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Introduction

The now-proven Bieberbach conjecture (1916) is one of the most famous and chal-
lenging problems of mathematics. It considers the class S of univalent functions of
the form

f(z) = z + a2z
2 + . . .+ anz

n + . . . , |z| < 1.

It asserts that for every f ∈ S and every n |an| ≤ n holds.
This conjecture was not settled for nearly 70 years. Though there were many at-
tempts, the best results that were achieved were not general. It inspired development
of lots of complicated algorithms and tools that became useful in theory of univalent
functions. In particular, it motivated the development of the Loewener parametric
method in 1923, which became one of the milestones in proof of this conjecture.
In 1971 I.M. Milin constructed a sequence of functionals for the coefficients of the

expansion
∞∑
k=1

ckz
k for a branch of log

(
f(z)
z

)
. Together with Lebedev they assumed

that this functionals were nonpositive. They also showed that their conjecture im-
plies the on of Bieberbach. Finally, in 1984 Louis De Branges came up with the
proof of this conjecture as well as some stronger ones. He created a functional asso-
ciated with Lebedev-Milin conjecture, which varied monotonically along Loewener
chains. He also suggested and solved a system of differential equations to make this
functional manageable. In the end, he used a positivity result for hypergeometric
functions to verify it’s monotonicity.
But De Branges’ original argument was complicated. Many connected important
tools and methods were not thoroughly presented in his research, as well as, the
applications, which made it not accessible to many readers. Therefore, the main
idea of the current thesis is to synthesize all the theory, methods and tools in an
clear way and search for recent applications.
This thesis is structured in the following way. In the first chapter we will state
the problem itself and consider the proof for the most trivial case n = 2. In the
following chapter we will discuss additional subclasses of functions, which proved to
be very useful in complex analysis. The third chapter will be fully dedicated to the
De Branges theorem, which confirms the Bieberbach conjecture. Thus, in chapters
four and five, we will consider a very important tool, used in proof of De Branges
theorem - the Loewner chains and Loewner differential equations. In the end we
arrive to some applications of the Loewner parametric method.
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Chapter 1

Elaboration of the problem

First we need to give a definition of univalent functions:

Definition 1.1. A holomorphic 1 − 1 function on an open subset of the complex
plane is called univalent.

The well-known Riemann mapping theorem states, that:

Theorem 1.2. If D be an arbitrary simply connected domain in complex plane C,
which is not the whole plane, then there exists a conformal mapping w = f(z) : U →
D, where U := {|z| < 1}.

Moreover, there exists a unique such mapping that takes D into the origin and
has a positive derivative there. This fundamental result allows us to formulate lots
of extremal problems in the plane for normalized univalent functions. Therefore
properties of such functions became of interest.
Now let us consider the class S of univalent functions of the form

f(z) = z + a2z
2 + . . .+ anz

n + . . . , |z| < 1, (1.1)

such f(z) are normalized by requiring f(0) = 0, f ′(0) = 1.

Examples

Let’s consider a conformal map w : U → D, where U := {|z| ≤ 1}, D := {<w > 0}

w =
1 + z

1− z
= 1 + 2z + . . .+ 2zn + . . .

Squaring gives a conformal map w1 : U → C \ (−∞, 0] of the form

w1 =

(
1 + z

1− z

)2
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After normalization we obtain a very important function K0(z) : U → C \ (−∞,−1
4
]

K0(z) =
1

4

[
1 + z

1− z

2

− 1

]
=

z2

1− z2 = z + 2z2 + . . .+ nzn + . . . (1.2)

which is also called the Koebe function. It and its rotations

Kθ(z) = e−iθK0(eiθz) =
z

1− eiθz2 (1.3)

provide the solution to many extremal problems for the class S.
One of the examples of such results is Koebe’s distortion theorem, which state, that:

Theorem 1.3. For all f ∈ S inequalities

|f ′(z)| ≤ 1 + |z|
(1− |z|)3 ,

|z|
(1 + |z|)2 ≤ |f

′(z)| ≤ |z|
(1− |z|)2 (1.4)

hold, with strict equality for all z 6= 0 unless f is a Koebe function.

But the more important fact about the Koebe function and it’s rotations is that they
become of great interest when dealing with coefficient estimates. In particular, in
1916 Bieberbach suggested, that:

Theorem 1.4. For any f(z) ∈ S

|an| ≤ n, n = 2, 3, . . . (1.5)

and equality holds for any given n only for Koebe function K(z) and its rotations
Kθ(z).

This conjecture became of great interest immediately, as it didn’t have any strict
confirmation. Bieberbach himself proved his conjecture for the case of n = 2.

Theorem 1.5. For any f(z) ∈ S |a2| ≤ 2 and equality holds only for Koebe function
K(z) and its rotations Kθ(z).

Proof. Let’s consider function F (z) = [f(z2)]−
1
2 = 1

z
− 1

2
a2z + . . .. It is univalent in

U \ {0}. For r ∈ (0, 1) let consider a circle Ur = {|z| < r} and let Cr be the image
under F of Ur. Clearly, Cr is a simple closed curve. Switching to polar coordinates,
we obtain F (reiα) = ReiΨ, 0 < α < 2π. Then, as the area enclosed by Cr is positive,
we have

1

2

∫
Cr

R2dΨ > 0, (1.6)

where the integration is performed along Cr in the counterclockwise direction.
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From Cauchy-Riemann equation RΨα = rRr in polar coordinates it follows that
dΨ = r

R
Rr. After we substitute it in (1.6), we get

− d

dr

2π∫
0

|F (reiα)|2dα = 4π

(
r−3− | 1

2
a2 |2 r − . . .

)
> 0

As r → 1 we deduce that |a2| ≤ 2. Equality holds only if F (z) = z−1 − λz, where
|λ| = |1

2
a2| = 1,and thus f(z) = Kθ(z).

Later, in 1923, using the partial equation, which was later named after him, Loewner
proved, that |a3| ≤ 3 for every f ∈ S. Then there were developed various methods
for injective holomorphic functions, which resulted in tedious proofs for other special
cases n = 4, 5 and 6 of the Bieberbach conjecture.
Regarding the general case, from (4) and Cauchy’s inequality for the coefficients
of power series it was obtained, that |an| < en2. In 1925 Littlewood settled, that
|an| < en for all f ∈ S as n → ∞. This result was improved by FitzGerald and
Horowitz in 1970’s, who showed, that |an| < 1.07n. There is also a nice result of

Hayman’s, that states, that limn→∞
|an|
n

exists for every f ∈ S and smaller then 1
unless f is the Koebe function.
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Chapter 2

Related questions and their
implication to the original one

2.1 Odd functions and Robertson’s conjecture

For the functions f ∈ S, mentioned above, it is useful to consider related odd
functions of the form

f ∗(z) =
√
f(z2) = b1z + b3z

3 + . . .+ b2n−1z
2n−1 + . . . , b1 = 1 (2.1)

where coefficients correspond to the equations an = b1b2n−1 + . . . + b2n−1b1.Such
functions also belong to the class S.
If f is the Koebe function, then

f ∗(z) =

√
z2

(1− z2)2 =
z

1− z2
= z + z3 + z2n−1 + . . .

Assuming, that every function f ∈ S can be transformed into corresponding odd
function f ∗, the question of estimation of coefficients of f ∗ and connection of this
estimates of one for f became of interest as well. In 1932 Littlewood and Paley
settled that there exists constant c ≤ 14, such that for every odd function in S

|b2n−1| ≤ c, n = 1, 2, . . . .

They also conjectured that the true bound is given by c = 1. But this was disproven
later, in 1933, by Fekete and Szego. They found an example of odd function from S
for which |b5| > 1.
Later Robertson settled a bridge between the Bieberbach conjecture for functions in
S and estimations for coefficients of odd functions:

Proposition 2.1. Bieberbach conjecture for function f ∈ S with coefficients ai would
instantly follow from the inequality

n∑
k=1

|b2k−1|2 ≤ n (2.2)

6
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on coefficients for a corresponding odd function.

This became known as Robertson conjecture.

2.2 An exponentiation approach and Lebedev-

Milin conjecture

Another related subclass of functions considered along with the odd ones is subclass
of logarithmic transforms of the injective holomorphic functions. Let’s consider a

function f(z)
z

. It’s holomorphic and zero-free on U . We take a branch of log
(
f(z)
z

)
and focus on the expansion

log

(
f(z)

z

)
=
∞∑
k=1

ckz
k (2.3)

for f in S. In case, if f is the Koebe function, we have that ck = 2
k
.

In 1920, Nevanlinna considered the case for the image domains f(U) that are star-
shaped relative to the origin. Here a geometric argument at the boundary shows
that

<z f
′(z)

f(z)
= <

(
1 +

∞∑
k=1

kckz
k

)
.

Hence, by a well-known Caratheodory inequality for functions with positive part, he
obtained that k|ck| ≤ 2 or |ck| ≤ 2

k
.

As mentioned above, the inequality |ck| ≤ 2
k

or k|c|2 − 4
k
≤ 0 is not true for every

f in S. But, in 1971, Lebedev and Milin conjectured that it might be true in the
following average sense:

Ωn =
n−1∑
p=1

p∑
k=1

(
k|ck|2 −

4

k

)
=

n−1∑
k=1

(
k|ck|2 −

4

k

)
(n− k) ≤ 0 (2.4)

for n = 2, 3, . . . and all f ∈ S.

Examples

Based on De Branges’ method described in Chapter 3, it is easy to prove the Lebedev-
Milin conjecture for n = 2 and n = 3. Let’s see it’s connection with Bieberbach’s
one.
For n = 2 from (2.4) we obtain |c1|2 ≤ 4 or |c1| ≤ 2. Since

f(z)

z
= 1+a2z+a3z

2 +. . . = exp(c1z+c2z
2 +. . .) = 1+c1z+

(
1

2
c2

1 + c2

)
z2 +. . . ,

(2.5)
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after comparing corresponding coefficients, we immediately get Bieberbach’s inequal-
ity:

|a2| = |c1| ≤ 2.

For n = 3 (2.4) gives inequality |c1|2 + |c2|2 ≤ 5. Since

f(z)

z
= 1+a2z+a3z

2 +. . . = exp(c1z+c2z
2 +. . .) = 1+c1z+

(
1

2
c2

1 + c2

)
z2 +. . . ,

we obtain that

|a3| =
∣∣∣∣12c2

1 + c2

∣∣∣∣ ≤ 1

2
|c1|2 + |c2| ≤

5

2
− 1

2
|c2|2 + |c2| ≤ 3− 1

2
(|c2| − 1) ≤ 3

For a general case there is another very useful inequality for the coefficients of

∞∑
k=0

βkz
k = exp

(
∞∑
k=1

γkz
k

)

which was proved by Lebedev and Milin.
It asserts that

n−1∑
k=0

|βk|2 ≤ n exp

{
1

n

n−1∑
p=1

∑
k=1

p

(
k|γk|2 −

1

k

)}
, n = 1, 2, . . . (2.6)

Let’s consider identity function

b1 + b3z + . . .+ b2n−1z
n−1 + . . . =

f ∗(z)

z
1
2

=

=

(
f(z)

z

) 1
2

= exp

(
1

2
log

f(z)

z

)
= exp

(
1

2

∞∑
k=1

ckz
k

)

Using (2.6) one concludes that

|b1|2 + . . .+ |b2n−1|2 ≤ n exp

(
Ωn

4n

)
(2.7)

Thus, we obtain

Theorem 2.2. If the Lebedev-Milin conjecture (2.4) holds for f ∈ S and a certain
n, then the Robertson conjecture (2.2) holds for corresponding f ∗ and same n, so
that also the Bieberbach conjecture (1.5) must be true for the same n. Moreover, if
Ωn < 0 for some n, then one has a strict inequality in (2.4) and hence also in (2.2).
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Chapter 3

De Branges Theorem

In 1984 Louis De Brange has proved Lebedev-Milin conjecture (2.4) and thereby also
the Robertson (2.2) and the Bieberbach (1.5) conjectures. We will present his ideas
in a less complicated way synthesizing several articles of Fitzgerald and Pommerenke
[3], of Grinshpan [4] and of Korevaar [5].

Theorem 3.1 (L.De Branges). Let f : U → D be from S, let the power-series
coefficients an be defined as in (1.1) and logarithmic coefficients ck by (2.3). Then
the conjecture Lebedev - Milin inequality (2.4) and hence the conjectured Bieberbach
inequality (1.5) are true for every n ≥ 1. Equality in (1.5) and hence in (2.4) holds
for n ≥ 2 if and only if f is a Koebe function (1.2).

Proof. To make it more accessible for the reader the proof will be split into several
steps.

• Step 1: We make D nice.
For proof of Lebedev - Milin conjecture (2.4), it may be assumed that f maps
U onto a domain D, which is bounded by analytic Jordan curve. Indeed, for
any f ∈ S and 0 < ρ < 1 we can define another map

f 1(z) =
1

ρ
f(ρz) = z + a2ρz

2 + . . .+ anρ
n−1zn + . . .

This function maps U onto the domain 1
ρ
f(ρU). This domain is bounded by

analytic Jordan curve, which is (1
ρ
) times the image of the circle |z| = ρ under

f . As

log
f 1(z)

z
= log

f(ρz)

ρz
=
∞∑
k=1

ckρ
kzk,

we obtain that c1
k = ckρ

k for f 1. Hence if (2.4) has been proved for c1
k, then it

follows for the coefficients ck by letting ρ tend to 1.

9
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• Step 2: Loewner chains.
Given D = f(U) as in step 1, it is easy to construct a continuously increasing
family of connected domains Dt, 0 ≤ t <∞, such that

D0 = D,Ds ( Dt, if s < t and lim
t→∞

Dt = C (3.1)

For this family of domains we can define a Loewner chain (see Chapter 4)
ft(z) : U → Dt, ft(z) = f(z, t), o ≤ t <∞ starting at f(z), such that

ft(0) = 0, f ′t(0) > 0

Assuming f ′t(0) = et, we get the corresponding family of functions

ft(z) = f(z, t) = et(z + a2(t)z2 + . . .), 0 ≤ t <∞; f0(z) = f(z) (3.2)

The functions ft(z) of Loewner chain satisfy the partial differential equation
of Loewner:

∂f

∂t
= z

∂f

∂z
p(z, t), (3.3)

where
p(z, t) is analytic in z, <p(z, t) > 0, p(0, t) = 1. (3.4)

• Step 3: Logarithmic coefficients for f(z,t)
et

.

As it was mentioned in Chapter 2 it’s natural to consider the expansions

log
f(z, t)

etz
=
∞∑
k=1

ck(t)z
k, (3.5)

where f(z,t)
etz
∈ S. So there exist some constants Ak, such that |ak(t)| ≤ Ak,∀t.

Hence by recursion from (2.5) there will be constants Ck such that

|ck(t)| ≤ Ck,∀t (3.6)

This relation can be differentiated with respect to t and with respect to z. We
substitute it to Loewner equation (3.3), setting

p(z, t) = 1 + 2
∞∑
k=1

dk(t)z
k. (3.7)

Thus, equating the coefficients of like powers of z, we obtain the system of
differential equations

c′k(t) = 2dk(t) + kck(t) + 2
k−1∑
j=1

jcj(t)dk−j(t), k = 1, 2, . . . . (3.8)

10
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• Step 4: The auxiliary functional Ω.
For fixed n we introduce the auxiliary functional

Ω(t) = Ωn =
n−1∑
k=1

(
k|ck(t)|2 −

4

k

)
σk(t), (3.9)

where weight functions σk(t) are chosen in a suitable manner. It’s desired that
relation Ω(0) ≤ 0 will be the Lebedev-Milin conjecture (2.4). For that we need
to show that Ω(t) is a non-decreasing function of t, which vanishes at t→ +∞,
i. e.

Ω′(t) ≥ 0 for 0 ≤ t <∞, (3.10)

while Ω(t)→ 0 as t→∞.

Therefore we obtain the following properties of σk:

– Considering ck(0) = ck we get

σk(0) = n− k, k = 1, . . . , n− 1 (3.11)

– As every ck(t) is bounded (3.7), it’s sufficient that

lim
t→∞

σk(t) = 0, k = 1, . . . , n− 1, (3.12)

So that (3.10) is satisfied.

– De Branges conditions:

σk − σk+1 = −
(
σ′k
k

+
σ′k+1

k + 1

)
, k = 1, 2, . . . , n− 1; σn ≡ 0. (3.13)

• Step 5: Differential equation conditions on the σk.
Using the differential equations (3.8) for ck(t) and property (3.13) of σk, while
calculating Ω′(t), we obtain that it can be written in the form

Ω′ = −
n−1∑
k=1

Qk(c, d)σ′k(t), (3.14)

where Qk are nonnegative functions of the ck(t) and the dk(t). Hence we would
like to indicate the precise form of Qk(c, d). Using Herglotz representation for
holomorphic functions on the unit disc with positive real part, we obtain that

p(z, t) =

π∫
−π

eiθ + z

eiθ − z
dµt(θ),

11
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where µt is a positive Borel measure of total mass equal to p(0, t) = 1. So from
(3.7) we get that

dk(t) =

π∫
−π

e−ikθdµt(θ).

Introducing the sums

Sk =
k∑
j=1

jcj(t)e
ijθ, S0 = 0 (3.15)

we obtain that kck(t) = (Sk − Sk−1)e−ikθ. Thus we can rewrite (3.8) in the
following form:

c′k =

π∫
−π

(2 + Sk−1 + Sk)e
−ikθdµt(θ)

Applying this result to (3.14) we get

Qk(c, d) =
1

k

π∫
−π

|2 + Sk−1 + Sk|2dµt ≥ 0. (3.16)

• Step 6: Explicit form of the σ′k.

Condition (3.10) for Ω′ given in the form (3.14) will hold, if we could guarantee
that

σ′k ≤ 0, k = 1, . . . , n− 1. (3.17)

A very important observation is that the first σn−1 and the next σn−2, . . . , σ1

are completely determined by the system of differential equations (3.13) and
the initial conditions (3.11).

Examples

For n = 2 one has σ2 ≡ 0. From (3.13) we obtain that σ1 = e−t. Thus σ′1 ≤ 0
and Lebedev-Milin inequality (2.4) holds. Therefore the Bieberbach conjecture
(1.5) also holds.

For n = 3 one has σ3 ≡ 0. After solving the system of differential equations

σ2 − σ3 = −
(
σ′2
2

+
σ′3
3

)
σ1 − σ2 = −

(
σ′1 +

σ′2
2

)
,

12



C
E

U
eT

D
C

ol
le

ct
io

n

obtained from (3.13), we see that σ2 = e−2t, σ1 = 4e−t − 2e−2t. Here again
σk ≤ 0, k = 1, 2, which proves that the Lebedev-Milin inequality (2.4) and
hence the Bieberbach inequality hold (1.5).

For general n De Branges found solution of his system of differential equations
(3.13) with initial conditions (3.11) in a form

σk(t) = k

n−k−1∑
ν=0

(−1)ν
(2k + ν + 1)ν(2k + 2ν + 2)n−k−1−ν

(k + ν)ν!(n− k − 1− ν)!
e−νt−kt, (3.18)

k = 1, . . . , n− 1, where

(a)ν = a(a+ 1) . . . (a+ ν − 1) for ν ≥ 1, (a)0 = 1.

Taking derivative of (3.18) we obtain

− σ′k
k
ekt =

n−k−1∑
ν=0

(−1)ν
(2k + ν + 1)ν(2k + 2ν + 2)n−k−1−ν

ν!(n− k − 1− ν)!
e−νt (3.19)

For relatively small n it could be immediately verified that sums from(3.19)
are positive on (0,∞), which proves Lebedev-Milin inequality (2.4) and hence
the Bieberbach inequality hold (1.5). But what happens when we have larger
values of n?

After series of researches it was discovered that those sums from(3.19) are
generalized hypergeometric functions of a very special type, which are known
to be positive. Therefore De Branges proof of Lebedev-Milin conjecture (2.4)
was complete.

• Step 7: The case of equality.
Let us consider arbitrary function f ∈ S and an associated Loewner chain. It’s
obvious that equality holds for (2.4) if and only if Ω′ ≡ 0. Since σk(t) < 0 on
(0,∞) for 1 ≤ k ≤ n− 1, then it’s required that Qk(c, d) ≡ 0 and Q1(c, d) ≡ 0,
in particular. From (3.16) with positive µt we get

2 + S1 = 2 + c1(t)eiθ = 0, a. e.

Thus absolutely continuous part of µt must be zero. It follows that |c1(t)| ≡ 2
or |c1| = 2 and hence |a2| = 2. Then from Theorem 1.5 f is Koebe function.

13
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Chapter 4

Loewner equation

As mentioned before the Bieberbach conjecture inspired development of lots of com-
plicated algorithms and tools that became useful in theory of univalent functions.
In particular, it motivated the development of the Loewner parametric method in
1923, which allowed him to prove the first non-elementary case of this conjecture.
This theory was later developed by other authors in a way that it helped to solve
many extremal problems on the class S. Lets briefly consider this method.
First we need to give a definition of single-slit mappings:

Definition 4.1. A holomorphic function mapping the unit disc U ⊂ C onto the
complement in C of the Jordan arc is called a single-slit mapping.

In his paper Loewner proved that the class of single-slit mappings is a dense subset
of the class S of all normalized univalent functions f in the unit disk. This argument
was called Loewner representation theorem for single-slit mappings. The proof of
this important property can be found in [2]. Changing it slightly we’ll show that
some stronger argument is true.

Lemma 4.2. To each f ∈ S there corresponds a sequence of single-slit mappings
fn ∈ S, n = 1, 2, . . . ,, such that f→f uniformly on compact subsets of U as n→∞,
and the boundary of each fn(U), n ≥ 1, contains a subray of the negative real axis.

Proof. As in the first step of proof of De Branges theorem (see Chapter 3) it may
be assumed that f maps U onto a domain D, which is bounded by analytic Jordan
curve C. Thus there exists a subray L of the negative real axis that belongs to the
complement of D̄ except for its endpoint wL ∈ C. Let Jn be a Jordan arc that runs
from infinity along L to the point wL and then along C to a point wn. Let Gn be the
complement of Jn and gn : U → Gn, such that gn(0) = 0, g′n(0) > 0. The endpoints
wn are chosen in the such way that Jn ⊂ Jn+1 and wn → wL.

ThenD ⊂
∞⋂
n=1

Gn, D contains the origin. According to the Caratheodory convergence

theorem, gn → f uniformly on compact subsets of U as n→∞. Therefore

g′n(0)→ f ′(0) = 1.

14
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So we may take fn = gn
g′n(0)

, n ≥ 1.

Thus, the single-slit mappings that does not include a subray of the negative real
axis are dense in S.
Along with the representation theorem, Loewner also introduced a method to parametrize
single-slit maps.
Let f be a single-slit map, whose image in C avoids the Jordan arc J = {V (t) : 0 ≤
t < ∞} extending from V (0) to infinity. For each t > 0 let ft(z) = f(z, t) denote
the 1− 1 unique map of U onto the plane less the portion of J from V (t) such that

ft(0) = 0 and ∂ft(0)
∂z

> 0, and let f0(z) = f(z). The parametrization V (t) can be

chosen so that ∂ft(0)
∂z

= et, t > 0. In this case, it is easy to see that the images of
ft form an increasing family of simply connected domains. Such family of mappings
(ft) is called a Loewner chain. Again, to the Loewner chain (ft) we can associate a
family (φs,t = φ(z, s, t) := (f−1

t ◦ fs(z)), for 0 ≤ s ≤ t of holomorphic self-maps of
the unit disc U into itself, but not onto itself, such that 0 is carried to 0. Hence by
Schwarz lemma

|φ(z, s, t)| < |z| = |φ(z, s, s)| for all z 6= 0.

Let us assume that ∂φ
∂t

exists and is analytic in z. Then the angle between the vector
∂φ
∂t

for t = s and vector −z must be bounded by 1
2
π. It follows that

∂φ

∂t
|t=s= −zp(z, s), (4.1)

where p : U×[0,∞)→ C is a normalized parametric Herglotz function, which satisfies
the following conditions:

• p(0, z) ≡ 0,

• p(z, t) is holomorphic for all t ≥ 0,
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• p(z, t) is measurable for all z ∈ U ,

• <p(z, t) ≥ 0 for all t ≥ 0 and z ∈ U .

Equation (4.1) is also called general radial Loewner ODE.
From the definition of φ,

ft ◦ φs,t = fs(z)

Differentiating with respect to t and setting t = s, we obtain

∂ft
∂t

+
∂ft
∂z

∂φ

∂t
= 0 for t = s (4.2)

Combination of (4.1) and (4.2) give an equation

∂ft
∂t

= z
∂ft
∂z

p(z, t) for t = s. (4.3)

This equation is called general radial Loewner PDE.
General radial Loewner equations yield a one-to-one correspondence between Loewner
chains and normalized parametric Herglotz functions. They are also important as
they allow one to get estimates and growth bounds for ft and φt,s starting from
well-known estimates and growth bounds for maps, such as p(z, t), having their im-
age in the right half-plane. This approach let Pommerenke [1] solve the so-called
”embedding problem”, showing that for any f ∈ S it is possible to find a Loewner
chain (ft), which starts in f , i. e. f0 = f .
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Chapter 5

Applications

Unfortunately, the Bieberbach conjecture does not have applications itself. But it
is interesting to consider applications of Loewener parametric method, which was
inspired by the original problem.
Loewner’s crucial observation was that the family (ft), which was introduced in
Chapter 4, can be described by differential equations. In the general case of not
univalent maps (ft), one can choose a parametrization V (t) in a way that there will
exist a continuous function K : [0,∞)→ ∂D, such that ft satisfies

∂φs,t
∂t

= z
K(t) + z

K(t)− z
∂ft(z)

∂z
(5.1)

This equation is usually called slit-redial Loewner PDE and function K is called
the driving term. This PDE is the first one of several so-called evolution equations.
Loewner also remarked that the associated family of holomorphic self-maps of U
(φs,t) := (f−1

t ◦ fs) for 0 ≤ s ≤ t gives solutions of characteristic equation

∂ft(z)

∂t
= z

K(t) + z

K(t)− z
for t = s. (5.2)

Equation (5.2) is known nowadays as the slit-radial Loewner ODE.
These two slit-radial Loewner equations can be studied on their own without any
reference to parametrized families of the univalent maps. Restricting Loewner ODE
(5.2) one will obtain a unique solution. However, without conditions on the driving
term, the solutions of this equation are in general not of slit type. Therefore the
problem of understanding exactly which driving terms produce slit solutions of (5.2)
has become, and still is, a basic problem in the theory.
In 1946, Kufarev [1] proposed an evolution equation in upper-half plane analogous
to the one introduced by Loewner in the unit disc. In 1968, Kufarev, Sobolev and
Sporysheva [1] established a parametric method, based on this equation, for the
class of univalent functions in the upper half-plane, which is known to be related to
physical problems in hydrodinamics. Lets briefly introduce this evolution equation.
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Let J be a Jordan arc in the upper half-plane H with starting point J(0) = 0. Then
there exists a unique conformal map ft : H \ J [0, t]→ H with the normalization

ft(z) = z +
c(t)

z
+ O

(
1

z2

)
(5.3)

After reparametrization of the curve J , one can assume that c(t) = 2t. Under this
normalization, one can show that ft satisfies the following differential equation

∂ft(z)

∂t
=

2

ft(z)− h(t)
, f0(z) = z, (5.4)

where h(z) is a continuous real-valued function. On the contrary, given a continuous
function h : [0,∞) → R, one can consider the following initial value problem for
each z ∈ H:

∂φs,t(z)

∂t
=

2

φ(z, s, t)− h(t)
, φ(0, s, t) = z, (5.5)

where φ(z, s, t) is the associated family of holomorphic self-maps of U . This equation
is known nowadays as the chordal Loewner differential equation.
In 2000 Schramm had a very simple but very effective idea of replacing the function
h(z) and in (5.5) by a Brownian motion, i. e. h(t) :=

√
kBt. The resulting chordal

Loewner equation was called stochastic Loewner evolution with parameter k ≥ 0
(SLEk). The SLEk depends on the choice of the Brownian motion and the value of
parameter k:

• k = 2 corresponds to the loop-erased random walk, or equivalently, branches
of the uniform spanning tree.

• For k = 8
3
SLEk has the restriction property and is conjectured to be the

scaling limit of self-avoiding random walks. A version of it is the outer bound-
ary of Brownian motion. This case also arises in the scaling limit of critical
percolation on the triangular lattice.

• k = 3 is the limit of interfaces for the Ising model.

• For 0 ≤ k ≤ 4 the curve J(t) is simple (with probability 1).

• k = 4 corresponds to the path of the harmonic explorer and contour lines of
the Gaussian free field.

• For k = 6 SLEk has the locality property. This arises in the scaling limit of
critical percolation on the triangular lattice and conjecturally on other lattices.

• For 4 < k < 8 the curve J(t) intersects itself and every point is contained in a
loop but the curve is not space-filling (with probability 1).
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• k = 8 corresponds to the path separating the uniform spanning tree from its
dual tree.

• For k = 8 the curve J(t) is space-filling (with probability 1).

The SLE6 was used by Lawler, Schramm and Werner in 2001 to prove the conjecture
of Mandelbrot (1982) that the boundary of planar Brownian motion has fractal
dimension 4/3. Moreover Smirnov proves that critical percolation on the triangular
lattice was related to SLE6. Combined with earlier work of Harry Kesten, this
led to the determination of many of the critical exponents for percolation. This
breakthrough, in turn, allowed further analysis of many aspects of this model.
For the case of SLE2 Lawler, Schramm and Werner showed that it is a limit for
loop-erased random walk. This allowed derivation of many quantitative properties
of loop-erased random walk. The related random Peano curve outlining the uniform
spanning tree was shown to converge to SLE8.
Another important application of the Loewner method is its extension to several
complex variables. The first one to propose this was J.Pfaltzgraff, who in 1974
extended the basic Loewner theory to Cn, in order to obtain bounds and growth
estimates for some classes of univalent mappings defined in the unit ball of Cn.
The theory was later developed by other authors as well, but still there is no clear
descriptions available. Most of the literature in higher dimensions is devoted to the
radial Loewner equation on the unit ball of complex Banach spaces. But the class
of univalent mappings on the unit ball of Cn is not compact, so special subclasses
should be considered. All of this makes this theory much more complicated than
in dimension one. Therefor there is not yet a satisfactory answer to the question of
whether it is possible to associate to an evolution family on a ball Cn a Loewner
chain with image on Cn solving the Loewner PDE.
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Biographies of Bieberbach,
Loewner and de Branges

Ludwig Georg Elias Moses Bieberbach(4 December 1886 1 September 1982)
was a German mathematician. He was born in Goddelau, near Darmstadt, studied at
Heidelberg and under Felix Klein at Gottingen, receiving his doctorate in 1910. His
dissertation was titled ”On the theory of automorphic functions” (German: Theorie
der automorphen Funktionen). He began working as a Privatdozent at Konigsberg
in 1910 and as Professor ordinarius at the University of Basel in 1913. He taught at
the University of Frankfurt in 1915 and the University of Berlin from 192145.
Bieberbach wrote a habilitation thesis in 1911 about groups of Euclidean motions
identifying conditions under which the group must have a translational subgroup
whose vectors span the Euclidean space that helped solve Hilbert’s 18th problem.
He worked on complex analysis and its applications to other areas in mathematics.
He is known for his work on dynamics in several complex variables, where he ob-
tained results similar to Fatou’s. In 1916 he formulated the Bieberbach conjecture,
stating a necessary condition for a holomorphic function to map the open unit disc
injectively into the complex plane in terms of the function’s Taylor series. In 1984
Louis de Branges proved the conjecture (for this reason, the Bieberbach conjecture
is sometimes called de Branges’ theorem). There is also a Bieberbach theorem on
space groups. In 1928 Bieberbach wrote a book with Issai Schur titled ”Uber die
Minkowskische Reduktiontheorie der positiven quadratischen Formen”.
Charles Loewner (29 May 1893 8 January 1968) was an American mathematician.
His name was Karel Lowner in Czech and Karl Lowner in German.
Karl Loewner was born into a Jewish family in Lany, about 30 km from Prague,
where his father Sigmund Lowner was a store owner.
Loewner received his PhD from the University of Prague in 1917 under supervision
of Georg Pick; then he spent some years at the University of Berlin and Cologne. In
1930, he returned to Charled University of Prague as a professor. When the Nazis
occupied Prague, he was imprisoned. Luckily, after paying the ”emigration tax” he
was allowed to leave the country with his family and move to the US. Although he
had a job offer at Louisville University, he had to start his life from scratch. In
the US he worked at Brown University, Syracuse University and eventually Stanford
University, where he remained until his death in 1968.
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Loewner’s work covers wide areas of complex analysis and differential geometry.
But one of his central mathematical contributions is the proof of the Bieberbach
conjecture in the first highly nontrivial case of the third coefficient. The technique
he introduced, the Loewner differential equation, has had far-reaching implications
in geometric function theory. It was used in the final solution of the Bieberbach
conjecture by Louis de Branges in 1984.
Louis de Branges de Bourcia (born August 21, 1932) is a French-American
mathematician. He is the Edward C. Elliott Distinguished Professor of Mathematics
at Purdue University in West Lafayette, Indiana. He is best known for proving the
long-standing Bieberbach conjecture in 1984, now called de Branges’s theorem.
Born to American parents who lived in Paris, de Branges moved to the US in 1941
with his mother and sisters. His native language is French. He did his undergraduate
studies at the Massachusetts Institute of Technology, and received a PhD in math-
ematics from Cornell University. His advisors were Wolfgang Fuchs and then-future
Purdue colleague Harry Pollard. He spent two years at the Institute for Advanced
Study and another two at the Courant Institute of Mathematical Sciences. He was
appointed to Purdue in 1962.
An analyst, de Branges has made incursions into real, functional, complex, harmonic
(Fourier) and Diophantine analyses. As far as particular techniques and approaches
are concerned, he is an expert in spectral and operator theories.
Early in 1984 he completed a manuscript of 385 pages, which culminated in a proof
of the Bieberbach conjecture. This proof was not initially accepted by the mathe-
matical community - many mathematicians were skeptical because de Branges had
earlier announced some false results, including a claimed proof of the invariant sub-
space conjecture in 1964. It took verification by a team of mathematicians at Steklov
Institute of Mathematics in Leningrad to validate de Branges’ proof, a process that
took several months and led later to significant simplification of the main argument.
The original proof uses hypergeometric functions and innovative tools from the the-
ory of Hilbert spaces of entire functions, largely developed by de Branges.
Actually, the correctness of the Bieberbach conjecture was only the most important
consequence of de Branges’ proof, which covers a more general problem, the Milin
conjecture. The particular analysis tools he has developed, although largely success-
ful in tackling the Bieberbach conjecture, have been mastered by only a handful of
other mathematicians (many of whom have studied under de Branges). This poses
another difficulty to verification of his current work, which is largely self-contained.
During most of his working life, he published articles as the sole author.
Two named concepts arose out of de Branges’ work. An entire function satisfying a
particular inequality is called a de Branges function. Given a de Branges function,
the set of all entire functions satisfying a particular relationship to that function, is
called a de Branges space.

22


	Introduction
	Elaboration of the problem
	Related questions and their implication to the original one
	Odd functions and Robertson's conjecture
	 An exponentiation approach and Lebedev-Milin conjecture

	De Branges Theorem
	Loewner equation
	Applications

