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Introduction

Consider the Cauchy problem{
u′(t) = Au(t), t ≥ 0,
u(0) = x,

where A = (aij) is an n×n matrix with aij ∈ C for i, j = 1, 2, . . . , n, and x is a given
vector in Cn.

It is well-known that the above Cauchy problem has a unique solution given by

u(t) = etAx, t ≥ 0,

where etA represents the fundamental matrix of the linear differential system
u′(t) = Au(t) which equals I for t = 0. We have

etA =
∞∑
k=0

tk

k!
Ak,

valid for all t ∈ R. Here A and etA can be interpreted as linear operators, A ∈ L(X),
etA ∈ L(X), where X = Cn, equipped with any of its equivalent norms.

Note that the family of matrices (operators) {T (t) = etA, t ≥ 0} is a (uniformly
continuous) semigroup on X = Cn. Even more, {T (t), t ≥ 0} extends to a group of
linear operators, {etA, t ∈ R}.

The representation of the solution u(t) as

(1) u(t) = T (t)x, t ≥ 0,

allows the derivation of some properties of the solution from the properties of the
family {T (t), t ≥ 0}. This idea extends easily to the case in which X is a general
Banach space and A is a bounded linear operator, A ∈ L(X).

If A is a linear unbounded operator, A : D(A) ⊂ X → X, with some additional
conditions, then one can associate with A a so-called C0-semigroup of linear opera-
tors {T (t) ∈ L(X), t ≥ 0}, such that the solution of the Cauchy problem is again
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represented by the above formula (1). In this way one can solve various linear PDE
problems, where A represents linear unbounded differential operators with respect
to the spacial variables, defined on convenient function spaces.

It is worth mentioning that the connection between A and the corresponding semi-
group {T (t), t ≥ 0} ⊂ L(X) is established by the well-known Hille-Yosida theorem.
Linear semigroup theory received considerable attention in the 1930s as a new ap-
proach in the study of linear parabolic and hyperbolic partial differential equations.

Note that the linear semigroup theory has later developed as an independent theory,
with applications in some other fields, such as ergodic theory, the theory of Markov
processes, etc.

This thesis is intended to present fundamental characterizations of the linear semi-
group theory and to illustrate them by some interesting applications.

Structure of the Thesis
In Chapter 1, we give some important examples of semigroups, theorems related to
them and their connection to differential equations. First, we present an example
about matrix semigroups, second, multiplication semigroups and we conclude with
translation semigroups.
Chapter 2, starts with an introduction of the theory of strongly continuous semi-
groups of linear operators in Banach spaces, then we associate a generator to them
and illustrate their properties by means of some theorems. Hille-Yosida genera-
tion theorem characterizes the infinitesimal generators of these strongly continuous
one-parameter semigroups, by providing a necessary and sufficient condition for an
unbounded operator on a Banach space to be a generator. This theorem will be
stated and proved on the last part of the thesis and then proceeded by the Feller-
Miyadera-Phillips theorem, which is the general case of it.
In the end of each chapter, a section of notes will be provided, where we identify our
sources and suggest further reading.
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Chapter 1

Examples of semigroups

In this chapter we describe the matrix valued function T (·) : R+ → Mn(C) which
satisfies the functional equation (1.1) discussed on Section 1.1. We will see that, for
A ∈ Mn(C), the continuous map R+ 3 t 7→ etA ∈ Mn(C) satisfies the functional
equation and that etA forms a semigroup of matrices depending on t ∈ R+. We
call {T (t) := etA; t ≥ 0} the (one-parameter) semigroup generated by the matrix
A ∈ Mn(C) and we are done with the first example on semigroups. After this,
we will proceed with the next two examples, namely multiplicative semigroups and
translation semigroups.

1.1 Motivation

Exponential function ex, where x ∈ C, is one of the most important functions in
mathematics and can be expressed by power series

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

or as a limit
ex = lim

n→∞

(
1 +

x

n

)n
.

Consider the following functional equation

(1.1)

{
u(t+ s) = u(t)u(s), t, s ≥ 0,
u(0) = 1

where u(·) : R+ → C. It is easy to see that the exponential functions t 7→ eta, a ∈ C,
satisfy this equation. Furthermore we pose the problem in finding the solution of
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the initial value problem

(IVP)

{
d
dt
u(t) = au(t), t ≥ 0

u(0) = 1.

Again we see that u(t) = eta, a ∈ C satisfies this (IVP) and later we will show that
actually this solution is unique.

In the exponential function if we put instead of x the matrix A ∈ Mn(C) = L(X),
we can write the exponential of A in the form

(1.2) eA =
∞∑
k=0

1

k!
Ak = I + A+

A2

2!
+
A3

3!
+ · · · .

eA is called the matrix exponential.

Proposition 1.1. The matrix exponential eA is convergent.

Proof. Let A ∈ L(X) and ‖A‖ = max
1≤j≤n

n∑
i=1

|Aij|. For all A,B ∈ L(X) we have

‖AB‖ = max
1≤j≤n

n∑
i=1

|(AB)ij| = max
1≤j≤n

n∑
i=1

∣∣∣∣∣
n∑
k=1

AikBkj

∣∣∣∣∣ ≤ max
1≤j≤n

n∑
i=1

n∑
k=1

|Aik| |Bkj|

≤ max
1≤k≤n

n∑
i=1

|Aik| max
1≤j≤n

n∑
k=1

|Bkj| = ‖A‖‖B‖.

By induction we will have

‖Ak‖ ≤ ‖A‖k, ∀ k ∈ N.

Thus,

‖eA‖ =

∥∥∥∥∥
∞∑
k=0

Ak

k!

∥∥∥∥∥ ≤
∞∑
k=0

‖Ak‖
k!
≤

∞∑
k=0

‖A‖k

k!
= e‖A‖ <∞.

Below we prove some properties of the matrix exponential.

Properties 1.2. Let A,B ∈ L(X), I and 0 be the identity and 0 matrices respec-
tively,

i) If AB = BA then eAeB = eA+B,

ii) e(t+s)A = etAesA for all t, s ≥ 0,

5
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iii) e0 = I.

Proof.

eAeB =

(
I + A+

1

2
A2 +

1

3!
A3 + · · ·

)(
I +B +

1

2
B2 +

1

3!
B3 + · · ·

)
(i)

= I +B +
1

2
B2 +

1

3!
B3 + A+ AB +

1

2
AB2 +

1

2
A2 +

1

2
A2B +

1

3!
A3 + · · ·

= I + (A+B) +
1

2
(A+B)2 +

1

3!
(A+B)3 + · · · = eA+B.

(ii)
∞∑
k=0

tkAk

k!

∞∑
k=0

skAk

k!
=
∞∑
n=0

n∑
k=0

tn−kAn−kskAk

(n− k)!k!
=
∞∑
n=0

(t+ s)nAn

n!
.

Next, we use the fact that matrix A = 0 is diagonal and its exponential can be
obtained by exponentiating each element of the diagonal, namely,

(iii) e0 = diag(e0, e0, · · · , e0) = I.

By the proceeding theorem we will show the relation between the matrix exponential
and the differential equations. Using Picard iteration, we prove that the solution to
the initial value problem (1.3) exists and it is of matrix exponential form. Actually,
by Proposition 1.5., this solution is unique.

Theorem 1.3. There exists a solution u(t) of matrix exponential form to the initial
value problem

(1.3)

{
d
dt
u(t) = Au(t), t ≥ 0

u(0) = u0,

where A ∈Mn(C) and u0 is a given number.

Proof. Using Picard iteration,

u0(t) = u0

u1(t) = u0 +

∫ t

0

Au0(s)ds = u0 + Au0

∫ t

0

ds = u0 + tAu0

u2(t) = u0 +

∫ t

0

Au1(s)ds = u0 + Au0

∫ t

0

ds+ A2u0

∫ t

0

sds = u0 + tAu0 +
t2

2
A2u0

...

un(t) =
n∑
j=0

tjAj

j!
u0.
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Take n→∞, we get

(1.4) u(t) = lim
n→∞

un(t) =
∞∑
j=0

tj

j!
Aju0.

As defined in (1.2) we have the matrix valued function to be

∞∑
j=0

tjAj

j!
= etA.

This suggests that etAu0 is the solution of (1.3). Actually, plugging (1.4) into the
differential equation (1.3), we see that the differential equation with initial condition
is satisfied.

Next we see another proof which shows that etA is differentiable.

Theorem 1.4. etA is differentiable and its derivative is AetA.

Proof. From the definition of the norm we know that

‖A‖ = max{|Aij| | 1 ≤ i, j ≤ n}.

For any two matrices A,B ∈ L(X), denote by (AB)ij the element of the ith row and
jth column of the product matrix AB. Note that

(1.5) |(AB)ij| =

∣∣∣∣∣
n∑
k=1

AikBkj

∣∣∣∣∣ ≤
n∑
k=1

|Aik||Bkj| ≤ n‖A‖‖B‖.

For etA to be differentiable we need to have

d

dt
etA = lim

h→0

e(t+h)A − etA

h
= lim

h→0

(ehA − I)

h
etA.

We claim that lim
h→0

(ehA−I)
h

= A.

(1.6)
ehA − I

h
− A =

I + hA
1

+ (hA)2

2!
+ (hA)3

3!
+ · · · − I

h
− A =

h

2!
A2 +

h2

3!
A3 + · · · .
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Using the property in (1.5) we will estimate the series (1.6)∣∣∣∣∣
(
h

2!
A2 +

h2

3!
A3 + · · ·

)
ij

∣∣∣∣∣ ≤ 1

2
|h(A2)ij|+

1

3!
|h2(A3)ij|+ · · ·

≤ 1

2
|h|n‖A‖2 +

1

3!
|h|2n2‖A‖3 + · · ·

= ‖A‖
(

1

2
|h|n‖A‖+

1

3!
|h|2n2‖A‖2 + · · ·

)
=
‖A‖
|h|n‖A‖

(
e|h|n‖A‖ − 1− |h|n‖A‖

)
= ‖A‖

(
e|h|n‖A‖ − 1

|h|n‖A‖
− 1

)
.

Take h→ 0

lim
h→0

e|h|n‖A‖ − 1

|h|n‖A‖
− 1 =

d

dx
ex |x=0 −1 = 1− 1 = 0.

So (1.6) is equal to 0, proving the claim that lim
h→0

(ehA−I)
h

= A and consequently

d
dt
eAt = AetA.

As a conclusion to what we discussed above, we have shown that applying Picard
iteration to the differential equation (1.3) and the differentiability of etA proved on
Theorem 1.4, indicate that the solution of (1.3) exists and is of matrix exponential
form.

Proposition 1.5. The solution to the initial value problem (1.3) is unique.

Proof. Indeed, suppose there are two solutions satisfying (1.3). The second one is{
d
dt
v(t) = Av(t), t ≥ 0

v(0) = u0.

We want to show that u(t) = v(t). Define

z(t) = e−tAv(t)

dz(t)

dt
= −Ae−tAv(t) + e−tAv′(t) = −Ae−tAv(t) + e−tAAv(t) = 0.

So z(t) is constant. For t ≥ 0,

z(t) = e−tAv(t) = u0.

It can be seen that
v(t) = etAu0 = u(t).

So the solution is unique.

8
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Remark 1.6. We may pose the same problem in a Banach space. Let the vector space
X be a Banach space over C (or R), so X is equipped with a norm and is complete
with respect to the norm, let A be an operator in L(X), where L(X) is the space of
all bounded linear operators on X and Mn(C) be the space of all n×n matrices with
complex entries. By defining any norm on Mn(C) the matrix exponential

etA =
∞∑
k=0

tkAk

k!

is convergent and bounded, namely

‖etA‖ ≤ et‖A‖.

The solution of (1.3), for A bounded linear operator, exists and is unique, i.e.,
u(t) = etAu0. The function etA in Mn(C) satisfies the functional equation and forms
a semigroup of matrices which depends on the parameter t ∈ R+. We call

(
etA
)
t≥0

the (one-parameter) semigroup generated by the matrix A ∈ Mn(C). See Theorem
2.9 where this is proved.

1.1.1 Matrix semigroups

Now let us show how to compute the matrix semigroups etA when we have A ∈Mn(C)
given.

We illustrate this by the following cases:

i) Let A = diag(a1, · · · , an). The semigroup generated by matrix A is

etA = diag(eta1 , · · · , etan).

So what we do here is exponentiating the diagonal elements.

ii) Let Jm×m be a Jordan block

J =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . . . . .
... 0

...
. . . . . .

... 1
0 · · · · · · 0 λ


where λ ∈ C. We can decompose J into J = λI + N , where I is the identity
matrix and N is

N =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . .
... 0

0
. . . . . .

... 1
0 · · · · · · 0 0
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It is easy to see that Nm = 0. From the definition of matrix exponential we

know that etN =
m−1∑
n=0

tnNn

n!
, namely

etN =


1 t t2

2
· · · tm−1

(m−1)!
0 1 t · · · tm−2

(m−2)!
...

. . . . . .
...

...

0
. . . . . .

... t
0 · · · · · · 0 1

 .

Using the fact that λI and N commute,

etJ = etλetN .

We will consider the above cases and the following theorem to give a full answer to
the question on how to find etA when A is given and conclude that the above cases
are sufficient.

Theorem 1.7. Let A be a complex n × n matrix. There exists a linear change in
coordinates U such that A can be transformed into a block matrix,

U−1AU =


J1 0 0 · · · 0
0 J2 0 · · · 0
...

. . . . . .
...

...

0
. . . . . . Jl−1 0

0 · · · · · · 0 Jl


where each J has the form J = λI +N as in the above case ii).

Proof can be found in the book [16], Chap.3, Thm. 3.2.

1.2 Multiplication semigroups

Let C0(R) be a Banach space equipped with sup-norm (uniform or infinity norm) of
all continuous, complex-valued functions f ∈ C(R) on some bounded or unbounded
interval in R that vanish at infinity, namely

∀ε > 0,∃ a compact subset Kε ⊂ R, such that |f(s)| < ε,∀ s ∈ R\Kε.

10
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Definition 1.8. The multiplication operator Mq induced on C0(R) by some contin-
uous function q : R→ C is defined by

Mqf := q · f, ∀f ∈ D(Mq)

D(Mq) := {f ∈ C0(R) : q · f ∈ C0(R)}.

In the following proposition we will state and prove some properties of the multipli-
cation operator Mq which are related to the continuous function q.

Proposition 1.9. Let Mq with domain D(Mq) be the multiplication operator induced
on C0(R) by some continuous function q, then the following hold:

i) Mq is closed and densely defined.

ii) Mq is bounded (with D(Mq) = C0(R)) iff q is bounded. In that case one has

‖Mq‖ = ‖q‖ := sup
s∈R
|q(s)|.

iii) Mq has a bounded inverse iff q has a bounded inverse 1
q
, i.e, 0 /∈ q(R). In that

case one has
M−1

q = M 1
q
.

iv) The spectrum of Mq is the closed range of q, i.e,

σ(Mq) = q(R).

Proof. i) By definition the operator Mq : D(Mq) ⊆ C0(R) → C0(R) is said to
be closed if for every sequence {fn} ⊂ D(Mq) such that fn → f ∈ C0(R) and
Mqfn → g ∈ C0(R) we have f ∈ D(Mq) and Mqf = g. Actually, having fn
converging to f such that lim

n→∞
qfn := g, since convergence in norm implies

pointwise convergence, we get g = qf = Mqf and f ∈ D(Mq).

To show that Mq is densely defined it is enough to show that the continuous
functions with compact support Cc(R) := {f ∈ C(R)|supp f is compact} are
dense in C0(R), because of the fact that Cc(R) ⊂ D(Mq) ⊆ C0(R).
For every compact subset K in R we can find hK ∈ C(R) with compact support
where

0 ≤ hK ≤ 1 and hK = 1, ∀s ∈ K.
So for every f ∈ C0(R),

‖f − f · hk‖ = sup
s∈R\K

|f(s)(1− hK(s))| ≤ 2 sup
s∈R\K

|f(s)|

meaning that for every K ⊆ R the functions f · hK with compact support in
R, are dense in C0(R), that is what we wanted to prove.

11
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ii) Let Mq be bounded and fs be a continuous function with compact support
such that ‖fs‖ = 1 = fs(s), ∀s ∈ R. Then

‖Mq‖ ≥ ‖Mqfs‖ ≥ |q(s)fs(s)| = |q(s)|.

Let q be bounded and f ∈ C0(R), then

‖Mqf‖ = sup
s∈R
|q(s)f(s)| ≤ ‖q‖‖f‖.

So having ‖Mq‖ ≥ ‖q‖ and ‖Mq‖ ≤ ‖q‖ we conclude

‖Mq‖ = ‖q‖ = sup
s∈R
|q(s)|.

iii) 0 /∈ q(R) means that the inverse of q, which is 1
q
, is also a continuous and

bounded function. The inverse of the multiplication operator Mq is M 1
q
.

Let Mq have a bounded inverse M−1
q . Then we have

‖f‖ = ‖M−1
q Mqf‖ ≤ ‖M−1

q ‖‖Mqf‖, ∀f ∈ D(Mq).

For ‖f‖ = 1

δ :=
1

‖M−1
q ‖
≤ sup

s∈R
|q(s)f(s)|.

Suppose inf
s∈R

< δ
2
, there will exist an open set A ⊂ R, where |q(s)| < δ

2
for all

s ∈ A. There will exist a function g0 ∈ C0(R) such that g0(s) = 0 for all
s ∈ R\A and g0(s) = 1 for all s ∈ B where B is closed subset of A. We have

sup
s∈R
|q(s)g0(s)| ≤ sup

s∈A
|q(s)g0(s)| ≤

δ

2

which is a contradiction to what we supposed. So q(s) must be in 0 < δ
2
≤ |q(s)|

for all s ∈ R and M 1
q

is bounded and it is the inverse of Mq, namely[
M 1

q
(Mqf)

]
(s) =

1

q(s)
(Mqf)(s) = f(s)

[
(Mqf)M 1

q

]
(s) = (Mqf)(s)

1

q(s)
= f(s).

iv) λ ∈ σ(Mq) iff λI −Mq is not invertible.

Mλ−qf = (λI − q)f = λIf −Mqf = (λI −Mq)f, ∀ f ∈ C0(R).

Thus,
λI −Mq = Mλ−q

12
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is not invertible.
σ(Mq) ⊂ q(R) : By iii) we know that the operator Mλ−q has a bounded inverse

iff λ− q has a bounded inverse 1
λ−q , i.e., 0 /∈ λ− q(R), meaning that λ /∈ q(R).

So Mλ−q does not have a bounded inverse iff λ ∈ q(R).

σ(Mq) ⊃ q(R) : Trivial by the definition.

Definition 1.10. Let q : R→ C be a continuous function such that sup
s∈R

Re q(s) <∞.

Then the semigroup {Tq(t); t ≥ 0} defined by

Tq(t)f := etqf,

for t ≥ 0 and f ∈ C0(R) is called the multiplication semigroup generated by the
multiplication operator Mq (or the function q) on C0(R).

The exponential functions
s 7→ etq(s), t ≥ 0,

where s ∈ R and q : R → C is any continuous function, satisfy the functional
equation (1.1). The multiplication operators

Tq(t)f = etqf

must be bounded on C0(R) so one can get one-parameter semigroup on C0(R),

namely e
t sup
s∈R

Req(s)
<∞.

Proposition 1.11. The multiplication semigroup {Tq(t); t ≥ 0} generated by
q : R→ C is uniformly continuous iff q is bounded.

Proof. First, given that q is bounded, by the Proposition 1.9 the operator Mq will be
bounded and Tq(t) = etMq . As etMq is uniformly continuous, then Tq(t) is uniformly
continuous.

Suppose q is unbounded. We want to show here that ‖Tq(0) − Tq(tn)‖ does not
converge to 0 as n → ∞. Define tn = 1

|q(sn)| → 0, where (sn)n∈N ⊂ R is any

sequence such that |q(sn)| is divergent as n → ∞. So we will have |tnq(sn)| = 1.
Exponentiating this function we get etnq(sn) 6= 1, so ∃ δ > 0 such that

| 1− etnq(sn) |≥ δ, ∀ n ∈ N.

Let ‖fn‖ = 1 = fn(sn), for fn ∈ C0(R), then

‖Tq(0)− Tq(tn)‖ ≥ ‖fn − etnqfn‖ ≥| 1− etnq(sn) |≥ δ.

So ‖Tq(0)− Tq(tn)‖ does not converge to 0 as n→∞, that is {Tq(t); t ≥ 0} is not a
uniformly continuous semigroup.

13
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Theorem 1.12. Let {Tq(t), t ≥ 0} be the multiplication semigroup generated by a
continuous function q : R→ C, satisfying sup

s∈R
Re q(s) <∞. Then the mappings

R+ 3 t 7→ Tq(t)f = etqf ∈ C0(R)

are continuous for every f ∈ C0(R).

Proof. Let f ∈ C0(R) such that ‖f‖ ≤ 1. For ε > 0, let K be a compact subset of
R, where

|f(s)| ≤ ε

e| sups∈RReq(s)| + 1
, ∀s ∈ R\K.

There exists t0 ∈ (0, 1] such that

|etq(s) − 1| ≤ ε, ∀s ∈ K and 0 ≤ t ≤ t0.

Then for all 0 ≤ t ≤ t0,

‖etqf − f‖ ≤ sup
s∈K

(|etq(s) − 1||f(s)|) + (e| sups∈R Req(s)| + 1) sup
s∈R\K

|f(s)| ≤ 2ε.

That is the above mappings etqf are continuous for every f ∈ C0(R).

So this theorem means that for the multiplication semigroups {T (t); t ≥ 0}, gen-
erated by an unbounded continuous function q : R → C , where sup

s∈R
Re q(s) < ∞,

although we can not achieve a one-parameter semigroup that is uniformly continuous,
we can achieve continuity property.

In the following proposition we see that if a semigroup is composed of multiplication
operators T (t)f := mtf on C0(R), for t ≥ 0, and the mappings R 3 t 7→ T (t)f ∈ C0(R)
are continuous for every f ∈ C0(R), then there exists a continuous function q : R→ C,
whose real part is bounded from above, such that the semigroup defined by
Tq(t)f := etqf , for t ≥ 0 and f ∈ C0(R), is a multiplication semigroup.

Proposition 1.13. For t ≥ 0, let mt : R→ C be bounded continuous functions and
assume that

i) the multiplication operators
T (t)f := mtf

form a semigroup {T (t); t ≥ 0} of bounded operators on C0(R),

ii) the mappings
R 3 t 7→ T (t)f ∈ C0(R)

are continuous for every f ∈ C0(R).

14



C
E

U
eT

D
C

ol
le

ct
io

n

Then there exists a continuous function q : R→ C, where sup
s∈R

Req(s) <∞ such that

mt(s) = etq(s), ∀s ∈ R, t ≥ 0.

Proof can be found in book [4], Chap. 1, Prop. 4.6.

1.3 Translation Semigroups

Translation semigroups are another very good example which satisfy the semigroup
properties and produce one-parameter operator semigroups whose continuity prop-
erties depend on the space on which we are working on. First of all let us define
them.

Definition 1.14. For a function f : R→ C and t ≥ 0, we call

(Tl(t)f)(x) := f(x+ t), x ∈ R,

the left translation (of f by t), while

(Tr(t)f)(x) := f(x− t), x ∈ R,

is the right translation (of f by t).

Let X := C0(R) be the Banach space of all continuous functions on R vanishing at
infinity. Define the operator T (t)

(T (t)f)(x) := f(t+ x)

where x, t ∈ R and f ∈ X. The translation of the function f satisfies the semigroup
properties, namely T (t+ s) = T (t)T (s) and T (0) = I. Furthermore since

lim
t→0+

sup
x∈R
‖f(t+ x)− f(x)‖ = 0

we have that
lim
t→0+

T (t)f = f

forming so a translation semigroup {T (t); t ≥ 0} on R which is continuous. Actually,
since ‖T (t)f‖ = ‖f‖, we have to do here with a contraction semigroup. Note that

‖T (t)− I‖ ≤ sup
‖f‖≤1

‖T (t)f − f‖ = sup
‖f‖≤1

sup
s∈R
|f(s+ t)− f(s)|

does not converge to 0, so the semigroup is not uniformly continuous.

So the translation operators define strongly continuous semigroup on the space
C0(R).

15
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Notes

The matrix valued exponential functions as solutions of linear differential equations
are treated in books about ordinary differential equations (see [Coddington [3], Chap.
1., pg. 1-32], [Hartman [8], Chap.4., pg. 70-92], [Teschl [16], Chap. 3., pg. 59-
103]). Also we may find the material about matrix exponentials in texts about
matrix analysis (Gantmacher [[6], Chap. 4., pg. 135-198), or some other books on
semigroups like for e.g, [Engel [5], Chap. 1., Sec. 1 and 2], or books about functional
analysis ([Schechter [15], Chap. 10., pg. 225-238], [Rudin [14], Prologue, pg. 1-4]).

The multiplication operators and multiplication semigroups can be found in ([Engel
[5], Chap. 1, Sec. 4., pg. 24-33], [Nagel [4], Chap. 1, pg. 11-26], [Nagel [12], Chap.
C-II., pg. 248-290]). Translation semigroups appear in ([Engel [5], Chap. 1, Sec. 4,
pg. 33-36], [Nagel [4], Chap. 1, pg. 30-34], [Nagel [12], Chap. B-II., pg. 122-162]).
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Chapter 2

Abstract theory

As described in the examples of the first chapter, we see that although a semigroup
may have the continuity property, this does not mean that it will be uniformly contin-
uous, thus making the uniform continuity a very strong property for the semigroups.
Still we notice that in Theorem 2.17 the strong continuity holds, therefore it is useful
to write a chapter on the theory about them. We will start with the definitions, go
on with the properties of the strongly continuous semigroups of bounded linear oper-
ators and conclude with the generation theorems of strongly continuous semigroups
of closed linear operators.

2.1 Basic properties

In this section we describe some definitions, theorems, corollaries, which provide us
with some properties of the semigroups.

Definition 2.1. A semigroup is a pair (S, ∗), where the set S 6= ∅ and ∗ is a binary
associative operation on S and ∗ : S × S → S. That is ∀x, y, z ∈ S, we have
(x ∗ y) ∗ z = x ∗ (y ∗ z).

Example 2.2. Set of all natural numbers N = {1, 2, 3, · · · } forms the semigroup
(N,+) under addition and (N, ·) under multiplication.

Example 2.3. Consider the Cauchy problem{
u′(t) = Au(t), t ≥ 0,
u(0) = x,

where A ∈ L(X) and x is a given vector in Cn.

From Theorem 1.3 and Proposition 1.5 the above Cauchy problem has a unique so-
lution given by

u(t) = etAx, t ≥ 0,
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where etA represents the fundamental matrix of the linear differential system u′(t) = Au(t)
which equals I for t = 0.

Let X be a Banach space over C with norm ‖ · ‖ and let L(X) be the set of all linear
bounded (continuous) operators T : D(T ) = X → X. L(X) is also a Banach space
with respect to the operator norm,

‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}.

Further on we proceed with the definitions of strongly continuous semigroup.

Definition 2.4. A semigroup is called the one parameter family {T (t); t ≥ 0} ⊂ L(X)
satisfying:

T (t+ s) = T (t)T (s), t, s ≥ 0

T (0) = I,

where I is the identity operator on X.

Definition 2.5. A C0-semigroup (or strongly continuous semigroup, or a semigroup
of class C0) is called the one parameter family {T (t); t ≥ 0} of bounded linear oper-
ators from X to X if

T (t+ s) = T (t)T (s), t, s ≥ 0

T (0) = I

lim
t→0+
‖T (t)x− x‖ = 0, ∀x ∈ X.

Definition 2.6. The family {G(t), t ∈ R} ⊂ L(X) is said to be a group if

G(t+ s) = G(t)G(s), ∀t, s ∈ R

G(0) = I.

{G(t), t ∈ R} ⊂ L(X) is said to be a C0-group if we add to the above definition the
continuity property

lim
t→0+
‖G(t)x− x‖ = 0, ∀x ∈ X.

Definition 2.7. The one parameter family {T (t); t ≥ 0} satisfying:

T (t+ s) = T (t)T (s), t, s ≥ 0

T (0) = I

lim
t→0+
‖T (t)− I‖ = 0

is called a uniformly continuous semigroup of bounded linear operators.
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Note that uniformly continuous semigroups are a subset of strongly continuous semi-
groups, because of the third condition of the uniformly continuous semigroups which
is much stronger than the third condition of the strongly continuous semigroups.

Definition 2.8. The linear operator A : D(A) ⊂ X → X is called the infinitesimal
generator of the semigroup {T (t); t ≥ 0} if it satisfies

Ax = lim
h→0+

1

h
(T (h)x− x), ∀x ∈ X

where D(A) is the set of all x ∈ X such that the above limit exists.

This definition tells us how to find the (infinitesimal) generator A when the semigroup
{T (t); t ≥ 0} is given, that is by differentiating the semigroup {T (t); t ≥ 0} as t tends
to 0, namely

d

dt
T (t) |t=0= AetA |t=0= A.

Theorem 2.9. Let us have a bounded operator A from X to X, then {T (t); t ≥ 0},
where T (t) = etA =

∞∑
n=0

tAn

n!
, is a uniformly continuous semigroup.

Proof. Given that A is a bounded operator, this means that ‖A‖ <∞ and

etA =
∞∑
n=0

(tA)n

n!

converges to the bounded linear operator T (t) for every t ≥ 0. Lets check whether
the power series fulfills the conditions to be a semigroup and even more a uniformly
continuous semigroup.

First of all check T (t+ s) = T (t)T (s):(
∞∑
i=0

tiAi

i!

)(
∞∑
j=0

sjAj

j!

)
=
∞∑
k=0

(t+ s)kAk

k!
.

Secondly, T (0) = I, where I is the identity operator in X. This is obvious.

The last thing we need to check is the condition of uniformly continuous semigroup
lim
t→0+
‖T (t)− I‖ = 0.

‖T (t)− I‖ =

∥∥∥∥∥
∞∑
n=1

(tA)n

n!

∥∥∥∥∥ ≤
∞∑
n=1

tn‖A‖n

n!
= et‖A‖ − 1 →

t→0
0+.
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Adapting the proof of Theorem 1.4 we will show that

d

dt
etA = lim

h→0

e(t+h)A − etA

h
= lim

h→0

(ehA − I)

h
etA.

We claim that lim
h→0

(ehA−I)
h

= A.

(2.1)
ehA − I

h
− A =

I + hA
1

+ (hA)2

2!
+ (hA)3

3!
+ · · · − I

h
− A =

h

2!
A2 +

h2

3!
A3 + · · · .

Using the property in (1.5) we will estimate the series (2.1)∣∣∣∣∣
(
h

2!
A2 +

h2

3!
A3 + · · ·

)
ij

∣∣∣∣∣ ≤ 1

2
|h(A2)ij|+

1

3!
|h2(A3)ij|+ · · ·

≤ 1

2
|h|n‖A‖2 +

1

3!
|h|2n2‖A‖3 + · · ·

= ‖A‖
(

1

2
|h|n‖A‖+

1

3!
|h|2n2‖A‖2 + · · ·

)
=
‖A‖
|h|n‖A‖

(
e|h|n‖A‖ − 1− |h|n‖A‖

)
= ‖A‖

(
e|h|n‖A‖ − 1

|h|n‖A‖
− 1

)
.

Take h→ 0

lim
h→0

e|h|n‖A‖ − 1

|h|n‖A‖
− 1 =

d

dx
ex |x=0 −1 = 1− 1 = 0.

So (2.1) is equal to 0, proving the claim that lim
h→0

(ehA−I)
h

= A and consequently

d
dt
eAt = AetA.

Now we pass to some theorems related to C0-semigroups.

Theorem 2.10. Let {T (t), t ≥ 0} ⊂ L(X) be a C0-semigroup, then there exist
M ≥ 1, ω ∈ R such that

‖T (t)‖ ≤Meωt, ∀t ≥ 0.

Proof. First, we prove that there exists δ > 0 such that ‖T (t)‖ is bounded for
0 ≤ t ≤ δ. Suppose this is not true. So, there must exist a sequence (tk) ↘ 0 such
that ‖T (tk)‖ → ∞ as k → ∞. By the condition of the continuity of the function
t 7→ T (t)x we may compute

‖T (tk)x‖ ≤ ‖T (tk)x− x‖+ ‖x‖ ≤M + ‖x‖, ∀ t ∈ [0, δ]
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where x ∈ X, k ∈ N, M ≥ 0. By the Uniform Boundedness Theorem we have
that ‖T (tk)x‖ is bounded which is a contradiction, so ‖T (t)‖ ≤ M . We know that
‖T (0)‖ = ‖I‖ = 1, which means that M ≥ 1. ∀ t ≥ 0 we can do the following

t = nδ + r, t ≥ 0, 0 ≤ r < δ, n ∈ N.

From the semigroup we use the property that T (t + s) = T (t)T (s), ∀ t, s ≥ 0,
namely,

‖T (t)‖ = ‖T (δ)nT (r)‖ ≤ ‖T (δ)‖n‖T (r)‖ ≤Mn+1 ≤MM t/δ = Meωt

where ω = lnM
δ

.

Corollary 2.11. Let {T (t), t ≥ 0} ⊂ L(X) be a C0-semigroup, then for each x ∈ X,
t 7→ T (t)x is a continuous function from [0,∞) to X.

Proof. The following proof will again use the properties of the C0-semigroup and the
previous Theorem 2.10. We will show that the t 7→ T (t)x is continuous from the
right and the left.

For t, h ≥ 0 we have,

‖T (t+ h)x−T (t)x‖ = ‖T (t)[T (h)x− x]‖ ≤ ‖T (t)‖‖T (h)x− x‖ ≤Meωt‖T (h)x− x‖

for 0 ≤ h ≤ t we have,

‖T (t− h)x− T (t)x‖ = ‖T (t− h)x− T (t− h+ h)x‖ = ‖T (t− h)x− T (t− h)T (h)x‖
≤ ‖T (t− h)‖‖x− T (h)x‖ ≤Meω(t−h)‖x− T (h)x‖

implying that t 7→ T (t)x is continuous.

Theorem 2.12. Let {T (t); t ≥ 0} be a C0-semigroup and A its infinitesimal gener-
ator. Then

a) For each x ∈ X,

lim
h→0

1

h

∫ t+h

t

T (s)xds = T (t)x.

b) For each x ∈ X, ∫ t

0

T (s)xds ∈ D(A)

and

A

(∫ t

0

T (s)xds

)
= T (t)x− x.
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c) ∀t ≥ 0, x ∈ D(A) we have,
T (t)x ∈ D(A)

and

(2.2)
d

dt
T (t)x = AT (t)x = T (t)Ax.

d) For each x ∈ D(A),

T (t)x− T (s)x =

∫ t

s

T (τ)Axdτ =

∫ t

s

AT (τ)xdτ.

Proof. a) From Corollary 2.11. we know that t 7→ T (s)x is a continuous function.
From this follows a).

b) For x ∈ X and t > 0,

T (h)− I
h

∫ t

0

T (s)xds =
1

h

∫ t

0

[T (s+ h)x− T (s)x]ds

=
1

h

[∫ t+h

h

T (s)xds−
∫ t

0

T (s)xds

]
=

1

h

∫ t+h

t

T (s)xds− 1

h

∫ t

0

T (s)xds.

As h ↓ 0 the right hand side goes to T (t)x− x, namely

lim
h→0+

1

h
(T (h)− I)

∫ t

0

T (s)xds = T (t)x− x.

c) For t ≥ 0, h > 0 and x ∈ D(A),

T (t)Ax = lim
h→0+

1

h
T (t)[T (h)x− x] = lim

h→0+

1

h
[T (h)T (t)x− T (t)x].

So we have T (t)x ∈ D(A) and

AT (t)x = T (t)Ax.

Lets compute the right derivative of T (t)x

lim
h→0+

1

h
[T (t+ h)x− T (t)x] = lim

h→0+
T (t)

1

h
[T (h)x− x] = T (t)Ax.

This implies that
d+

dt
T (t)x = AT (t)x = T (t)Ax.
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Lets compute the left derivative of T (t)x∥∥∥∥T (t)x− T (t− h)x

h
− T (t)Ax

∥∥∥∥ =

∥∥∥∥T (t− h)

[
T (h)x− x

h
− T (h)Ax

]∥∥∥∥
≤Meω(t−h)

{∥∥∥∥T (h)x− x
h

− Ax
∥∥∥∥+ ‖Ax− T (h)Ax‖

}
.

So this implies that
d−

dt
T (t)x = T (t)Ax.

Concluding, right and left derivatives exist and are equal to T (t)Ax.

d) Let’s integrate what we have in part c),

d

dt
T (t)x = AT (t)x = T (t)Ax

from s to t, namely,∫ t

s

d

dτ
T (τ)xdτ = T (t)x− T (s)x =

∫ t

s

T (τ)Axdτ =

∫ t

s

AT (τ)xdτ

and we are done with the proof.

Theorem 2.13. Let {T (t); t ≥ 0} be a C0-semigroup and let A be its infinitesimal
generator. Then

1. D(A) = X (D(A) dense in X, where D(A) is the domain of A);

2. A is a closed linear operator.

Proof. 1. We start with proving that D(A) = X. First, show that ∀x ∈ X and
xt = 1

t

∫ t
0
T (s)xds one has xt ∈ D(A) and xt → x as t→ 0+.

We have xt ∈ D(A) from part b) of the previous theorem and xt → x as t→ 0+

follows from part a) of the theorem.

2. Now lets pass to the proof of A is a closed operator. Let xn ∈ D(A) such that
for n→∞,we have xn → x and Axn → y.

T (t)xn − xn = lim
h→0+

∫ t

0

T (s)h−1[T (h)xn − xn]ds =

∫ t

0

T (s)Axnds, ∀ t > 0.

T (t)x− x =

∫ t

0

T (s)yds, ∀t > 0.
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Divide both sides by t > 0 and let t↘ 0,

Ax = lim
t→0+

T (t)x− x
t

= lim
t→0+

1

t

∫ t

0

T (s)yds = y,

so x ∈ D(A) and y = Ax.

Theorem 2.14. Let {T (t); t ≥ 0} and {S(t); t ≥ 0} be C0-semigroups of bounded lin-
ear operators. If their infinitesimal generators are the same, then the C0-semigroups
coincide.

Proof. Let x ∈ D(A) where A is the common infinitesimal generator. By Theorem
2.12. we have

d

ds
[T (t− s)S(s)x] = T (t− s)AS(s)x− T (t− s)AS(s)x = 0, ∀ 0 ≤ s < t.

From the above equation it can be seen that ∀ t > 0 and x ∈ D(A), s 7→ T (t−s)S(s)x
is a constant, furthermore T (t)x = S(t)x and T (t) = S(t) on D(A). D(A) = X and
we are done with the proof.

Now that we got introduced to the generators, we return to the example on trans-
lation semigroups from Chap. 1, Sec. 1.3. What we are going to do in the following
proposition is to identify the generator (A,D(A)) of the translation semigroup on
C0(R).

Proposition 2.15. The generator of the left translation semigroup {Tl(t), t ≥ 0} on
the space X := C0(R) is given by

Af = f ′

with domain

D(A) = {f ∈ C0(R) : f differentiable and f ′ ∈ C0(R)}.

Proof. We have to show that the generator (B,D(B)) is a restriction of the operator
(A,D(A)), so what we need is B ⊆ A and ρ(A) ∩ ρ(B) 6= ∅.
For the generator (B,D(B)) of the contraction semigroup {Tl(t), t ≥ 0} on X, we
have that if Reλ > ω, ω ∈ R, then λ ∈ ρ(B). So for the operator (A,D(A)) we have
that λ ∈ ρ(A) too.
Let f ∈ D(B) be fixed, where (B,D(B)) is the generator of {Tl(t), t ≥ 0}. For a
strongly continuous semigroup {Tl(t), t ≥ 0} and x ∈ X we know that for the orbit
map ψx : t 7→ Tl(t)x we have ψx(·) differentiable in R+. Furthermore Bx := ψ′x(0).
So for a continuous linear form δ0 on C0(R) we have

R+ 3 t 7→ δ0(Tl(t)f) = f(t)
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and

Bf =
d

dt
Tl(t)f |t=0=

d

dt
f(t, ·) |t=0= f ′.

So D(B) ⊆ D(A) and the restriction of A in D(B) is B, therefore A = B.

After introducing the basic definitions and theorems on strongly continuous semi-
groups of linear operators, we are now ready for the generation theorems. Before
turning to them, it is necessary to define what is a semigroup of contractions, recall
the definition of the resolvent and prove an important lemma.

2.2 Generation Theorems

2.2.1 The Hille-Yosida Theorem

Let {T (t), t ≥ 0} be a semigroup of linear operators. From Theorem 2.10 we know
that there ∃ ω ∈ R and M ≥ 1 such that ‖T (t)‖ ≤ Meωt. In the case when ω = 0
and M = 1 we call T (t) a C0 semigroup of contractions, namely ‖T (t)‖ ≤ 1.

Given A a not necessarily bounded linear operator on X, the resolvent set of A is
denoted by ρ(A) = {λ|λI − A is invertible, λ ∈ C}. The resolvent of A is called the
family R(λ,A) = (λI − A)−1, λ ∈ ρ(A) of bounded linear operators.

Note that for λ ∈ C such that R(λ,A)x =
∞∫
0

e−λsT (s)xds exists ∀x ∈ X, we call

R(λ,A) the integral representation of the resolvent. The integral can be interpreted
here as Riemann integral, i.e.,

R(λ,A)x = lim
t→∞

∫ t

0

e−λsT (s)xds, ∀x ∈ X

which can be further written as

(2.3) R(λ,A) =

∫ ∞
0

e−λsT (s)ds

We prove (2.3) later on.

Lemma 2.16. Let A be a closed densely defined operator in D(A), such that the
resolvent set ρ(A) of A contains R+ and for every λ > 0 we have ‖R(λ,A)‖ ≤ 1

λ
,

then for λ→∞ we have

i) λR(λ,A)x→ x for all x ∈ X,

ii) λAR(λ,A)x = λR(λ,A)Ax→ Ax for all x ∈ D(A).

25



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. i) By the definition of the resolvent ofA at the point λ, R(λ,A) := (λ,A)−1,
we get that

λR(λ,A)− AR(λ,A) = I

and
λR(λ,A)x = R(λ,A)Ax+ x.

Then for x ∈ D(A) and λ→∞

‖R(λ,A)Ax‖ ≤ 1

λ
‖Ax‖ → 0.

Since D(A) dense in X and ‖λR(λ,A)‖ ≤ 1, we have for all x ∈ X

λR(λ,A)x→ x.

ii) This is a consequence of the first statement, namely

lim
λ→∞

λR(λ,A)Ax = Ax.

For every λ > 0 we define the Yosida Approximation of A by

λAR(λ,A) = Aλ = λ2R(λ,A)− λI

So the lemma indicates which bounded operators Aλ we have to take in order to
approximate the unbounded operator A. The following Hille-Yosida theorem will
characterize the generators of strongly continuous one-parameter semigroups of linear
operators on Banach spaces. It is a special case on contraction semigroups of the
general case Feller-Miyardera-Phillips theorem.

Theorem 2.17. (Hille-Yosida) Let A be a linear unbounded operator, that is
A : D(A)→ X, then the following are equivalent

i) (A,D(A)) generates a C0-semigroup of contractions.

ii) (A,D(A)) is closed, densely defined and for every λ > 0 we have λ ∈ ρ(A) and

‖R(λ,A)‖ ≤ 1

λ
.

Proof. i)⇒ ii) Theorem 2.13 proves that A is a closed, densely defined operator in
D(A).
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Given that {e−λtT (t), t ∈ R} is a semigroup of contractions

‖R(λ,A)x‖ ≤
∫ ∞
0

e−λt‖T (t)‖‖x‖dt ≤
∫ ∞
0

e−λt‖x‖dt ≤ 1

λ
‖x‖

where x ∈ X and λ > 0. So we defined a bounded linear operator R(λ,A). For
λ > 0, we have the semigroup of contractions {e−λtT (t), t ∈ R}. Let’s compute its
generator

A1x = lim
t→0+

e−λtT (t)x− x
t

= lim
t→0+

−λe−λtT (t)x+ e−λtAx

1
= −λx+Ax = (−λI+A)x

where A1 is the generator and namely in this case we have A1 = −λI + A in the
domain D(A). By Theorem 2.12 b) we know that for x ∈ X,

(−λI + A)

∫ t

0

e−λsT (s)xds = e−λtT (t)x− x, x ∈ X.

Namely,

x = (λI − A)

∫ t

0

e−λsT (s)xds+ e−λtT (t)x, x ∈ X.

Let t → ∞. For A being closed,
∞∫
0

e−λsT (s)xds ∈ D(A). Using the Dominated

Convergence Theorem,

x = (λI − A)

∫ ∞
0

e−λsT (s)xds, x ∈ D(A).

This means that
x = (λI − A)R(λ,A)x, for x ∈ D(A).

By the other side for x ∈ D(A) we have

AR(λ,A)x = A

∫ ∞
0

e−λtT (t)xdt =

∫ ∞
0

e−λtAT (t)xdt

=

∫ ∞
0

e−λtT (t)Axdt = R(λ,A)Ax.

So for all λ > 0 we have that R(λ,A) is the inverse of λI−A, meaning that λ ∈ ρ(A).
So the conditions ii) are necessary.

ii)⇒ i) Let the uniformly continuous semigroups be given by

Tλ(t) := etAλ , t ≥ 0.

where Aλ is the Yosida approximation of A and is bounded. etAλ is a semigroup of
contractions since

‖etAλ‖ = e−tλ‖etλ2R(λ,A)‖ ≤ e−tλetλ
2‖R(λ,A)‖ ≤ 1.
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For every x ∈ X,λ, η > 0 we know that Aλ and Aη commute which each other so

‖Tλ(t)x− Tη(t)x‖ =

∥∥∥∥∫ t

0

d

ds
(Tλ(t− s)Tη(s)x)ds

∥∥∥∥
≤
∫ t

0

t‖Tη(t− s)Tλ(s)(Aλ − Aη)‖ds ≤ t‖Aλx− Aηx‖.

By Lemma 2.16 we have that for x ∈ D(A), etAλx converges to T (t)x as λ → ∞,
because for each x ∈ D(A), where D(A) dense in X, Tλ(t)x, for λ ∈ N converges
uniformly on bounded intervals.

So we will have
lim
λ→∞

= etAλx = T (t)x.

This implies that the limit family T (t), t ≥ 0 satisfies the semigroup property, that
is T (0) = I and ‖T (t)‖ ≤ 1, hence is a semigroup of contractions. On the other side
t 7→ T (t)x, t ≥ 0 is uniform limit of continuous functions t 7→ etAλx, so it is strongly
continuous.

Let (B,D(B)) be the generator of {T (t), t ≥ 0} and x ∈ D(A). On bounded
intervals the differentiated functions etAλAλx converge uniformly to T (t)Ax. So the
functions t 7→ Tλ(t)x are differentiable and at point t = 0 we have Tλ(t)Aλx =
T (t)Ax. This implies x ∈ D(B) and Ax = Bx, so D(A) ⊂ D(B).
For λ > 0, by definition of the resolvent we have that λI − A : D(A) → X is a
bijection and λ ∈ ρ(A). Since B is the infinitesimal generator of T (t), where T (t) is
a contraction semigroup, it follows that λ ∈ ρ(B). So λI − B : D(B)→ X is also a
bijection. On the other side on D(A) we have

(λI − A)D(A) = (λI −B)D(A) = X

so λI −B coincides to λI −A, implying that D(B) = D(A) and therefore A = B.

2.2.2 The Feller-Miyadera-Phillips Theorem

Theorem 2.18. Let (A,D(A)) be a linear operator on a Banach space X and let
ω ∈ R, M ≥ 1 be constants. Then the following properties are equivalent

i) (A,D(A)) generates a C0-semigroup {T (t), t ≥ 0} satisfying

‖T (t)‖ ≤Meωt, t ≥ 0.

ii) (A,D(A)) is a closed, densely defined and for every λ ∈ C where Re(λ) > ω
we have λ ∈ ρ(A) and

‖R(λ,A)n‖ ≤ M

(Reλ− ω)n
, ∀n ∈ N.
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Proof. ii) ⇒ i) Let A : D(A) ⊆ X → X be linear operator satisfying (0,+∞) ⊆
σ(A) and ‖λnR(λ,A)n)‖ ≤M for each n ∈ N and λ > 0.
For µ > 0 define the norm | · |µ : X → R+ by

|x|µ = sup
n∈N
‖µnR(µ,A)nx‖.

We can see that these norms have the following properties

(a) ‖x‖ ≤ |x|µ ≤M‖x‖

(b) |µR(µ,A)|µ ≤ |x|µ

By the resolvent equation we have

R(λ,A)x = R(µ,A)x+ (µ− λ)R(µ,A)R(λ,A)x = R(µ,A)(x+ (µ− λ)R(λ,A)x).

therefore

|R(λ,A)xµ| ≤
1

µ
|x|µ +

µ− λ
µ
|R(λ,A)x|µ.

that is

(c) |λR(λ,A)x|µ ≤ |x|µ for all λ ∈ (0, µ].

From (a) and (c) and each n ∈ N and λ ∈ (0, µ], we have that

(d) ‖λnR(λ,A)nx‖ ≤ |λnR(λ,A)nx|µ ≤ |x|µ.

For n ∈ N and for each λ ∈ (0,∞] the sup
n∈N
‖λnR(λ,A)nx‖ gives

(e) |x|λ ≤ |x|µ.

We can define a norm | · | on X such that satisfies the properties

(f) ‖x‖ ≤ |x| ≤M‖x‖

(g) |λR(λ,A)x| ≤ x for all x ∈ X and λ > 0.

Notice that the property (g) satisfies the Hille-Yosida condition on C0-semigroups
on contractions, so A generates a strongly continuous semigroup of contractions
{S(t), t ≥ 0}.

‖S(t)x‖ ≤ |S(t)x| ≤ |x| ≤M‖x‖, ∀t ≥ 0, x ∈ X.
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so here {S(t), t ≥ 0} is of type (M, 0). Considering the general case we will have
that the semigroup will be of type (M,ω) with generator A.

i)⇒ ii) From (2.3), for Reλ > ω and x ∈ X we have,

d

dλ
R(λ,A)x =

d

dλ

∫ ∞
0

e−λsT (s)xds = −
∫ ∞
0

se−λsT (s)xds

Thus by induction

R(λ,A)nx =
(−1)n−1

(n− 1)!

dn−1

dn−1λ
R(λ,A)x =

(−1)n−1

(n− 1)!

∫ ∞
0

dn−1

dn−1λ
e−λsT (s)xds

=
1

(n− 1)!

∫ ∞
0

sn−1e−λsT (s)xds.

for Reλ > ω and all x ∈ X. From Theorem 2.10 we have that ‖T (t)‖ ≤Meωt, so

‖R(λ,A)nx‖ =
1

(n− 1)!

∥∥∥∥∫ ∞
0

sn−1e−λsT (s)xds

∥∥∥∥ ≤ 1

(n− 1)!

∫ ∞
0

sn−1e−ResMeωsds · ‖x‖

≤ M

(n− 1)!

(n− 1)!

(Reλ− ω)n
‖x‖ =

M

(Reλ− ω)n
· ‖x‖

for all x ∈ X.
Assume that ω = 0. We will try to find a norm equivalent to the one defined above,
namely define ||| · ||| : X → R+ by

|||x||| := sup
t≥0
‖S(t)x‖

where {S(t), t ≥ 0} is a C0-semigroup. We want to show that actually this is a
semigroup of contractions. The norm defined above is equivalent to ‖ · ‖ because it
satisfies

(f’) ‖x‖ ≤ |||x||| ≤M‖x‖, for all x ∈ X.

On the other side we have that

|||S(t)x||| = sup
s≥0
‖S(s)S(t)x‖ ≤ sup

t≥0
‖S(t)x‖ = |||x|||,

and the property

(g’) |||λR(λ,A)x||| ≤ |||x|||.

So the semigroup {S(t), t ≥ 0} satisfies the condition of the Hille-Yosida Theorem
2.17 for the norm ||| · ||| by generating a C0-semigroup of contractions. From the
Generation Theorem on semigroups of contractions we have that A is closed, densely
defined and for every λ ∈ C where Reλ > ω we have λ ∈ ρ(A) and

‖R(λ,A)n‖ ≤ M

(Reλ− ω)n
for all n ∈ N.
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Notes

Many books on semigroups give the definitions of strongly continuous semigroups
and their properties. On this thesis we referred to ([Bátkai [1], Chap. 1, pg. 3-11],
[Goldstein [7], pg. 151], [Nagel [4], Chap. 1 and 2, pg. 1-19, 34-46] and [Pazy [13],
Chap. 1, pg. 1-8]).

The generation theorem proof is taken from ([Engel [5], Chap. 2, pg., 73-76], [Nagel
[4], Chap. 2, pg. 63-74], [Hille [9], Chap. 12, pg. 237., Thm. 12.2.1], [Pazy [13],
Chap. 1, pg. 8-13], [Vrabie [10], Chap. 3, pg. 51-56], [Yosida [18], pg. 15-21] ). The
Generation Theorem for the general case can be found on (Engel [[5], Chap. 2, pg.,
77-79],[Vrabie [10], Chap. 3, pg. 56-58]).
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