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Abstract

In this thesis, I re-estimate the present value model with hidden variables of Binsbergen and
Koijen (2010) using the sequential Monte Carlo algorithm instead of maximum likelihood
procedure. The latent variables are expected returns and expected dividend growth. First,
I show that in-sample forecasts are more optimistic than real-time, out-of-sample forecasts.
Second, returns are close to being unpredictable out-of-sample, which implies that returns may

follow a martingale process.
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Chapter 1

Introduction

The present value model shows that price dividend ratio of the aggregate stock market is a linear
function of expected future dividend growth rates and expected returns of the aggregate stock
market. Therefore, the price-dividend ratio can be used to forecast both future dividends and
returns. Binsbergen & Koijen (2010) develop an approach about how to use price-dividend ratio
and dividend growth rate to predict jointly returns and dividends. They introduce unobserved
variables into the present value model: expected returns and expected dividend growth rates
which are assumed to follow AR(1) processes. To find parameters of their extended present
value model, the authors define the transition and measurement equations of the model and run
maximum likelihood. Given parameters of the model and the data (which is the series of price
dividend ratio and dividend growth rate), it is possible to estimate the time series for hidden
variables with the Kalman filter. In addition, Binsbergen & Koijen (2010) show that next period’s
dividend growth and return are the linear functions of the whole history of dividend growth rates
and price dividend ratios, when the Kalman filter is used to uncover hidden variables. However,

maximum likelihood treats parameters as unknown and fixed numbers.

The purpose of this thesis is to re-estimate the present value model with latent variables using
sequential Monte Carlo estimator instead of maximum likelihood procedure to treat parameters
as random variables and thus to account for parameter uncertainty. Sequential Monte Carlo

estimation will also allow me to see how well the present value model with hidden variables
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forecasts in-sample and out-of-sample.

This work relates to the rest of the literature about predicting returns and dividend growth rates.
A common observation is that returns are predictable using price dividend ratio while dividend
growth rate is not. Since price-dividend ratio can be expressed as the linear function of future
returns and future dividend growth rates and since price-dividend ratio has variability, then
price-dividend should vary either due to future return or future dividend growth. Cochrane (2008)
argues that returns are predictable because dividend growth rates are not by using different
statistical tests. Binsbergen and Koijen (2010) point out that you can forecast both returns
and dividend growth by using price-dividend ratio. However, Binsbergen and Koijen (2010)
also note that probability density function of persistence coefficient for expected dividends is
multimodal. In addition, the estimate of the persistence coefficient for expected dividend growth

has relatively big standard errors.

In this thesis, I assume that steady state price-dividend value does not change over time. Lettau
and Van Nieuwerburgh (2008) show that incorporating shifts in price-dividend steady state value
is important and can improve an in-sample forecast. However, since the magnitude and time of
the steady state shifts are uncertain, it’s hard to use steady state dynamics to forecast in real

time.

The thesis has the following structure. In Chapter 2 I re-derive the present value model with
latent variables. In Chapter 3 I derive the Kalman filter and explain the sequential Monte Carlo
(SMC) algorithm. In Chapters 4 and 5, I present the simulation results and real data estimation

results respectively. Chapter 6 concludes.



CEU eTD Collection

Chapter 2

Present Value Model

2.1 Basic Present-Value Model

In this section I derive the present value model. My derivation follows closely an explanation of

present value model in Cochrane (2005).

. Pii1+ Dy

I = Rt_+11Rt+1 =R P, (2.1.1)
Py R L P+ Dy By e (Pt+1 +Dt+1) Rl a Pt+1)Dt+1 (2.19)
_— = S — N _— ) = N —I— _ .
D, ™t B Dy M D, T Dy’ Dy
I write (2.1.2) in terms of logs to get
Py
P — dt = —Tt41 + Adt_;,_l + log 1+ (213)
Dint
where
Adisy = log |2
t+1 = Og Dt




CEU eTD Collection

and
Po1+ D

t

Using Taylor-series approximation around p — d, I can write the last term in (2.1.3) as

= log(1 4 ePrr1—d+1)

ep—d

~ log(1+e’™%) +

[(pt—i-l —di1) — (p— d)]

1+ er—d

P
P -
= log(1+ 5) + L
P
1 _
+ D
P P
P —
= log(1+ 5) ——=—(p—d)+
P P
14+ — 14+ —
D D
= k+p(pr1 — dita) (2.1.4)

(P41 — diyr) — (p — d)]

(pt—i-l - dt—i—l)

where

and
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Then I plug (2.1.4) into (2.1.3) to get

pr— dy = =111 + Adppr + k4 p(pe1 — diya) (2.1.5)
P
lo: 1+
“I" Dent
I can rewrite (2.1.5) as
(Pt — di) — p(Pr1 — deg1) = =T + Adp + k (2.1.6)

Let F' denote a forward operator. Then I can rewrite (2.1.6) as

(]. — pF)(pt — dt) = —Tt41 + Adt_l,_l + k (217)

Assuming that 0 < p < 1, then (1 — pF') is an invertible polynomial and I can write equation

(2.1.7) in the following way:

(pe — di) = (1 = pF) " (=re1 + Adyyy + F) (2.1.8)

The equation (2.1.8) is equivalent to

(pt — dt) = (1 + pF —+ p2F + ...)(—7"15+1 + Adt+1 + k)

= (1+pF+p°F+.)|k+ (Adyy — rm)]

k 00

EJF > P (A = 1) (2.1.9)
j=1

The expression (2.1.9) says that pd; is a a linear function of expected future dividends and

returns.
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2.2 Introducing expected return and expected dividend

growth

This section introduces hidden variables as in the article by Binsbergen and Koijen (2010):
expected return and expected dividend growth rate. While re-deriving, I borrow the notation

from Binsbergen and Koijen (2010).

They define expected log-return p;as

pe = By [Tt+1]

and expected log-dividend growth rate g;as

gt = Et [Adt+1]

where

Adt+1 = Gt + €?+1 (221)

Let expected returns (u;) and expected dividend growth rates (g;) follow an AR(1) processes :

(ker1 = do) = 61(pe — bo) + €141 (22.2)
(ge+1 —70) = 71(9: — Y0) + €41 (2.2.3)

where dpand vy are the means of expected return and expected dividend growth rate respectively.
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If T forecast fi;4, then I set future shocks equal to zero and I get the following:

(fer1 —00) = 1(pe — do)

(fes2 — 80) = O1(ptes1 — 8o) = 07 (s — So)

(Mtﬂ' - 50) = 5{(/% - 50)

Similarly, if I forecast g, ;, then I set future shocks equal to zero and I get the following:

(9t+1 - ’YO) = ’Yl(Qt - ’Y(J)

(ge+2 —Y0) = (g1 — %) = V1 (9% — Y0)

(9eri — ) = V(g — )

Then T take expectation of (2.1.9) conditional upon information at time ¢:

(pt - dt)

= -

k o0 .
= — 4 Z Et[prl(AdtJrj — Tt45)]
—p j=1
k <
= ——+ > [P (G — purjor)]
1 - P j=1
k

-1, + i[pj(gt-i—j — Hitj)]

k o : ,
- ﬂnth’[%Jr%(gt—%)—50—5{(1“_50)}
=0
— qutZM{(Vo—(so)—5{(Mt—50)+7{(9t_70)}
=0

k Yo — do Mt—50 gt — "%

— +
l—p 1=p 1=phr 1—pm

= A—Bi(u — 6) + Balg — 0)

(2.2.4)
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k Yo — (So 1 1
where A = + and By = .
L —pn

B=——-
1—p 1—p ' T 1—p8
The expression above says that current price-dividend ratio is a linear function of expected

return and expected dividend growth for next period.

The shocks €/, €/,1, €', from equations (2.1.1), (2.1.3) and (2.1.2) respectively are normally
distributed, i.i.d. over time, with mean zero, and uncorrelated with each other. Also I assume
that shocks are jointly normally distributed as in Binsbergen and Koijen (2010). The covariance

matrix is given by

el Ui 0 0
Y= V(ZT’{ 5;?+1 =10 0'; 0 (225)
€1 0 0 of

2.3 State space representation

This section provides the derivation of transition and measurement equations, which I will need
to filter the hidden variables: expected returns and expected dividend growth. Again, this

section follows closely Binsbergen and Koijen (2010).

Binsbergen and Koijen (2010)define demeaned expected returns and dividend growth as
fir = e — 0o

gt = Gt — Yo

Then equations (2.2.2) and (2.2.3) - transition equations - are equivalent to:

ﬂtﬂ = (51/115 + 65_,_1 (231)
Jre1 = 710 + €41 (2.3.2)
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The measurement equations are given by:

Adpe1 = Yo + G + €

pr—di = A — Byl + Bagy

Let me define pd; = p; — d;.

Now, [ iterate 1 step forward the equation (2.3.4) to get

pdiyr = A— Bifig + Bagia
= A= Bi(01fis + €y1) + Ba(ns + €l41)
= A— Bibifu — Bi€f',y + Boyi§i + Bael 4
= A+ 01(=Bifu) + Boy1gr — Bref ) + Baelyy
= A+0i(pdi — A— BaGi) + BoniGe — Bieyy + Baefyy

= (1—=101)A+ By(y1 — 61)§ + 01pdy — Bi€f'y, + Baelyy

The transition equation is

G = "1G1—1 + €

The measurement equation 1 is

Adiry =+ Gt + 6g+1

The measurement equation 2 is

pdiyr = (1= 01)A+ Ba(y — 61)g + d1pdy — Bretyy + Baeliy

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

In the next chapter, I will transform the equations 2.3.6,2.3.7,2.3.8 into standard space form

using matrix algebra as in Binsbergen and Koijen (2010).
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Chapter 3

Kalman Filter and Sequential Monte

Carlo

In this chapter, I derive the Kalman filter for present value model with latent variable and
explain sequential Monte Carlo algorithm (SMC). Both Kalman filter and SMC will be used to

estimate posterior parameters of the model.

3.1 Kalman Filter: Bayesian Derivation and Application

to Present Value Model

In this section, I derive Kalman filter in a Bayesian way. My explanation and notation are based
on Simo Sarkka’s lecture “Bayesian Optimal Filtering Equations and Kalman Filter” and on

derivation in the article by Binsbergen and Koijen (2010).

10
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3.1.1 Standard State-Space Form

I write the equations (2.3.6), (2.3.7), (2.3.8) in the standard state space form to account for the

time lag in the initial state space form:

X, = FX,_,+0I¢*

Yo = My+ MY+ MX,

where _
gtfl
€4 Adt
Xt: ) }/;f:
6? pdy
€
v 010
ef
0 000
F = y & = Eg
0O 0 00
€
0 0 00

with variance of €% defined in (2.2.5). The measurement equation matrices are

M, — Yo

(1-01)A

0 0
Ml -

0 &

1 1 0 0

M, =

_32(71—51> 0 BQ _Bl

11
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In probabilistic terms

p(Xt\Xt—ﬂ = N(Xt | F X, FEFT)

Yo = Mo+ MY, + MX,

3.1.2 Kalman Filter

Prediction Step

In this step, I want to come up with the prediction of X; given Yi,;_;. Given information now, I
want to infer the expectations for the next period about the dividend growth rate and returns.

First, assume that the posterior of the previous step is Gaussian

p(Xt—1 | Y1:t—1) = N(Xt—1 | mi—1, Pt—l)
Note the following

p(Xn thl‘le:tfl) = P(Xt ‘ X1, leztfl) X p(thl ’ lezkfl)
= P(Xt ‘ thla) X p(thl ’ leztfl)

= N(xk|Ft71thla FEF%) X N(thl‘mtfly Ptfl)

Transition equation Posterior from prev step
N( Xi1 ’ my—1 Py FP,_, )
= Y
X Fm; FP,_, FP_ FT +TxI7

Next, by integrating over X; 1, I get the following equation

12
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p(Xt’YLt—l) = p Xt> X 1\Y1t 1)ka 1

pXt’Xt 1, Yiu- 1)XP(Xt 1|Ylt l)dXt 1

I
\\\

pXt|Xt 1 Xp(Xt 1|Y1t l)dXt 1

/ (X |FXo_y, TETT) x N(Xy_1|my_1, P_1)d X,

= N(X;| Fm;_,, FP,_ F' +T3Ir7)

Marginalization

Denote

m, = Fmy_

P = FP_ F"+1xr”
Update Step
The joint distribution p(X;, Y;|Y1.4—1) is

Xy m; P Pt_M2T
p(Xtu}/;’}/i:t—l) = N | )

Y, My + MY,y + Momy MyP~ MyP My

Then the marginal distribution p(Y;|Y1.4—1) can be computed

p(YelYii1) = N(Yt|M0 + MYy + Mamy, MQPt_M2T>

The conditional distribution p(X;|Y7.;) is then given by

p(Xt’YLt) = N(Xt ‘ my, Pt)

13

|
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where

my = m; + Py M) (MyPr My (Y, — My — MY,y — Mym;)

st vt
P, = P — P My (MxP7 My )™ MyPy
N———

st

Denote

S, = MyP; M

K, = P MjS;!

vy = Yy — My — MY,y — Momy
Note

StK;T - StsglMQPI; - MQPti

Then I can write m; and P; as

my = m;—l—Ktvt

P, = P - KS;K}

To sum up, the equations of the Kalman filter are

* Initialization:

mo = Oixq
Var(g) 0 0 0
0 a2 0 0
Py = a
0 0 o2 0
0 0 0 o3

14
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where Var(g) is the variance of stationary distribution of g

* Prediction step:

*x Update step:

St =
Kt -

V¢ =

Pt -

Maximum Likelihood

= Fmy

= FP_FT+1TxI?

MyP; My
Py My St
Y, — My — MY,—y — Momy
m, + K,

P — K.S,K}

Suppose number of periods is 7. Then the conditional log-likelihood of observing Y; where t =

1,...,T given Y7, have occurred can be computed as

logl, o< —v]'S; v, — log(det(Sy))

Then the likelihood of observing the whole sample Y7.r is

T
log ‘CI:T = Z logﬁt
k=1

Computing Filtered Series

The Kalman filter produces m; which has E[§;_1|Yi.r] as the first component and E[ef|Y;.7]

E[e]|Y1.r] Ele}'|Y1.7] as the other three components. However, I need E|[g;|Y1.r| and E|fi;_1|Y1.7]

15
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which can be computed using my, (2.3.1),(2.3.2)and(2.3.4).

I compute the series for the filtered demeaned expected return as

E] = Eo1fu—1+ €]
A+ Bygi—1 — pdy p
= Et (51 Bl + €4
A B, 01
= 5151 -+ 51§1Et[gt71] — Epdt -+ Et [65]

and the series for the filtered demeaned expected dividend growth rate as

Ei[3:] = mE§i—1] + Ei[ef]

where E,[fi,|=F|ji;|Y1.r] and E;[¢;] = FE[§:|Y1.r]. Then I compute filtered series E;[p,] = E;[fi]+do

and Fy[g;] = Ei[g:] + 7o which T use to forecast Adyy; and ry 4, respectively.

3.2 Sequential Monte Carlo

This note explains the Sequential Monte Carlo (SMC) algorithm which is a more robust way to
estimate parameters than maximum likelihood. SMC accounts for parameter uncertainty: it
treats a parameter vector as random vector and computes its distribution for each time period.
To compare, in maximum likelihood, parameters are perceived as fixed and unknown numbers.

The explanations in this section are based on Chopin (2002).

The posterior density is given by:

Y0 | y14) o< flyre | 0) x f(O)fort =1,...,T

where f(y;. | 6) is a likelihood and f(f) is a prior. The log of posterior (target distribution) is

16
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then

log (%(9 | yu)) o log (f (Y1 | 9)) + log (f (9))

Assume {y}; is a Markov process of order 1, that is current observation depends only on the

previous observation. Then the incremental weight of a particle /™ at time t + 1 is defined as

Yer1(0 | Yre11) f(yre1 1 0) x f(0)
%(Q | yl:t) f(ylzt | 0) X f(@)

f(ylzt+1 ‘ 9)
f(ylzt | 9)
= (Y1 | Y1, 0)

= f(yt+1 | Yt 9)

In sequential Monte Carlo, the weight of each parameter ™ vector (where n = 1,..., N ) at

time t is given by the recursion

(ﬁ)

wgn) = f(yt | Y1, 0; 1) (n)1

X Wy

The sequential Monte Carlo algorithm is given by the following steps

(M N

Initialization: Generate a cloud of N weighted particles {9(()"), wy  },—1 representing posterior

Y0(0).
* Assume prior f(6)

* Given prior f(#), generate N parameter vectors 9(()") where n =1,..., N

* Compute prior log-likelihood of observing each parameter vector 6(()”) forn=1,..,N given

the prior f(0)

x For each generated parameter vector, set the hidden state vector equal zero

* For each generated parameter vector, initialize hidden state variance-covariance matrix

the same way as for Kalman filter.

17



CEU eTD Collection

* Set log-likelihood and log-weights equal to zero for each parameter vector.

Loop: For t =1,..,T get the distribution {Hﬁn), wﬁn) N representing the posterior v;() in the

n=1

following way

* For each #™ (where n = 1,.., N ), compute the incremental log-weight log ( I (el ye—1, Qt(n))

by using the Kalman filter

* For each ™ update the log-weights

log(wt(n)) = log (f(yt | yi1, 9&%)) +10g(w@1)

log of incremental weight

* For each ™ | compute the normalized weights Wf")

(n)

T = N
Zr]yzl wt( )

* For each 8™ | compute Effective Sample Size (ESS) defined as

1

ESS= ——+ —
25:1(77@)2

* [F ESS> B

& keep {0, m}3
* ELSE

& re-sample {6}V

1

(n)
t _ —
& set i

& WHILE number of unique particles is less than C' or no move step has been done, do

the following move step for each particle n =1,..., N

18
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Sample u{™ ~ Ujo,1) where U is a uniform distribution

Sample 6" ~ hy(-) where h(-) is an independent normal

IF log u{™ < log @ = min {O, log v+ (6" )—1og 7, (6™ +1og h (0™ ) —log ht(aﬁ”)*)}

- then 6{") = 6{")"
e ELSE

. 9(”) — 9(”)_

t t

In the next chapters I present data and its estimation using Kalman filter and sequential Monte

Carlo method

19
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Chapter 4

Data

4.1 Data

I look at at the period 1946-2013. I get the nominal time series for S&P composite prices and
dividend series from Shiller’s website. I get monthly interest rate for 3 month treasury bill from
Federal Reserve at St Louis. Then, I adjust the dividend time series for the monthly interest rate
of 3-month T-bill to get cash-invested dividends. After that, I construct annual data for stock
prices by taking the price at the end of the year and annual data for cash-invested dividends by
taking the average for the whole year. Further, I modify the annual series for stock-prices and
for cash-invested dividends to obtain annual series for price-dividend ratio and dividend growth
rate. Below, the table 4.1 summarizes the statistics for the dividend growth rate, price-dividend

ratio and the interest rate.

20
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Table 4.1 — Summary Statistics

Ad pd r
Mean 0.0580 3.4651 0.1049
Median 0.0521 3.4101 0.1397

Standard Deviation 0.0639 0.4419 0.1598

Maximum 0.2087 4.4428 0.3840

Minimum -0.1286 2.7341 -0.4900

Next, I plot dividend growth rate, price dividend ratio and the interest rate against the time.

Figure 4.1 — Dividend Growth Rate

Dividend Growth Rate
0.25 : :

02— -

01— -

0.05— .

Ad

-0.05— -

|

1947 1957 1967 1977 1987 1997 2007

21



Figure 4.2 — Price-Dividend Ratio: Reinvesting in Risk Free Rate

Price-Dvidend Ratio

1947 1957 1967 1977 1987 1997 2007

Figure 4.3 — Return

Return

CEU eTD Collection

1947 1957 1967 1977 1987 1997 2007
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These graphs are similar to the ones in Binsbergen and Koijen (2010). .

As the next step to check that my data is correct, I run OLS predictive regressions

Adiyy = ag+ Bapds + €1

Tep1 = O + Bapdy + €441

The table 4.2 and table 4.3 show the results.

Table 4.2 — OLS Prediction of ry41 with pd;

Coeflicient t-statistics P-value

B, -0.12 2.74 0.008

R?2=0.1
Table 4.3 — OLS Prediction of Ad;ywith pdy
Coefficient t-statistics P-value
Baa  -0.014 0.75 0.454
R?=0.01

The tables above show that [, is negative and statistically significant while Sa4 is not statistically
significant. This corresponds to observations pointed out by Cochrane (2005).Given plots of

series and the results of the predictive OLS, I conclude that the data is suitable for further

investigation.

23
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Chapter 5

Simulations

In this chapter, I present the results from Kalman filter and sequential Monte Carlo algorithm

on simulated data to make sure that algorithms work properly.

5.1 Kalman Filter Simulation Results

To check that Kalman filter works well, I first generate data §;, Ad; and pd; using the transition
equation 2.3.6 and measurement equations 2.3.7 and 2.3.8. The parameters of data generating

process are presented in the following table

Table 5.1 — Parameters Used in DGP for Simulation

o 4! 50 51 0d Og Ou

0.062 0.354 0.090 0.932 0.02 0.03 0.016

First, I plot the simulated demeaned expected dividend growth g;and filtered expected demeaned

dividend growth E;[g].

24
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Figure 5.1 — True De-meaned Expected Dividend Growthg; and Filtered One E[g;]

True Demeaned Expected Dividend Growth g - ¥, and Filtered One E, [g] - ¥,

20 40 60 80 100 120 140 160 180 200

Figure 5.1 shows that the filtered series for the demeaned dividend growth is close to the true
one. Second, I plot the series for dividend growth {Ad,,;}-;" and the filtered series of expected
dividend growth {E,[g,]}/".

Figure 5.2 — Dividend Growth Ad;;1 and Filtered Expected Dividend Growth Ej[g]

02 T

Ad,
——E o]

0.1

l' " "’\ z”/" *

I I I I I I I I |
20 40 60 80 100 120 140 160 180 200
Dividend Growth Ad,,, and Filtered Expected Growth E, [g]

" ’ li\

—_—

Figures 5.2 shows that the filtered series for expected dividend growth tracks the dividend growth
series quite well. Next, I present the log likelihood plots to make sure that true parameters have

the highest likelihood.

25
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Figure 5.3 — Log-likelihood Profile Plots for ~g,71, dg, and &1

" likelihood plot fory, likelihood plot fory,
x 10 0 1
2 1650
0
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-12 1400
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3 g 1000F
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-25
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parameter parameter
Figure 5.4 — Log-likelihood Profile Plots for o4, 04, 0,
likelihood plot for Oy
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g 1500 B
E
°
= 1000 — =
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parameter

The likelihood profile plots have peaks at the true parameter value. I conclude therefore that

the Kalman filter works properly.
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5.2 Sequential Monte Carlo Simulation Results

In this section I present the results of sequential Monte Carlo simulation. In the simulation,
the number of periods is 300, the number of parameter vectors per 1 time period is 2000 and I

trigger move-step if ESS is less than 0.4 « number of parameters. Table 5.2 shows the true and

posterior parameter estimates.

Table 5.2 — Posterior Parameter Estimates

Yo g 9o 01 04 Ty P

True 0.062 0.354 0.090 0.932  0.02 0.03  0.016

Posterior 0.0575 0.3440 0.0966 0.9347 0.0200 0.0307 0.0156

The posterior parameter estimates are close to true parameter estimates.

Next in Figures 5.5 and 5.6, I show the plots of parameters to check for convergence to true

values in as the number of periods increases.
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Figure 5.1 — Posterior Estimates of vg, 71, do, 01
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Figures above show that variance for all parameters decreases pushing parameter estimates to
true values except for ;. In case of 71, the mean of distribution at 7" = 300 coincides with true
value; however, I cannot see that the variance decreases as time progresses. This observation
corresponds to high standard errors of 7; when Binsbergen and Koijen (2010)estimate 7, with

maximum likelihood.
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Chapter 6

Results

In this chapter, I present the results of sequential Monte Carlo estimation. In addition, I do

model comparison.

6.1 SMC Estimation Results

I run sequential Monte Carlo procedure with for the data described in chapter 4. The number of
parameter vectors for each time period is 2500. The next two figures present the results of 5

runs of SMC. Solid line stands for the mean, dashed lines stand for 5th and 95th percentiles.
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Figure 6.1 — SMC Results for v, 71, do, 1
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The figures 6.1 and 6.2 show that parameters converge. Table 6.1 provides the mean of posterior
estimates of 5 runs and the standard deviation. The figures above and the table below show the

posterior estimates are close to each other in all 5 runs.
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Table 6.1 - SMC Parameter Estimates, Nominal Data

Yo M do 01 04 Og Ou

Mean | 0.0572 | 0.4287 | 0.0805 | 0.9335 | 0.0098 | 0.0500 | 0.0148

St.d. | 0.0002 | 0.0019 | 0.0003 | 0.0005 | 0.0002 | 0.0001 | 0.0001

Table 6.1 also shows that the estimates are close to the ones in Binsbergen and Koijen (2010).

Next, I am going to plot the the series of realized dividend growth against the filtered expected
dividend growth (that is, Ad;y; against Fy[g;]) and the series of the realized return against
filtered expected return (that is, 7,41 against Fy[u)) of taking the average of 5 runs. Figure 6.3
shows the series produced by sequential Monte Carlo.

Figure 6.3 — SMC Out-of-Sample: Series Ad;1jagainst filtered g; and ;1 against filtered p,

Filtered Dividend Growth and Realized Dividends
0.25
T T

Expected Dividend Growth
= Realized Dividends

-0.6
0

If T run predictive OLS regressions

ANdiyr = ag+ BaEi[gi] + €141

T =+ BBy + €

then I get the following results summarized in the tables below
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Table 6.2 — Real-Time: Predicting 741 with Ey[u]

R?> =0.05 Coefficient t-stat P-value

B, 0.82 1.8%8  0.06

Table 6.3 — Real-Time: Predicting Ad;y1 with Fy[g]

R?>=0.14 Coefficient t-stat P-value

Bad 0.74 3.26  0.002

The conclusion from the Table 6.3: If I use Bayesian learning (SMC) in real time, then dividend
growth is better predictable than return as the tables above show. The slope coefficient of the
OLS for returns has a P-value higher than 0.05. This confirms that returns are hard to predict

and thus explains why stocks have high risk premium.

In SMC, I use only the present information to predict future dividend growth and return.
SMC and OLS show how well filtered series of expected dividend growth and return perform
out-of-sample. This corresponds to predicting in real time. To compare, in maximum likelihood I
use the information from the future to predict the dividend growth and returns. This corresponds
to predicting in-sample. To see how well the filtered series predict in-sample , I run the Kalman
filter using the data and the parameter vector from the Table 6.1. The Figure 6.4 shows the

data and the filtered series.
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Figure 6.4 — KF In-Sample: Series Ad;1iagainst filtered g; and ry11against filtered p,

Realized Dividend Growth Ad,,, and Filtered Expected Dividend Growth E, [g]
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The Tables 6.4 and 6.5 show the results when I run ry; and Ad;;1 on Ey[u] and Ey[g;] in-sample,
that is, using the Kalman filter, already optimal parameter vector and the the information from

the future.

Table 6.4 — In-Sample: Predicting .1 with E[pu]

R?>=0.14 Coefficient t-stat P-value

B 1.08 2.69  0.009

Table 6.5 — In-Sample: Predicting Ady 41 with Ey[g]

R? =0.33 Coefficient t-stat P-value

Bad 1.17 5.64  0.000

As expected, returns and dividend growth are better predicted in-sample than out-of-sample.

The Tables 6.4 and 6.5 above with R? and slope coefficients and t-statistic confirm that.
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The comparison of the Bayesian learning (out-of-sample) forecasting and the Kalman filter
(in-sample forecasting) reveals that there is a bias when forecasting returns and the dividend
growth in-sample. Moreover, in-sample forecast are more optimistic than out-of-sample forecasts
because the slope coefficients for the Kalman Filter filtered series are higher than the slope

coefficients for the SMC filtered series.

6.2 Model Comparison

In addition to the out-of-sample and in-sample forecasting, I can do the model comparison
using the sequential Monte Carlo method. First, to do the model comparison, let me define the

incremental normalizing ratio as

Z Jis 1 (6)df

Zyy f@ Ye-1(0)d0
f@ (v | 0) x f(0)do
 Jo Fyra | 0) x f(0)d0

f(y12t>
F@ra1)
= f(yelyr:-1)

Also, the incremental normalizing ratio can be written as

Zy / Y:(0) %_l(e)de
Zt—l_ @’Yt—l(e) Zi1

In practice, given a cloud of particles {(91@1, nl}n 1 , the incremental normalizing ratio is
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computed as

Zt N wzgn) wgﬁ)l
= 2 |~ @)
Zi-1 We_q Zr]yzl Wy

n=1
normalized weight
—_——~
S (s
= [y ytfbetﬁl U va—
n=1 ZnN:1 wzgf)l

incremental weight

N
= > (f(yt | Y1, 0,@1) ><7r§ﬁ)1)

incremental weight

Second, let me define 3 models based on the equations 2.3.6,2.3.7 and2.3.8.

* Model 1: the model with all parameters, that is, with v9,71, do, 01, 04, 0g, 04
* Model 2: the model without v,

* Model 3: the model without d;

Given the data and SMC results, it is possible to compare the three models, which I leave for

the future research.
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Chapter 7

Conclusion

Sequential Monte Carlo and the present value model can be used for both in-sample forecasting
and out-of-sample forecasting. The in-sample forecasts are more optimistic than the out-of-sample
forecasts. Out-of-sample, dividend growth rate is predictable with R? = 0.14 and returns are
close to being unpredictable with slope coefficient on the verge of being statistically insignificant.
This implies that returns may follow the martingale process. In-sample, things are better: both
return and dividend growth are predictable with R, = 0.14 and R%, = 0.33. This shows that

in-sample forecasting is overoptimistic and should be taken with caution.
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