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Abstract

We consider in a real Hilbert space H the Cauchy problem (P0) : u′(t)+Au(t)+
Bu(t) = f(t), 0 < t < T ; u(0) = u0, where A : D(A) ⊂ H → H is a maximal
monotone linear operator, B : H → H is a Lipschitz monotone (nonlinear)
operator, and f : [0, T ]→ H is a given function. A typical example of problem
(P0) is the semilinear heat equation when −A is the Laplace operator ∆ with
the homogeneous Dirichlet boundary conditions. We associate with problem
(P0) the following elliptic-like regularizations: (P ε

1 ) : −εu′′(t)+u′(t)+Au(t)+
Bu(t) = f(t), 0 < t < T ; u(0) = u0, u(T ) = uT , and (P ε

2 ) : − εu′′(t) + u′(t) +
Au(t) + Bu(t) = f(t), 0 < t < T ; u(0) = u0, u

′(T ) = uT , where ε > 0 is a
small parameter. Problems (P ε

1 ) and (P ε
2 ) are essentially different and require

different methods of investigation. We discuss the existence, uniqueness and
higher regularity for the solutions of problems (P0), (P ε

1 ) and (P ε
2 ). Then we

establish the asymptotic expansions of order zero for the solutions of problems
(P ε

1 ) and (P ε
2 ), as well as an asymptotic expansion of order one for the solution

of problem (P ε
2 ). A boundary layer of order zero occurs in problem (P ε

1 ) with
respect to the norm of C([0, T ];H), but the boundary layer of order zero is
not visible with respect to the norm of L2(0, T ;H). Problem (P ε

2 ) turns out
to be a regular perturbation problem of order zero with respect to the norm of
C([0, T ];H), hence, it is also a regular perturbation problem of order zero with
respect to the norm of L2(0, T ;H). However, when we establish the asymptotic
expansion of order one for the solution of problem (P ε

2 ), a boundary layer of
order one occurs with respect to the norm of C([0, T ];H), but this boundary
layer is not visible with respect to the norm of L2(0, T ;H).
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Introduction

The main purpose of this thesis is to study, in a real Hilbert space H, a Cauchy
problem, and its elliptic-like regularizations. More explicitly, we consider the
following Cauchy problem:

u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T, u(0) = u0, (P0)

where A : D(A) ⊂ H → H is a maximal monotone linear operator, B : H → H
is a Lipschitz monotone (nonlinear) operator, T > 0 is a given time instant,
u0 ∈ H is a given initial state, and f : [0, T ]→ H is a given function.

An important special case of problem (P0) is the semilinear heat equation,
when −A is the Laplace operator ∆, D(A) = H2(Ω) ∩ H1

0 (Ω), H = L2(Ω),
where Ω ⊂ Rn is a bounded domain with smooth boundary, and Bv = β ◦ v,
for all v ∈ L2(Ω), where β : R→ R is a Lipschitz nondecreasing function.

We also consider two elliptic-like regularizations of (P0), i.e., the following
elliptic-like higher order differential equations, involving a small parameter
ε > 0, with the same condition at t = 0 as problem (P0), and another boundary
condition at t = T :∣∣∣∣∣ −εu′′(t) + u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T,

u(0) = u0, u(T ) = uT ,
(P ε

1 )

or∣∣∣∣∣ −εu′′(t) + u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T,

u(0) = u0, u′(T ) = uT .
(P ε

2 )

Problems (P ε
1 ) and (P ε

2 ) are essentially different and require different methods
of investigation. We first investigate the existence, uniqueness, and regularity
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results for the solutions of problems (P0), (P ε
1 ) and (P ε

2 ). While the results
are important in themselves, we need them in order to validate the asymptotic
expansions for the solutions of problems (P ε

1 ) and (P ε
2 ). It turns out that, for

a given f , the solutions of problems (P ε
1 ) and (P ε

2 ) are more regular than the
solution of problem (P0).

Next, we investigate if the solution u of problem (P0) can be approximated
by the solutions uε’s of problems (P ε

1 ) and (P ε
2 ), which are more regular than

u. We show that problem (P ε
1 ) is a singular perturbation problem of the

boundary layer type (of order zero), i.e.,

‖uε − u‖C([0,T ];H) does not tend to zero as ε→ 0+, but for a small 0 < δ < T ,
‖uε − u‖C([0,T−δ];H) tends to zero as ε → 0+, and there exists a function,
i = i(τ), where τ := (T − t)/ε, such that ‖uε− u− i‖C([0,T ];H) tends to zero as
ε→ 0+.

The function i is called a boundary layer function of order zero, and τ is
called the fast variable. The boundary layer function of order zero fills the
gap between uε and u in the boundary layer [T − δ, T ]. We call the expansion

uε(t) = u(t) + i(τ) + rε(t), 0 ≤ t ≤ T,

an asymptotic expansion of order zero.

However, we show that problem (P ε
1 ) is a regular perturbation problem

of order zero with respect to the norm of L2(0, T ;H), i.e., ‖uε − u‖L2(0,T ;H)

tends to zero as ε → 0+. So the boundary layer of order zero is not visible
with respect to the norm of L2(0, T ;H).

We show that problem (P ε
2 ) is a regular perturbation problem of order zero

with respect to the norm of C([0, T ];H), hence, it is also a regular perturba-
tion problem of order zero with respect to the norm of L2(0, T ;H).

Problem (P ε
1 ) or (P ε

2 ) is said to have an asymptotic expansion of order N ≥ 1
if its solution uε has the following expansion:

uε(t) = [u(t) + i(τ)] +
N∑
k=1

εk [uk(t) + ik(τ)] + rε(t), 0 ≤ t ≤ T,

where:
u is the solution of (P0);

8
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τ := (T − t)/ε is the fast variable;
i = i(τ) is a boundary layer of order zero
u, uk, k = 1, · · · , N , are the first N + 1 regular terms;
i, ik, k = 1, · · · , N , are the corresponding boundary layer functions;

‖rε‖X = O(εN+α), α > 0, X = C([0, T ];H) or X = L2(0, T ;H).

When we investigate the asymptotic expansion of order one for the elliptic-like
regularization (P ε

2 ), a boundary layer of order one occurs with respect to the
norm of C([0, T ];H), but the boundary layer of order one is not visible with
respect to the norm of L2(0, T ;H).

This thesis is divided into four chapters.

Chapter 1 (Preliminaries). We quickly go through some well-known results
related to the topics, which we need in the next chapters, such as Sobolev
spaces, vector-valued Sobolev spaces, maximal monotone nonlinear operators,
semigroups of contractions in a real Hilbert space, C0-semigroups of contrac-
tions, and the evolution equations in a real Hilbert space. In fact, the vector-
valued Sobolev spaces are what we need to prove our results, while the (scalar-
valued) Sobolev spaces are used just to give some examples. Semigroups of
contractions, and C0-semigroups, have many applications in partial differential
equations, as well as in other fields, but we mention only those results which
we need.

Chapter 2 (Presentation of the Problems). We give a presentation of all
problems which we want to investigate, a historical background of singular
perturbation problems of boundary layer type, a brief survey of some known
results related to the problems similar to the main problems discussed in this
thesis.

Chapter 3 (Existence, Uniqueness and Regularity Theorems). We discuss
the existence, uniqueness and regularity results for problems (P0), (P ε

1 ) and
(P ε

2 ). In turns out that every level of regularity for the solution of (P0) can be
reached under appropriate conditions. But, instead of going on indefinitely, we
just prove the regularity results up to order two, i.e., we show that the solution
u of problem (P0) belongs to W 2,2(0, T ;H) or C2([0, T ];H) under appropriate
conditions, though problem (P0) is a first order differential equation. We need
the regularity results to validate the asymptotic expansions for the elliptic-
like regularizations (P ε

1 ) and (P ε
2 ). However, it seems possible to consider the

9
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fourth order elliptic-like regularizations for which we need more regularity for
the solution of problem (P0) to validate the asymptotic expansions.

Chapter 4 (Asymptotic Expansions). We validate the asymptotic expansions
for the solutions of the elliptic-like regularizations (P ε

1 ) and (P ε
2 ). We consider

the asymptotic expansions of order zero for the elliptic-like regularizations (P ε
1 )

and (P ε
2 ), as well as the asymptotic expansion of order one for the elliptic-like

regularization (P ε
2 ). At the end, we mention some open problems related to

the main problems discussed in this thesis.

10
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Chapter 1

Preliminaries

In this chapter, we will go through some well-known results which we will need
in the next chapters. We will not present the proof of any statement, but we
will give the appropriate references to every statement. We will always assume
that all operators are single-valued, nonlinear and unbounded unless otherwise
specified.

1.1 Some function spaces

Let X be a real Banach space with norm ‖·‖, and let Ω ⊂ Rn be a nonempty
Lebesgue measurable set. A function u : Ω→ X is called strongly measur-
able if u−1(U) is Lebesgue measurable for every open U ⊂ X, and there exists
a set N of Lebesgue measure zero such that f(Ω \N) is separable. A function
u : Ω → X is called Bochner integrable if it is strongly measurable, and
‖u‖ : Ω→ R is Lebesgue integrable.

We denote by Lp(Ω;X), 1 ≤ p < ∞, the space of (equivalence classes with
respect to the equality a. e. in Ω of) strongly measurable functions u : Ω→ X
such that ‖u‖p : Ω → R is Lebesgue integrable over Ω. Lp(Ω;X) is a real

Banach space with the norm ‖u‖Lp(Ω;X) =
(∫

Ω
‖u(x)‖pdx

)1/p
.

We denote by L∞(Ω;X) the space of (equivalence classes with respect to the
equality a. e. in Ω of) strongly measurable functions u : Ω → X such that
‖u‖ : Ω → R is essentially bounded in Ω. L∞(Ω;X) is a real Banach space

11
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1.1. Some function spaces

with the norm ‖u‖L∞(Ω;X) = ess supx∈Ω‖u(x)‖.

We denote by Lploc(Ω;X), 1 ≤ p ≤ ∞, the space of (equivalence classes with
respect to the equality a. e. in Ω of) strongly measurable functions u : Ω→ X
such that the restriction of u to every compact set K ⊂ Ω is in Lp(K;X).

Usually, we identify an equivalence class of Lp(Ω;X), Lploc(Ω;X) with one of
its representatives. If X = R, we write Lp(Ω), Lploc(Ω) instead of Lp(Ω;R),
Lploc(Ω;R), respectively. If Ω is an interval in R, say Ω = (a, b), −∞ ≤ a < b ≤
+∞, we write Lp(a, b;X), Lploc(a, b;X) instead of Lp((a, b);X), Lploc((a, b);X),
respectively.

Let x = (x1, x2, · · · , xn) ∈ Rn, and let N0 = {0} ∪ N. We call an α =
(α1, α2, · · · , αn) ∈ Nn

0 a multi-index. We use the following symbols associated
with α

|α| = α1 + α2 + · · ·+ αn,

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂xαn

n

.

Let Ω be a nonempty open subset of Rn. We denote by C∞0 (Ω) the space
of all functions ϕ : Ω → R such that ϕ has continuous partial derivatives of
any order, and ϕ has compact support in Ω. Let u ∈ L1

loc(Ω), we say that
v ∈ L1

loc(Ω) is the weak or distributional partial derivative of u of order
α, denoted by Dαu, if∫

Ω

uDαϕ = (−1)|α|
∫

Ω

vϕ ∀ϕ ∈ C∞0 (Ω).

We define W k,p(Ω), 1 ≤ p ≤ ∞, k ∈ N, as

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀0 < |α| ≤ k} .

W k,p(Ω), 1 ≤ p <∞, k ∈ N, is a real Banach space with the norm

‖u‖Wk,p(Ω) =

 ∑
0≤|α|≤k

‖Dαu‖pLp(Ω)

1/p

.

W k,∞(Ω) is a real Banach space with the norm

‖u‖Wk,∞(Ω) = max
0≤|α|≤k

‖Dαu‖L∞(Ω).

12
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Chapter 1. Preliminaries

We also define, for 1 ≤ p ≤ ∞,

W k,p
0 (Ω) = the closure of C∞0 (Ω) in W k,p(Ω).

W k,p(Ω),W k,p
0 (Ω), with the above norms, are called Sobolev spaces.

We define W k,p
loc (Ω), 1 ≤ p ≤ ∞, k ∈ N, as

W k,p
loc (Ω) = {u ∈ Lploc(Ω) : Dαu ∈ Lploc(Ω) ∀0 < |α| ≤ k} .

If p = 2, we also write Hk(Ω), Hk
0 (Ω), Hk

loc(Ω) instead of W k,2(Ω), W k,2
0 (Ω),

W k,2
loc (Ω), respectively. Hk(Ω), for k ∈ N, is a Hilbert space with respect to

the scalar product

(u, v)Hk(Ω) =
∑

0≤|α|≤k

∫
Ω

Dαu(x)Dαv(x)dx.

We now define the Sobolev spaces of vector-valued functions. Let Ω be an
open interval in R, say (a, b), −∞ ≤ a < b ≤ +∞. We denote by C∞0 (a, b) the
space of all functions ϕ : (a, b)→ R such that ϕ has continuous derivatives of
any order, and ϕ has compact support in (a, b). Let u ∈ L1

loc(a, b;X), we say
that v ∈ L1

loc(a, b;X) is the jth weak or distributional derivative of u,
denoted by u(j), if∫ b

a

djϕ

dtj
u = (−1)j

∫ b

a

ϕv ∀ϕ ∈ C∞0 (a, b).

We define W k,p(a, b;X), 1 ≤ p ≤ ∞, k ∈ N, as

W k,p(a, b;X) =
{
u ∈ Lp(a, b;X) : u(j) ∈ Lp(a, b;X) ∀1 ≤ j ≤ k

}
.

W k,p(a, b;X), 1 ≤ p <∞, k ∈ N, is a real Banach space with the norm

‖u‖Wk,p(a,b;X) =

(
k∑
j=0

‖u(j)‖pLp(a,b;X)

)1/p

.

W k,∞(a, b;X) is a real Banach space with the norm

‖u‖Wk,∞(a,b;X) = max
0≤j≤k

‖u(j)‖L∞(a,b;X).

W k,p(a, b;X), with the above norms, are called Sobolev spaces of vector-
valued functions.

13
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1.1. Some function spaces

We define W k,p
loc (a, b;X), 1 ≤ p ≤ ∞, k ∈ N, as

W k,p
loc (a, b;X) =

{
u ∈ Lploc(a, b;X) : u(j) ∈ Lploc(a, b;X) ∀1 ≤ j ≤ k

}
.

If p = 2, we also write Hk(a, b;X), Hk
loc(a, b;X) instead of W k,2(a, b;X),

W k,2
loc (a, b;X), respectively. If X is a real Hilbert space with scalar product

(·, ·), then Hk(a, b;X), k ∈ N, is a Hilbert space with respect to the scalar
product

(u, v)Hk(a,b;X) =
k∑
j=0

∫ b

a

(
u(j)(t), v(j)(t)

)
dt.

In the rest of this section, we shall assume that −∞ < a < b < +∞.

Theorem 1.1 (see, e.g., [22]). Let X be a reflexive Banach space. Let u : [a, b]→

X be an absolutely continuous function. Then u is differentiable a. e. on (a, b),

du
dt
∈ L1(a, b;X) and

u(t) = u(a) +

∫ t

a

du

ds
(s)ds, a ≤ t ≤ b.

We denote by Ak,p(a, b;X), where k ∈ N and 1 ≤ p ≤ ∞, the space of
all absolutely continuous functions u : [a, b] → X such that dju/dtj, for j =
0, 1, . . . , k − 1, are absolutely continuous on [a, b] , and dku/dtk ∈ Lp(a, b;X).

Theorem 1.2 (see, e.g., [9, p. 19]). Let X be a Banach space and let u ∈

Lp(a, b), 1 ≤ p ≤ ∞. Then the following conditions are equivalent:

(i) u ∈ W k,p(a, b;X)

(ii) There exists u1 ∈ Ak,p(a, b;X) such that u(t) = u1(t) a. e. on (a, b).

So, we can identify W k,p(a, b;X) with Ak,p(a, b;X). Moreover, if X is reflex-
ive, then by Theorem 1.1 we can identify W 1,1(a, b;X) with the space of all
X-valued absolutely continuous functions on [a, b], and W 1,∞(a, b;X) can be
identified with the space of all Lipschitz X-valued functions on [a, b].

For further information on Bochner integral, see, e.g., D.L. Cohn [14], and S.
Lang [23]; for further information on Sobolev spaces, see, e.g., R.A. Adams
[1], S. Kesavan [21], W. Rudin [31], L. Schwartz [33], and K. Yosida [37]; for
further information on vector-valued Sobolev spaces, see, e.g., V. Barbu [9],
and L. Schwartz [32].
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Chapter 1. Preliminaries

1.2 Monotone operators

Let H be a real Hilbert space with the scalar product (·, ·), and the induced
norm ‖·‖. As we mentioned earlier, we will always assume that all operators
are single-valued, nonlinear and unbounded unless otherwise specified. How-
ever, most of the results of this section and of the next section can be extended
to multivalued operators or to the general Banach spaces.

A set S ⊂ H ×H is said to be monotone if

(x1 − x2, y1 − y2) ≥ 0 ∀(x1, y1), (x2, y2) ∈ S.

An operator A : D(A) ⊂ H → H is called monotone if its graph is a monotone
subset of H ×H, i.e.,

(x1 − x2, Ax1 − Ax2) ≥ 0, ∀x1, x2 ∈ D(A).

Let A : D(A) ⊂ H → H be a linear operator. Then, obviously, A is monotone
if and only if

(x,Ax) ≥ 0, ∀x ∈ D(A).

A monotone linear operator is called a positive linear operator.

A monotone operator A : D(A) ⊂ H → H is said to be maximal monotone
if its graph is not properly contained in any monotone subset of H ×H.

Theorem 1.3 (see, e.g., [25, p. 20]). Let A : D(A) ⊂ H → H be a maximal

monotone operator. Then A is demiclosed, i.e.,

xn → x strongly in H,

Axn → y weakly in H

⇒ x ∈ D(A) and y = Ax.

Theorem 1.4 (G. Minty; see, e.g., [9, p. 39]). Let A : D(A) ⊂ H → H be a

monotone operator. Then A is maximal monotone if and only if R(I + λA) =

H for some λ > 0 or, equivalently, for all λ > 0.

15
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1.2. Monotone operators

Theorem 1.5 (G. Minty; see, e.g., [25, p. 25]). Let A : H → H be a monotone

operator. Then A is maximal monotone if it is hemicontinuous, i.e., for all

x, y ∈ H

A(x+ ty)→ Ax weakly as t→ 0.

Theorem 1.6 (R.T. Rockafellar; see, e.g., [11, p. 36]). Let A : D(A) ⊂ H →

H and B : D(B) ⊂ H → H be two maximal monotone operators. Then A+B

is maximal monotone if

D(A) ∩ Int (D(B)) 6= ∅.

Definition 1.7. Let A : D(A) ⊂ H → H be a maximal operator and λ >

0. We define the following well-known operators (which will be shown single-

valued):

Jλ = (I + λA)−1,

Aλ =
1

λ
(I − Jλ),

where Jλ is called the resolvent of A, and Aλ is called the Yosida approx-

imation of A.

From Theorem 1.4, we have

D(Jλ) = D(Aλ) = H, ∀λ > 0.

Theorem 1.8 (see, e.g., [25, p. 21]). Let A : D(A) ⊂ H → H be a maximal

monotone operator. Then, for every λ > 0,

(i) Jλ is nonexpansive, i.e., Lipschitz with constant 1. So, in particular, both

Jλ and Aλ are single-valued ;

16
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Chapter 1. Preliminaries

(ii) Aλ(x) = A(Jλ(x)), ∀x ∈ H;

(iii) Aλ is monotone, and Lipschitz with constant 1/λ;

(iv) ‖Aλ(x)‖ ≤ ‖A(x)‖, ∀x ∈ D(A);

(v) limλ→0Aλ(x) = A(x), ∀x ∈ D(A);

(vi) D(A) is convex, and limλ→0 Jλ(x) = ProjD(A)x, ∀x ∈ H.

Remark 1.9. If A : D(A) ⊂ H → H is a maximal monotone linear operator,

then it can be shown easily that D(A) = H, see, e.g., [12, p. 181]. So by (vi)

of Theorem 1.8, we have that limλ→0 Jλ(x) = x, for all x ∈ H.

Definition 1.10. Let Ω ⊂ Rn be a Lebesgue measurable set, and let A : D(A) ⊂

H → H be a maximal monotone operator. We define Ā : D(Ā) ⊂ L2(Ω;H)→

L2(Ω;H) by

D(Ā) =
{
u ∈ L2(Ω;H); A ◦ u ∈ L2(Ω;H)

}
,

Āu = A ◦ u ∀u ∈ D(Ā).

The operator Ā is called the canonical extension of A to L2(Ω;H) or the

realization of A on L2(Ω;H).

It is easy to see that Ā is monotone. Moreover, if either m(Ω) <∞, where m
is the Lebesgue measure, or A0 = 0, then Ā is maximal monotone. Indeed, if
g ∈ L2(Ω;H), then we set

u = (I + A)−1g = [J1g − J10] + [J10] ∈ L2(Ω;H)

⇒ A ◦ u = g − u ∈ L2(Ω;H),

so u ∈ D(Ā), and u+ Āu = g. Hence, Ā is maximal monotone.
Note that, for λ > 0, the realizations of (I + λA)−1 and Aλ to L2(Ω;H) are
(I + λĀ)−1 and (Ā)λ, respectively.
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1.2. Monotone operators

Definition 1.11. Let C ⊂ H be a convex subset. A function ϕ : C →

(−∞,+∞] is called convex if

ϕ((1− t)x+ ty) ≤ (1− t)ϕ(x) + tϕ(y), ∀x, y ∈ C, ∀0 < t < 1.

Geometrically, if H = R, it means that any line segment joining any two points
of the graph of ϕ lies above the graph of ϕ.

We can always extend the domain of ϕ as below

ϕ̃(x) =

{
ϕ(x) if x ∈ C
+∞ if x /∈ C.

It is easy to see that ϕ̃ : H → (−∞,+∞] is convex. So, we can always
assume that ϕ is defined everywhere. ϕ is called proper if ϕ 6≡ +∞, and
D(ϕ) = {ϕ(x) 6= +∞} is called the effective domain of ϕ.

A function ϕ : H → (−∞,∞] is said to be lower semicontinuous at x0 ∈ H
if lim infx→x0 ϕ(x) = ϕ(x0), or equivalently, if for every ε > 0 there exists a
δ > 0 such that ϕ(x) ≥ ϕ(x0)− ε if ‖x− x0‖ < δ.

Let ϕ : H → (−∞,∞] be a proper convex function. Its subdifferential
∂ϕ : D(∂ϕ) ⊂ H → H, in general a multivalued function, is defined by

∂ϕ(x) =

{
{y ∈ H : ϕ(v) ≥ ϕ(x) + (v − x, y) ∀v ∈ H} if x ∈ D(ϕ),
∅ if x /∈ D(ϕ).

So, D(∂ϕ) is contained in D(ϕ).

Geometrically, when H = R, ∂ϕ(x) is the set of slopes of all lines passing
through (x, ϕ(x)) and lying below the graph of ϕ.

Theorem 1.12 (see, e.g., [25, p. 36]). Let ϕ : H → (−∞,+∞] be a proper

lower semicontinuous convex function, then ∂ϕ is a maximal monotone oper-

ator.

Definition 1.13. Let A : D(A) ⊂ H → H be a linear operator with dense

domain, i.e., D(A) = H. We define a linear operator A? : D(A?) ⊂ H → H,

18
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Chapter 1. Preliminaries

called the adjoint of A, as follows.

D(A?) = {y ∈ H; ∃c ≥ 0 such that |(Ax, y)| ≤ c‖x‖ ∀x ∈ D(A)} .

It is easy to see that D(A?) is a subspace containing at least 0 element. Since

D(A) is dense in H, if y ∈ D(A?), then the map x 7→ (Ax, y) has a unique con-

tinuous linear extension on H which, by Riesz-Fréchet representation theorem,

is given by an element of H which we denote by A?(y). We have

(Ax, y) = (x,A?y), ∀x ∈ D(A), ∀y ∈ D(A?).

We say that A is self-adjoint if

D(A?) = D(A) and A? = A.

Theorem 1.14 (see, e.g., [10] or [37, p. 259]). Let A : D(A) ⊂ H → H be a

positive self-adjoint linear operator. Then there exists a unique positive self-

adjoint operator B : D(B) ⊂ H → H such that D(A) ⊂ D(B), and B2 = A

on D(A). We call B the square root of A, and denote it by A1/2.

Theorem 1.15 (see, e.g., [25, p. 43]). Let A be a positive self-adjoint linear

operator. Then the function ϕ : H → (−∞,+∞] defined by

ϕ(x) =


1
2
‖A1/2(x)‖2, if x ∈ D(A1/2),

+∞, otherwise,

is proper, convex and lower semicontinuous. Moreover, A = ∂ϕ.

For further information on monotone operators, see, e.g., V. Barbu [9], H.
Brézis [11], G. Moroşanu [25], and R.E. Showalter [34].
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1.3. Semigroups of operators

1.3 Semigroups of operators

Let C be a nonempty closed subset of H, which is a real Hilbert space with the
scalar product (·, ·) and the induced norm ‖·‖. A semigroup on C is a family
of operators S = {S(t) : C → C, t ≥ 0} satisfying the following conditions:

S(t1 + t2)x = S(t1)S(t2)x, ∀x ∈ C, t1, t2 ≥ 0, and

S(0)x = x, ∀x ∈ C.

A semigroup S = {S(t) : C → C, t ≥ 0} is called a continuous semigroup
of contractions if it satisfies the following conditions:
(a) for every x ∈ C, the mapping t 7→ S(t)x is continuous on [0,+∞);
(b) ‖S(t)x− S(t)y‖ ≤ ‖x− y‖, ∀x, y ∈ C, t ≥ 0.

A semigroup S = {S(t) : H → H, t ≥ 0} is called a C0-semigroup if it
satisfies (a), and each S(t) is a continuous linear operator from H into H. If
a C0- semigroup also satisfies (b), then it is called a C0-semigroup of con-
tractions. Note that if S is a C0-semigroup, then (a) and (b) are equivalent
to the following conditions (a)′ and (b)′, respectively:
(a)′ for every x ∈ H, we have limt→0+ S(t)x = x;
(b)′ ‖S(t)‖L(H) ≤ 1 ∀t ≥ 0.

Let S = {S(t) : C → C, t ≥ 0} be a semigroup. Then the infinitesimal
generator of the semigroup S, say A, is defined by

A : D(A) ⊂ H → H,

D(A) =

{
x ∈ H : lim

h→0+

S(h)x− x
h

exists in H

}
,

A(x) = lim
h→0+

S(h)x− x
h

, ∀x ∈ D(A).

Theorem 1.16 (Hille-Yosida Theorem: Lumer-Phillips form in Hilbert spaces,

see, e.g., [17, p. 26] or [28, p. 14]). Let A : D(A) ⊂ H → H be a linear

operator. Then A is maximal monotone if and only if −A is the infinitesimal

generator of a C0-semigroup of contractions on H.
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Chapter 1. Preliminaries

Definition 1.17. A function u ∈ C([0, T ];H) is said to be a strong solution

of the following Cauchy problem

du

dt
+ Au(t) = f(t), 0 < t < T, (1.1)

u(0) = u0,

if u is absolutely continuous on every compact subinterval of (0, T ), u(0) = u0,

and u satisfies (1.1) a. e. on (0, T ).

Theorem 1.18 (see, e.g., [25, p. 48]). Let A : D(A) ⊂ H → H be maximal

monotone, and let u0 ∈ D(A) and f ∈ W 1,1(0, T ;H). Then there exists a

unique strong solution u ∈ W 1,∞(0, T ;H) of the following Cauchy problem

du

dt
+ Au(t) = f(t), 0 < t < T, u(0) = u0.

Moreover, u is differentiable from the right at every point in [0, T ) and

d+u

dt
(t) + Au(t) = f(t), ∀t ∈ [0, T ), (1.2)∥∥∥∥d+u

dt
(t)

∥∥∥∥ ≤ ‖f(0)− A(u0)‖+

∫ t

0

∥∥∥∥dfds(s)

∥∥∥∥ ds, ∀t ∈ [0, T ). (1.3)

If u, ū are the strong solutions corresponding to (u0, f), (ū0, f̄) ∈ D(A) ×

W 1,1(0, T ;H) then

‖u(t)− ū(t)‖ ≤ ‖u0 − ū0‖+

∫ t

0

‖f(t)− f̄(t)‖dt, ∀t ∈ [0, T ]. (1.4)

Remark 1.19. Theorem 1.18 still holds if A is replaced with A + B, where

A : D(A) ⊂ H → H is maximal monotone and B : H → H is a Lipschitz

operator. The only modifications appear in estimates (1.3) and (1.4) which

become:∥∥∥∥d+u

dt
(t)

∥∥∥∥ ≤ eωt
(
‖f(0)− A(u0)‖+

∫ t

0

e−ωs
∥∥∥∥dfds

∥∥∥∥ ds) , ∀t ∈ [0, T ), (1.5)
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1.3. Semigroups of operators

‖u(t)− ū(t)‖ ≤ eωt
(
‖u0 − ū0‖+

∫ t

0

e−ωs‖f(t)− f̄(t)‖dt
)
, ∀t ∈ [0, T ],

(1.6)

where ω is the Lipschitz constant of B (see, e.g., [11, p. 105] or [34, p. 181]).

Remark 1.20. Assuming all conditions of Theorem 1.18 are satisfied, then

by (1.2), we have that u(t) ∈ D(A), for all t ∈ [0, T ). Moreover, if u happens

to be in C1([0, T ];H), then by (1.2), we have that u′(t) +Au(t) = f(t), for all

t ∈ [0, T ). By stretching the domain of f , we can extend these results for all

t ∈ [0, T ]. Finally, by Remark 1.19, these results hold when A is replaced by

A+B, where B : H → H is a Lipschitz operator.

Let A : D(A) ⊂ H → H be a maximal monotone operator. Consider the
Cauchy problem

du

dt
+ Au(t) = 0, t > 0, u(0) = u0.

By Theorem 1.18, we have that for any u0 ∈ D(A) there exists a strong solution
u(t), t ≥ 0 of the above Cauchy problem. We set

S(t)u0 = u(t), t ≥ 0.

It easily follows from the estimate (1.4) that for any t ≥ 0, S(t) is a contraction
on D(A) and so S(t) can be extended as a contraction on D(A). Moreover,
it is obvious that the family {S(t) : D(A) → D(A); t ≥ 0} is a semigroup
of contractions. From (1.2), we have that the infinitesimal generator of this
semigroup is −A.
On the other hand, from a result of M.G. Crandall and A. Pazy (see, e.g., H.
Brézis [11, p. 114]), we know that if C is a nonempty closed convex set in
H and {S(t) : C → C; t ≥ 0} is a continuous semigroup of contractions, then
there exists a unique maximal monotone operator A such that D(A) = C and
the given semigroup coincides to that generated by −A.

For further information on semigroups of operators, see, e.g., V. Barbu [9], H.
Brézis [11], and R.E. Showalter [34]; for further information on C0-semigroups
of contractions and the abstract Cauchy problem, see, e.g., H. Brézis [12], J.A.
Goldstein [17], E. Hille and R.S. Phillips [18], and A. Pazy [28].
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Chapter 1. Preliminaries

1.4 Singular perturbations

Consider the problems:

(P0) : L0u = f0;

(Pε) : L0u+ εL1u = f0 + εf1,

where ε > 0 is a small parameter, L0, L1 are given operators which do not de-
pend on ε, f0, f1 are given functions, and u is the unknown function. Usually,
problem (Pε) has more boundary conditions than problem (P0).

Problem (Pε) is called regularly perturbed with respect to some norm ‖·‖
if there exists a solution u of problem (P0) such that

‖uε − u‖ → 0 as ε→ 0,

where uε is the solution of problem (Pε).

Otherwise, problem (Pε) is said to be singularly perturbed with respect to
the norm ‖·‖.

Problem (Pε) can be regularly perturbed with respect to one norm, but sin-
gularly perturbed with respect to another norm.

Example (Singular perturbation problem of the boundary layer type).
Consider the following problems:

(P0) : u′(t) = 2t, 0 < t < 1, u(1) = 0;

(Pε) : εu′′(t) + u′(t) = 2t, 0 < t < 1, u(0) = 0 = u(1).

The solution uε of problem (Pε) can be expressed as

uε(t) = (t2 − 1) + e−t/ε + rε(t), 0 ≤ t ≤ 1,

where rε(t) converges uniformly to zero in [0, 1] as ε → 0+. Therefore, uε
converges uniformly, as ε→ 0+, to the function u(t) := t2−1 on every interval
[δ, 1], 0 < δ < 1, but not on the whole interval [0, 1]. Problem (Pε) is a singu-
larly perturbed problem with respect to the sup norm. The function e−t/ε is
called a boundary layer function, and it fills the gap between uε and u in
the boundary layer [0, δ].
Note that problem (Pε) is a regular perturbation problem with respect to the
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1.4. Singular perturbations

Lp-norm, for 1 ≤ p <∞, since ‖uε − u‖Lp(0,1) tends to zero as ε→ 0+. So the
boundary layer is invisible in the space Lp(0, 1), for 1 ≤ p <∞.

For further information on singular perturbations, see, e.g., L. Barbu and G.
Moroşanu [7], W. Eckhaus [15], E.M. de Jager and J. Furu [19], J.L. Lions [24],
R.E. O’Malley [26], [27], and A.B. Vasilieva, V.F. Butuzov and L.V. Kalachev
[35].
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Chapter 2

Presentation of the Problems

Boundary layers are often present in physical reality. A well known example is
the so-called Prandtl boundary layer. In 1904, L. Prandtl, a German physicist,
was able to explain the resistance of a fluid, with low viscosity, flowing past a
solid body by advancing the hypothesis that the effect of viscosity is concen-
trated in a narrow layer near the surface of the body. The flow velocity changes
quickly across this boundary layer (called Prandtl boundary layer). There are
many examples of discontinuities and quick transitions, which occur either
at the boundary or inside the corresponding spacial domain (see, e.g., K.O.
Friedrichs [16]). Such phenomena (called “asymptotic” by Friedrichs [16]) may
result from approximate description, in particular by neglecting small param-
eters. This leads, in many cases, to singular perturbations.

The theory of singular perturbations is well developed in the case of linear
problems associated with ordinary and partial differential equations. In 1957,
M.I. Vishik and L.A. Lyusternik [36] launched their method which has proved
to be very useful in studying linear partial differential equations with singu-
lar perturbations. Since then a great deal of work has been devoted to this
subject, including several monographs, such as A.B. Vasilieva, V.F. Butuzov
and L.V. Kalachev [35], and J.L. Lions [24]. Lions’ book represented a great
advance since the whole theory was done in a functional analysis framework.
Specifically, Lions considered abstract linear evolution equations

u′(t) + Au(t) = f(t), 0 < t < T, (2.1)

and regularizations of the form

± εu′′(t) + u′(t) + Au(t) = f(t), 0 < t < T, (2.2)

25



C
E

U
eT

D
C

ol
le

ct
io

n

where ε > 0 is small parameter. The sign in front of the equation (2.2) is very
important. In order to explain this, let us consider the case when −A is the
Laplace operator ∆ =

∑3
i=1

∂2

∂x2i
, with some boundary condition(s) (e.g., the

Dirichlet boundary condition, or combined boundary conditions on different
parts of the boundary).
In this case, equation (2.1) is the classical heat equation, while equation (2.2)
is a hyperbolic equation if ε = +1, and an elliptic one if ε = −1. The problem
is whether the solution of equation (2.1), subjected to an initial condition,
is approximated by the solutions of equation (2.2) for ε small. The methods
of investigation depend essentially on the (hyperbolic or elliptic) character of
equation (2.2). For a general linear operator A, equation (2.2) is said to be
hyperbolic-like if ε = +1, and elliptic-like if ε = −1. The general linear case
has also been extensively discussed by L. Barbu and G. Moroşanu [7] by using
new techniques.

In applications we mostly meet nonlinear, in particular semilinear, partial dif-
ferential equations. As a typical example, consider the semilinear heat equa-
tion

ut(t, x)−∆u(t, x) + β(u(t, x)) = f(t, x), 0 < t < T, x ∈ Ω,

with the Dirichlet boundary condition

u(t, x) = 0, for 0 < t < T, x ∈ ∂Ω,

and the initial condition

u(0, x) = u0(x), for x ∈ Ω,

where T is a given positive number, Ω ⊂ Rn is a bounded domain with smooth
boundary ∂Ω, ∆ is the Laplace operator with respect to x = (x1, . . . , xn), i.e.,
∆u =

∑n
i=1 uxixi , and β : R→ R is a nonlinear function.

Now we consider the following elliptic regularizations of the semilinear heat
equation, i.e., we consider a higher order equation which is elliptic in (t, x),
containing a small parameter ε,

−εutt(t, x) + ut(t, x)−∆u(t, x) + β(u(t, x)) = f(t, x), 0 < t < T, x ∈ Ω,

with the Dirichlet boundary condition on ∂Ω, as well as two-point boundary
conditions in the form

u(0, x) = u0(x), u(T, x) = uT (x), for x ∈ Ω,
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Chapter 2. Presentation of the Problems

or
u(0, x) = u0(x), ut(T, x) = uT (x), for x ∈ Ω.

It is also possible to consider the following hyperbolic regularization

εutt(t, x) + ut(t, x)−∆u(t, x) + β(u(t, x)) = f(t, x), 0 < t < T, x ∈ Ω,

with the Dirichlet boundary condition on ∂Ω and two initial conditions in the
form

u(0, x) = u0(x), ut(0, x) = uT (x), for x ∈ Ω.

The above elliptic and hyperbolic regularizations of the semilinear heat equa-
tion have been discussed by L. Barbu and G. Moroşanu [7, pp. 209-226]. An
elliptic regularization of the above semilinear heat equation, when β(u) = u3,
was discussed by J.L. Lions [24, pp. 424-427]. L. Barbu and E. Cosma [8] have
discussed the elliptic regularizations of the semilinear heat equation with the
following initial condition and the Neumann boundary condition

u(0, x) = u0(x), −∂u
∂ν

(t, x) = α(u(t, x)),

where ν is the outer unit normal to the boundary ∂Ω, and α : R → R is a
continuous nondecreasing function.

In what follows we replace some semilinear problems with singularly perturbed,
higher order problems, admitting solutions which are more regular and approx-
imate the solutions of the original problems. We will instead do everything in
more general settings, i.e., we start with the following semilinear problem{

u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T, (E)

u(0) = u0, (IC)
(P0)

where A : D(A) ⊂ H → H is a maximal monotone linear operator, H is a real
Hilbert space, B : H → H is a monotone Lipschitz nonlinear operator, T > 0
is given time instant, u0 ∈ H is a given initial state, and f : [0, T ] → H is a
given function.

So, the semilinear heat equation, with the Dirichlet boundary condition, men-
tioned above becomes a special case of (P0) if we set

H = L2(Ω),

A = −∆, D(A) = H2(Ω) ∩H1
0 (Ω),

Bu = β ◦ u.
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The Dirichlet boundary condition is included in the definition of the domain
of A = −∆.

We will next consider the following two elliptic-like regularizations of (P0).{
−εu′′(t) + u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T,

u(0) = u0, u(T ) = uT .
(P ε

1 )

{
−εu′′(t) + u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T,

u(0) = u0, u′(T ) = uT .
(P ε

2 )

We will not consider the hyperbolic-like regularizations of (P0) which have
been discussed by A. Perjan when A is a linear, symmetric, strongly positive
operator, and B is a nonlinear operator (see, e.g., [29] and [30]). As we said
above, L. Barbu and G. Moroşanu [7, pp. 185-208] as well as J.L. Lions [24,
pp. 491-495] also discussed the hyperbolic-like regularizations of the linear
case (i.e., when B = 0).

It is worth mentioning that our analysis covers many applications, in particular
the semilinear heat equation mentioned above. The elliptic-like regularizations
(P ε

1 ) and (P ε
2 ) for the linear case (i.e., B = 0) have been studied by J.L. Lions

[24, pp. 407-420], where asymptotic expansions (of order zero and one, re-
spectively) have been established. He called them elliptic-evolution problems.
Some examples were also provided there. Lions explained (see [24, p. IX])
that sometimes it might be useful to consider regularizations of problem (P0)
that provide good solutions approximating the solution of (P0) for ε small.
This regularization method was also called by Lions the method of artificial
viscosity (due to the additional term involving ε). It is also possible to consider
the fourth order elliptic-like regularizations of problem (P0) whose solutions
are expected to be even more regular with respect to t.

The rest of this dissertation is organized as follows: Chapter 3 is concerned
with the existence, uniqueness, and regularity of the solutions of problems (P0),
(P ε

1 ) and (P ε
2 ). While the results of Chapter 3 are important in themselves,

we need them in Chapter 4 in order to validate the asymptotic expansion for
the solutions of problems (P ε

1 ) and (P ε
2 ).
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Chapter 3

Existence, Uniqueness and

Regularity Theorems

In this chapter we will discuss existence, uniqueness and regularity theorems
for problems (P0) and its elliptic regularizations (P ε

1 ) and (P ε
2 ) mentioned in

Chapter 2. As usual H represents a real Hilbert space with scalar product
(·, ·) and the induced norm ‖·‖. All operators are single-valued and nonlinear
unless otherwise specified. Recall problem (P0):{

u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T, (E)

u(0) = u0, (IC)
(P0)

where T > 0 is a given time instant, u0 ∈ H is a given initial state, f : [0, T ]→
H is a given function, and A,B satisfy the following conditions:

(H1) A : D(A) ⊂ H → H is a maximal monotone linear operator, or equiva-
lently, −A is the infinitesimal generator of a C0-semigroup of contractions on
H, say {S(t) : H → H; t ≥ 0};

(H2) B : H → H is a monotone Lipschitz operator with a Lipschitz constant
C, i.e.,

‖Bx−By‖ ≤ C‖x− y‖ ∀x, y ∈ H.

Remark 3.1. Since B is a monotone Lipschitz operator, it follows from The-

orem 1.5 that B is maximal monotone. Moreover, it follows from Theorem 1.6
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that A+B is maximal monotone with D(A+B) = D(A).

Lemma 3.2. Let X be a Banach space, and E : X → X be Fréchet differen-

tiable satisfying sup{‖E ′(x)‖L(X) : x ∈ X} = L <∞, where L(X) is the space

of continuous linear operators from X to X, and E ′ is the Fréchet derivative

of E. Then

‖Ex− Ey‖ ≤ L‖x− y‖ ∀x, y ∈ X. (3.1)

Proof. The proof is not new but we give it for the convenience of the reader.

Let f ∈ X∗ be arbitrary, where X∗ is the dual of X. Consider g : [0, 1] → R

defined as

g(t) = (f ◦ E)(y + t(x− y)).

By the mean value theorem for real valued functions, there exists a c ∈ (0, 1)

such that

g(1)− g(0) = g′(c).

So,

f(Ex)− f(Ey) = f [E ′(y + c(x− y))(x− y)]

⇒ f(Ex− Ey) = f [E ′(y + c(x− y))(x− y)].

If Ex − Ey = 0, then (3.1) is trivial. Assume that Ex − Ey 6= 0, then

by the Hahn-Banach theorem, there exists f ∈ X∗ satisfying ‖f‖ = 1, and

f(Ex− Ey) = ‖Ex− Ey‖. From this (3.1) follows easily.

Remark 3.3. Let X be a Banach space. By using similar steps as in Lemma

3.2, we can prove that if E : X → X is Fréchet differentiable, and E ′ : X →

L(X) is bounded on bounded sets, then E is Lipschitz on bounded sets.
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Chapter 3. Existence, Uniqueness and Regularity Theorems

3.1 Existence, uniqueness and regularity the-

orems for problem (P0)

In this section we will discuss some existence, uniqueness and regularity theo-
rems for problem (P0). Consider the Cauchy problem associated with a non-
linear operator Q : D(Q) ⊂ H → H,

u′(t) +Qu(t) = f(t), 0 < t < T, u(0) = u0, (P )

where T > 0 is a given time instant, u0 ∈ D(Q) is a given initial state.

In Chapter 1, we defined the strong solution of problem (P ), and discussed
some existence theorem (see, Theorem 1.18 and Remark 1.19). Now we define
the weak solution of (P ).

Definition 3.4. Let f ∈ L1(0, T ;H). A function u ∈ C([0, T ];H) is said to be

a weak solution of problem (P ) if there exist sequences {un} ⊂ C([0, T ];H)

and {fn} ⊂ L1(0, T ;H) such that each un is absolutely continuous on every

compact subinterval of (0, T ) and u′n(t) + Qun(t) = fn(t) a. e. t ∈ (0, T ), for

each n; un → u in C([0, T ];H); u(0) = u0; and fn → f in L1(0, T ;H).

Now we are going to state and prove some existence results for problem (P0).
For the convenience of the reader, we first recall some known existence results
for problem (P ):

Lemma 3.5 (H. Brézis; see, e.g., [25, p. 56]). If Q is the subdifferential of

a proper, convex, lower semicontinuous function ϕ : H → (−∞,+∞], u0 ∈

D(Q) and f ∈ L2(0, T ;H), then problem (P ) has a unique strong solution

u, such that t1/2u′ ∈ L2(0, T ;H), t → ϕ(u(t)) is integrable on [0, T ] and

absolutely continuous on [δ, T ] , ∀δ ∈ (0, T ). If, in addition, u0 ∈ D(ϕ), then

u′ ∈ L2(0, T ;H).

Lemma 3.6 (see, e.g., [7, p. 30]). If Q := A+ F (t, ·), where A is a maximal

monotone linear operator, F (·, z) ∈ L1(0, T ;H) for all z ∈ H, and there exists
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3.1. Existence, uniqueness and regularity theorems for problem (P0)

a constant ω > 0 such that

‖F (t, z1)− F (t, z2)‖ ≤ ω‖z1 − z2‖ ∀t ∈ [0, T ], z1, z2 ∈ H,

then, for every u0 ∈ H, there exists a unique u ∈ C([0, T ]; H) which satisfies

the following integral equation

u(t) = S(t)u0 −
∫ t

0

S(t− s)F (s, u(s))ds, ∀t ∈ [0, T ].

The solution of this integral equation is called a mild solution of the Cauchy

problem u
′(t) + Au(t) + F (t, u(t)) = 0, 0 < t < T,

u(0) = u0.

(3.2)

Lemma 3.7 (H. Brézis [11, pp. 106-107]). Assume that all the assumptions of

Lemma 3.6 hold. If, in addition, A is self-adjoint and F (·, z) ∈ L2(0, T ; H) for

all z ∈ H, then there exists a unique strong solution u of the Cauchy problem

(3.2), such that t1/2u′ ∈ L2(0, T ;H).

Lemma 3.8 (T. Kato [20]). Assume that Q = Q(t, ·) (i.e., Q is time depen-

dent), Q(t, ·) is single-valued, maximal monotone, with D(Q(t, ·)) = D for all

t ∈ [0, T ] (i.e., D(Q(t, ·)) is independent of t), and the following condition is

satisfied

‖Q(t, z)−Q(s, z)‖ ≤ L|t− s|(1 + ‖z‖+ ‖Q(s, z)‖),

for all z ∈ D, s, t ∈ [0, T ], where L is a positive constant. Then, for every

u0 ∈ D, problem (P ) has a unique strong solution u ∈ W 1,∞(0, T ; H).

Theorem 3.9. Assume (H1) and (H2). If u0 ∈ H and f ∈ L1(0, T ;H), then

(P0) has a unique mild solution u ∈ C([0, T ];H), i.e.,

u(t) = S(t)u0 +

∫ t

0

S(t− s)[f(s)−Bu(s)] ds, 0 ≤ t ≤ T. (3.3)
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Chapter 3. Existence, Uniqueness and Regularity Theorems

If u0 ∈ D(A) and f ∈ W 1,1(0, T ;H), then u ∈ C1([0, T ];H) and it is a strong

solution of (P0), satisfying (P0) for all t ∈ [0, T ].

Proof. The first part follows from Lemma 3.6 if we choose F (t, z) := Bz−f(t).

Now, let u0 ∈ D(A) and f ∈ W 1,1(0, T ;H). Then by Remark 1.19, (P0) has a

unique strong solution u ∈ W 1,∞(0, T ;H), and it is also a mild solution. Note

that

u(t) = S(t)u0 +

∫ t

0

S(t− s)[f(s)−Bu(s)] ds

= S(t)u0 +

∫ t

0

S(s)[f(t− s)−Bu(t− s)] ds, 0 ≤ t ≤ T.

This implies that

u′(t) = S(t)(f(0)− Au0 −Bu0)

+

∫ t

0

S(t− s)[f ′(s)− (Bu)′(s)] ds, 0 ≤ t ≤ T.

Hence, u′ ∈ C([0, T ];H). By Remark 1.20, we have that u satisfies (P0) for all

t ∈ [0, T ]. This completes the proof.

Remark 3.10. If u0 ∈ H and f ∈ L1(0, T ;H) then the mild solution u of prob-

lem (P0) is also a weak solution. Indeed, let (un0 , fn) ∈ D(A) ×W 1,1(0, T ;H)

approximate (u0, f) in H × L1(0, T ;H). Denote by un the strong solution of

(P0) with u0 := un0 and f := fn. Then,

un(t) = S(t)un0 +

∫ t

0

S(t− s)[fn(s)−Bun(s)] ds, 0 ≤ t ≤ T. (3.4)

Therefore, since S(t) is a contraction for each t ≥ 0 and B is Lipschitz, we

have

‖un(t)− um(t)‖ ≤ ‖un0 − um0 ‖+ ‖fn − fm‖L1(0,T ;H) + C

∫ t

0

‖un(s)− um(s)‖ds,
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3.1. Existence, uniqueness and regularity theorems for problem (P0)

for all t ∈ [0, T ].

It follows by Gronwall’s Lemma that

‖un(t)− um(t)‖ ≤
(
‖un0 − um0 ‖+ ‖fn − fm‖L1(0,T ;H)

)
eCt, ∀t ∈ [0, T ].

This shows that un converges in C([0, T ];H) and its limit ũ is a weak solution

of problem (P0). By passing to the limit in (3.4) we can see that ũ is also a

mild solution of the same problem, so by the uniqueness of the mild solution

ũ = u.

Theorem 3.11. Assume that (H1) and (H2) hold and, in addition, that A is

self-adjoint. If u0 ∈ H and f ∈ L2(0, T ;H), then problem (P0) has a unique

strong solution u, such that t1/2u′ ∈ L2(0, T ;H).

Proof. The result follows easily by Lemma 3.7.

Theorem 3.12 (Higher Regularity). Assume that (H1) and (H2) hold and,

in addition, that A is self-adjoint. If u0 ∈ D(A) and f ∈ W 1,2(0, T ;H),

B is differentiable and B′ : H → L(H) is bounded on bounded sets, then the

solution u of problem (P0) belongs to C1([0, T ];H) and u′ is differentiable a. e.,

with t1/2u′′ ∈ L2(0, T ;H). If in addition f(0) − Au0 − Bu0 ∈ D(A1/2), then

u ∈ W 2,2(0, T ;H).

Proof. If u0 ∈ D(A) and f ∈ W 1,2(0, T ;H) it follows by Theorem 3.9 that

u ∈ C1([0, T ];H). Obviously u satisfies the equation

u′(t) = S(t)(f(0)− Au0 −Bu0) +

∫ t

0

S(t− s)[f ′(s)−B′(u(s))u′(s)]ds (3.5)

for all t ∈ [0, T ]. Now, consider the equation (obtained from (E) of problem

(P0) by formal differentiation)v
′(t) + Av(t) +B′(u(t))v(t) = f ′(t), 0 ≤ t ≤ T,

v(0) = f(0)− Au0 −Bu0.

(CP )
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Chapter 3. Existence, Uniqueness and Regularity Theorems

(CP ) has a mild solution v = v(t) ∈ C([0, T ];H),

v(t) = S(t) (f(0)− Au0 −Bu0) +

∫ t

0

S(t− s)[f ′(s)−B′(u(s))v(s)]ds, (3.6)

for all t ∈ [0, T ]. From (3.5) and (3.6) we derive

‖v(t)− u′(t)‖ ≤
∫ t

0

‖B′(u(s))‖L(H) ‖v(s)− u′(s)‖ds

≤ K

∫ t

0

‖v(s)− u′(s)‖ds, 0 ≤ t ≤ T,

where K > 0 is some constant (see Remark 3.3). This implies v(t) = u′(t) for

all 0 ≤ t ≤ T .

In fact, since A is self-adjoint, the above Cauchy problem (CP ) has a strong

solution v, with
√
t v′ ∈ L2(0, T ;H) (cf. Lemma 3.7). Therefore,

√
t u′′ ∈

L2(0, T ;H). Now, if in addition f(0)−Au0−Bu0 ∈ D(A1/2), then the solution

v = u′ of problem (CP ) belongs to W 1,2(0, T ;H). This follows by Lemma

3.5, where ϕ(x) = (1/2)‖A1/2x‖2
for x ∈ D(A1/2), and ϕ(x) = +∞ for x ∈

H \D(A1/2). So the proof is complete.

If A is not self-adjoint, then a higher regularity result holds under more re-
strictive conditions, as shown in the next theorem.

Theorem 3.13. Assume (H1) and (H2). If f ∈ W 2,∞(0, T ;H), u0 ∈ D(A),

f(0) − Au0 − Bu0 ∈ D(A), and B is twice differentiable with B′, B′′ bounded

on bounded sets, then problem (P0) has a unique solution u ∈ C2([0, T ];H).

Proof. Taking into account Theorem 3.9, it suffices to prove that the above

(CP ) has a solution v ∈ C1([0, T ];H). Since v = u′ this would conclude

the proof. We will apply Kato’s theorem (Lemma 3.8). To this purpose, let

us replace (CP ) by an equivalent one which fits in the framework of Kato’s

theorem. Let C1 > C. Multiply the equation (CP ) by e−C1t. Denoting
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1 )

w(t) = e−C1tv(t), we obtain the following Cauchy problem (which is equivalent

to (CP ) )w
′(t) + Aw(t) + (C1I +B′(u(t)))w(t) = e−C1tf ′(t), 0 ≤ t ≤ T,

w(0) = f(0)− Au0 −Bu0.

(C̃P )

The operator A + C1I + B′(u(t)) is maximal monotone for all t ∈ [0, T ] and

its domain is D(A) for all t ∈ [0, T ]. Thus, by Kato’s existence result, (C̃P )

has a unique solution w ∈ W 1,∞(0, T ;H). Therefore, v = u′ ∈ W 1,∞(0, T ;H).

In fact, v = u′ is a mild solution of problem (CP ) (see (3.6)) and satisfies

u′′(t) = v′(t) = S(t)v′(0) +

∫ t

0

S(t− s) [f ′′(s)−B′′(u(s))u′(s)v(s)

−B′(u(s))v′(s)] ds, 0 ≤ t ≤ T,

which shows that u′′ ∈ C ([0, T ];H). This concludes the proof.

Remark 3.14. It is worth pointing out that by using the above ideas every

level of regularity for the solution of (P0) can be reached under appropriate

conditions.

3.2 Existence, uniqueness and regularity the-

orems for problem (P ε
1 )

In this section we will discuss the elliptic-like regularization (P ε
1 ) of problem

(P0) mentioned in Chapter 2. Recall (P ε
1 ){

−εu′′(t) + u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T,

u(0) = u0, u(T ) = uT .
(P ε

1 )

We can assume ε = 1 without any loss of generality (otherwise, use substitution
t = εs). So (P ε

1 ) becomes{
−u′′ + u′ + Au+Bu = f(t), 0 < t < T,

u(0) = u0, u(T ) = uT .
(P1)
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Chapter 3. Existence, Uniqueness and Regularity Theorems

We will first discuss the existence and uniqueness of the solution of problem
(P1). For existence, we will use a result of A.R. Aftabizadeh and N.H. Pavel
[2], however, the uniqueness will be shown directly by using monotonicity of
A and B. It is worth mentioning that it is also possible to prove the existence
and uniqueness of the solution of problem (P1) by using steps similar to those
used in Theorem 3.20. In the rest of this section, we will prove some other
existence, uniqueness and regularity theorems under appropriate conditions
on f and B.

Theorem 3.15 (A.R. Aftabizadeh and N.H. Pavel [2]). Let Q : D(Q) ⊂ H →

H, β1 : D(β1) ⊂ H → H, β2 : D(β2) ⊂ H → H be multivalued maximal

monotone operators; 0, a, b ∈ D(Q); f ∈ L2(0, T ;H);

(Qλx−Qλy, v) ≥ 0 ∀λ > 0 ∀v, x, y ∈ H, x− y ∈ D(β1), v ∈ β1(x− y),

(Qλx−Qλy, v) ≥ 0 ∀λ > 0 ∀v, x, y ∈ H, x− y ∈ D(β2), v ∈ β2(x− y),

where Qλ denotes the Yosida approximation of Q; either D(β1) or D(β2) is

bounded; p, r ∈ W 1,∞(0, T ) and p(t) ≥ c > 0 ∀t ∈ [0, T ]. Then there exists at

least one u ∈ W 2,2(0, T ;H) such that

p(t)u′′(t) + r(t)u′(t) ∈ Qu(t) + f(t), 0 < t < T,

u(0)− a ∈ D(β1), u′(0) ∈ β1(u(0)− a),

u(T )− b ∈ D(β2), −u′(T ) ∈ β2(u(T )− b).

If, in addition, at least one of the operators Q, β1, β2 is injective, then u

satisfying above conditions is unique.

Theorem 3.16. If (H1), (H2) hold, u0, uT ∈ D(A) and f ∈ L2(0, T ;H), then

problem (P1) has a unique solution u ∈ W 2,2(0, T ;H).

Proof. Q = A + B is a maximal monotone operator, with D(Q) = D(A) (see

Remark 3.1). Let ϕ be the indicator function of the set {0} ⊂ H, i.e.,

ϕ(x) =

 0 if x = 0,

+∞ if x 6= 0.
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1 )

Let ∂ϕ be the subdifferential of ϕ, then

∂ϕ(x) =

 H if x = 0,

∅ if x 6= 0.

If we choose β1 = β2 = ∂ϕ, p ≡ 1, r ≡ −1, then by Theorem 3.15 there exists

at least one solution u ∈ W 2,2(0, T ;H) for problem (P1).

In fact, u is unique. Indeed, if v ∈ W 2,2(0, T ;H) is another solution of (P1),

then −(u− v)′′ + (u− v)′ + A(u− v) +Bu−Bv = 0, 0 ≤ t ≤ T,

(u− v)(0) = 0, (u− v)(T ) = 0.

If we multiply the above equation by (u − v), and use the monotonicity of A

and B, we obtain

−
∫ T

0

((u− v)′′, u− v) dt+

∫ T

0

((u− v)′, u− v) dt ≤ 0.

This implies ∫ T

0

‖u′ − v′‖2dt+
1

2
‖u− v‖2

∣∣∣t=T
t=0︸ ︷︷ ︸

=0

≤ 0,

hence u′ − v′ ≡ 0, i.e., u − v is a constant function. In fact, u ≡ v since

u(0) = v(0).

Theorem 3.17. Assume (H1) and (H2) hold. If u0, uT ∈ H and f ∈ L2(0, T ;H),

then problem (P1) has a unique solution u ∈ C([0, T ];H)∩W 2,2
loc (0, T ;H), with

t1/2(T − t)1/2u′, t3/2(T − t)3/2u′′ ∈ L2(0, T ;H).

Proof. Note that D(A) = H since A is a maximal monotone linear operator.

Therefore, D(Q) = D(A) = H, where Q = A + B. We will use a technique

38



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 3. Existence, Uniqueness and Regularity Theorems

similar to that of R.E. Bruck [13]. We continue the proof with the following

claim.

Claim 1. Let u, v be two solutions of (P1) with boundary conditions u(0), u(T )

and v(0), v(T ), respectively, and let u, v satisfy the properties specified in the

statement of Theorem 3.17, then t 7→ e−t‖u(t) − v(t)‖2 is a convex function

on [0, T ], and

‖u− v‖C([0,T ];H) ≤ max
{
eT/2‖u(0)− v(0)‖, ‖u(T )− v(T )‖

}
, (3.7)

∫ T

0

t(T − t)‖u′ − v′‖2dt ≤ 2T
(
eT‖u(0)− v(0)‖2 + ‖u(T )− v(T )‖2

)
. (3.8)

Proof of Claim 1. Let

g(t) =
1

2
‖u(t)− v(t)‖2, 0 ≤ t ≤ T.

Obviously, g ∈ C([0, T ]) and

g′′ = (u′′ − v′′, u− v) + ‖u′ − v′‖2, (3.9)

for a. e. t ∈ (0, T ). From (3.9) and (P1) we get

g′′ = (u′ − v′, u− v) + (Qu−Qv, u− v) + ‖u′ − v′‖2

≥ g′ + ‖u′ − v′‖2 a. e. t ∈ (0, T ).
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Therefore,

(e−tg)′′ = e−t(g′′ − 2g′ + g)

≥ e−t
(
‖u′ − v′‖2 − g′ + g

)
= e−t

(
‖u′ − v′‖2 − (u′ − v′, u− v) +

1

2
‖u− v‖2

)
≥ e−t

(
‖u′ − v′‖2 − ‖u′ − v′‖ ‖u− v‖+

1

2
‖u− v‖2

)
= e−t

(
1

2
‖u′ − v′‖2 +

1

2
(‖u′ − v′‖ − ‖u− v‖)2

)
≥ 1

2
e−t‖u′ − v′‖2 (3.10)

for a. e. t ∈ (0, T ), hence t 7→ e−tg(t) is a convex function. This yields

e−Tg(t) ≤ e−tg(t) ≤ max
{
g(0), e−Tg(T )

}
∀t ∈ [0, T ],

i.e., (3.7) holds. In order to prove estimation (3.8), consider the function (as

in [13]) βδ(t) := min{t− δ, T − δ − t} for a small δ > 0. If we multiply (3.10)

by βδ and integrate over [δ, T − δ], we obtain

1

2

∫ T−δ

δ

e−tβδ(t)‖u′ − v′‖2dt ≤
∫ T−δ

δ

βδ(t)
(
e−tg

)′′
dt

= −
∫ T−δ

δ

β′δ(t)
(
e−tg

)′
dt

= e−δg(δ) + e−T+δg(T − δ)− 2e−T/2g(T/2)

≤ g(δ) + e−T+δg(T − δ).

Letting δ → 0+ and applying the Fatou’s lemma yields

1

2

∫ T

0

β(t)‖u′ − v′‖2dt ≤ eTg(0) + g(T ),

where β(t) := min{t, T − t}. This inequality implies (3.8), so the proof of

Claim 1 is complete.
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Claim 2. Let u ∈ W 2,2(0, T ;H) be the solution of (P1) with u0, uT ∈ D(A),

and f ∈ L2(0, T ;H). Let uλ ∈ W 2,2(0, T ;H) be the solution of the problem

− u′′λ + u′λ + Aλuλ = f −Bu, 0 ≤ t ≤ T, (3.11a)

uλ(0) = u0, uλ(T ) = uT , (3.11b)

where λ > 0 and Aλ denotes the Yosida approximation of A. The existence of

uλ follows by Theorem 3.16, where A := 0, B := Aλ, and f(t) := f(t)−Bu(t).

Then,

uλ → u, u′λ → u′ in C ([0, T ];H), (3.12)

and u′′λ → u′′ weakly in L2(0, T ;H) as λ→ 0+. (3.13)

Proof of Claim 2. Define for λ > 0 and t ∈ [0, T ]u
∗(t) = T−t

T
u0 + t

T
uT ,

vλ(t) = uλ(t)− u∗(t).

Obviously, vλ satisfies the problem−v
′′
λ + v′λ + Aλvλ = f −Bu− Aλu∗ + 1

T
(u0 − uT ), 0 ≤ t ≤ T,

vλ(0) = 0 = vλ(T ).

(3.14)

If we multiply (3.14) by vλ and integrate over [0, T ], we obtain

−
∫ T

0

(v′′λ, vλ) dt+
1

2

∫ T

0

d

dt
‖vλ‖2dt︸ ︷︷ ︸

=0

+

∫ T

0

(Aλvλ, vλ) dt︸ ︷︷ ︸
≥0

=

∫ T

0

(
f −Bu+

1

T
(u0 − uT )− Aλu∗, vλ

)
dt. (3.15)

Since

‖Aλu∗(t)‖ =

∥∥∥∥T − tT
Aλu0 +

t

T
AλuT

∥∥∥∥
≤ T − t

T
‖Au0‖+

t

T
‖AuT‖ ≤ max {‖Au0‖, ‖AuT‖} <∞, (3.16)
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for all t ∈ [0, T ], we derive from (3.15)∫ T

0

‖v′λ‖2dt ≤ K

(∫ T

0

‖vλ‖2dt

)1/2

, (3.17)

where K > 0 is a constant. On the other hand, we have

vλ(t) =

∫ t

0

v′λ(s)ds, 0 ≤ t ≤ T. (3.18)

From (3.18), we have

‖vλ‖C([0,T ];H) ≤ T 1/2‖v′λ‖L2 , (3.19)

and

‖vλ‖L2 ≤ T‖v′λ‖L2 , (3.20)

where L2 := L2(0, T ;H).

From (3.17) and (3.20), we get

{v′λ;λ > 0} is bounded in L2(0, T ;H). (3.21)

From (3.19) and (3.21), we get

{vλ;λ > 0} is bounded in C([0, T ];H). (3.22)

Since

d

dt
(v′λ, Aλvλ) = (v′′λ, Aλvλ) + (v′λ, Aλv

′
λ)︸ ︷︷ ︸

≥0

≥ (v′′λ, Aλvλ) for a. e. t ∈ (0, T ). (3.23)

Integrating (3.23) over [0, T ], and using (3.14), we have

0 ≥
∫ T

0

(v′′λ, Aλvλ) dt =

∫ T

0

(v′λ + Aλvλ − fλ, Aλvλ) dt,
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Chapter 3. Existence, Uniqueness and Regularity Theorems

where

fλ(t) := f(t)−Bu(t)− Aλu∗(t) +
1

T
(u0 − uT ).

Therefore, by (3.16) and (3.21), one gets

‖Aλvλ‖2
L2 ≤ ‖v′λ‖L2 ‖Aλvλ‖L2 + ‖fλ‖L2‖Aλvλ‖L2

≤ K1‖Aλvλ‖L2 (by (3.21)),

so

{Aλvλ;λ > 0} is bounded in L2(0, T ;H). (3.24)

Finally, by using (3.21), (3.24) and the first equation of (3.14), we have

{u′′λ;λ > 0} is bounded in L2(0, T ;H). (3.25)

For λ, µ > 0, we have from (3.11)

−
∫ T

0

(
u′′λ − u′′µ, uλ − uµ

)
dt+

∫ T

0

(
u′λ − u′µ, uλ − uµ

)
dt

+

∫ T

0

(Aλuλ − Aµuµ, uλ − uµ) dt = 0,

which implies that∫ T

0

∥∥u′λ − u′µ∥∥2
dt =−

∫ T

0

(Aλuλ − Aµuµ, Jλuλ − Jµuµ)︸ ︷︷ ︸
≥0

dt

−
∫ T

0

(Aλuλ − Aµuµ, λAλuλ − µAµuµ) dt

≤K2(λ+ µ),

where Jλ = (I + λA)−1. This shows that {u′λ;λ > 0} is a Cauchy sequence in

L2, hence convergent in L2 as λ→ 0+. Since

‖uλ(t)− uµ(t)‖ =

∥∥∥∥∫ T

0

(
u′λ(s)− u′µ(s)

)
ds

∥∥∥∥
≤ T 1/2

∥∥u′λ − u′µ∥∥L2 ∀t ∈ [0, T ],

43



C
E

U
eT

D
C

ol
le

ct
io

n

3.2. Existence, uniqueness and regularity theorems for problem (P ε
1 )

{uλ;λ > 0} converges in C ([0, T ];H). Denote its limit by û. Summarizing,

we have û ∈ W 2,2(0, T ;H) and

uλ → û in C ([0, T ];H) , (3.26)

u′λ → û′ in L2(0, T ;H), (3.27)

u′′λ → û′′ weakly in L2(0, T ;H), as λ→ 0+. (3.28)

In fact, since by (3.28) the sequence {u′λ;λ > 0} is equicontinuous,

u′λ → û′ in C ([0, T ];H) as λ→ 0+.

It is easily seen that

Jλuλ → û in C ([0, T ];H).

Indeed, for all t ∈ [0, T ],

‖Jλuλ(t)− û(t)‖ ≤ ‖Jλuλ(t)− uλ(t)‖+ ‖uλ(t)− û(t)‖

= λ‖Aλuλ(t)‖+ ‖uλ(t)− û(t)‖

≤ K3λ+ ‖uλ(t)− û(t)‖ (by (3.24)),

which confirms our assertion.

Using the above pieces of information on uλ, we can pass to the limit as λ→ 0+

in (3.11a) regarded as an equation in L2 to obtain

− û′′ + û′ + Aû = f −Bu, 0 ≤ t ≤ T. (3.29a)

We also have (see (3.11b) and (3.26))

û(0) = u0, û(T ) = uT . (3.29b)

Now, from (P1), (3.29a) and (3.29b) we can easily see that û ≡ u. This

completes the proof of Claim 2.
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Chapter 3. Existence, Uniqueness and Regularity Theorems

Claim 3. Let u ∈ W 2,2(0, T ;H) be the solution of (P1) with u0, uT ∈ D(A)

and f ∈ L2(0, T ;H). Then, there exist constants C1, C2 > 0 such that

‖u′′‖L2
∗∗ ≤ C1

(
‖f‖L2 + ‖u′‖L2

∗ + ‖u‖C([0,T ];H)

)
+ C2, (3.30)

where (as in [13]) L2
∗ := L2(0, T ;H; β(t)dt), L2

∗∗ := L2(0, T ;H; β3(t)dt).

Proof of Claim 3. Consider again problem (3.11). From the obvious in-

equality

d

dt
(u′λ, Aλuλ) = (u′′λ, Aλuλ) + (u′λ, Aλu

′
λ)

≥ (u′′λ, Aλuλ) ,

we derive by multiplication by β3 and integration over [0, T ],

−3

∫ T

0

β2β′ (u′λ, Aλuλ) dt ≥
∫ T

0

β3 (u′λ + Aλuλ − f +Bu,Aλuλ) dt.

It follows that

‖Aλuλ‖2
L2
∗∗
≤ 3‖u′λ‖L2

∗‖Aλuλ‖L2
∗∗ + ‖u′λ‖L2

∗∗‖Aλuλ‖L2
∗∗+

+ ‖f‖L2
∗∗‖Aλuλ‖L2

∗∗ + ‖Bu‖L2
∗∗‖Aλuλ‖L2

∗∗

≤ K4‖Aλuλ‖L2
∗∗

(
‖f‖L2 + ‖u′λ‖L2

∗ + ‖u‖C([0,T ];H)

)
+K5,

and so

‖Aλuλ‖L2
∗∗ ≤ K4

(
‖f‖L2 + ‖u′λ‖L2

∗ + ‖u‖C([0,T ];H)

)
+K6.

From (3.11a) we then derive

‖u′′λ‖L2
∗∗ ≤ C1

(
‖f‖L2 + ‖u′λ‖L2

∗ + ‖u‖C([0,T ];H)

)
+ C2. (3.31)

By (3.12), (3.13) and (3.31) we obtain (3.30).
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3.2. Existence, uniqueness and regularity theorems for problem (P ε
1 )

Proof of Theorem 3.17 (continuation). Let us approximate u0, uT ∈ H by

u0n, uTn ∈ D(A), i.e.,

‖u0n − u0‖ → 0, ‖uTn − uT‖ → 0 as n→∞.

By Theorem 3.16, problem (P1) with u(0) = u0n, u(T ) = uTn has a unique

solution un ∈ W 2,2(0, T ;H). Now, estimates (3.7), (3.8) and (3.30) come into

play showing that there exists a function u ∈ C ([0, T ];H) ∩ W 2,2
loc (0, T ;H),

with u′ ∈ L2
∗, u

′′ ∈ L2
∗∗, such that

un → u in C ([0, T ];H) , (3.32)

u′n → u′ in L2
∗, (3.33)

u′′n → u′′ weakly in L2
∗∗. (3.34)

Regarding the equation

−u′′n + u′n + Aun +Bun = f

as one in the space L2(δ, T − δ;H) for positive small δ’s, we obtain by (3.32),

(3.33) and (3.34) that u satisfies for a. e. t ∈ (0, T ) the equation

−u′′ + u′ + Au+Bu = f.

In addition, by (3.32),

u(0) = limun(0) = u0, u(T ) = limun(T ) = uT .

The uniqueness of the solution follows by (3.7).

Theorem 3.18. Assume (H1) and (H2) hold. If u0, uT ∈ D(A) and f ∈

W 1,2(0, T ;H), then problem (P1) has a unique solution u ∈ W 2,2(0, T ;H) ∩

W 3,2
loc (0, T ;H), with t3/2(T − t)3/2u′′′ ∈ L2(0, T ;H). If u0, uT ∈ H and f ∈

W 1,2(0, T ;H), then u ∈ C([0, T ];H) ∩ W 3,2
loc (0, T ;H), with t1/2(T − t)1/2u′,

t3/2(T − t)3/2u′′, t5/2(T − t)5/2u′′′ ∈ L2(0, T ;H).
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Chapter 3. Existence, Uniqueness and Regularity Theorems

Proof. Assume first u0, uT ∈ D(A) and f ∈ W 1,2(0, T ;H). By Theorem 3.16

problem (P1) has a unique solution u ∈ W 2,2(0, T ;H). Consider again problem

(3.11). We know that uλ approximates u in the sense of (3.12) and (3.13). Note

that uλ ∈ W 3,2(0, T ;H) and

−u′′′λ + u′′λ + Aλu
′
λ = (f −Bu)′ for a. e. t ∈ (0, T ).

Now, if we multiply by β3 the inequality

d

dt
(u′′λ, Aλu

′
λ) ≥ (u′′′λ , Aλu

′
λ) ,

and then integrate over [0, T ], we get

−3

∫ T

0

β2β′ (u′′λ, Aλu
′
λ) dt ≥

∫ T

0

β3 (u′′λ − f ′ + (Bu)′ + Aλu
′
λ, Aλu

′
λ) dt.

As in the proof of Claim 3, we find

‖u′′′λ ‖L2
∗∗ ≤ C̃1

(
‖f ′‖L2 + ‖u′′λ‖L2

∗ + ‖u′‖C([0,T ];H)

)
+ C̃2. (3.35)

According to (3.12), (3.13) and (3.35) u′′′ ∈ L2
∗∗ and

β3/2u′′′λ → β3/2u′′′ weakly in L2, as λ→ 0+.

Now assume u0, uT ∈ H and f ∈ W 1,2(0, T ;H). By Theorem 3.17 above,

problem (P1) has a unique solution u ∈ C([0, T ];H) ∩ W 2,2
loc (0, T ;H), with

u′ ∈ L2
∗, u

′′ ∈ L2
∗∗. So all we have to prove is that u ∈ W 3,2

loc (0, T ;H) and

t5/2(T − t)5/2u′′′ ∈ L2(0, T ;H). As usual, we approximate u0, uT by u0n, uTn ∈

D(A), and denote by un the solution of the problem−u
′′
n + u′n + Aun +Bun = f, 0 ≤ t ≤ T,

un(0) = u0n, un(T ) = uTn.
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3.2. Existence, uniqueness and regularity theorems for problem (P ε
1 )

From the proof of Theorem 3.17, we know that (un) satisfies (3.32)-(3.34).

Now, for an n ∈ N (arbitrary but fixed) and λ > 0, denote by unλ the solution

of the problem−u
′′
nλ + u′nλ + Aλunλ = f −Bun, 0 ≤ t ≤ T,

unλ(0) = u0n, unλ(T ) = uTn.

(3.36)

We know from Claim 2 thatunλ → un, u′nλ → u′n in C([0, T ];H) and

u′′nλ → u′′n weakly in L2(0, T ;H) as λ→ 0+.

(3.37)

Obviously, unλ ∈ W 3,2(0, T ;H) and satisfies the equation

−u′′′nλ + u′′nλ + Aλu
′
nλ = (f −Bun)′ for a. e. t ∈ (0, T ).

Let us multiply by β5 the inequality

d

dt
(u′′nλ, Aλu

′
nλ) ≥ (u′′′nλ, Aλu

′
nλ) ,

and integrate over [0, T ]. Thus we derive the estimate(∫ T

0

β5 ‖u′′′nλ‖2

)1/2

≤ Ĉ1

(
‖u′′nλ‖L2

∗∗ + ‖u′n‖L2
∗ + ‖f ′‖L2

)
+ Ĉ2. (3.38)

As in the proof of Claim 3, we obtain from (3.36) an estimate similar to (3.31)

‖u′′nλ‖L2
∗∗ ≤ C1

(
‖f‖L2 + ‖u′nλ‖L2

∗+‖un‖C([0,T ];H)

)
+ C2. (3.39)

Using (3.39) in (3.38) we obtain(∫ T

0

β5‖u′′′nλ‖2

)1/2

≤ D1 (‖f‖L2 + ‖f ′‖L2 + ‖u′nλ‖L2
∗

+‖u′n‖L2
∗ + ‖un‖C([0,T ];H)

)
+D2,

(3.40)
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Chapter 3. Existence, Uniqueness and Regularity Theorems

where D1, D2 are positive constants. Since u′nλ → u′n in C([0, T ];H) as

λ → 0+ (see (3.37)), we deduce from (3.40) that {u′′′nλ;λ > 0} is bounded

in L2(0, T ;H; β5(t)dt), so β5/2u′′′nλ → β5/2u′′′n weakly in L2(0, T ;H). Letting

λ→ 0+ in (3.40) we get

‖β5/2u′′′n ‖L2 ≤ D1 (‖f‖L2 + ‖f ′‖L2 + 2‖u′n‖L2
∗

+‖un‖C([0,T ];H)

)
+D2.

(3.41)

Since (un) satisfies (3.32) and (3.33), it follows from (3.41) that β5/2u′′′ ∈

L2(0, T ;H). Thus the proof of the Theorem 3.18 is complete.

Remark 3.19. By using the above method, we can obtain higher regularity

for u under appropriate regularity assumptions on f and B.

3.3 Existence, uniqueness and regularity the-

orems for problem (P ε
2 )

In this section we will discuss the elliptic-like regularization (P ε
2 ) of problem

(P0) mentioned in Chapter 2. Recall (P ε
2 ){

−εu′′(t) + u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T,

u(0) = u0, u′(T ) = uT .
(P ε

2 )

We can assume ε = 1 without any loss of generality (otherwise, use substitution
t = εs). So (P ε

2 ) becomes{
−u′′ + u′ + Au+Bu = f(t), 0 < t < T, (F )

u(0) = u0, u′(T ) = uT . (BC)
(P2)

We will first prove an existence and uniqueness theorem for problem (P2). The
technique we use is not completely new, but is adapted to this particular prob-
lem. In the rest of this section, we will prove some other existence, uniqueness
and regularity theorems under appropriate conditions on f and B.
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3.3. Existence, uniqueness and regularity theorems for problem (P ε
2 )

Theorem 3.20. Assume (H1) and (H2) hold, u0, uT ∈ D(A) and f ∈ L2(0, T ;H),

then problem (P2) has a unique solution u ∈ W 2,2(0, T ;H).

Proof. Claim 1. The operator Q : D(Q) ∈ X → X, where X = L2(0, T ;H),

D(Q) = {v ∈ X : v′, v′′ ∈ X, v(0) = u0, v
′(T ) = uT}, and Q(v) = −v′′ + v′, is

maximal monotone.

Proof of Claim 1. Monotonicity of Q follows easily: for v1, v2 ∈ D(Q) we

have

(Qv1 −Qv2, v1 − v2)X

= −(v′1 − v′2, v1 − v2)
∣∣∣T
0

+

∫ T

0

‖v′1 − v′2‖2dt+
1

2
‖v1 − v2‖2

∣∣∣T
0

=

∫ T

0

‖v′1 − v′2‖2dt+
1

2
‖v1(T )− v2(T )‖2 ≥ 0.

For the maximality of Q, we need to prove that for all g ∈ X, there exists a

v ∈ D(Q) satisfying the equation

− v′′ + v′ + v = g. (3.42)

The general solution of (3.42) is given by

v(t) = c1e
r1t + c1e

r1t + vp(t), (3.43)

with

vp(t) =
1

r1 − r2

∫ t

0

[
er2(t−s) − er1(t−s)] g(s)ds,

where r1, r2 are the roots of the characteristic equation −r2 + r + 1 = 0

and c1, c2 ∈ H are arbitrary. Obviously, v ∈ H2(0, T ;H) for all c1, c2 ∈ H.

Imposing to v, given by (3.43), the conditions

v(0) = v0, v′(T ) = uT ,
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Chapter 3. Existence, Uniqueness and Regularity Theorems

one can determine uniquely c1, c2.

Now, we denote by Ā, B̄ the realizations (canonical extensions) of A,B to

X = L2(0, T ;H), respectively. For all λ > 0, Q+Āλ+B̄ is maximal monotone

in X, so there exists a unique uλ ∈ D(Q) satisfying the equation

Quλ + Āλuλ + B̄uλ + λuλ = f,

(cf. Minty’s theorem).

In other words, uλ satisfies the problem

− u′′λ + u′λ + Āλuλ + B̄uλ + λuλ = f, 0 < t < T, (3.44)

uλ(0) = u0, u′λ(T ) = uT .

Claim 2. {uλ; 0 < λ ≤ λ0} is bounded in C([0, T ];H) and {u′λ; 0 < λ ≤ λ0}

is bounded in X = L2(0, T ;H), for some λ0 > 0 arbitrary but fixed.

Proof of Claim 2. Define for λ > 0 and t ∈ [0, T ]u
∗(t) := u0 + uT t,

vλ(t) := uλ(t)− u∗(t).

Obviously, u∗(t) ∈ D(A) for all t ∈ [0, T ], and vλ satisfies the problem

−v′′λ + v′λ + Aλvλ +B(vλ + u∗) + λvλ = f − uT − Aλu∗ − λu∗

:= fλ, 0 < t < T,
(3.45)

vλ(0) = 0, v′λ(T ) = 0.

Note that for all λ > 0, 0 ≤ t ≤ T , we have

‖Aλu∗(t)‖ = ‖Aλu0 + tAλuT‖ ≤ ‖Au0‖+ T‖AuT‖.
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3.3. Existence, uniqueness and regularity theorems for problem (P ε
2 )

Now we multiply (3.45) by vλ and integrate over [0, T ]:

−
∫ T

0

(v′′λ, vλ) dt+
1

2

∫ T

0

d

dt
‖vλ‖2dt+

∫ T

0

(Aλvλ, vλ) dt

+

∫ T

0

(B(vλ + u∗)−B(u∗), vλ) dt+

∫ T

0

(B(u∗), vλ) dt

+ λ

∫ T

0

‖vλ‖2dt =

∫ T

0

(fλ, vλ) .

Therefore, using the monotonicity of Aλ, B, we get∫ T

0

‖v′λ‖2dt ≤ ‖B(u∗)‖X ‖vλ‖X + ‖fλ‖X ‖vλ‖X . (3.46)

Obviously, since B is Lipschitz,

‖Bu∗(t)‖ ≤ ‖Bu∗(t)−Bu∗(0)‖+ ‖Bu∗(0)‖

≤ C‖u∗(t)− u0‖+ ‖Bu0‖

≤ CT‖uT‖+ ‖Bu0‖. (3.47)

By (3.46) and (3.47), it follows that∫ T

0

‖v′λ‖2dt ≤ C0‖vλ‖X , for all λ ∈ (0, λ0], (3.48)

where C0 is a positive constant. Note that

vλ(t) =

∫ t

0

v′λ(s)ds,

so

‖vλ‖C([0,T ];H) ≤ T 1/2 ‖v′λ‖X , (3.49)

and

‖vλ‖X ≤ T ‖v′λ‖X . (3.50)

By (3.48)-(3.50), we can see that {vλ; 0 < λ ≤ λ0} is bounded in C([0, T ];H)

and {v′λ; 0 < λ ≤ λ0} is bounded in X. These properties are satisfied by uλ

too, so the proof of Claim 2 is complete.
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Claim 3. {Aλuλ; 0 < λ ≤ λ0} and {u′′λ; 0 < λ ≤ λ0} are both bounded in X.

Proof of Claim 3. It is sufficient to prove these properties for vλ defined

above. Since

d

dt
(v′λ, Aλvλ) = (v′′λ, Aλvλ) + (v′λ, Aλv

′
λ)︸ ︷︷ ︸

≥0

≥ (v′′λ, Aλvλ) for a. e. t ∈ (0, T ),

we obtain

0 ≥
∫ T

0

(v′′λ, Aλvλ) dt =

∫ T

0

(Aλvλ + v′λ +B(vλ + u∗) + λvλ − fλ, Aλvλ) .

(3.51)

Note that

‖B (vλ(t) + u∗(t))‖ ≤ ‖B (vλ(t) + u∗(t))−B0‖+ ‖B0‖

≤ C‖vλ(t) + u∗(t)‖+ ‖B0‖

≤ C‖vλ(t)‖+ C‖u0‖+ CT‖uT‖+ ‖B0‖,

so, by Claim 2,

sup
0≤t≤T

0<λ≤λ0

‖B (vλ(t) + u∗(t))‖ <∞. (3.52)

From (3.51), (3.52) and Claim 2, we can see that {Aλvλ; 0 < λ ≤ λ0} is

bounded in X, and so is {v′′λ; 0 < λ ≤ λ0} (see (3.45)).

Claim 4. uλ converges, as λ→ 0+, in C([0, T ];H).
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2 )

Proof of Claim 4. For λ, µ > 0 we obtain from (3.44)

−
∫ T

0

(
u′′λ − u′′µ, uλ − uµ

)
dt+

∫ T

0

(
u′λ − u′µ, uλ − uµ

)
dt

+

∫ T

0

(Aλuλ − Aµuµ, uλ − uµ) dt

= −
∫ T

0

(Buλ −Buµ, uλ − uµ)−
∫ T

0

(λuλ − µuµ, uλ − uµ) dt

≤ −
∫ T

0

(λuλ − µuµ, uλ − uµ) dt.

Therefore∫ T

0

‖u′λ − u′µ‖2 ≤ −
∫ T

0

(Aλuλ − Aµuµ, Jλuλ − Jµuµ)︸ ︷︷ ︸
≥0

dt

−
∫ T

0

(Aλuλ − Aµuµ, λAλuλ − µAµuµ) dt

−
∫ T

0

(λuλ − µuµ, uλ − uµ) dt

≤ C1(λ+ µ),

where Jλ = (I + λA)−1 and C1 is a positive constant. The above estimate

shows that (u′λ) is a Cauchy sequence in X, hence convergent in X as λ→ 0+.

Since

‖uλ(t)− uµ(t)‖ =

∥∥∥∥∫ t

0

(
u′λ − u′µ

)
ds

∥∥∥∥
≤ T 1/2‖u′λ − u′µ‖X ,

it follows that uλ converges to some u in C([0, T ];H) as λ → 0+. In fact, by

Claim 3, we have u ∈ W 2,2(0, T ;H) and, as λ→ 0+,

uλ → u in C([0, T ];H), (3.53)

u′λ → u′ in X, (3.54)

u′′λ → u′′ weakly in X. (3.55)
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Chapter 3. Existence, Uniqueness and Regularity Theorems

Even more, since (3.55) (u′λ) is equicontinuous, we have

u′λ → u′ in C([0, T ];H). (3.56)

Proof of Theorem 3.20 (Continuation). On the other hand,

‖Jλuλ(t)− u(t)‖ ≤ ‖Jλuλ(t)− uλ(t)‖+ ‖uλ(t)− u(t)‖

= λ‖Aλuλ(t)‖+ ‖uλ(t)− u(t)‖,

which implies that

‖Jλuλ − u‖X ≤ λ‖Aλuλ‖X + ‖uλ − u‖X

≤ C2λ+ T 1/2‖uλ − u‖C([0,T ];H),

where C2 is a positive constant.

By (3.53) we get

Jλuλ → u in X as λ→ 0+. (3.57)

Note that

Aλuλ = A(Jλuλ). (3.58)

By using (3.53)-(3.55), (3.57) and (3.58), we can pass to limit as λ → 0+

in (3.44) regarded as an equation in X, and conclude that u satisfies (G) of

problem (P2) for a. e. t ∈ (0, T ). We also have by (3.53) and (3.56) that u

satisfies (BC) of problem (P2).

For uniqueness, let ũ ∈ W 2,2(0, T ;H) be another solution. Then,

− (u− ũ)′′ + (u− ũ)′ +A(u− ũ) +Bu−Bũ = 0 for a. e. t ∈ (0, T ), (3.59)

(u− ũ)(0) = 0 = (u′ − ũ′)(T ). (3.60)
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3.3. Existence, uniqueness and regularity theorems for problem (P ε
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We multiply (3.59) by u− ũ and integrate over [0, T ]∫ T

0

‖u′ − ũ′‖2dt+
1

2
‖u− ũ‖2

∣∣∣T
0︸ ︷︷ ︸

≥0

= −
∫ T

0

(A(u− ũ), u− ũ) dt

−
∫ T

0

(Bu−Bũ, u− ũ) dt ≤ 0,

since both A and B are monotone. So (u− ũ)′ ≡ 0 ⇒ u ≡ ũ (cf. (3.60)). The

proof of Theorem 3.20 is complete.

Theorem 3.21. Assume that (H1) and (H2) hold. If u0, uT ∈ H and f ∈

L2(0, T ;H), then problem (P2) has a unique generalized (in the sense explained

below) solution u ∈ C([0, T ];H)∩W 2,2
loc (0, T ;H), with t1/2u′, t3/2(T − t)3/2u′′ ∈

L2(0, T ;H).

Proof. Note that D(A) = D(A+B) = H.

Claim 1. If u, v are two solutions of (F ) of problem (P2) with the properties

specified in the above statement (of Theorem 3.21), then

‖u− v‖C([0,T ];H) ≤ max
{
eT/2‖u(0)− v(0)‖, ‖u(T )− v(T )‖

}
(3.61)∫ T

0

t
(
‖u− v‖2 + ‖u′ − v′‖2

)
dt ≤ C3 ( ‖u(0)− v(0)‖2

+‖u′(T )− v′(T )‖2
)
,

(3.62)

where C3 is a positive constant.

Proof of Claim 1. Define

g(t) =
1

2
‖u(t)− v(t)‖2, 0 ≤ t ≤ T.

By a computation similar to the proof of Claim 1 of Theorem 3.17, we get

(
e−tg

)′′ ≥ e−t
(
‖u′ − v′‖2 − (u′ − v′, u− v) +

1

2
‖u− v‖2

)
, 0 ≤ t ≤ T.
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Chapter 3. Existence, Uniqueness and Regularity Theorems

This implies(
e−tg

)′′ ≥ c e−t
(
‖u− v‖2 + ‖u′ − v′‖2

)
, 0 ≤ t ≤ T, (3.63)

where c is a small positive constant (e.g., c = 1
8
).

Estimate (3.63) shows that t 7→ e−tg(t) is a convex function and consequently

e−tg(t) ≤ max
{
g(0), e−Tg(T )

}
, 0 ≤ t ≤ T,

i.e., inequality (3.61) holds.

Now we multiply (3.63) by t and integrate over [0, T ]:

c

∫ T

0

te−t
(
‖u− v‖2 + ‖u′ − v′‖2

)
dt ≤

∫ T

0

t(e−tg)′′dt

= t(e−tg)′
∣∣∣T
0
−
∫ T

0

(e−tg)′dt

= te−t(g′ − g)
∣∣∣T
0
− e−tg

∣∣∣T
0

= Te−T
(

(u′(T )− v′(T ), u(T )− v(T ))− 1

2
‖u(T )− v(T )‖2

)
− e−T

2
‖u(T )− v(T )‖2 +

1

2
‖u(0)− v(0)‖2

≤ Te−T
(

1

2
‖u′(T )− v′(T )‖2 +

1

2
‖u(T )− v(T )‖2 − 1

2
‖u(T )− v(T )‖2

)
+

1

2
‖u(0)− v(0)‖2

≤ Te−T

2
‖u′(T )− v′(T )‖2 +

1

2
‖u(0)− v(0)‖2.

Therefore,

c e−T
∫ T

0

t
(
‖u− v‖2 + ‖u′ − v′‖2

)
dt ≤ Te−T

2
‖u′(T )− v′(T )‖2

+
1

2
‖u(0)− v(0)‖2,

thus (3.62) holds with

C3 =
1

2c
max

{
T, eT

}
.

57



C
E

U
eT

D
C

ol
le

ct
io

n

3.3. Existence, uniqueness and regularity theorems for problem (P ε
2 )

Claim 2. Let u ∈ W 2,2(0, T ;H) be a solution of problem (P2), where u0, uT ∈

D(A) and f ∈ L2(0, T ;H). Let uλ ∈ W 2,2(0, T ;H) be the unique solution of

the problem

− u′′λ + u′λ + Aλuλ = f −Bu, 0 ≤ t ≤ T, (3.64)

uλ(0) = u0, u′λ(T ) = uT , (3.65)

where λ > 0 and Aλ denotes the Yosida approximation of A. The existence of

uλ follows by Theorem 3.20, where A = 0, B = Aλ, and f(t) := f(t)−Bu(t).

Then, as λ→ 0+,

uλ → u, u′λ → u′ in C([0, T ];H), (3.66)

u′′λ → u′′ weakly in X = L2(0, T ;H). (3.67)

Proof of Claim 2. As in the proof of Theorem 3.20, denote

vλ(t) = uλ(t)− u∗(t), where

u∗(t) = u0 + uT t, 0 ≤ t ≤ T.

Obviously, vλ satisfies the problem

− v′′λ + v′λ + Aλvλ = fλ, 0 < t < T, (3.68)

vλ(0) = 0 = v′λ(T ), (3.69)

where

fλ(t) := f(t)−Bu(t)− Aλu∗(t)− uT .

If we multiply (3.68) by vλ and integrate over [0, T ], we obtain an estimate

similar to (3.48) of Claim 2 in the proof of Theorem 3.20 (here we do not need
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Chapter 3. Existence, Uniqueness and Regularity Theorems

any upper bound for λ > 0).

Continuing the proof along the lines of the proof of Theorem 3.20, we can show

that there exists a ũ ∈ W 2,2(0, T ;H) such that

uλ → ũ, u′λ → ũ′ in C([0, T ];H) and u′′λ → ũ′′ weakly in X, as λ→ 0+.

Moreover, ũ is a solution of the problem

− ũ′′ + ũ′ + Aũ+Bu = f, 0 < t < T, (3.70)

ũ(0) = u0, ũ′(T ) = uT . (3.71)

From (P2) and (3.70)-(3.71) one can easily obtain that ũ ≡ u, thus completing

the proof of Claim 2.

Claim 3. If u ∈ W 2,2(0, T ;H) is a solution of problem (P2), where u0, uT ∈

D(A) and f ∈ L2(0, T ;H), then there are positive constants C4, C5 such that

‖u′′‖X∗∗ ≤ C4

(
‖f‖X + ‖u′‖X∗ + ‖u‖C([0,T ];H)

)
+ C5, (3.72)

where X = L2(0, T ;H), X∗ = L2(0, T ;H; tdt), X∗∗ = L2(0, T ;H; β3(t)dt),

β(t) = min{t, T − t}.

Proof of Claim 3. Consider again problem (3.64), (3.65). If we multiply the

obvious inequality
d

dt
(u′λ, Aλuλ) ≥ (u′′λ, Aλuλ)

by β3(t) and integrate over [0, T ], we obtain

−3

∫ T

0

β2β′ (u′λ, Aλuλ) dt ≥
∫ T

0

β3 (u′λ + Aλuλ +Bu− f, Aλuλ) dt.

This implies

‖Aλuλ‖2
X∗∗ ≤ 3‖Aλuλ‖X∗∗

(∫ T

0

β(t)‖u′λ‖2dt

)1/2

+ ‖Aλuλ‖X∗∗ ‖u′λ‖X∗∗

+ ‖Aλuλ‖X∗∗ ‖Bu‖X∗∗ + ‖Aλuλ‖X∗∗ ‖f‖X∗∗ ,
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3.3. Existence, uniqueness and regularity theorems for problem (P ε
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so

‖Aλuλ‖X∗∗ ≤ 3‖u′λ‖X∗ + ‖u′λ‖X∗∗ + ‖Bu‖X∗∗ + ‖f‖X∗∗ . (3.73)

Since B is Lipschitz and

C([0, T ];H) ⊂ X ⊂ X∗ ⊂ X∗∗,

with continuous injections, we obtain from (3.73) estimate (3.72) for u := uλ,

i.e.,

‖u′′λ‖X∗∗ ≤ C4

(
‖f‖X + ‖u′λ‖X∗ + ‖u‖C([0,T ];H)

)
+ C5. (3.74)

To conclude the proof of Claim 3, we just have to use Claim 2 (see (3.66) and

(3.67)) and pass to the limit in (3.74) as λ→ 0+.

Proof of Theorem 3.21 (Continuation). Let u0n, uTn ∈ D(A) such that

‖u0n − u0‖ → 0, ‖uTn − uT‖ → 0, as n→∞.

Let un ∈ W 2,2(0, T ;H) be the solution of the problem (P2) with u0n, uTn

instead of u0, uT . By estimate (3.62) of Claim 1, (un) is a Cauchy sequence in

X∗. Consequently, there exists a u ∈ X∗ such that u′ ∈ X∗ and

un → u, u′n → u′ in X∗.

It follows that

un → u in C([δ, T ];H) for each 0 < δ < T ,

so in particular ‖un(T ) − u(T )‖ → 0. According to the estimate (3.61) of

Claim 1, we see that un converges in C([0, T ];H), hence u ∈ C([0, T ];H) and

u(0) = u0.

By the estimate (3.72) of Claim 3, u′′n is bounded in X∗∗. This implies that

u′′ ∈ X∗∗ and

u′′n → u′′ weakly in X∗∗.
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Chapter 3. Existence, Uniqueness and Regularity Theorems

Regarding the equation

−u′′n + u′n + Aun +Bun = f

as one in the space L2(δ, T − δ;H) for positive small δ’s, we see that u satisfies

equation (F ) of problem (P2) for a. e. t ∈ (0, T ).

If uT ∈ D(A), one can use uTn = uT for all n ∈ N. Using the change

ũλ(t) = uλ(t)− t uT

in (3.64), (3.65), we obtain

−ũ′′λ + ũ′λ + Aλũλ = f −Bu− tAλuT − uT =: f̃λ,

ũλ(0) = u0, ũ′λ(0) = 0,

with {f̃λ;λ > 0} bounded in X (note that ‖AλuT‖ ≤ ‖AuT‖). If we re-

place β(t) in the proof of Claim 3 by β̃(t) = t, we obtain (3.72) with X∗∗ =

L2(0, T ; t3dt). Since u′′n is bounded in L2(δ, T ;H), it follows that u′n converges

to u′ in C([δ, T ];H), so u′(T ) = uT . Therefore, u is a solution of problem (P2),

with t1/2u′, t3/2u′′ ∈ L2(0, T ;H).

If both u0, uT ∈ H \ D(A), then there exists a generalized solution u, i.e.,

u satisfies all properties specified in the statement of Theorem 3.21, except

u′(T ) = uT . Uniqueness follows by a standard argument.

Theorem 3.22. Assume that (H1), (H2) hold. If u0, uT ∈ D(A) and f ∈

W 1,2(0, T ;H), then problem (P2) has a unique solution u ∈ W 2,2(0, T ;H) ∩

W 3,2
loc (0, T ;H) with t3/2(T − t)3/2u′′′ ∈ L2(0, T ;H). If u0 ∈ H, uT ∈ D(A),

f ∈ W 1,2(0, T ;H), then u ∈ C([0, T ];H), t1/2u′, t3/2u′′, t5/2(T − t)5/2u′′′ ∈

L2(0, T ;H).
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Proof. Assume first that u0, uT ∈ D(A) and f ∈ W 1,2(0, T ;H). By Theorem

3.20 there exists a unique solution u ∈ W 2,2(0, T ;H). Consider again problem

(3.64), (3.65) for λ > 0. We see that uλ ∈ W 3,2(0, T ;H) and

−u′′′λ + u′′λ + Aλu
′
λ = f ′ − (Bu)′ for a. e. t ∈ (0, T ).

Starting from the obvious inequality

d

dt
(u′′λ, Aλu

′
λ) ≥ (u′′′λ , Aλu

′
λ)

we obtain after multiplying by β3(t) and integrating over [0, T ] that

‖u′′′λ ‖X∗∗ ≤ C̃4

(
‖f‖X + ‖u′′λ‖X∗ + ‖u′‖C([0,T ];H)

)
+ C̃5. (3.75)

By (3.66), (3.67), (3.75) it follows that u′′′ ∈ X∗∗ and u′′′λ → u′′′ in X∗∗.

Now assume that u0 ∈ H, uT ∈ D(A) and f ∈ W 1,2(0, T ;H). By Theorem

3.21, there exists a unique solution u ∈ C([0, T ];H) ∩ W 2,2
loc (0, T ;H), with

t1/2u′, t3/2u′′ ∈ L2(0, T ;H). So all we have to prove is that u′′ is differentiable

for a. e. t ∈ (0, T ) and t5/2(T − t)5/2u′′′ ∈ L2(0, T ;H). We approximate u0 by

u0n ∈ D(A) and denote by un the solution of the problem−u
′′
n + u′n + Aun +Bun = f, 0 < t < T,

un(0) = u0n, u′n(T ) = uT .

By the proof of Theorem 3.21,

un → u in C([0, T ];H), t1/2u′n → t1/2u′ in L2(0, T ;H), and

t3/2u′′n → t3/2u′′ weakly in L2(0, T ;H).

Now, for a fixed n ∈ N and λ > 0, denote by unλ the solution of the problem−u
′′
nλ + u′nλ + Aλunλ = f −Bun, 0 < t < T,

unλ(0) = u0n, u′nλ(T ) = uT .
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We can assume that uT = 0 (otherwise, we change u : ũ(t) = u(t)− t uT ). We

know from the proof of Theorem 3.21 thatunλ → un, u′nλ → u′n in C([0, T ];H) and

u′′nλ → u′′n weakly in X = L2(0, T ;H), as λ→ 0+.

Obviously, unλ ∈ W 3,2(0, T ;H) and

−u′′′nλ + u′′nλ + Aλu
′
nλ = f ′ − (Bun)′ for a. e. t ∈ (0, T ).

We multiply the inequality

d

dt
(u′′nλ, Aλu

′
nλ) ≥ (u′′′nλ, Aλu

′
nλ)

by β5(t) and integrate over [0, T ] to get (see (3.73), (3.74))(∫ T

0

β5‖u′′′nλ‖2

)1/2

≤ D

(
‖u′′nλ‖X∗∗ +

(∫ T

0

β5‖u′′nλ‖2

)1/2

+

(∫ T

0

β5‖(Bun)′‖2

)1/2

+

(∫ T

0

β5‖f ′‖2

)1/2
)
.

(3.76)

Similarly (see (3.74))

‖u′′nλ‖X∗∗ ≤ C̃4

(
‖f‖X + ‖u′nλ‖X∗ + ‖un‖C([0,T ];H)

)
+ C̃5

(in fact, here X∗∗ = L2(0, T ;H; t3dt)).
(3.77)

By (3.76) and (3.77), we get(∫ T

0

β5‖u′′′nλ‖2

)1/2

≤ D1 (‖f‖X + ‖f ′‖X + ‖u′nλ‖X∗

+‖u′n‖X∗ + ‖un‖C([0,T ];H)

)
+D2.

(3.78)

Since u′nλ → u′n in C([0, T ];H), (3.78) implies(∫ T

0

β5‖u′′′nλ‖2

)1/2

≤ D1 (‖f‖X + ‖f ′‖X + 2‖u′n‖X∗

+‖un‖C([0,T ];H)

)
+D2.
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2 )

which shows that
(
β5/2u′′′nλ

)
λ>0

is bounded in X and its limit β5/2u′′′n satisfies

(∫ T

0

β5‖u′′′n ‖2

)1/2

≤ D1 (‖f‖X + ‖f ′‖X + 2‖u′n‖X∗

+‖un‖C([0,T ];H)

)
+D2.

(3.79)

Since un → u in C([0, T ];H) and u′n → u′ in X∗ it follows from (3.79) that

β5/2u′′′ ∈ X.

Remark 3.23. By using the above method, we can obtain higher regularity

for u under appropriate regularity assumptions on f and B.

Remark 3.24. From the last two results (Theorems 3.21 and 3.22), we see

that the boundary condition u′(T ) = uT brings some difficulties as compared to

the previous case when u(T ) = uT , and less regularity is obtained near t = T .

Thus problems (P ε
1 ) and (P ε

2 ) are essentially different. This difference will

be noticed again in Chapter 4, where different boundary layer phenomena are

identified.
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Chapter 4

Asymptotic Expansions

We have seen in Chapter 3 that the solutions of problems (P ε
1 ) and (P ε

2 ) are
more regular than those of problem (P0). For example, if u0, uT ∈ H and f ∈
L2(0, T ;H), then the solution of problem (P0) belongs to C([0, T ];H), while
the solutions of problems (P ε

1 ) and (P ε
2 ) belong to C([0, T ];H)∩W 2,2

loc (0, T ;H)
(cf. Theorems 3.9, 3.17 and 3.21). Now if u0, uT ∈ D(A) and f ∈ W 1,2(0, T ;H),
then the solution of problem (P0) belongs to C1([0, T ];H), while the solutions
of problems (P ε

1 ) and (P ε
2 ) belong to W 2,2(0, T ;H) ∩W 3,2

loc (0, T ;H) (cf. Theo-
rems 3.9, 3.18 and 3.22).

We also expect that the solutions of the elliptic-like regularizations (P ε
1 ) and

(P ε
2 ) approximate the solution of problem (P0) as ε → 0+. We will show in

what follows that this is indeed the case under suitable conditions on the data.
However, a boundary layer occurs near t = T , and so the solutions uε’s of the
elliptic-like regularizations (P ε

1 ) and (P ε
2 ) must be corrected by adding bound-

ary layer functions in order to obtain a good approximation for the solution
of problem (P0).

In this chapter we will establish asymptotic expansions of order zero for the
elliptic-like regularizations (P ε

1 ) and (P ε
2 ), as well as asymptotic expansion of

order one for the elliptic-like regularization (P ε
2 ). As we mentioned in Chapter

2 that the elliptic and hyperbolic regularizations of the semilinear heat equa-
tion, which is a special case of problem (P0), have been discussed by L. Barbu
and G. Moroşanu [7, pp. 209-226]. So, in our general case, we also expect
the following asymptotic expansion of order zero to hold for the elliptic-like
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4.1. Asymptotic expansion of order zero for problem (P ε
1 )

regularizations (P ε
1 ) and (P ε

2 )

uε(t) = u(t) + i(τ) + rε(t), 0 ≤ t ≤ T, (4.1)

where τ := T−t
ε

is the stretched (fast) variable, u = u(t) is the solution of the
reduced problem (P0), i = i(τ) is the boundary layer function, and rε = rε(t)
is the remainder (of order zero). We will see that in case of problem (P ε

2 ),
we have i ≡ 0, and the problem is regularly perturbed (of order zero). For
the first order asymptotic expansion for the elliptic-like regularization (P ε

2 ),
we expect the following

uε(t) = u(t) + ε [u1(t) + i1(τ)] + rε(t). (4.2)

4.1 Asymptotic expansion of order zero for

problem (P ε
1 )

In this section, we will discuss asymptotic expansion of order zero for problem
(P ε

1 ). It turns out that problem (P ε
1 ) is regularly perturbed in L2(0, T ;H),

while it is singularly perturbed in C([0, T ];H). We will also derive the esti-
mates for remainder of order zero with respect to the norms of L2(0, T ;H) and
C([0, T ];H).

Assuming that all functions involved in (4.1) are smooth enough, we can iden-
tify these functions by heuristic arguments. We have

u′ε(t) = u′(t)− 1

ε

d

dτ
i(τ) + r′ε(t),

u′′ε(t) = u′′(t) +
1

ε2

d2

dτ 2
i(τ) + r′′ε (t).

so

−ε
[
u′′(t) +

1

ε2

d2

dτ 2
(τ) + r′′ε (t)

]
+

[
u′(t)− 1

ε

di

dτ
(τ) + r′ε(t)

]
+ Au(t) + Ai(τ) + Arε(t) +Buε = f(t).

(4.3)

If we identify the coefficients of ε−1, ε0, we get

d2i

dτ 2
+
di

dτ
= 0, τ > 0 with i(0) = uT − u(T ), (4.4)
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Chapter 4. Asymptotic Expansions

u satisfies (P0), and rε satisfies{
−ε(u+ rε)

′′ + r′ε + Arε +B(uε) = B(u)− Ai,
rε(0) = −i(T/ε), rε(T ) = 0.

(Rε)

From (4.4) we get (note that i(∞) = 0)

i(τ) = (uT − u(T )) e−τ . (4.5)

Condition i(∞) = 0 should be read as: i is negligible away from the boundary
layer. For more details on the heuristic procedure to determine asymptotic
expansions, see, e.g., [7]. In what follows we validate expansion (4.1).

Theorem 4.1. Assume that (H1) and (H2) hold, u0, uT ∈ D(A), A is strongly

positive, i.e., (Ax, x) ≥ c‖x‖2 ∀x ∈ D(A), for some c > 0, and f ∈ W 1,1(0, T ;H).

Then, for every ε > 0, the solution uε of problem (P ε
1 ) admits the following

asymptotic expansion

uε(t) = u(t) + i(τ) + rε(t), 0 ≤ t ≤ T, τ := (T − t)/ε,

where u is the solution of problem (P0), i(τ) = (uT − u(T )) e−τ is the boundary

layer function, and the remainder rε = rε(t) satisfies problem (Rε). Moreover,

for 0 < ε < 1, we have the following estimates

‖rε‖C([0,T ];H) = O(ε1/4),

‖rε‖L2(0,T ;H) = O(ε1/2),

‖uε − u‖L2(0,T ;H) = O
(
ε1/2
)
.

Thus, problem (P ε
1 ) is regularly perturbed in L2(0, T ;H), while it is singularly

perturbed in C([0, T ];H).

Proof. By Theorems 3.9 and 3.16, we have

rε = uε − u− i ∈ C1([0, T ];H), (4.6)
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and

u+ rε = uε − i ∈ W 2,2(0, T ;H).

Note that u(T ) ∈ D(A), so i(τ) ∈ D(A) for all τ ≥ 0. It is easy to check that

rε, defined by (4.6), satisfies problem (Rε).

In order to homogenize the first boundary condition for rε, we set

r̄ε(t) = rε(t) + αε(t), 0 ≤ t ≤ T,

where

αε(t) = (1− t/T )i(T/ε).

Obviously, r̄ε satisfies the problem

− ε (u+ r̄ε)
′′ + r̄′ε + Ar̄ε +Buε = hε +Bu, 0 ≤ t ≤ T, (4.7a)

r̄ε(0) = 0, r̄ε(T ) = 0, (4.7b)

where

hε(t) := −i(T/ε) + Aαε(t)− Ai(τ). (4.8)

Multiplying (4.7a) by r̄ε and integrating over [0, T ], we obtain

ε

∫ T

0

(
(u+ r̄ε)

′ , r̄′ε) dt+
1

2

∫ T

0

d

dt
‖r̄ε‖2dt+

∫ T

0

(Ar̄ε, r̄ε) dt

+

∫ T

0

(Buε, r̄ε) dt =

∫ T

0

(hε, r̄ε) dt+

∫ T

0

(Bu, r̄ε) dt.

(4.9)

Since B is monotone, we derive from (4.9)

ε

∫ T

0

‖r̄′ε‖2dt+

∫ T

0

(Ar̄ε, r̄ε) dt ≤
∫ T

0

(Bu−B(u− αε + i), r̄ε) dt

‖hε‖L2 ‖r̄ε‖L2 + ε‖u′‖L2‖r̄′ε‖L2 .

(4.10)
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Chapter 4. Asymptotic Expansions

Note that

‖i(T/ε)‖ = O(εj) ∀j ≥ 1 ∀0 < ε < 1,

‖αε‖L2 = O(εj) ∀j ≥ 1 ∀0 < ε < 1,

‖i‖L2 = O(ε1/2) ∀ε > 0,

‖Ai‖L2 = ‖e−τA(uT − u(T ))‖L2

= ‖A(uT − u(T ))‖ ‖e−τ‖L2(0,T ) = O(ε1/2) ∀ε > 0,

‖hε‖ = O(ε1/2) ∀0 < ε < 1.

(4.11)

We get an estimate

‖B(u+ i− αε)−Bu‖L2 ≤ C‖i− αε‖L2 = O(ε1/2) ∀0 < ε < 1. (4.12)

From (4.10) and (4.12) we obtain

ε‖r̄′ε‖2
L2 + c‖r̄ε‖2

L2 ≤Mε1/2‖r̄ε‖L2 + ε‖u′‖L2 ‖r̄′ε‖L2 ∀0 < ε < 1, (4.13)

where M > 0 is some constant.

Mε1/2‖r̄ε‖L2 =
1√
c
Mε1/2

√
c ‖r̄ε‖L2

≤ 1

2c
M2ε+

c

2
‖r̄ε‖2

L2 (using ab ≤ a2

2
+
b2

2
). (4.14)

By (4.13) and (4.14), we have

ε‖r̄′ε‖2
L2 +

c

2
‖r̄ε‖2

L2 ≤
1

2c
M2ε+ ε‖u′‖L2 ‖r̄′ε‖L2 ∀0 < ε < 1. (4.15)

By (4.15), we have

‖r̄′ε‖2
L2 ≤

1

2c
M2 + ‖u′‖L2 ‖r̄′ε‖L2 ∀0 < ε < 1

⇒
(
‖r̄′ε‖L2 − 1

2
‖u′‖L2

)2

≤ 1

2c
M2 +

1

4
‖u′‖2

L2 ∀0 < ε < 1,
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4.1. Asymptotic expansion of order zero for problem (P ε
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which shows that

{‖r̄′ε‖L2 ; 0 < ε < 1} is bounded. (4.16)

By (4.15), we also have

c

2
‖r̄ε‖2

L2 ≤
1

2c
M2ε+ ε‖u′‖L2 ‖r̄′ε‖L2 ∀0 < ε < 1. (4.17)

By (4.16) and (4.17), we have

‖r̄ε‖L2 = O
(
ε1/2
)
∀0 < ε < 1. (4.18)

By (4.11) and (4.18), we have

‖rε‖L2 = O
(
ε1/2
)
∀0 < ε < 1. (4.19)

Note that

‖rε(t)‖2 =

∫ t

0

(
‖rε‖2

)′
= 2

∫ t

0

(rε, r
′
ε)

≤ 2‖rε‖L2 ‖r′ε‖L2 . (4.20)

From (4.16), (4.19) and (4.20), we obtain

‖rε‖C([0,T ];H) = O
(
ε1/4
)
∀0 < ε < 1. (4.21)

It is easy to see that problem (P ε
1 ) is singularly perturbed in C([0, T ];H).

Assume, on contrary, that it is regularly perturbed, i.e.,

lim
ε→0+
‖uε − u‖C([0,T ];H) = 0,

which together with (4.21) contradicts the fact that ‖i‖C([0,T ];H) =

‖uT − u(T )‖ 6= 0 in general.

However, by (4.11) and (4.19), we have

‖uε − u‖L2 = O
(
ε1/2
)
∀0 < ε < 1,

which shows that problem (P ε
1 ) is regularly perturbed in L2(0, T ;H).
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Chapter 4. Asymptotic Expansions

Remark 4.2. The results presented in this paper cover many specific problems

in PDEs, in particular the semilinear heat equation mentioned in Chapter 2.

For this particular example, one can obtain, in addition to (4.21) (which reads

in this case ‖rε‖C([0,T ];L2(Ω)) = O(ε1/4)) the following estimate

‖uε − u‖L2(0,T ;H1
0 (Ω)) = O(ε1/2). (4.22)

Indeed, an inspection of the proof of Theorem 4.1, shows that

(Ar̄ε, r̄ε)L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

∇xr̄ε .∇xr̄ε dx dt = O(ε),

which implies (4.22), since

‖i‖L2(0,T ;H1
0 (Ω)) = ‖u1 − u(T )‖

(∫ T

0

e−2(T−t
ε ) dt

)1/2

= O(ε1/2).

So in this case the boundary layer function i can be included in the remainder

term rε, i.e., i disappears from expansion (4.1). In other words, the boundary

layer is not visible in L2(0, T ;H1
0 (Ω)) and problem (P ε

1 ) is regularly perturbed

in this space (while it is singularly perturbed in C([0, T ];L2(Ω)).

4.2 Asymptotic expansion of order zero for

problem (P ε
2 )

In this section, we will discuss the asymptotic expansion of order zero for prob-
lem (P ε

2 ). In turns out that problem (P ε
2 ) is regularly perturbed in C([0, T ];H)

(hence, it is also regularly perturbed in L2(0, T ;H)). We will also derive the
estimates for remainder of order zero with respect to the norms of L2(0, T ;H)
and C([0, T ];H).
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4.2. Asymptotic expansion of order zero for problem (P ε
2 )

We are looking for an expansion of order zero. We expect a discrepancy at
t = T , so the following expression is expected to hold

uε(t) = u(t) + i(τ) + r0ε(t), 0 ≤ t ≤ T, (4.23)

where τ = (T − t)/ε, ε > 0 is the stretched (fast) variable, u = u(t) is the solu-
tion of problem (P0), i = i(τ) is the boundary layer function, and r0ε = r0ε(t)
is the remainder of order zero.

Assuming that all functions involved in (4.23) are smooth enough, we can
identify these functions by heuristic arguments. We have

u′ε(t) = u′(t)− 1

ε

d

dτ
i(τ) + r′0ε(t). (4.24)

u′′ε(t) = u′′(t) +
1

ε2

d2

dτ 2
i(τ) + r′′0ε(t). (4.25)

so

−ε
[
u′′(t) +

1

ε2

d2

dτ 2
(τ) + r′′0ε(t)

]
+

[
u′(t)− 1

ε

di

dτ
(τ) + r′0ε(t)

]
+ Au(t) + Ai(τ) + Ar0ε(t) +B (u(t) + i(τ) + r0ε(t)) = f(t).

(4.26)

By identification in (4.26), we get

ε0 :

{
u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T,

u(0) = u0.

ε−1 :
d2i

dτ 2
+
di

dτ
= 0 ⇒ i(τ) = e−τy for some y ∈ H.

From (4.24) : u′ε(T )︸ ︷︷ ︸
uT

= u′(T )− 1

ε

di

dτ
(0) + r′0ε(T )

⇒ di

dτ
(0) = 0 ⇒ i ≡ 0, and r′0ε(T ) = uT − u′(T ).

Finally, {
−ε(u+ r0ε)

′′ + r′0ε + Ar0ε +B(u+ r0ε)−Bu = 0,

r0ε(0) = 0, r′0ε(T ) = uT − u′(T ).
(R0ε)
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Chapter 4. Asymptotic Expansions

Theorem 4.3. Assume that (H1) and (H2) hold, u0, uT ∈ D(A), A is strongly

positive, i.e., (Ax, x) ≥ c‖x‖2 ∀x ∈ D(A), for some c > 0, and f ∈ W 1,1(0, T ;H).

Then, for every ε > 0, the solution uε of problem (P ε
2 ) admits the following

asymptotic expansion

uε(t) = u(t) + r0ε(t), 0 ≤ t ≤ T,

where u is the solution of problem (P0), and the remainder r0ε = r0ε(t) satisfies

problem (R0ε). Moreover, for 0 < ε < 1, we have the following estimates

‖r0ε‖C([0,T ];H) = O(ε1/4),

‖r0ε‖L2(0,T ;H) = O(ε1/2).

Hence, problem (P ε
2 ) is regularly perturbed in C([0, T ];H).

Proof. By Theorems 3.9 and 3.20, we have

r0ε = uε − u ∈ C1([0, T ];H), (4.27)

and

u+ r0ε = uε ∈ W 2,2(0, T ;H).

It is easy to check that r0ε, defined by (4.27), satisfies problem (R0ε).

If we multiply the first equation of (R0ε) by r0ε(t), and use the monotonicity

of B and the strong positivity of A, we obtain

− ε ((u+ r0ε)
′′, r0ε) + (r′0ε, r0ε) + c‖r0ε‖2

L2 ≤ 0. (4.28)

Integrating (4.28) over [0, T ] gives

−ε
[
((u+ r0ε)

′, r0ε)
∣∣∣T
0
−
∫ T

0

((u+ r0ε)
′, r′0ε)

]
+

1

2
‖r0ε(T )‖2 + c‖r0ε‖2

L2 ≤ 0
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⇒ −ε
[
(uT , r0ε(T ))−

∫ T

0

(u′, r′0ε)−
∫ T

0

(r′0ε, r
′
0ε)

]
+

1

2
‖r0ε(T )‖2

+ c‖r0ε‖2
L2 ≤ 0

⇒ ε‖r′0ε‖2
L2 +

1

2
‖r0ε(T )‖2 + c‖r0ε‖2

L2

≤ ε‖uT‖ ‖r0ε(T )‖+ ε‖u′‖L2 ‖r′0ε‖L2

≤ ε2

2
‖uT‖2 +

1

2
‖r0ε(T )‖2 + ε‖u′‖L2 ‖r′0ε‖L2

≤ ε

2
‖uT‖2 +

1

2
‖r0ε(T )‖2 + ε‖u′‖L2 ‖r′0ε‖L2 ∀0 < ε < 1,

which implies that

ε‖r′0ε‖2
L2 + c‖r0ε‖2

L2 ≤
ε

2
‖uT‖2 + ε‖u′‖L2 ‖r′0ε‖L2 ∀0 < ε < 1. (4.29)

From (4.29), we have

‖r′0ε‖2
L2 ≤

1

2
‖uT‖2 + ‖u′‖L2 ‖r′0ε‖L2 ∀0 < ε < 1

⇒
(
‖r′0ε‖L2 − 1

2
‖u′‖L2

)2

≤ 1

2
‖uT‖2 +

1

4
‖u′‖2

L2 ∀0 < ε < 1,

which implies that

{‖r′0ε‖L2 ; 0 < ε < 1} is bounded. (4.30)

From (4.29), we also have

c‖r0ε‖2
L2 ≤

ε

2
‖uT‖2 + ε‖u′‖L2 ‖r′0ε‖L2 ∀0 < ε < 1. (4.31)

From (4.30) and (4.31), we have

‖r0ε‖L2 = O
(
ε1/2
)
∀0 < ε < 1. (4.32)

Note that

‖r0ε(t)‖2 =

∫ t

0

(
‖r0ε‖2

)′
= 2

∫ t

0

(r0ε, r
′
0ε)

≤ 2‖r0ε‖L2 ‖r′0ε‖L2 . (4.33)
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Chapter 4. Asymptotic Expansions

From (4.30), (4.32) and (4.33), we obtain

‖r0ε‖C([0,T ];H) = O
(
ε1/4
)
∀0 < ε < 1.

This completes the proof.

Remark 4.4. In fact, Theorems 4.1 and 4.3 hold under weaker assumptions

on B, more precisely it suffices to assume that

B : H → H is monotone and Lipschitz on bounded sets. (4.34)

To argue, let us revisit the proofs of Theorems 4.1 and 4.3. We used Theorems

3.16 and 3.20, and the second part of Theorem 3.9.

Theorem 3.16 is true if we assume the weaker condition (4.34), since we need

only the fact that Q = A+B is maximal monotone. Theorem 3.20 is also true

if we use the weaker condition.

The second part of Theorem 3.9 is also valid if B satisfies (4.34). Indeed,

for r > 0, let us consider the operator Br = B ◦ φr, where φr is the radial

retraction,

φr(x) =

x if ‖x‖ ≤ r,

r
‖x‖x if ‖x‖ ≥ r.

Since φr is Lipschitz (see, e.g., [6, p. 55]), it follows that Br is Lipschitz

on H (with a Lipschitz constant depending on r). If u0 ∈ D(A) and f ∈

W 1,1(0, T ;H), then problem (P0) with Br instead of B has a strong solution

ur ∈ C1([0, T ];H) (cf. Theorem 3.9). If we multiply by ur(t) the equation

u′r(t) + Aur(t) +Brur(t)−B0 = f(t)−B0,

take into account the monotonicity of A and B, and the fact that ur(t) =

φrur(t) times a nonnegative coefficient (A need not be strongly positive), we

75



C
E

U
eT

D
C

ol
le

ct
io

n

4.3. Asymptotic expansion of order one for problem (P ε
2 )

obtain

1

2

d

dt
‖ur(t)‖2 ≤ (‖f(t)‖+ ‖B0‖) ‖ur(t)‖,

which, by integrating over [0, t] and simple computations, implies that

‖ur‖C([0,T ];H) ≤M,

where M is a constant depending on ‖f‖C([0,T ];H) and ‖B0‖ (and independent

of r). Therefore, if we choose r > M , then ur is a solution of (P0). The rest

of the proofs of Theorems 4.1 and 4.3 work well for B satisfying (4.34). We

just point out that in (4.12) the arguments of B belong to a ball in H whose

radius depends on ‖u‖C([0,T ];H) but is independent of ε. So Theorems 4.1 and

4.3 actually cover a larger class of B’s.

4.3 Asymptotic expansion of order one for prob-

lem (P ε
2 )

We are looking for an asymptotic expansion of order one. We expect a dis-
crepancy at t = T , and we have seen in the previous section that the boundary
layer function (of order zero) vanishes, so we expect the following expansion
to hold

uε(t) = u(t) + ε [u1(t) + i1(τ)] + rε(t), (4.35)

where τ = (T − t)/ε, ε > 0 is the stretched (fast) variable, u = u(t) is the
solution of problem (P0), i1 = i1(τ) is the boundary layer function (of order
one), and rε = rε(t) is the remainder of order one.

Next, we assume that all functions involved in (4.35) are smooth enough, so
that we can identify these functions by heuristic arguments. If we use (4.35)
in (P ε

2 ), and identify the coefficients of ε−1, ε0, we get

ε0, t :

{
u′(t) + Au(t) +Bu(t) = f(t), 0 < t < T,

u(0) = u0.

76



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 4. Asymptotic Expansions

ε0, τ :
d2i1
dτ 2

+
di1
dτ

= 0, i′1(0) = u′(T )− uT , i1(∞) = 0

⇒ i1(τ) = [uT − u′(T )] e−τ .{
u′1(t) + Au1(t) +B′(u(t))u1(t) = u′′(t),

u1(0) = 0.
(4.36){

−ε(rε + εu1)′′ + r′ε + Arε +Buε −Bu− εB′(u(t))u1(t) = −εAi1(τ),

rε(0) = −εi1(T/ε), r′ε(T ) = −εu′1(T ).

(R1ε)

Assume that u0 ∈ D(A), f(0) − Au0 − Bu0 ∈ D(A), A is self-adjoint, f ∈
W 2,∞(0, T ;H), and B is twice differentiable with B′, B′′ bounded on bounded
sets.

By Theorem 3.13, problem (P0) has a unique solution u ∈ C2([0, T ];H).

We show that problem (4.36) has a unique strong solution u1 ∈ W 1,2(0.T ;H).
Let

F (t, z) = B′(u(t))z − u′′(t), where t ∈ [0, T ], z ∈ H,
then by Lemma 3.6, problem (4.36) has a unique mild solution u1 ∈ C([0, T ];H).
Now consider

w′(t) + Aw(t) = g(t), w(0) = 0, 0 < t < T, (4.37)

where
g(t) := −B′(u(t))u1(t) + u′′(t), and g ∈ L2(0, T ;H).

By Lemma 3.5, there exists a unique strong solution w of (4.37), and w′ ∈
L2(0, T ;H). It is easy to show that w ≡ u1. Hence, u1 ∈ W 1,2(0, T ;H) is the
unique strong solution of (4.36).

Now, we show that u′(t) ∈ D(A), for all t ∈ [0, T ]. As in the proof of Theorem
3.12, we have that v = u′ is the unique strong solution of{

v′(t) + Av(t) +B′(u(t))v(t) = f ′(t), 0 ≤ t ≤ T,

v(0) = f(0)− Au0 −Bu0.
(4.38)

Now consider the problem{
v′(t) + Av(t) = f ′(t)−B′(u(t))u′(t), 0 ≤ t < T,

v(0) = f(0)− Au0 −Bu0.
(4.39)
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4.3. Asymptotic expansion of order one for problem (P ε
2 )

v = u′ is a strong solution of problem (4.39). By Remark 1.20, we have that
u′(t) ∈ D(A), for all 0 ≤ t ≤ T . Hence, Ai1 is well-defined.

Theorem 4.5. Assume that (H1) and (H2) hold, u0, uT ∈ D(A), f(0) −

Au0 − Bu0 ∈ D(A), A is self-adjoint, A is strongly positive, i.e., (Ax, x) ≥

c‖x‖2 ∀x ∈ D(A), for some c > 0, f ∈ W 2,∞(0, T ;H), and B is twice dif-

ferentiable with B′, B′′ bounded on bounded sets. Then, for every ε > 0, the

solution uε of problem (P ε
2 ) admits the following asymptotic expansion

uε(t) = u(t) + ε[u1(t) + i1(τ)] + rε(t), 0 ≤ t ≤ T, τ := (T − t)/ε,

where u is the solution of problem (P0), i1(τ) = (uT − u′(T )) e−τ is the bound-

ary layer function of order one, u1 is the unique strong solution of problem

(4.36), and the remainder rε = rε(t) is a strong solution of problem (R1ε).

Moreover, for 0 < ε < 1, we have the following estimates

‖rε‖C([0,T ];H) = O
(
ε5/4
)
,

‖rε‖L2(0,T ;H) = O
(
ε3/2
)
,

‖r′ε‖L2(0,T ;H) = O(ε),

‖uε − u− εu1‖L2(0,T ;H) = O
(
ε3/2
)
,

‖uε − u‖C([0,T ];H) = O(ε).

Proof. Note that

rε = uε − u− εu1 − εi1 ∈ W 1,2(0, T ;H), (4.40)

rε + εu1 = uε − u− εi1 ∈ W 2,2(0, T ;H).

It is easy to check that rε, defined by (4.40), is a strong solution of problem

(R1ε).
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Chapter 4. Asymptotic Expansions

Now, we derive the estimates given in the statement of Theorem 4.5.

Let

r̄ε(t) = rε(t) + αε, 0 < t < T, (4.41)

where

αε = εi1 (T/ε) . (4.42)

Note that

‖αε‖ = O(εj) ∀j ≥ 1 ∀0 < ε < 1. (4.43)

Then r̄ε satisfies
−ε(r̄ε + εu1)′′ + r̄′ε + Ar̄ε +Buε −Bu− εB′(u(t))u1(t) = hε(t),

where hε(t) = −εAi1(τ) + Aαε,

r̄ε(0) = 0, r̄′ε(T ) = −εu′1(T ).

(4.44)

By doing the same calculations as in Theorem 4.1, we have

‖hε‖L2 = O
(
ε3/2
)
, ∀0 < ε < 1.

Note

Buε −Bu− εB′(u(t))u1(t)

= [Buε −B(uε − r̄ε)] + [B(uε − r̄ε)−Bu− εB′(u(t))u1(t)] .
(4.45)

Let

βε(t) = εu1(t) + εi1(τ)− αε.

Then

uε − r̄ε = u+ βε,

B(uε − r̄ε)−Bu− εB′(u(t))u1(t)

= εB′(u(t))i1(τ)−B′(u(t))αε +
1

2
B′′(u(t) + θβε(t)) βε(t)βε(t),

(4.46)
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where θ varies with t, and satisfies 0 < θ < 1.

Note that

‖βε‖C([0,T ];H) = O(ε), ‖i1‖L2 = O
(
ε1/2
)
. (4.47)

If B′ and B′′ are bounded on bounded set, then from (4.43), (4.46) and (4.47),

we have

‖B(uε − r̄ε)−Bu− εB′(u)u1‖L2 = O
(
ε3/2
)
. (4.48)

If we multiply the first equation of (4.44) by r̄ε and integrate over [0, T ], then

by using (4.45), monotonicity of B, and (4.48), we get

−ε
[
((r̄ε + εu1)′, r̄ε)

∣∣∣T
0
−
∫ T

0

((r̄ε + εu1)′, r̄′ε)

]
+

1

2
‖r̄ε(T )‖2 + c‖r̄ε‖2

L2

≤ Kε3/2‖r̄ε‖L2 ,

where K > 0 is some constant. This implies

ε‖r̄′ε‖2
L2 +

1

2
‖r̄ε(T )‖2 + c‖r̄ε‖2

L2

≤ Kε3/2‖r̄ε‖L2 + ε2‖u′1‖L2 ‖r̄′ε‖L2

⇒ ε‖r̄′ε‖2
L2 + c‖r̄ε‖2

L2 ≤ Kε3/2‖r̄ε‖L2 + ε2‖u′1‖L2 ‖r̄′ε‖L2 .

By using the same steps as in Theorem 4.1, we get

ε‖r̄′ε‖2
L2 +

c

2
‖r̄ε‖2

L2 ≤ O(ε3) + ε2‖u′1‖L2 ‖r̄′ε‖L2 . (4.49)

By (4.49), we have

‖r̄′ε‖2
L2 ≤ O(ε2) + ε‖u′1‖L2 ‖r̄′ε‖L2

⇒
(
‖r̄′ε‖L2 − ε

2
‖u′1‖L2

)2

≤ O(ε2) +
ε2

4
‖u′1‖2

L2 ,

which implies that

‖r̄′ε‖L2 = O(ε). (4.50)
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From (4.49) and (4.50), we have

‖r̄ε‖L2 = O
(
ε3/2
)
. (4.51)

From (4.41), (4.43), (4.50) and (4.51), we have

‖r′ε‖L2(0,T ;H) = O(ε), (4.52)

‖rε‖L2(0,T ;H) = O
(
ε3/2
)
. (4.53)

But

‖rε(t)‖2 =

∫ t

0

(
‖rε(s)‖2

)′
ds

= 2

∫ t

0

(rε(s), r
′
ε(s)) ds ≤ 2‖rε‖L2 ‖r′ε‖L2 . (4.54)

From (4.52), (4.53) and (4.54), we have

‖rε‖C([0,T ];H) = O
(
ε5/4
)
. (4.55)

Note

‖i1‖C([0,T ];H)= ‖uT − u′(T )‖, ‖i1‖L2(0,T ;H) = O
(
ε1/2
)
. (4.56)

From (4.53), (4.55) and (4.56), we get

‖uε − u− εu1‖C([0,T ];H) = O(ε),

‖uε − u− εu1‖L2(0,T ;H) = O
(
ε3/2
)
,

‖uε − u‖C([0,T ];H) = O(ε).

This completes the proof.

Remark 4.6. In Theorem 4.3, we derived the estimate ‖uε − u‖C([0,T ];H) =

O
(
ε1/4
)
, while in Theorem 4.5, we derived the estimate ‖uε − u‖C([0,T ];H) =

O(ε) without using Theorem 4.3. But, we derived the estimate in Theorem 4.3

under much weaker conditions.
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4.3. Asymptotic expansion of order one for problem (P ε
2 )

Some open problems:
There are several open problems related to the problems we have discussed in
this thesis.

It is expected that a first order asymptotic expansion holds for problem (P ε
1 )

under additional assumptions on u0, uT , f, A and B. This problem appears
harder than the first order asymptotic expansion for problem (P ε

2 ) we have
discussed since the boundary layer function of order zero for problem (P ε

2 )
is identically zero, while problem (P ε

1 ) is a singular perturbation problem of
boundary layer type (of order zero).

It is possible to consider higher order regularizations of problem (P0), e.g.,
fourth order regularizations of problem (P0) whose solutions are expected to
be even more regular than solutions of elliptic-like regularizations (P ε

1 ) and
(P ε

2 ) we have discussed.
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[12] Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential
Equations, Springer, 2010.

[13] Bruck, R.E., Periodic forcing of solutions of a boundary value problem for
a second-order differential equation in Hilbert space, J. Math. Anal. Appl.
76 (1980), 159-173.

[14] Cohn, D.L., Measure Theory, Birkhäuser, Boston, 1980.
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