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Abstract 

This thesis investigates the potential gains of introducing higher capital requirements for 

systemically important financial institutions (SIFIs). To assess the effect of this 

differentiation, the analysis compares the proposed SIFI-based policy to the conventional 

general capital requirement regulation by estimating the losses caused by contagious bank 

defaults spreading in the Hungarian interbank network. A pivotal part of the applied 

methodology is connected to the lack of available information about the bilateral exposures in 

this system. To handle this obstacle, the reconstruction of the unobservable adjacency matrix 

was conducted by using three different methods – Maximum Entropy approach, Minimum 

Density approach and a copula-based approach – to provide a range for the estimations. The 

identification of SIFIs was done primarily by implementing a Shapley-value-based technique, 

but the study also contains a simple form of core-periphery decomposition and a more 

qualitative indicator-based measure as robustness checks. The results underpin the intuition 

that the SIFI-based regulation is potentially more efficient than the conventional policies; 

however, some possible pitfalls also emerge due to the imperfection of SIFI identification. As 

a complementary result, the thesis also offers an illustration of the advantages and the 

deficiencies of the implemented network reconstruction techniques. 
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Introduction 

“Will the failure of a financial institution trigger the subsequent failure of others?” 

(Upper, 2011, p. 1) This question might be the most unsettling concern of economic 

regulators after the recent crisis. The chain of unexpected events have given economists a 

lesson about the threats coming from financial contagions and it became one of the most 

important challenges for policy makers, how to manage or even more importantly, how to 

prevent spillovers in the global economy. This claim came hand in hand with a new paradigm: 

the recognition of the importance of contagious effects made network science an emerging 

methodological framework in economics. It turned out, that there are mechanisms now – first 

of all in the financial intermediary sector – which were though not completely unknown in the 

previous regulatory mindset, but their magnitude was severely underestimated. After the 

crises during the ‘90s in Mexico and in Asia there were attempts to draw attention to 

contagious effects1, but it gained momentum truly only after 2008. However, nowadays all the 

policies aiming at the enhancement of systemic stability are receiving great emphasis. I would 

like to contribute with my thesis to this aspiration by analyzing the efficiency of the currently 

proposed regulation for capital requirements, which is one of the most essential parts of the 

ongoing reform in the financial sector. 

i.) Background of bank regulation 

In order to be able to understand the necessity of recent network-based innovations, one 

should be familiar with the tendencies of bank regulation in the recent economic history. First 

and foremost, regulation in any sector can only be accepted in the capitalist mindset, if there 

is a market failure to fix, and the costs of doing so are less than the gains. These conditions 

                                                           
1 E.g. Bae et al. (2000), Forbes and Rigobon (2002) and Rigobon (2003). 
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are the cause of many economic debates, and neither is bank regulation an exception. There 

was a minority, especially prior to the crisis, which represented the “free banking” standpoint 

(Selgin, 1988). They claimed that either there is no failure to compensate, or more often the 

competition on the market controls the situation more effectively than the state does. 

(Feingold, 2012)  

After the crisis, it became widely accepted that due to their connectedness towards the 

real economy, banks have a special role and without regulation there is no mechanism to 

prevent the emergence of excessive risk-taking behavior. In addition, banks operate in a 

highly leveraged way compared to other sectors and information asymmetries are present on 

multiple levels. These characteristics combined with the interconnected nature result in 

massive systematic risk. 

However, it is still not clear, which direction should we choose now: Do we need more 

restrictive policies, or the price of avoiding collapses is even higher than the damage caused 

by the crises themselves? Basel III proposals and capital requirement regulations and 

directives in the EU (CRR/CRD IV) are indicating clearly the former direction despite the 

unavoidable downsides of it. Meeting the increased capital and liquidity requirements is 

possible by adjusting either the equity or the asset side. In both cases, there will be pressure 

on the cost of capital, which leads to higher lending interest rates. The reduced credit supply 

accompanied by restrictive fiscal policy usually induces setback in the output growth and in 

employment. (Slovik and Courn`ede, 2011) Furthermore, it can be even more harmful, if the 

tightening is happening after a crisis period, since it can postpone the recovery and also 

strengthen undesired disintermediation in the financial sector. (Homolya, 2011) According to 

the model of the Bank for International Settlements, one percentage point increase in the 

capital requirements can lead to 0.19% point decrease in the GDP. However, their analysis is 

still in favor of the stricter regulation, which reduces the probability of the crises to such an 
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extent that causes long-term output being higher by 2% points. (BCBS, 2012b) Yet it is clear, 

that we should pursue the most efficient way of regulation to minimize the “price of stability”. 

The most promising suggestion so far to reach this goal is to identify those institutions 

which are so important due to their size, connectedness, or any other indicator of importance, 

that their failure would cause greater damage for the economy than their bail-out. For 

example, the decision to save AIG in September 2008 was motivated by the worries that its 

“failure under the conditions prevailing would have posed unacceptable risks for the global 

financial system and for our economy”. (Bernanke, 2009) In order to avoid defaults which 

potentially jeopardize the stability of the system, regulation for these SIFIs (systemically 

important financial institutions) is planned to be stricter compared to smaller players. This 

also means, that the aggregated capital requirement level – and hence the output loss – could 

be lower than in a general, uniform regulatory scheme. In my analysis I perform the 

assessment of this efficiency effect on Hungarian data by simulating the impact of the 

different capital requirement regulations. Unfortunately, conducting this kind of analyses is 

not possible without making some compromises, which leads to potential departure from the 

ideal framework in several aspects. 

ii.) Limitations and justification of the analysis 

If the theoretical objective of the authorities was to create a regulation which delivers 

perfect stability in the economy, it would be – surprisingly – a relatively easy task. They 

should set the capital requirement up to a 100% level, and we would not be concerned with 

global bank crises any more. Of course it is not a realistic setup in our financial system due to 

several practical difficulties, but the even greater trouble with this fictitious world is that our 

objective function is not so simple. We care not only about stability, but also about market 

efficiency and output. I showed that there are calculations about the GDP effects of the 
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proposed regulatory measures, but we do not have a utility function representing all these 

factors. Economic agents might be willing to sacrifice some output in exchange for a balanced 

and sound economy, but there is no solid information neither about the exact “price” nor the 

functional form of it. However, a comparison between the two above mentioned policies is 

still valid, but we should keep in mind that it is possible to figure out only the relation 

between them, and an approximation of the difference. 

In addition to this shortcoming, there is another simplification, which should be noticed. 

I restricted my work only to contagions induced by interbank lending which is related to the 

mechanism that if one institution goes bankrupt, its creditors from the financial sector will 

suffer a loss and if their equity is smaller than the loss, they can default too. Nevertheless, the 

vulnerabilities coming from the special characteristics of the financial sector are manifested in 

several other ways as well. Upper (2011) offers an exhaustive summary about the potential 

channels, and he also categorizes them in a way depicted in Table 1. 

Table 1 – Contagion channels in the banking system 

Channel References 

Liability side   

Multiple equilibria/fear of other      

withdrawals 

Diamond and Dybvig (1983), 

Temzelides (1997), Goldstein and 

Pauzner (2004) 

Common pool of liquidity 

Aghion et al. (2000), Acharya and 

Yorulmazer (2008b), Diamond and 

Rajan (2005), Brunnermeier and 

Pedersen (2009) 

Information about asset quality 
Chen (1999), Acharya and Yorulmazer 

(2008a) 

Portfolio rebalancing Kodres and Pritsker (2002) 

Fear of direct effects Dasgupta (2004), Iyer and 
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Peydró-Alcalde (2005), Lagunoff and 

Shreft (2001), Freixas et al. (2000) 

Strategic behavior by potential lenders Acharya et al. (2008) 

Asset side   

Direct effects   

Interbank lending 
Studies reviewed in the subsequent  

chapters 

Payment system 
Humphrey (1986), Angelini et al. 

(1996), Bech and Garratt (2006) 

Security settlement Northcott (2002) 

FX settlement Blavarg and Nimander (2002) 

Derivative exposures Blavarg and Nimander (2002) 

Equity cross-holdings   

Indirect effects   

Asset prices Cifuentes et al. (2005), Fecht (2004) 

 

If the focus was on the assessment of the overall contagious impact of a failure, one 

should include each identified mechanism in the analysis, which would be an overwhelmingly 

complex task to do. However, my intention is rather to contribute to the process of developing 

preventive policies, and for this propose, it is more useful to separate the channels one by one 

in order to test the effect of regulatory measures on them. In turn, it is questionable at this 

point, which channel should we concentrate on. Interbank lending did not cause so far too 

many bank defaults to my knowledge, but the lack of precedents is not due to its 

insignificance or irrelevance. Bank collapses triggered by this mechanism were prevented 

several times during the recent crises by bailouts provided by governments. Since these 

actions are very costly and they also entail moral hazard motives, elimination of this kind of 

contagion would likely enhance social utility. Another reason why interbank lending should 

be considered notable is that it belongs to direct contagions, and it can ignite indirect 
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contagions, for instance bank runs, gridlock or liquidity hoarding. (Dasgupta, 2004; Iyer and 

Peydró-Alcalde, 2005; Freixas et al., 2000) Of course, these dangers are present only if banks 

have a lot of interbank exposures. In the Hungarian banking system the ratio of interbank 

assets to total assets is more than 53%, which is certainly high enough to consider it necessary 

to be aware of the potential risks2. 

There is also a well-known practical obstacle for this kind of analyses, namely that for 

national bank systems only public balance sheet information is available due to privacy 

concerns. Although Hungary is one of the few countries where the central bank has data on 

bilateral interbank lending exposures, they cannot share it with any third party. Translating 

this into a more network-specific point of view, the barrier is that the whole structure of a 

given system is not available. What we can use in this situation is the aggregated data from 

the balance sheets, which are public for all the financial institutions operating as LTD (Private 

Company Limited by Shares) or PLC (Public Company Limited by Shares). There is a row 

for each bank about its assets and liabilities toward other financial institutions. This means 

that we know the strength of each vertex, but we do not know the links and neither the 

weights of the links. However, there are techniques which can be applied to reconstruct the 

missing matrix in order to conduct further analysis. In my thesis I performed three methods to 

overcome this obstacle. 

Therefore, the objective of my thesis is twofold: primarily to find out which type of the 

capital requirement regulations (CRR) is more efficient, the network-based approach or the 

general CRR scheme; and secondly to compare various techniques for handling limited 

information availability problem, which is a common obstacle in these analyses. Furthermore, 

since network approach is barely present yet in the Hungarian economic literature, my study 

                                                           
2 Own calculation based on Aranykönyv 2013 („Golden Book”), which is an annual data reporting publication of 

the Hungarian Central Bank. 
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contributes to the field also by providing the first implementation of some methods on 

Hungarian data. 

The scope of the thesis includes four main topics, which are also the basis of the 

structure of the paper. After reviewing the relevant literature, Section 2 deals with the 

problem of data availability. Section 3 describes a simple model of idiosyncratic stress events 

in the case of general CRR. Section 4 introduces ways of measuring systemic importance of 

the particular agents in order to identify SIFIs, while the comparison of the two types of 

regulations and the resulting policy implications are derived in section 5. Finally, the last 

section concludes the findings and makes suggestions for further research. 
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1) Literature review 

Very few papers can be found that are dealing with either SIFI regulation or contagion 

due to interbank lending in Hungary. The most closely related study is Lublóy (2005), in 

which the author modeled the chain of circular lending contracts among banks, but did not 

consider regulatory interventions. She traced the impact of idiosyncratic failures by measuring 

the number of first-, and second-round defaults, the overall capital losses in the banking 

system and the proportion of the assets of the banks affected by the cascade mechanism. Since 

handling SIFIs is an utterly recent challenge, there is no extended research about the empirical 

experiences even in the international publications. (We will see empirical results only after 

the implementation of the policies, but we are only in the phase of preliminary analysis.) 

Some early investigations of the interbank market were done with tools and concepts of 

network theory by Boss et al. (2004), Iori (2005) and Boss et al. (2006), which however, did 

not include SIFI-based regulation in the analyses. According to this state of the related 

research, I found rather methodological papers concentrating on technical problems within 

network framework. 

1.1) Network reconstruction 

Considering the first fundamental part of the process of the analysis, one should 

overview the various network generating techniques. A not too sophisticated, but still a 

pioneering way to reconstruct a network is the Maximum Entropy (ME) approach, which was 

used many times, e.g. by Upper and Worms (2004) or by Elsinger et al. (2013). The standard 

ME procedure consists of two steps: dividing the total exposures as evenly as possible then 

using the RAS3 algorithm (Schneider and Zenios, 1990) to rebalance the adjacency matrix. 

                                                           
3 The acronym „RAS” has notational origins: �̂�𝐴�̂�. 
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(Rebalancing is necessary to ensure that the sum of the individual quantities is equal to the 

original marginal distribution, i.e. the balance sheet data). Distributing each bank’s total 

interbank lending as evenly as possible also means that ME results in an almost complete 

network, which can give us a uniformly distributed limit of credit relationships in any further 

impact assessment. However, the assumption of this level of diversification is not realistic, as 

Upper and Worms (2004) and Craig and Von Peter (2014) showed that the real network is 

rather sparse, and smaller banks use more central intermediaries, which trait creates a tier 

structure. In addition, ME suggests that the degree, which is one of the most important 

network properties has no meaning in the banking network topology.  

These simplifications imply that ME is feasible only if no other information is present 

about the system, and these shortcomings called for further research.  Drehmann and Tarashev 

(2013) improved ME by generating random perturbations around the ME matrix, then they 

chose the one with the highest concentration to get closer result to the sparse structure. 

Another, more complex enhancement is the Minimum Density (MD) method developed by 

Anand et al. (2014). MD tries to allocate the lending quantities using the fewest possible 

interbank links by imposing cost on establishing a new connection. Hence, it captures two 

characteristics of the real world banking systems: sparsity and disassortativity. In its pure 

form, minimum density gives the opposite extreme outcome: this can be used as the highly 

sparse limit of credit relationships for the estimations. However, if our goal is to recreate the 

most likely version of the true system, or provide a null-model in order to identify abnormal 

clustering or other network phenomena, other estimates might give more precise results. E.g. 

Mastrandrea et.al (2014) developed an enhanced version of maximum entropy method, which 

takes into account the degrees of the nodes as well, which makes it possible to improve 

significantly the effectiveness of the process. (Despite its promising features I could not 
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implement their algorithm, because the central bank in Hungary is not allowed to share even 

the degree data.) 

There are a few alternative approaches beyond ME to tackle network reconstruction. 

One of the most novel techniques was proposed by Baral and Fique (2012), who constructed a 

copula-based method. Since a copula is a cumulative distribution function (with uniform 

marginals), after some adjustment the balance sheet information can be input to generate 

probabilities of the bilateral exposures, which can be used to produce stochastic adjacency 

matrices. The main advantage of copulas over maximum entropy is the flexibility, which 

makes it possible to accommodate different dependence structures and find better fit than ME. 

Baral and Fique (2012) also conducted comparisons to ME concerning the precision of the 

estimations, and find that copula approach outperforms ME especially in cases where core-

periphery effect is more prevalent. Since this is a well-known characteristic of interbank 

lending networks, this feature has key importance in this application. (Berlinger et al., 2015)  

Based on the qualities and the feasibility of the listed methods I decided to implement 

Maximum Entropy and Minimum Density algorithms to provide a range for the results of the 

simulations; furthermore, I also carried out the copula solution to compare the entropy based 

methods to a different approach. 

1.2) Identification of SIFIs 

The currently mainstream method for SIFI identification is the calculation of the 

weighted sum of various indicators. After the vulnerabilities of the banking sector came to 

light during the crises of 2007-08, the Basel Committee on Banking Supervision (BCBS) 

issued a methodology to identify systemically important banks (G-SIB). (The Financial 

Stability Board took over this framework and they publish their list of G-SIBs each 

November.) Their methodology was published in 2013 and an updated version in 2014. 
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(BCBS, 2013, 2015) They included five categories with equal weights (but each category 

consists of indicators with different weights). The indicators are chosen in a way to reflect the 

most possible aspects of externalities and also to reduce the risk of moral hazard. I have no 

knowledge about more complex version of the indicator-based method. 

Another way to approach the identification is to develop models which are capable to 

estimate the contribution of individual banks to systemic risk. These models are at a relatively 

early stage of development, and there are concerns about their robustness and the ability to 

capture all the important aspects of systemic risk. (These are the main reasons why indicator-

based technique is used by the regulators for the time being.) However, there are very 

promising attempts which should be mentioned here. One group of the studies defines 

systemic importance of a given bank as the expected loss it causes due to a set of systemic 

shocks. It means that importance is the expected participation of banks in systemic events. 

Tasche (2008), Huang et al. (2010), Acharya et al. (2009), Brownlees and Engle (2010) and 

Battiston et al. (2012) serve as examples for this direction. An alternative measure was 

suggested by Tarashev et al. (2010). Their method tries to capture the contribution to the 

systemic cascades. The key concept to understand this is the idea of Shapley value (Shapley, 

1953), which is an algorithm to allocate the value created in cooperative games across agents 

in game theory. Using this concept they found non-linear relationship between common risk 

factors and the probabilities of individual defaults. A similar technique was used by Staum 

(2012) to design deposit insurance system in the event of fire-sales based contagions. 

1.3) Modeling contagion across banks 

Most of the papers I covered use an algorithm developed by Furfine (2003) to model the 

effect of a cascade triggered by any shock. This mechanism is quite simple; it consists of the 

following three steps: (i) A bank defaults due to a idiosyncratic shock. (ii) Any bank defaults 
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as well, if its exposure towards the first bank (multiplied by the Loss Given Default 

parameter) exceeds its equity. (iii) If there is at least one other bank which suffers defaults due 

to the failures of the previous two based on the rule in step 2, the contagion continues. If there 

is no further default, the cascade stops. This algorithm is imperfect as it does not handle 

simultaneity; that is higher order defaults cause losses to banks that had collapsed in an earlier 

round. Eisenberg and Noe (2001) offer a solution to this concern as they showed that this 

problem has a unique solution; i.e. it is possible to determine the exact number of defaults due 

to the contagion. However, due to its simpler applicability and the potentially small extent of 

distortion (which will be present probably on both sides in the comparison) I decided to use 

Furfine’s method. 
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2.) Network reconstruction methodologies 

It is a widely known barrier in network analysis that the whole structure of a given 

system is not available; e.g. because of missing nodes/edges/weights etc. One faces with the 

same difficulty during analyzing interbank lending exposures because of the lack (or due to 

the not public nature) of this confidential data. Luckily, we are not completely blind on this 

system, as the balance sheets contain information about assets and liabilities toward other 

financial institutions. This information is available for all the financial institutions operating 

as LTD (Private Company Limited by Shares) or PLC (Public Company Limited by Shares) 

in a publication called “Golden Book” (“Aranykönyv”) which is published by the Central 

Bank of Hungary. This source offers an opportunity to reconstruct the missing adjacency 

matrix using only the sums of the rows and columns, which are also known as marginals. 

Still, these balance sheet lines need to be slightly corrected, since the asset and the liability 

sides do not correspond perfectly to each other. On the liabilities side the only attainable 

variable is “The deposits from financial institutions” (accounting code: 1B2) which is highly 

distorted due to the presence of deposits coming from money funds and other financial 

enterprises. On the asset side we have “Interbank and central bank deposits” (accounting 

code: 1AB4), which contains exposure also toward the central bank, which does not 

contribute to the risks we are interested in. However, the amount of central bank deposits is 

much smaller and less distorting, so I decided to use this source. Adjusting the liability side to 

make it equal to this asset category I obtained a relatively clear representation of the sums of 

interbank lending. (This methodology would not be appropriate after 2013, since in 2014H2 

the central bank changed the target variable from two weeks maturity bond, to two weeks 

maturity deposits. This action increased the stock of deposits materially.) 
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After altering the data I carried out three network generating algorithms in order to get a 

range for the estimations to reconstruct the adjacency matrix in the most reliable way. Firstly I 

will present the implementation of Maximum Entropy (ME) method, which is the historically 

most often used and quite simple solution. It results in a maximum density estimation offering 

a uniformly distributed limit of credit relationships for the further analysis.  Density has an 

important role, because the number of edges influences the contagion materially through two 

contradictory effects: On the one hand, having more links increases the potential channels of 

contagion. On the other hand, the exposures are distributed across more bilateral connections, 

which enhance the resilience when a shock occurs. The final result depends on the level of 

connectivity and the amount of capital in the banking system. (Upper, 2011, p. 4) According 

to Allen and Gale (2000), if the network is almost complete, the probability of contagion is 

seriously underestimated. An enhanced version of ME is called Minimum Density (MD) 

method, which gives the opposite extreme outcome: this can be used as the highly sparse limit 

of credit relationships for our estimation. I also performed a third approach based on copulas 

(CA), which produces the same dense structure as ME, but allocates the quantities (weights of 

the edges) in a more realistic way. 

2.1) Maximum Entropy method (ME) 

The fundamental intuition behind using maximum entropy method is the following: 

Since we can observe only each bank’s interbank assets and liabilities, there is no further 

restriction we could impose. In the absence of any additional information, the most rational 

solution is to choose a distribution which maximizes the uncertainty (also known as entropy 

in information theory) of the interbank exposures. Entropy maximization can be explained 

through the example of the probability distribution for the outcome of rolling a six-sided dice. 

Without any prior information that the dice is loaded in some way, the most sensible 
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distribution to choose is one that assigns an equal probability to each of the six possible 

outcomes. So entropy maximization allows us to select a unique distribution making full use 

of available information without making any assumption about information that is not 

available. It means that we generate an adjacency matrix (rescaled between 0 and 1 and 

denoted as xij) as randomly as possible. The widespread mathematical formulization of this 

problem (coming from thermodynamics) is the following: 

min ∑  

𝑁

𝑖=1

∑ xij ln( xij)

N

j=1

 

subject to: 

∑ xij = ai

𝑁

𝑗=1

 

∑ xij = lj

𝑁

𝑖=1

 

xij ≥ 0 

where l and a represent the assets and liabilities of each bank toward financial institutions. 

The Langrangian for this problem is: 

min L(x, λ, μ) ∑  

𝑁

𝑖=1

∑ xij ln( xij) −  ∑ λi

N

i=1

∑(xij − ai

N

j=1

)

N

j=1

− ∑ μj

N

j=1

∑(xij − lj)

N

i=1

 

Solving it we get simply: 

xij = ailj 

This solution is not suitable yet as it also implies that a bank may have an exposure to 

itself, so we should restrict the element of the main diagonal to be zero. Furthermore, this 
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matrix might violate the adding-up constraints. To solve this, we can use RAS algorithm 

(iterative proportional fitting) to balance the matrix. It consists of the following steps: 

1) Calculating the sum of the rows: 

∑ Fij

i

= ai
∗ 

2) The marginals divided by the sums: 

ri = ai
∗/ai 

3) Adjustment of the rows: 

Fij = riFij 

4) Sum of the columns: 

∑ Fij

j

= lj
∗ 

5) The marginals divided by the sums: 

cj = lj
∗/lj 

6) Adjustment of the columns: 

Fij = cjFij 

This algorithm should be repeated until the sum of the squared errors will be small 

enough. I implemented this procedure using R to get the simulated network. (The code can be 

found in Appendix 1.) 

2.2) Minimum Density approach (MD) 

The fundamental assumption behind maximum entropy case was the absence of any 

further information beyond the aggregated balance sheet data. In the minimum density 

method the developers (Anand et al., 2014) of the approach overcome this belief, as actually, 

we do have at least two pieces of additional information about the network of interbank 
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exposures: (1) Establishing and maintaining linkages among banks is a costly action due to 

the expenses of risk management, information processing and creditworthiness checks. 

Hence, banks do not spread their interbank exposures across the whole network. (2) The 

active bilateral connections are not distributed completely randomly; it tends to be rather 

disassortative. It means that less-connected institutions are more likely to trade with more-

connected banks than other less connected banks. (Boss et al., 2004; Boss et al., 2006; Iori et 

al., 2005; Iori et al., 2008) This impact is underpinned by the observation of the existence of 

intermediary banks serving as money-centers. The MD procedure finds the most probable 

links based on these two additional aspects, and weights them with the largest possible 

amounts. The formulated way of the heuristic process that executes this method is the 

following (Anand et al., 2014. p. 2-5.): 

Firstly, we create initial probabilities of having a link between two banks: 

𝑄𝑖𝑗 = 𝑚𝑎𝑥 {
𝐿𝐷𝑗

𝐴𝐷𝑖
,
𝐴𝐷𝑖

𝐿𝐷𝑗
} 

At each iteration, a link (i, j ) is selected with probability Q(i,j), where AD(i) is a bank’s 

current surplus and LD(i) is the current deficit to be met in the interbank market. The initial 

probabilities in Q represent the characteristics of the interbank network that small banks 

typically have links with large banks. The exposure Z(i,j) is loaded with the maximum value 

that this pair of banks can transact:  

𝑍𝑖𝑗 = 𝑚𝑖𝑛{𝐴𝐷𝑖 ,  𝐿𝐷𝑗} 

If adding this link increases the value function below, V(Z), the allocation is retained.  

V(Z) = −c ∑  

𝑁

𝑖=1

∑ 1[zij>0] −  ∑[αiADi
2 + δiLDi

2]

N

j=1

N

j=1
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In this function c means the cost of having a link between two banks, while the second 

term handles the deviation from the marginals. According to this function, networks with a 

lower density have higher values. However, if the addition of Z(i,j) diminishes the value 

function, we also retain the link as long as the network including Z(i,j) is more likely than 

without the link.   

In order to decide on this probability the authors proposed the following procedure: 

Since we want to generate networks that are both sparse and disassortative, we should derive 

a distribution by maximizing the sum of two terms representing these objectives. Let P(Z) be 

the probability distribution over all possible network configurations. The first part is then the 

expected value of networks based on the value function (networks with few links and thus 

with high value should be more likely). At the same time, to ensure disassortativity, P should 

be close to the prior Q.  This can be obtained by maximizing the relative entropy between the 

probability distribution P and the initial Q. P can be derived by the solution of the problem 

consisting of the combination of the two parts: 

max
p

∑ P(Z)V(Z) + θR(P||Q)

Z

 

where θ  is the scaling parameter  emphasizing the weight placed on finding solutions with 

similar characteristics to Q. The solution of this expression is attainable from the first-order 

conditions. If the probability of the network is lower after adding a new link, the connection 

will be removed. This procedure should proceed until the total interbank market volume has 

been allocated. To conduct this heuristic algorithm I asked the developers of the model to 

assist me with the Matlab code they used. I made slight modification to transform it in an 

appropriate form for the analysis on my data set.  
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2.3) Copula Approach (CA) 

Baral et al. (2012) developed a novel network reconstructing algorithm, which uses 

copulas as the core of the method instead of maximizing entropy. Their proposal also applies 

RAS algorithm, but unlike the ME solution of Upper and Worms (2004) it does not treat all 

the connections equally, rather uses values assigned by a copula to generate a stochastic 

matrix. This matrix can be multiplied by the marginal exposures to create the adjacency 

matrix, which can produce a better match than the one estimated by ME. In any case, before I 

go into the details of CA, it might be useful to provide an example as a quick overview of 

copulas using Schmidt (2006) p. 2-3. 

2.3.1) Copulas4 

Consider throwing two dices which represent two random variables: X1 and X2. The 

outcome in both cases can vary between one and six. If the value of X1 is given, it means no 

information about the value of X2, i.e. they are independent. In turn, if we know that the two 

numbers are equal, assuming X1 as given we have full information on X2. To describe more 

precisely these two random variables we can use their cumulative distribution functions 

(marginals). However, they give us no information about the joint behavior. In the 

independent case the joint distribution function is simply the product of the marginals. Hence, 

we can notice that we use two ingredients to attain complete description of X1 and X2: the 

cumulative distribution functions and the type of their relationship, which is independence 

here. The main idea of copulas is exactly this separation of the marginals and the dependence.  

Suppose a third case where X1 is always the number of the smaller throw and X2 is the 

larger one. Here we have strict monotonic relationship between X1 and X2: 𝑋1 ≤ 𝑋2. If we 

                                                           
4 based on Schmidt (2006) 
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know that X1=5, we can have a guess on X2 to be equal either 5 or 6 with 50% probability 

each. The joint distribution function in this situation can be written as: 

𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2) = 2𝐹(𝑚𝑖𝑛{𝑥2, 𝑥2})𝐹(𝑥2) − 𝐹(𝑚𝑖𝑛{𝑥2, 𝑥2})2 

As a first step to disentangle the dependence structure we should transform the random 

variables into uniformly distributed ones. This is useful because a random variable can be 

always represented using the uniformly transformed values and the generalized inverse of the 

cumulative distribution function; therefore, the joint distribution function can be expressed 

using two independent and standard uniformly distributed random variables. In this form we 

can obtain the dependence structure, which is also known as a copula: 

𝐶(𝑢1, 𝑢2) = 2𝑚𝑖𝑛{1 − √1 − 𝑢1, √𝑢2}√𝑢2 − 𝑚𝑖𝑛{1 − √1 − 𝑢1, √𝑢2}
2
 

The marginals transformed into uniform distributions can be used as a point of 

reference. The copula function then obtains the dependence structure using this reference. It 

must be also noted, that due to Sklar’s theorem the marginals should be continuous. If this 

criterion is not met the copula is not unique. 

2.3.2) Estimating bilateral exposures using CA 

During the procedure of estimating the bilateral exposures by copula approach I 

followed steps outlined in Baral (2013). The first thing we must be aware of is to solve the 

problem that the marginals are discrete instead of being continuous. To estimate the 

probability density functions I used kernel density estimator, which is a non-parametric 

method with favorable characteristics for smoothing the data. It allows us to choose the type 

of the kernel function and also the bandwidth to avoid under- or oversmoothing. The general 

form of a kernel density estimator for the marginals of the adjacency matrix is defined as:  
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fĥ(xi) =
1

nh
∑ K (

xi − x0

h
)

n

i=1

 

where K is the kernel function (which integrates to one and has zero mean) and h is the 

bandwidth (The kernel density estimation method is this way similar to a histogram).  

Firstly, I performed some preliminary analysis in order to get information about the nature of 

the densities of the marginals. Based on Baral (2013), I chose a normal kernel function to 

make plots of the variables. This function has the form: 

fĥ(xi) =
1

√2π
e(

𝑥𝑖−x0
h

)
2

 

I used the default Matlab kernel density bandwidth parameter which depends on the 

number of observations. It evaluates the function at 100 points covering the range of the given 

variable. By plotting both of the marginals we can learn about their distribution and the tail 

dependence, which relationship is necessary to explore since it will be the basis of the choice 

what kind of copula is the most suitable. For instance upper tail dependence means that with 

large values of the first variable also large values of the second variable are expected. This 

analysis is done by eyeballing whether the peaks in the densities of the two variables are 

correlated with each other. It is not obvious to pick the right copula, since there is no 

quantitative rule for this. Fortunately, in banking system structures – due to the connected 

nature – there is almost always some pattern, usually lower or upper tail dependence, which 

can be a hint to opt for an Archimedean copula, such as Clayton or Gumbel type copula. As 

the illustration of Figure 1 shows, Gumbel copula shows rather upper tail dependence, while 

Clayton has extremely high peak at the (0, 0) point, which means lower tail dependence. 
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Figure 1 –  Illustration of Gumbel and Clayton copulas (respectively) 

Source: Schmidt (2006) p. 12 

 

 

Figure 2 – Kernel density estimates for the balance sheet variables 

 

Based on Figure 2 there is probably lower tail dependence between the sum of the rows 

and the sum of the columns of the adjacency matrix. Intuitively, there can be upper tail 

dependence as well, but it is more difficult to evaluate since there are lot less data points for 
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that region. Consequently, I opted for using Clayton copula, but it should be noted that 

choosing a functional form on 43 observations is challenging in any case and therefore there 

is high uncertainty about the right choice. 

After deciding on the copula, one should transform the discrete values into uniformly 

distributed ones, which is required for any copula function. To do this, we can use kernel 

estimation again, but this time the uniform version of it: 

fĥ(xi) =
1

2
. 1

{
xi−x0

h
}≤1

 

where .1 is the indicator function which indicates membership of an element in a subset. 

The next step is the most crucial part of the procedure: the estimation of the dependence 

parameter; that is fitting the copula to the data. The easiest way to do this is using the built-in 

Matlab function copulafit which runs maximum likelihood estimation for the dependence 

parameter. Substituting this parameter in the copula function we can generate a matrix of 

cumulative probabilities, which represents the likelihood of links between agents. After 

rescaling this matrix to ensure that the probabilities add up to one, and applying the RAS 

algorithm for rebalancing, we will reach to the bilateral connections we were looking for. 

Since the RAS procedure uses the probabilities generated by the copula function, the bilateral 

connections – unlike in the ME case – are not obtained under the assumption of maximum 

uncertainty. Instead they are reflecting the dependence structure of the real system. 

There is a further opportunity for enhancement in the CA approach. It can happen that 

fitting only one copula does not result in a good fit, because the dependence structure is more 

complex. (For instance there are lower tail dependence and upper tail dependence as well.) In 

this case it is also possible to use a mixture of copulas. Baral and Fique (2012) combined 
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Gumbel and Clayton copulas by dividing the data into two parts and applying the more 

appropriate copula for the subsets separately. 

2.4) Comparison of the generated networks 

For the sake of comparison among the approaches, I conducted a brief analysis using 

basic network measures about the Hungarian interbank system. I downloaded the balance 

sheet data of the 43 largest financial institutions. (There are 43 actors in the industry which 

are operating as LTD or PLC.) 

I made illustrations in Gephi showing the generated networks for the three methods. 

Figure 3 and Figure 4 are showing the estimations for the network of the Hungarian interbank 

lending structure. The ME and the CA results differ only in the weights of the edges, but their 

basic structure is identical. In Figure 3 the weights, i.e. the size of the particular bilateral 

exposures are represented by the thickness of the edges. In Figure 4 (to make the differences 

more visible) the more important edges also have warmer colors. The size of the nodes 

indicates the number of degrees of each node, while the colors of vertices (transition from 

light pink to red) for the MD graph denote the eigenvector centrality of the banks. 

Eigenvector centrality is an indicator of the influence of a vertex in a graph. It assigns scores 

to the nodes based on the score of their connections (which is based on the score of the 

connections of the neighbors, etc.).  It implies that connections toward nodes with high score 

contribute to the importance more than a connection toward nodes with low score. 
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Figure 3 – Illustration of the Minimum Density estimation of the 

Hungarian interbank lending 

Figure 4 – Illustration of the Maximum Entropy (left) and the Copula approach (right) estimations 

of the Hungarian interbank lending network 
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If we look at the seemingly systemically important banks in the MD network, the 

method seems to be credible in this respect. The five major actors in the system are among the 

top eight banks in Hungary in basically all the indices or measures we can find. In the other 

two networks I highlighted only OTP bank (to keep the figure clear), but the other seemingly 

large banks on the illustrations are also in accordance with the reality. In order to compare the 

networks in a quantitative way as well, I used several measures, for which I provide some 

clarification in Table 2. 

Table 2 – Simplified definitions of some network measures (based on Newman et al. (2006)) 

Measure Explanation 

Average path length The average number of steps of the shortest paths for all possible 

pairs of network nodes. 

Density The number of links as a percentage of the total number of 

potential links (excluding self-loops). 

Network diameter The longest of all the calculated shortest paths in a network. 

Modularity Modularity is the fraction of the nodes falling within a given 

group compared to the expected fraction if the links were 

allocated randomly. 

Global clustering 

coefficient5 

An indicator of the extent to which banks in the system tend to 

form clusters. 

Dependency Dependency shows the ratio of the largest lending (borrowing) 

amount and the sum of the lending (borrowing) of all the banks in 

the system. 

Connected component A connected component is a subgraph in which any two nodes 

are connected to each other by at least one path. 

                                                           
5 Both clustering and modularity measure the presence of cliques, but they have a different point of view. 

Networks with high modularity have a lot of connections among the nodes within modules but there are only few 

links between nodes in different cliques. Global clustering uses a different concept: it considers the density of 

closed triplets compared to all triplets. (A triplet consists of three nodes that are connected by either two (open 

triplet) or three (closed triplet) undirected ties.) It is easy to imagine graphs with high modularity, but low 

clustering coefficient, e.g. complete balanced bipartite graphs without any link between each other. 
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Table 3 shows these basic network parameters of the three methods calculated in Gephi 

(except from the dependencies; I used Matlab for those.) 

Table 3 – Network measures for the three approaches 

 Minimum Density Maximum Entropy Copula Approach 

Number of nodes 43 43 43 

Number of edges 65 1025 1025 

Avg. degree 1.512 23.84 23.84 

Avg. path length 3.082 1 1 

Density 0.036% 56.8% 56.8% 

Network diameter 7 1 1 

Modularity 0.408 0 0 

Avg. clustering coeff. 0.068 0.736 0.736 

Dependency 

(borrowing) 
84.09 24.94 25.68 

Dependency (lending) 92.79 12.54 14.47 

Size of the largest 

connected components 
42 42 42 

 

I have also tried to perform community detection using Gephi’s built in modularity tool, 

but it was possible only in the case of the minimum density network due to the almost 

complete structure of the other two outputs. I found four communities, but Figure 5 shows 

only three of them since the forth one is a separated component which consists of only one 

node. The communities found this way are reflecting the assortative structure of the system, 

but the core-periphery nature is not present so explicitly. 
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All the figures show clearly how large the imbalance is between the outcome of MD 

and the other two estimates. (The number of connected components is two in all cases due to 

one bank which has no interbank exposures according to the marginals.) Most of the numbers 

are identical for ME and CA, since the majority of the indicators in the table do not take into 

consideration the weights of the edges. The only categories where ME and CA are different 

are the dependency measures. Since they are calculated using the weights of the links their 

divergence is not surprising and also their relation is in line with the expectations: CA has the 

theoretical advantage to perform better in the case of strong core-periphery structure (which is 

the intuitive expectation for this network) where highest dependence is more likely.  

The visualization and the calculated network measures confirm the other preliminary 

expectations as well. The ME and CA approaches deliver an unrealistic structure, which 

might underestimate the contagion in the case of a systemic stress event. They produce almost 

Figure 5 – Communities in the network estimated by Minimum 

Density method 
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complete networks (Since sometimes the marginals have zero value, there are parts of the 

matrix which are zero even in these cases.) However, the minimum density estimates are also 

quite far from the real numbers, if we accept the estimation of 1% for the German interbank 

network density (Craig von Peter, 2014) as valid for Hungary as well. 

Albeit all three methods produced outputs with deficiencies, further analysis of the 

system is possible and necessary. The most realistic result was given by Minimum Density 

method, but it might be still useful to run simulations on all the three versions at least for the 

sake of checking the robustness. In the next chapter I will continue the comparison of the 

matrices derived here, but with a more informative tool: I will perform stress simulation for 

analyzing shock events to explore the number of defaults and the expected loss due to an 

idiosyncratic shock. 
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3) Idiosyncratic shock simulation 

This section introduces the simulation technique of the analysis, which will be the base 

also for SIFI identification and for the comparison across different regulatory policies. I 

divided this section into two subsections. In the first one I provide thorough description about 

the simulation setup and the assumptions I made during the calculations, while the second 

subchapter contains the results of the baseline scenario. 

3.1) Simulation method 

As the first step in the procedure of the simulation one has to decide what kind of 

distress should be used as a shock event. Since the focus of the analysis is the impact of 

contagions which are spreading through bank failures, I used exogenous idiosyncratic defaults 

of individual banks. This distress can drive banks to failure in two ways: (i) being the first 

randomly selected agent which defaults; and (ii) defaulting by contagion. The latter case 

occurs if an otherwise solvent agent is pushed into default by depressing the value of its 

interbank assets due to the default of other bank(s). 

As a next step, in order to describe the exact mechanism of the contagion we should 

create the simplified balance sheets of the banks. Beside the interbank exposures there are two 

other essential ingredients which should be identified in the hypothesized balance sheets. The 

first one is the capital of banks which can be used as loss-absorbing buffer in a stress 

situation. Contagious cascades can be materially reduced by the adequately high level of this 

buffer, so it is important to think over carefully what can be recognized as capital buffer. The 

wide-spread consensus in practice is to consider only the capital that exceeds the regulatory 

minimum. (Berlinger et al., 2015) Since this grouping of the capital of banks is not available 

in public sources, I estimated the bank level excess capital from the aggregated data of the 
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Financial Stability Report of the National Bank of Hungary. I adjusted this data by 

proportioning it based on the balance sheet total of the individual banks.  

The other pivotal item of the identification is the “size” of a given bank which 

represents the potential damage it can cause in the case of its default. This measure should 

proxy the effect of the bank failures on the real economy. I decided to use the stock of non-

bank deposits for this purpose in my simulation. The rationale behind this choice is that even 

a defaulting bank causes losses to all of its creditors; we should handle interbank creditors 

with caution, because without distinction one might count the effect on them twice. Since in 

the case of interbank exposures the liabilities of one bank are assets of another, losses on these 

links are incurred by the equity holders (or other creditors) of other banks in the system. 

Consequently, if one includes interbank links as a measure of losses, they can be double 

counted at a system-wide level. (Drehmann and Tarashev, 2013) 

Table 4 – Hypothesized balance sheets of the banking sector (Elements marked with grey are 

present in the simulation) 

Assets Liabilities 

Interbank assets 
Interbank liabilities 

Non-bank liabilities (deposits) 

Non-bank assets 
Excess equity 

Minimum equity 

 

Now, we can formulate the contagion mechanism: We choose a bank randomly, and we 

assume that it defaults due to an idiosyncratic shock. Based on the generated adjacency 

matrices we know all the interbank links which will be affected by the fundamental default. 

We can apply an LGD (loss given default) parameter, which determines the loss proportional 

to the bilateral exposures. Contagion occurs, if this loss exceeds the excess capital of one of 
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the partner banks. Then, as a next round we apply the same algorithm for the newly collapsed 

agent(s) until the cascade stops and we reach equilibrium.  

During this procedure I made several assumptions which should be mentioned: 

There is no deposit insurance, or other guarantees: In reality there is in almost every 

country some kind of explicit guarantee for the liabilities of banks, and there is also a high 

probability of bailouts of some agents. 

There is no adjustment from the banks: Since the contagion mechanism takes place 

abruptly, the banks do not alter their behavior as a response to the shock. It is not a realistic 

behavior, since banks probably adjust their strategies to the new situation. Furthermore, in 

systemically important situations also the state (the regulator) can intervene in order to ease 

the tension on the market. 

Constant LGD: I assumed constant loss given default parameter for all the banks; however, 

in the reality LGD can vary in a large extent across different agents. 

There is no cost/length of legal procedures: Due to the lack of information I did not take 

into account the costs of the legal procedure emerging after a default. (It can be considered as 

a part of the LGD.) 

Only domestic exposures cause contagion: This assumption might lead to underestimation 

of the probability, or the severity of contagions, but there is no information available to 

overcome this bias. 

Losses are shared equally across lenders. 

The interest and the principal are counted together at repayment. 
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3.2) Results 

I ran the above described algorithm for the default of every bank, and I obtained two 

types of outputs: The expected shortfall caused by the cascade (based on the stock of 

deposits), and the number of default as a proportion of all banks in the system. The code for 

this exercise (written in R) can be found in Appendix 1. 

Figure 5 shows the expected loss calculated as the percentage of all deposits in the case 

of the Minimum Density network. We should keep in mind that this measure also contains the 

loss occurred by the default of the first bank, which may or may not cause a contagion. If we 

are curious about the expected shortfall in the system this is a well performing measure, but it 

results in a biased indicator concerning the contagious effects. I ran the simulation using three 

different LGD parameters (30%/60%/90%). These versions produced partly the expected 

ranking, i.e. we can see the highest shortfall in the 90%LGD case, but the other two scenarios 

do not show any difference. We can observe in Figure 6 that the seven largest banks have 

outstanding values, which is in accordance with the bias mentioned above. 

Figure 6 – Expected shortfall (ES) as a percentage of the size (stock of deposits) of the whole 

banking sector (43 banks) with 30%/60%/90% LGD – Minimum density version 
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In order to filter out the distortion caused by the size of the banks and see only the 

contagious effects, I also ran a simulation for the number of defaults in the case of the failure 

of a given bank. Figure 7 presents the results of this measure. This figure is more informative 

concerning the contagious impact of the banks, and it is somewhat different from the previous 

outcome. There are also a few smaller agents (Commerzbank, two FHB entities and Gránit 

Bank) which seem to be important in this respect, while some of the large banks (Unicredit, 

Erste) are missing from the list of the most important institutions. 

Figure 7 – Proportion of the defaulted banks after the failure of a particular bank with 

30%/60%/90% LGD – Minimum density version 
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I conducted the same analysis for the Maximum Entropy and the Copula Approach based 

networks. Figure 8 shows the expected shortfalls in the ME case. There is no significant 

difference across the various LGD parameters, which can be surprising at first sight, but after 

examining Figure 9 (which shows the number of defaults) it becomes obvious that this strange 

result is due to the fact that there are only very few contagious events took place in this 

network. 
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Figure 8 – Expected shortfall as a percentage of the size (stock of deposits) of the whole 

banking sector (43 banks) with 30%/60%/90% LGD – Maximum entropy version 
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Figure 9 – Number of defaults as a percentage of the number of all banks (43) after the 

failure of a particular bank with 30%/60%/90% LGD – Maximum entropy version 
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Concerning the CA version, the outcomes can be seen in Figure 10 and Figure 11. 

These are almost identical with the ME results; the only remarkable difference is in the 

number of defaulted banks, which is zero even for the cases where Commerzbank and 

Raiffeisen Bank defaults initially. (Actually it is not zero, since the own defaults of banks are 

also counted in the measure, but there is no second round default.) 
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Figure 10 – Expected shortfall as a percentage of the size (stock of deposits) of the whole 

banking sector (43 banks) with 30%/60%/90% LGD – Copula Approach version 
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Figure 11 – Number of defaults as a percentage of the number of all banks (43) a after the 

defaults of different banks with 30%/60%/90% LGD – Copula Approach version 
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Although this simulation would be applicable to some extent also for the purpose of 

determining the systemic importance of the banks, I will introduce more sophisticated ways to 

do this in the next chapter. However, based on all the figures presented in this chapter, it is 

clearly visible that OTP Bank has the largest influence. (This finding is not surprising 

considering its really strong position in the market.) To gain a clearer picture about this 

outlier, I performed the separated simulation for the default of OTP Bank to see the spillovers. 

Moreover, this example offers an illustration how the contagion proceeds. 
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Figure 12 shows the cascades in the case of 30% (left panel), 60% (middle panel) and 

90% (right panel) LGD parameter. The red color denotes the initial default of OTP Bank; the 

orange refers to the defaults in the first round; while the banks marked with yellow are the 

second round defaults. There are no more rounds even in the 90% LGD case. 

  

Figure 12 – Contagion triggered by the default of OTP Bank with 30%/60%/90% LGD in 

the Minimum Density network 
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4) SIFI identification 

In order to find systemically important institutions in the generated banking networks I 

performed three different approaches. The first one is constructing an indicator based index; 

the second is a simple version of core-periphery decomposition, while the third way is a 

simulation method based on the concept of Shapley value. I decided to use more than one 

method to explore the differences between the approaches and to get more solid results. 

4.1) Indicator-based measurement of systemic importance 

Indicator-based approach is the most prevalent way to identify SIFIs in practice. 

According to the overview of Weistroffer (2011), despite the obvious difficulty of choosing 

the appropriate measures and thresholds, indicators have several advantages which explain 

their widespread popularity: (i) They can be applied relatively easily even at a global scale; 

(ii) they are more robust than market-based measures (e.g. compared to asset price 

correlations or VaR calculations); (iii) they are easy to implement and (iv) indicators are 

transparent, i.e. they can provide guidance for the banks in which aspects they should reduce 

risk-taking. However, this last argument entails also the possibility of manipulation through 

mitigating exposures which are important for the rating, while taking more risk in other areas. 

(In order to prevent this behavior regulators have some discretion in the rating procedure.) 

Another important drawback of indicator-based measures is that they are not able to 

differentiate between a banks’ contribution to systemic risk and its participation in systemic 

events. For instance, in the case of a central counterparty (CCP) the objective of the regulator 

should be to ensure the survival of the institution by building up sufficient buffers. It is not the 

intention to disincentive the CCP not being so interconnected since its primary function is to 

enhance stability by reducing the complexity of the OTC market. In other cases however, 
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incentivizing agents to limit their contribution to systemic risk is more important than 

ensuring their viability. (Weistroffer, 2011) Consequently, differentiation in the evaluation of 

the indicators (by assigning peer groups and setting various benchmarks) should be a pivotal 

part of SIFI identification. (However, this argument is valid also for the other approaches 

which will be introduced in the next subchapters.) 

Based on the suggestions of the Financial Stability Board (FSB), the Basel Committee 

on Banking Supervision (BCBS, 2013, 2015) proposed a methodology, which aims at 

capturing the impact of the failure of an agent. It incorporates five categories with equal 

weights: size, interconnectedness, substitutability, complexity and cross-jurisdictional 

activities.  However, these categories and the indicators within them were recommended for 

G-SIBs (Global Systemically Important Banks), while in Hungary there are only Systemically 

Important Banks on domestic level (D-SIBs). For these institutions BCBS (2012) 

recommends only to ignore the last category (cross-jurisdictional activities).  

Another possible framework for grouping indicators can be the measurement of 

importance along the functions of the banking system. The conventional splitting of banking 

activities consists of three main categories: Financial intermediation; participation in financial 

markets; and maintaining financial infrastructure. The intuition behind this approach is that 

importance of an agent can be indicated by the extent of its participation in the banking 

functions. The variables which could be used as proxies for these categories are listed in 

Table 5. 
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Table 5 – Variables for measuring importance by banking functions (Bold denotes the 

indicators I have access to) 

Category Variables 

Financial intermediation 

 Stock of bank level lending 

(subdivided into household and 

corporate categories) 

 Stock of bank level deposits 

(subdivided into household and 

corporate categories) 

Participation in financial markets 

 Turnover of uncovered money market 

for individual banks /aggregated 

turnover 

 Turnover of FX swaps for individual 

banks /aggregated turnover  

 Turnover of government bonds for 

individual banks /aggregated turnover 

 Turnover of spot currency market for 

individual banks /aggregated turnover 

 Interbank lending exposures 

 Interbank FX swap exposures 

Maintaining financial infrastructure 

 Number of bank accounts 

 Number of branches 

 Extent of custody services 

 

Unfortunately, the range of publicly available data either for variables in Table 5 or for the 

BCBS recommendation is very limited, so I can present only a version of indicator based 

measures, which is rather degraded into a basic description of the Hungarian banking system. 
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Table 6 – Top ten most important Hungarian banks according to the indicator-based 

measurement 

 

The results of Table 6 consist of two elements: the ranking based on the banks’ stocks 

of deposits and lending which represents their role in financial intermediation; and the ranking 

based on interbank lending exposures, which is also a proxy for contagious potential. The last 

column shows the ranking based on the equally weighted average of the previous two aspects. 

All the data are from the public data base of Aranykönyv (“Golden Book”). Since these 

results are based on only very few variables, it might be necessary to implement other 

approaches for identifying the systemically important banks. Still, the outcome of this simple 

examination will be useful for the purpose of robustness check to the further methods. 

4.2) Core-periphery decomposition 

It is a well-known feature of the banking system, that there are a few money-centers 

which are connected to many other less central banks. (Berlinger et al., 2015) This 

hierarchical, tiered structure was found for instance in the German interbank network by 

Craig and von Peter (2010). They had also found that banks’ characteristics (various measures 

of size) help to explain their position in the interbank market. Consequently, tiering is not 

random, rather behavioral, as there are economic reasons (e.g. fixed costs) which explain this 

structure of the banking system. This means that the position in the core-periphery partition 

Financial intermediation
Participation in financial 

markets

Banks
Ranking based on 

Lending+Deposits

Ranking based on 

interbank exposures
SIFI ranking

OTP Bank Nyrt. 1 1 1

Kereskedelmi és Hitelbank Zrt. 2 3 2

ERSTE BANK HUNGARY Zrt. 4 2 3

UniCredit Bank Hungary Zrt. 7 4 4

MKB Bank Zrt. 5 6 5

Raiffeisen Bank Zrt. 6 7 6

CIB Bank Zrt. 3 14 7

FHB Commercial Bank Zrt. 13 8 8

Hungarian Savings Cooperative Zrt. 18 5 9

FHB Jelzálogbank Nyrt. 14 9 10
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can be used also to measure the systemic importance. However, we should note that this 

method can be applied reasonably only in the case of the MD network, since the other two 

reconstruction techniques resulted in almost complete graphs, so they do not have a core-

periphery structure. 

However, even in the real banking networks (and also in the MD network) there is no 

pure core-periphery formation, so one has to find a method to decompose the system in a way 

that approximates the core-periphery setup. There are several ways how to perform this 

decomposition, but – due to its simple applicability – I have chosen the following method 

proposed by Berlinger et al (2015): First, I used the Bron-Kerbosch algorithm (Bron-

Kerbosch, 1973) to solve the maximum clique problem in R. This procedure results in a list 

containing the largest complete subgraphs of the network. As a second step I picked from this 

list the result which produced the lowest degree in average in the periphery-periphery 

subgraph. It suggests that the banks in the periphery have only a few links with each other and 

a stress event can seriously limit their access to the market. (Berlinger et al., 2015) The output 

of this approach can be seen in Figure 13. The core consists of only three banks: OTP, Erste 

and FHB. They are considered to be indeed among the largest banks in Hungary, but the 

(highly simplistic) assumption of the method, that only completely connected subgraphs can 

constitute a core clique excludes a lot of other large players. 

 

 

 

 

 

 

Figure 13 – Core-Periphery decomposition of the Hungarian banking system simulated 

by Minimum Density method (red denotes the banks in the core) 
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4.3) Identification based on Shapley value 

Since the results of this type of core-periphery decomposition are very limited due to the 

“completely connected clique” assumption, I implemented also a simulation to identify SIFIs 

in the Hungarian banking system. The core of the code for this procedure is the same as in the 

stress test simulation, but it is embedded in a formula based on the concept of Shapley value. 

Shapley value is a measure of importance which has its origins in game theory. The heart of 

the method is calculating the difference between the losses occurred after a shock event with 

and without the presence of a given bank in the banking system. If one wants to implement 

the Shapley value in its authentic form, it is required to compute this difference for all the 

possible subsystems of the network: f(NSUB) − f(NSUB − i). Then the Shapley value will be 

the weighted average of the increments of risk that a bank generates when it participates in 

any subsystem of the network: 

𝑆ℎ𝑎𝑝𝑙𝑒𝑦 𝑣𝑎𝑙𝑢𝑒𝑖  (𝑖, 𝑁, 𝑓) =
1

n
∑

1

c(ns)

n

𝑛𝑠=1

∑ (f(NSUB) − f(NSUB − i))

NSUB⊃i
|NSUB|=ns

 for all i ϵ N 

where NSUB ⊃ i denotes all the subsystems that contains bank i, |NSUB| means the number of 

banks in a given subsystem and c(ns) = (𝑛 − 1)!/(𝑛 − 𝑛𝑠)! (𝑛𝑠 − 1)!  is the number of 

subsystems containing bank I and are comprised of ns banks. (Drehmann and Tarashev, 2013, 

p. 6.) 

Unfortunately, this method requires extremely large computational capacity, so I had to 

make a simplification: I did not calculate the differences for all the subsystems, only for the 

whole network. This way, my SIFI identification measure for bank i contains the average 
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difference between the losses in the whole system (caused by the defaults of all the banks 

occurring one by one) with and without the participation of bank i. I wrote the code for this 

procedure in R and it can be found in Appendix 1. 

When applying this method, we should mind the following consequences: When a bank 

is removed from the network, not only the given bank, but all the links of it will be removed 

as well. For these cases I made two assumptions. I assumed that (i) the removed assets of this 

bank are reallocated into other risk-free assets, and (ii) the banks which borrowed from the 

removed entity can substitute their interbank financing with other sources. 

After completing the procedure there are a large number of results due to the many 

combinations of LGD parameters, network reconstruction techniques and loss measures. I do 

not present all of them in the context of the SIFI identification, I show only two outcomes: the 

Minimum Density – 90% LGD realization of two measures which seem to be the most 

relevant.6 Figure 14 shows the average difference for all banks between the losses with and 

without their participation in the network during stress events. The figure shows two types of 

this measure: one which includes losses that occurred due to the own default of the given 

bank, and another, which excludes this effect and takes into account only the contagion 

induced losses. The latter version should be considered if we are interested in creating a 

framework in which we can motivate banks to avoid becoming systemically important. 

However, if we want to take into consideration all the losses caused by the default of a bank, 

the former measure is more appropriate. In my analysis, there is no significant difference 

between the two, since both versions produced the same outcomes; that is the intuitively 

largest banks turned out to be the most important. 

                                                           
6 I picked MD because it produced the most realistic network; and there were the most defaults in the 90% LGD 

case, so I think it provides the most information. 
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Figure 14 – Shapley value based measure of systemic importance based on average expected 

shortfall (stock of deposits) using 90% LGD parameter and Minimum density estimates 
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There is an even better way to explore the importance of banks from a point of view of 

contagion. Similarly to the evaluation of the stress test, we can use the ratio of defaulted 

banks in the system as well. In this case there is no distortion due to the “size” of the banks, 

since this approach gives us the pure contagion related impact. The result of it shown by 

Figure 15 is rather surprising. We can see that the agents which seem to be important here are 

totally different (except from OTP) compared to the previous figure. They are smaller, 

seemingly less important banks, but they are crucial in the case of contagion. Of course it is 

only the result of a simulation, but it can draw attention to the potentially hidden risk factors 

in the system. It can happen also in the real banking system, that some banks are unexpectedly 

significant (regarding their role in contagions). However, I think the objective of the policy 

makers is rather minimizing social costs, and for this purpose the previous measures are more 

suitable. 
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Figure 15 – Shapley value based measure of systemic importance based on the proportion of 

defaulted banks using 90% LGD parameter and Minimum density estimates 
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5) Comparison of SIFI based and general regulation 

In this chapter I conducted the final part of the analysis, which is the comparison of the 

SIFI based approach and the general capital policies. To do this, I built the following 

framework: I increased exogenously the size of the capital buffer in two ways according to the 

two types of regulations. In the SIFI based approach I used the information about the identity 

of SIFIs obtained in the previous chapter. I chose the version where I considered the expected 

shortfall of the stock of non-bank deposits without the losses caused by the initial defaults. (In 

my opinion this method reflects the most reliably the objective of the regulation since the 

main purpose is to minimize the cost for the society.) For these selected banks (CIB, Erste, 

K&H, MKB, OTP, Raiffeisen, Unicredit) I increased the size of their capital buffer by 10% 

and I ran the same stress test I described in Section 3 with an LGD parameter of 90%. After I 

saved the resulted losses in a vector, I moved to the second part of the simulation, which was 

the implementation of the general regulatory framework. In order to get comparable results, I 

distributed the amount of additional capital buffer (used for the SIFIs in the previous step) 

across all the banks in proportion to their baseline buffers. I ran the simulations with same 

shocks, and I saved the losses similarly to the previous case. Finally, the difference between 

the vectors of losses can be interpreted as a measure of efficiency of the two policies. Since 

building up additional capital buffer has adverse effect on the output, I wanted to compare 

two situations where the same amount of extra buffer is applied. This way we can see that at a 

given level of welfare loss, which method performs better. I made the assumption here that 

the adverse economic effect is linear regardless of the initial level of the buffer of a bank, i.e. 

the reaction of banks depends linearly on the change in their capital buffer, but does not 

depend on the level of it. 
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The result of the comparison can be seen on Figure 16 not only for the 10% increase but 

also for nine further cases where the extra buffer is higher and higher until doubling the 

original size of the capital of the SIFIs. 

Figure 16 – Difference between the SIFI based approach and the general capital buffer policy 

based on the losses caused by stress events (using 90% LGD in the stress tests) 
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According to Figure 16 in the cases of ME and CA the SIFI based excess capital policy 

works more efficiently at all capital levels by a range of 30-80 billion HUF gain compared to 

the conventional approach. However, in the MD version, there are huge negative results at 

50% and 60%. This might be odd at first sight, but this result is actually drawing attention to a 

very important trait of this kind of policies: the sensitivity against the imperfect identification 

of SIFIs. These results are due to the fact, that some smaller banks are not considered 

systemically important, but they still can trigger damaging cascades if their capital level is 

relatively low. In this example, when the mortgage bank of the FHB group defaults, it ignites 

the default of the commercial bank of the FHB group in the case of the SIFI regulation, but if 

the capital buffer of the commercial bank is increased by at least 50%, it survives. In the SIFI 

based policy, this capital injection is not present, so this is the reason behind the setback on 

the figure. Starting from the 70% capital increase, this impact is offset by other gains of the 
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SIFI regulation, but this phenomenon is still a very instructive result. The SIFIs found by the 

selected method were in accordance with our expectations, but it turned out that in some cases 

this methodology performed rather poor. This result might be attributable to the unrealistic 

network structure which differs greatly from the real-world interbank system, but this 

potential drawback of the applied procedure is still valid. Despite this problem, MD produces 

also the highest average advantage of the SIFI approach, so we can conclude that its 

superiority is mostly underpinned. 

We can compare the policies also along the number of defaulted banks (similarly to the 

previous chapters). This result is depicted on Figure 16: 

Figure 17 – Difference between the SIFI based approach and the general capital buffer policy 

based on the proportions of defaulted banks (using 90% LGD in the stress tests) 
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Figure 17 shows unquestionable dominance of the SIFI based regulation over the 

general policy. The decline for MD in the 50-60% area can be found also in this case, but the 

series remains positive even in this region. Likewise to Figure 16, the highest average 

overperformance of the SIFI approach is produced by the MD case. This pattern can be 

explained by the sparse structure of the MD, where the probability of contagion is higher; 

consequently it highlights more the virtues of the SIFI based policy. 
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Conclusion 

In my thesis I performed an analysis about the efficiency of a new regulatory 

instrument: the special treatment of the systemically important financial institutions (SIFIs). 

This line of policies gained momentum after the lessons of the current crises, where financial 

contagions took place through several channels causing damages even in the real economy. 

There are numerous uncharted territories in this area, so I had the opportunity to examine only 

a narrow subject, which was testing the intuition whether identifying SIFIs can help us create 

better capital requirement regulation than the nowadays still widespread general requirements. 

In this analysis I considered only interbank lending as the source of contagion. Since it is a 

well-defined and direct way of spillovers, and it can lead to other types of contagious 

mechanisms, this channel can serve as an appropriate framework to measure the efficiency of 

the regulatory approaches. Given the fact that all types of capital requirements lead to an 

adverse adjustment process in the financial intermediary sector, I defined the efficiency as the 

level of stability attained by a given amount of additional capital buffer, where stability was 

represented by the estimation of losses and the number of defaults caused by the failure of 

individual banks. In order to make it possible to conduct the analysis, I had to overcome a 

serious information availability barrier.  There is no public data in Hungary about the bilateral 

exposures in the interbank network, so I implemented three different network reconstruction 

techniques, “Maximum Entropy”, “Minimum Density” and “Copula Approach”. Despite the 

fact that all of these methods produce networks with some deficiencies, it became feasible to 

run the simulation and identify SIFIs in the network.  

The outcomes of the comparison partially confirmed the intuition that the network based 

regulation outperforms the conventional policy. In most of the cases SIFI-based approach 

resulted in lower expected shortfall (in the stock of non-bank deposits) by 30-80 billion HUF 
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and in fewer defaults by 2-7 percentage points in average in the three generated networks. 

Given that contagion occurred relatively rarely even using 90% LGD parameter in the MD 

case which is the sparsest network (which also means the highest probability of contagion), 

this differences can be considered quite large. However, there were a few realizations where 

the outcome was the contrary. The explanation for these negative results is rooted in the 

imperfection of the SIFI identification methods. In some cases, seemingly less important 

banks are not considered systemically relevant, but they still can trigger damaging cascades if 

their capital level is relatively low. A small, but general increase in the capital buffer of all 

banks can prevent this kind of cascades, but a regulation focusing rather only on large agents 

cannot. In reality, this situation might occur rarely, and its appearance in the simulation might 

be due to the unrealistically generated networks. Either way, it indicates further directions of 

research. Since the same data availability problem is present in many countries, we should 

develop better ways to reconstruct bilateral exposures.  As a complementary result of the 

analysis, it turned out that MD approach produces the most realistic output due to the 

incorporation of characteristics observed in the reality, so it would be promising to build in 

even more real-life information in the reconstruction procedures. In addition to this, we also 

have to find SIFI identification techniques, which are capable to capture more reliably the 

contagious nature of the system for instance by involving further contagion channels in the 

models or taking into account also the behavior of the banks and governments. (They 

probably anticipate distress and react to the shocks on the market.) Another – maybe even 

more fundamental – course of research is finding out more about the utility function of the 

society considering the trade-off between stability and market efficiency. Without this 

information, our evaluation about a policy cannot be perfectly reliable.  

Despite all the missing pieces, I think regulators moved in the right direction with the 

concept of SIFI regulation. Albeit this analysis suffers from several limitations, the results 
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suggest that the intuitive foundation of network based prevention of contagions is valid. 

However, for the sake of the effective implementation of this approach further research is 

necessary in the future.  
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Appendix 1: Codes 

RAS algorithm (R) 

 

set.seed(189); 

library(igraph); 

 

########################################### 

############## RAS algorithm ############## 

########################################### 

 

adj <- read.table("rasinput.csv", header=T, sep=";"); 

adj <- as.matrix(adj); 

 

m <- read.table("marginals.csv", header=T, sep=";"); 

m <- as.matrix(m); 

l<-c(m[,1]); 

a<-c(m[,2]); 

error<-c() 

 

for (i in 1:100){ 

   

  for (j in 1:43){ 

    if (sum(adj[j,])==0) { 

      v<-0 

    } else { 

    v<-a[j]/sum(adj[j,]) 

    } 

    adj[j,]<-adj[j,]*v 

  } 

   

  for (k in 1:43){ 

    if (sum(adj[,k])==0) { 

      u<-0 

    } else { 

    u<-l[k]/sum(adj[,k]) 

    } 

    adj[,k]<-adj[,k]*u 

  } 

e<-sum((colSums(adj, na.rm = TRUE, dims = 1)-l)^2)+sum((rowSums(adj, 

na.rm = TRUE, dims = 1)-a)^2) 

error<-c(error,e) 

} 
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Kernel density plots (Matlab) 
 

[f,liabilitiesi,bw] = ksdensity(liabilities,'npoints',100,'bandwidth',10000); 
figure 
plot(liabilitiesi,f); 
  
[f,assetsi] = ksdensity(assets,'npoints',100,'bandwidth',10000); 
figure 
plot(assetsi,f); 
  
figure 
plot(liabilitiesi,f,assetsi,f); 
 

Copula fitting (Matlab) 
 

%% Matrix generating 
 

%Transforming the data into continous form 
  
x = ksdensity(a, a,'function','cdf');  

y = ksdensity(l, l,'function','cdf'); 
[xx, yy] = meshgrid(x, y); 
  
%% Fitting a clayton copula 
  
[paramhat,paramci] = copulafit('clayton', [x y]); 
q = -1/(paramhat); 
q1 = xx.^(-paramhat); 
q2 = yy.^(-paramhat); 
clayton = (q1 + q2 - 1).^q; 
C = clayton 
for i = 1:43 
C(i, i) = 0; 
end 
 

Dependency measures (Matlab) 

 
% Dependency measures 
 

boro = sum(minden(:,:),1); lend = sum(minden(:,:),2); 
boromax = max(minden(:,:),[],1); lendmax = max(minden(:,:),[],2); 
lratio = 100*lendmax./lend; bratio = (100*boromax./boro)'; 
l = find(~isnan(lratio)); b = find(~isnan(bratio)); % pick only active banks 
LendDep = mean(lratio(l)); BoroDep = mean(bratio(b)); 
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Stress test (R)7 

set.seed(3052343); 

library(igraph); 

 

LGD= 0.90 

PD <-c() 

ES <-c() 

for (k in 1:43) {  

   

## Creating the adjacency matrix 

 

adj <- read.table("max_ent_output.csv", header=T, sep=";"); 

adj <- as.matrix(adj); 

 

## Adding attributes to the vertices (being defaulted, capital buffer and 

stock of depostits) 

 

a <- read.table("attributes.csv", header=T, sep=";"); 

a <- as.matrix(a); 

d<-c(a[,1]); 

b<-c(a[,2]); 

G <- graph.adjacency((adj), weighted = T); 

V(G)$default <- 0; 

V(G)$buffer <- as.numeric(as.character(c)); 

V(G)$deposit <- as.numeric(as.character(s)); 

 

## Plot the network 

 

#plot(G, layout = layout.kamada.kawai(G), edge.arrow.size=0.3, 

#vertex.size = 10, vertex.label.cex = .75) 

 

## Contagion mechanism  

 

stop_ <- FALSE 

j <- 1 

default <- list(k) 

while(!stop_){ 

  V(G)$default[default[[j]]] <- j 

  j <- j + 1; stop_ <- TRUE 

  for( i in default[[j-1]]){V(G)$buffer <- V(G)$buffer - LGD*G[,i]} 

  default[[j]] = setdiff((1:43)[V(G)$buffer < 0], unlist(default)); 

  if( length( default[[j]] ) > 0) stop_ <- FALSE 

} 

PD <- c(PD,sum(V(G)$default != 0)/43);  

ES <- c(ES,sum(V(G)$deposit[unlist(default)])/sum(V(G)$deposit)); 

} 

 

#ES(expected shortfall), PD (Probability of Deafault) 

plot(ES); 

plot(PD); 

write.csv(PD, "PD.csv"); 

write.csv(ES, "ES.csv"); 

 

  
                                                           
7 Based on Berlinger et al. (2015) 
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Core periphery decomposition (R)8 

 

########################################### 

###### Core-Periphery decomposition ####### 

########################################### 

 

adj <- read.table("min_den_output.csv", header=T, sep=";"); 

adj <- as.matrix(adj); 

adj[is.na(adj)] <- 0 

adj[adj != 0] <- 1 

G <- graph.adjacency(adj, mode = "undirected") 

 

CORE <- largest.cliques(G) 

 

for (i in 1:length(CORE)){ 

  core <- CORE[[i]] 

  periphery <- setdiff(1:43, core) 

  V(G)$color[periphery] <- rgb(0,1,0) 

  V(G)$color[core] <- rgb(1,0,0) 

  print(i) 

  print(core) 

  print(periphery) 

  H <- induced.subgraph(G, periphery) 

  d <- mean(degree(H)) 

  print(d) 

  windows() 

  plot(G, vertex.color = V(G)$color, main = paste("Core-Periphery 

decomposition")) 

} 

 

 

                                                           
8 Based on Berlinger et al. (2015) 
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SIFI identification simulation (R) 

library(igraph); 

 

########################################### 

############### SIFI TEST ################# 

########################################### 

 

PDsifi <-c() 

ESsifi <-c() 

ownES <-c() 

 

for (l in 1:43) {  

 

########################################## 

###### Contagion in the whole system ##### 

########################################## 

 

LGD= 0.90 

PD <-c() 

ES <-c() 

for (k in 1:43) {  

   

## Creating the adjacency matrix 

 

adj <- read.table("min_den_output.csv", header=T, sep=";"); 

adj <- as.matrix(adj); 

adj[is.na(adj)] <- 0 

 

## Adding attributes to the vertices (being defaulted, capital buffer and 

stock of depostits) 

 

a <- read.table("attributes.csv", header=T, sep=";"); 

a <- as.matrix(a); 

s<-c(a[,1]); 

c<-c(a[,2]); 

G <- graph.adjacency((adj), weighted = T) 

V(G)$default <- 0 

V(G)$capital <- as.numeric(as.character(c)) 

V(G)$size <- as.numeric(as.character(s)) 

 

## Contagion mechanism  

 

stop_ <- FALSE 

j <- 1 

default <- list(k) 

while(!stop_){ 

  V(G)$default[default[[j]]] <- j 

  j <- j + 1; stop_ <- TRUE 

  for( i in default[[j-1]]){V(G)$capital <- V(G)$capital - LGD*G[,i]} 

  default[[j]] = setdiff((1:43)[V(G)$capital < 0], unlist(default)); 

  if( length( default[[j]] ) > 0) stop_ <- FALSE 

} 

 

PD <- c(PD,sum(V(G)$default != 0)/43)  

ES <- c(ES,sum(V(G)$size[unlist(default)])) 

} 

ownES <- c(ownES,V(G)$size[l]) 
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########################################### 

#### Contagion without the given bank ##### 

########################################### 

 

LGD= 0.90 

PDs <-c() 

ESs <-c() 

for (k in 1:42) {  

   

  ## Creating the adjacency matrix 

   

  adj <- read.table("min_den_output.csv", header=T, sep=";"); 

  adj <- as.matrix(adj); 

  adj[is.na(adj)] <- 0 

  adj<-adj[,-l] 

  adj<-adj[-l,] 

   

  ## Adding attributes to the vertices (being defaulted, capital buffer 

and stock of depostits) 

   

  a <- read.table("attributes.csv", header=T, sep=";"); 

  a <- as.matrix(a); 

  a<-a[-l,] 

  s<-c(a[,1]); 

  c<-c(a[,2]); 

  G <- graph.adjacency((adj), weighted = T) 

  V(G)$default <- 0 

  V(G)$capital <- as.numeric(as.character(c)) 

  V(G)$size <- as.numeric(as.character(s)) 

   

  ## Contagion mechanism    

   

  stop_ <- FALSE 

  j <- 1 

  default <- list(k) 

  while(!stop_){ 

    V(G)$default[default[[j]]] <- j 

    j <- j + 1; stop_ <- TRUE 

    for( i in default[[j-1]]){V(G)$capital <- V(G)$capital - LGD*G[,i]} 

    default[[j]] = setdiff((1:42)[V(G)$capital < 0], unlist(default)); 

    if( length( default[[j]] ) > 0) stop_ <- FALSE 

  } 

   

  PDs <- c(PDs,sum(V(G)$default != 0)/43)  

  ESs <- c(ESs,sum(V(G)$size[unlist(default)])) 

} 

 

#PDD<-PD[-l] 

#ESS<-ES[-l] 

 

## difference between impacts with(out) the bank 

 

PDsifi <- c(PDsifi, sum(PD)-sum(PDs)) 

ESsifi <- c(ESsifi, sum(ES)-sum(ESs)) 

}  

 



C
E

U
eT

D
C

ol
le

ct
io

n

64 
 

 

## difference between impacts with(out) the bank 

 

## difference between impacts with(out) the bank 

 

PDsifi <- c(PDsifi, sum(PD)-sum(PDs)) 

ESsifi <- c(ESsifi, sum(ES)-sum(ESs)) 

} 

 

plot(PDsifi, ylab="PD difference", xlab="Banks") 

plot(ESsifi, ylab="ES difference (due contagion)", xlab="Banks") 

ESplot<-ESsifi+ownES*LGD 

plot(ESplot, ylab="ES difference (contagion+size)", xlab="Banks") 
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Comparison between SIFI and general approach regulation (R) 

 

library(igraph); 

 

########################################### 

############## Comparison ################# 

########################################### 

 

PDdiff<-c() 

ESdiff<-c() 

 

########################################### 

############ SIFI regulation ############## 

########################################### 

 

LGD= 0.90 

 

for (l in 1:10) { 

  PDsifi <-c() 

  ESsifi <-c() 

for (k in 1:43) {  

   

## Creating the adjacency matrix 

 

adj <- read.table("copula_output.csv", header=T, sep=";"); 

adj <- as.matrix(adj); 

adj[is.na(adj)] <- 0 

 

## Adding attributes to the vertices (being defaulted, capital buffer 

and stock of depostits) 

 

a <- read.table("attributes.csv", header=T, sep=";"); 

a <- as.matrix(a); 

s<-c(a[,1]); 

c<-c(a[,2]); 

t<-c 

c[c(6,11,20,29,32,38,42)]<-c[c(6,11,20,29,32,38,42)]*(1+l/10) 

 

G <- graph.adjacency((adj), weighted = T) 

V(G)$default <- 0 

V(G)$capital <- as.numeric(as.character(c)) 

V(G)$size <- as.numeric(as.character(s)) 

 

## Contagion mechanism  

 

stop_ <- FALSE 

j <- 1 

default <- list(k) 

while(!stop_){ 

  V(G)$default[default[[j]]] <- j 

  j <- j + 1; stop_ <- TRUE 

  for( i in default[[j-1]]){V(G)$capital <- V(G)$capital - LGD*G[,i]} 

  default[[j]] = setdiff((1:43)[V(G)$capital < 0], unlist(default)); 

  if( length( default[[j]] ) > 0) stop_ <- FALSE 

} 

PDsifi <- c(PDsifi,sum(V(G)$default != 0)/43)  

ESsifi <- c(ESsifi,sum(V(G)$size[unlist(default)])) 

} 
 



C
E

U
eT

D
C

ol
le

ct
io

n

66 
 

########################################### 

########## General requirement ############ 

########################################### 

 

LGD= 0.90 

PDgeneral <-c() 

ESgeneral <-c() 

for (k in 1:43) {  

   

  ## Creating the adjacency matrix 

   

  adj <- read.table("copula_output.csv", header=T, sep=";"); 

  adj <- as.matrix(adj); 

  adj[is.na(adj)] <- 0 

   

  ## Adding attributes to the vertices (being defaulted, capital buffer 

and stock of depostits) 

   

  a <- read.table("attributes.csv", header=T, sep=";"); 

  a <- as.matrix(a); 

  s<-c(a[,1]); 

  g<-c(a[,2]); 

   

  gencap<-g+g/sum(g)*sum(c-t) 

   

   

  G <- graph.adjacency((adj), weighted = T) 

  V(G)$default <- 0 

  V(G)$capital <- as.numeric(as.character(gencap)) 

  V(G)$size <- as.numeric(as.character(s)) 

   

  ## Contagion mechanism  

   

  stop_ <- FALSE 

  j <- 1 

  default <- list(k) 

  while(!stop_){ 

    V(G)$default[default[[j]]] <- j 

    j <- j + 1; stop_ <- TRUE 

    for( i in default[[j-1]]){V(G)$capital <- V(G)$capital - LGD*G[,i]} 

    default[[j]] = setdiff((1:43)[V(G)$capital < 0], unlist(default)); 

    if( length( default[[j]] ) > 0) stop_ <- FALSE 

  } 

   

  PDgeneral <- c(PDgeneral,sum(V(G)$default != 0)/43)  

  ESgeneral <- c(ESgeneral,sum(V(G)$size[unlist(default)])) 

} 

 

PDdiff<-c(PDdiff, sum(PDsifi)-sum(PDgeneral)) 

ESdiff<-c(ESdiff, sum(ESsifi)-sum(ESgeneral)) 

} 

 

plot(PDdiff) 

plot(ESdiff) 
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Appendix 2: List of banks 

1 AEGON Magyarország Lakástakarékpénztár Zrt. 

2 Agrár-Vállalkozási Hitelgarancia Alapítvány* 

3 Banif Plus Bank Zrt. 

4 Bank of China (Hungária) Hitelintézet Zrt. 

5 BUDAPEST Hitel- és Fejlesztési Bank Zrt. 

6 CIB Bank Zrt. 

7 Commerzbank Zrt. 

8 Credigen Bank Zrt. 

9 DRB Dél-Dunántúli Regionális Bank Zrt. 

10 DUNA TAKARÉK BANK Zrt. 

11 ERSTE BANK HUNGARY Zrt. 

12 ERSTE Lakás-takarékpénztár Zrt. 

13 evoBank Zrt.  

14 FHB Jelzálogbank Nyrt. 

15 FHB Kereskedelmi Bank Zrt. 

16 Fundamenta-Lakáskassza Lakás-takarékpénztár Zrt. 

17 Garantiqa Hitelgarancia Zrt.* 

18 GRÁNIT Bank Zrt. 

19 KDB Bank Európa Zrt. 

20 Kereskedelmi és Hitelbank Zrt. 

21 Kinizsi Bank Zrt. 

22 Központi Elszámolóház és Értéktár ( Budapest ) Zrt. 

23 MagNet Magyar Közösségi Bank Zrt. 

24 Magyar Cetelem Bank Zrt. 

25 Magyar Export-Import Bank Zrt. 

26 Magyar Takarékszövetkezeti Bank Zrt. 

27 Merkantil Váltó és Vagyonbefektető Bank Zrt. 

28 MFB Magyar Fejlesztési Bank Zrt. 

29 MKB Bank Zrt. 

30 Mohácsi Takarék Bank Zrt. 

31 MV-Magyar Vállalkozásfinanszírozási Zrt.* 

32 OTP Bank Nyrt. 

33 OTP Jelzálogbank Zrt. 

34 OTP Lakástakarékpénztár Zrt. 

35 Pannon Takarék Bank Zrt. 

36 Polgári Bank Zrt. 

37 Porsche Bank Hungaria Zrt. 

38 Raiffeisen Bank Zrt. 

39 Sberbank Magyarország Zrt. 

40 SOPRON BANK BURGENLAND Zrt. 

41 Széchenyi Kereskedelmi Bank Zrt. 

42 UniCredit Bank Hungary Zrt. 

43 UniCredit Jelzálogbank Zrt. 
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