for the implementation and analysis of the Proximal Point
Algorithm. It says that if we want to compute the minimum of the Legendre function
over some set, we can first compute the unconstrained minimizer and then project it to
the desired set.
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Lemma 1.3 (Projection lemma). Let R : A → R be a Legendre function. Let K ⊆ Rd

be convex, closed and A ∩K 6= ∅. Then

ΠR,K(argmin
u∈A

R(u)) = argmin
u∈A∩K

R(u).

Proof. Denote w′ = argminu∈AR(u). Since it is an unconstrained minimizer of R,
∇R(w′) = 0. Combining this with the definition of the Bregman divergence gives us

ΠR,K(w′) = argmin
u∈A∩K

DR(u,w′)

= argmin
u∈A∩K

(R(u)−R(w′)− 〈∇R(w′), u− w′〉)

= argmin
u∈A∩K

(R(u)−R(w′))

= argmin
u∈A∩K

R(u).

1.3 Strong convexity and dual norms

To state the main result for the Proximal Point Algorithm we need a few more definitions
and results from functional analysis. The first is more strong notion of convexity. While
for convex functions we require a linear lower bound, the strong convexity strengthen this
to a quadratic lower bound. More precisely, we have the following definition.

Definition 1.4 (α-strongly convex function). Let R : A → R be a Legendre function.
Then R is called strongly convex with respect some fixed norm || · ||, if for any u, v ∈ A

R(u) ≥ R(v) + 〈∇R(v), u− v〉+ α||u− v||2.

Note that this holds for a more general class of functions, but we only need this
property for Legendre functions now. In addition, the definition depends on the norm
used and it implies strict convexity (independently of the norm). We will need the notion
of the dual norm and the Hölder’s inequality.

Definition 1.5 (Dual norm). Let || · || be a norm on Rd. The dual norm || · ||∗ for it is
defined by

||u||∗ = sup
v∈Rd:||v||=1

〈u, v〉.

The basic results from functional analysis tell us that || · ||∗ is indeed a norm and that
the dual of || · ||∗ is again || · ||.

Lemma 1.4 (Hölder’s inequality). Let || · || be a norm on Rd. Then

〈u, v〉 ≤ ||u|| · ||v||∗

for any u, v ∈ Rd.
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Proof. The proof follows trivially from the definition:

〈u, v〉 ≤ ||u||〈 u
||u||

, v〉

≤ ||u|| sup
u∈Rd
〈 u
||u||

, v〉

= ||u|| sup
u∈Rd:||u||=1

〈u, v〉

= ||u|| · ||v||∗.

1.4 Proximal Point Algorithm

Now we are ready to present the Proximal Point Algorithm for the linear online opti-
mization problem. Let R : A→ R be a Legendre function. Then the algorithm computes
the point dt+1 using the following rule

dt+1 = argmin
d∈D∩A

(η〈d, ft〉+DR(d, dt)) , (1.5)

where η is a tuning parameter, and it starts with d1 = argmind∈D∩AR(d). Intuitively,
the algorithm tries to minimize the previous loss and also not to deviate too much from
the previously chosen point, since it minimized the losses on the rounds before the last
one. One can formulate the same algorithm in a more convenient way. First, we compute
unconstrained minimizer d̃t+1 and then project it to the decision space. This formulation
simplifies the analysis and is also more suitable for the implementation. Formally,

d̃t+1 = argmin
d∈A

(η〈d, ft〉+DR(d, dt)) (1.6)

dt+1 = ΠR,D(d̃t+1) (1.7)

and the algorithm starts with d̃1 = argmind∈AR(d) and d1 = ΠR,D(d̃1).

Proposition 1.4. The two formulations of PPA are equivalent in the sense that they
produce the same sequence of points.

Proof. Introduce function Ft(u) = η〈u, ft〉 + DR(u, dt). Expanding the DR by its defini-
tion, we get

Ft(u) = η〈u, ft〉+DR(u, dt)

= η〈u, ft〉+R(u)−R(dt)− 〈∇R(dt), u− dt〉.

Hence, by Proposition 1.3, Ft is Legendre with the same divergence as R has, i.e.
DR(u, v) = DFt(u, v). Now, using the projection lemma, we can rewrite

d̃t+1 = argmin
d∈A

(Ft(d))

dt+1 = ΠFt,D(d̃t+1).

The only difference from (1.7) is that we make a projection with respect to Ft, but these
projections are equivalent because of the equivalence of corresponding divergences.

13
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Algorithm 1: Proximal Point Algorithm for linear online optimization

Parameters: D - decision space, finite horizon T , η, R - Legendre function
Compute d̃1 = argmind∈AR(d);

Compute d1 = ΠR,D(d̃1);
Output d1 as a decision;
Receive f1;
for t = 2, . . . , T do

Compute d̃t = argmind∈A (η〈d, ft−1〉+DR(d, dt−1));

Compute dt = ΠR,D(d̃t);
Output dt as a decision;
Receive ft;

end

1.4.1 Analysis of the Proximal Point Algorithm

To prove the regret bound for PPA, we start with a small proposition.

Proposition 1.5. The sequence of points generated by PPA satisfies

∇R(d̃t+1)−∇R(dt) = −ηft.

Proof. Since in (1.6) we compute an unconstrained minimizer, we have

∇ (η〈d, ft〉+DR(d, dt)) |d=d̃t+1
= 0. (1.8)

Now we just compute the gradient

∇ (η〈d, ft〉+DR(d, dt)) = ηft +∇DR(d, dt)

= ηft +∇(R(d)−R(dt)− 〈∇R(dt), d− dt〉)
= ηft +∇R(d)−∇R(dt).

Then evaluate it at d̃t+1 and the claim follows

(ηft +∇R(d)−∇R(dt))|d=d̃t+1
= ηft +∇R(d̃t+1)−∇R(dt) = 0.

Corollary 1.2. For any t = 1, . . . , T

DR(dt, d̃t+1) +DR(d̃t+1, dt) = η〈ft, dt − d̃t+1〉.

Proof.

DR(dt, d̃t+1) +DR(d̃t+1, dt) = R(dt)−R(d̃t+1)− 〈∇R(d̃t+1), dt − d̃t+1〉
+R(d̃t+1)−R(dt+1)− 〈∇R(dt), d̃t+1 − dt〉
= 〈∇R(dt)−∇R(d̃t+1), dt − d̃t+1〉
= η〈ft, dt − d̃t+1〉 (Proposition 1.5).
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The next lemma will be useful not only as an intermediate step towards the main
result of this section, but also as a tool to prove the bound for the bandit version of
the algorithm. Basically, this lemma tells us that to prove a good bound it is enough to
bound 〈dt, ft〉 − 〈d̃t+1, ft〉 in each time step.

Lemma 1.5. For any point p ∈ D ∩ A and any η > 0

L̂T − LT (p) ≤
T∑
t=1

(〈dt, ft〉 − 〈d̃t+1, ft〉) +
DR(p, d1)

η
.

Proof. We start with bounding the differences in losses in each time step:

〈dt, ft〉 − 〈p, ft〉 = 〈dt − p, ft〉

=
1

η
〈p− dt,∇R(d̃t+1)−∇R(dt)〉 (Proposition 1.5)

=
1

η

(
DR(p, dt) +DR(dt, d̃t+1)−DR(p, d̃t+1)

)
(Proposition 1.2)

≤ 1

η

(
DR(p, dt) +DR(dt, d̃t+1)−DR(p, dt+1)−DR(dt+1, d̃t+1)

)
(Lemma 1.2)

≤ 1

η

(
DR(p, dt) +DR(dt, d̃t+1)−DR(p, dt+1)

)
.

The last line follows from the non-negativity of the divergence. Now we sum up the
inequalities obtained from 1 to T . The terms DR(p, dt) form a telescoping sequence,
hence we have the following

L̂T − LT (p) ≤ 1

η

(
DR(p, d1)−DR(p, dT+1) +

T∑
t=1

DR(dt, d̃t+1)

)

≤ 1

η

(
DR(p, d1) +

T∑
t=1

DR(dt, d̃t+1)

)
. (1.9)

Where we again used the non-negativity of the divergence. It remains to bound the
second term in (1.9). Again we do it for every t separately

DR(dt, d̃t+1) ≤ DR(dt, d̃t+1) +DR(d̃t+1, dt)

= η〈ft, dt − d̃t+1〉 (Corollary 1.2).

We finish the proof by substituting the obtained inequality in (1.9).

Now we are ready to state and prove the main bound for the Proximal Point Algorithm
in the full-information case.

Theorem 1.1. Let R : A→ R be a Legendre and α-strongly convex function with respect
to some norm || · ||. If the proximal point algorithm is run using R and η > 0, then for
any p ∈ D ∩ A

L̂T − LT (p) ≤ η

2α

T∑
t=1

||ft||2∗ +
R(p)−R(d1)

η
.
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Proof. Our starting point is Lemma 1.5:

L̂T − LT (p) ≤
T∑
t=1

(〈dt, ft〉 − 〈d̃t+1, ft〉) +
DR(p, d1)

η
. (1.10)

First, we deal with the second term. By the projection lemma, d1 is a minimum of R in
D ∩ A. This implies that 〈∇R(d1), p − d1〉 ≥ 0 for all p ∈ D ∩ A, because otherwise we
could decrease R by taking small step in the direction p− d1. Using this fact

DR(p, d1) = R(p)−R(d1)−〈∇R(d1), p− d1〉
≤ R(p)−R(d1).

Now we turn our attention to the first term in (1.10). For each t the Hölder inequality
gives us

〈dt, ft〉 − 〈d̃t+1, ft〉 ≤ ||dt − d̃t+1|| · ||ft||∗.
It remains to prove that ||dt− d̃t+1|| ≤ η

2α
||ft||∗. If dt = d̃t+1, then it is trivial. Otherwise,

the strong convexity of R implies

DR(dt, d̃t+1) ≥ α||dt − d̃t+1||2

DR(d̃t+1, dt) ≥ α||d̃t+1 − dt||2.
Summing up these inequalities and using Corollary 1.2 and Hölder inequality

2α||dt − d̃t+1||2 ≤ DR(dt, d̃t+1) +DR(d̃t+1, dt)

= η〈ft, dt − d̃t+1〉
≤ η||ft||∗ · ||dt − d̃t+1||.

We conclude the proof dividing both sides by the 2α||dt − d̃t+1|| > 0.

Corollary 1.3. If ||ft||∗ ≤ 1 for any t = 1, . . . , T and η =
√

2α (R(p)−R(d1))
T

we obtain the

following regret bound for any p ∈ D ∩ A

L̂T − LT (p) ≤ 2
√

2αT (R(p)−R(d1))

Rephrasing the result we just proved, PPA is able to achieve the regret of order
O(
√
T ). Actually, this is a tight result, since there is a matching lower bound of order

Ω(
√
T ) for discrete prediction problems, which are special cases of online linear optimiza-

tion (Cesa-Bianchi and Lugosi (2006)).

1.4.2 Exponentially Weighted Average algorithm

In this subsection we are presenting the Exponentially Weighted Average algorithm
(EWA). It is just an instance of the Proximal Point Algorithm that uses un-normalized
negative entropy. In addition, we restrict ourselves to the problems where the decision
space D is a probability simplex in Rd. The purpose of this section is to derive the closed
form formulas for the updates and also to prove a bound on the regret of EWA. Just to
recall, throughout this section we will work with the following functions

R(u) =
d∑
i=1

ui lnui −
d∑
i=1

ui
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DR(u, v) =
d∑
i=1

ui ln
ui
vi
−

d∑
i=1

(ui − vi).

We will also need the gradients of the functions R(·) and DR(·, v)

∇iR(u) = lnui

∇iDR(u, v) = lnui − ln vi.

First, we derive the formula for d̃t. Recall that it is computed using the following rule

d̃t = argmin
d∈A

(η〈d, ft−1〉+DR(d, dt−1)) .

Since this is unconstrained minimization, we can just compute the gradient and set it to
zero (we denote by ut,i the i-th component of the vector ut)

ηft−1,i + ln di − ln dt−1,i = 0.

Therefore, d̃t,i = dt−1,ie
−ηft−1,i . The projection step is similar, with the difference that we

have a constrained minimization

dt = argmin
d∈D∩A

DR(d, d̃t).

First we write the Lagrangian (recall that D is a probability simplex)

L = DR(d, d̃t) + λ
d∑
i=1

di,

∇iL = ln di − ln d̃t,i + λ = 0.

We conclude that di = d̃t,ie
λ and the λ should be chosen such that

∑d
i=1 di = 1. Thus,

eλ = 1∑d
i=1 d̃t,i

and, finally, the projection corresponds to the following simple normalization

dt,i =
d̃t,i∑d
i=1 d̃t,i

=
dt−1,ie

−ηft−1,i∑d
j=1 dt−1,je−ηft−1,j

.

When we try to prove the bound on the regret for EWA we can not use Theorem 1.1
directly. The reason is that un-normalized negative entropy is not strongly convex with
respect to any norm on A, but it is possible to exploit the closed form of the updates to
prove the same bound.

Theorem 1.2. If EWA algorithm is run using η > 0, then for any p ∈ D ∩ A

L̂T − LT (p) ≤ η

T∑
t=1

||ft||2∞ +
R(p)−R(d1)

η
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Algorithm 2: Exponentially Weighted Average algorithm for linear online opti-
mization

Parameters: finite horizon T , η

Set d1 =
(

1
d
, .., 1

d

)T
;

Output d1 as a decision;
Receive f1;
for t = 2, . . . , T do

Compute dt component-wise as dt,i =
dt−1,ie

−ηft−1,i∑d
j=1 dt−1,je

−ηft−1,j
;

Output dt as a decision;
Receive ft;

end

Proof. We start with Lemma 1.5:

L̂T − LT (p) ≤
T∑
t=1

(〈dt, ft〉 − 〈d̃t+1, ft〉) +
DR(p, d1)

η
. (1.11)

The second term in (1.11) is bounded in the same way as in the Theorem 1.1. Thus, we
focus our attention on the first one. Let us introduce notation: for u, v ∈ Rd u ◦ v =
(u1v1, . . . , udvd)

T . Then for any time step t

d̃t+1,i = dt,ie
−ηft,i

≥ dt,i − ηdt,ift,i,

where we used the fact that ex ≥ 1 + x. Hence, we can rewrite

〈dt, ft〉 − 〈d̃t+1, ft〉 ≤ 〈dt, ft〉 − 〈dt, ft〉+ η〈dt ◦ ft, ft〉
= η〈dt ◦ ft, ft〉
≤ η||dt ◦ ft||1||ft||∞ (Hölder’s inequality).

The only thing left to deal with is ||dt◦ft||1. First we note that ||dt◦ft||1 =
∑d

i=1 |dt,ift,i| =
〈dt, |ft|〉, where |ft| denotes vector (|ft,1|, .., |ft,d|)T . Hence, we can again use Hölder’s
inequality. Note that the max-norm of ft equals to the max-norm of |ft|

||dt ◦ ft||1 = 〈dt, |ft|〉
≤ ||dt||1||ft||∞
= ||ft||∞.

Where the last step follows since dt ∈ D.

Corollary 1.4. If ||ft||∞ ≤ 1 for any t = 1, . . . , T and η =
√

ln d
T

we obtain the following

regret bound for any p ∈ D ∩ A

L̂T − LT (p) ≤ 2
√
T ln d.
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Proof. The only non-trivial step is to bound R(p)−R(d1):

R(p)−R(d1) =
d∑
i=1

pi ln pi −
d∑
i=1

pi −
d∑
i=1

d1,i ln d1,i +
d∑
i=1

d1,i

=
d∑
i=1

pi ln pi − 1−
d∑
i=1

d1,i ln d1,i + 1

≤ −
d∑
i=1

d1,i ln d1,i

≤ ln d.

Where the last two lines follow from the properties of the usual Shannon entropy H(u) =
−
∑d

i=1 ui lnui. Specifically, that 0 ≤ H(u) ≤ ln d (see Cover and Thomas (1991)).
Using the proven inequality and the assumption that ||ft||∞ ≤ 1 we can rewrite the

bound of Theorem 1.2 as

L̂T − LT (p) ≤ ηT +
ln d

η
.

Finally, we prove the corollary optimizing over η.

The bound on the regret for EWA is tight not only in T , what is the case for general
PPA, but also in N , since there is a matching lower bound of order Ω(

√
T lnN) (see

Cesa-Bianchi and Lugosi (2006), Theorem 3.7).

1.4.3 Exponentially Weighted Average algorithm for the multi-
armed bandit

In this subsection we consider the simplified version of bandit online linear optimization.
It is called a multi-armed bandit problem, which dates back to the work of Hannan (1957).
Fitting it into the framework of online linear optimization, we can formulate the problem
as follows. At each time step we should choose a vector eat ∈ ∆ = {e1, .., ed}, where
{ei}di=1 is a basis in Rd and at ∈ {1, . . . , d}. Then the loss incurred is the same as before:
`t(eat) = 〈eat , ft〉 = ft,at . This is exactly what we observe at the end of each round. It is
easy to see that for every deterministic strategy there exists a sequence of points ft such
that the strategy’s regret is linear in T . Hence, we need to consider algorithms that make
random choices. Formally, at each time step an algorithm should choose a distribution
dt ∈ D, where D ⊂ Rd is a probability simplex and then it samples at ∈ {1, . . . , d}
according to this distribution. If we would consider the following notion of pseudo-regret
as a measure of performance

R̂T = E

[
T∑
t=1

ft,at

]
− inf

d∈D

T∑
t=1

Ea∼d [ft,a]

then this problem is equivalent to the online linear optimization problem with decision
space D with the only difference that after each time step we observe a component ft,It
of vector ft, where It is drawn from dt. Let us denote by ut the information, observed
by the learner up to time t, i.e.

ut = {f1,I1 , f2,I2 , . . . , ft,It}
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Parameters: finite horizon T .
Environment chooses points f1, ..., fT ∈ Rd.
for t = 1 to T :

1. Learner chooses a distribution dt over {e1, .., ed}.
2. Learner observes a component ft,It , where It is drawn from dt.

3. Learner suffers loss 〈dt, ft〉.

Figure 1.2: Multi-armed bandit as a linear online optimization problem

Then the equivalence of the problems follows from the fact that

E [ft,at ] = E [E [ft,at|ut−1]]

= E

[
d∑
i=1

ft,iP [at = i|ut−1]

]

= E

[
d∑
i=1

ft,idt,i

]
= E [〈dt, ft〉] .

Similarly, Ea∼d [ft,a] = 〈d, ft〉. And the pseudo-regret transforms to

R̂T = E

[
T∑
t=1

〈dt, ft〉

]
− inf

d∈D

T∑
t=1

〈d, ft〉

Note that dt are now random due to the dependence on the observed information. This
is the final version of a problem that we consider in this and the next chapters. The
summary is given in Figure 1.2.

The main idea for solving this problem is to construct an estimate f̃t for the vector
ft knowing only one component of it. Then we feed the estimate to the EWA as if it was
the actual loss vector. The estimate that we are going to use is of the following form:

f̃t,i =

{
ft,i
dt,i

if It = i

0 otherwise
.

This can be equivalently written as f̃t,i =
ft,i
dt,i

I [It = i]. The reason why we chose this

estimator is that it is unbiased in the following sense

E
[
f̃t,i

∣∣∣ut−1

]
=
ft,i
dt,i

E [I [It = i]|ut−1]

=
ft,i
dt,i

P [It = i|ut−1]

=
ft,i
dt,i

dt,i

= ft,i.

The resulting algorithm that we call Exp3 algorithm (following Auer et al. (2002)) is
constructed by feeding the estimate to EWA using it as a black-box.

The following theorem provides the bound on the regret of Exp3.
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Algorithm 3: Exp3 algorithm for the multi-armed bandit

Parameters: finite horizon T , η

Set d1 =
(

1
d
, .., 1

d

)T
;

Output d1 as a decision;
Receive fIt ;

Compute f̃1 component-wise as f̃1,i =
f1,i
d1,i

I [I1 = i];

for t = 2, . . . , T do

Compute dt component-wise as dt,i =
dt−1,ie

−ηf̃t−1,i∑d
j=1 dt−1,je

−ηf̃t−1,j
;

Output dt as a decision;
Receive ft,It ;

Compute f̃t component-wise as f̃t,i =
ft,i
dt,i

I [It = i];

end

Theorem 1.3. If ||ft||∞ ≤ 1 for any t = 1, . . . , T and Exp3 algorithm is run using

η =
√

ln d
dT

, we obtain the following regret bound for any p ∈ D ∩ A

R̂T ≤ 2
√
Td ln d.

Proof. We use the unbiased property of the estimate f̃t to show that the loss in the game
that outputs f̃t is equal to the expected loss in the game with the actual vectors. More
precisely, for every p ∈ D ∩ A

〈p, ft〉 =
d∑
i=1

pift,i

=
d∑
i=1

piE
[
f̃t,i

∣∣∣ut−1

]
= E

[
d∑
i=1

pif̃t,i

∣∣∣∣∣ut−1

]
= E

[
〈p, f̃t〉

∣∣∣ut−1

]
.

This equality also holds for p = dt, hence, we can rewrite

〈dt, ft〉 − 〈p, ft〉 = E
[
〈dt, f̃t〉 − 〈p, f̃t〉

∣∣∣ut−1

]
. (1.12)

Since the expression under the expectation is exactly what black-box EWA is minimizing,
we can use the Lemma 1.5 to upper bound this term. Recall that Lemma 1.5 states

T∑
t=1

(
〈dt, f̃t〉 − 〈p, f̃t〉

)
≤

T∑
t=1

(
〈dt, f̃t〉 − 〈d̃t+1, f̃t〉

)
+
DR(p,d1)

η
.
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Now we take an expectation on both sides. The left-hand side becomes

E

[
T∑
t=1

(
〈dt, f̃t〉 − 〈p, f̃t〉

)]
=

T∑
t=1

E
[
〈dt, f̃t〉 − 〈p, f̃t〉

]
=

T∑
t=1

E
[
E
[
〈dt, f̃t〉 − 〈p, f̃t〉

∣∣∣ut−1

]]
=

T∑
t=1

E [〈dt, ft〉 − 〈p, ft〉]

= R̂T .

Now we deal with the expectation of the right-hand side of (1.4.3):

E

[
T∑
t=1

(
〈dt, f̃t〉 − 〈d̃t+1, f̃t〉

)]
=

T∑
t=1

E
[
〈dt, f̃t〉 − 〈d̃t+1, f̃t〉

]
=

T∑
t=1

E
[
E
[
〈dt, f̃t〉 − 〈d̃t+1, f̃t〉

∣∣∣ut−1

]]
. (1.13)

Using the argument similar to Theorem 1.2

E
[
〈dt, f̃t〉 − 〈d̃t+1, f̃t〉

∣∣∣ut−1

]
≤ E

[
η〈dt ◦ f̃t, f̃t〉

∣∣∣ut−1

]
. (1.14)

Now we take a closer look at dt ◦ f̃t. For each component

dt,if̃t,i = dt,i
ft,i
dt,i

I [It = i]

= ft,iI [It = i]

≤ ||ft||∞
≤ 1 (By assumption).

Substitute this into (1.14):

E
[
η〈dt ◦ f̃t, f̃t〉

∣∣∣ut−1

]
= E

[
η

d∑
i=1

dt,if̃t,if̃t,i

∣∣∣∣∣ut−1

]

≤ η
d∑
i=1

E
[
f̃t,i

∣∣∣ut−1

]
= η

d∑
i=1

ft,i

≤ ηd||ft||∞
≤ ηd.

If we combine this with (1.14) and plug into (1.13), upper bound DR(p,d1) by ln d as in
the Corollary 1.4, we obtain the following bound

R̂T ≤ ηdT +
ln d

η
.

Optimizing over η yields the statement of the theorem.
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We can see that even in the case of bandit information we can obtain optimal
√
T

dependence of the regret. However, we have an additional multiple of
√
d which can be

thought of as a price for not observing ft in each round. Actually, the result is not tight in
d, since the existing lower bound is Ω(

√
nd) (Cesa-Bianchi and Lugosi (2006), Theorem

6.11).
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Chapter 2

Markovian Decision Processes

In this chapter we present different learning situations that can be formulated with Marko-
vian Decision Processes. This framework is used to model a lot of different problems and
has applications in various areas. We focus on the problem of online learning in MDPs.
First, we consider the simpler one: learning in episodic loop-free MDPs. Similar to on-
line linear optimization, we investigate two important cases: full-information and bandit
feedback. Next, we turn our attention to the unichain MDP. In both cases we show how
the application of the Proximal Point Algorithm improves the previously known results.

2.1 The problem description

We start with a definition of Markovian Decision Process.

Definition 2.1 (Markovian Decision Process). MDP is a tuple 〈X ,A, P, P1〉. Where X
denotes a state space, A is an action space, P : X ×A×X → [0, 1] is a transition function
and P1 is an initial state distribution.

In its usual formulation MDP is supplied with a fixed loss function ` : X ×A → [0, 1],
however, in the problems that we consider we assume that there is a sequence of loss
functions {`t}Tt=1 for some fixed horizon T where each `t : X ×A → [0, 1].

MDPs model interactions between an agent and a stochastic environment. At each
time step t = 1, . . . , T the agent observes the current state xt, chooses an action at ∈ A
and suffers a loss `t(xt, at). Then the next state xt+1 ∈ X is drawn from the distribution
P (·|xt, at). The process starts in state x1 ∈ X drawn from P1. The goal of an agent is to
minimize its expected cumulative loss

L̂T = E

[
T∑
t=1

`t(xt, at)

]
.

We denote by ut the history of the interaction up to step t

ut = {x1, a1, `1(x1, a1), .., xt, at, `t(xt, at)}

for t = 1, . . . , T , where {(xt, at)}Tt=1 is a random trajectory generated by the agent. And

we set u0 = ∅. Using this notation, an agent is defined by a sequence of policies {πt}Tt=1,
where each policy πt : A×X → [0, 1] such that πt(·|x) defines a distribution over A for
every x ∈ X . Note that πt can be random and depend on the past. Formally,

πt(a|x) = P [at = a|xt = x,ut−1] .
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Parameters: MDP 〈X ,A, P, P1〉, finite horizon T .
Environment chooses loss functions `1, ..., `T : X ×A → [0, 1].
Initial state x1 is drawn from P1.
for t = 1 to T :

1. Learner chooses a policy πt.

2. Action at is drawn from πt(·|xt).
3. `t (full information) or `t(xt, at) (bandit information) is revealed.

4. Learner suffers loss `t(xt, at).

5. The next state xt+1 is drawn from P (·|xt, at).

Figure 2.1: Online Learning in Markovian Decision Processes

Hence, our goal is to design an algorithm that chooses this sequence of policies and aims
to minimize its cumulative loss for every possible sequence of loss functions. Recall that
in the framework of linear online optimization this corresponded to the model of oblivious
adversary. Since, in general, this aim is not achievable, we measure the performance of
the algorithm by the regret with respect to some reference class of policies. To move
further we need the following definition.

Definition 2.2 (Stationary stochastic policy). An agent is said to follow a stationary
stochastic policy π : A× X → [0, 1] if at each time step t it chooses an action at drawn
from π(·|xt).

We identify such agents with the policies they follow and let Γ denote the class of all
such policies (agents). If {(x′t, a′t)}

T
t=1 is a random trajectory generated by policy π then

we define the expected cumulative loss of this policy as

LT (π) = E

[
T∑
t=1

`t(x
′
t, a
′
t)

]
.

The classical result of Puterman (1994), Theorem 4.4.2, tells us that the class of stationary
stochastic policies is a reasonable class to compete with, since there exist a stationary
and deterministic policy π∗ such that

LT (π∗) = inf
π∈Γ

LT (π).

Therefore, in fact, the inf can be replaced by min. Finally, we measure the performance
of an algorithm by means of the regret

RT = L̂T −min
π∈Γ

LT (π).

As in the case of online linear optimization we consider two types of problems. The first
one is a full-information case, where the full loss function `t becomes available to the
algorithm at the end of each round. The second type is a bandit case, where the learner
observes only `t(xt, at). The resulting problem is summarized in Figure 2.1.
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2.2 Stationary distributions

In this section we introduce the concept of stationary distributions which will be used in
the formulation of the algorithm for solving MDP problem. Furthermore, we introduce
the first assumption on the MDP that we require for our results to hold.

Definition 2.3 (Stationary state-action distribution). A distribution q over X × A is
called a stationary state-action distribution if it satisfies∑

a

q(x, a) =
∑
x′,a′

q(x′, a′)P (x|x′, a′) (2.1)

for all x ∈ X

Note that throughout the chapter we will omit the action and state spaces while
writing sums in all places where no confusion can occur.

The set of all stationary state-action distribution is denoted by ∆.

Definition 2.4. We say that a policy π ∈ Γ generates a stationary distribution q ∈ ∆ if

π(a|x) =
q(x, a)∑
b q(x, b)

(2.2)

for all (x, a) ∈ X ×A.

We need a strong correspondence between stationary distributions and stationary
stochastic policies. The one direction always holds, i.e. for every q ∈ ∆ there is a policy
π ∈ Γ that generates it. But this is not true for the other direction, so we need to make
our first assumption.

Assumption 1. Every policy π ∈ Γ generates a unique stationary state distribution
qπ ∈ ∆ such that (2.1) holds.

This assumption motivates the following definition.

Definition 2.5 ((Global) stationary state distribution). Given a policy π ∈ Γ, the dis-
tribution µπ over X such that

µπ(x) =
∑
a

qπ(x, a) (2.3)

for all x ∈ X is called the (global) stationary state distribution generated by π.

Note that the definition implies that for all π ∈ Γ

qπ(x, a) = µπ(x)π(a|x).

In what follows it will be useful to rewrite (2.3) as

µπ(x) =
∑
x′,a′

qπ(x′, a′)P (x|x′, a′)

=
∑
x′,a′

µπ(x′)π(a′|x′)P (x|x′, a′),
(2.4)

which holds for all x ∈ X .
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2.3 Idealized setting

In this section we consider the simplified version of the problem introduced and show
how to solve it efficiently. The Assumption 1 allows us to define the average loss ρπt of a
policy π at time step t as

ρπt = Ex∼µπ ,a∼π(·|x) [`t(x, a)]

=
∑
x,a

µπ(x)π(a|x)`t(x, a)

=
∑
x,a

qπ(x, a)`t(x, a)

= 〈qπ, `t〉.

Where we adopted the view of function `t and distribution qπ as a vectors over product
space X ×A equipped with an inner product 〈u, v〉 =

∑
x,a u(x, a)v(x, a).

We would call a learning problem an idealized setting of MDP if at each time step
the performance of the algorithm is measured by ρπtt instead of `t(xt, at). This setting
provides us a big simplification because, actually, it rules out the notion of state from
the problem, since the average loss does not depend on the actual state of MDP and the
action chosen in this state. We are still aiming at minimizing the corresponding regret

R̄T =
T∑
t=1

ρπtt −min
π∈Γ

T∑
t=1

ρπt

=
T∑
t=1

〈qπt , `t〉 −min
q∈∆

T∑
t=1

〈q, `t〉.

In fact, the problem becomes an online linear optimization problem with the decision
set ∆, which is a subset of a probability simplex over X × A. So we can apply the
machinery developed in the previous chapter. In particular, we are going to apply the
Exp3 algorithm, which in this context we would call Online Relative Entropy Policy
Search (O-REPS) following the paper of Peters et al. (2010) that introduced it. The
algorithm chooses the sequence of vectors {qt}Tt=1 according to the following procedure:

q̃t+1 = argmin
q∈A

(η〈q, `t〉+DR(q, qt))

qt+1 = ΠR,∆(q̃t+1).

Where, as before, R is un-normalized negative entropy and DR is un-normalized Kullback-
Leibler divergence. The starting vector is the same as in EWA, q̃1(x, a) = 1

|X ||A| for all

x ∈ X , a ∈ A and q1 = ΠR,∆(q̃1). After choosing qt we can extract πt using (2.2).
The only difference from the EWA we considered in the subsection 1.4.2 of Chapter 1

is that it used the probability simplex as a decision set and O-REPS uses ∆. From this
we can conclude that q̃t will have the same form as in EWA, but the projected vector
qt will differ. If we take a closer look at the proof of Theorem 1.2, we see that it uses
only the exact form of q̃t. This argument shows that O-REPS in the idealized setting
will have the same regret bound as EWA has. We summarize this in the next theorem
and corollary which are just repetitions of the Theorem 1.2 the Corollary 1.4 in the new
setting.
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Theorem 2.1. If we run O-REPS with η > 0, then for any policy π ∈ Γ

T∑
t=1

ρπtt −
T∑
t=1

ρπt ≤ η

T∑
t=1

||`t||2∞ +
R(p)−R(d1)

η
.

Corollary 2.1. If we run O-REPS with η =
√

ln |X ||A|
T

then we have for any policy π ∈ Γ

T∑
t=1

ρπtt −
T∑
t=1

ρπt ≤ 2
√
T ln |X ||A|

2.4 Online loop-free stochastic shortest path prob-

lems

In this section we introduce a problem of online learning in an episodic MDP, which
sometimes is called a online stochastic shortest path problem. We present a loop-free
assumption which allows us to solve the problem efficiently, using the algorithm presented
in the previous section.

2.4.1 Episodic Markovian Decision Processes

Definition 2.6 (Episodic loop-free Markovian Decision Process, E-MDP). MDP
〈X ,A, P, P1〉 is called an episodic loop-free MDP if it satisfies the following assumptions:

• The state space X can be decomposed into non-intersecting layers, i.e. X =
⋃L
i=0Xi

where Xi ∩ Xj = ∅ for i 6= j.

• X0 and XL are singletons, i.e. X0 = {x0} and XL = {xL}.

• The transitions are possible only between the layers. Formally, if P (x′|x, a) > 0,
then x′ ∈ Xk+1 and x ∈ Xk for some 0 ≤ k ≤ L− 1.

• The agent always starts in the state x0, i.e. P1(x0) = 1.

The interaction of an agent with E-MDP goes in episodes, where each episode ends
when the agent reaches the state xL. Similarly to the ordinary Markovian Decision
Process, E-MDP is supplied with a sequence of loss functions {`t}Tt=1 and the functions
change only between episodes (Actually, there is no sense for them to change within
episodes since no state can be visited twice).

Similarly to the usual MDP, we introduce the history of interaction in the episode t

ht =
{
xt0, a

t
0, `t(x

t
0, a

t
0), .., xtL−1, a

t
L−1, `t(x

t
L−1, a

t
L−1),xtL

}
for t = 1, . . . , T , where {(xtl , atl)}

L−1
l=0 is a random trajectory generated by the agent in the

episode t. The full history up to the episode t is

ut = {h1, .., ht} .

Since each state is visited only once during an episode and a loss function changes only
after the episode, there is no sense for the agent to switch policies within an episode.
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Parameters: E-MDP 〈X ,A, P 〉, finite horizon T .
Environment chooses loss functions `1, ..., `T : X ×A → [0, 1].
for t = 1 to T :

1. Learner chooses a policy πt.

2. The current state is set to x0.

3. for k = 0 to L:

(a) Action ak is drawn from πt(·|xk).
(b) Learner suffers loss `t(xk, ak).

(c) The next state xk+1 is drawn from P (·|xk, ak).

4. `t (full information) or {`t(xk, ak)}L−1
k=0 (bandit information) is revealed.

Figure 2.2: Online Loop-free Stochastic Shortest Path Problem

Hence, we specify an agent by a sequence of policies {πt}Tt=1, where πt is a policy to
follow in the episode t. Using the notation introduced

πt(a|x) = P [a = a|x = x,ut−1] .

The expected cumulative loss of an agent in the episode t is

ct(πt) = E

[
L−1∑
k=0

`t(x
t
k, a

t
k)

∣∣∣∣∣ut−1

]
.

The total expected cumulative loss of an agent is

L̂T = E

[
T∑
t=1

ct(πt)

]
.

If {(x′k, a′k)}
T
t=1 is a random trajectory generated by a stationary stochastic policy π, then

we define the expected cumulative loss of a policy π in the episode t as

ct(π) = E

[
L−1∑
k=0

`t(x
′
k, a
′
k)

]
.

The total expected cumulative loss of a policy π is

LT (π) =
T∑
t=1

ct(π).

Finally, we measure the performance of an algorithm by means of its regret with respect
to the class of stationary stochastic policies.

RT = L̂T −min
π∈Γ

LT (π)

The resulting problem is described in Figure 2.2.
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2.4.2 Stationary distributions in episodic Markovian Decision
Processes

In this subsection we introduce the concept of local stationary state distribution and show
how it is connected to the notions introduced in the previous chapters. This connection
will allow us to use O-REPS to solve the problem.

In section 2.2 we showed that if we fix a policy π then it induces a stationary state
distribution µπ over the whole state space X (under Assumption 1). This is not true
in E-MDP, instead every policy induces a probability distribution over each layer Xk.
Actually, we can compute these distributions explicitly. Denote by νπk a distribution over
k-th layer induced by an agent that follows a policy π, i.e. νπk (x) = P [xk = x]. Since
the 0-th layer is a singleton, νπ0 (x0) = 1. We are going to compute these distributions
recursively, for the layer k ≥ 1 and for x ∈ Xk

νπk (x) = P [xk = x]

=
∑

x′∈Xk−1

P [xk = x|xk−1 = x′]P [xk−1 = x′]

=
∑

x′∈Xk−1

P [xk = x|xk−1 = x′] νπk−1(x′)

=
∑

x′∈Xk−1

∑
a∈A

P [xk = x|xk−1 = x′, ak−1 = a]P [ak−1 = a] νπk−1(x′)

=
∑

x′∈Xk−1,a∈A

P (x|x′, a)π(a|x′)νπk−1(x′).

And we will make this a definition.

Definition 2.7 ((local) stationary state distributions). A family of distributions {νπk }
L
k=0

is called a family of local stationary state distributions generated by π if νπ0 (x0) = 1 and

νπk (x) =
∑

x′∈Xk−1,a∈A

P (x|x′, a)π(a|x′)νπk−1(x′) (2.5)

for all x ∈ Xk.

Let us introduce a notation lx, which denotes the number of the layer that x belongs
to, i.e. lx = k iff x ∈ Xk. In the next two lemmas we are establishing the connection
between two notions of stationary state distribution. The intuition behind this connection
is following: imagine we fix a policy and we let the agent run through the MDP forever.
At some moment you stop it and you want to compute the probability that the agent is
in some particular state x. If you knew the layer, you could just say that this is νπlx(x).
Therefore, we need some prior over the layers to use this way of reasoning. Since we have
no notion of a time spent in a particular layer, the most suitable prior is the uniform one.
As we will see, this is indeed the case.

Lemma 2.1 (From local to global distributions). For any policy π ∈ Γ, if we define
µπ(x) = νπlx(x) 1

L
for all x ∈ X , then µπ is a global stationary state distribution generated

by π.
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Proof. Using the definition of a global stationary state distribution in the form of (2.4),
we need to prove that for all x ∈ X

µπ(x) =
∑
x′,a′

µπ(x′)π(a′|x′)P (x|x′, a′)

Fix some x ∈ X . Let us start with the right-hand side

∑
x′,a′

µπ(x′)π(a′|x′)P (x|x′, a′) =
L∑
k=0

∑
x′∈Xk,a′∈A

µπ(x′)π(a′|x′)P (x|x′, a′)

=
∑

x′∈Xlx−1,a′∈A

µπ(x′)π(a′|x′)P (x|x′, a′)

=
1

L

∑
x′∈Xlx−1,a′∈A

νπlx−1(x′)π(a′|x′)P (x|x′, a′)

=
1

L
νlx(x)

= µπ(x),

where we used the fact that P (x|x′, a′) = 0 for x′ /∈ Xlx−1 in the second line, the definition
of µπ(x′) in the third and the equation 2.5 in the fourth.

Definition 2.8 (Localizable distribution). The distribution µ over X is called localizable
if ∑

x∈Xk

µ(x) =
1

L
(2.6)

for k = 1, . . . , L.

Lemma 2.2 (From global to local distributions). Under Assumption 1, for any policy
π ∈ Γ, let µπ be a global stationary state distribution generated by it. Define a family of
distributions {νπk }

L
k=0 by νπlx(x) = Lµπ(x) for all x ∈ X . If µπ is localizable, then {νπk }

L
k=0

are local stationary state distributions.

Proof. First, note that each of νπk is indeed a distribution over Xk, by the localizable
property of µπ. Let us check the 0-th layer. Since x0 is the only state in X0, µπ(x0) = 1

L

and νπ0 (x0) = Lµπ(x0) = 1. What is left is to check (2.5). Again, we fix a state x. Since
P (x|x′, a′) = 0 if x′ /∈ Xlx−1, we can add zeros to the right-hand side of (2.5) and write it
as ∑

x′∈Xlx−1,a∈A

P (x|x′, a)π(a|x′)νπlx−1(x′) =
∑

x′∈X ,a∈A

P (x|x′, a)π(a|x′)νπlx′ (x
′)

= L
∑
x′,a

P (x|x′, a)π(a|x′)µπ(x′)

= Lµπ(x) (2.4)

= νπlx(x).

31



C
E

U
eT

D
C

ol
le

ct
io

n

2.4.3 Episodic O-REPS for learning with full information

Lemmas 2.1 and 2.2 provide us the machinery to use O-REPS in episodic MDP. The idea
is that since O-REPS is aiming to minimize the average loss, we would like to find a way
to connect the average loss and the cumulative loss in the episode. Now we are ready to
do it.

Lemma 2.3.
ct(π) = Lρπt .

Proof.

ct(π) = E

[
L−1∑
k=0

`t(x
′
k, a
′
k)

]

=
L−1∑
k=0

E [`t(x
′
k, a
′
k)]

=
L−1∑
k=0

∑
x∈Xk,a∈A

`t(x, a)P [x′k = x, a′k = a]

=
∑

x∈X ,a∈A

`t(x, a)P
[
x′lx = x, a′lx = a

]
=
∑
x,a

`t(x, a)P
[
a′lx = a

∣∣x′lx = x
]
P
[
x′lx = x

]
=
∑
x,a

`t(x, a)π(a|x)νπlx(x)

= L
∑
x,a

`t(x, a)π(a|x)µπ(x) (Lemma 2.1)

= Lρπt .

Recall that O-REPS chooses a vector q ∈ ∆ and then extracts a policy to follow using
(2.2). In the episodic case we can not do this for every q ∈ ∆ (we can extract a policy,
but we will lose the connection between losses), but if the corresponding stationary state
distribution µπ is localizable, this is possible. Denote the corresponding space by Θ.
Combining (2.3) and definition 2.8, we can write the space Θ as

Θ =

{
q ∈ ∆ :

∑
x∈Xk,a∈A

q(x, a) =
1

L
for k = 1..L

}
.

Note that for every policy π ∈ Γ, vector q(x, a) = 1
L
π(a|x)νπlx(x) ∈ Θ. Finally, episodic

O-REPS chooses a sequence of points {qt}Tt=1 using the following steps

q̃t+1 = argmin
q∈A

(η〈q, `t〉+DR(q, qt))

qt+1 = ΠR,Θ(q̃t+1).
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Where DR is, as before, an un-normalized Kullback-Leibler divergence and R is un-
normalized negative entropy. Now we are going to express these two steps explicitly.
Actually, the formula for q̃t+1 remains unchanged:

q̃t+1(x, a) = qt(x, a)e−η`t(x,a).

The projection step requires more care. Beforehand, let us introduce some more notations.
For any function v(x) : X → R (which are called value functions in the reinforcement
learning literature) and loss function ` : X × A → [0, 1] we define a corresponding
Bellmann-error function

δ(x, a|v, `) = −η`(x, a)−
∑
x′∈X

v(x′)P (x′|x, a) + v(x). (2.7)

Now let us write the projection step as an optimization problem with all constraints:

min
q
DR(q, q̃t+1)∑

a

q(x, a) =
∑
x′,a′

q(x′, a′)P (x|x′, a′)

∑
x∈Xk,a∈A

q(x, a) =
1

L
for k = 1, . . . , L.

Actually, there is one more requirement that
∑

x,a q(x, a) = 1, but it is included in the
second constraint. To solve the problem we write the Lagrangian:

L = DR(q, q̃t+1) +
L∑
k=0

λk

( ∑
x∈Xk,a∈A

q(x, a)− 1

L

)

+
∑
x

v(x)

(∑
x′,a′

q(x′, a′)P (x|x′, a′)−
∑
a

q(x, a)

)

= DR(q, q̃t+1) +
∑
x,a

q(x, a)

(
λlx +

∑
x′

v(x′)P (x′|x, a)− v(x)

)
− 1

L

L∑
k=0

λk.

Where {λk}Lk=0 and {v(x)}x∈X are Lagrange multipliers. We differentiate and set the
derivatives to zero:

∇q(x,a)L = ln q(x, a)− ln q̃t+1(x, a) + λlx +
∑
x′

v(x′)P (x′|x, a)− v(x) = 0.

Hence, we obtain the formula for q(x, a)

q(x, a) = q̃t+1(x, a)e−λlx−
∑
x′ v(x′)P (x′|x,a)+v(x).

Substituting the formula for q̃t+1(x, a)

q(x, a) = qt(x, a)e−λlx+δ(x,a|v,`t).

Using the second constraint, we have for every k = 1, . . . , L∑
x∈Xk,a∈A

qt(x, a)e−λk+δ(x,a|v,`t) =
1

L
.
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Let us introduce notation for every k = 1, . . . , L

N(v, k, `) =
∑

x∈Xk,a∈A

qt(x, a)eδ(x,a|v,`).

Then

e−λk =
1

LN(v, k, `t)
.

So the final expression for the qt+1(x, a) is

qt+1(x, a) =
qt(x, a)eδ(x,a|vt+1,`t)

LN(vt, lx, `t)
.

where vt+1 is determined solving the dual problem. If we substitute back the equation
for q in the Lagrangian, then the dual function is

∑
x,a

q̃t+1(x, a)− 1− 1

L

L∑
k=0

λk.

And we need to maximize it. We can drop the constants and substitute the formula for
λk

−
L∑
k=0

lnN(v, k, `t).

So the final equation for vt+1 is

vt+1 = argmin
v

L∑
k=0

lnN(v, k, `t).

This last minimization is a convex optimization problem (see, for example, Boyd and
Vandenberghe (2004)) and can be performed numerically.

Algorithm 4: O-REPS for episodic loop-free MDP

Parameters: finite horizon T , η
Compute v1 = argminv

∑L
k=0 lnN(v, k, 0);

Compute q1 component-wise as q1(x, a) = eδ(x,a|vt+1,0)

L
∑
x′∈Xlx ,a

′ eδ(x
′,a′|v,0) ;

Output π1 as a policy to follow in the episode;
Receive `1;
for t = 2, . . . , T do

Compute vt = argminv
∑L

k=0 ln
∑

x∈Xk,a qt−1(x, a)eδ(x,a|v,`t);

Compute qt component-wise as qt(x, a) = qt−1(x,a)eδ(x,a|vt,`t)

L
∑
x′∈Xlx ,a

′ qt−1(x′,a′)eδ(x
′,a′|vt,`t)

;

Compute πt using πt(a|x) = qt(x,a)∑
b qt(x,b)

;

Output πt as a policy to follow in the episode;
Receive `t;

end

The following theorem states the regret bound for this version of O-REPS.
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Theorem 2.2. If we run episodic O-REPS with parameter η =
√

ln |X |A|
T

, then for any

π ∈ Γ
L̂T − LT (π) ≤ 2L

√
T ln |X |A|

Proof. The proof is just a combination of two previously proven results: Corollary 2.1
and Lemma 2.3:

L̂T − LT (π) =
T∑
t=1

ct(πt)−
T∑
t=1

ct(π)

= L(
T∑
t=1

ρπtt −
T∑
t=1

ρπt )

≤ 2L
√
T ln |X |A|.

2.4.4 Episodic O-REPS for learning with bandit information

In this subsection we turn our attention to the bandit version of the learning problem
presented in the previous sections. Similarly to the subsection 1.4.3, we introduce the
estimator of the loss and use the full-information algorithm as a black-box.

The estimates ˆ̀
t that we are going to use are built on the same idea as the estimators

for ft in multi-armed bandit problem:

ˆ̀
t(x, a) =

{
`t(x,a)
qt(x,a)

if (x, a) was visited in the episode t

0 otherwise
. (2.8)

We denote the event {(x, a) was visited in the episode t} by {(x, a) ∈ ht}. Using this,
we write (2.8) as

ˆ̀
t(x, a) =

`t(x, a)

qt(x, a)
I [(x, a) ∈ ht] . (2.9)

The interesting issue with this estimator is that the sample state (x, a) comes not from
the distribution qt(x, a) as it was in the multi-armed bandit case. Logically, we should
have used πt(a|x)νπtt (x) in the denominator, but this would lead to the worse dependence
on L in the final bound. Generally, the problem of samples that come not from the chosen
distribution is a big issue in online learning problems and, for example, this is what will
prevent the direct extension of the results for online learning in MDP to the bandit case
(we will present these results in the next sections).

The next theorem states the regret bound for the bandit episodic O-REPS. The idea
of the proof is exactly the same as in the multi-armed bandit case.

Theorem 2.3. If we run bandit episodic O-REPS in the E-MDP with parameter η =
1
L

√
ln |X ||A|
T |X ||A| , then for any π ∈ Γ

L̂T − LT (π) ≤ 2L
√
T |X ||A| ln |X ||A|.
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Algorithm 5: O-REPS for bandit episodic loop-free MDP

Parameters: finite horizon T , η
Set π1(a|x) = 1

|A| for all x ∈ X , a ∈ A;

Compute {νπ1k (x)}Lk=0 recursively and set q1(x, a) =
ν
π1
lx

(x)

L|A| ;

Output π1 as a policy to follow in the episode;

Receive {`1(x1
k, a

1
k)}

L−1
k=0 ;

Compute ˆ̀
1 as ˆ̀

1(x, a) = `1(x,a)
q1(x,a)

I [(x, a) ∈ h1];

for t = 2, . . . , T do

Compute vt = argminv
∑L

k=0 ln
∑

x∈Xk,a qt−1(x, a)eδ(x,a|v,
ˆ̀
t);

Compute qt component-wise as qt(x, a) = qt−1(x,a)eδ(x,a|vt,
ˆ̀
t)

L
∑
x′∈Xk,a′

qt−1(x′,a′)eδ(x
′,a′|vt,ˆ̀t)

;

Compute πt using πt(a|x) = qt(x,a)∑
b qt(x,b)

;

Output πt as a policy to follow in the episode;

Receive {`t(xtk, atk)}
L−1
k=0 ;

Compute ˆ̀
t as ˆ̀

t(x, a) = `t(x,a)
qt(x,a)

I [(x, a) ∈ ht];

end

Proof. As usual, our starting point is Lemma 1.5. Denote by ρ̂πt the average estimated
loss of a policy π. Recall that O-REPS is an instance of PPA algorithm and it is run on

the sequence of losses
{

ˆ̀
t

}T
t=1

, hence the lemma takes the following form

T∑
t=1

ρ̂πtt −
T∑
t=1

ρ̂πt =
T∑
t=1

〈ˆ̀t,qt〉 −
T∑
t=1

〈ˆ̀t, q〉

≤
T∑
t=1

〈ˆ̀t,qt〉 −
T∑
t=1

〈ˆ̀t, q̃t+1〉+
DR(q,q1)

η
. (2.10)

Using the same argument that was used in Theorem 1.2 and Theorem 1.3

T∑
t=1

〈ˆ̀t,qt〉 −
T∑
t=1

〈ˆ̀t, q̃t+1〉 ≤ η

T∑
t=1

〈qt ◦ ˆ̀
t, ˆ̀

t〉.

We use the exact form of the estimator to upper bound qt ◦ ˆ̀
t

qt ◦ ˆ̀
t =

∑
x,a

qt(x, a)
`t(x, a)

qt(x, a)
I [(x, a) ∈ ht]

=
∑
x,a

`t(x, a)I [(x, a) ∈ ht]

≤
∑
x,a

I [(x, a) ∈ ht]

≤ L.

Hence,

〈qt ◦ ˆ̀
t, ˆ̀

t〉 ≤ L
∑
x,a

ˆ̀
t(x, a).
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Combining this with (2.10), we get

T∑
t=1

ρ̂πtt −
T∑
t=1

ρ̂πt ≤ ηL

T∑
t=1

∑
x,a

ˆ̀
t(x, a) +

DR(q,q1)

η
. (2.11)

Next, we are going to take an expectation on the both sides. Let us compute the terms
separately. First, the right-hand side:

E
[

ˆ̀
t(x, a)

∣∣∣ut−1

]
=
`t(x, a)

qt(x, a)
P [ (x, a) ∈ ht|ut−1]

=
`t(x, a)

πt(a|x)µπt(x)
P [xlx = x, alx = a|ut−1]

=
`t(x, a)

1
L
πt(a|x)νπtlx (x)

P [alx = a|ut−1,xlx = x]P [xlx = x|ut−1]

=
L`t(x, a)

πt(a|x)νπtlx (x)
πt(a|x)νπtlx (x)

= L`t(x, a).

Therefore,

E

[
T∑
t=1

∑
x,a

ˆ̀
t(x, a)

]
=

T∑
t=1

E

[∑
x,a

ˆ̀
t(x, a)

]

=
T∑
t=1

E

[
E

[∑
x,a

ˆ̀
t(x, a)

∣∣∣∣∣ut−1

]]

=
T∑
t=1

E

[∑
x,a

E
[

ˆ̀
t(x, a)

∣∣∣ut−1

]]

=
T∑
t=1

E

[∑
x,a

L`t(x, a)

]
≤ TL|X ||A|.

Now we deal with the expectations on the left-hand side

E [ρ̂πt ] =
∑
x,a

E
[
ˆ̀
t(x, a)qπ(x, a)

]
=
∑
x,a

E
[
E
[

ˆ̀
t(x, a)

∣∣∣ut−1

]
qπ(x, a)

]
=
∑
x,a

E [L`t(x, a)qπ(x, a)]

= L
∑
x,a

`t(x, a)
1

L
π(a|x)νπ(x)

= ct(π).

After taking expectation on the both sides and bounding DR(q,q1) by ln |X ||A|, the
(2.11) becomes

L̂T − LT (π) ≤ ηL2T |X ||A|+ ln |X ||A|
η

.
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Optimizing over the η yields the result.

2.5 Unichain Markovian Decision Processes

In this section we present an approach to solve the main problem of this chapter, an
online learning problem in MDPs as described in the Section 2.1.

2.5.1 Mixing times

Actually, the solution was implicitly described in the Section 2.3. We build an algorithm
to minimize the average loss instead of the actual one. The logical question: is there any
connection between two? The answer turns out to be yes, under some assumptions. All
our arguments are based on the existence of so-called uniform mixing time. Before giving
a meaning to this notion, we need a few definitions.

Definition 2.9 (Transition matrix). The matrix P π is called a transition matrix induced
by π, if each component (P π)x,x′ is a probability of getting into the state x′ from x under
policy π.

Note that the definition implies

(P π)x,x′ = P [xt+1 = x′|xt = x]

=
∑
a

P [xt+1 = x′|xt = x, at = a]P [at = a|xt = x]

=
∑
a

P (x′|x, a)π(a|x).

Furthermore, if we treat the distribution µ over the states as a row vector, then µP π is
a one step distribution from µ under π. Note that the usual definition of the stationary
state distribution µπ is the following: it is the distribution that satisfies

µP π = µ. (2.12)

In fact, the two definitions are equivalent, which can be seen by writing the (2.12)
component-wise and observing that in this way it becomes (2.4). Now we are ready to
define the mixing time.

Definition 2.10 (Mixing time). τπ is called a mixing time for a policy π ∈ Γ if for any
two distributions over the state space µ and µ′

||µP π − µ′P π||1 ≤ e−1/τπ ||µ− µ′||1 (2.13)

As we already mentioned, our second assumption is the existence of the uniform
mixing time.

Assumption 2. There exists a fixed positive uniform mixing time τ , such that τπ ≤ τ
for all π ∈ Γ.
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Note that this assumption implies

sup
π∈Γ
||µP π − µ′P π||1 ≤ e−1/τ ||µ− µ′||1 (2.14)

for any two distribution µ and µ′ over the states.
The Markovian Decision Process that satisfies the Assumption 2 is called unichain.
Under the Assumption 2 we can find a connection between the average and the ex-

pected losses. Beforehand, we define by µπ,t the distribution over states at time step t
resulting in following policy π from the very beginning, i.e. from distribution P1:

µπ,t = P1(P π)t−1.

The following proposition establishes the rate of convergence of µπ,t to µπ.

Proposition 2.1. For any policy π ∈ Γ

||µπ,t − µπ||1 ≤ 2e−(t−1)/τπ .

Proof. The proof is based on the definition of stationary state distribution in the form
(2.12) and the definition of mixing time (2.13).

||µπ,t − µπ||1 = ||µπ,t−1P
π − µπP π||1

≤ e−1/τπ ||µπ,t−1 − µπ||1
≤ e−(t−1)/τπ ||P1 − µπ||1
≤ 2e−(t−1)/τπ

where in the last step we used the fact that for any two distributions µ and µ′, we have
||µ− µ′||1 ≤ 2.

Corollary 2.2. Under Assumption 2

||µπ,t − µπ||1 ≤ 2e−(t−1)/τ .

for any π ∈ Γ.

Note that this corollary shows us that the Assumption 2 implies the Assumption 1.
This is because we can define the µπ as the limiting distribution that results if we let
the agent that follows policy π run in the MDP forever. From this, the corresponding
state-action stationary distribution qπ is just π(a|x)µπ(x) for all x, a.

Hereafter, we state all the result under the Assumption 2. Now, using the Corollary
2.2, we can connect the average loss of a fixed policy π to the expected loss of it.

Lemma 2.4. Assume that we follow a policy π from step 1. Then for any t

ρπt − E [`t(xt, at)] ≤ 2e−(t−1)/τ .

Proof.

ρπt − E [`t(xt, at)] =
∑
x,a

µπ(x)π(a|x)`t(x, a)−
∑
x,a

µπ,t(x)π(a|x)`t(x, a)

=
∑
x

(µπ(x)− µπ,t(x))
∑
a

π(a|x)`t(x, a)

≤
∑
x

(µπ(x)− µπ,t(x))

≤ ||µπ − µπ,t||1
≤ 2e−(t−1)/τ .
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Corollary 2.3.
T∑
t=1

ρπt − LT (π) ≤ 2(1 + τ).

Proof.

T∑
t=1

ρπt − LT (π) ≤
T∑
t=1

(ρπt − E [`t(xt, at)])

≤
T∑
t=1

2e−(t−1)/τ

≤ 2(1 +

∫ ∞
1

e−(t−1)/τdt)

≤ 2(1 + τ).

We see from Corollary 2.3 that if we do not change the policy, then our average loss
is not far from the expected one. Hence, the desired property of the algorithm is not
changing policies too often or change them in such a way that they are close to each
other in some sense. As we will see further, this is indeed the case for the O-REPS.

2.5.2 O-REPS for learning with full information

As we mentioned, we use the O-REPS defined as in section 2.3. Recall that at every time
step it chooses a state-action distribution qt according to the following procedure

q̃t+1 = argmin
q∈A

(η〈q, `t〉+DR(q, qt))

qt+1 = ΠR,∆(q̃t+1).

We have already obtained the closed form for the q̃t+1, that is,

q̃t+1(x, a) = qt(x, a)e−η`t(x,a).

To obtain the closed form for the qt+1, we need to solve the constrained optimization
problem:

min
q
DR(q, q̃t+1)∑

a

q(x, a) =
∑
x′,a′

q(x′, a′)P (x|x′, a′)∑
x,a

q(x, a) = 1.

We proceed as in the subsection 2.4.3. First, we write the Lagrangian

L = DR(q, q̃t+1) + λ

(∑
x,a

q(x, a)− 1

)
+
∑
x

v(x)

(∑
x′,a′

q(x′, a′)P (x|x′, a′)−
∑
a

q(x, a)

)

= DR(q, q̃t+1) +
∑
x,a

q(x, a)

(
λ+

∑
x′

v(x′)P (x′|x, a)− v(x)

)
− λ.
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Where λ and {v(x)}x∈X are Lagrange multipliers. We differentiate and set the derivatives
to zero:

∇q(x,a)L = ln q(x, a)− ln q̃t+1(x, a) + λ+
∑
x′

v(x′)P (x′|x, a)− v(x) = 0.

Hence, we obtain the formula for q(x, a)

q(x, a) = q̃t+1(x, a)e−λ−
∑
x′ v(x′)P (x′|x,a)+v(x).

Substituting the formula for q̃t+1(x, a)

q(x, a) = qt(x, a)e−λ+δ(x,a|v,`t).

Where we used the Bellmann-error function introduced in the subsection 2.4.3, see (2.7)
. Using the second constraint, we have∑

x,a

qt(x, a)e−λ+δ(x,a|v,`t) = 1.

Hence,

e−λ =
1∑

x,a qt(x, a)eδ(x,a|v,`t)
,

and the final formula for qt+1(x, a) is

qt+1(x, a) =
qt(x, a)eδ(x,a|vt+1,`t)∑
x,a qt(x, a)eδ(x,a|vt+1,`t)

,

where vt+1 is determined solving the dual problem. If we substitute back the equation
for q in the Lagrangian, then the dual function is∑

x,a

q̃t+1(x, a)− 1− λ.

And we need to maximize it. We can drop the constants and substitute the formula for
λ

− ln
∑
x,a

qt(x, a)eδ(x,a|v,`t).

The final equation for vt+1 is

vt+1 = argmin
v

(
ln
∑
x,a

qt(x, a)eδ(x,a|v,`t)

)
.

Again, as in the previous derivations, the last minimization is a convex optimization
problem and can be performed numerically.

Now, when we have the full description of the algorithm, we can prove that, if we
follow the policies generated by O-REPS, the expected losses suffered by the algorithm
can be bounded by the average losses. First, we prove that the algorithm changes the
policies slowly.
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Algorithm 6: Online Relative Entropy Policy Search

Parameters: finite horizon T , η

Compute v1 = argminv

(
ln
∑

x,a qt(x, a)eδ(x,a|v,0)
)

;

Compute q1(x, a) = eδ(x,a|v1,0)∑
x,a e

δ(x,a|v1,0) ;

Compute π1 as π1(a|x) = q1(x,a)∑
b q1(x,b)

;

Output π1 as a policy to follow in the episode;
Receive `1;
for t = 2, . . . , T do

Compute vt = argminv

(
ln
∑

x,a qt−1(x, a)eδ(x,a|v,`t)
)

;

Compute qt component-wise as qt(x, a) = qt−1(x,a)eδ(x,a|vt,`t)∑
x,a qt−1(x,a)eδ(x,a|vt,`t)

;

Compute πt using πt(a|x) = qt(x,a)∑
b qt(x,b)

;

Output πt as a policy to follow in the episode;
Receive `t;

end

Proposition 2.2. Let {qt}Tt=1 be a sequence of state-action distributions generated by
O-REPS, then

||qt+1 − qt||1 ≤ η.

Proof. Our starting point is the Pinsker’s inequality (Csiszár (1967); Kemperman (1969);
Kullback (1967)):

||qt+1 − qt||1 ≤
√

2DR(qt, qt+1). (2.15)

Where DR(·, ·) is a usual Kullback-Leibler divergence. We denoted it by the same symbol
as an un-normalized version since they coincide on the probability simplex. Now we turn
our attention to this divergence:

DR(qt, qt+1) =
∑
x,a

qt(x, a) ln
qt(x, a)

qt+1(x, a)

=
∑
x,a

qt(x, a) ln

∑
x′,a′ qt(x

′, a′)eδ(x
′,a′|vt+1,`t)

eδ(x,a|vt+1,`t)

= ln
∑
x′,a′

qt(x
′, a′)eδ(x

′,a′|vt+1,`t) −
∑
x,a

qt(x, a)δ(x, a|vt+1, `t). (2.16)

To upper bound the first term in (2.16) we use the fact that when we compute qt+1 we
minimize the dual function (which is exactly this term). Since it is minimized by vt+1, we
can substitute any other function to make an upper bound. Let us substitute v′(x) = 0
for all x. Then δ(x, a|v′, `t) = −η`t(x, a). And we have

ln
∑
x′,a′

qt(x
′, a′)eδ(x

′,a′|vt+1,`t) ≤ ln
∑
x′,a′

qt(x
′, a′)eδ(x

′,a′|v′,`t)

= ln
∑
x′,a′

qt(x
′, a′)e−η`t(x

′,a′)

≤ ln

(
1− η

∑
x′,a′

qt(x
′, a′)`t(x

′, a′) +
∑
x′,a′

qt(x
′, a′)

(−η`t(x′, a′))2

2

)
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Where in the last step we used the fact that es ≤ 1+s+ s2

2
for s ≤ 0 and that `t(x, a) ≥ 0.

Now, since log(1 + s) ≤ s

ln
∑
x′,a′

qt(x
′, a′)eδ(x

′,a′|vt+1,`t) ≤ −η
∑
x′,a′

qt(x
′, a′)`t(x

′, a′) +
η2

2

∑
x′,a′

qt(x
′, a′)`2

t (x
′, a′).

The second term in (2.16) is rewritten as follows∑
x,a

qt(x, a)δ(x, a|vt+1, `t) = −η
∑
x,a

qt(x, a)`(x, a) +
∑
x,a

qt(x, a)v(x)

−
∑
x,a

qt(x, a)
∑
x′

v(x′)P (x′|x, a).

The last term can be transformed using (2.1) as∑
x,a

qt(x, a)
∑
x′

v(x′)P (x′|x, a) =
∑
x′

v(x′)
∑
x,a

qt(x, a)P (x′|x, a)

=
∑
x′

v(x′)
∑
a

qt(x, a)

=
∑
x,a

v(x)qt(x, a).

Hence, ∑
x,a

qt(x, a)δ(x, a|vt+1, `t) = −η
∑
x,a

qt(x, a)`(x, a).

Combining together the obtained expressions for the terms in (2.16), we have

DR(qt, qt+1) ≤ η2

2

∑
x,a

qt(x, a)`2
t (x, a).

By the fact that `t(x, a) ≤ 1, the square root is also bounded by 1

DR(qt, qt+1) ≤ η2

2
.

Therefore, inserting this into Pinsker’s inquality, we obtain

||qt+1 − qt||1 ≤ η.

The next step is to see how far is the actual distributions over the states from the
stationary ones for the policies chosen. Let us first denote the actual distribution over
the states at time step t by ϑt, i.e.

ϑt(x) = P [xt = x] .

Note that it can be computed recursively as

ϑt+1 = ϑtP
πt .
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starting from ϑ1 = P1. The reason for introducing this distribution is that the expected
loss can be written using it:

E [`t(xt, at)] =
∑
x,a

`t(x, a)ϑt(x)πt(a|x).

The following proposition contains the advertised bound.

Proposition 2.3.
||ϑt − µπt ||1 ≤ η(1 + τ) + 2e−(t−1)/τ .

Proof. First, we use the triangle inequality, then the definition of stationary state distri-
bution and the inequality (2.14)

||ϑt − µπt||1 ≤ ||ϑt − µπt−1||1 + ||µπt−1 − µπt ||1
= ||ϑt−1P

πt−1 − µπt−1P
πt−1||1 + ||µπt−1 − µπt ||1

≤ e−1/τ ||ϑt−1 − µπt−1||1 + ||µπt−1 − µπt ||1.

The second term can be bounded using Proposition 2.2

||µπt−1 − µπt||1 =
∑
x

|µπt−1(x)− µπt(x)|

=
∑
x

|µπt−1(x)
∑
a

πt−1(a|x)− µπt(x)
∑
a

πt(a|x)|

≤
∑
x,a

|µπt−1(x)πt−1(a|x)− µπt(x)πt(a|x)|

=
∑
x,a

|qt−1(x, a)− qt(x, a)|

= ||qt−1 − qt||1
≤ η.

Hence,
||ϑt − µπt ||1 ≤ e−1/τ ||ϑt−1 − µπt−1 ||1 + η.

Iterating the above step, we get

||ϑt − µπt ||1 ≤ e−(t−1)/τ ||P1 − µπ1||1 + η
t−2∑
t=0

e−t/τ

≤ 2e−(t−1)/τ + η(1 +

∫ ∞
0

e−t/τdt)

≤ 2e−(t−1)/τ + η(1 + τ).

Finally, we are ready to bound the cumulative expected loss of O-REPS by its cumu-
lative average loss. This is a direct consequence of the previous proposition.

Lemma 2.5. If {πt}Tt=1 is a sequence of policies generated by O-REPS, then

L̂T −
T∑
t=1

ρπtt ≤ ηT (1 + τ) + 2(1 + τ).

44



C
E

U
eT

D
C

ol
le

ct
io

n

Proof.

L̂T −
T∑
t=1

ρπtt =
T∑
t=1

(E [`t(xt, at)]− ρπtt )

=
T∑
t=1

(∑
x,a

`t(x, a)ϑt(x)πt(a|x)−
∑
x,a

`t(x, a)µπt(x)πt(a|x)

)

=
T∑
t=1

(∑
x,a

`t(x, a)πt(a|x)(ϑt(x)− µπt(x))

)

≤
T∑
t=1

(∑
x

(ϑt(x)− µπt(x))
∑
a

πt(a|x)

)

=
T∑
t=1

||ϑt − µπt||1

≤ ηT (1 + τ) + 2
T∑
t=1

e−(t−1)/τ

≤ ηT (1 + τ) + 2(1 + τ).

To this point, we can bound the average regret of the algorithm, the difference between
the average loss of a fixed policy and its expected loss, the difference between the average
loss of the algorithm and its expected loss. All this easily transforms into bound on the
expected regret for O-REPS.

Theorem 2.4. If we run O-REPS with η =
√

ln |X||A|
T (2+τ)

, then for any policy π ∈ Γ

L̂T − LT (π) ≤
√
T (2 + τ) ln |X||A|+ 4(1 + τ).

Proof. We just decompose the regret into three terms, for which we already know the
bounds from Lemma 2.5, Theorem 2.1 and Corollary 2.3.

L̂T − LT (π) =

(
L̂T −

T∑
t=1

ρπtt

)
+

(
T∑
t=1

ρπtt −
T∑
t=1

ρπt

)
+

(
T∑
t=1

ρπt − LT (π)

)

≤ ηT (1 + τ) + 2(1 + τ) + η
T∑
t=1

||`t||2∞ +
R(p)−R(d1)

η
+ 2(1 + τ)

≤ ηT (1 + τ) + 2(1 + τ) + ηT +
ln |X||A|

η
+ 2(1 + τ).

Optimizing over η we obtain the claim.
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Conclusion

We studied the theoretical properties of the Relative Entropy Policy Search algorithm.
We explored that it is an instance of the Proximal Point Algorithm and, using this fact,
developed the applications to different learning problems that can be formulated using
Markovian Decision Processes.

First, we surveyed the theory underlying the Proximal Point Algorithm and showed
how it is used in the context of online linear optimization.

Second, we applied the algorithm to the full-information and the bandit cases of the
online stochastic shortest path problem. We showed that this approach vastly improves
the previously known results.

Finally, we introduced O-REPS, a version of REPS applied to the online learning in
unichain MDPs in the full-information case. We proved that it enjoys an optimal bound
on the regret with smaller additional terms than previously known bounds.
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G. Neu, A. György, C. Szepesvári, and A. Antos. Online markov decision processes under
bandit feedback. Advances in Neural Information Processing Systems, 23:1804–1812,
2010b.
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