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Abstract

The research carried out in this thesis is motivated by my interest in the analysis of �nancial time

series. From the technical point of view we study the identi�cation of discrete time stochastic

systems driven by the increments of Lévy processes. As an alternative to the maximum likelihood

method we develop and analyze a novel identi�cation method by adapting the so-called empirical

characteristic function method originally devised for estimating parameters of characteristic

functions from i.i.d. samples. First of all, we present an essentially asymptotically e�cient

three-stage identi�cation method for the system and noise parameters of stable and inverse

stable linear systems. Then we present an alternative extension of the empirical characteristic

function (ECF) method applicable for stable, but possibly not inverse stable linear stochastic

systems. Thirdly, we propose an essentially asymptotically e�cient estimation method for the

system parameters of general autoregressive conditional heteroscedasticity (GARCH) processes.

For each of the above problems we precisely characterize the estimation error in the form of

martingale representation theorems. After that we develop recursive estimation methods for

stable and inverse stable linear systems along the line of arguments applied for the o�-line

identi�cation of linear systems. Finally, we discuss a particular technical problem, the stability

of time-varying stochastic systems driven or modulated by a Lévy process with discrete time

interventions, such as parameter resettings.
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Chapter 1

Introduction

Lévy processes are widely used to model phenomena arising in natural sciences, economics,

�nancial mathematics, queueing theory, telecommunication, robotics, mechanical systems and

biology, see [15],[52],[4],[46],[21],[16].

The classical model for modelling market dynamics, namely geometric Brownian motion,

was proposed by Louis Bacehelier [3]. This model is still the accepted core model despite the

fact that empirical studies revealed that its assumptions are not realistic. For instance, since

price movements are induced by transactions which can be unevenly distributed in real time,

it would be more natural to use a time changed Brownian motion to model price dynamics.

If the time change is de�ned by a gamma process, we obtain the so-called VG (shorthand for

Variance Gamma) process. The VG processes reproduce a number of stylized facts of real

price processes, such as fat tails and large kurtosis. It can be shown that this time changed

Brownian process itself is a Lévy process. Extending the above construction novel price dynamics

have been proposed by a variety of authors, called the geometric Lévy processes obtained by

exponentiating a Lévy process (Lt).
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The standard model of a price process within this framework is then

St = S0 expLt, (1.0.1)

and (St) is called a geometric Lévy process. Hence, the Brownian motion with drift Bt is

replaced by a general Lévy process in the classical model

St = S0 expBt. (1.0.2)

This exponential Brownian motion model has been extensively studied in the literature, but

recently more and more attention have been paid to the study of geometric Lévy processes.

A variety of choices for (Lt) has been proposed in the literature. The main examples are:

compound poisson process, stable process, variance Gamma (VG) process, tempered stable

(CGMY) process, hypergeometric process and normal inverse Gauss (NIG) process, see [11],

[42], [46], [16]. We give a short introduction for the theory of Lévy processes in Chapter 2.

Additionally we present some Lévy processes of special form that are frequently used in �nancial

modelling.

The motivation behind these models is that the returns of the stock process, say (St+h −

St)/St are assumed to be independent and stationary. While this is an attractive assumption,

its consequences are less attractive. In particular it follows that the variance of the price process

tends to in�nity. A closer look at data in fact reveals that there is a weak correlation between,

say, daily returns (St+1 − St)/St.

In Chapter 4 we propose to introduce a new class of models that allows decaying memory

and friction. For this purpose we �rst de�ne a process Yt which is the output of a �nite

dimensional stable linear SISO system, driven by a Lévy process:

∆Y = A∆L,

3
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where A is a transfer function and (Lt) is a Lévy process. Such a system will be called a linear

Lévy system. Then we de�ne the price process according to (1.0.1):

Sn = S0 expYn.

The application of the ML method would solve the full identi�cation problem along standard

lines, assuming that the density function of ∆Ln is known, which is unfortunately not the

case. Hence we present a combination of advanced techniques in systems identi�cation with a

speci�c statistical technique, widely used in the context in �nance, called the ECF (shorthand

for empirical characteristic function) method. The ECF method was originally designed for

i.i.d. samples and A. Feuerverger and P. McDunnogh [24] showed that it can be interpreted

as the Fourier transform of the ML method. We will show that the proposed three-staged

algorithm gives an essentially e�cient estimate of both the system and the noise parameters.

Furthermore, we prove martingale representation theorems for the estimation error.

Since in this thesis we focus on the applicability of the ECF method for linear and non-linear

stochastic systems it is worth presenting the origins of the ECF method. In Chapter 3 we study

the ECF method for i.i.d. data and give the e�ciency result in the case when the full continuum

of moment conditions is used.

In Chapter 5 we extend the results presented in Chapter 4 to �nite dimensional stochastic

Lévy systems with possibly unstable zeros. Recall that both the PE method and the ML method

as presented in [31] assume that the system is non-minimum phase, i.e. it has an exponentially

stable inverse. Our three-staged identi�cation method in Chapter 4 is developed under the

same assumption. In fact, the identi�cation of �nite dimensional linear stochastic systems

with unstable zeros is barely discussed in the literature. We adapt the ECF method for linear

stochastic systems with possibly unstable zeros. A novel challenge of this approach is that the

exact characteristic function (c.f.) cannot be computed explicitly (which is the key assumption

4
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for the ECF methods).

In Chapter 6 we investigate the possibility of adapting the ECF method for general autore-

gressive conditional heteroscedasticity (GARCH) processes. While applying the ECF method

for such systems new problems arise as the GARCH processes are non-linear. Following the

structure of the other Lévy driven systems studied in this thesis we consider a special type of

GARCH model. GARCH processes were introduced by R. Engle and T. Bollerslev in 1982 and

1986 to model the price dynamics of highly volatile �nancial instruments, and became widely

accepted in �nance, see [22], [7]. If the driving noise process is formed by the increments of a

Lévy process then the standard quasi-maximum likelihood method to identify a GARCH process

can be replaced by an adaptation of the ECF method. We show that with an appropriately

chosen score function the parameters of a Lévy driven GARCH process can be estimated in an

essentially e�cient way.

In the literature the empirical characteristic function method is presented as an o�-line

identi�cation method. The framework of the individual steps of the three-stage method is

familiar from system identi�cation. Hence, following the approach of Ljung and Söderström,

see [41], recursive identi�cation methods can be developed in a natural manner. The resulting

on-line estimation procedures can be mathematically rigourously analyzed either using the theory

of L-mixing processes, see [28], or using the Markovian approach, see [5].

In Chapter 8 we study the stability of time-varying stochastic systems driven or modulated

by a Lévy process with discrete time interventions, such as parameter or state resetting. We

hope that the technical results presented in that chapter may contribute to the development of

a continuous-time recursive maximum likelihood method for �nite dimensional linear stochastic

Lévy systems, along the lines of [33].

The objective of Chapter 9 is to present some numerical results. We apply both the o�-line

and the on-line identi�cation method for simulated ARMA processes. The system parameters

of a simulated GARCH process will be estimated, too. Our aim is to demonstrate that the

5
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proposed algorithms are indeed able to give an adequate estimate of the system parameters.

Finally, the last chapter gives a summary of the research.

6
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1.1 Notations

R set of real numbers

C set of complex numbers

Rd,Rd×d set of real d-dimensional vectors, set of real d× d matrices

Cd,Cd×d set of complex d-dimensional vectors, set of complex d× d matrices

int S interior of the set S

|v| norm of vector v

σ(M) spectral radius of matrix M

1S indicator function of the set or event S

q−1 backward shift operator

→ convergence

FX natural �ltration of the stochastic process (X)t

E[X] expectation of X

Var(X) variance of X

Cov(X, Y ) covariance of X and Y

〈X, Y 〉 predictable quadratic covariation of X and Y

[X, Y ] quadratic covariation of X and Y

[X,X] or [X] quadratic variation of X

A⊗B Kronecker product of A and B

〈f, g〉H inner product on H

Ck(S) set of k-times continuously di�erentiable functions of S

7
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Chapter 2

Lévy Processes

2.1 Motivation, basic properties

Lévy processes have become a widely used tool in modeling price processes of �nancial instru-

ments, such as stock prices or indices [46]. A Lévy process (Lt) is much like a Wiener process:

a process with stationary an independent increments, but discontinuities or jumps are allowed.

Hence, Lévy processes can be used to model shocks in �nancial markets. In chapter we follow

the excellent introduction to Lévy processes of Jacod and Shiryaev, see [37].

Suppose that we are given a probability space (Ω,F , P ). In general, a Lévy process is a

stochastic process de�ned as follows:

De�nition 2.1. We say that (Lt), t ≥ 0 is a Lévy process if

1. L0 = 0,

2. for any given 0 ≤ t1 < . . . < tn, the random variables Lt2 − Lt1 , Lt3 − Lt2 , . . . ,

Ltn − Ltn−1 are independent.

3. for any 0 ≤ s < t, the distribution of Lt − Ls and Lt−s are the same.

8
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A key building block in the theory of Lévy processes is the compound Poisson process. A

more general class of pure jump Lévy process is formally obtained via

Lt =

∫ t

0

∫
R
xN(ds, dx), (2.1.1)

whereN(dt, dx) is a time-homogeneous, space-time Poisson point process, counting the number

of jumps of size x at time dt.

The intensity of N(dt, dx) is de�ned by

E [N(dt, dx)] = dt · ν(dx),

where ν(dx) is the Lévy-measure. Intuitively, ν(x) can be interpreted as the rate of jumps with

size of x. Its simplest form is ν = λδh, where δh denotes the Dirac measure concentrated at h.

In this case (Lt) is a Poisson process of intensity λ and with jumps of size h. If ν =
∑n

i=1 λiδhi ,

then (Lt) is a sum of independent Poisson processes. When ν is �nite we can pass to the limit

to obtain a process that has jumps with sizes in the full continuum. All other processes can be

obtained by a limiting procedure in L2, leading to the condition:

∫
R\0

min(|x|2, 1)ν(dx) <∞.

The above representation in (2.1.1) is mathematically rigorous if

∫
R

min(|x|, 1)ν(dx) <∞. (2.1.2)

Under this condition the sample paths of (Lt) are of �nite variation, a property supported by

empirical evidence for most indices.

Note that the logarithm of the characteristic function is linear in t, which is implied by the

9
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fact that (Lt) has independent and stationary increments. The characteristic function plays a

key role in the study of Lévy processes, because unlike the density function of Lt it typically has

a closed form. The c.f. of a Lévy process is given by the following celebrated Lévy-Khintchine

formula:

Theorem 2.1. Let (Lt) be a Lévy process. Then there exist a triplet (b, c, ν), with b, c ∈

R, c ≥ 0, and ν being a Lévy measure satisfying ν(0) = 0 and
∫
R min(|x|2, 1)ν(dx) <∞, such

that

E
[
eiuLt

]
= exp

[
t

(
ibu− u2c

2
+

∫
R

(
eiux − 1− iux1|x|<1

)
ν(dx)

)]
.

For pure-jump Lévy processes with �nite variation trajectories we have the following simpli-

�ed form of the Lévy-Khintchine formula:

Theorem 2.2. Let (Lt) be a pure-jump Lévy process (having no Brownian motion component),

with �nite variation trajectories, then

E
[
eiuLt

]
= exp

[
t

(
ibu+

∫
R

(
eiux − 1

)
ν(dx)

)]
.

2.2 Semimartingales

In this section we present a basic background for the study of semimartingales following [37].

Let us use the notation Xt− = lims→t− Xs. We �rst de�ne the quadratic co-variation.

De�nition 2.2. The quadratic co-variation of two semimartingales X and Y is de�ned by

[X, Y ]t = XtYt − X0Y0 −
∫ t

0
Xs−dYs −

∫ t
0
Ys−dXs. If X = Y, then we get the quadratic

variation of X.

Proposition 2.1. Let (Xt) be a semimartingale and (Yt) be an adapted cádlág process with

�nite variation and Y0 = 0. Then the [X, Y ]t has the following properties

10
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• [X, Y ]t =
∫ t

0
∆XsdYs

• If Y is predictable, then [X, Y ]t =
∫ t

0
∆YsdXs and XtYt =

∫ t
0
YsdXs +

∫ t
0
Xs−dYs

• If Y is predictable and X is a local martingale, then [X, Y ] is a local martingale.

• If X or Y is continuous then [X, Y ] = 0.

The quadratic variation of purely discontinuous square integrable martingales can be written

in a compact form.

Lemma 2.1. Let X be a purely discontinuous square integrable martingale, then [X,X]t =∑
s≤t(∆Xs)

2.

The notation 〈X, Y 〉 stands for the predictable quadratic variation of X and Y.

Theorem 2.3. If X, Y are semimartingales with Xc, Y c denoting their continuous martingale

parts, respectively, then

[X, Y ]t = 〈Xc, Y c〉t +
∑
s≤t

∆Xs∆Ys.

Now we state the well-known Itô formula for semimartingales.

Theorem 2.4. (Itô formula) Let X = (X1, . . . , Xd) be a d-dimensional semimartingale and

f ∈ C2(Rd), then f(X) is a semimartingale and

f(Xt) = f(X0) +
d∑
i=1

∫ t

0

Dif(Xs−)dX i
s +

1

2

d∑
i,j=1

∫ t

0

Di,jf(Xs−)d < X i,c, Xj,c > +

∑
0≤s≤t

[
f(Xs)− f(Xs−)−

d∑
i=1

Dif(Xs−)∆X i
s

]
,

(2.2.1)

where Di is the di�erential operator w.r.t. the i
th variable, and Di,j is the di�erential operator

w.r.t. the ith then the jth variable.

The next results gives the Doléan-Dade formula stochastic exponential of a semimartingale.

11
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Theorem 2.5. Let Xt be a real-valued semimartingale. Then the stochastic di�erential equa-

tion dYt = Yt−dXt, Y0 = 1 has a one and only one (up to indistinguishability) cádlág solution.

The solution is a semimartingale, denoted by ε(X), and has the form of:

ε(X)t = exp

{
Xt −X0 −

1

2
〈Xc, Xc〉t

}
×
∏
s≤t

[
(1 + ∆Xs)e

−∆Xs
]
,

(2.2.2)

where everything is well-de�ned and convergent. Moreover, if Xt has �nite variation then so

has ε(X), and if Xt is a local martingale, then so is ε(X).

The previous two results can be written in a more compact form for processes with �nite

variation.

Theorem 2.6. (Itô formula for processes with �nite variation) Let X be a semimartingale with

�nite variation and f ∈ C1, then f(X) is a semimartingale and

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXc
s +

∑
0≤s≤t

[f(Xs)− f(Xs−)] . (2.2.3)

Note that if the continuous part Xc of X is zero, then the Itô formula gives f as sum of

its jumps. As for the stochastic exponential, if X is a real-valued semimartingale with �nite

variation, then

ε(X)t = eXt−X0

∏
s≤t

[
(1 + ∆Xs)e

−∆Xs
]

= eX
c
t

∏
s≤t

[(1 + ∆Xs)] .

2.3 Lévy processes in �nance

To model the increments of the logarithm of a price process a wide range of geometric Lévy

processes has been proposed by a variety of authors. In this section we present some Lévy

12



C
E

U
eT

D
C

ol
le

ct
io

n

Figure 2.1: IBM stock price

processes that are widely used in �nancial modelling. In Figure 2.1, 2.2 and 2.3 real word data

can be seen for IBM, Coke and MSFT, respectively1. Observe that shocks indeed occur in

�nancial markets, this fact motivates the usage of the exponential Lévy model.

Compound Poisson process is de�ned by a rate λ and a jump size distribution F via

Lt =
Nt∑
i=1

Xi,

where Nt is a Poisson process with rate λ, and Xi-s are i.i.d. random variables with distribution

F. The �rst model that considered taking the exponential of a compound Poisson process was

introduced by Merton in [45]. Compound Poisson processes are also widely used for modeling

in queueing theory. For example in [20] a generalized multi-server queue is used to model

telecommunication networks. Among several properties of the model, customer arrivals, server

failures and packet losses are modeled with compound Poisson processes.

1The source of the real word data and the �gures is www.nasdaq.com
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Figure 2.2: Coca-Cola stock price

Figure 2.3: Microsoft stock price
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Figure 2.4: CGMY sample path

Mandelbrot suggested to use α-stable process to model the price dynamics of wool, see

[44]. An α-stable process with 0 < α < 2 is de�ned via the Lévy measure

ν(dx) = C−|x|−1−α1x<0dx+ C+|x|−1−α1x>0dx.

A recently widely studied class of Lévy processes is the CGMY process due to Carr, Geman,

Madan and Yor [11], see also [49], [2] and [1]. It is obtained by setting C− = C+, and

then, separately for x > 0 and x < 0, multiplying the Lévy-density of the original symmetric

stable process with a decreasing exponential. The corresponding Lévy-measure, using standard

parametrization, is of the form:

ν(dx) =
Ce−G|x|

|x|1+Y
1x<0dx+

Ce−Mx

|x|1+Y
1x>0dx,
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Figure 2.5: CGMY sample path

where C,G,M > 0, and 0 < Y < 2. Intuitively, C controls the level of activity, G and M

together control skewness. Typically G > M re�ects the fact that prices tend to increase rather

than decrease. Y controls the density of small jumps, i.e. the �ne structure. For Y < 1 the

integrability condition (2.1.2) is satis�ed, thus corresponding Lévy process is of �nite variation.

The characteristic exponent ψ(u) of the CGMY process is given by

CΓ(−Y )
(
(M − iu)Y −MY + (G+ iu)Y −GY

)
,

where Γ denotes the gamma-function. In Figure 2.4 and 2.5 sample paths of CGMY processes

can be seen. A more general class of tempered stable distributions is studied in [? ], Terdik

and Woycz«ski obtain analytic formulas for the Rosi«ski measure of tempered processes.

Formally setting Y = 0 we get the Lévy density of the so-called Variance Gamma process

that has been proposed by Madan and Senata in [43], see also [42] and [36]. A VG-process
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is a time changed Brownian motion with drift, where the time change is a so-called gamma

process, which is essentially the continuous time extension of the inverse of a Poisson process.

A gamma process with mean µ and variance ν, denoted by (γt(µ, ν)), is a stochastic process

with independent increments, such that the distribution of the increment γt+h(µ, ν)− γt(µ, ν)

is a gamma distribution with mean µh and variance νh. The characteristic function of γt(µ, ν)

is given by

ϕt(u;µ, ν) =

(
1

1− i ν
µ
u

)µ2 t
ν

.

Note that the ϕt(u;µ, ν) is a fractional power of the c.f. of an exponential distribution. Its

worth mentioning that by scaling the process µ = 1 can be achieved. The Lévy measure of the

gamma process is given by

ν(dx) =
µ2

ν

exp(−µ
ν
x)

x
dx if x > 0,

and 0 otherwise. Note that the integral of ν(dx) is in�nite, hence the gamma process has an

in�nite number of jumps in any �nite interval. It is also said that the gamma process is an

in�nite activity process. Clearly, most of these jumps are very small as the Lévy measure is

concentrated at the origin.

VG is a three-parameter class of processes, with explicit characteristic function and Lévy

measure obtained as follows. Let (Bt(θ, σ)) be a Brownian motion with drift θ and volatility

σ, i.e.:

Bt(θ, σ) = θt+ σBt,

where (Bt) is a standard Brownian motion. The VG process (Xt(σ, ν, θ)) is then de�ned as

Xt(σ, ν, θ) = Bγt(1,ν)(θ, σ).
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Hence, the VG process is a time-changed Brownian motion. Note that the mean µ is �xed to

be 1, to avoid the ambiguity of parametrization due to re-scaling. According to [42] θ controls

the skewness and ν controls the kurtosis of the process.

The Lévy-measure of a VG process can be obtained by �rst computing its characteristic

function and then applying Lévy-Khintchine's formula in the inverse direction. Thus we get :

ν(dx) =


µ2n
νn

exp(−µn
νn
|x|)

|x| dx if x < 0

µ2p
νp

exp(−µp
νp
x)

x
dx if x > 0,

where some parameters µp, νp, µn, νn, which is indeed formally the Lévy measure of a CGMY

process with Y = 0. The parameters µp, νp, µn, νn, are obtained in terms of the original param-

eters as follows:

µp =
1

2

√
θ2 +

2σ2

ν
+
θ

2
, νp = µ2

pν

µn =
1

2

√
θ2 +

2σ2

ν
− θ

2
, νn = µ2

nν

Note that on the right hand side we have the di�erence of the Lévy measures of two gamma

processes. Thus we get the following remarkable property of VG processes: a VG process

(Xt(σ, ν, θ)) can be written as the di�erence of two gamma processes (γp,t) and (γn,t) :

Xt(σ, ν, θ) = γp,t(µp, νp)− γn,t(µn, νn).

In particular, it follows that a VG process is of �nite variation.
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Chapter 3

ECF method for i.i.d. data

3.1 ECF with �nite set of moment conditions

In this section we present the ECF method for i.i.d. data when a �nite set of moment conditions

is available. Although henceforth we will adapt the ECF method for more complex problems,

the basic idea of the ECF method can be nicely presented even for i.i.d. data.

In this section we brie�y describe the ECF method for i.i.d. samples, see [14]. A remarkable

property of the ECF method is that, under idealistic conditions, it gives an e�cient estimate of

the unknown parameters of a given family of distributions [14]. A nice heuristic justi�cation for

this has been given by A. Feuerverger and P. McDunnogh in [24], showing that the equations

de�ning the ECF method for i.i.d samples can be obtained as the Fourier transform of the

likelihood equations.

Let (r1, r2, . . . rN) be i.i.d. observations, and let a closed form of the characteristic function

ϕ(u, η) be known, with η being a p-dimensional parameter vector, and u ∈ R. The true value

of the parameter will be denoted by η∗. The idea is to estimate η∗ by a value of η for which

the characteristic function (c.f.) best matches the empirical characteristic function (ECF). For
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any �xed u ∈ R de�ne the primary error or score as the generalized moment function:

hn(u, η) = eiurn − ϕ(u, η).

Averaging over the samples, i.e. for n = 1, . . . , N we de�ne a mean-error or secondary score

hN(u, η) =
1

N

N∑
n=1

hn(u, η).

An important property of the primary score or generalized moment function is that for η = η∗

we have

E [hn(u, η∗)] = 0, for all u.

Taking a �nite set of u-s say u1, . . . , uM , with M > p, let

hk,n(η) = hn(u, η) = eiukrn − ϕ(uk, η).

De�ne the vector-valued mean-error as

hN(η) = (hN(u1, η), . . . , hN(uM , η))T ,

and let us denote its expectation by

g(η) = E
[
hN(η)

]
.

Here dim g(η) = M > p. Since g(η∗) = 0, we could, in principle, obtain η∗ by solving the

over-determined system of equations

g(η) = 0. (3.1.1)

In our case of i.i.d. samples the entries of g are of the form ϕ(uk, η
∗) − ϕ(uk, η). Note
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that g is not computable since η∗ is unknown. Therefore we replace g by hN(η), and seek the

least-squares solution of the set of over-determined system of equations

hN(η) = 0. (3.1.2)

More precisely, we minimize the weighted quadratic cumulative error

VN(η) = |K−
1
2hN(η)|2, (3.1.3)

where K is an appropriate, m×m, symmetric, positive de�nite weighing matrix, as proposed

in [13]. Then, in Theorem 2 in [13] it is proved that under certain conditions the asymptotic

distribution of
√
N(η̂N − η∗) is normal, and a nice expression for its asymptotic covariance

matrix is given.

It should be noted though, that in the proof of Theorem 2 of [13] η̂N is assumed to be

de�ned as the solution of the non-linear algebraic equation

h
∗
ηN(η̂N)K−1hN(η̂N) = 0, (3.1.4)

tacitly assuming that the l.h.s. is 1/2-times the gradient of VN(η) at η̂N . Here
∗ denotes the

complex conjugate of a vector or of a matrix. However, since the scores are complex valued,

the actual gradient of VN(η) at η = η̂N is equal to the l.h.s. of (3.1.4) plus its conjugate.

Therefore the l.h.s. side of (3.1.4) will be loosely called a half-gradient.

The ambiguity in de�ning η̂N in [13] may be due to the fact that the ECF method was

derived there as a modi�cation of the generalized moment method (GMM) developed earlier

by Hansen, see [35]. But the latter author restricted himself to real valued score functions, in

which case the "half gradient" is indeed 1/2-times the gradient of VN(η). Going into further

details of the proof one notes that the reasoning can be extended to complex valued function
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by using the mean value theorem in its integral form. Hence, in what follows, we propose to

de�ne η̂N as the possibly complex-valued solution of

h
∗
ηN(η)K−1hN(η) = 0. (3.1.5)

In de�ning "the" solution of (3.1.4) we proceed as in [27]. η̂N is a random variable such that

η̂N ∈ Dη for all ω. If the equation has multiple solutions then η̂N is de�ned as any of them,

and if the equation has no solution then η̂N is any η ∈ Dη. The measurable selection theorem

implies that such a random variable exists. Along the lines of Lemma 2.3. in [27] it can be

shown that for any d > 0 equation (3.1.5) has unique solution in {|η−η∗| < d} with probability

at least 1−O(N−s) for any s > 0.

The half-gradient given on the l.h.s. can be considered as a new set of score functions. The

choice of this score functions are very nicely motivated by the arguments of Feuerverger and

McDunnogh, see [24], and the remark at the end of the section.

To compute the asymptotic covariance matrix of the estimated parameter η̂N we follow

standard procedures. Again, the 'half-gradient' of VN(η), w.r.t. η, set equal to zero gives the

p equations:

h
∗
ηN(η)K−1hN(η) = 0.

Note that the expectation of the right hand side is not necessarily 0 for η = η∗, since the mean

errors h
∗
η,N(η∗) and hN(η∗) are not necessarily independent. Approximate the �rst term by its

expectation denoted by

G = gη(η
∗), (3.1.6)

where G is an M × p matrix, and de�ne an approximating problem as

G∗K−1hN(η) = 0. (3.1.7)
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It can be shown that using this approximation we get an estimator with asymptotic covariance

matrix identical to that of η̂N .

The left hand side can be considered as a new set of exactly p scores with expectation

G∗K−1g(η), and the corresponding auxiliary equation is given by

G∗K−1g(η) = 0. (3.1.8)

The sensitivity matrix or derivative of the left hand side of (3.1.8) at η∗ is given by

T = G∗K−1G.

To get the asymptotic covariance of the new set of scores de�ned by the left hand side of

(3.1.7) we de�ne the M ×M covariance matrix, for any n, as

Ck,l = E
[
hk,n(η∗)h∗l,n(η∗)

]
.

Note that Ck,l is explicitly known:

Ck,l = ϕ(uk − ul, η∗)− ϕ(uk, η
∗) ϕ(−ul, η∗).

Then the asymptotic covariance of the new set of scores can be written as

S = G∗K−1CK−1G.

Finally, under suitable technical conditions, the asymptotic covariance matrix of the estimator

η̂N is obtained by standard arguments as

Σηη = lim
N→∞

E [N(η̂N − η∗)(η̂N − η∗)∗] = T−1ST−1.
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Equivalently, we have

Σηη = (G∗K−1G)−1 G∗K−1CK−1G (G∗K−1G)−1.

It is easy to see that Σηη is minimized for

K = C,

yielding the optimal asymptotic covariance matrix for η̂N :

Σηη = (G∗C−1G)−1,

or equivalently

Σηη =
(
ϕ∗η(η

∗)C−1ϕη(η
∗)
)−1

,

with

ϕη(η) = (ϕη(u1, η), . . . , ϕη(uM , η))T .

3.2 ECF with full continuum of moment conditions

In this section we summarize the results of Carasco and Florens [14]. The paper in question

extends the general method of moments by using the full continuum of moment conditions given

by the empirical characteristic function. Suppose we are given an i.i.d. realization X1, . . . , XN

of the random variable X. The characteristic function of X is ϕ(u, η∗), where η∗ denotes

the unknown parameter vector, that is to be estimated. Let ϕN(u) denote the empirical

characteristic function

ϕN(u) =
1

N

N∑
j=1

eiuXj .
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The moment conditions proposed by the authors are

h(u,Xj, η) = eiuXj − ϕ(u, η), (3.2.1)

clearly

E [h(u,Xj, η
∗)] = 0

holds for all u ∈ R and for each j. Fix a probability density function π and de�ne the Hilbert

space L2(π) by

L2(π) =

{
f : R→ C

∣∣∣∣∫
R
|f(t)|2π(t)dt <∞

}
.

The natural de�nition of the the inner product on this Hilbert space is

〈f, g〉H =

∫
R
f(t)g∗(t)π(t)dt.

Let B be a bounded linear operator de�ned on L2(π), or on a subspace of it, and let BN be a

sequence of linear operators converging to B. De�ne the averaged scores by

hN(u, η) =
1

N

N∑
j=1

h(u,Xj, η).

In [13] authors de�ne the estimated parameter vector via

η̂N = arg min
η
||BNhN(· , η)||. (3.2.2)

They also note that for a �nite, say M , number of moment condition the above norm in

(3.2.2) can be written as follows: �rst de�ne u = ( 1
M
, 2
M
, . . . , 1), and stack hN(u, η)-s, u =

( 1
M
, 2
M
, . . . , 1) into anM -dimensional column vector hN(η). Then, for a givenM×M, positive
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de�nite matrix AM the estimate η̂N is given by

η̂N = arg min
η
h
∗
N(η)AMhN(η). (3.2.3)

Which leads us to the equation that we have mentioned in the previous section. Again, while

this seems a reasonable de�nition of η̂N it turns out that this method does not give an e�cient

estimate. Thus we de�ne η̂N as the solution of the 'half-gradient' equation

∫
R

(
BNh

∗
ηN(t, η)

) (
BNhN(t, η)

)
π(t)dt = 0. (3.2.4)

Nevertheless the analysis in [14] suggests that the authors work with the latter de�nition of

η̂N . It was also proved that the operator B that gives an estimator with minimal asymptotic

variance is given by B = K−1/2, where operator K is de�ned as follows:

f : L2(π)→ L2(π) (3.2.5)

f(t)→ g(s) =

∫
R
k(s, t)f(t)π(t)dt, (3.2.6)

where

k(s, t) = E [h(s,X, η∗)h∗(t,X, η∗)] .

We note here that the domain of K−1/2 is not the whole L2(π), but a subset of it, which

corresponds to the reproducing kernel Hilbert space (RKHS) of K, denoted by H (K). The

norm ||.||K in H (K) is denoted by

||g||2K = ||K−1/2g||2.

According to Parzen, see Chapter 3 in [48], in case of a covariance kernel K the elements of

H (K) can be characterized by an integral representation theorem. For the present case the
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theorem implies that H (K) consists of all functions f that can be written as

f(t) = E [G(X)h∗(t,X, η∗)] (3.2.7)

with some unique G, which is the element of the Hilbert subspace spanned by h∗(t, · , η∗).

It can be proved that

η̂N → η∗ in probability

under certain technical conditions. It is also showed that

√
n (η̂N − η∗)→ N

(
0,
(
||Eη∗ [hη] ||2K

)−1
)

(3.2.8)

The most interesting result of the paper is that the proposed method gives an asymptotically

e�cient estimator. Here, we sketch the proof of this last statement.

At �rst, we show that g = ϕ∗η ∈ H (K). For simplicity we assume that η is scalar, the

idea of the proof is essentially the same if ϕ∗η is a vector. To this end we use the integral

representation theorem for H (K). If there exists a function G in L2 such that E [G(X)] = 0

and

g(u) = ϕ∗η(u) = Eη∗
[
G(X)e−iuX

]
,

then g ∈H (K) follows. Denote the set of such G-s by C(g), i.e.

C(g) =
{
G
∣∣ E [G2(X)

]
<∞, E [G(X)] = 0, g(t) = E [G(X)h∗(t,X, η∗)]

}
.
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We show that C(ϕ∗η) is non-empty and what is more we give the elements of C(ϕ∗η).

ϕη(−u) = Eη∗
[
G(X)e−iuX

]
=

∫
R
G(x)e−iuxf(x, η∗)dx

G(x)f(x, η∗) =
1

2π

∫
R
eiuxϕη(u)f(x, η∗)du

G(x)f(x, η∗) = fη(x, η)

Hence

G(x) =
fη(x, η)

f(x, η∗)
,

which means that ϕ∗η ∈ H (K) indeed holds. Moreover, an other result of Parzen, which can

be found in [48], reads as

Theorem 3.1. For any g ∈H (K), the norm of g can be characterized as

||g||2K = min
G∈C(g)

Eη∗
[
G2
]
. (3.2.9)

Using this characterization with g = ϕ∗η we obtain that

||ϕ∗η||2K = min
G∈C(ϕη)

Eη∗
[
G2
]

= min
η

E

[(
fη(x, η)

f(x, η∗)

)2
]
. (3.2.10)

It is relatively easy to show that the r.h.s. reaches its minimum value at η = η∗, so that we get

||ϕ∗η||2K = E

[(
fη(x, η

∗)

f(x, η∗)

)2
]
,

thus the asymptotic e�ciency of the estimate follows.

A nice interpretation of the ECF method is obtained by considering the log-likelihood equa-

tion ∫ ∞
−∞

∂ log f(x, η)

∂η
(fN(x, η∗)− f(x, η))dx = 0, (3.2.11)
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where fN and f stand for the empirical pdf and the pdf, respectively. Taking the Fourier

transform of the pdf-s by using Parseval's theorem yields

∫ ∞
−∞

w(t, η)(ϕN(t, η∗)− ϕ(t, η))dt = 0, (3.2.12)

where ϕN is the empirical characteristic function and

w(t, η) =
1

2π

∫ ∞
−∞

∂ log f(x, η)

∂η
e−itxdx.

The l.h.s. of (3.2.12) can be interpreted as a weighted combination of the primary ECF

scores. It can be shown that replacing η by η∗ in w(t, η) does not e�ect the asymptotic

covariance of the modi�ed estimate η̂N , obtained as the solution of the modi�ed version of

(3.2.12). Since the ML estimate is asymptotically optimal it follows that the weighting function

w(t, η∗) is optimal among all feasible weighting functions.

Comparing this observation with the result of the previous section gives that, if the full

continuum of u-s is used, then the weighting function w(t, η∗) is equivalent to the weighting

G∗K−1 meaning that

MG∗K−1 = w(t, η∗),

where M is a non-singular transformation.

We can conclude that the ML method is equivalent to �tting ϕ(t, η) to the empirical c.f.

ϕN(t) using appropriate weights. We note that the above computation can be carried out only

formally because the score functions are not necessarily integrable w.r.t. the Lebegue measure.

Not surprisingly the characteristic function �tting equation of Feuerverger and McDunnough

can be transformed to the 'half-derivative' equation of Carrasco and Florens as follows: for

simplicity write K instead of KN , and use that hη,n = −ϕη. The latter method gives the
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estimated parameter as the solution of

〈K−1/2ϕη, K
−1/2ϕη〉H = 0.

If ϕη were in the range of K−1 then the last equation could be written as

〈K−1ϕη, ϕη〉H = 0, (3.2.13)

which has the same form as (3.2.12). However, these calculation can be carried out only

formally as ϕη is not in the range of K−1 and the score function is not integrable with respect

to the Lebesgue measure.

3.3 Discussion

Intuitively one could reason that using the full continuum of u-s would give a more e�cient

estimate than using only a �nite set of moment conditions. Indeed, e�ciency can be achieved

only with the full continuum of moment conditions. Yet, by increasing M, the number of �xed

u-s, we get more and more e�cient estimates, as it is pointed out by Carrasco and Florens in

[13]. Following their line of argument we de�ne H = L2[0, 1], then the asymptotic variance of

the ECF estimate with the continuum of moment condition is

||E[hη]||−2
K .

On the other hand, choose HN to be the Hilbert space of 2N dimensional vectors, and let

uk = k/2N . In this case the optimal weighting matrix K(N) = (K(N))k,l is given by

Kk,l = E
[
h k

2N
,n(η∗)h∗ l

2N
,n

(η∗)
]
,
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for any n. The asymptotic covariance matrix of the estimator is then

||E[hη]||−2
K(N) .

The above variances can be compared using the result of Parzen, see [48] page 316-318. The

result reads as follows: if f ∈H (K), then

||f ||K ≥ ||f ||K(N+1) ≥ ||f ||K(N) .

Moreover,

||f ||K(N) → ||f ||K as N →∞,

which means that the variance of the estimate can be arbitrarily close to the Cramer-Rao bound

if we use a su�ciently large number of moment conditions.
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Chapter 4

ECF method for linear Lévy systems

The objective of this chapter is to present a combination of advanced techniques in systems

identi�cation with a speci�c statistical technique, widely used in the context in �nance, called

the ECF (shorthand for empirical characteristic function) method. The ECF method was origi-

nally designed for i.i.d. samples and A. Feuerverger and P. McDunnogh [24] showed that it can

be interpreted as the Fourier transform of an ML method. Several papers study the problem

of identifying the noise characteristics of a linear system, but only a few pays attention to

the problem of identifying the system parameters as well. Brockwell and Schlemm [9] con-

sider the parametric estimation of the driving Lévy process of a multivariate continuous-time

ARMA processes, but the identi�cation of system parameters is out of the scope of their paper.

Calder and Davis [10] discuss the M-estimators of ARMA processes with a given distribution

on the noise process. The quasi-maximum likelihood estimation of multivariate Lévy-driven

continuous-time ARMA processes is studied by Schlemm and Stelzer in [53], the method pre-

sented there identify the system parameters and the covariance structure of the noise process,

but further characteristics of the driving noise are not estimated.

In this chapter we present a three-stage identi�cation method for single-input-single-output
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(SISO) that estimates both the system parameters and the characteristics of the noise pro-

cess. We give the precise characterization of the estimation error as well. We adapt the ECF

method for linear systems and demonstrate that our method can outperform standard system

identi�cation methods such as prediction error method or quasi maximum likelihood estimation

method and that it is essentially asymptotically e�cient in the sense discussed in Section 4.6.

The results of this chapter are based on the recently submitted joint paper [? ].

In [29] the same problem is tackled. Two methods are proposed. The �rst one is a two-step

method that combines the prediction error method and the empirical characteristic function

method for i.i.d. data. The second one estimates the the system parameters and the noise

parameters simultaneously. It is proved that the second method may estimate the system

parameters in a more e�cient way than the �rst one, still it does not give an e�cient estimator.

Moreover, the method presented in [29] is applicable only if the driving noise is a zero mean

process.

4.1 Discrete-time Lévy-systems

A natural object for study is a linear stochastic system driven by a Lévy-process. Since the study

of continuous-time systems would lead to a number of technical di�culties, we restrict our

attention to discrete-time, �nite-dimensional linear stochastic systems driven by the increments

of a Lévy-process:

∆y = A(θ∗, q−1)∆L, (4.1.1)

de�ned for the time range −∞ < n < +∞, where ∆Ln is the increment of a Lévy process

(Lt) with −∞ < t < +∞, and L0 = 0, over an interval [(n − 1)h, nh), with h > 0 being

a �xed sampling interval, and −∞ < n < +∞. The Lévy-measure of L will be denoted by

ν(dx) = ν(dx, η∗), where η∗ denotes an unknown real parameter-vector with a known range,

say Dη ⊂ Cr. Note that the feasible range of η∗ is allowed to be complex for technical reasons
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inherent in the estimation procedure. The operator A(θ∗, q−1) is a rational, stable and inverse

stable function of the backward shift operator q−1, depending on some unknown real parameter-

vector θ∗, taking its values from some known set Gθ ⊂ Cp. We suppose that A is monic, i.e.

its zeroth coe�cient is 1. The observed output process is then ∆y.We call such systems brie�y

Lévy-systems.

The fundamental problem to be discussed in this chapter is the e�cient identi�cation of

both the systems and the noise parameters. The ML method would be appropriate in solving

the full identi�cation problem (i.e. estimating both θ∗ and η∗) along standard lines, if we knew

the density function of ∆Ln is known, see [31]. Unfortunately, typically this is not the case

with the mostly used Lévy processes.

Therefore we develop a new method, using a combination of the PE (prediction error) and

an adapted version of the so-called ECF (empirical characteristic function) method, widely used

in �nance, to get a competitive alternative to the ML (maximum likelihood) method.

The ECF method was originally designed for i.i.d. samples. It has the remarkable property

that under certain idealistic assumptions it is as e�cient as the ML method. Certain extensions

to dependent data are available in the literature at the cost of losing e�ciency. Our main

contribution is the development of a method for system identi�cation using a suitably adapted

ECF method, the e�ciency of which is established solely relying on e�ciency results for i.i.d.

data.

Let us now describe a few additional technical details of our model. Let us assume that a

state space representation in innovation form equation for this model is given by

∆Xn+1 = H(θ∗)∆Xn +K(θ∗)∆Ln (4.1.2)

∆Yn = T (θ∗)∆Xn + ∆Ln. (4.1.3)

Then stability and inverse stability of the system is then described by the following condition:
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Condition 4.1. It is assumed that the system matrices H(θ) and H(θ)−K(θ)T (θ) are stable

for θ ∈ Gθ.

To de�ne the smooth dependence on θ suppose that A(θ, q−1) is three-times continu-

ously di�erentiable w.r.t. θ for θ ∈ Dθ. Let F denote the natural �ltration with F ∆L
n−1 =

σ {∆Lk : k ≤ n− 1}. The system (7.3.1) is certainly well-de�ned if ∆L satis�es the integra-

bility condition (2.1.2). Namely, then ∆yn can be written as a weighted sum of past values of

∆L, with exponentially decaying weights, converging in L1.We will need the following technical

condition:

Condition 4.2. We assume that for all q ≥ 1

∫
|x|≥1

|x|qν(dx) < +∞, (4.1.4)

and that E [∆Ln] = 0.

It follows, see [? ], that for q ≥ 1 and for all h ≥ 0, the q-th moments of the increments

of L are �nite:

E [|∆Ln|q] <∞. (4.1.5)

We note here that Condition 5.2 holds in our benchmark examples to be presented in the next

Section. Let Dθ ⊂ Cp and D∗θ ⊂ Cp be compact domains such that

θ∗ ∈ D∗θ ⊂ int Dθ and Dθ ⊂ Gθ.

For the q-dimensional η the domains Dη, D
∗
η are de�ned analogously. Finally, let ρ∗ = (θ∗, η∗)

denote the joint parameter vector, and set

Dρ = Dθ ×Dη, D∗ρ = D∗θ ×D∗η, Gρ = Gθ ×Gη.
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Here, Dρ ⊂ Cp+q and D∗ρ ⊂ Cp+q. Before going into further details we present a few examples

of Lévy processes used for modeling purposes.

4.2 A three-stage method

Now we turn to our main problem, the identi�cation of Lévy systems, when both the system

parameters and the noise parameters are unknown. A possible approach would be to adapt and

apply the ECF method for the statistical analysis of dependent data. Preliminary results under

restrictive conditions are available in the literature, see e.g. [39], [55]. We on this are available

in the literature. The method proposed in the literature is based on the observation that, as

an alternative to the joint probability density function, we can compute the joint characteristic

function of blocks of unprocessed data, i.e. for blocks of the time series (yn).Without going into

further details we point out that the weakness of this approach is that the joint characteristic

function is given in terms of an in�nite product, and hence it is not clear how to use it in actual

computations. Moreover, it is pointed out in the literature that the above ECF method for

dynamic models may be less e�cient than the ML method, see [12]. A novel idea is presented

[30] for the case when the data is passed through a possibly non-FIR �lter. Although the the

exact c.f. cannot be computed explicitly it is found that an unbiased estimator for the exact c.f.

can be obtained under the assumption that we can simulate the system with arbitrary feasible

choice of the system parameters θ and noise parameter η.

In what follows we propose a completely di�erent approach, combining the PE method with

adapted versions of the ECF method for i.i.d. samples. Our novel method is a three-stage

method, the �rst stage being a standard PE method for estimating the system parameters,

taking into account only that the innovation process is i.i.d. having �nite moments of all

orders. Thus we get an estimate of the system parameters, say, θ̂N .

In the second stage, using a certainty equivalence argument, pretending that θ̂N = θ∗, we
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estimate the innovation process by inverting the system using the estimated system parameters

θ̂N . Then, the noise parameter η∗ is estimated using the ECF method for i.i.d. sequences,

resulting in an estimate η̂N . These procedures will be brie�y described in Section 4.3. Finally, in

the third stage, once again using a certainty equivalence argument, pretending that η̂N = η∗, we

re-estimate the system parameters using a speci�c adaptation of the ECF method for systems-

identi�cation with i.i.d. innovation process, having a known characteristic function. This is a

completely new and original step of our procedure, which deserves most of our attention.

The analysis of the e�ects of the estimation errors of θ̂N and η̂N on subsequent steps are

based on moment estimates of the estimation errors. The latter can be obtained by extending

the techniques of [27], and exploiting the fact that all �nite moments of the innovation process

are �nite.

To set the stage for the �nal, third step of our procedure we brie�y summarize a simple

known result on the ML estimate for the identi�cation of a linear stochastic system with i.i.d.

innovation with known characteristics, more accurately with known probability density function,

say f(., η∗), following [31]. In this case we can obtain the maximum likelihood estimate of the

unknown system parameter θ∗ via solving

N∑
n=1

∂

∂θ
log f (εn(θ), η∗) = 0, (4.2.1)

where

εn(θ) = A−1(θ)∆yn (4.2.2)

is the estimated innovation process of the SISO system given under (7.3.1), using zero initial

conditions for n ≤ 0.

Then under certain technical conditions, in particular assuming that

E[∆Ln] = 0, (4.2.3)
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the asymptotic covariance matrix of the ML estimate is given by

ΣML = µ−1 (R∗P )−1 , (4.2.4)

where

µ = E

[(
f ′(∆Ln, η

∗)

f(∆Ln, η∗)

)2
]
,

with f ′ being the derivative of f(., η∗) w.r.t. its �rst variable, and

R∗P = E
[
ε

(s)
θn(θ∗)ε

(s)T
θn (θ∗)

]
.

Note that µ can be interpreted as the Fisher information corresponding to the the location

parameter m for the family of densities f(ε − m, η∗). This interpretation of µ will exploited

in Section 4.6 in proving the e�ciency of our proposed three-stage method, and as a special

case, in proving the e�ciency of its third stage under the condition that the noise parameters

are known.

The challenge we address in this chapter if we can achieve the same accuracy in estimating θ∗

when we know the characteristic function of the innovation rather than its p.d.f. The surprising

answer is a yes, or rather an almost yes. To achieve this we estimate θ∗ by applying a suitable

modi�cation of the ECF method for i.i.d. data using θ-dependent residuals, and de�ning a set

of initial scores as

hk,n(θ, η) =
(
eiukεn(θ) − ϕ(uk, η

∗)
)
εθn(θ).

To summarize, our proposed three-stage method consists of the following steps:

1. Estimate θ∗ by applying the PE method to obtain θ̂N .

2. Invert the system with θ = θ̂N to generate an estimated noise process or residual process,

then estimate η∗ by pretending that these residuals are i.i.d., and apply the ECF method
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for for i.i.d. data to obtain η̂N .

3. Re-estimate θ∗ by applying the ECF method for system identi�cation, pretending that

η̂N = η∗, to obtain an e�cient estimate
ˆ̂
θN for the dynamics.

In the next two sections we brie�y summarize some basic facts concerning the �rst two

stages of our algorithm.

4.3 A summary of results on the PE method

In this section we brie�y summarize some basic facts on the PE method for the case when

the input noise has zero expectation, i.e. E[∆Ln] = 0, see (4.2.3), and present a precise

characterization of the error process that will be relevant later. Although general Lévy processes

presented in Section 2.3 have non-zero mean, preprocessing our data, as is customary in classic

time series analysis, we may achieve E[∆Ln] = 0. First, we de�ne the estimated innovation

process ε(θ) as above, see (4.2.2). The prediction error estimator of parameter vector θ∗ is

then obtained by minimizing the cost function

VP,N(θ) =
1

2

N∑
n=1

ε2
n(θ),

over Gθ, see [? ]. An alternative, more convenient de�nition of the PE estimator θ̂N is obtained

by setting the gradient of the cost functions equal to zero, and considering the equations:

∂

∂θ
VP,N(θ) = Vθ,P,N(θ) =

N∑
n=1

εθn(θ) εn(θ) = 0,
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with εθn(θ) being a p× 1 vector. For the precise de�nition of the random vector θ̂N see [27].

The asymptotic cost function associated with the PE method is de�ned as

Wθ,P =
1

2
E
[(
ε(s)
n (θ)

)2
]
,

where ε
(s)
n (θ) denotes the stationary solution of (4.2.2) obtained by letting −∞ < n <∞. (In

general, the superscript (s) will be used throughout this chapter if the marked stochastic process

is obtained by passing through a stationary process through an exponentially stable linear �lter

−∞ < n <∞). We have

∂

∂θ
WP (θ∗) = 0 and

R∗P := Wθθ,P (θ∗) = E
[
ε

(s)
θn(θ∗)ε

(s)T
θn (θ∗)

]
.

Furthermore, θ = θ∗ is the unique solution of WP,θ(θ) = 0 in Gθ, see [? ]. The asymptotic

covariance matrix of the PE estimate of θ∗ is given by

ΣP = σ2
(
E
[
ε

(s)
θn(θ∗)ε

(s)T
θn (θ∗)

])−1

, (4.3.1)

where σ2 is the variance of ∆Ln. Since the ML method is e�cient we have that µ−1 ≤ σ2, we

note that the accuracy of the ML method can signi�cantly surpass that of the PE method, i.e.

we can have µ−1 << σ2. Large di�erence between µ−1 and σ2 can be achieved by taking the

mixture of a mass like continuous pdf with and another continuous pdf.

To formulate our next result we need the following de�nition:

De�nition 4.1. Let (Xn), n ≥ 0 be a stochastic process, and let

f : Z+ → R+
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be a function. We write that

Xn = OM(f(n))

if for all q ≥ 1

sup
n

E1/q |Xn|q

f(n)
<∞

holds.

The following theorem is proven in [27]:

Theorem 4.1. Under Conditions 4.1, 5.2 we have

θ̂N − θ∗ = −(R∗P )−1Vθ,P,N(θ∗) + rN ,

with rN = OM(N−1).

The key point of this result is that the error term rN is under control. A direct consequence

is the following result, which in fact is proved independently in [27] as an auxiliary result:

Corollary 4.1. Under Conditions 4.1, 5.2 we have

θ̂N − θ∗ = OM(N−1/2).

4.4 The ECF method for estimating the noise param-

eters

The core of the second stage of our procedure is the following problem: estimate the unknown

noise parameters are when we know the system parameters. This is solved by a simple adaptation

of the ECF method for i.i.d. data. For this we note that

ε(s)
n (θ∗) = A−1(θ∗)∆yn = A−1(θ∗)A(θ∗)∆Ln = ∆Ln, (4.4.1)
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for −∞ < n < +∞. The score function for the ECF method to estimate η∗ would be then

de�ned by

hoptk,n(θ∗, η) = hoptn (uk, θ
∗, η) = eiukε

(s)
n (θ∗) − ϕ(uk, η).

In practice we can not reconstruct ε
(s)
n (θ∗) exactly, and rather work with the approximating

process εn(θ∗) de�ned by (4.4.1) with zero initial conditions, i.e. ∆Ln = εn(θ∗) = 0 for n ≤ 0.

We can now ask ourselves, what happens if the above straightforward procedure is applied

in the case when when θ∗ is unknown, and is replaced by an arbitrary, feasible θ. To see this,

let us de�ne

ε(s)
n (θ) = A−1(θ)∆yn = A−1(θ)A(θ∗)∆Ln (4.4.2)

for −∞ < n < +∞. The extended, θ-dependent primary score function would then be de�ned

by

h
(s)
k,n(θ, η) = hn(uk, θ

∗, η∗) = eiukε
(s)
n (θ) − ϕ(uk, η),

with a �xed set of real numbers u1, · · · , uM , with M ≥ dim η. De�ne

hk,n(θ, η) = hn(uk, θ
∗, η∗) = eiukεn(θ) − ϕ(uk, η),

which is computable. Note that it is no longer true that the primary score satis�es for any θ

and for η = η∗ the equality

E [hn(u, θ, η∗)] = 0, for all u.

Still, we proceed in computing a θ-dependent estimate η̂N = η̂N(θ) as if we had θ = θ∗.
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Averaging over the samples, i.e. for n = 1, . . . , N we de�ne a mean-error or secondary score as

hk,N(θ, η) =
1

N

N∑
n=1

hk,n(θ, η).

Then de�ne the vector-valued mean-error as

hN(θ, η) = (h1,N(θ, η), . . . , hM,N(θ, η))T .

and let us denote its expectation by

gN(θ, η) = E
[
hN(θ, η)

]
.

Note that the expectation of the r.h.s. depends on N since εn(θ) is non-stationary, due to the

0 initialization. However, it is easily seen that the limit

g(θ, η) = lim
N→∞

gN(θ, η)

exists; this is seen simply by approximating εn(θ) by ε
(s)
n (θ). Recall that here dim g(θ, η) =

M > p, and that g(θ∗, η∗) = 0. However, choosing an arbitrary θ, the equation g(θ, η) = 0

may have no solution in η.

Now, we �rst de�ne our estimator η̂N = η̂N(θ) as the possibly complex-valued solution of

V ′E,N(θ, η) := h
∗
ηN(θ, η)K−1hN(θ, η) = 0. (4.4.3)

The precise de�nition of the solution of (4.4.3) is analogous with that of 3.1.5. The l.h.s. is

then considered as a new set of score functions the asymptotic value of which is given by

W ′
E(θ, η) = g∗η(θ, η)K−1g(θ, η). (4.4.4)
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To formulate our results we need some technical conditions. Let ρ be the joint parameter i.e.

ρ = (θ, η). Let Dρ ⊂ Cp+r and D∗ρ ⊂ Cp+r be compact domains such that ρ∗ ∈ D∗ρ ⊂ int Dρ

and Dρ ⊂ Gρ.

Condition 4.3. For each θ ∈ Dθ the equation W ′
E(θ, η) = 0 has a unique solution η∗(θ) in

D∗η, i.e.

W ′
E(θ, η∗(θ)) = 0.

Note that the expectation of the l.h.s. of (4.4.3) is not necessarily 0 for η = η∗ and θ = θ∗,

since the mean errors h
∗
ηN(θ∗, η∗) and hN(θ∗, η∗) are not necessarily independent. Hence we

de�ne, as in the i.i.d. case, an approximating problem as follows: replace the �rst term of the

l.h.s. of (4.4.3) by the asymptotic value of its expectation, evaluated at the solution (θ, η∗(θ))

to get

V̄
′

E,N(θ, η) := G∗(θ)K−1hN(θ, η) = 0, (4.4.5)

where G(θ) is the M × p matrix

G(θ) = gη(θ, η
∗(θ)).

It can be shown that using this approximation we get an estimator with asymptotic covariance

matrix identical to that of η̂N(θ). The left hand side of (4.4.5) can be considered as a new set

of exactly p scores with asymptotic expectation

W̄
′

E(θ, η) = g∗η(θ, η
∗(θ))K−1g(θ, η) = G∗(θ)K−1g(θ, η).

Following the arguments applied in the i.i.d. case, simple matrix inequalities yield that the

optimal choice of K(θ) is K(opt) = K(opt)(θ, η∗(θ)) = C(θ, η∗(θ)), with C(θ, η) being the
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M ×M matrix with entries

Ck,l(θ, η) = E
[
h

(s)
k,n(θ, η)h

(s)∗
l,n (θ, η)

]
.

In actual computations we use Ĉ(θ, η) with entries

Ĉk,l(θ, η) =
1

N

N∑
n=1

hk,n(θ, η)h∗l,n(θ, η),

since the expected value is not computable. Moreover, since η∗(θ) is unknown we �rst take

K1 = Ĉ(θ̂N , η), with any η to obtain the preliminary estimate η̂
(pre)
N (θ̂N) of η∗, then re-estimate

η∗ using K2 = Ĉ(θ̂N , η̂
(pre)
N ) to get η̂N(θ̂N). It can be seen that the error we get by substituting

C(θ̂N , η
∗(θ)) with Ĉ(θ̂N , η̂N(θ̂N)) is OM(N−1).

Let the Jacobian of W̄ ′
E(θ, η) w.r.t. η at η = η∗(θ) be denoted by R∗E(θ). Then it is easy

to see that

R∗E(θ) = W̄ ′
E,η(θ, η

∗(θ)) = G∗(θ)K−1G(θ).

Our next result characterizes the estimation error of the ECF method for the noise parameter

η∗ :

Theorem 4.2. Under Conditions 4.1, 5.2 and 4.3 we have for any �xed feasible θ ∈ Dθ

η̂N(θ)− η∗(θ) = −(R∗E(θ))−1V̄
′

E,N(θ, η∗(θ)) +OM(N−1),

with an error term that is OM(N−1) uniformly in θ for θ ∈ Dθ.

The proof Theorem 4.2 is isomorphic to that of the martingale representation theorem in

[27]. It is partially based on the following lemma, which itself is a direct corollary of the above

theorem:
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Lemma 4.1. Under Conditions 4.1, 5.2 and 4.3 we have for any �xed θ ∈ Dθ

η̂N(θ)− η∗(θ) = OM(N−1/2),

with an error term that is OM(N−1) uniformly in θ for θ ∈ Dθ.

Using the above theorem with θ = θ̂N , the estimation that we obtained by the PE method,

and setting η̂N = η∗(θ̂N), according to the second stage of our three-stage procedure, we

conclude that the following result holds:

Theorem 4.3. Under Conditions 4.1, 5.2 and 4.3 we have

η̂N − η∗ = −(R∗E(θ∗))−1G∗(θ∗)K−1hN(θ∗, η∗) +OM(N−1).

The proof of the last result is partially based on the observations that η̂N − η∗ = η∗(θ̂N)−

η∗(θ∗) = OM(N−1/2), and that

∥∥∥W ′
E,η(θ̂N , η

∗(θ̂N))−W ′
E,η(θ

∗, η∗)
∥∥∥ = OM(N−1/2).

4.5 Re-estimation of θ∗ by the ECF method

In this section we consider the problem of identifying the system parameters θ∗, using an

appropriate version of the ECF method, under the assumption that the noise characteristics η∗

is known. This is a simpli�ed benchmark problem of interest of its own. The main innovation

of our three-stage procedure is the development of the third stage and the proof that the

proposed procedure is essentially asymptotically e�cient, i.e. taking a su�cient large number

of u-s, the asymptotic covariance matrix of the estimator of θ∗ is close to optimal, given by

the Cramer-Rao inequality. Following the philosophy of the ECF method take a �x set ui-s,
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1 ≤ i ≤M. The �rst natural candidate for a score function would be

fk,n(θ) = eiukεn(θ) − ϕ(uk, η
∗),

see [29]. However, the corresponding sensitivity matrix would have zero expectation, as

E
[
eiukεn(θ∗)iukεθn(θ∗)

]
= 0.

The only natural way to avoid this is to make εθn(θ∗)εTθn(θ∗) appear in the sensitivity matrix.

Hence, we de�ne the score functions as

hk,n(θ) =
(
eiukεn(θ) − ϕ(uk, η

∗)
)
εθn(θ), (4.5.1)

with hk,n(θ) being p × 1 column vectors. Note that in this case at θ = θ∗ both h
(s)
k,n(θ)-s and(

eiukε
(s)
n (θ) − ϕ(uk, η

∗)
)
have zero expectation.

For technical reasons we shall also consider a more general class of problems when the noise

characteristics is misspeci�ed, i.e. when η∗ is unknown, and we apply the ECF method for the

identi�cation of the systems dynamics with an arbitrary feasible η, pretending that it is the true

value. When η∗ is misspeci�ed we de�ne the score functions as

hk,n(θ, η) =
(
eiukεn(θ) − ϕ(uk, η)

)
εθn(θ). (4.5.2)

For the stationary approximation of hk,n(θ, η) we obviously have

E
[
h

(s)
k,n(θ∗, η)

]
= 0,

because E [εθn(θ∗)] = 0, and the two terms in hk,n(θ∗, η) are independent. The problem we

address is to identify the system dynamics speci�ed by θ∗. We note in passing that as a special
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case of this technical problem for known η∗ we will obtain the (essential) e�ciency of the

procedure. Surprisingly, the estimator, say
ˆ̂
θN(η), will be still consistent, just like in the case of

the misspeci�ed ML method, under the condition that the input noise has 0 mean. The third

step of our three-stage procedure is then obtained by setting η = η̂N , with η̂N being de�ned in

the previous section. The (essential) e�ciency of our procedure is then obtained by a simple

comparison of
ˆ̂
θN(η̂N) and

ˆ̂
θN(η∗).

De�ne the pM -dimensional score column vector hn(θ, η) =
(
hT1,n(θ, η), . . . , hTM,n(θ, η)

)T
,

and the sample mean of these score vectors:

hN(θ, η) =
1

N

N∑
n=1

hn(θ, η).

Let K > 0 be a �xed symmetric, pM × pM, positive de�nite weighting matrix. De�ne the

pM -dimensional column vectors

gN(θ, η) = E
[
hN(θ, η)

]
and g(θ, η) = lim

N→∞
gN(θ, η).

Note that θ = θ∗ is the solution of the over-determined set of non-linear algebraic equations

g(θ∗, η) = 0. (4.5.3)

Since g is not computable we approximate it by hN and in analogy with (4.4.3) we seek a

possibly complex-valued solution of the 'half-gradient' equation

V ′N(θ, η) = h
∗
θN(θ, η)K−1h

∗
N(θ, η) = 0 (4.5.4)

to obtain
ˆ̂
θN(η). The precise de�nition of the random variable

ˆ̂
θN(η) can be given using the

procedure seen in Section 3.1 after (3.1.5). The system of equations in (4.5.4) is no longer
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over-determined because dim V ′N = p. The asymptotic value of the new set of scores is then

W ′(θ, η) = lim
N→∞

E[V ′N(θ, η)] = g∗θ(θ, η)K−1g(θ, η).

Condition 4.4. For each η ∈ Dη the equation W ′(θ, η) = 0 has a unique solution θ = θ∗ in

D∗θ .

In view of (4.5.3) it is not surprising that the solution of W ′(θ, η) = 0 does not depend on

η. The Jacobian of W ′ at θ = θ∗:

R∗(η) := G∗(η)K−1G(η),

with the pM × p matrix G(η) = gθ(θ
∗, η). In analogy with (4.4.5) the auxiliary problem that

corresponds to equation (4.5.4) can be formulated as

V̄ ′N(θ, η) := G∗(η)K−1hN(θ, η) = 0. (4.5.5)

The following result, which can be proved using the reasoning seen in [27], is a martingale

representation theorem for the η-dependent estimate of θ∗.

Theorem 4.4. Under Conditions 4.1, 5.2 and 4.4 we have

ˆ̂
θN(η)− θ∗ = −(R∗(η))−1V ′N(θ∗, η) +OM(N−1). (4.5.6)

It is worth mentioning that the theorem remains valid if we write V̄ ′N instead of V ′N , that is

ˆ̂
θN(η)− θ∗ = −(R∗(η))−1V̄ ′N(θ∗, η) +OM(N−1) (4.5.7)

holds under the conditions of the above theorem. Specifying the r.h.s. we have that
ˆ̂
θN(η)−θ∗
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equals to

−(R∗(η))−1G∗(η)K−1hN(θ∗, η) +OM(N−1). (4.5.8)

Sketch of the proof: Let us write
ˆ̂
θN instead of

ˆ̂
θN(η) to simplify notations. Using the fact

that an exponentially stable �lter with L-mixing input produces an L-mixing output, see [26],

we get that ∆yn is an L-mixing process. The estimated innovation process and its derivatives

with respect to θ can be written as

εn(θ) = A−1(θ)∆yn

εθn(θ) = A−1
θ (θ)∆yn

εθθn(θ) = A−1
θθ (θ)∆yn.

The notation A−1(θ)∆yn is understood as follows: take the state-space representation of

A−1(θ) and compute εn(θ) by substituting θ into the corresponding state transition matri-

ces. The derivatives of the �lter A−1(θ) w.r.t. θ are de�ned accordingly. Again, since A−1(θ)

and its derivatives with respect to θ are exponentially stable and A(θ) is three-times continu-

ously di�erentiable w.r.t. θ, and θ ∈ Dθ, where Dθ is compact, we conclude that the processes

εn(θ), εθn(θ) and εθθn(θ) are L-mixing uniformly when θ ∈ Dθ.

One can show that for any given d > 0 the equation V ′N(θ, η) = 0 has a unique solution in

Dθ and it is in the sphere S = {θ : |θ − θ∗| < d} with probability at least 1−O(N−s) for any

s > 0. This result is the η-dependent version of Lemma 2.3. in [27]. Using this result write

0 = V ′N

(
ˆ̂
θN , η

)
= V ′N (θ∗, η) + V

′
θN(η)

(
ˆ̂
θN − θ∗

)
, (4.5.9)

where

V
′
θN(η) =

∫ 1

0

V ′θN

(
(1− λ) θ∗ + λ

ˆ̂
θN , η

)
dλ.
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Letting η vary in the compact domain Dη one may follow the line of arguments presented in

the proof of Theorem 2.1. in [27] to conclude that

∥∥∥V ′−1

θN (η)−W ′−1
θ (θ∗, η)

∥∥∥ = OM(N−1/2). (4.5.10)

except for an event of probability OM(N−s) for any s > 0. Finally,

ˆ̂
θN − θ∗ = −V ′−1

θN (η)V ′N(θ∗, η) =

−
(
W ′−1
θ (θ∗, η) +OM(N−1/2)

)
V ′N(θ∗, η) =

−W ′−1
θ (θ∗, η)V ′N(θ∗, η) +OM(N−1)

holds, again except from an event of probability OM(N−s) for any s > 0. Hence the last

expression reads as

− (R∗(η))−1 V ′N(θ∗, η) +OM(N−1).

Which concludes the proof. �

Now set η = η̂N , where η̂N is the estimate of the noise characteristics that we obtained

at the second step of the procedure. Then the third step of our three-stage method is simply

carried out by repeating the above procedure with the scores

hk,n(θ, η̂N) =
(
eiukεn(θ) − ϕ(u, η̂N)

)
εθn(θ). (4.5.11)

Applying Theorem 4.4 with the choice η = η̂N and using that R∗(η) and V̄ ′N(θ∗, η) are smooth

enough in η and that η̂N − η∗ = OM(N−1/2) we obtain the following result:

Theorem 4.5. Suppose that η̂N is obtained by the second step of the three-stage identi�cation
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procedure. Then under Conditions 4.1, 5.2 and 4.4 we have

ˆ̂
θN(η̂N)− θ∗ = −(R∗(η∗))−1V̄ ′N(θ∗, η∗) +OM(N−1). (4.5.12)

Specifying the r.h.s. we have that
ˆ̂
θN(η̂N)− θ∗ equals to

−(R∗(η∗))−1G∗(η∗)K−1hN(θ∗, η∗) +OM(N−1). (4.5.13)

Observe that (4.5.8) and (4.5.13) are the same if η = η∗, which together with Theorem 4.3 and

the fact that ε
(s)
θn (θ∗) has zero expectation and is independent of ∆Ln imply the next corollary.

Corollary 4.2. The three-stage method and the ECF identi�cation of θ∗ with known η∗ yield

the same asymptotic covariance for the estimate of θ∗. We also have that the estimates η̂N and

ˆ̂
θN(η̂N) are asymptotically uncorrelated.

4.6 E�ciency of the ECF method for θ∗

In this section we show that the three-stage method gives an essentially e�cient estimate of

θ∗. Recall the notations

R∗P = E
[
ε

(s)
θn(θ∗)ε

(s)T
θn (θ∗)

]
,

and C with entries

Ck,l = ϕ(uk − ul, η∗)− ϕ(uk, η
∗)ϕ(−ul, η∗).

Theorem 4.6. Let K = C ⊗ R∗P and let
ˆ̂
θN(η̂N) be the estimate obtained by the third step

of out three-stage procedure, then we have

E
[
N
(

ˆ̂
θN(η̂N)− θ∗

)(
ˆ̂
θN(η̂N)− θ∗

)∗]
= Σθθ +OM(N−1/2),

52



C
E

U
eT

D
C

ol
le

ct
io

n

where the asymptotic covariance matrix is given by

Σθθ =
(
ψ∗C−1ψ

)−1
(R∗P )−1 ,

with ψ = (iu1ϕ(u1, η
∗), . . . , iuMϕ(uM , η

∗))T .

Proof: From now on we write
ˆ̂
θN for

ˆ̂
θN(η̂N) to simplify notations. Using Theorem 4.5

and Corollary 4.2 we get that the covariance matrix of the estimator is

E
[(

ˆ̂
θN − θ∗

)(
ˆ̂
θN − θ∗

)∗]
= (R∗(η∗))−1E

[
V̄ ′N(θ∗, η∗)V̄ ′∗N (θ∗, η∗)

]
(R∗(η∗))−1 + r1,

with r1 = OM(N−3/2). Now, we compute the middle term of the above formula. At �rst, it is

easy to see that since ε
(s)
θn(θ∗) and ε

(s)
n (θ∗) = ∆Ln are independent we have

E
[
hN(θ∗, η∗)h

∗
N(θ∗, η∗)

]
=

1

N
C ⊗R∗P + r2 =

1

N
K + r2,

where r2 = OM(N−3/2). Hence,

E
[
V̄ ′N(θ∗, η∗)V̄ ′∗N (θ∗, η∗)

]
=

G∗(θ∗)K−1

(
1

N
K + r2

)
K−1G(θ∗) =

1

N
G∗(θ∗)K−1G(θ∗) + r3,

with r3 = OM(N−3/2), because G(θ∗) is bounded. We have

G(θ∗) = ψ ⊗R∗P ,
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since for the kth block of rows of G(θ∗) we have

E [hθ;k,n(θ∗, η∗)] = iukϕ(uk, η
∗)E

[
εθn(θ∗)εTθn(θ∗)

]
.

Using the mixed-product property and the inverse of a Kronecker product, reading as (A ⊗

B)(C ⊗ D) = AC ⊗ BD and (A ⊗ B)−1 = A−1 ⊗ B−1, the covariance can be further

calculated as follows:

E
[(

ˆ̂
θN − θ∗

)(
ˆ̂
θN − θ∗

)∗]
=

1

N

(
(ψ∗ ⊗R∗P ) (C ⊗R∗P )−1 (ψ ⊗R∗P )

)−1
+ r4 =

1

N

((
ψ∗C−1ψ

)
⊗R∗P

)−1
+ r4 =

1

N

(
ψ∗C−1ψ

)−1
(R∗P )−1 + r4,

with r4 = OM(N−3/2), which concludes the proof. �

Theorem 4.7. Under the conditions of Theorem 4.6 the estimate
ˆ̂
θN is essentially asymptot-

ically e�cient.

Suppose now that instead of a �nite number of moment conditions we exploit the full

continuum of moment conditions. In this case the continuous version of the score vector would

be de�ned as

hn(u, θ) =
(
eiuεn(θ) − ϕ(u, η∗)

)
εθn(θ) for each u ∈ R,

and that of the 'half-gradient' equation (4.5.5) would read as

〈hN(u, θ), K−1G〉 = 0, (4.6.1)

where 〈· , · 〉 denotes an inner product that we need yet to specify. To de�ne the inner product

let us �rst introduce the Hilbert space H = L2(π) =
{
f : R→ C

∣∣∫ |f(t)|2π(t)dt <∞
}
, with
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π being a probability measure on R. Then de�ne the inner product on H as

〈f, g〉 =

∫
f(t)g∗(t)π(t)dt,

and the norm ||f ||2 = 〈f, f〉. Let k(s, t) be a symmetric, positive de�nite function, then de�ne

the operator K as

(Kf)(s) =

∫
k(s, t)f(t)π(t)dt. (4.6.2)

We will use the notation ||f ||2K = ||K−1/2f ||2. As it is pointed out in [14] K−1/2f does not

exists on the whole space H, the analysis of such operators is done by using the reproducing

kernel Hilbert space (RKHS) of K. The results of Chapter 3 in [48] imply that K−1/2f ∈ H

for each f in the RKHS of K, because for each f there exists an F ∈ L2(π) such that

||f ||2K = ||K−1/2f ||2 = ||F ||2 < ∞. It is worth mentioning that the norm ||f ||2K does not

depend on the choice of π, because π-s in the inner product and in K−1 cancel out each other,

see equation (4.7) in [14]. For more details see the just cited paper.

De�ne C the π-dependent covariance operator as special case of K via

(Cf)(s) =

∫
c(s, t)f(t)π(t)dt, (4.6.3)

with

c(s, t) = E
[
h(s)
s,n(θ∗, η∗)h

(s)∗
t,n (θ∗, η∗)

]
.

If the full continuum of u-s were de�ned via us = s for all s ∈ R, then the continuous version

of Theorem 4.6 would give

lim
N→∞

E
[
N
(

ˆ̂
θN − θ∗

)(
ˆ̂
θN − θ∗

)∗]
=
(
||iuϕ(u, η∗)||2C

)−1
(R∗P )−1 (4.6.4)

for the asymptotic covariance matrix of the estimate. Note that in the above formula the
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asymptotic covariance matrix is decoupled, ||iuϕ(u, η∗)||2C depends only on the noise charac-

teristics and R∗P depends on the derivative of the innovation process, hence on the parameters

of the linear system.

Recall the notation µ used in connection with the ML method:

µ = E

[(
f ′(∆Ln, η

∗)

f(∆Ln, η∗)

)2
]
,

and that the asymptotic covariance of the ML estimate is given by

ΣML = µ−1 (R∗P )−1 .

Lemma 4.2. Using the above notations we have

(
||iuϕ(u, η∗)||2C

)−1
= µ−1. (4.6.5)

Proof: Recall that µ was shown to be equal to the Fisher of the location parameter. We

do not prove (4.6.5) using direct computation, instead we reduce the problem to the e�ciency

result of the i.i.d. ECF method. More speci�cally, we show that (||iuϕ(u, η∗)||2C)
−1

can be

obtained as the asymptotic covariance of an e�cient ECF method for the problem of estimating

the location parameter of ∆L given an i.i.d. realization of ∆L.

To this end, consider the following identi�cation problem: given a sequence of i.i.d. realiza-

tions of the distribution ∆L + λ∗, where λ∗ is a location parameter to be estimated, and ∆L

is a random variable with known characteristic function ϕ.

According to [14] for an i.i.d. sample, which was generated by a random variable with a

general characteristic function χ(u, α∗), with α∗ being an unknown parameter, the ECF method

with the full continuum of u-s gives an asymptotically e�cient estimate of α∗ with asymptotic
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covariance

(||χα(u, α∗)||2C)−1.

Apply the ECF method to identify λ∗, and compute the asymptotic covariance of the procedure.

Let ϕ∆L+λ denote the c.f. of ∆L+ λ, then

∂

∂λ
ϕ∆L+λ(u, η) =

∂

∂λ
E
[
eiu(∆L+λ)

]
=

∂

∂λ

(
eiuλE

[
eiu∆L

])
= iuϕ∆L+λ(u, η).

(4.6.6)

Choosing χ = ϕ∆L+λ and α = λ we have χα(u, λ∗) = iuϕ∆L+λ(u, η
∗) and

(
||iuϕ(u, η∗)||2C

)−1
= µ−1

as stated in the Lemma. This also concludes the proof of Theorem 4.7.

4.7 Discussion

We have seen in the third step of our three-stage procedure the optimal choice of K is C⊗R∗P .

Here both C and R∗P are given by an expected value using the true value of parameters θ

and η, hence they are not computable. To overcome this di�culty in practice we propose to

approximate C and R∗P is two steps. First, de�ne the approximations Ĉ(θ, η) and R̂∗P (θ) by

Ĉk,l(θ, η) =
1

N

N∑
n=1

hk,n(θ, η)h∗l,n(θ, η),

and

R̂∗P (θ) =
1

N

N∑
n=1

εθn(θ)εθn(θ)T .
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We would like to use Ĉ(θ∗, η∗) and R̂∗P (θ∗), but since θ∗ and η∗ are unknown we approximate

them by θ̂N and η̂N(θ̂N), respectively. Recall that θ̂N is obtained in the �rst step and η̂N(θ̂N)

is obtained in the second step of the three-stage procedure. Thus, we use

K = Ĉ(θ̂N , η̂N(θ̂N))⊗ R̂∗P (θ̂N)

to get an approximation of
ˆ̂
θN(η̂N). It is relatively easy to see that Theorem 4.5 and 4.6 and

Theorem 4.7 are valid for this approximation of
ˆ̂
θN(η̂N), too.

Throughout the chapter it was assumed that E [∆Ln] = 0, arguing that this can be achieved

by preprocessing our data. A more rigorous approach to handling the case E [∆Ln] 6= 0 is to

incorporate the unknown mean in the parameter-vector and estimate this extended vector.
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Chapter 5

ECF identi�cation of linear Lévy

systems with possibly unstable zeros

In this chapter we investigate the possibility of implementing the ECF method for dependent

data using blocks of unprocessed observations. The purpose of this chapter is to extend the re-

sults presented in Chapter 4 to �nite dimensional stochastic Lévy systems with possibly unstable

zeros. Recall that both the PE method and the ML method as presented in Chapter 4 assume

that the system is non-minimum phase, i.e. it has a stable inverse. The same assumption is

used in [? ],[31] and [29]. In fact, the identi�cation of �nite dimensional linear stochastic sys-

tems with unstable zeros is barely discussed in the literature. A remarkable feature of the ECF

method is that it is naturally applicable to the identi�cation of �nite dimensional stochastic

systems with unstable zeros if properly adapted. Our starting point is the ECF method for

dependent data, as presented in the literature, using blocks of data, see [39]. This idea is then

extended by de�ning a c.f. in terms of data passed through a possibly non-FIR �lter. The

challenge of this approach is that the exact c.f. cannot be computed explicitly, which was a

key assumption for the ECF methods for i.i.d. data and linear Lévy systems. However, it is

59



C
E

U
eT

D
C

ol
le

ct
io

n

found that an unbiased estimator for the exact c.f. can be obtained under the assumption that

we can simulate the system with arbitrary feasible choice of the system parameters θ and noise

parameter η. The latter assumption is not unrealistic in view of the procedure presented in [18].

Thus we will �nally arrive at a procedure which can be viewed as a statistical output error

method. The actual data are compared to simulated data, and the parameters of the latter are

adjusted so as to ensure a good �t in a statistical sense. The resulting method can be analyzed

along the lines of the classic ECF, or rather GMM method. This chapter presents the results

of the recently submitted joint paper of the author, see [30].

In retrospect, our method also extends the classic ECF method for i.i.d. data for situations

when the c.f. is not available explicitly, but we do have an unbiased estimator of it in terms

of a parameter-dependent random variable, say ξ(η), which is computable via a mechanism of

the form

ξ(η) = F (ρ, η), (5.0.1)

where F is a �xed, known function of ρ and η, and ρ is a �xed random variable and η is

allowed to vary. The data are generated via a true η∗ and the problem is to identify η∗. The

above problem formulation is perfectly in line with the problem of system identi�cation with ρ

denoting the input noise and η∗ denoting the noise parameters.

5.1 ECF method for �ltered data

In this section we extend the ECF method to dependent data obtained by taking an i.i.d. se-

quence and passing it through a stable �nite dimensional linear system. A practically interesting

object of study is a linear stochastic system driven by a Lévy-process, or rather the increments

of a Lévy-process, see Chapter 4. Recall that we write the system in the form

∆y = A(θ∗, q−1)∆L, (5.1.1)
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where the time range is −∞ < n < +∞. Here ∆Ln, like before, denotes the increment of a

zero mean Lévy process (Lt) over an interval [(n− 1)h, nh), with h > 0 being a �xed sampling

interval. (Lt) itself is de�ned for −∞ < t < +∞, and it is tied to 0 at time t = 0, i.e. L0 = 0.

The condition

E [∆Ln] = 0

signi�cantly facilitates the analysis of the forthcoming ECF estimations methods, in analogy

with the analysis of the three-stage ECF method method, see Chapter 4. Although generally

not satis�ed by the Lévy processes presented in Chapter 2, it can be enforced by preprocessing

our data, as is customary in classic time series analysis.

The Lévy-measure of L will be denoted by ν(dx) = ν(dx, η∗), where η∗ denotes an unknown

parameter-vector with a known open range, say Dη ⊂ Cq. The system dynamics depends on

some unknown parameter-vector θ∗, taking its values from some known open set Dθ ⊂ Cp. Let

D∗θ and D
∗
η be compact domains such that θ∗ ∈ D∗θ ⊂ int Dθ and η

∗ ∈ D∗η ⊂ int Dη. We note

that the parameters θ∗ and η∗ are real valued.

Condition 5.1. The operator A(θ, q−1) is a stable, rational function of the backward-shift

operator q−1 for all θ ∈ Dθ. Moreover A(θ, q−1) is three-times continuously di�erentiable w.r.t.

θ for θ ∈ Dθ.

Note that we did not assume the inverse stability of the operator A(θ, q−1), in contrast

to standard identi�cation methods such as PE, ML or our three-stage method. Contrarily, we

assume the stability of A(θ, q−1). In particular, our method is suitable for the identi�cation of

moving average (MA) systems with unstable zeroes.

The smoothness of A(θ, q−1) w.r.t. θ should be interpreted as follows: there exists a

state-space realization of A(θ, q−1) such that the state-matrices are three-times continuously

di�erentiable w.r.t. θ for θ ∈ Dθ.
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Condition 5.2. We assume that for all q ≥ 1

∫
|x|≥1

|x|qν(dx) < +∞. (5.1.2)

Moreover, it is assumed that the driving noise (Lt) is a zero mean process:

E [Lt] = 0.

Now we are in the position to apply the ECF method for dependent data, following the

literature, in our special case. Consider the parametric family of systems (or equivalently time

series)

∆y(θ, η) = A(θ)∆L(η), (5.1.3)

with the time n taking its values in −∞ < n < +∞. Note that for (θ, η) = (θ∗, η∗) we

recover our observed data in a statistical sense. ∆L(η) denotes the increments of a Lévy

process with characteristics η, and it can be generated using the mechanism in (5.0.1). The

ECF methods proposed in the literature, see [39],[? ], are based on the computation of the

joint characteristic function of blocks of unprocessed data, i.e. for blocks of (yn). While this

computation can indeed be carried out for special cases, such as for Gaussian or stable noise

processes, the computation of the joint characteristic function is far from trivial in general. One

of the main contributions of this study is to address this challenge.

For a start, �x a block length, say r, and de�ne the r-dimensional blocks

∆Y r
n (θ, η) = (∆yn−1(θ, η), . . . ,∆yn−r(θ, η)).

Then the joint characteristic function of the block ∆Y r
n (θ, η), with u = (u1, . . . , ur)

T being an
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arbitrary vector in Rr, is given by

ϕn(u, θ, η) = E
[
eiu

T∆Y rn (θ,η)
]

= E
[
ei

∑r
j=1 uj∆Yn−j(θ,η)

]
.

Now, this can be explicitly computed, at least in theory. Letting hl(θ), l = 0, 1, . . . denote the

impulse responses of the system A(θ), we can write

ϕn(u, θ, η) = E

[
exp

{
i

r∑
j=1

uj

∞∑
l=0

hl(θ)∆Ln−j−l(η)

}]
=

E

[
exp

{
i
∞∑
k=1

∆Ln−k(η)
∑

l≥0,j+l=k

ujhl(θ)

}]
.

(5.1.4)

Fix k and consider the last term. Set l = k − j and introduce the notation

vk(θ, u) =
r∑
j=1

hk−j(θ)uj,

with hl(θ) = 0 for l < 0. Then v is the convolution of h and u:

v = h ∗ u.

Denoting the characteristic function of ∆Ln(η), for any n, by ϕ∆L(η), we get

ϕn(u, θ, η) =
∞∏
k=1

ϕ∆L(η)(vk(θ, u)). (5.1.5)

Now the ECF method could be de�ned by �tting this theoretical joint characteristic function

to the empirical joint characteristic function. Without providing details we point out that it is

not clear how to use such a procedure it in actual computations, since ϕn(u, θ, η) is given in

terms of an in�nite product.

To circumvent this di�culty let us return to the the de�nition of ϕn(u, θ, η). Note that a

63



C
E

U
eT

D
C

ol
le

ct
io

n

simple unbiased estimation of ϕn(u, θ, η) is given by

eiu
T∆Y rn (θ,η) = ei

∑r
j=1 uj∆Yn−j(θ,η).

We propose to �t this simulated value to the data, and introduce the scores

hn(u, θ, η) = eiu
T∆Y rn − eiuT∆Y rn (θ,η). (5.1.6)

Note that the score is essentially a kind of output error. Thus the proposed procedure will be

a generalization of the output error identi�cation method for the case when the actual input

process generating the data is not observed, but only statistically known if η∗ is known.

Note also that we can write the scores in the form

hn(u, θ, η) = ei (u∗∆y)n − ei (u∗∆y(θ,η))n , (5.1.7)

where u denotes the sequence u1, . . . , ur, interpreted as an impulse response. The advantage

of this representation is that, in theory, we can use in�nite sequences of u-s representing the

impulse responses of a �nite dimensional stable linear �lter.

A �nal note: in order to compute the above score functions one has to be able to generate

the i.i.d. noise sequence ∆Ln(η) for any given η, having a prescribed c.f. ϕ(u, η). This problem

has been addressed and solved in [18].

To see the details of our procedure, suppose that we are given a sequence of observed data

∆y1, . . . ,∆yN+r being the outputs of (5.1.3) with θ = θ∗, η = η∗. Construct the blocks of

observations ∆Y r
n = (∆yn−1, . . . ,∆yn−r) for each n with r < n ≤ N +r. Take a set of vectors

of dimension r, say u1, . . . ,uM , with M > p+ q. De�ne the score functions as follows

hk,n(θ, η) = eiu
T
k ∆yn − eiuTk ∆yn(θ,η) (5.1.8)
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for k = 1, . . . ,M and n = 1, . . . , N. Note that these are indeed appropriate score functions

because

E [hk,n(θ∗, η∗)] = 0.

For a �x n collecte the above scores over k we de�ne the M -vector

hn(θ, η) = (h1,n(θ, η), . . . , hM,n(θ, η))T . (5.1.9)

The sample average vector of the scores is de�ned as

hN(θ, η) =
1

N

N+r∑
n=r+1

hn(θ, η). (5.1.10)

Let gN(θ, η) denote the expected error, i.e. let

gN(θ, η) = E
[
hN(θ, η)

]
. (5.1.11)

Also introduce its limit via

g(θ, η) = lim
N→∞

gN(θ, η) = E
[
h

(s)

N (θ, η)
]
.

Clearly θ = θ∗, η = η∗ solves the over-determined system of M equations

g(θ, η) = 0.

Since g is not computable we consider the alternative, approximating equation

hN(θ, η) = 0,
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which will typically has no solution sinceM > p+q. Denote by ρ the merged parameter vector,

that is, ρ = (θ, η). Following the standard line of arguments for a �xed symmetric, positive

de�nite M ×M weighting matrix K we seek a solution of the 'half-gradient' equation

VN(ρ) = h
∗
ρN(ρ)K−1hN(ρ) = 0 (5.1.12)

to obtain the possibly complex valued ρ̂N = (θ̂N , η̂N). In the next section we concentrate on

the identi�cation of the system dynamics under the assumption that η∗ is known. We construct

the identi�cation procedure along lines of the just presented procedure.

5.2 Estimating the system dynamics

Thus, suppose now that η∗ is known and we are able to generate a sequence of i.i.d. random

variables statistically equivalent to ∆L(η∗). With a slight abuse of notations we shall use the

same notations for real and simulated noise sequences. De�ne the family of simulated time-

series parameterized by θ as follows:

∆yn(θ) = A(θ)∆Ln(η∗), (5.2.1)

with −∞ < n < +∞. Again, for θ = θ∗ we recover our observed data in a statistical sense.

The score functions are de�ned as

hk,n(θ) = eiu
T
k ∆yn − eiuTk ∆yn(θ). (5.2.2)
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One could easily mimic the steps of the construction of VN(θ, η) to de�ne VN(θ). Again, �x a

�nite set of u-s, say (u1, . . . ,uM). Merge the above scores to de�ne

hn(θ) = (h1,n(θ), . . . , hM,n(θ))T , (5.2.3)

and its sample average as

hN(θ) =
1

N

N+r∑
n=r+1

hn(θ). (5.2.4)

gN(θ) stands for the expected value of hN :

gN(θ) = E
[
hN(θ)

]
, (5.2.5)

its limit is denoted by g(θ) = limN→∞ gN(θ). Clearly θ = θ∗ solves the over-determined system

of equations

g(θ) = 0.

By approximating g by hN we de�ne θ̂N as the possibly complex valued solution of

VN(θ) := h
∗
θN(θ)K−1hN(θ) = 0. (5.2.6)

With a little e�ort one can show that the asymptotic value of the l.h.s. is then de�ned as

W (θ) = lim
N→∞

E [VN(θ)] = g∗θ(θ)K
−1g(θ).

One can also write the recurring auxiliary problem

V̄N(θ) = H∗K−1hN(θ) = 0,

with H = gθ(θ
∗).

67



C
E

U
eT

D
C

ol
le

ct
io

n

Condition 5.3. θ∗ is the unique solution of W (θ) = 0 in D∗θ .

Following the arguments given in [27] we get the following result:

Theorem 5.1. Under Conditions 5.1, 5.2 and 5.3 we have

θ̂N − θ∗ = W−1
θ (θ∗)V̄N(θ∗) +OM(N−1).

Now we are ready to calculate the asymptotic covariance of the estimator.

Theorem 5.2. Under Conditions 5.1, 5.2 and 5.3 the optimal choice of the weighting matrix

K is K = 2C and the asymptotic covariance matrix of θ̂N exists and with this choice is given

by

Σθθ = 2(H∗C−1H)−1,

where the kth row of H is given by −ϕTθ (uk, θ
∗, η∗).

Proof. The Jacobian of W (θ) w.r.t. θ at θ∗ is

R∗ = g∗θ(θ
∗)K−1gθ(θ

∗) = H∗K−1H.

Note that since ∆yn and ∆yn(θ∗) are independent as they are generated using two independent

copies of ∆Ln(η∗) sequences we have

Λ′k,l := E
[
h

(s)
k,n(θ∗)h

(s)∗
l,n (θ∗)

]
= 2 (ϕ(uk − ul, θ

∗, η∗)− ϕ(uk, θ
∗, η∗)ϕ(−ul, θ∗, η∗)) .

We note in passing that Λ′ = 2C. Thus the asymptotic covariance of V̄N -s is

S = H∗K−1Λ′K−1H.
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The asymptotic covariance of the estimator θ̂N is then

(H∗K−1H)−1 H∗K−1Λ′K−1H (H∗K−1H)−1.

Using the same linear algebra arguments as for i.i.d. samples we get that the optimal choice of

K is

K = Λ′ = 2C

yielding the asymptotic covariance for θ̂N

Σθθ = (H∗Λ′−1H)−1 = 2(H∗C−1H)−1.

Remark: Recall that H = gθ(θ
∗), so that the kth row of H is

∂

∂θ
E
[
hk(θ)

]∣∣∣∣
θ=θ∗

= −ϕθ(uk, θ∗, η∗),

and that the asymptotic covariance matrix of the noise estimate for i.i.d. sample is Σηη =

(G∗C−1G)−1, using the notations of Chapter 3. The covariance matrices

Σθθ = 2(H∗C−1H)−1

and

Σηη = (G∗C−1G)−1

have similar structure. The rows of H and G are derivatives of the characteristic function of

the observed data with respect to the unknown parameters θ and η, respectively.
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5.3 ECF for i.i.d. data revisited

In this section we give an extension of the ECF method for i.i.d. data under the assumption

that the c.f. is not known explicitly, but we do have a computable random variable ξ(η) such

that

ϕ(u, η) = E
[
eiuξ(η)

]
.

More exactly, we assume that we have a mechanism to compute an i.i.d. sequence ξn(η) given

by

ξn(η) = F (ρn, η),

where ρn is an i.i.d. sequence that we can generate, and F is a known function of ρ and η,

which is su�ciently smooth in η.

Let the true parameter be denoted by η∗, and let the observed sequence be

ξ∗n = F (ρ∗n, η
∗),

where (ρ∗n) is a realization of an i.i.d. sequence with given distribution. The problem is then to

identify η∗. The purpose of this exercise is to apply the procedure presented in Section 5.1 for

i.i.d. samples. An obvious candidate for a score function is now

hn(u, η) = eiuξn(η∗) − eiuξ(η),

where ξn(η∗) are real data and ξn(η) are simulated data. Taking a �nite set u-s, say u1, . . . , uM ,

de�ne

hk,n(η) = eiukξn(η∗) − eiukξ(η). (5.3.1)

From here we may proceed like above to de�ne the function VN(η) and the corresponding

objects hN(η), its expected value gN(η) and g = limN→∞ gN(η∗). The asymptotic covariance
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matrix of this modi�ed ECF estimator for i.i.d. data is given by the following result:

Theorem 5.3. Denote the asymptotic covariance matrix of the estimator for i.i.d. data without

a known characteristic function, but with a random variable that can be generated by (5.0.1),

by Σ′ηη. Then we have

Σ′ηη = 2(G∗C−1G)−1.

One can easily follow the line of reasoning presented in Chapter 3 and in the previous section

to obtain the above asymptotic covariance matrix Σ′ηη. Note that Σ′ηη = 2Σηη.

5.4 Factor models

It has been a widely believed common hypothesis that the dynamics of several stocks, such as

SP500, are determined by relatively small number of real or abstract economic factors. The

number of these factors can be as low as three. This hypothesis led to the development of

factor models. A factor model describes the dynamics of stock prices using only a small number

of underlying factors, such as stock market average, gross national product, employment rate

or abstract factors. Similar hypothesis can be formulated for the noise sources. Thus we are

induced to consider the return process (∆yt) de�ned by a linear stochastic systems:

∆y = F∆L, (5.4.1)

where F is a transfer function of dimension n×m, where n is the number of �nancial instruments

yi-s and m is the number of factors. Each ∆yi may correspond to the dynamic of the return

of a single stock. The motivation of the problem suggests that n is typically much larger m.

Factor models are particularly attractive when the driving factors are modeled by independent

Lévy processes (Li,t)-s. By merging (Li,t)-s into a vector we de�ne the m-dimensional vector

valued Lévy process (Lt). The objective is then to develop some analytical tools for the study
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of the random vector process yt = (y1,t, . . . , yn,t) with the above dynamics. Standard methods

for identifying the systems dynamics apply the Kálmán �lter with the PE method. The next

lemma gives the c.f. of a single observation yt.

Lemma 5.1. Let us suppose that the n-dimensional process (∆yt) is de�ned by (5.4.1), where

(Lt) is a vector valued Lévy process. Then the characteristic function ϕ∆yt(u) of ∆yt can be

written as

exp

{
m∑
j=1

∞∑
s=0

ψj
(
uTF·,j,s

)}
. (5.4.2)

where ψj is the characteristic exponent of ∆Lj, and F·,j,s denotes the j
th column of F.

Proof. For the kth component of yt we have

∆yk,t =
m∑
j=1

∞∑
s=0

fk,j,s∆Lj,t−s. (5.4.3)

Using that the coordinates of ∆L are independent write the c.f. of ∆yt as

ϕ∆yt(u) = E

[
exp

{
i

n∑
k=1

uk∆yk,t

}]
= E

[
exp

{
i

n∑
k=1

m∑
j=1

∞∑
s=0

ukfk,j,s∆Lj,t−s

}]
=

m∏
j=1

∞∏
s=0

(
exp

{
ψj

(
n∑
k=1

ukfk,j,t−s

)})
= exp

{
m∑
j=1

∞∑
s=0

ψj
(
uTF·,j,s

)}
,

(5.4.4)

which concludes the proof.

This lemma shows that the characteristic function of ∆yt is typically given in the form of

an in�nite product. Returning to the problem of estimating the dynamics, the key feature of

the last observation is that this characteristic function is not known explicitly. The above result

can be extended to blocks of data. Hence we face the same problem, the incomputability of

an in�nite product, like in the previous sections. A potential alternative is to follow the line of

arguments presented there: replace the joint c.f. of blocks of unprocessed data by the simulated
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empirical c.f. An interesting exception is when (Lj)-s are α-stable processes, in this case the

above in�nite product reduces to

exp

{
m∑
j=1

|uTF.,j|αψ(1)

}
,

but generally (5.4.2) cannot be simpli�ed.

Recall that the joint characteristic function of blocks of unprocessed data was also given by

an in�nite product, see (5.1.5). Thus, one may proceed like we did in the preceding sections to

estimate the system dynamics of factor models.
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Chapter 6

ECF estimation of the parameters of

GARCH processes

6.1 Basic properties of GARCH processes

An important stylized fact of �nancial time series is that the conditional variance of the return

process is not constant in time. This feature of �nancial data can be expressed by saying that it

has a time varying volatility. Therefore the process cannot be modeled by linear systems. Thus,

in particular, to analyze the dynamics of highly volatile �nancial instruments such as indices,

foreign exchange rates and commodities, a more sophisticated model should be proposed that

can re�ect the dynamic volatility of past data resulting in the well-known phenomena of volatility

clustering.

The �rst model that captured the above mentioned stylized fact was introduced by Engle

[22]. His model, the so called autoregressive conditional heteroscedasticity (ARCH) model, was

re�ned by Bollerslev [7]. Bollerslev's GARCH (generalized ARCH) model is one of the most

widely accepted models recently in the area of �nancial modeling.
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In this chapter we tackle one of key problems of the statistical analysis of GARCH models,

the parameter estimation problem, see [32]. When it comes to the identi�cation, the most

principled method in the literature is the quasi-maximum likelihood method, see for example

[6]. The main objective of this chapter is to study the possibility of adapting the ECF method to

GARCH processes with i.i.d. driving noise having known characteristic function. This possibility

has not been attracted many researchers until recently. In [38] a goodness of �t test is applied

using the empirical characteristic function, while in [25] a Fourier type method is presented for

power GARCH processes. Xu in [54] proposes to estimate the parameters of a GARCH model

with normal driving noise using the ECF method and presents some empirical investigations.

Technically, the special type of a GARCH(r, s) model to be studied in this chapter is de�ned

via the equations

yn = σn∆Ln (6.1.1)

σ2
n − γ∗ =

r∑
i=1

α∗i (y
2
n−i − γ∗) +

s∑
j=1

β∗j (σ
2
n−j − γ∗), (6.1.2)

where −∞ < n < +∞. The driving noise ∆Ln is obtained as the increment of a Lévy process

(Lt) with −∞ < t < +∞, and L0 = 0, over an interval [(n − 1)h, nh), with h > 0 being

a �xed sampling interval, and −∞ < n < +∞. The noise characteristic will be denoted by

η∗, i.e. the characteristic function of ∆Ln is ϕ(u, η∗). We assume that Lt has zero mean

and Var(∆Ln) = 1. Let F ∆L denote the natural �ltration, i.e. F ∆L
n = σ {∆Lk : k ≤ n}.

Under the above conditions γ∗ is the conditional variance of yn and σn given {yi : i < n}.

The unknown parameter vector θ∗ is de�ned as θ∗ = (α∗0, α
∗
1, . . . , α

∗
r , β

∗
1 , . . . , β

∗
r )
T . The second

order properties of a GARCH process was given by Bollerslev, see [7].

Theorem 6.1. The GARCH(r, s) process de�ned by (6.1.2) and (6.1.1) is second-order sta-

tionary with

E [yn] = 0, Cov(yn, ym) = 0 for n 6= m
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and

E
[
y2
n

]
= E

[
σ2
n

]
=

α∗0
1−

∑r
i=1 α

∗
i −

∑s
j=1 β

∗
j

if and only if
r∑
i=1

α∗i +
s∑
j=1

β∗j < 1.

De�nition 6.1. We say that a Lévy process (Lt) satis�es the moment condition of order Q if

∫
R
|x|qν(dx) <∞

holds for 1 ≤ q ≤ Q, where the Lévy measure of (Lt) is denoted by ν(dx).

De�ne the polynomials

C∗(q−1) =
r∑
i=1

α∗i q
−1 and D∗(q−1) = 1−

s∑
j=1

β∗j q
−1, (6.1.3)

with q−1 being the backshift operator. In order to guarantee the invertibility of the sensitivity

matrix we assume that C∗ and D∗ are relative prime. Using these polynomials (6.1.2) can be

written in the following compact form:

D∗(q−1)(σ2
n − γ∗) = C∗(q−1)(y2

n − γ∗). (6.1.4)

Let us de�ne the (r + s)-dimensional state vector

X∗n = (y2
n, . . . , y

2
n−r+1, σ

2
n, . . . , σ

2
n−s+1)T . (6.1.5)

It is easy to check that the dynamics of (X∗n) is then

X∗n+1 = A∗n+1X
∗
n + u∗n+1, n ∈ Z, (6.1.6)
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where A∗n ∈ R(r+s)×(r+s) is de�ned in terms of (∆Ln) as

A∗n =

 A∗n;1,1 A∗n;1,2

A∗n;2,1 A∗n;2,2

 ,

where

A∗n;1,1 =



α∗1(∆Ln)2 α∗2(∆Ln)2 · · · α∗r−1(∆Ln)2 α∗r(∆Ln)2

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


(6.1.7)

A∗n;1,2 =



β∗1(∆Ln)2 β∗2(∆Ln)2 . . . β∗s−1(∆Ln)2 β∗s (∆Ln)2

0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . .
...

...

0 0 . . . 0 0


(6.1.8)
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A∗n;2,1 =



α∗1 α∗2 · · · α∗r−1 α∗r

0 0 · · · 0 0

0 0 · · · 0 0

...
...

. . .
...

...

0 0 . . . 0 0


(6.1.9)

A∗n;2,2 =



β∗1 β∗2 . . . β∗s−1 β∗s

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


(6.1.10)

and

u∗n = (α∗0(∆Ln)2, 0, . . . , 0, α∗0, 0, . . . , 0)T ,

for each n, with α∗0 = γ∗
(

1−
∑r

i=1 α
∗
i −

∑s
j=1 β

∗
j

)
. Note that (A∗n, u

∗
n), n ∈ Z is a sequence

of i.i.d. random matrices. Moreover, (X∗n) is a Markov process with unobservable components.

The above given state space representation, which is the slight modi�cation of the one intro-

duced by Bougerol and Picard [? ], will be useful for proving L-mixing properties of (yn), (σn)

and related processes.

De�ne the p = r + s+ 1-dimensional parameter vector

θ = (α0, α1, . . . , αr, β1, . . . , βr)
T

and the real domain

D =

{
θ

∣∣∣∣∣
r∑
i=1

αi +
s∑
j=1

βj < 1

}
.

Note that for θ ∈ D the corresponding GARCH process with parameter vector θ is well-de�ned.
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We also de�ne a corresponding complex domain Dε by

Dε =

{
θ

∣∣∣∣∣Re

(
r∑
i=1

αi +
s∑
j=1

βj

)
< 1, | Im(αi)| < ε, | Im(βj)| < ε

}

Let D∗ε ⊂ int Dε be a compact domain such that θ∗ ∈ int D∗ε . For a �xed value θ ∈ Dε we

invert the GARCH system to recover the driving noise. De�ne the process (σn(θ)) in terms of

yn:

σ2
n(θ)− γ =

r∑
i=1

αi(y
2
n−i − γ) +

s∑
j=1

βj(σ
2
n−j(θ)− γ), (6.1.11)

with initial values yn = 0, σ2
n(θ) = γ, for all n ≤ 0. Then the estimated driving noise is de�ned

as

εn(θ) =
yn

σn(θ)
(6.1.12)

for n ≥ 0. Note that for θ = θ∗ the stationary solution of the inverse is

ε(s)
n (θ∗) =

yn

σ
(s)
n (θ)

= ∆Ln,

which is obtained by letting −∞ < n < ∞. Note that if θ = θ∗, then σn(θ) recovers σn at

least in a statistical sense.

6.2 ML method for GARCH processes

In this section we develop and implement a ML estimator for GARCH models driven by Lévy

processes. As in the subsequent sections we will present an ECF identi�cation method cor-

responding to the third stage of three-stage identi�cation method for linear systems that is

essentially asymptotically e�cient. Before proceeding to this in this section we compute the

asymptotic covariance of the ML method itself, to be able to compare the two asymptotic

covariance matrices.
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It can be shown along the lines of the ML method for linear systems that for the joint

density function fY of (y1, . . . , yn) and the joint density function f∆L of (∆L1, . . . ,∆Ln) we

have

fY (y1, . . . , yn) =
n∏
k=1

σk(θ)
−1f∆L (∆L1, . . . ,∆Ln) ,

because the determinant of the Jacobian of the transformation (∆L1, . . . ,∆Ln)→ (y1, . . . , yn)

is
∏n

k=1 σk(θ)
−1. We have that the asymptotic cost function of the ML estimator is given by

W (θ) = lim
n→∞

E
[
− log

(
f (εn(θ))σn(θ)−1

)]
= E

[
− log

(
f
(
ε(s)
n (θ)

)
σ(s)
n (θ)−1

)]
=

E
[
− log

(
f
(
ε(s)
n (θ)

))
+ log

(
σ(s)
n (θ)

)]
,

(6.2.1)

where f denotes the density function of ∆Ln. It is easy to check that Wθ(θ
∗) = 0 holds. For,

Wθ(θ
∗) = E

[
f ′(∆Ln)

f(∆Ln)
∆Ln

σ
(s)
θn (θ∗)

σ
(s)
n (θ∗)

+
σ

(s)
θn (θ∗)

σ
(s)
n (θ∗)

]
=

E

[
E

[(
f ′(∆Ln)

f(∆Ln)
∆Ln + 1

)
σ

(s)
θn (θ∗)

σ
(s)
n (θ∗)

∣∣∣∣∣F ∆L
n−1

]]
= E

[
σ

(s)
θn (θ∗)

σ
(s)
n (θ∗)

E
[
f ′(∆Ln)

f(∆Ln)
∆Ln + 1

]]
,

(6.2.2)

because εθn(θ∗) = −∆Ln
σθn(θ∗)
σn(θ∗)

, and σ
(s)
θn (θ∗) and σ

(s)
n (θ∗) are F ∆L

n−1 measurable. Note that

under appropriate regularity conditions on f we have

E
[
f ′(∆Ln)

f(∆Ln)
∆Ln

]
=

∫
R
f ′(x)xdx = [xf(x)]∞−∞ −

∫
R
f(x)dx = −1, (6.2.3)
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which implies the claim. For the Hessian of W write

Wθθ(θ) = − lim
n→∞

(
E

[
f ′′(ε

(s)
n (θ))

f(ε
(s)
n (θ))

ε
(s)
θn(θ)ε

(s)T
θn (θ)− f ′2(ε

(s)
n (θ))

f 2(ε
(s)
n (θ))

ε
(s)
θn(θ)ε

(s)T
θn (θ) +

f ′(ε
(s)
n (θ))

f(ε
(s)
n (θ))

ε
(s)
θθn(θ)

]

+ E

[
σ

(s)
θθn(θ)σ

(s)
n (θ)− σ(s)

θn (θ)σ
(s)T
θn (θ)

σ
(s)2
n (θ)

])
.

(6.2.4)

Using again the fact that σ
(s)
θn (θ∗) and σ

(s)
n (θ∗) are F ∆L

n−1 measurable we get thatWθθ(θ
∗) equals

to

E

[
σ

(s)
θn (θ∗)σ

(s)T
θn (θ∗)

σ
(s)2
n (θ∗)

]
E
[
f ′2(∆Ln)

f 2(∆Ln)
(∆Ln)2 − f ′′(∆Ln)

f(∆Ln)
(∆Ln)2 − 2

f ′(∆Ln)

f(∆Ln)
∆Ln − 1

]
+

E

[
σ

(s)
θθn(θ∗)

σ
(s)
n (θ∗)

]
E
[
f ′(∆Ln)

f(∆Ln)
∆Ln + 1

]
.

(6.2.5)

Using that under appropriate technical conditions we have

∫
R
f ′′(x)x2dx = [f ′(x)x2]∞−∞ − 2

∫
R
f ′(x)xdx = 2,

the previous formula can be written as

E

[
σ

(s)
θn (θ∗)σ

(s)T
θn (θ∗)

σ
(s)2
n (θ∗)

]
E
[
f ′2(∆Ln)

f 2(∆Ln)
(∆Ln)2 − 1

]
. (6.2.6)

By almost identical calculation we get that the covariance of the gradient of log-likehood

function

lθ,n(θ) =
f ′(∆Ln)

f(∆Ln)
ε

(s)
θn(θ) +

σ
(s)
θn (θ)

σ
(s)
n (θ)
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at θ = θ∗ is given by

Cov(lθ,n(θ∗), lTθ,n(θ∗)) = E

[
σ

(s)
θn (θ∗)σ

(s)T
θn (θ∗)

σ
(s)2
n (θ∗)

]
E
[
f ′2(∆Ln)

f 2(∆Ln)
(∆Ln)2 − 1

]
. (6.2.7)

Thus we have the following lemma.

Lemma 6.1. Let θ̂N the ML estimate of the parameters of a GARCH process. Then the

asymptotic covariance of
√
N
(
θ̂N − θ∗

)
is

µ−1(M∗)−1, (6.2.8)

with

M∗ = E

[
σ

(s)
θN(θ∗)σ

(s)T
θN (θ∗)

σ
(s)2
N (θ∗)

]
,

and

µ = E
[
f ′(∆LN)2

f 2(∆LN)
(∆LN)2 − 1

]
. (6.2.9)

The precise de�nition of the random vector θ̂N is analogous with that of the solution of

(3.1.5). A very nice interpretation of this µ is that it can be also obtained as the Fisher

information of a scale parameter estimation problem. Suppose that we are given an i.i.d.

realization of the scaled random variable λ∆L1, with the true value of λ being λ∗ = 1. Then

the λ-dependent density f(x, λ) of λ∆L1 is

f(x, λ) = f
(x
λ

) 1

λ
,

where f(· ) denotes the density function of ∆L1. Write

∂

∂λ
log f(x, λ) =

f ′
(
λ
x

)
f
(
λ
x

) (− x

λ2

)
− 1

λ
, (6.2.10)
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Hence taking into account (6.2.3) the Fisher information reads as

E

[(
∂

∂λ
log f(∆L1, λ)

)2
∣∣∣∣∣
λ=1

]
= E

[(
−f

′(∆L1)

f(∆L1)
∆L1 − 1

)2
]

=

E
[
f ′2(∆L1)

f 2(∆L1)
(∆L1)2 + 1 + 2

f ′(∆L1)

f(∆L1)
∆L1

]
= E

[
f ′2(∆L1)

f 2(∆L1)
(∆L1)2 − 1

]
.

(6.2.11)

Therefore we get the following lemma.

Lemma 6.2. µ in (6.2.9) can be interpreted as a Fisher information of a scale parameter

estimate.

In analogy with the analysis of the e�ciency of the three-stage method for linear systems

this property of µ will have a key role in proving the essentially asymptotic e�ciency of the

ECF method for GARCH systems.

6.3 ECF method for GARCH processes

Now we turn to the problem of identifying the parameters of a GARCH process by adapting

the approach of the ECF method. The ideas presented in this section show several similarities

with those of Chapter 4, yet we will see that the di�erent model structure poses numerous

new problems. Despite the fact that the dynamics of a GARCH process can be described as a

Markov process, the method presented in [12] does not solve this problem as it is not capable of

dealing with unobservable components. For GARCH models only (yn) is observable and (σn) is

a latent process. The paper of Carrasco, Chernov, Florens and Ghysels [12] tackles the problem

of estimating the parameters of an observable Markov process. Hereby we brie�y summarize

their �ndings. Let Xt be a Markov process that is generated with some unknown parameter

vector θ0. Let ϕ(s|Xt; θ) denote the conditional characteristic function

E
[
eisXt+1 |Xt

]
.
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The score functions used in the method are de�ned by

h(r, s,Xt, Xt+1; θ) = eirXt
(
eisxt+1 − ϕ (s|Xt; θ0)

)
.

They prove that under some conditions using continuum moment condition yields an estimator

that reaches the Cramer-Rao bound.

While this is a very attractive result, it does not solves the problems we consider in this

thesis. The process Xt is supposed to be observable, their proposed method cannot handle

latent components. The presence of latent component is natural in GARCH processes, hence the

method is not applicable for such processes. For such non-Markovian processes they propose to

use the joint characteristic function instead of the conditional one. De�ne the joint characteristic

function as

ϕ(τ, t, n) = E
[
eiτ

TYt
]
,

where τ = (τ0, . . . , τn)T and Yt = (Xt, . . . , Xt+n). This problem has been considered in [23] by

Feuerverger. The unknown parameter θ is estimated by �tting the empirical joint characteristic

function to the joint characteristic function using a weighting function. Feuerverger showed

that this estimator is as e�cient as the one that obtains θ̂ by solving

1

N

N∑
k=1

∂

∂θ
ln f(Xk+n|Xk+n−1, . . . , Xk+n; θ) = 0,

and shows that the resulting estimator is not e�cient for non-Markovian cases. In [23] it is

claimed that the variance of the estimator can be arbitrarily close to the Cramer-Rao bound

if n is chosen su�ciently large, but no proof is presented. Even if this claim were valid the

implementation of the procedure for large L would problematic. Moreover, Carrasco et all.

argues that for large n the available data provide only a few observation vectors of length n.

In this section as an alternative of the ML method we adapt the ECF method for GARCH
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processes. The motivation behind the adaptation of the ECF method again lies in the fact that

the density function of ∆Ln is typically unknown. Still our proposed procedure estimates θ∗ as

e�ciently as the ML method. We suppose that the characteristic η∗ of the noise is given and

we are to identify the system parameters θ∗. Although the three-stage method can be applied

for GARCH processes to identify the system and the noise characteristics, the results that we

obtained for linear systems cannot be reproduced. The problem of identifying both the system

parameters and the noise parameters will be brie�y discussed at the end of the chapter. The

following paragraphs present the identi�cation method with known η∗.

First, for each θ we de�ne the estimated volatility σ2
n(θ) and the estimated driving noise

εn(θ) for θ ∈ Dε, see equations (6.1.11) and (6.1.12). Following the philosophy of the ECF

method take a �x set ui-s, 1 ≤ i ≤M. We de�ne the p×1-dimensional modi�ed primary score

functions as

hk,n(θ) =
(
eiukεn(θ) − ϕ(u)

) σθn(θ)

σn(θ)
, (6.3.1)

where the modi�cation being the usage of the instrumental variable σθn(θ)
σn(θ)

. The choice of the

instrumental variable σθn(θ)
σn(θ)

is suggested by the construction of ECF method for linear systems.

Namely, recall that for linear Lévy systems the modi�ed primary score functions were de�ned

via (
eiukεn(θ) − ϕ(u)

)
εθn(θ),

where the instrumental variable εθn(θ) satis�es limn→∞ E
[
εθn(θ∗)εTθn(θ∗)

]
= R∗P . By ana-

logical thinking for GARCH processes we choose the instrumental variable IVn(θ) such that

limn→∞ E
[
IVn(θ∗)IV T

n (θ∗)
]

= M∗, hence the choice of

σθn(θ)

σn(θ)
.

Surprisingly we will see that this ad-hoc choice of instrumental variable yields an essentially
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asymptotically e�cient identi�cation method.

Since σn(θ), σθn(θ) are F ∆L
n−1 measurable

E
[
h

(s)
k,n(θ∗)

]
= 0

holds. In analogy with the linear case merge the score functions hk,n(θ)-s into a (r+ s+ 1)M -

dimensional column vector

hn(θ) =
(
hT1,n(θ), . . . , hTM,n(θ)

)T
.

De�ne hN(θ) = 1
N

∑N
n=1 hn(θ) the averaged score vector and

gN(θ) = E
[
hN(θ)

]
and g(θ) = lim

N→∞
gN(θ).

Note that the system of equations

g(θ) = 0

is over-determined with solution θ = θ∗, hence following the idea presented in Chapter 4 we

rede�ne the score function as follows. Fix a symmetric, positive de�nite, pM × pM weighting

matrix K. Since g is not computable we approximate it by hN and we seek a solution for the

'half-gradient' equation

V ′N(θ) = h
∗
θN(θ)K−1hN(θ) = 0 (6.3.2)

to obtain θ̂N . We note in passing that the system of equations in (6.3.2) is no longer over-

determined because dim VN = r + s+ 1. We mimic the steps of Chapter 4 in de�ning

G = gθ(θ
∗),
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and the auxiliary equation

V̄ ′N(θ) = G∗K−1hN(θ) = 0. (6.3.3)

The asymptotic cost function is then given by

W̄ ′(θ) = lim
N→∞

E[V ′N(θ)] = g∗θ(θ)K
−1g(θ),

and its Jacobian at θ = θ∗ is

R∗G = G∗K−1G.

Condition 6.1. The equation W̄ ′(θ) = 0 has a unique solution θ = θ∗ in D∗ε .

We will use our recurring M ×M auxiliary matrix C with elements

Ck,l = ϕ(uk − ul, η∗)− ϕ(uk, η
∗)ϕ(−ul, η∗),

recall that C is the covariance matrix of the primary score functions used in the i.i.d. ECF

method.

6.4 Analysis of the ECF method for GARCH processes

To analyze the process σ2
n(θ) we expand the state vector

X∗n = (y2
n, . . . , y

2
n−r+1, σ

2
n, . . . , σ

2
n−s+1)T

to

Xn(θ) = (X∗Tn , σ2
n(θ), . . . , σ2

n−s+1(θ))T . (6.4.1)
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Then the dynamics of Xn(θ) can be written as

Xn+1(θ) = An+1(θ)Xn(θ) + u∗n+1, (6.4.2)

where

An(θ) =

 A∗n Z

M2,1(θ) M2,2(θ)

 ,

with Z being an (r + s)× s zero matrix,

M2,1(θ) =



α1 · · · αr 0 · · · 0

0 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0


is an s× (r + s) dimensional matrix, and

M2,2(θ) =



β1 β2 · · · βs−1 βs

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


is of dimension s× s, and �nally

u∗n = (u∗Tn , 0, . . . , 0)T .

First we state two theorems from the theory of block-triangular random matrices that we

will use in the proofs, see [47]. ρ(P ) stands for the spectral radius of matrix P.
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Theorem 6.2. Let

P =

 P1 0

B P2


be a random (d1 +d2)×(d1 +d2) matrix in L2(Ω,F , P ), with P1 and P2 being square matrices.

Then

ρ [E [P ⊗ P ]] = max{ρ [E [P1 ⊗ P1]] , ρ [E [P2 ⊗ P2]]}

Similarly, let q be a positive integer and let us assume that P ∈ Lq(Ω,F , P ), then

ρ
[
E
[
P⊗q

]]
= max{ρ

[
E
[
P⊗q1

]]
, ρ
[
E
[
P⊗q2

]]
}.

Theorem 6.3. Let (Pn) be an i.i.d. sequence of random matrices such that ||P1|| ∈ Lq.

Assume that for some even integer q ≥ 2

ρ
[
E
[
P⊗q1

]]
< 1

holds. Then

λq := lim
n→∞

1

n
logE||Pn · · ·P1||q < 0.

It follows that for any ε > 0 we have

E||Pn · · ·P1||q ≤ Ce(λq+ε)n

with some C = C(ε) > 0.

The next lemma implies the L-mixing property of the state vector.

Lemma 6.3. Let D(q−1) be stable for all θ ∈ Dε and suppose that for some positive even Q

we have

ρ
[
E
[
(A∗0)⊗Q

]]
< 1.
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Then the process
(
Xn(θ)

)
is L-mixing of order Q uniformly in θ ∈ Dε.

Proof. Fix a τ ∈ Z+ and iterate the state space equation (6.4.2)

Xn(θ) = An(θ)Xn−1(θ) + u∗n = An(θ)An−1(θ)Xn−2(θ) + u∗n + An(θ)u∗n−1 = . . . =

An(θ) · · ·An−τ+1(θ)Xn−τ (θ) + u∗n + An(θ)u∗n−1 + . . .+ An(θ) · · ·An−τ+1(θ)u∗n−τ

(6.4.3)

Observe that

u∗n + An(θ)Xn−1(θ) + . . .+ An(θ) · · ·An−τ+1(θ)u∗n−τ

is F +
n−τ = σ{∆Li : i ≥ n− τ} measurable, thus

E
[
Xn(θ)|F +

n−τ
]

= u∗n + An(θ)Xn−1(θ) + . . .+ An(θ) · · ·An−τ+1(θ)u∗n−τ+

E
[
An(θ) · · ·An−τ+1(θ)Xn−τ (θ)|F +

n−τ
]

=

u∗n + An(θ)Xn−1(θ) + . . .+ An(θ) · · ·An−τ+1(θ)u∗n−τ+

An(θ) · · ·An−τ+1(θ)E
[
Xn−τ (θ)

]
,

because Xn−τ (θ) is independent of F +
n−τ . It follows that

Xn(θ)− E
[
Xn(θ)|F +

n−τ
]

= An(θ) · · ·An−τ+1(θ)
(
Xn−τ (θ)− E

[
Xn−τ (θ)

])
. (6.4.4)

Since Xn−τ (θ) is independent of An(θ) · · ·An−τ+1(θ) and ||AB|| ≤ ||A|| ||B|| for the

Lq-norm of (6.4.4) we have

E1/q
[
||An(θ) · · ·An−τ+1(θ)

(
Xn−τ (θ)− E

[
Xn−τ (θ)

])
||q
]
≤

E1/q
[
||An(θ) · · ·An−τ+1(θ)||q

]
E1/q

[
||Xn−τ (θ)− E

[
Xn−τ (θ)

]
||q
]
.

(6.4.5)

It is easy to see that Xn(θ)−E
[
Xn(θ)

]
isM -bounded of order Q, and for the �rst term of the

two-term product on the l.h.s. using Theorem 6.2 with the choice P1 = A∗n and P2 = M2,2(θ)
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yields ρ
[
E
[
A1(θ)⊗q

]]
< 1. Note that in this case the trivial version of Theorem 6.2 is used as

P2 is non-random. Hence, Theorem 6.3 implies that

E1/q||An(θ) · · ·An−τ+1(θ)||q ≤ C1/qe(λq+ε)τ/q.

Then choose ε > 0 such that λq +ε < 0. It follows that γq(τ,X(θ)) is summable, which means

by de�nition that
(
X(θ)n

)
is L-mixing or order Q uniformly in θ ∈ Dε.

Lemma 6.4. The process Xe,n(θ) :=
(
X
T

n (θ), X
T

θn(θ)
)T

is L-mixing of order Q uniformly in

θ ∈ Dε.

Proof. In order to analyze the derivative process we �rst determine its dynamics. Suppose that

we have a general parameter dependent recursion given by

ξn+1(θ) = Fn+1(θ)ξn(θ) + vn+1(θ), (6.4.6)

and we are interested in the dynamic of the derivative process ξθn(θ). For simplicity we assume

that θ is a scalar parameter, di�erentiating (6.4.6) we obtain

ξθ,n+1(θ) = Fθ,n+1(θ)ξn(θ) + Fn+1(θ)ξθ,n(θ) + vθ,n+1(θ). (6.4.7)

Thus the dynamics of the extended state vector ξe,n = (ξTn (θ), ξTθ,n(θ))T can be written in a

compact form:

ξe,n+1(θ) = Fe,n+1(θ)ξe,n(θ) + ve,n+1(θ), (6.4.8)

with

Fe,n(θ) =

 Fn(θ) 0

Fθ,n(θ) Fn(θ)

 ,

and ve,n(θ) =
(
vTn (θ), vTθ,n(θ)

)T
.
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It follows that the state-transition matrix, say Ae,n(θ), of the dynamics of Xe,n(θ) has two

identical blocks in the diagonal, namely An(θ)-s. Hence Theorem 6.3 implies that

ρ
[
E
[
Ae,n(θ)⊗q

]]
= ρ

[
E
[
An(θ)⊗q

]]
< 1.

Mimicking the steps of the proof of the previous lemma we obtain that Xe,n(θ) is L-mixing of

order Q uniformly in θ ∈ Dε. Similarly, the same can be shown if we further expand Xe,n(θ)

with the higher order derivatives of σn(θ).

As consequence we get that

hk,n(θ) =
(
eiukεn(θ) − ϕ(u)

) σθn(θ)

σn(θ)

and their derivatives w.r.t. θ up to order three are L-mixing of order Q. From now on we

may proceed as we did in Chapter 4. We get the following major result which is a precise

characterization of the estimation error:

Theorem 6.4. Assume that Condition 6.1 holds. Let D(q−1) be stable for all θ ∈ Dε and

suppose that for some positive even Q we have

ρ
[
E
[
(A∗0)⊗Q

]]
< 1.

Then for the estimation error we have

θ̂N − θ∗ = −(R∗G)−1V̄ ′N(θ∗) +O
Q/(2(r+s+1))
M (N−1).

The last formula equivalently can be written as

θ̂N − θ∗ = −(R∗G)−1G∗K−1hN(θ∗) +O
Q/(2(r+s+1))
M (N−1).
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6.5 E�ciency of the ECF method for GARCH pro-

cesses

In this section we show that the proposed ECF identi�cation method gives an essentially asymp-

totically e�cient estimate of the system characteristics of a GARCH process.

Theorem 6.5. Choose K = C ⊗M∗, then for the estimate θ̂N obtained with the method

presented in the previous section we have

E
[
N
(
θ̂N − θ∗

)(
θ̂N − θ∗

)∗]
= Σθθ +OM(N−1/2),

where the asymptotic covariance matrix is given by

Σθθ =
(
φ∗C−1φ

)−1
(M∗)−1,

with φ = (u1ϕ
′(u1), . . . , uMϕ

′(uM))T .

The proof is analogous with that of Theorem 4.6. Note that φ and ψ in Theorem 4.6 have

similar structure, but now

E
[
h

(s)
θ,k,n(θ∗)

]
= E

[
eiuk∆Lniukε

(s)
θn(θ∗)

σ
(s)
θn (θ∗)

σ
(s)
n (θ∗)

]
= ukϕ

′(uk, η
∗)M∗.

Now we will demonstrate that the above presented ECF method gives an essentially asymp-

totically e�cient estimate θ̂N . The line of reasoning is analogous with the one in the proof

of Theorem 4.6. Suppose that we use the full continuum of moment conditions. Then the

continuous version of (6.3.3) would read as

< K−1G, hN >= 0,
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where the inner product is de�ned on H = L2(π) =
{
f : R→ C

∣∣∫ |f(t)|2π(t)dt <∞
}
via

< f, g >=

∫
f(t)g∗(t)π(t)dt,

with π being a probability measure on R.

De�ne the π-dependent covariance operator

(Cf)(s) =

∫
c(s, t)f(t)π(t)dt, (6.5.1)

with

c(s, t) = E
[
hs,n(θ∗, η∗)h∗t,n(θ∗, η∗)

]
.

If the full continuum of u-s were de�ned via us = s for all s ∈ R, then the continuous version

of Theorem 6.5 would give

lim
N→∞

E
[
N
(
θ̂N − θ∗

)(
θ̂N − θ∗

)∗]
=
(
||uϕ′(u, η∗)||2C

)−1
(M∗)−1 (6.5.2)

for the asymptotic covariance matrix of the estimate θ̂N . Note that, like for linear system, in

the above formula the asymptotic covariance matrix decouples, ||uϕ′(u, η∗)||2C depends only on

η∗ and R∗P depends on the parameters of the GARCH system.

Now we are ready to demonstrate that the proposed estimation method is essentially asymp-

totically e�cient provided the full continuum of moment conditions is available.

Theorem 6.6. Under the conditions of Theorem 4.6 the estimate θ̂N is essentially asymptot-

ically e�cient.

Proof. Recall that the asymptotic covariance of the ML estimate of the parameters of GARCH

processes is

µ−1(M∗)−1, (6.5.3)
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with

M∗ = E

[
σ

(s)
θN(θ∗)σ

(s)T
θN (θ∗)

σ
(s)2
N (θ∗)

]
,

and

µ = E
[
f ′2(∆Ln)

f 2(∆Ln)
(∆Ln)2 − 1

]
. (6.5.4)

To complete the proof we only need to prove the following lemma.

Lemma 6.5. Using the notations above we have

(
||uϕ′(u, η∗)||2C

)−1
= µ−1. (6.5.5)

Again, we do not prove (6.5.5) using direct computation. Instead we show that

(
||uϕ′(u, η∗)||2C

)−1

can be obtained as the asymptotic covariance of an e�cient ECF method with the full continuum

moment conditions for the problem of estimating the scale parameter λ∗ of λ∗∆L, with λ∗ = 1,

given an i.i.d. realization of ∆L. The problem of e�ciency, like the analogues problem in

Theorem 4.2, is then reduced to the i.i.d. case.

To carry out the suggested argument solve the following identi�cation problem: estimate

the scale parameter λ given a sequence of i.i.d. realizations of the distribution λ∆L, where the

true value of λ is λ = λ∗ = 1. The characteristic function of ∆Z is denoted by ϕ, then the c.f.

ϕλ∆L(u, λ) of λ∆L is given by ϕ(uλ).

Recall that for an i.i.d. sample, which was generated by a random variable with a general

characteristic function χ(u, α∗), with α∗ being an unknown parameter, the ECF method using

the full continuum of u-s gives an asymptotically e�cient estimate of α∗ with asymptotic
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covariance

(||χα(u, α∗)||2C)−1.

Write the derivative of the c.f. of λ∆L w.r.t. λ

∂

∂λ
E
[
eiuλ∆L

]
= E

[
eiuλ∆Liu∆L

]
,

choosing λ = λ∗ = 1 gives

∂

∂λ
ϕλ∆L(u, λ)

∣∣∣∣
λ=λ∗

= uϕ′(u, λ∗).

Choosing χ = ϕλ∆L and α = λ we have χα(u, λ∗) = uϕ′(u, η∗). Hence for this identi�cation

problem the asymptotic covariance of the i.i.d. ECF method with full continuum u-s is

(
||uϕ′(u, η∗)||2C

)−1
.

Since the ECF method with continuum u-s is exactly as e�cient as the ML method we �nd that

(||uϕ′(u, η∗)||2C)
−1

equals to the inverse Fisher of the ML method, hence (6.5.5) follows.

6.6 Discussion

The optimal choice of K is C⊗M∗, but M∗ is given by an expected value using the true value

of parameters θ, so the optimal weighting matrix, like the optimal weighting matrix in the three-

stage method for linear systems, is not computable. We follow the line of arguments presented

in Section 4.7, we propose to approximate M∗ is two steps. First, de�ne the approximation

R̂∗P (θ) by

M̂∗(θ) =
1

N

N∑
n=1

σθn(θ)σTθn(θ)

σ2
n(θ)
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It would be convenient to use M̂∗(θ∗), but since θ∗ is unknown we approximate it by θ̂
(pre)
N ,

where θ̂
(pre)
N is a preliminary estimate obtained by using the ECF method for GARCH systems

with the choice K = I. Thus, we apply the ECF method with the weighting matrix

K = C ⊗ M̂∗
(
θ̂

(pre)
N

)

to get the approximation of θ̂N . It is relatively easy to see that Theorem 6.4 and Theorem 6.5

are valid for this approximation of θ̂N , too.

As we have already mentioned at the beginning of this chapter that although the three-

stage method can be applied for GARCH processes to identify both the system and the noise

characteristics, the results of Chapter 4 cannot be reproduced. In what follows we address this

issue. Being aware of the steps of the three-stage method for linear Lévy systems a three-stage

identi�cation method for GARCH systems can be proposed in a natural manner. Suppose now

that both θ∗ and η∗ are unknown. The steps of the proposed three-method can be summarized

as follows:

1. Firstly estimate θ∗ by applying the quasi-maximum likelihood method to obtain θ̂N .

2. Secondly invert the GARCH system with θ = θ̂N to generate the estimated noise process,

then estimate η∗ by pretending that these residuals are i.i.d., and apply the ECF method

for i.i.d. data to obtain η̂N .

3. Finally re-estimate θ∗ by applying the ECF method for system identi�cation, pretending

that η̂N = η∗, to obtain an estimate
ˆ̂
θN for the dynamics.

The problem with this three-stage method is that the tools presented for linear Lévy systems

cannot be adapted for its analysis. For, in analogy with the three-stage method for linear Lévy

systems the third step of the algorithm should give a consistent estimate of θ∗ even if the noise

characteristics η is misspeci�ed. The η-dependent modi�ed primary scores of the third step
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would be given by

hk,n(θ, η) =
(
eiukεn(θ) − ϕ(u, η)

) σθn(θ)

σn(θ)
.

Following the notations and the line of arguments of Section 6.3 in de�ning the η-dependent

scores, 'half-gradient' equations and corresponding variables the asymptotic value of function

V ′N(θ, η) would be given by

W̄ ′(θ, η) = lim
N→∞

E[V ′N(θ, η)] = g∗θ(θ, η)K−1g(θ, η).

Observe that if we are given a misspeci�ed η, then by solving W̄ ′(θ, η) = 0 for θ we typically

have a solution θ∗(η) such that

θ∗(η) 6= θ∗.

The reason behind is that for the instrumental variable we typically have that

E
[
σθn(θ∗)

σn(θ∗)

]
6= 0.

The study of this interesting problem will be a subject of our further research.
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Chapter 7

Recursive ECF estimation

In the literature the empirical characteristic function method is presented as an o�-line identi�-

cation method. While the results of the o�-line methods are attractive, the proposed algorithms

are ill-conditioned in many cases so that they requires special attention. As an alternative to

the o�-line method in this section we propose and analyze on-line empirical characteristic func-

tion methods. Such recursive methods enables us to carry out real-time statistical analysis as

new data points are processed instantly. In constructing these algorithms we follow the general

framework proposed by Djereveckii and Fradkov , see [19], and Ljung, see [40]. On-line meth-

ods are also used to complement a computationally expensive o�-line identi�cation method.

Namely, it would be uneconomical to re-estimate θ∗ using the o�-line method when a new

data point is received. Instead, we can argue that only a re�nement of the estimate θ̂N should

be computed using the newly received data point. This scenario not only shows a motivation

behind the study of recursive algorithms but also suggests that it is reasonable to suppose that

an initial guess of the parameter is close to θ∗.
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7.1 General recursive estimation scheme

We present a recursive estimation scheme within a general setup �rst formulated and solved for

dynamical systems by Djereveckii and Fradkov in [19] and Ljung in [40], hence the abbreviation

DFL-scheme. Several recursive identi�cation methods can be handled by this scheme, a nice

summary of this can be found in [41]. The basic building block of the scheme is the following

parameter-dependent state-space equation:

ξn+1(x) = A(x)ξn(x) +B(x)en, ξ0(x) = 0, (7.1.1)

where the parameter x is an element of an open domain D ⊂ Rp. In the above so-called frozen

parameter system ξ ∈ Rr is a state-vector with possibly unobservable components and e ∈ Rm

is an exogenous noise. x will be allowed to be time-varying taking values (xn) to be speci�ed

later. The next two conditions ensure the joint stability and the smoothness of the matrices

A(x) and B(x).

Condition 7.1. The family of r × r matrices {A(x), x ∈ D ⊂ Rd} is jointly stable, in the

sense that there exists a positive-de�nite n× n matrix P, and a λ with 0 < λ < 1 such that

AT (x)PA(x) ≤ λP,

holds for all x ∈ D.

Condition 7.2. A(x) and B(x) are continuously di�erentiable up to third order in D.

To analyze recursive algorithms we require the driving noise process (en) to be L-mixing,

what is more we require that it is L+-mixing in the sense de�ned below, de�ned in terms of the

approximation error

γq(τ, e) = sup
n≥τ

E1/q
[∣∣en − E

[
en|F +

n−τ
]∣∣q] ,
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see also the de�nition of L-mixing processes in Section 10.2.

Condition 7.3. (en) is strictly stationary and it is also L+-mixing with respect to a families

of σ-algebras (Fn,F +
n ) in the sense that for all integer τ ≥ 1 and q ≥ 1 with some c > 0 we

have

γq(τ, e) = O(τ−1−c).

A variety of methods that analyze recursive methods is based on the idea of approximating

(xn) using a trajectory of an ordinary di�erential equation (ODE). In the process of developing

the ODE method an often used assumption is that e2
n has some �nite positive exponential

moments. This leads to the de�nition of class M∗.

De�nition 7.1. Let (un), n ≥ 0 be a real-valued stochastic process. We say that (un) is in

class M∗ if for some ε > 0

M ε(u) := sup
n

1

ε
logE [eεun ] <∞.

Condition 7.4. (e2
n) is in M∗.

Let Q : Rr × Rd → Rd denote a function such that it is bounded by some polynomial of ξ

and the same holds for the derivatives of Q up to order three. In many standard identi�cation

method Q is a quadratic-form in ξ, but for the present application this will not hold. De�ne

F (x) = lim
n→∞

E
[
Q(ξn(x), x)

]
.

Now we are ready to formulate the abstract estimation problem related to the DFL-scheme:

solve for x the non-linear algebraic equation

F (x) = 0. (7.1.2)
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Without loss of generality we may assume that x = x∗ = 0 is a solution. We may assume that

D0 ⊂ D is a compact domain such that x∗ ∈ D0. Suppose that we are given an initial estimate

of x∗, say x0. Then the tentative recursion corresponding to the DFL scheme is given by

ξn+1 = A(xn)ξn +B(xn)en, ξ0 = 0. (7.1.3)

xn+1 = xn +
1

n+ 1
Q(ξn+1, xn) x0 ∈ D0, (7.1.4)

where (xn) denotes the sequence of generated estimates. Typically the initial estimate x0 is

close to x∗. A controversial issue is the problem of keeping (xn) in the domain D0. In order to

guarantee this a resetting mechanism is introduced. To make this modi�ed recursion formal we

denote the value of x computed at time n+ 1 using (7.1.4) by xn+1− and de�ne

xn+1 =


xn+1− if xn+1− ∈ D0

x0 if xn+1− ∈ Dc
0.

That is, if xn+1− leaves the domain D0 then a resetting is applied. This event is denoted by

Bn+1 = {ω|xn+1− ∈ Dc
0}. Hence (7.1.4) is replaced by

xn+1 = xn + (1− 1Bn+1)
1

n+ 1
Q(ξn+1, xn) + 1Bn+1(x0 − xn), (7.1.5)

where 1B is the indicator function of the event B ⊂ Ω.

Now we de�ne the di�erential equation, the solution trajectories of which re�ect the pattern

of behaviour of the sequence (xn). This so-called associated ordinary di�erential equation (ODE)

is de�ned by

ẏt =
1

t
F (yt), ys = ζ, (7.1.6)
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for t ≤ s ≤ 1. Alternatively, the associated ODE can be also de�ned as

ẏt = F (yt),

we allow this ambiguity in the de�nition of the ODE. Note that since F is well de�ned in D

and has continuous derivatives up to third order, the latter di�erential equation has a unique

solution y(t, s, ζ) in some interval for t. A variety of convergence results is based on the stability

of the above ODE (7.1.6), see [41], [? ], [? ] and [5]. For our application the stability of the

associated ODE is speci�ed by the next condition, which can be found in [28].

Condition 7.5. Let D0 ⊂ D be the compact truncation domain such that x∗ ∈ intD0. Assume

that there exists a compact convex set D′0 such that D0 ⊂ D′0 ⊂ D and for all t ≥ s ≥ 1 we

have

y(t, s, ζ) ∈ D′0 for ζ ∈ D0 and y(t, s, ζ) ∈ D for ζ ∈ D′0.

In addition limt→∞ y(t, s, ζ) = x∗ for ζ ∈ D and

∥∥∥∥ ∂∂ζ y(t, s, ζ)

∥∥∥∥ ≤ C(s/t)α

with some C > 1, α > 0 for all ζ ∈ D′0 and t ≥ s ≥ 1. We have an initial estimate ζ = y1 = x0

such that for all t ≥ s ≥ 1 we have y(t, s, ζ) ∈ intD0. Finally, for the star-like closure

D∗0 = {y |y = x∗ + λ(x− x∗), 0 ≤ λ ≤ 1, x ∈ D0}

of the set D0 we have D∗0 ⊂ D.

The asymptotic covariance matrix of the estimates will be closely related to that of the
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averaged correction terms. Hence de�ne

H(n, x, ω) := Q(ξ
(s)

n (x), x)

and the matrix P ∗ in terms of H as

P ∗ =
∞∑

m=−∞

E [H(m,x∗, ω)H∗(0, x∗, ω)] . (7.1.7)

The following result from [28] states that the above recursion indeed de�nes a sequence of xn-s

that converges to the solution of the equation F (x) = 0 and the rate of convergence of the

moments of the error is also given. What is more the result also gives it asymptotic covariance

matrix of the estimate.

Theorem 7.1. Assume that Conditions 7.1-7.4 are satis�ed and further assume that the di�er-

ential equation (7.1.6) satis�es Condition 7.5 with α > 1/2, then we have xN = OM(N−1/2).

Moreover, the asymptotic covariance matrix of the error process xN − x∗, de�ned by

Σxx = lim
N→∞

NE [(xN − x∗)(xN − x∗)∗] ,

exists and it satis�es the Lyapunov-equation

(A∗ + I/2)Σ∗xx + Σxx(A
∗ + I/2)∗ + P ∗ = 0,

where A∗ = Fx(x
∗).

An exciting special case is when the variable x can be split as x = (x1, x2) so that the

recursive estimation method is partially stochastic Newton w.r.t x1, meaning that the Jacobian
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matrix of the r.h.s. of the corresponding associated ODE at x = x∗ is of the form

 −I 0

J2,1 J2,2

 .

Then using simple linear algebra and Theorem 7.1 we conclude the following corollary.

Corollary 7.1. Assume that the conditions of Theorem 7.1 hold. Assume further that we can

split x as x = (x1, x2) so that the recursive estimation method is a partially stochastic Newton

method with respect to x1. Then the asymptotic covariance matrix of the recursive estimate

x1
N equals to P ∗1,1, which is the corresponding block of P ∗ de�ned in (7.1.7).

7.2 Recursive ECF for i.i.d. sample

The DFL-scheme provides a solution for the problem of estimating the parameters of a distri-

bution or a regression function using i.i.d. samples by simply choosing A(x) = 0 and B(x) = I

in (7.1.3). Although this is the subject of the classic paper Robbins-Monroe-scheme, see [? ],

to have a uni�ed treatment we shall discuss this problem using the DFL-scheme. A possible

motivation of this is the problem of identifying the noise characteristics of a Lévy process using

i.i.d. samples y1, y2, . . . generated by the increments of the process.

We suppose that the characteristic function of yi is known up to an unknown parameter η∗.

Let the c.f. of yi denoted by ϕ(u, η∗). Fix a set of real ui-s 1 ≤ i ≤ M. In this case following

the idea of the o�-line ECF method our aim is to solve the non-linear equation F (x) = 0 in

(7.1.2) with x = η and

F (η) = E
[
−ϕ∗η(η)K−1hN(η)

]
= 0,

where

ϕη(η) = (ϕη(u1, η), . . . , ϕη(uM , η))T
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and

hN(η) =
(
eiu1yN − ϕ(u1, η), . . . , eiuMyN − ϕ(uM , η)

)T
. (7.2.1)

A stochastic Newton method corresponding to this equation would read as

η̂N− = η̂N−1 −
1

N
(R∗E)−1

(
−ϕ̂∗η,NK−1ĥN

)
,

with R∗E = ϕ∗η(η
∗)K−1ϕη(η

∗). Since R∗ is unknown we estimate it using the most current

estimate of η∗. Hence we extend the parameter vector η to (η,R) and re-de�ne the equation

F (η) = 0 as

F (η,R) = E

 −ϕ∗η(η)K−1hN(η)

ϕ∗η(η)K−1ϕη(η)−R

 =

 0

0

 .

Let the variables ϕ̂η,N and ĥN be obtained by using the most current estimate of η∗, that is

ϕ̂η,N = ϕη,N(η̂N−1) = (ϕη(u1, η̂N−1), . . . , ϕη(uM , η̂N−1))T

ĥN = hN(η̂N−1) =
(
eiu1yn − ϕ(u1, η̂N−1), . . . , eiuMyn − ϕ(uM , η̂N−1)

)T
.

(7.2.2)

Let η̂0 and R̂0 be initial guesses and let η̂N and R̂N be computed using a partially stochastic

Newton method as follows:

Algorithm 7.1 (Recursive i.i.d. ECF method).

η̂N− = η̂N−1 −
1

N
R̂−1
N−1

(
−ϕ̂∗η,NK−1ĥN

)
R̂N− = R̂N−1 +

1

N

(
ϕ̂∗η,NK

−1ϕ̂η,N − R̂N−1

)
.

(7.2.3)

We note in passing that instead of applying a recursion for computing R̂N− we could de�ne
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it by simple substitution:

R̂N− = ϕ∗η(η̂N)K−1ϕη(η̂N).

The reason behind our choice is that it �ts into the general framework of DFL-scheme. Denote

the expected value of hN(η) by g(η):

g(η) = E [hN(η)] = (ϕ(u1, η
∗)− ϕ(u1, η), ϕ(uM , η

∗)− ϕ(uM , η))T .

The corresponding associated ODE with the extended variable is given by

η̇t = −R−1
t

(
−ϕ∗η(ηt)K−1g(ηt)

)
Ṙt = ϕ∗η(ηt)K

−1ϕη(ηt)−Rt

(7.2.4)

for t > 0. We have seen that in case of an o�-line identi�cation method the optimal choice of

K is K = C. Recall the notation C with entries

Ck,l = ϕ(uk − ul, η∗)− ϕ(uk, η
∗)ϕ(−ul, η∗).

Obviously for i.i.d. samples most of the conditions of Theorem 7.1 are satis�ed: in (7.1.3) we

have A = 0 and B = I, furthermore we have that (yn) is strictly stationary and L-mixing.

Therefore Theorem 7.1 and Corollary 7.1 imply the following result:

Theorem 7.2. Suppose that we are given an i.i.d. data generated by a random variable X

such that X2 is in M∗, suppose further that the di�erential equation (7.2.4) satis�es Condition

7.5. Then the Algorithm 7.1 equipped with resetting is convergent and we have

η̂N − η∗ = OM(N−1/2).

107



C
E

U
eT

D
C

ol
le

ct
io

n

Furthermore, if K = C then the asymptotic covariance matrix Σ
(rec)
ηη of η̂N is given by

Σ(rec)
ηη = (ϕ∗η(η

∗)C−1ϕη(η
∗))−1.

Hence, the estimate η̂N is essentially asymptotically e�cient.

Note that the local stability of the ODE with α > 1/2 follows. For, the Jacobian of the

ordinary di�erential equation at η = η∗ and R = R∗ is

 −I 0

J2,1 −I

 ,

thus each eigenvalue of the Jacobian is -1, hence the top Lyapunov exponent can be chosen

to be equal to −1 + c with any c > 0, which implies that the ODE is locally stable with

α > 1/2. The structure of the above Jacobian also shows that the proposed method is a

partially stochastic Newton method w.r.t. η.

7.3 Recursive ECF for linear Lévy systems with known

noise characteristics

This section is devoted to the presentation of a recursive ECF method for linear Lévy systems

with known noise characteristics. Recall the de�nition of linear Lévy systems from Chapter 4:

∆y = A(θ∗, q−1)∆L, (7.3.1)

de�ned for the time range −∞ < n < +∞, where ∆Ln is the increment of a Lévy process

(Lt) with −∞ < t < +∞, and L0 = 0, over an interval [(n − 1)h, nh), with h > 0 being a

�xed sampling interval, and −∞ < n < +∞. Let us assume that a state space representation
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in innovation form for this model is given by

∆Xn+1 = H(θ∗)∆Xn +K(θ∗)∆Ln (7.3.2)

∆Yn = T (θ∗)∆Xn + ∆Ln. (7.3.3)

Then H(θ)−K(θ)T (θ) is the state transition matrix of the inverse process. We will need the

following stability conditions:

Condition 7.6. It is assumed that the system matrix H(θ∗) is stable and H(θ) −K(θ)T (θ)

are jointly stable for θ ∈ Dθ.

The next condition guarantees the smooth dependence of the system matrices on θ :

Condition 7.7. Assume that H(θ), K(θ) and T (θ) are three-times continuously di�erentiable

w.r.t. θ for θ ∈ Dθ.

The novel problem of identifying the system parameters θ∗, using the ECF method, under

the assumption that the noise characteristics η∗ is known was presented in Chapter 4. We may

wish to solve the same problem, but now with a recursive method.

Suppose that we are given the noise characteristics η∗. Fix a set of real ui-s 1 ≤ i ≤ M.

Following the third step of the o�-line estimation method we seek the solution of the non-linear

equation F (x) = 0 with x = θ and

F (θ) = E
[
G∗K−1h

(s)
N (θ; η∗)

]
,

where

h
(s)
N (θ; η∗) =

((
eiu1ε

(s)
N (θ) − ϕ(u1, η

∗)
)
ε

(s)T
θN (θ), . . . ,

(
eiuMε

(s)
N (θ) − ϕ(uM , η

∗)
)
ε

(s)T
θN (θ)

)T
.

Clearly θ = θ∗ is the solution of this equation. Similarly to the i.i.d. case we would like to apply
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a stochastic Newton method, which requires the introduction of the Jacobian R∗, the true value

of which is known to be R∗ = G∗(θ∗, η∗)K−1G(θ∗, η∗). In order to compute R∗ we need the

value of G(θ∗, η∗) = ψ⊗R∗P , where ψ = (iu1ϕ(u1, η
∗), . . . , iuMϕ(uM , η

∗))T , for G(θ∗, η∗) see

the proof of Theorem 4.6. Since these are not computable without the knowledge of θ∗, and

G(θ∗, η∗) can be computed only empirically, we approximate G(θ∗, η∗) using the most current

estimate of θ∗. To this end we extend the parameter vector to (θ,G,R) and re-de�ne equation

F (θ) = 0 by

F (θ,G,R) = E


G∗K−1h

(s)
N (θ; η)

G− h(s)
θN(θ; η)

G∗K−1G−R

 , (7.3.4)

where h
(s)
θN(θ) shows up in the derivative of h

(s)
N (θ) w.r.t. θ, and de�ned by

h
(s)
θN(θ) :=

((
iu1e

iu1ε
(s)
N (θ)ε

(s)
θ,N(θ)ε

(s)∗
θ,N (θ)

)T
, . . . ,

(
iuMe

iuMε
(s)
N (θ)ε

(s)
θ,N(θ)ε

(s)∗
θ,N (θ)

)T)T
,

(7.3.5)

which is obtained by dropping the term containing −u2
je
iujε

(s)
N (θ)ε

(s)
θθ,N(θ)-s, which has zero

expectation at θ = θ∗, from the derivative of h
(s)
N (θ).

Suppose we are given a set of initial values of the parameter: θ̂0 ∈ D0θ is the initial value

of θ and ĝθ,0 is the initial value of G. The set of initial values of the parameter is given by

{ε̂0, ε̂θ,0} . Here θ̂0 might have been previously obtained by an o�-line identi�cation method.

Likewise ε̂0, ε̂θ,0, ĝθ,0 might be obtained previously or we can set them to be equal to 0. The

recursive algorithm at step N updates the estimates as follows: given the previous estimates
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�rst compute the auxiliary variables using the most current estimate of θ∗ according to

ε̂N = A−1
(
θ̂N−1

)
∆yN

ε̂θ,N = A−1
θ

(
θ̂N−1

)
∆yN

ĥN(η∗) =
((
eiu1ε̂N − ϕ(u1, η

∗)
)
ε̂Tθ,N , . . . ,

(
eiuM ε̂N − ϕ(uM , η

∗)
)
ε̂Tθ,N

)T
ĥθ,N =

((
iu1e

iu1ε̂N ε̂θ,N ε̂
∗
θ,N

)T
, . . . ,

(
iuMe

iuM ε̂N ε̂θ,N ε̂
∗
θ,N

)T)T
.

(7.3.6)

Following the special form of the o�-line estimation method presented in Chapter 4 we de�ne

a stochastic Newton method via the following algorithm:

Algorithm 7.2 (Re-estimating recursive ECF method).

θ̂N− = θ̂N−1 −
1

N
R̂−1
S,N−1

(
ĝ∗θ,N−1K

−1ĥN(η∗)
)

ĝθ,N− = ĝθ,N−1 +
1

N

(
ĥθ,N − ĝθ,N−1

)
,

(7.3.7)

where

R̂S,N−1 = ĝ∗θ,N−1K
−1ĝθ,N−1.

The Jacobian of the Note that the third component G∗K−1G−R in (7.3.4) is non-random,

hence R̂S,N−1 is computed by simple substitution. These tentative values need to be modi�ed

with a suitable resetting mechanism as described in connection with the general DFL-scheme.

In order to de�ne the associated ODE �rst take the expectations of the frozen parameter

correction terms h
(s)
θN(θ; η) and h

(s)
N (θ; η), showing up on the r.h.s. of 7.3.4:

g(θ; η∗) = E
[((

eiu1ε
(s)
n (θ) − ϕ(u1, η

∗)
)
ε

(s)T
θ,n (θ), . . . ,

(
eiuMε

(s)
n (θ) − ϕ(uM , η

∗)
)
ε

(s)T
θ,n (θ)

)T]
,

gθ(θ) = E

[((
iu1e

iu1ε
(s)
n (θ)ε

(s)
θ,n(θ)ε

(s)∗
θ,n (θ)

)T
, . . . ,

(
iuMe

iuMε
(s)
n (θ)ε

(s)
θ,n(θ)ε

(s)∗
θ,n (θ)

)T)T]
.
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Then the corresponding associated ODE reads as

θ̇t = −R−1
S,t

(
g∗θ,tK

−1g(θt; η
∗)
)

ġθ,t = gθ(θt)− gθ,t,
(7.3.8)

where

RS,t = g∗θ,tK
−1gθ,t.

It is easy to check that the Jacobian matrix of (7.3.8) at (θ∗, G(θ∗, η∗)) is a lower triangular

matrix with −I blocks in the diagonal, thus all eigenvalues are equal to −1. It follows that

the solution of the ODE is locally stable with α = 1/2, see Condition 7.5 for the de�nition of

α. Moreover, the structure of the Jacobian also shoves that the on-line method is a partially

stochastic Newton method w.r.t. θ.

Recall the notation of Chapter 4

R∗P = E
[
ε

(s)
θn(θ∗)ε

(s)T
θn (θ∗)

]
.

Theorem 7.1 and Corollary 7.1 together with Theorem 4.7, giving the asymptotic covariance

matrix of the re-estimated system parameter, imply the following result:

Theorem 7.3. Suppose that for the Lévy system Condition 7.6 and Condition 7.7 are satis�ed.

Suppose further that for the driving Lévy process we have that ((∆Ln)2) is in M∗ and that the

di�erential equation (7.3.8) satis�es Condition 7.5.Then for the estimate θ̂N obtained by the

above recursive method in Algorithm 7.2 modi�ed by a suitable resetting mechanism we have

θ̂N − θ∗ = OM(N−1/2).
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Moreover, if K = C ⊗R∗P , then the asymptotic covariance matrix Σ
(rec)
θθ of θ̂N − θ∗ is given by

Σ
(rec)
θθ =

(
ψ∗C−1ψ

)−1
(R∗P )−1 ,

with ψ = (iu1ϕ(u1, η
∗), . . . , iuMϕ(uM , η

∗))T . Hence, the proposed on-line method is essen-

tially asymptotically e�cient.

7.4 Recursive ECF for linear Lévy systems

Now we are ready to present and analyze a recursive identi�cation method that estimates both

the system and the noise characteristics by converting the three-stage method presented in

Chapter 4 to a recursive method. Suppose that the dynamics of (yn) follows (7.3.1). Fix a

set of real ui-s 1 ≤ i ≤ M. In this case we de�ne the non-linear equation F (x) = 0 in (7.1.2)

by merging the asymptotic equations corresponding to the PE method, the ECF method for

the noise characteristics η∗ and the ECF method for the re-estimation of θ∗. Accordingly, x is

de�ned as x = (θP , RP , η, RE, θS, G,RS). Observe that θ is duplicated, in the sense that θ̂P

and θ̂S both are expected to converge to θ∗. This separation of the recursive PE estimate θ̂P

and the ECF estimate θ̂S guarantees that the Jacobian matrix of the corresponding associated
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ODE will be lower triangular. Now we are ready to de�ne F by

F (θP , RP , η, RE, θS, G,RS) = E



ε
(s)
θPN

(θP )ε
(s)
N (θP )

ε
(s)
θPN

(θP )ε
(s)T
θPN

(θP )−RP

−ϕ∗η(η)K−1
E h

(s)
E,N(θP , η)

ϕ∗η(η)K−1
E ϕη(η)−RE

G∗K−1
S h

(s)
S,N(θS, η)

G− h(s)
S,θN(θS, η)

G∗K−1
S G−RS



,

where the auxiliary variables are de�ned in analogy with the ones in the previous two sections

as

ϕη(η) = (ϕη(u1, η), . . . , ϕη(uM , η))T

h
(s)
E,N(θ, η) =

(
eiu1ε

(s)
N (θ) − ϕ(u1, η), . . . , eiuMε

(s)
N (θ) − ϕ(uM , η)

)T
h

(s)
S,N(θ, η) =

((
eiu1ε

(s)
N (θ) − ϕ(u1, η)

)
ε

(s)T
θN (θ), . . . ,

(
eiuMε

(s)
N (θ) − ϕ(uM , η)

)
ε

(s)T
θN (θ)

)T
h

(s)
S,θN(θ) =

((
iu1e

iu1ε
(s)
n (θ)ε

(s)
θ,n(θ)ε

(s)∗
θ,n (θ)

)T
, . . . ,

(
iuMe

iuMε
(s)
n (θ)ε

(s)
θ,n(θ)ε

(s)∗
θ,n (θ)

)T)T
.

Note that to di�erent ECF scores hE and hS are being used, one estimates η∗ and another

re-estimates θ∗. Let us suppose that we are given the initial values of the parameters: θ̂P,0, R̂P,0

are the initial values of the recursive PE method, see [41], η̂0, R̂E,0 are the initial values of the

recursive ECF method for the noise characteristics, see Section 7.2 and θ̂S,0, ĝθ,0 are the initial

values of the recursive ECF re-estimation method, see Section 7.3. We assume that each of

these initial values are the element of the corresponding truncation domain and θ̂P,0 = θ̂S,0 is a

reasonable choice. We are also given a set of initial values ε̂P,0, ε̂P,θ,0, ε̂S,0, ε̂S,θ,0. Clearly, these

values might have been obtained by carrying out an o�-line identi�cation method, otherwise
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we may set all of them to be equal to zero.

The recursive algorithm at step N updates the estimates as follows: given the previous

estimates of the parameters �rst compute the estimated driving noise and its derivative using

the most current values of the parameters as

ε̂P,N = A−1
(
θ̂P,N−1

)
∆yN

ε̂P,θ,N = A−1
θ

(
θ̂P,θ,N−1

)
∆yN

ε̂S,N = A−1
(
θ̂S,N−1

)
∆yN

ε̂S,θ,N = A−1
θ

(
θ̂S,θ,N−1

)
∆yN .

(7.4.1)

While the �rst two equations correspond to the recursive PE method, the last two equations

correspond to the re-estimating ECF method for linear systems. In analogy with the previous two

sections we also de�ne the auxiliary variables using the most current values of the parameters

according to

ϕ̂η,N = (ϕη(u1, η̂N−1), . . . , ϕη(uM , η̂N−1))T

ĥE,N =
(
eiu1ε̂P,N − ϕ(u1, η̂N−1), . . . , eiuM ε̂P,N − ϕ(uM , η̂N−1)

)T
ĥS,N =

((
eiu1ε̂S,N − ϕ(u1, η̂N−1)

)
ε̂TS,θ,N , . . . ,

(
eiuM ε̂S,N − ϕ(uM , η̂N−1)

)
ε̂TS,θ,N

)T
ĥS,θ,N =

((
iu1e

iu1ε̂S,N ε̂S,θ,N ε̂
∗
S,θ,N

)T
, . . . ,

(
iuMe

iuM ε̂S,N ε̂S,θ,N ε̂
∗
S,θ,N

)T)T
.

(7.4.2)

The recursive version of the three-stage method is then given as follows:

Algorithm 7.3 (Three-stage recursive ECF method). First apply the recursive PE method

de�ned as

θ̂P,N− = θ̂N−1 −
1

N
R̂−1
P,N−1ε̂P,θN ε̂

T
P,N

R̂P,N− = R̂E,N−1 +
1

N

(
ε̂P,θN ε̂

T
P,θN − R̂P,N−1

)
,

(7.4.3)
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then apply the recursive ECF method for the noise characteristics de�ned via

η̂N− = η̂N−1 −
1

N
R̂−1
E,N−1

(
−ϕ̂∗η,NK−1

E ĥE,N

)
R̂E,N− = R̂E,N−1 +

1

N

(
ϕ̂∗η,NK

−1
E ϕ̂η,N − R̂P,N−1

)
,

(7.4.4)

�nally re-estimate θ∗ using the recursive ECF method de�ned by

θ̂S,N− = θ̂N−1 −
1

N
R̂−1
S,N−1

(
ĝ∗θ,N−1K

−1
S ĥS,N

)
ĝθ,N− = ĝθ,N−1 +

1

N

(
ĥS,θ,N − ĝθ,N−1

)
,

(7.4.5)

where R̂S,N−1 = ĝ∗θ,N−1K
−1ĝθ,N−1.

These tentative values need to be modi�ed using a suitable resetting mechanism as described

in connection with the DFL-scheme. Write the expectations of the frozen parameters as

RP (θP ) = E
[
ε

(s)
θ,n(θP )ε

(s)T
θ,n (θP )

]
hE(θP , η) = E

[(
eiu1ε

(s)
n (θP ) − ϕ(u1, η), . . . , eiuMε

(s)
n (θP ) − ϕ(uM , η)

)T]
hS(θS, η) = E

[((
eiu1ε

(s)
n (θS) − ϕ(u1, η)

)
ε

(s)T
θ,n (θS), . . . ,

(
eiuMε

(s)
n (θS) − ϕ(uM , η)

)
ε

(s)T
θ,n (θS)

)T]
gθ(θS) = E

[((
iu1e

iu1ε
(s)
n (θS)ε

(s)
θ,n(θS)ε

(s)∗
θ,n (θS)

)T
, . . . ,

(
iuMe

iuMε
(s)
n (θS)ε

(s)
θ,n(θS)ε

(s)∗
θ,n (θS)

)T)T]
.

Recall the notation

WP,θP (θP ) = E
[
ε

(s)
θn(θP )ε(s)

n (θP )
]
.

In terms of the above expectations the ODE corresponding to the recursive PE method reads

as

θ̇P,t = −R−1
P,tWP,θP (θP,t)

ṘP,t = RP (θP,t)−RP,t,

(7.4.6)
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while that of the recursive ECF method for noise characteristic is given by

η̇t = −R−1
E,t

(
−ϕ∗η(ηt)K−1hE(θP,t, ηt)

)
ṘE,t = ϕ∗η(ηt)K

−1
E ϕη(ηt)−RE,t

(7.4.7)

and �nally the ODE of the ECF method system parameters can be written as

θ̇S,t = −R−1
S,t

(
g∗θ,tK

−1
S hS(θS,t, ηt)

)
ġθ,t = gθ(θS,t)− gθ,t,

(7.4.8)

where RS,t = g∗θ,tK
−1gθ,t. By merging the above three ODE-s we get the associated ODE of

the recursive three-stage identi�cation method:

θ̇P,t = −R−1
P,tWP,θP (θP,t)

ṘP,t = R(θP,t)−RP,t

η̇t = −R−1
E,t

(
−ϕ∗η(ηt)K−1hE(θP,t, ηt)

)
ṘE,t = ϕ∗η(ηt)K

−1
E ϕη(ηt)−RE,t

θ̇S,t = −R−1
S,t

(
g∗θ,tK

−1
S hS(θS,t, ηt)

)
ġθ,t = gθ(θS,t)− gθ,t.

(7.4.9)

The Jacobian of the r.h.s. at

(θP , RP , η, RE, θS, G) = (θ∗, R∗P , η
∗, R∗E, θ

∗, G(θ∗, η∗))
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is given by 

−I 0 0 0 0 0

J2,1 −I 0 0 0 0

0 0 −I 0 0 0

0 0 J4,3 −I 0 0

0 0 0 0 −I 0

0 0 0 0 J6,5 −I


.

Hence the solution of the ODE 7.4.9 is locally stable with α = 1/2, see Condition 7.5 for the

de�nition of α. The structure of the above Jacobian matrix and Theorem 7.1 together with

Corollary 7.1 imply the next result.

Theorem 7.4. Let θ̂S,N and η̂N be the N th-step estimate of the parameters obtained by the

recursive estimation in Algorithm 7.3 using a suitable resetting mechanism. Suppose that for

the Lévy system Condition 7.6 and Condition 7.7 are satis�ed. Suppose further that for the

driving Lévy process we have that ((∆Ln)2) is in M∗ and that the di�erential equation (7.4.9)

satis�es Condition 7.5. Then we have

η̂N − η∗ = OM(N−1/2) and θ̂S,N − θ∗ = OM(N−1/2).

Furthermore, if KE = C then the asymptotic covariance matrix Σ
(rec)
ηη of η̂N is given by

Σ(rec)
ηη = (ϕ∗η(η

∗)C−1ϕη(η
∗))−1,

and if KS = C ⊗R∗P , then the asymptotic covariance matrix Σ
(rec)
θθ of θ̂S,N − θ∗ is given by

Σ
(rec)
θθ =

(
ψ∗C−1ψ

)−1
(R∗P )−1 ,

with ψ = (iu1ϕ(u1, η
∗), . . . , iuMϕ(uM , η

∗))T . Hence, the proposed on-line method gives es-
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sentially asymptotically e�cient estimates of θ∗ and η∗.

Remark:

Similarly to the o�-line identi�cation the optimal choice of KE and KS depend on the true

values θ∗, η∗. Thus these values need to be approximated using the most recent estimates of

the parameters, see Section 4.7. In any case it can be easily shown that the results of this

Chapter remain valid even if these approximated weighting matrices are used.
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Chapter 8

Stability of hybrid Lévy systems

8.1 Motivation

Continuous-time stochastic systems have attracted a lot of attention recently, due to their wide-

spread use in �nance for modelling price-dynamics. A widely used model for continuous-time

returns has been, since the works of L. Bachelier, Gaussian white noise with drift. More recently

models taking into accounts shocks have been developed by assuming that the return process

is an in�nitesimal Lévy process. For long term modelling a more suitable model is a stochastic

system with poles close to 1 driven by a Lévy process, see [29].

Recall that stochastic processes driven or modulated by a Lévy process are called a Lévy

system. Description of real data in terms of Lévy systems is far from being settled. In this

chapter we focus on a particular technical problem that proved to be fundamental in the

statistical analysis of continuous-time stochastic systems driven by Gaussian white noise, see

[34]. Ultimately it is hoped that this technical result may contribute to the development of a

continuous-time recursive maximum likelihood method for �nite dimensional linear stochastic

Lévy systems, along the lines of [33].
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A possible motivation behind the study of time-varying systems is that the recursive iden-

ti�cation method presented in Chapter 7 requires us to work with such systems. There we

supposed the joint stability of the transition matrices, an alternative method for guaranteing

the stability of the corresponding continuous-time system will be presented in this Chapter.

The problem is the stability analysis of time-varying stochastic systems driven or modulated

by a Lévy process with discrete time interventions, such as parameter or state resetting. Such

systems will be called hybrid Lévy systems. They are hybrid in the sense that jumps both in the

dynamics and the state may occur. The peculiarity of our systems is that the jump-times are

de�ned by a more or less arbitrary point process, but there exists an asymmetry in the system

dynamics, inasmuch jumps can occur only one-way, after a period of slow variation, namely,

back to a �xed point.

Stability of Markovian and switching system have been widely studied in the literature,

[8],[56]. We note that the well-developed theory of switching stochastic systems, see [15], does

not cover the problem that we consider. The novelty of our model relative to the theory of

switching stochastic systems is two-fold. First, we allow slow time variation of the parameters,

in a stochastic sense, without any statistical pattern, in the spirit of the classical stability result

of Desoer, see [17]. Secondly, we allow certain jumps (resetting) in the system parameters

almost without any a priori condition.

The structure of this chapter is as follows: in Section 8.2 we develop the basic technical

tools, such as the geometric drift condition and the associated Lyapunov-function method, for

the analysis of time-invariant Lévy systems, and provide estimates for higher order moments

of the Lyapunov-function. In Section 8.3 we present the simplest version of an extension of

Desoer's theorem. In Sections 8.3 we prove a stability result under parameter resetting.
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8.2 Modi�ed geometric drift condition for time-invariant

systems

Consider the time-invariant linear stochastic system

dXt = AXt−dt+BdLt + CdWt (8.2.1)

where Lt is Lévy process that has �nite variation and has no continuous part and Wt is a

standard Wiener process. Assume that A and B are time-independent constant matrices.

Xt ∈ Rn, Lt ∈ Rl,Wt ∈ RkA ∈ Rn×n, B ∈ Rn×l, C ∈ Rn×k.We will denote the ith component

of a vector V with V (i). We will use the fact that if Lt is of �nite variation then it can be

written as Lt = L0 + bt+
∑

s≤t ∆Ls, and the quadratic covariance of two coordinates of such

vector processes is of the form ∑
s≤t

∆L(i)
s ∆L(j)

s .

De�nition 8.1. We say that a vector Lt = (L
(1)
t , . . . , L

(l)
t ) with independent components that

are Lévy processes satis�es the moment condition of order Q if
∫
R |x|

qν(i)(dx) < ∞ holds for

all 1 ≤ i ≤ l, and for 1 ≤ q ≤ Q, where the Lévy measure of L
(i)
t is denoted by ν(i)(x).

The next de�nition is motivated by the geometric drift condition introduced in [34]. To

estimate the moments of Xt we will use a quadratic Lyapunov function Vt.

De�nition 8.2. Let L
(i)
t , 1 ≤ i ≤ l be independent Lévy processes with �nite variation. Let f

be a polynomial with coe�cients bounded uniformly in t and deg f ≤ Q. Given a process Vt

satisfying with some ε > 0

dVt = Vt−

(
utdt+ dMt

)
+

V 1−ε
t− f(∆L

(1)
t , . . . ,∆L

(l)
t ),

(8.2.2)
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where ∆L
(i)
t denotes the size of the jump of L(i) at t. We say that Vt satis�es the modi�ed

geometric drift condition of order Q if there exist α, γ > 0, such that

ut ≤ −α
d[M ]t
dt

≤ γ. (8.2.3)

Without loss generality may always assume that decomposition of Lt contains no drift term.

Any possible drift term can be incorporated into utdt.

The next two lemmas show that our Lyapunov function Vt and its qth power satisfy the

modi�ed geometric drift condition.

Lemma 8.1. Let Xt be de�ned via (8.2.1), and P given by Lemma 8.4. De�ne Vt = 1 +

XT
t PXt, then Vt satis�es the modi�ed geometric drift condition of order two.

Lemma 8.2. Let Xt be de�ned via (8.2.1). De�ne Vt = 1 + XT
t PXt, then V

q
t satis�es the

modi�ed geometric drift condition of order 2q.

The result of the next Lemma will be used in the proof of Theorem 8.1.

Lemma 8.3. Let us suppose that Vt satis�es the modi�ed geometric drift condition of order

Q, and suppose that Lt satis�es the moment condition of order Q . Then

E [Vt] <∞

holds.

Proof. If a martingale M is present we may follow [34]. Thus, for the sake of simplicity, we

may omit the martingale Mt from (8.2.2). So take a process of the form (8.2.2) with Mt = 0.

Then Vt satis�es

dVt = Vt−Zt, (8.2.4)
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with

Zt = utdt+ V −εt− f(∆L
(1)
t , . . . ,∆L

(l)
t ).

Using the Doleans-Dade exponential formula for processes with �nite variation yields the solution

for Vt :

Vt = eZ
(c)
t −Z

(c)
0

∏
s≤t

(1 + ∆Zs) ,

where (c) denotes the continuous part of a process. This Vt is also called as the stochastic expo-

nential of Ut. Let c and M be uniform bounds for ut and for the coe�cients of f, respectively.

Increasing both ut and the coe�cients of f and taking absolute value of the jumps we obtain

a bound on the solution Vt :

Vt ≤ ect
∏
s≤t

(
1 +M

∑
0≤j1+...+jl≤Q

l∏
i=1

∣∣∆L(i)
s

∣∣ji) ≤
ect

l∏
i=1

∏
s≤t

(
1 +M

Q∑
j=1

∣∣∆L(i)
s

∣∣j) (8.2.5)

Since L
(i)
t -s are independent processes it is su�cient show that

E

[∏
s≤t

(
1 +M

Q∑
j=1

∣∣∆L(i)
s

∣∣j)] <∞.
Since Lt satis�es the moment condition of order Q

E

[
1 +M

Q∑
j=1

∣∣∆L(i)
s

∣∣j] <∞.
Hence applying Lemma 8.5, see Appendix, concludes the proof.

The next theorem implies the stability of Xt de�ned in (8.2.1).

Theorem 8.1. Let us suppose that Vt satis�es the modi�ed geometric drift condition of order
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Q, and suppose that Lt satis�es the moment condition of order Q . Then

sup
t≥0

E [Vt] <∞.

holds.

The proof will be given in the Appendix.

Choose Vt = 1 + XT
t PXt, we have seen that Vt satis�es the modi�ed geometric drift

condition, it follows that so does V q
t . Thus Theorem 8.1 implies the next corollary

Corollary 8.1. Let Vt = 1 + XT
t PXt, where Xt is de�ned in (8.2.1) with Lt satisfying the

moment condition of order Q. then

sup
t≥0

E [|X|qt ] <∞

for 1 ≤ q ≤ Q.

8.3 A stochastic Desoer's Theorem

Consider now a parametric family of linear stochastic state-space systems given by the state

space equations:

dXt = A(θt)Xtdt+B(θt)dWt + C(θt)dLt. (8.3.1)

Condition 8.1. A(θ) is stable for each θ ∈ D, where D ⊂ Rp is an open set, and A(θ), B(θ)

and C(θ) are smooth in D.

In this section we study slowly varying stochastic systems in the following sense:

De�nition 8.3. We say that θt is slowly varying in a stochastic sense if

dθt = βtdt+ σtdWt + ρtdLt, (8.3.2)
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with |β|2t + ||σ||2t + ||ρ||2t < δ, for some δ > 0 and all t.

The following technical lemma will be used several times in this chapter.

Lemma 8.4. Assume Condition 8.1, let D0 ⊂ D compact and θ0 ∈ D0. Then, there exists

a smooth function P (θ), θ ∈ D and α > 0 such that P (θ) ≥ P (θ0) ≥ I for all θ ∈ D0 and

P (θ)A(θ) + AT (θ)P (θ) ≤ −αP (θ), for all θ ∈ D0.

The proof can be found in [34].

Theorem 8.2. Let Vt = 1 +XT
t PXt, where Xt is de�ned in (8.3.1). Assume that Lt satis�es

the moment condition of order Q and θt is slowly varying in the stochastic sense above, further-

more assume that θt ∈ Rp is an adapted process taking its values in a compact set D0 ⊂ D,

and that Condition 8.1 holds. Then for a su�ciently small δ we have

sup
t≥0

E [V q
t ] <∞, (8.3.3)

for 1 ≤ q ≤ Q.

Proof. The case when no Lévy terms are present in the dynamics of xt and θt has been settled

in Theorem 1 of [34]. We may therefore assume that B(θ) = 0 and σt = 0.

For a given θ, let P (θ) ∈ C2 be a symmetric, positive de�nite matrix that solves

P (θ)A(θ) + A(θ)TP (θ) ≤ −αP (θ), (8.3.4)

with some α > 0, and P (θ) ≥ I. Let Pt = P (θt), and consider Vt = (1 + XT
t PtXt)

q/2. It

is enough to prove that Vt satis�es the modi�ed geometric drift condition. By Lemma 8.2 we

only need to check that 1 + XT
t PtXt satis�es the modi�ed geometric drift condition. We can
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write the dynamics of 1 +XT
t PtXt = 1 + Tr(PtZt), with Zt = XtX

T
t as

dTr(PtZt) = Tr(PtdZt) + Tr(dPtZt) +
∑
i,j

dPi,jd[X(i), X(j)]t (8.3.5)

The �rst term can be handled using Lemma 8.1. The dynamics of Pt is given by

dPt = utdt+ ΣtdLt, (8.3.6)

with ||u||2t + ||Σ||2t < cδ, with some c. Thus, the second and the third term give drift terms

that do not spoil the modi�ed geometric drift condition. The typical form of the contribution

of the second term up to a bounded constant multiplier is

X(i)X(j)dL(k), (8.3.7)

and that of the third term is

dL
(k)
t d[L(i), L(j)]t. (8.3.8)

Hence, 1 + XT
t PtXt indeed satis�es the modi�ed geometric drift condition. Thus, applying

Theorem 8.1 concludes the proof.

This result implies the stability of the parameter varying system de�ned by (8.3.1).

Corollary 8.2. Under conditions of the previous theorem

sup
t≥0

E [|X|qt ] <∞

holds for 1 ≤ q ≤ Q.
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8.4 Time-varying systems with parameter resettings

We now assume that the slowly parameter varying process θt resets at random times de�ned

by an arbitrary point process with counting process Nt.

dθt = βtdt+ σtdWt + dLt + (θ0 − θt−)dNt, (8.4.1)

where |βt|2 + ||σt||2 < δ.

Theorem 8.3. Let Xt be de�ned via (8.3.1), and the dynamics of θt via (8.4.1). Assume that

Condition 8.1 holds, and that Lt satis�es the moment condition of order Q, then

sup
t≥0

E [|X|qt ] <∞

holds for 1 ≤ q ≤ Q.

Proof. We may assume that there is no di�usion part in the dynamics of Xt and θt. Let

P (θ) be de�ned by Lemma 8.4 so that it attains its minimum on D in θ0. De�ne Vt =

(1 +XT
t P (θt)Xt)

q/2. Let ξt be the size of the jump at t induced by the jump of θ, i.e.

ξt = (1 +XT
t P (θ0)Xt)

q/2 − (1 +XT
t P (θt)Xt)

q/2, (8.4.2)

using this notation the dynamics of Vt can be written as

dVt = Vt−Ut + ξtdNt, (8.4.3)

with

Ut = utdt+
∑

0≤j1+...+jl≤Q

cj1,...,jl

l∏
i=1

(
∆L

(i)
t

)ji
.

By the minimality of P (θ0), the jump term in (8.4.3) causes a non-positive jump in Vt. Let ψt
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be the stochastic exponential of Ut, then

Vt = ψtV0 +

∫ t

0

ψtψ
−1
s ξsdNs ≤ ψtV0. (8.4.4)

Since E [ψtV0] <∞ is implied by Theorem 8.1, we conclude the proof.

8.5 Discussion: state resetting for jump processes

Consider the hybrid linear system with state resettings

dXt = AXt +BdWt + CdLt + (X0 −Xt−)dNt, (8.5.1)

where Wt is a Wiener process, and Nt is a counting process.

Conjecture 8.1. Suppose that Lt satis�es the moment condition of order Q, then for Xt

de�ned by (8.5.1)

sup
t≥0

E[|X|qt ] <∞

holds for 1 ≤ q ≤ Q.

The statement was proved for C = 0 in [34], but that proof cannot be adapted in case

the presence of a Lévy process in the dynamic of Xt. A subject of our future research will be

the study of this problem . Although the main ideas of the proof have been established some

technical issues are still to be taken care of.

8.6 Proofs

Proof of Lemma 8.1:
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This lemma is an extension of Lemma 8 in [34], where no Lévy processes are present in

de�ning the dynamics of Vt. Thus, for the sake of simplicity, we may omit the martingale Mt

from (8.2.2).

Write Vt = 1 + XT
t PXt = 1 + Tr(PZt), where Zt = XtX

T
t . The dynamic of Zt can be

written as

dZt = Xt−dX
T
t + dXtX

T
t− +Bd[L,L]tB

T , (8.6.1)

where d[L,L]t is an l × l matrix with entries representing quadratic covariances, that is

d[L,L]
(i,j)
t = d[L(i), L(j)]. Equation (8.6.1) reads as

Xt−
(
XT
t−A

Tdt+ dLTt B
T
)

+ (AXt−dt+BdLt)X
T
t +Bd[L,L]tB

T (8.6.2)

Thus the dynamics of Vt = 1 + Tr(PZt) can be written as

(
PXt−X

T
t−A

T + PAXt−X
T
t−
)
dt+ PXt−dLtB

T + PBdLtX
T
t− + PBd[L,L]tB

T . (8.6.3)

So the dt terms in the dynamics of Vt = 1 + Tr(PZt) are given by

Tr
(
XT
t−A

TPXt− +XT
t−PAXt−

)
≤ −αXT

t−PXt− = −αVt− + α, (8.6.4)

for the terms having dLt

Tr
(
P (Xt−dLtB

T +BdLtX
T
t−)
)

=

Tr
(
(P + P T )BdLtX

T
t−
)

=

2XT
t−(P + P T )BdLt = ψTt dLt,

(8.6.5)

with |ψt|2 = 4XT
t−(P + P T )BBT (P + P T )Xt− ≤ 4KVt−, with some �xed K. Finally for the
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term with d[L,L]t

Tr
(
PBd[L,L]tB

T
)

=
l∑

i,j=1

ci,jd[L(i), L(j)]t =
l∑

i,j=1

ci,j∆L
(i)
t ∆L

(j)
t , (8.6.6)

with some ci,j, 1 ≤ i, j ≤ l constants. It follows that the dynamic of Vt can be written as

dVt = Vt−utdt+ V
1/2
t−

(
l∑

i=1

ψ
(i)
t

V
1/2
t−

∆L
(i)
t +

l∑
i,j=1

ci,j

V
1/2
t−

∆L
(i)
t ∆L

(j)
t

)
, (8.6.7)

with uniformly bounded ut,
ψ
(i)
t

V
1/2
t−
,
ci,j

V
1/2
t−

for any 1 ≤ i, j ≤ l, which concludes the proof. �

Proof of Lemma 8.2:

The dynamics of V q
t can be written as

dV q
t = qV q−1

t− dVt,(c) + V q
t − V

q
t− =

qV q−1
t− utdt+ (Vt− + ∆Vt)

q − V q
t− =

qV q
t−ut/Vt−dt+

q∑
k=1

(
q

k

)
(∆Vt)

k V q−k
t− , (8.6.8)

with ut/Vt− < α. Using that

∆Vt = V 1−ε
t− f(∆L

(1)
t , . . . ,∆L

(l)
t )

we obtain that a typical jump term in (8.6.8) reads as up to constant multiplier

V q−kε
t− f(∆L

(1)
t , . . . ,∆L

(l)
t )k. (8.6.9)

This implies that V q
t satis�es the modi�ed geometric drift condition of order 2q. �

The next two technical Lemmas will be used in the proof of Theorem 8.1.
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Lemma 8.5. Let Lt be a Lévy process with Lévy measure ν. Suppose that a function f satis�es

∫
R
f(x)ν(dx) <∞,

then

E

[∏
s≤t

(1 + f(∆Ls))

]
= et

∫
R f(x)ν(dx)

holds for any t.

Proof. First suppose that Lt is a compound Poisson process with rate λ, then the expected

value of

ψt =
∏
s≤t

f(∆Ls)

can be estimated by conditioning on the number of jumps of Lt. Let Nt, Jt denote the number

of jumps of Lt on [0, t], and the set of time indices when L jumps on [0, t], respectively. De�ne

Dn
t = {(t1, . . . , tn) : 0 ≤ ti ≤ t, for all 1 ≤ i ≤ n}.

E [Ψt] =
∞∑
n=0

E [Ψt|Nt = n]P (Nt = n) =∫
Dnt

E[Ψt|Nt = n, Jt = {t1, . . . , tn}]P (Nt = n)dt1 . . . dtn =

∞∑
n=0

(m+ 1)ne−λt
(λt)n

n!
= eλmt,

where m = E [f(∆Lt)|L jumps at t] , and P is the joint probability density of the jump times.

For the general case de�ne the truncated Lévy measure

νε(x) =
1|x|>εν(x)∫
|x|>ε ν(dx)

,

and let Lεt be the Lévy process with Lévy measure νε. Then Lt is the weak limit of Lεt as ε
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tends to zero.

mε
f =

∫
f(x)νε(dx)

mε = E [f(∆Lεt)|Lε jumps at t]

λε =

∫
|x|>ε

ν(dx)

writing (8.6) for Lε yields

E

[∏
s≤t

(1 + f(∆Lεs))

]
= eλ

ε(mε−1)t

Note that λεmε
f =

∫
|x|>ε f(x)ν(dx), it follows that eλ

εmεt has �nite limit as ε → 0+ provided∫
R f(x)ν(dx) <∞ which is the case. Hence, E [ψt] = et

∫
R f(x)ν(dx) follows.

Lemma 8.6. Let the one dimensional process Lt with Lévy measure ν satisfy the moment

condition of order Q. Let f be a polynomial with deg f ≤ Q, and f(0) = 0. Then

E
[∫ t

0

e−α(t−s)f(∆Ls)

]
=

1− e−αt

α

∫
R
f(x)ν(dx).

Proof. First consider the case when Lt is a compound Poisson process with intensity λ. Let

Nt, Jt denote the number of jumps of Lt on [0, t], and the set of time indices when L jumps

on [0, t], respectively. De�ne Dn
t = {(t1, . . . , tn) : 0 ≤ ti ≤ t, for all 1 ≤ i ≤ n}.

E
[∫ t

0

e−α(t−s)f(∆Ls)

]
=
∞∑
n=0

E
[∫ t

0

e−α(t−s)f(∆Ls)|Nt = n

]
P (Nt = n). (8.6.10)
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Calculating one term in the above sum

∫
Dnt

E
[∫ t

0

e−α(t−s)f(∆Ls)|Nt = n, Jt = {t1, . . . , tn}
]
P (Nt = n)

dt1 . . . dtn
tn

=∫
Dnt

n∑
i=1

e−α(t−ti)E [f(∆Ls)|Nt = n, Jt = {t1, . . . , tn}] e−λt
(λt)n

n!

dt1 . . . dtn
tn

=

n

∫
Dn−1
t

∫ t

0

e−α(t−tn)E [f(∆Ls)|t1 ∈ Jt] e−λt
(λt)n

n!

dtn
t

dt1 . . . dtn−1

tn−1
=

ne−λt
(λt)n

n!
E [f(∆Ls)|t1 ∈ Jt]

1− e−αt

αt
.

Now using this result compute further (8.6.10) to get

1− e−αt

αt
E [f(∆Ls)|t1 ∈ Jt]

∞∑
n=0

ne−λt
(λt)n

n!
=

1− e−αt

α
λE [f(∆Ls)|t1 ∈ Jt] .

(8.6.11)

For the general case de�ne like in the proof of Lemma 8.5 process Lεt and its Lévy measure

νε(dx), and mε = E [f(∆Ls)|t1 ∈ Jt] . Writing (8.6.11) for Lεt we obtain

E
[∫ t

0

e−α(t−s)f(∆Lεs)

]
=

1− e−αt

α
λεE [f(∆Lεs)|t1 ∈ Jt] =

1− e−αt

α

∫
|x|>ε

f(x)ν(dx).

(8.6.12)

Since Lt is the weak limit of Lεt as ε tends to zero, allowing ε→ 0+ concludes the proof.

Proof of Theorem 8.1:

Let Vt satisfy the modi�ed geometric drift condition, that is

dVt = utdt+ V 1−ε
t− f(∆L

(1)
t , . . . ,∆L

(l)
t ). (8.6.13)
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In the presence of a martingale in the dynamics of Vt one can apply methods shown in [34].

Applying Cauchy formula gives

Vt =

∫ t

0

e−α(t−s)V 1−ε
s− f(∆L(1)

s , . . . ,∆L(l)
s ) (8.6.14)

Now we estimate the expected values of Vt using V
∗
T := sup0≤s≤T E[Vs].

E[Vt] =

∫ t

0

E
[
e−α(t−s)V 1−ε

s− f(∆L(1)
s , . . . ,∆L(l)

s )
]

=∫ t

0

e−α(t−s)E[V 1−ε
s− ]E

[
f(∆L(1)

s , . . . ,∆L(l)
s )
]
≤ (8.6.15)∫ t

0

e−α(t−s)E[Vs−]1−εE
[
f(∆L(1)

s , . . . ,∆L(l)
s )
]
≤ (8.6.16)

(V ∗T )1−ε
∫ t

0

e−α(t−s)E
[
f(∆L(1)

s , . . . ,∆L(l)
s )
]
≤ (8.6.17)

(V ∗T )1−ε
l∏

i=1

∫ t

0

e−α(t−s)E
[
gi(∆L

(i)
s )
]

(8.6.18)

First we used Fubini's theorem and the independency of Vs− and ∆L
(i)
s . In (8.6.15) Hölder

inequality was applied after that in (8.6.16) we used the de�nition of V ∗T . Finally, in (8.6.18)

we estimate f with products of gi polynomials as we did in (8.2.5), clearly deg gi ≤ Q holds

for all i. Applying Lemma 8.6 gives for (8.6.18)

(V ∗T )ε ≤
l∏

i=1

1− e−αt

α

∫
R
gi(x)νi(dx),

where νi is the Lévy measure of L
(i)
t . Since 1− e−αt < 1 we obtained a bound on V ∗T that do

not depend on T. Hence, sup0≤t E[Vt] <∞, which concludes the proof. �
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Chapter 9

Simulation results

9.1 Simulating CGMY processes

In this chapter we test the performance of our algorithms using simulated data. In each

simulation the driving noise is a CGMY process. A possible simulation of the tempered stable

distribution is obtained by using the series representation of such processes, following [51]: we

will �rst generate the positive jumps of the process with Lévy measure

ν+(dx) =
Ce−Mx

|x|1+Y
for x > 0,

and ν+(dx) = 0 otherwise. Let (Ej), (Uj) and (Pj) be sequences of independently distributed

random variables such that each Ej has exponential distribution with rate M, each Uj is

uniformly distributed on [0, 1] and Pj-s are the arrival times of a Poisson process with rate 1.

Then the series representation of the process (Xt) corresponding to the Lévy measure ν+(dx)

is given by

Xt =
∞∑
j=1

min

((
2Ct

MPj

)1/Y

, EjU
1/Y
j

)
. (9.1.1)
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So if N is large enough one can take

Xt ≈ X
(N)
t =

N∑
j=1

min

((
2Ct

MPj

)1/Y

, EjU
1/Y
j

)
(9.1.2)

to simulate sample paths of the process with Lévy measure ν+(dx). Similarly, one can simulate

the process with Lévy measure

ν−(dx) =
Ce−G|x|

|x|1+Y
, for x < 0,

and ν−(dx) = 0 otherwise, to get the process generated by the negative jumps. By adding up

the two processes one gets an approximation of the tempered stable process with parameters

C,G,M, Y. In Figure 9.1 an approximation of the sample path of a CGMY process is plotted

using the above formula with N = 10. In Figure 9.2 a similar approximation can be seen, but

generated with N = 10.

9.2 Re-estimation of ARMA system paramters by ECF

method

In this section we present some simulation results for ARMA processes. As the numerical

aspects of the estimation of the noise characteristics for i.i.d. data is extensively studied in

the literature, see for example [14], here we con�ne our study to the estimation of the system

parameters. More precisely, we test the third step of our method presented in Chapter 4. To

this end we simulated ARMA processes de�ned by

A(θ∗)∆yn = C(θ∗)∆Ln for n > 0, (9.2.1)
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Figure 9.1: Approximation of a CGMY process

and ∆yn = 0, for n ≤ 0, where ∆Ln is the increment of a CGMY process with parameters

η∗ = [C∗, G∗,M∗, Y ∗], to be speci�ed later. Let A and C be polynomials of the back-shift

operator q−1:

A(θ∗) = 1 + θ
(A)
1 q−1 + . . .+ θ(A)

p1
q−p1 (9.2.2)

C(θ∗) = 1 + θ
(C)
1 q−1 + . . .+ θ(C)

p2
q−p2 , (9.2.3)

and θ∗ be the unknown system parameter with components θ∗ = (θ
(A)
1 , . . . , θ

(A)
p1 ; θ

(C)
1 , . . . , θ

(C)
p2 ).

We test our method using di�erent ARMA processes, in each case 10.000 simulated observations

were used. Table 8.1 and 8.2 present the type of the process the true parameters and the

estimated parameters. Our computational experience suggested that we should limit the number

of u-s, hence the ECF identi�cation method was applied with uk = k/10, k = 1, . . . , 10 and
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Figure 9.2: Approximation of a CGMY process

K being the identity matrix of appropriate dimension.

Table 9.1: ARMA simulation results

Process θ(A)∗ θ(B)∗ η∗ θ̂
(A)
N θ̂

(B)
N

AR(1) 0.4 n/a (1,0.5,0.5,0.3) 0.4130 + 0.0003i n/a

AR(2) (0.4,0.1) n/a (1,0.5,0.5,0.3) (0.4009 - 0.0018i,0.1040 + 0.0031i) n/a

Table 9.2: ARMA simulation results

Process θ(A)∗ θ(B)∗ η∗ θ̂
(A)
N θ̂

(B)
N

MA(1) n/a 0.6 (1,0.5,0.5,0.3) n/a 0.6035 + 0.0129i

ARMA(1,1) 0.25 0.75 (1,0.5,0.5,0.3) 0.2749 - 0.0221i 0.7645 + 0.0197i
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9.3 Re-estimation of ARMA system parameters by re-

cursive ECF method

This section is devoted to the presentation of the simulation results for the recursive algorithm

proposed in Section 7.3. We use the notations of the last section. Recall that the recursive

estimation requires the de�nition of domains for each variable. In case a variable leaves its

domain it is reset to its initial value. Here, we reset all variables if the absolute value of the

system parameter θ is greater than 1. Again, we restrict our attention to recursive identi�cation

of the system parameters, i.e. we suppose that η∗ is given. The set of u-s and K are de�ned

like in the previous section. The estimated parameters after 5.000 steps can be seen in Table

8.3. In Figure 9.3 the norm of the estimation error, i.e.
∣∣∣θ̂N − θ∗∣∣∣ , is plotted for a MA(1)

process with parameters θ∗ = 0.3 and noise characteristics η∗ = (1, 0.5, 0.5, 0.3), the initial

value of the parameter θ was de�ned by θ̂0 = 0.6.

Table 9.3: ARMA on-line simulation results

Process θ(A)∗ θ(B)∗ η∗ θ̂
(A)
N θ̂

(B)
N

AR(1) 0.4 n/a (1,0.5,0.5,0.3) 0.3991 - 0.0037i n/a

MA(1) n/a 0.3 (1,0.5,0.5,0.3) n/a 0.2897 + 0.0044i

ARMA(1,1) 0.25 0.75 (1,0.5,0.5,0.3) 0.2701 + 0.0113i 0.7419 - 0.0201i

9.4 ECF estimate of GARCH processes

Finally, we test the ECF method for GARCH processes presented in Chapter 6. Again, we

suppose that the driving noise process is given by the increments of a tempered stable process

with parameter vector η∗. Table 8.4 presents the results of simulation for di�erent GARCH

processes. In each case 30.000 simulated observations were used. The ECF method was applied

with uk = k/10, k = 1, . . . , 10 and K being the identity matrix of appropriate dimension.

140



C
E

U
eT

D
C

ol
le

ct
io

n

Figure 9.3: Norm of θ̂N − θ∗

For simplicity we assumed that α∗0 = 0.1 is known.

Table 9.4: GARCH simulation results

Process θ∗ η∗ θ̂N

GARCH(1,1) (0.2,0.5) (1,0.5,0.5,0.3) (0.2169 + 0.0068i, 0.4895 - 0.0109i)

GARCH(1,1) (0.4,0.3) (1,0.5,0.5,0.3) (0.3966 - 0.0005i, 0.2980 - 0.0003i)

GARCH(1,1) (0.099,0.8) (1,0.5,0.5,0.3) (0.0950 - 0.0014i, 0.8041 + 0.0017i)

Remark:

The empirical calculation of the asymptotic covariance matrix is beyond the scope of this

work. The simulation results presented above show that these methods are computationally

feasible. Although the algorithms were implemented with a naive choice of u-s and choosing

the weighting matrix K = I, the results of the simulations are convincing.
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Chapter 10

Appendix

10.1 Gamma processes

In this section we provide a brief introduction to gamma-processes that play a major role in VG

modelling. To construct a gamma process let ξn be an i.i.d. sequence of random variables with

exponential distribution having density λe−λx for x > 0. Let sk = ξ1 + . . .+ξk. The probability

density function and characteristic function of sk are given by

λkxk−1e−λx/(k − 1)! (10.1.1)

and

E [exp(iusk)] =

(
λ

λ− iu

)k
=

(
1

1− iu
λ

)k
. (10.1.2)

For the means and the variances of sk we have:

E [sk] = k/λ and σ2(sk) = k/λ2.
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We can look upon (sk) as a stochastic process de�ned over the positive integers, with inde-

pendent and identically distributed increments. Let us re-parametrize the density above by

introducing the new variables

ν = 1/λ and t = k/λ = kν. (10.1.3)

Here ν = 1/λ is the mean life-time. Then de�ne

γt = sk = st/ν .

Remember that t/ν is the number of exponential terms. The probability density function of γt

can be written as

ft(x) =

(
1

ν

)t/ν
xt/ν−1e−x/ν

Γ(t/ν)
. (10.1.4)

The characteristic function of γt(µ, ν) is given by

ϕt(u;µ, ν) =

(
1

1− i ν
µ
u

)µ2 t
ν

. (10.1.5)

Finally, the means and the variances of γt are

E [γt] = t and σ2(γt) = tν. (10.1.6)

Now it can be shown that ft(x) as de�ned above, is a density function for any real t ≥ 0. This is

called a gamma-density. The corresponding characteristic function is given by (10.1.5) for any

real t ≥ 0. Obviously, thus set of characteristic functions is closed under multiplication. Thus

gamma-densities are closed under convolution. Consequently, we can construct a stochastic

process (γt), with t ≥ 0 real, with stationary independent increments, so that the the density

function of γt+h−γt is fh. This is called a gamma-process. Obviously, the means and variances
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of γt are obtained as in (10.1.6) for any real t. Therefore we say that the mean rate of (γt) is

1, and its variance rate is ν.

Finally, we can re-scale the process by setting, with some µ′ > 0,

t′ = t/µ′ and γ′t′ = γt. (10.1.7)

Then

E [γ′t′ ] = µ′t′ and σ2(γ′t′) = (µ′t′)ν = (µ′ν)t′. (10.1.8)

Correspondingly, we say that the mean-rate of the re-scaled process is µ′, and the variance rate

of the re-scaled process is ν ′ = µ′ν. We can express the old variables in terms of the new

variables by the the following scaling equations:

t = µ′t′ and ν = ν ′/µ′.

Expressing the density function of γ′t′ = γt in terms of these parameters, and changing the roles

of parameters with and without superscripts, and correspondingly making the replacements

t→ µt and ν → ν/µ

we get

ft(x;µ, ν) =
(µ
ν

)µ2 t
ν xµ

2 t
ν
−1e−µ

x
ν

Γ(µ2 t
ν
)

. (10.1.9)

Note that the following scaling property holds: for any c > 0

ft(x;µ, ν) = fct(x;µ/c, ν/c). (10.1.10)

A random variable with this distribution will be denoted by γt = γt(µ, ν), with µ denoting the
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mean rate and ν denoting the variance rate. Its characteristic function is given by

φt(u;µ, ν) =

(
1

1− i ν
µ
u

)µ2 t
ν

.

Similarly, a stochastic process (γt) with stationary independent increments, so that the the

density function of γt+h − γt is fh(x;µ, ν) will be denoted by γt(µ, ν). This is then a Lévy

process, the Lévy density of which can be explicitly determined, see [50].

ν(dx;µ, ν) =
µ2

ν

e−µ
x
ν

x
1x>0dx. (10.1.11)

Note that the integral of ν(dx) is in�nite, hence the gamma process has an in�nite number of

jumps in any �nite interval. It is also said that the gamma process is an in�nite activity process.

Clearly, most of these jumps are very small as the Lévy measure is concentrated at the origin.

10.2 L-mixing processes

In this section we summarize the most important de�nitions and theorems in the area of L-

mixing processes. While we follow [26] the concept of L-mixing is presented with a minor

modi�cation. Let θ be a d-dimensional parameter vector. The results can be easily extended

for complex valued parameters.

De�nition 10.1. We say that xn(θ) is M -bounded of order Q if for all 1 ≤ q ≤ Q,

MQ
q (x) = sup

n>0,θ∈D
E1/q [|xn(θ)|q] <∞

De�ne Fn = σ {ei : i ≤ n} and F +
n = σ {ei : i > n} where ei-s are i.i.d. random variables.

De�nition 10.2. We say that a stochastic process (xn(θ)) is L-mixing of order Q with respect

to (Fn,F +
n ) uniformly in θ if it is Fn progressively measurable, M-bounded of order Q with
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any positive r and

γq(τ, x) = sup
n≥τ,θ∈D

E1/q
[∣∣xn(θ)− E

[
xn(θ)|F +

n−τ
]∣∣q] ,

we have for any 1 ≤ q ≤ Q,

Γq(x) =
∞∑
τ=1

γq(τ, x) <∞.

The de�nition can be extended to continuous time processes as well. We note in passing

that with Q = ∞ we get L-mixing processes proposed by Gerencsér in [26]. Thus, usage of

L-mixing meaning that L-mixing with order Q =∞ should not cause any confusion.

De�nition 10.3. We say that a stochastic process (xt(θ)) is L-mixing of order Q with respect

to
(
Ft,F

+
t

)
uniformly in θ if it is Fn progressively measurable, M-bounded of order Q with

any positive τ and

γq(τ, x) = sup
t≥τ,θ∈D

E1/q
[∣∣xt(θ)− E

[
xt(θ)|F +

t−τ
]∣∣q] ,

we have for any 1 ≤ q ≤ Q,

Γq(x) =

∫ ∞
0=1

γq(τ, x)dτ <∞.

Example:

Let the process Xt given by

dXt = AXtdt+BdWt, X0 = 0, (10.2.1)

where Wt is an m-dimensional Brownian motion, A ∈ Rn×n, B ∈ Rn×m and A is stable. Then
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Xt is L-mixing.

Xt = eAτXt−τ +

∫ t

t−τ
eA(t−r)BdWr, (10.2.2)

hence E
[
Xt|F +

t−τ
]

=
∫ t
t−τ e

A(t−r)BdWr, it follow that

Xt − E
[
Xt|F +

t−τ
]

= eAτXt−τ .

One can easily check that Xt is M -bounded, thus the stability of A implies Γq(x) <∞.

The following well-known lemma is used in proving several properties of L-mixing processes.

Lemma 10.1. Let ξ be an M -bounded random variable and let F ′ ⊂ F be some σ-algebra.

Then for all 1 ≤ q <∞ and for any F ′ measurable η we have

E1/q [|ξ − E [ξ|F ′] |q] ≤ 2E1/q [|ξ − η|q]

Lemma 10.2. Let Xn and Yn be L-mixing process with respect to the same �ltration, then

the process (XY )n is L-mixing as well.

Theorem 10.1. Let (un), n ≥ 0 be an L-mixing process of order Q with E [un] = 0 for all n,

and let (fn) be a deterministic sequence. Then we have for all 1 ≤ m ≤ Q/2,

E1/(2m)

∣∣∣∣∣
N∑
n=1

fnun

∣∣∣∣∣
2m
 ≤ Cm

(
N∑
n=1

f 2
n

)1/2

M
1/2
2m (u)Γ

1/2
2m (u)

where Cm = 2(2m− 1)1/2.

De�ne

∆x/∆αθ = |xn(θ + h)− xn(θ)| / |h|α

for n ≥ 0, θ 6= θ + h ∈ D with 0 < α ≤ 1.
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De�nition 10.4. We say that xn(θ) is M -Hölder continuous of order Q in θ with exponent α

if the process ∆x/∆αθ is M -bounded of order Q.

Now let us suppose that (xn(θ)) is measurable, separable, M -bounded of order Q and M -

Hölder of order Q in θ with exponent α for θ ∈ D. The realizations of (xn(θ)) are continuous

in θ almost surely hence

x∗n = max
θ∈D0

|xn(θ)|

is well de�ned for almost all ω, where D0 ⊂ int D is a compact domain. Since the realizations

of (xn(θ)) are continuous, x∗n is measurable with respect to F .

Theorem 10.2. Assume that (xn(θ)) is measurable, separable, M -bounded of order Q and

M -Hölder of order Q in θ with exponent α for θ ∈ D. Then we have for all positive q ≤ Qα/s

and p/α < s ≤ Q/q,

Mq(x
∗) ≤ C (Mqs(x) +Mqs(∆x/∆

αθ))

where C depends only on p, q, s, α and D0, D.

Choosing fn = 1 and α = 1 and using Theorem 10.1 and 10.2 we obtain

Theorem 10.3. Let (un(θ)) be an L-mixing of order Q uniformly in θ ∈ D such that

E [un(θ)] = 0 for all n ≥ 0, θ ∈ D, and assume that ∆u/∆θ is also L-mixing of order Q,

uniformly in θ, θ + h ∈ D. Then

sup
θ∈D0

∣∣∣∣∣ 1

N

N∑
n=1

un(θ)

∣∣∣∣∣ = O
Q/p
M (N−1/2) (10.2.3)

Theorem 10.4. Let D0 and D be as above and let

Wθ(θ), δWθ(θ), θ ∈ D ⊂ Rp be Rp-valued continuously di�erentiable functions, let for some

θ∗ ∈ D0,Wθ(θ
∗) = 0, and let Wθθ(θ

∗) be nonsingular. Then for any d > 0 there exists positive
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numbers d′, d′′ such that

|δWθ(θ)| < d′ and ‖δWθθ(θ)‖ < d′′ (10.2.4)

for all θ ∈ D0 implies that the equation Wθ(θ) + δWθ(θ) = 0 has exactly one solution in a

neighborhood of radius d of θ∗.
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Chapter 11

Conclusions

In this thesis we investigated the problem of identifying the parameters of �nite dimensional

stochastic systems driven by the increments of a Lévy process. This technical problem is

motivated by the statistical analysis of �nancial time series. The common special feature of the

presented problems is that the characterization of the driving noise is given by the characteristic

function of the noise instead of the density function. We have seen that by using the combination

of standard methods of system identi�cation, such as the prediction error method and the ECF

method we get essentially equivalent alternatives of the ML method in terms of e�ciency.

By adapting the ECF method we proposed a three-stage identi�cation method that estimates

the system and noise parameters of linear Lévy systems essentially asymptotically e�ciently.

The problem of estimating the system parameters of Lévy driven GARCH processes can be

solved using the idea of the third step of our three-stage identi�cation method. We have

proved that the resulting procedure is essentially as e�cient as the ML method.

We have also demonstrated that a properly adapted ECF method using blocks of simulated

data can be applied to identify �nite dimensional linear Lévy systems with possibly unstable

zeros. The method can be best described as an output error method and we provided the
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analysis of the procedure along the lines of the classical ECF method.

The general framework of recursive estimation method, namely the DFL-scheme, enabled us

to convert the three-stage o�-line method for linear Lévy systems into a recursive identi�cation

method in a natural manner. Using advanced ODE techniques we proved that the resulting on-

line estimation procedure gives essentially e�cient estimates of the system and noise parameters

of the process.

Motivated by our interest in the analysis of continuous time systems we proved a particular

technical result: the stability of time-varying stochastic systems driven by a Lévy process with

arbitrary discrete time parameter resettings. In connection with this we developed a novel

Lyapunov function method to prove the stability of linear Lévy systems.
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