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Abstract

In this thesis, I re-estimate the present value model with hidden variables of Binsbergen and

Koijen (2010) using the sequential Monte Carlo algorithm instead of maximum likelihood

procedure. The latent variables are expected returns and expected dividend growth. First,

I show that in-sample forecasts are more optimistic than real-time, out-of-sample forecasts.

Second, returns are close to being unpredictable out-of-sample, which implies that returns may

follow a martingale process.
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Chapter 1

Introduction

The present value model shows that price dividend ratio of the aggregate stock market is a linear

function of expected future dividend growth rates and expected returns of the aggregate stock

market. Therefore, the price-dividend ratio can be used to forecast both future dividends and

returns. Binsbergen & Koijen (2010) develop an approach about how to use price-dividend ratio

and dividend growth rate to predict jointly returns and dividends. They introduce unobserved

variables into the present value model: expected returns and expected dividend growth rates

which are assumed to follow AR(1) processes. To find parameters of their extended present

value model, the authors define the transition and measurement equations of the model and run

maximum likelihood. Given parameters of the model and the data (which is the series of price

dividend ratio and dividend growth rate), it is possible to estimate the time series for hidden

variables with the Kalman filter. In addition, Binsbergen & Koijen (2010) show that next period’s

dividend growth and return are the linear functions of the whole history of dividend growth rates

and price dividend ratios, when the Kalman filter is used to uncover hidden variables. However,

maximum likelihood treats parameters as unknown and fixed numbers.

The purpose of this thesis is to re-estimate the present value model with latent variables using

sequential Monte Carlo estimator instead of maximum likelihood procedure to treat parameters

as random variables and thus to account for parameter uncertainty. Sequential Monte Carlo

estimation will also allow me to see how well the present value model with hidden variables
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forecasts in-sample and out-of-sample.

This work relates to the rest of the literature about predicting returns and dividend growth rates.

A common observation is that returns are predictable using price dividend ratio while dividend

growth rate is not. Since price-dividend ratio can be expressed as the linear function of future

returns and future dividend growth rates and since price-dividend ratio has variability, then

price-dividend should vary either due to future return or future dividend growth. Cochrane (2008)

argues that returns are predictable because dividend growth rates are not by using different

statistical tests. Binsbergen and Koijen (2010) point out that you can forecast both returns

and dividend growth by using price-dividend ratio. However, Binsbergen and Koijen (2010)

also note that probability density function of persistence coefficient for expected dividends is

multimodal. In addition, the estimate of the persistence coefficient for expected dividend growth

has relatively big standard errors.

In this thesis, I assume that steady state price-dividend value does not change over time. Lettau

and Van Nieuwerburgh (2008) show that incorporating shifts in price-dividend steady state value

is important and can improve an in-sample forecast. However, since the magnitude and time of

the steady state shifts are uncertain, it’s hard to use steady state dynamics to forecast in real

time.

The thesis has the following structure. In Chapter 2 I re-derive the present value model with

latent variables. In Chapter 3 I derive the Kalman filter and explain the sequential Monte Carlo

(SMC) algorithm. In Chapters 4 and 5, I present the simulation results and real data estimation

results respectively. Chapter 6 concludes.

2
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Chapter 2

Present Value Model

2.1 Basic Present-Value Model

In this section I derive the present value model. My derivation follows closely an explanation of

present value model in Cochrane (2005).

1 = R−1
t+1Rt+1 = R−1

t+1

Pt+1 +Dt+1

Pt
(2.1.1)

Pt

Dt

= [R−1
t+1

Pt+1 +Dt+1

Pt
]
Pt

Dt

= R−1
t+1(

Pt+1 +Dt+1

Dt

) = R−1
t+1(1 +

Pt+1

Dt+1
)
Dt+1

Dt

(2.1.2)

I write (2.1.2) in terms of logs to get

pt − dt = −rt+1 + ∆dt+1 + log
1 +

Pt+1

Dt+1

 (2.1.3)

where

∆dt+1 ≡ log
Dt+1

Dt
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and

rt+1 ≡ log
Pt+1 +Dt+1

Pt


.

Using Taylor-series approximation around p− d, I can write the last term in (2.1.3) as

log
1 +

Pt+1

Dt+1

 = log(1 + ept+1−dt+1)

≈ log(1 + ep−d) +
ep−d

1 + ep−d

(pt+1 − dt+1)− (p− d)


= log(1 +
P

D
) +

P

D

1 +
P

D

(pt+1 − dt+1)− (p− d)


= log(1 +
P

D
)−

P

D

1 +
P

D

(p− d) +

P

D

1 +
P

D

(pt+1 − dt+1)

= k + ρ(pt+1 − dt+1) (2.1.4)

where

k ≡ log(1 +
P

D
)−

P

D

1 +
P

D

(p− d)

and

ρ ≡

P

D

1 +
P

D

4
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Then I plug (2.1.4) into (2.1.3) to get

pt − dt = −rt+1 + ∆dt+1 + k + ρ(pt+1 − dt+1)︸ ︷︷ ︸
log

1+
Pt+1

Dt+1


(2.1.5)

I can rewrite (2.1.5) as

(pt − dt)− ρ(pt+1 − dt+1) = −rt+1 + ∆dt+1 + k (2.1.6)

Let F denote a forward operator. Then I can rewrite (2.1.6) as

(1− ρF )(pt − dt) = −rt+1 + ∆dt+1 + k (2.1.7)

Assuming that 0 < ρ < 1, then (1− ρF ) is an invertible polynomial and I can write equation

(2.1.7) in the following way:

(pt − dt) = (1− ρF )−1(−rt+1 + ∆dt+1 + k) (2.1.8)

The equation (2.1.8) is equivalent to

(pt − dt) = (1 + ρF + ρ2F + ...)(−rt+1 + ∆dt+1 + k)

= (1 + ρF + ρ2F + ...)
k + (∆dt+1 − rt+1)



=
k

1− ρ+
∞∑
j=1

ρj−1(∆dt+j − rt+j) (2.1.9)

The expression (2.1.9) says that pdt is a a linear function of expected future dividends and

returns.
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2.2 Introducing expected return and expected dividend

growth

This section introduces hidden variables as in the article by Binsbergen and Koijen (2010):

expected return and expected dividend growth rate. While re-deriving, I borrow the notation

from Binsbergen and Koijen (2010).

They define expected log-return µtas

µt ≡ Et[rt+1]

and expected log-dividend growth rate gtas

gt ≡ Et[∆dt+1]

where

∆dt+1 = gt + εdt+1 (2.2.1)

.

Let expected returns (µt) and expected dividend growth rates (gt) follow an AR(1) processes :

(µt+1 − δ0) = δ1(µt − δ0) + εµt+1 (2.2.2)

(gt+1 − γ0) = γ1(gt − γ0) + εgt+1 (2.2.3)

where δ0and γ0 are the means of expected return and expected dividend growth rate respectively.

6
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If I forecast µt+j, then I set future shocks equal to zero and I get the following:

(µt+1 − δ0) = δ1(µt − δ0)

(µt+2 − δ0) = δ1(µt+1 − δ0) = δ2
1(µt − δ0)

... ... ...

(µt+j − δ0) = δj1(µt − δ0)

Similarly, if I forecast gt+j, then I set future shocks equal to zero and I get the following:

(gt+1 − γ0) = γ1(gt − γ0)

(gt+2 − γ0) = γ1(gt+1 − γ0) = γ2
1(gt − γ0)

... ... ...

(gt+j − γ0) = γj1(gt − γ0)

Then I take expectation of (2.1.9) conditional upon information at time t:

(pt − dt) =
k

1− ρ+
∞∑
j=1

Et[ρj−1(∆dt+j − rt+j)]

=
k

1− ρ+
∞∑
j=1

[ρj−1(gt+j−1 − µt+j−1)]

=
k

1− ρ+
∞∑
j=0

[ρj(gt+j − µt+j)]

=
k

1− ρ+
∞∑
j=0

ρj
[
γ0 + γj1(gt − γ0)− δ0 − δj1(µt − δ0)

]

=
k

1− ρ+
∞∑
j=0

ρj
[
(γ0 − δ0)− δj1(µt − δ0) + γj1(gt − γ0)

]

=
k

1− ρ+
γ0 − δ0

1− ρ −
µt − δ0

1− ρδ1
+
gt − γ0

1− ργ1

= A−B1(µt − δ0) +B2(gt − γ0) (2.2.4)

7
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where A ≡
k

1− ρ+
γ0 − δ0

1− ρ , B1 ≡
1

1− ρδ1
, and B2 ≡

1
1− ργ1

.

The expression above says that current price-dividend ratio is a linear function of expected

return and expected dividend growth for next period.

The shocks εdt+1, ε
g
t+1, εµt+1 from equations (2.1.1), (2.1.3) and (2.1.2) respectively are normally

distributed, i.i.d. over time, with mean zero, and uncorrelated with each other. Also I assume

that shocks are jointly normally distributed as in Binsbergen and Koijen (2010). The covariance

matrix is given by

Σ = V ar

{

εdt+1

εgt+1

εµt+1


}

=


σ2
µ 0 0

0 σ2
g 0

0 0 σ2
d

 (2.2.5)

2.3 State space representation

This section provides the derivation of transition and measurement equations, which I will need

to filter the hidden variables: expected returns and expected dividend growth. Again, this

section follows closely Binsbergen and Koijen (2010).

Binsbergen and Koijen (2010)define demeaned expected returns and dividend growth as

µ̂t = µt − δ0

ĝt = gt − γ0

Then equations (2.2.2) and (2.2.3) - transition equations - are equivalent to:

µ̂t+1 = δ1µ̂t + εµt+1 (2.3.1)

ĝt+1 = γ1ĝt + εgt+1 (2.3.2)

8
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The measurement equations are given by:

∆dt+1 = γ0 + ĝt + εdt+1 (2.3.3)

pt − dt = A−B1µ̂t +B2ĝt (2.3.4)

Let me define pdt = pt − dt.

Now, I iterate 1 step forward the equation (2.3.4) to get

pdt+1 = A−B1µ̂t+1 +B2ĝt+1

= A−B1(δ1µ̂t + εµt+1) +B2(γ1ĝt + εgt+1)

= A−B1δ1µ̂t −B1ε
µ
t+1 +B2γ1ĝt +B2ε

g
t+1

= A+ δ1(−B1µ̂t) +B2γ1ĝt −B1ε
µ
t+1 +B2ε

g
t+1

= A+ δ1(pdt − A−B2ĝt) +B2γ1ĝt −B1ε
µ
t+1 +B2ε

g
t+1

= (1− δ1)A+B2(γ1 − δ1)ĝt + δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1 (2.3.5)

The transition equation is

ĝt = γ1ĝt−1 + εgt (2.3.6)

The measurement equation 1 is

∆dt+1 = γ0 + ĝt + εdt+1 (2.3.7)

The measurement equation 2 is

pdt+1 = (1− δ1)A+B2(γ1 − δ1)ĝt + δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1 (2.3.8)

In the next chapter, I will transform the equations 2.3.6,2.3.7,2.3.8 into standard space form

using matrix algebra as in Binsbergen and Koijen (2010).

9
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Chapter 3

Kalman Filter and Sequential Monte

Carlo

In this chapter, I derive the Kalman filter for present value model with latent variable and

explain sequential Monte Carlo algorithm (SMC). Both Kalman filter and SMC will be used to

estimate posterior parameters of the model.

3.1 Kalman Filter: Bayesian Derivation and Application

to Present Value Model

In this section, I derive Kalman filter in a Bayesian way. My explanation and notation are based

on Simo Sarkka’s lecture “Bayesian Optimal Filtering Equations and Kalman Filter” and on

derivation in the article by Binsbergen and Koijen (2010).

10
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3.1.1 Standard State-Space Form

I write the equations (2.3.6), (2.3.7), (2.3.8) in the standard state space form to account for the

time lag in the initial state space form:

Xt = FXt−1 + ΓεXt

Yt = M0 +M1Yt−1 +M2Xt

where

Xt =



ĝt−1

εdt

εgt

εµt


, Yt =

∆dt

pdt



F =



γ1 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0


, εXt =


εdt

εgt

εµt



with variance of εXt defined in (2.2.5). The measurement equation matrices are

M0 =

 γ0

(1− δ1)A



M1 =

0 0

0 δ1



M2 =

 1 1 0 0

B2(γ1 − δ1) 0 B2 −B1


.

11
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In probabilistic terms

p(Xt|Xt−1) = N (Xt | Ft−1Xt−1, ΓΣΓT )

Yt = M0 +M1Yt−1 +M2Xt

3.1.2 Kalman Filter

Prediction Step

In this step, I want to come up with the prediction of Xt given Y1:t−1. Given information now, I

want to infer the expectations for the next period about the dividend growth rate and returns.

First, assume that the posterior of the previous step is Gaussian

p(Xt−1 | Y1:t−1) = N (Xt−1 | mt−1, Pt−1)

Note the following

p(Xt, Xt−1|Y1:t−1) = p(Xt | Xt−1, Y1:t−1)× p(Xt−1 | Y1:k−1)

= p(Xt | Xt−1, )× p(Xt−1 | Y1:t−1)

= N (xk|Ft−1Xt−1, ΓΣΓTk )︸ ︷︷ ︸
Transition equation

×N (Xt−1|mt−1, Pt−1)︸ ︷︷ ︸
Posterior from prev step

= N


Xt−1

Xt

 |
 mt−1

Fmt−1

 ,
 Pt−1 FPt−1

FPt−1 FPt−1F
T + ΓΣΓT




Next, by integrating over Xt−1, I get the following equation

12
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p(Xt|Y1:t−1) =
ˆ
p(Xt, Xt−1|Y1:t−1)dXk−1

=
ˆ
p(Xt | Xt−1, Y1:t−1)× p(Xt−1 | Y1:t−1)dXt−1

=
ˆ
p(Xt | Xt−1)× p(Xt−1 | Y1:t−1)dXt−1

=
ˆ
N (Xt|FXt−1, ΓΣΓT )×N (Xt−1|mt−1, Pt−1)dXt−1

= N (Xt|Fmt−1, FPt−1F
T + ΓΣΓT )︸ ︷︷ ︸

Marginalization

Denote

m−t = Fmt−1

P−t = FPt−1F
T + ΓΣΓT

Update Step

The joint distribution p(Xt, Yt|Y1:t−1) is

p(Xt, Yt|Y1:t−1) = N


Xt

Yt

 |
 m−t

M0 +M1Yt−1 +M2m
−
t

 ,
 P−t P−t M

T
2

M2P
−
t M2P

−
t M

T
2




Then the marginal distribution p(Yt|Y1:t−1) can be computed

p(Yt|Y1:t−1) = N

Yt|M0 +M1Yt−1 +M2m
−
t , M2P

−
t M

T
2



The conditional distribution p(Xt|Y1:t) is then given by

p(Xt|Y1:t) = N
Xt | mt, Pt
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where

mt = m−t + P−t M
T
2 (M2P

−
t M

T
2 )−1︸ ︷︷ ︸

S−1
t

(Yt −M0 −M1Yt−1 −M2m
−
t )︸ ︷︷ ︸

vt

Pt = P−t − P−t MT
2 (M2P

−
t M

T
2 )−1︸ ︷︷ ︸

S−1
t

M2P
−
t

Denote

St = M2P
−
t M

T
2

Kt = P−t M
T
2 S
−1
t

vt = Yt −M0 −M1Yt−1 −M2m
−
t

Note

StK
T
t = StS

−1
t M2P

−
t = M2P

−
t

Then I can write mt and Pt as

mt = m−t +Ktvt

Pt = P−t −KtStK
T
t

To sum up, the equations of the Kalman filter are

? Initialization:

m0 = 01×4

P0 =



Var(ĝ) 0 0 0

0 σ2
µ 0 0

0 0 σ2
g 0

0 0 0 σ2
d
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where Var(ĝ) is the variance of stationary distribution of ĝt

? Prediction step:

m−t = Fmt−1

P−t = FPt−1F
T + ΓΣΓT

? Update step:

St = M2P
−
t M

T
2

Kt = P−t M
T
2 S
−1
t

vt = Yt −M0 −M1Yt−1 −M2m
−
t

mt = m−t +Ktvt

Pt = P−t −KtStK
T
t

Maximum Likelihood

Suppose number of periods is T . Then the conditional log-likelihood of observing Ytwhere t =

1, ..., T given Y1:t−1 have occurred can be computed as

logLt ∝ −vTt S−1
t vt − log(det(St))

Then the likelihood of observing the whole sample Y1:T is

logL1:T =
T∑
k=1

logLt

Computing Filtered Series

The Kalman filter produces mt which has E[ĝt−1|Y1:T ] as the first component and E[εdt |Y1:T ]

E[εgt |Y1:T ] E[εµt |Y1:T ] as the other three components. However, I need E[ĝt|Y1:T ] and E[µ̂t−1|Y1:T ]

15
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which can be computed using mt, (2.3.1),(2.3.2)and(2.3.4).

I compute the series for the filtered demeaned expected return as

Et[µ̂t] = Et[δ1µ̂t−1 + εµt ]

= Et

δ1

A+B2ĝt−1 − pdt
B1

+ εµt



= δ1
A

B1
+ δ1

B2

B1
Et[ĝt−1]−

δ1

B1
pdt + Et[εµt ]

and the series for the filtered demeaned expected dividend growth rate as

Et[ĝt] = γ1Et[ĝt−1] + Et[εgt ]

where Et[µ̂t]=E[µ̂t|Y1:T ] and Et[ĝt] = E[ĝt|Y1:T ]. Then I compute filtered series Et[µt] = Et[µ̂t]+δ0

and Et[gt] = Et[ĝt] + γ0 which I use to forecast ∆dt+1 and rt+1, respectively.

3.2 Sequential Monte Carlo

This note explains the Sequential Monte Carlo (SMC) algorithm which is a more robust way to

estimate parameters than maximum likelihood. SMC accounts for parameter uncertainty: it

treats a parameter vector as random vector and computes its distribution for each time period.

To compare, in maximum likelihood, parameters are perceived as fixed and unknown numbers.

The explanations in this section are based on Chopin (2002).

The posterior density is given by:

γt(θ | y1:t) ∝ f(y1:t | θ)× f(θ) for t = 1, ..., T

where f(y1:t | θ) is a likelihood and f(θ) is a prior. The log of posterior (target distribution) is

16
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then

log
(
γt(θ | y1:t)

)
∝ log

(
f(y1:t | θ)

)
+ log

(
f(θ)

)

Assume {y}t is a Markov process of order 1, that is current observation depends only on the

previous observation. Then the incremental weight of a particle θ(n) at time t+ 1 is defined as

γt+1(θ | y1:t+1)
γt(θ | y1:t)

∝
f(y1:t+1 | θ)× f(θ)
f(y1:t | θ)× f(θ)

=
f(y1:t+1 | θ)
f(y1:t | θ)

= f(yt+1 | y1:t, θ)

= f(yt+1 | yt, θ)

In sequential Monte Carlo, the weight of each parameter θ(n) vector (where n = 1, ..., N ) at

time t is given by the recursion

w
(n)
t = f(yt | yt−1, θ

(n)
t−1)× w(n)

t−1

The sequential Monte Carlo algorithm is given by the following steps

Initialization: Generate a cloud of N weighted particles {θ(n)
0 , w

(n)
0 }Nn=1 representing posterior

γ0(θ).

? Assume prior f(θ)

? Given prior f(θ), generate N parameter vectors θ(n)
0 where n = 1, ..., N

? Compute prior log-likelihood of observing each parameter vector θ(n)
0 for n = 1, .., N given

the prior f(θ)

? For each generated parameter vector, set the hidden state vector equal zero

? For each generated parameter vector, initialize hidden state variance-covariance matrix

the same way as for Kalman filter.
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? Set log-likelihood and log-weights equal to zero for each parameter vector.

Loop: For t = 1, .., T get the distribution {θ(n)
t , w

(n)
t }Nn=1 representing the posterior γt(θ) in the

following way

? For each θ(n) (where n = 1, .., N ), compute the incremental log-weight log
(
f(yt|yt−1, θ

(n)
t )

by using the Kalman filter

? For each θ(n) update the log-weights

log(w(n)
t ) = log

(
f(yt | yt−1, θ

(n)
t−1)

)
︸ ︷︷ ︸

log of incremental weight

+ log(w(n)
t−1)

? For each θ(n) , compute the normalized weights π(n)
t

π
(n)
t =

w
(n)
t∑N

n=1w
(n)
t

? For each θ(n) , compute Effective Sample Size (ESS) defined as

ESS =
1∑N

n=1(π(n)
t )2

? IF ESS> B

♣ keep {θt, πt}Nn=1

? ELSE

♣ re-sample {θ(n)
t }Nn=1

♣ set π(n)
t =

1
N

♣ WHILE number of unique particles is less than C or no move step has been done, do

the following move step for each particle n = 1, ..., N
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• Sample u(n)
t ∼ U[0,1] where U is a uniform distribution

• Sample θ(n)∗
t ∼ ht(·) where h(·) is an independent normal

• IF log u(n)
t < logα = min

0, log γt(θ(n)∗
t )−log γt(θ(n)

t )+log ht(θ(n)
t )−log ht(θ(n)∗

t )


· then θ(n)

t = θ
(n)∗
t

• ELSE

· θ(n)
t = θ

(n)
t .

In the next chapters I present data and its estimation using Kalman filter and sequential Monte

Carlo method
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Chapter 4

Data

4.1 Data

I look at at the period 1946-2013. I get the nominal time series for S&P composite prices and

dividend series from Shiller’s website. I get monthly interest rate for 3 month treasury bill from

Federal Reserve at St Louis. Then, I adjust the dividend time series for the monthly interest rate

of 3-month T-bill to get cash-invested dividends. After that, I construct annual data for stock

prices by taking the price at the end of the year and annual data for cash-invested dividends by

taking the average for the whole year. Further, I modify the annual series for stock-prices and

for cash-invested dividends to obtain annual series for price-dividend ratio and dividend growth

rate. Below, the table 4.1 summarizes the statistics for the dividend growth rate, price-dividend

ratio and the interest rate.

20



C
E

U
eT

D
C

ol
le

ct
io

n

Table 4.1 – Summary Statistics

∆d pd r

Mean 0.0580 3.4651 0.1049

Median 0.0521 3.4101 0.1397

Standard Deviation 0.0639 0.4419 0.1598

Maximum 0.2087 4.4428 0.3840

Minimum -0.1286 2.7341 -0.4900

Next, I plot dividend growth rate, price dividend ratio and the interest rate against the time.

Figure 4.1 – Dividend Growth Rate
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Figure 4.2 – Price-Dividend Ratio: Reinvesting in Risk Free Rate
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Figure 4.3 – Return
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These graphs are similar to the ones in Binsbergen and Koijen (2010). .

As the next step to check that my data is correct, I run OLS predictive regressions

4dt+1 = αd + βdpdt + εt+1

rt+1 = αr + βdpdt + εt+1

The table 4.2 and table 4.3 show the results.

Table 4.2 – OLS Prediction of rt+1 with pdt

Coefficient t-statistics P-value

βr -0.12 -2.74 0.008

R2 = 0.1

Table 4.3 – OLS Prediction of ∆dt+1with pdt

Coefficient t-statistics P-value

β∆d -0.014 0.75 0.454

R2 = 0.01

The tables above show that βr is negative and statistically significant while β∆d is not statistically

significant. This corresponds to observations pointed out by Cochrane (2005).Given plots of

series and the results of the predictive OLS, I conclude that the data is suitable for further

investigation.
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Chapter 5

Simulations

In this chapter, I present the results from Kalman filter and sequential Monte Carlo algorithm

on simulated data to make sure that algorithms work properly.

5.1 Kalman Filter Simulation Results

To check that Kalman filter works well, I first generate data ĝt, ∆dt and pdt using the transition

equation 2.3.6 and measurement equations 2.3.7 and 2.3.8. The parameters of data generating

process are presented in the following table

Table 5.1 – Parameters Used in DGP for Simulation

γ0 γ1 δ0 δ1 σd σg σµ

0.062 0.354 0.090 0.932 0.02 0.03 0.016

First, I plot the simulated demeaned expected dividend growth ĝtand filtered expected demeaned

dividend growth Et[ĝt].
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Figure 5.1 – True De-meaned Expected Dividend Growthĝt and Filtered One Et[ĝt]
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Figure 5.1 shows that the filtered series for the demeaned dividend growth is close to the true

one. Second, I plot the series for dividend growth {4dt+1}T−1
t=1 and the filtered series of expected

dividend growth {Et[gt]}T−1
t=1 .

Figure 5.2 – Dividend Growth ∆dt+1 and Filtered Expected Dividend Growth Et[gt]
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Figures 5.2 shows that the filtered series for expected dividend growth tracks the dividend growth

series quite well. Next, I present the log likelihood plots to make sure that true parameters have

the highest likelihood.
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Figure 5.3 – Log-likelihood Profile Plots for γ0,γ1, δ0, and δ1
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Figure 5.4 – Log-likelihood Profile Plots for σd, σg, σµ
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The likelihood profile plots have peaks at the true parameter value. I conclude therefore that

the Kalman filter works properly.
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5.2 Sequential Monte Carlo Simulation Results

In this section I present the results of sequential Monte Carlo simulation. In the simulation,

the number of periods is 300, the number of parameter vectors per 1 time period is 2000 and I

trigger move-step if ESS is less than 0.4 ∗ number of parameters. Table 5.2 shows the true and

posterior parameter estimates.

Table 5.2 – Posterior Parameter Estimates

γ0 γ1 δ0 δ1 σd σg σµ

True 0.062 0.354 0.090 0.932 0.02 0.03 0.016

Posterior 0.0575 0.3440 0.0966 0.9347 0.0200 0.0307 0.0156

The posterior parameter estimates are close to true parameter estimates.

Next in Figures 5.5 and 5.6, I show the plots of parameters to check for convergence to true

values in as the number of periods increases.
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Figure 5.1 – Posterior Estimates of γ0, γ1, δ0, δ1
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Figure 5.2 – Posterior Estimates of σd, σg, σµ
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Figures above show that variance for all parameters decreases pushing parameter estimates to

true values except for γ1. In case of γ1, the mean of distribution at T = 300 coincides with true

value; however, I cannot see that the variance decreases as time progresses. This observation

corresponds to high standard errors of γ1 when Binsbergen and Koijen (2010)estimate γ1 with

maximum likelihood.
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Chapter 6

Results

In this chapter, I present the results of sequential Monte Carlo estimation. In addition, I do

model comparison.

6.1 SMC Estimation Results

I run sequential Monte Carlo procedure with for the data described in chapter 4. The number of

parameter vectors for each time period is 2500. The next two figures present the results of 5

runs of SMC. Solid line stands for the mean, dashed lines stand for 5th and 95th percentiles.
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Figure 6.1 – SMC Results for γ0, γ1, δ0, δ1
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Figure 6.2 – SMC Results for σd, σg, σµ

0 20 40 60
0

0.05

0.1

0.15

σ
d

0 20 40 60
0

0.05

0.1

0.15

σ
g

0 20 40 60
0

0.05

0.1

0.15

σµ

The figures 6.1 and 6.2 show that parameters converge. Table 6.1 provides the mean of posterior

estimates of 5 runs and the standard deviation. The figures above and the table below show the

posterior estimates are close to each other in all 5 runs.
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Table 6.1 – SMC Parameter Estimates, Nominal Data

γ0 γ1 δ0 δ1 σd σg σµ

Mean 0.0572 0.4287 0.0805 0.9335 0.0098 0.0500 0.0148

St.d. 0.0002 0.0019 0.0003 0.0005 0.0002 0.0001 0.0001

Table 6.1 also shows that the estimates are close to the ones in Binsbergen and Koijen (2010).

Next, I am going to plot the the series of realized dividend growth against the filtered expected

dividend growth (that is, 4dt+1 against Et[gt]) and the series of the realized return against

filtered expected return (that is, rt+1 against Et[µt]) of taking the average of 5 runs. Figure 6.3

shows the series produced by sequential Monte Carlo.

Figure 6.3 – SMC Out-of-Sample: Series ∆dt+1against filtered gt and rt+1against filtered µt
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If I run predictive OLS regressions

4dt+1 = αd + βdEt[gt] + εt+1

rt+1 = αr + βrEt[µt] + εt+1

then I get the following results summarized in the tables below
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Table 6.2 – Real-Time: Predicting rt+1 with Et[µt]

R2 = 0.05 Coefficient t-stat P-value

βr 0.82 1.88 0.06

Table 6.3 – Real-Time: Predicting 4dt+1 with Et[gt]

R2 = 0.14 Coefficient t-stat P-value

β∆d 0.74 3.26 0.002

The conclusion from the Table 6.3: If I use Bayesian learning (SMC) in real time, then dividend

growth is better predictable than return as the tables above show. The slope coefficient of the

OLS for returns has a P-value higher than 0.05. This confirms that returns are hard to predict

and thus explains why stocks have high risk premium.

In SMC, I use only the present information to predict future dividend growth and return.

SMC and OLS show how well filtered series of expected dividend growth and return perform

out-of-sample. This corresponds to predicting in real time. To compare, in maximum likelihood I

use the information from the future to predict the dividend growth and returns. This corresponds

to predicting in-sample. To see how well the filtered series predict in-sample , I run the Kalman

filter using the data and the parameter vector from the Table 6.1. The Figure 6.4 shows the

data and the filtered series.
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Figure 6.4 – KF In-Sample: Series ∆dt+1against filtered gt and rt+1against filtered µt
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The Tables 6.4 and 6.5 show the results when I run rt+1 and 4dt+1 on Et[µt] and Et[gt] in-sample,

that is, using the Kalman filter, already optimal parameter vector and the the information from

the future.

Table 6.4 – In-Sample: Predicting rt+1 with Et[µt]

R2 = 0.14 Coefficient t-stat P-value

βr 1.08 2.69 0.009

Table 6.5 – In-Sample: Predicting 4dt+1 with Et[gt]

R2 = 0.33 Coefficient t-stat P-value

β∆d 1.17 5.64 0.000

As expected, returns and dividend growth are better predicted in-sample than out-of-sample.

The Tables 6.4 and 6.5 above with R2 and slope coefficients and t-statistic confirm that.
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The comparison of the Bayesian learning (out-of-sample) forecasting and the Kalman filter

(in-sample forecasting) reveals that there is a bias when forecasting returns and the dividend

growth in-sample. Moreover, in-sample forecast are more optimistic than out-of-sample forecasts

because the slope coefficients for the Kalman Filter filtered series are higher than the slope

coefficients for the SMC filtered series.

6.2 Model Comparison

In addition to the out-of-sample and in-sample forecasting, I can do the model comparison

using the sequential Monte Carlo method. First, to do the model comparison, let me define the

incremental normalizing ratio as

Zt

Zt−1
=

´
Θ γt(θ)dθ´

Θ γt−1(θ)dθ

=

´
Θ f(y1:t | θ)× f(θ)dθ´

Θ f(y1:t−1 | θ)× f(θ)dθ

=
f(y1:t)
f(y1:t−1)

= f(yt|y1:t−1)

Also, the incremental normalizing ratio can be written as

Zt

Zt−1
=
ˆ

Θ

γt(θ)
γt−1(θ)

γt−1(θ)
Zt−1

dθ

In practice, given a cloud of particles {θ(n)
t−1, w

(n)
t−1}Nn=1 , the incremental normalizing ratio is
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computed as

ˆ
Zt

Zt−1
=

N∑
n=1

w(n)
t

w
(n)
t−1
×

w
(n)
t−1∑N

n=1w
(n)
t−1



=
N∑
n=1

 f(yt | yt−1, θ
(n)
t−1)︸ ︷︷ ︸

incremental weight

×

normalized weight︷ ︸︸ ︷
w

(n)
t−1∑N

n=1w
(n)
t−1



=
N∑
n=1

 f(yt | yt−1, θ
(n)
t−1)︸ ︷︷ ︸

incremental weight

×π(n)
t−1



Second, let me define 3 models based on the equations 2.3.6,2.3.7 and2.3.8.

? Model 1: the model with all parameters, that is, with γ0,γ1, δ0, δ1, σd, σg, σµ

? Model 2: the model without γ1

? Model 3: the model without δ1

Given the data and SMC results, it is possible to compare the three models, which I leave for

the future research.
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Chapter 7

Conclusion

Sequential Monte Carlo and the present value model can be used for both in-sample forecasting

and out-of-sample forecasting. The in-sample forecasts are more optimistic than the out-of-sample

forecasts. Out-of-sample, dividend growth rate is predictable with R2 = 0.14 and returns are

close to being unpredictable with slope coefficient on the verge of being statistically insignificant.

This implies that returns may follow the martingale process. In-sample, things are better: both

return and dividend growth are predictable with R2
ret = 0.14 and R2

div = 0.33. This shows that

in-sample forecasting is overoptimistic and should be taken with caution.
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