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Abstract

The aim of this thesis is to study various nonsmooth variational problems which are governed by set-
valued maps such as the Clarke generalized gradient or the convex subdifferential.

The thesis has a strong interdisciplinary character combining results and methods from different
areas such as Nonsmooth and Convex Analysis, Set-Valued Analysis, PDE’s, Calculus of Variations,
Mechanics of Materials and Contact Mechanics. The problems considered here can be divided into

three main classes:

e boundary value problems involving differential operators subjected to various boundary constraints.
Several existence and multiplicity results for such problems are obtained by using mainly varia-

tional methods;

e inequality problems of variational type whose solutions are not necessarily critical points of certain en-
ergy functionals. Existence results for some problems of this type are derived by using topological

methods such as fixed point theorems for set-valued maps;

e mathematical models which arise in Contact Mechanics and describe the contact between a body and
a foundation. Two such models are investigated. Their variational formulations lead to some

hemivariational inequality systems which are solved by using our theoretical results.

ii
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Introduction

The study of nonsmooth variational problems began in the 1960’s with the pioneering work
of Fichera [50] who introduced variational inequalities to solve an open problem in Contact
Mechanics proposed by Signorini in 1933. Few decades later, Panagiotopoulos [98, 99, 100]
introduced a new class of variational inequalities, called hemivariational inequalities, by re-
placing the convex subdifferential with the Clarke generalized gradient and successfully used
these problems to model various phenomena arising in Mechanics and Engineering. The term
nonsmooth is used due to the fact that, in general, the corresponding energy functional is not
differentiable.

The main purpose of the present thesis is to analyze some nonsmooth, non-standard vari-
ational problems which may be formulated in terms of differential inclusions involving the
Clarke generalized gradient and/or the convex subdifferential. In dealing with such problems
we employ either variational or topological methods to prove the existence of at least one so-
lution. The study of such problems is motivated by the fact that they can serve as models for
various phenomena arising in our daily life.

The thesis contains seven chapters which are briefly presented below.

Chapter 1 (Preliminaries) contains introductory notions and results from nonsmooth and
set-valued analysis such as the Gateaux differentiability of convex functions, the subdifferential
of a convex function, the generalized gradient (Clarke subdifferential) of a locally Lipschitz
function, properties of lower and upper semicontinuous set-valued maps. Some definitions

and basic properties of various function spaces (classical Lebesgue and Sobolev spaces, variable

iii
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exponent Lebesgue and Sobolev spaces and Orlicz spaces) are also recalled.
Chapter 2 (Some abstract results) contains three theorems which are useful in determining
critical points of locally Lipschitz functionals. First we consider locally Lipschitz functionals

defined on a real reflexive Banach space X of the form
Ex=L(u)— (J1oT)(u) — A(J20.5)(u)

where L : X — R is a sequentially weakly lower semicontinuous C! functional, J; : ¥ — R
and J» : Z — R are locally Lipschitz functionals, 7 : X — Y and S : X — Z are linear and
compact operators and A is a real parameter. We provide sufficient conditions for £, to posses
three critical points for each A > 0 and if an additional assumption is fulfilled we prove that
there exists A* > 0 such that £\« has at least four critical points.

The second and the third theorem provide information concerning the Clarke subdifferen-
tiability of integral functions defined on variable exponent Lebesgue spaces and Orlicz spaces,
respectively, and can be viewed as extensions of the Aubin-Clarke theorem (Clarke [24], Theo-
rem 2.7.5 ) which was formulated for integral functions defined on classical Lebesgue spaces.

More exactly, we consider the functionals ¢ : L") (Q) — Rand H : LY () — R defined by
(v) = / (@, v(x)) dr, forall v € IPO(Q),
Q

and

H(w) = /Qh(x,w(x)) dz, forallw € LY(Q),

respectively. We prove that these functionals are Lipschitz continuous on bounded domains

and the following inclusions hold
dop(v) C {f e LPO(Q) : &(z) € dop(z,v(x)), forae. z € Q} ,

and

OcH(w) C {C e LY (Q) : ¢(z) € dch(x,w(x)), forae. x € Q} :

The results presented in this chapter can be found in [37, 31, 32].

iv
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Chapter 3 (Elliptic differential inclusions depending on a real parameter) comprises three
sections. In the first section (based on paper [37]) we consider a differential inclusion involving
the p(-)-Laplace operator, that is A,.yu = div (|Vu[P(*)=2Vu), with a Steklov type boundary

condition of the following type

|Vu|P#) =204 e \geap(x, 1), on 99,

{ —Apu+ lu[P®) =2y € dop(x,u), inQQ,
on
in a bounded domain §2 with smooth boundary 0f2.

We prove that for each A > 0 the problem admits at least three weak solutions, and if an
additional assumption is fulfilled, there exists A* > 0 such that the problem possesses at least
four weak solutions.

The second section (based on paper [27]) is devoted to the study of a differential inclusion

involving a p-Laplace-like operator in a bounded domain €2, whose smooth boundary 0<2 is di-

vided into two measurable parts I'y and I'y, respectively. More precisely, we study the problem

div (a(z, Vu)) € N\ocF(x,u) — h(z), in$,

—a(z,Vu) -n € p(z,u)0cG(x,u), onI',
u =0, on Iy,
where a : Q x RN — RY is of the form a(z, &) = (a1(x,&),...,an(z,£)), witha; : @ x RY - R,

forie {1,...,N}.

Employing topological arguments, we prove that for each A > 0 the problem has at least
one weak solution.

In the third section (based on paper [31]) we study a differential inclusion involving the
7 (-)-Laplace operator, that is Apyu= ZZ]\L 1 0i(|0;u[P™®)=29,1), with a homogeneous Dirichlet

boundary condition of the following type

_A?(.)u € Noca(x,u) + dcf(z,u), inQ,
u=0, on 952,

with 2 an open, bounded subset of R".
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We use nonsmooth critical point theory to prove that for each A > 0 the problem possesses
at least two nontrivial weak solutions.

Chapter 4 (Differential inclusions in Orlicz-Sobolev spaces) is devoted to the study of an el-
liptic differential inclusion with homogeneous Dirichlet boundary condition in Orlicz-Sobolev
spaces of the type

—div (a(|Vu|)Vu) € 0cF(xz,u), in 2,

u =0, on 0f),
where a : [0,00) — [0, 00) is such that the function ¢(t) = a(|t|)t is continuous, strictly increas-
ing and onto on R.

The approach is variational and by means of the Direct Method in the Calculus of Variations
we are able to prove that the energy functional attached to our problem has a global minimizer,
hence it possesses a critical point. These results are based on the paper [32].

Chapter 5 (Variational-like inequality problems governed by set-valued operators) contains
existence results for for some variational-like inequality problems, in reflexive and nonreflexive
Banach spaces.When the set K, in which we seek solutions, is compact and convex, we do not
impose any monotonicity assumptions on the set-valued operator A, which appears in the
formulation of the inequality problems. In the case when K is only bounded, closed, and
convex, certain monotonicity assumptions are needed: we ask A to be relaxed n — o monotone
for generalized variational-like inequalities and relaxed 1 — o quasimonotone for variational-
like inequalities. We also provide sufficient conditions for the existence of solutions in the case
when K is unbounded, closed, and convex. The results presented in this chapter can be found
in [28].

Chapter 6 (A system of nonlinear hemivariational inequalities) comprises two sections. The
first section is devoted to the study of a general class of systems of nonlinear hemivariational
inequalities. Several existence results are established on bounded and unbounded closed, con-
vex subsets of real reflexive Banach spaces. In the second section we apply the abstract results
obtained in the previous section to establish existence results of Nash generalized derivative

points. These results are based on the paper [38].
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Chapter 7 (Weak solvability for some contact problems) is devoted to the study of two
mathematical models which describe the contact between a deformable body and a rigid ob-
stacle called foundation. In the first section (based on the paper [38]) we consider the case of
piezoelectric body and a conductive foundation. In the second section (based on the paper [26])
we analyze the case of a body whose behaviour is modelled by a monotone constitutive law
and on the potential contact zone we impose nonmonotone boundary conditions. We propose
a variational formulation in terms of bipotentials, whose unknown is a pair consisting of the

displacement field and the Cauchy stress field.
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Chapter 1

Preliminaries

Throughout this chapter we provide some notations and fundamental results which will be
used in the following chapters.

In this chapter, X denotes a real normed space and X* is its dual. The value of a functional
¢ € X*atu € X isdenoted by (£, u) x+x x. The norm of X is denoted by ||-|| x, while || - | . stands
for the norm of X*. If there is no danger of confusion we will simply write (-, -) to indicate the
duality pairing between a normed space and its dual and || - || to denote both the norms of X
and X*. If X is a Hilbert space, then (-, ) x stands for the inner product, unless X = RN or
X = S¥ (the linear spaces of second order symmetric tensors on RV, i.e. SV = RY*N), in

which case the inner products and the corresponding norms are denoted by
N
U-v= Zuivi, lv| = Vv - v,
i=1

and

N
o:T= Z oijTij, |Tl=VT:T.

ij=1
We use the symbol — to indicate the strong convergence in X and — for the weak convergence in
X. The weak-star convergence in X* is denoted by —.

Assuming X and Y are two given normed spaces, a function 7' : X — Y is called operator.

An operator taking values in R U {+o00} = (—o0, o0] is called functional.
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1.1. Elements of nonsmooth analysis

1.1 Elements of nonsmooth analysis

Definition 1.1. Let X be a real vector space and K a subset of X. The set K is said to be convex if
tu+ (1 -t e K,

whenever u,v € K and t € (0,1). By convention the empty set () is convex.

Definition 1.2. A functional ¢ : K — R is convex if K is a convex subset of a vector space X and for

eachu,v e Kand 0 <t <1
¢(tu + (1 = 1)) < t(u) + (1 —1)¢(v).
The functional ¢ is strictly convex if the above inequality is strict for u # v.

It is sometimes useful to work with functionals having infinite values. The effective domain

of a functional ¢ : X — (—o0, o] is the set
D(g) = {u € X : olu) # oo},

We say that ¢ is proper if D(¢) # (). A functional taking infinite values is convex if the restriction
to D(¢) is convex. If —¢ is convex (resp. strictly convex), then ¢ is said to be concave (resp.
strictly concave).

In the following X denotes a real Banach space.

Definition 1.3. The functional ¢ : X — (—o0, 4+00] is said to be lower semicontinuous at u € X if

liminf ¢(uy,) > ¢(u) (1.1)

n—oo

whenever {u,} C X converges to win X. The function ¢ is lower semicontinuous if it is lower semicon-

tinuous at every point u € X.

When inequality (1.1) holds for each sequence {u,} C X that converges weakly to v, the

function ¢ is said to be weakly lower semicontinuous at u.
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1.1. Elements of nonsmooth analysis

A functional ¢ is said to be upper semicontinuous (resp. weakly upper semicontinuous) if —¢ is
lower semicontinuous (resp. weakly lower semicontinuous).

If ¢ is a continuous function then it is also lower semicontiuous. The converse is not true,
as a lower semicontinuous function can be discontinuous. Since strong convergence in X im-
plies the weak convergence, it follows that a weakly lower semicontinuous function is lower
semicontinuous. Moreover, it can be shown that a proper convex function ¢ : X — (—o0, 0] is
lower semicontinuous if and only if it is weakly lower semicontinuous.

Let K C X and consider the function I : X — (00, +00] defined by

0, ifvelk,

Ik (v) =
oo, otherwise.

The function I is called the indicator function of the set K. It can be proved that the set K is
a nonempty closed convex set of X if and only if its indicator function I is a proper convex

lower semicontinuous function.

Definition 1.4. Let ¢ : X — Rand let w € X. Then ¢ is Gateaux differentiable at v if there exists an
element of X*, denoted ¢'(u), such that
P(u+ tv) — ¢(u)

lgfg ; = (¢'(u),v)xxx, forallve X. (1.2)

The element ¢/ (u) that satisfies (1.2) is unique and is called the Gateaux derivative of ¢ at w.
The functional ¢ : X — R is said to be Gateaux differentiable if it is Gateaux differentiable at

every point of X.

The convexity of Gateaux differentiable functions can be characterized as follows.

Proposition 1.1. Let ¢ : X — R be a Gateaux differentiable function. Then, the following statements

are equivalent:
i) ¢ is a convex functional;

ii) p(v) — p(u) > (¢ (u),v —u)x+xx, forallve X;
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1.1. Elements of nonsmooth analysis

iii) (¢'(v) — ¢'(u),v —u)x+xx >0, forallu,ve X.

A direct consequence of the above result is that convex and Gateaux differentiable functions
are in fact lower semicontinuous. Proposition 1.1 also suggests the following generalization of

the Gateaux derivative of a convex function.

Definition 1.5. Let ¢ : X — (—o00,400] be a convex function. The subdifferential of ¢ at a point

x € D(¢) is the (possibly empty) set
0p(u) ={€ € X : (§,v—u)xxx < ¢(v) — P(u), forallv e X}, (1.3)

and 0p(u) = 0 if u & D(¢).

It is well known that if ¢ is convex and Gateaux differentiable at a point u € int D(¢), then
0¢(u) contains exactly one element, namely ¢'(u).
The Fenchel conjugate of a function ¢ : X — (—o0, +00] is the function ¢* : X* — (—o0, +0o0]
given by
¢ (&) = sup {{&, u)x=xx — ¢(u)}.

zeX
Proposition 1.2. Let ¢ : X — (—o0,+0o0| be a proper, convex and lower semicontinuous function.

Then
(i) ¢* is proper, convex and lower semicontinuous;
(ii) p(u) + ¢*(&) > (§, u)x+xx, forallu € X, £ € X*;
(iii) § € 0¢(u) < u € 0¢™(§) < d(u) + ¢*(§) = (§, u) x+xx-

Definition 1.6. A bipotential is a function B : X x X* — (—o0, +00] satisfying the following condi-

tions

(i) forany uw € X, if D(B(u, -)) # 0, then B(u,-) is proper and lower semicontinuous; for any £ € X*,

if D(B(+,€)) # 0, then B(-,§) is proper, convex and lower semicontinuous;
(ii) B(u, &) > (&, u) x=xx, forallu € X, € X*;

4
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1.1. Elements of nonsmooth analysis

(iii) § € OB(- §)(u) & u € dB(u,)(§) & B(u,§) = (&, u)xxx-
We recall that a functional ¢ : X — R is called locally Lipschitz if for every u € X there exist
a neighborhood U of v in X and a constant L,, > 0 such that
lp(v) — d(w)| < Ly|lv —w||x, forallv,w e U.
Definition 1.7. Let ¢ : X — R be a locally Lipschitz functional. The Clarke generalized directional
derivative of ¢ at a point u € X, in the direction v € X, denoted ¢°(u;v), is defined by

gzﬁo(u; v) = limsup o(w +tv) - (;S(w).

w—u t

tL0

The following proposition points out some important properties of the generalized deriva-

tives.
Proposition 1.3. Let ¢,1) : X — R be locally Lipschitz. Then

i) v ¢%(u; ) is finite, subadditve and satisfies

6" (u;0)] < Lullv]x,
with L,, > 0 being the Lipschitz constant near v € X;

ii) (u,v) — ¢°(u;v) is upper semicontinuous;

iii) (—¢)°(u;v) = ¢°(u; —v) and ¢°(u; tv) = t¢°(u;v) for all u,v € X and all t > 0;

iv) (¢ + V)2 (w;v) < ¢%(u;v) + 9O (u;v) for all u,v € X.

For the proof see Clarke [24], Proposition 2.1.1.

Definition 1.8. Let ¢ : X — R be a locally Lipschitz functional. The generalized gradient (Clarke
subdifferential) of ¢ at a point v € X, denoted Oc¢(u), is the subset of X* defined by

dcp(u) ={¢C € X*: ¢°usv) > (C,v)xexx, forallve X},
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1.1. Elements of nonsmooth analysis

An important property of the generalized gradient is that dc¢(u) # 0 for all w € X. This
follows directly from the Hahn-Banach Theorem (see e.g. Brezis [13], Theorem 1.1). We also

point out the fact that if ¢ is convex, then dc¢(u) coincides with the subdifferential of ¢ at u,

that is
dcg(u) = 0p(u).

We list below some important properties of generalized gradients that will be useful in the

subsequent chapters.

Proposition 1.4. Let ¢ : X — R be Lipschitz continuous on a neighborhood of a point uw € X. Then
(i) Oc¢(u) is a convex, weak* compact subset of X* and
IClle < Luy  forall ¢ € deg(u),
where L,, > 0 is the Lipschitz constant of ¢ near the point u.
(i) ¢°(u;v) = max{{¢,v) x+xx : ¢ € Ocp(u)}, forall v € X.

(iii) For any scalar s, one has

I (s)(u) = s0cd(w);
(iv) If w is a local extremum point of ¢, then 0 € Oc¢(u);

(v) For any positive integer n, one has
dc (Z qbi) (u) €Y dodi(u).
i=1 i=1

For the proof one can consult Clarke [24], Propositions 2.1.2,2.3.1,2.3.2 and 2.3.3.

Definition 1.9. A locally Lipschitz functional ¢ : X — R is said reqular at w if, for all v € X, the

usual one-sided directional derivative ¢'(u;v) exists and ¢’ (u;v) = ¢°(u;v).

For a function ¢ : X; x ... x X,, — R which is locally Lipschitz with respect to the k'"

variable we denote by ¢(}€(u1, ..., Up; vy) the partial generalized derivative of 1 at uy, € X, in the

6
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1.1. Elements of nonsmooth analysis

direction v, € Xy and by 0ab(us, ..., u,) the partial generalized gradient of ) with respect to the
variable uy. It is known that in general the sets dc(uy, ..., u,) and Géw(ul, ceyUp) XL X
opY(ug, ..., uy,) are not contained one in the other (see e.g. Clarke, Section 2.5), but for regular

functionals, the following relations hold.

Proposition 1.5. Let 7 : X; x ... x X, = R be a regular, locally Lipschitz functional. Then
(i) Ocp(uq, ..., uy) C 8é¢(u1, coUp) XX OR (U, L Uup);
(i) YO (ut, . .., up;v1, ..., 0n) < i:l@b?k(ul, ey Up UK.

The following result is known in the literature as Lebourg’s mean value theorem (see Lebourg

[71] or Clarke [24], p. 41).

Theorem 1.1. Let ¢ : X — R be locally Lipschitz and u,v € X. Then there exist t € (0,1) and
& € 0cg (u+ t(v —w)) such that

P(v) — p(u) = (€, v — u) xxx-

Definition 1.10. Let ¢ : X — R be locally Lipschitz and u € X. We say that w is a critical point of ¢
if 0 € Ocp(u), that is
¢°(u;v) >0, forallv e X.

If u is a critical point of ¢, then the number ¢ = ¢(u) is called critical value of ¢. According

to Proposition 1.4 every local extremum point is also a critical point of ¢.

Definition 1.11. A locally Lipschitz functional ¢ : X — R is said to satisfy (the nonsmooth) Palais-

Smale condition at level ¢, (PS).-condition in short, if any sequence {u,} C X which satisfies
* P(un) = ¢
o there exists {e,} C R, €, | 0such that ¢°(un;v — up) > —€u||v — un||x forallv € X;

possesses a (strongly) convergent subsequence.
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1.1. Elements of nonsmooth analysis

We present next results that will be useful in determining critical points of locally Lipschitz
functionals in the sequel. The following theorem is fundamental in the Calculus of Variations
as it provides sufficient conditions for a functional to posses a global minimum. For the proof

see Struwe [118], Theorem 1.2.

Theorem 1.2. Suppose X is a real reflexive Banach space and let M C X be a weakly closed subset of
X. Suppose E : X — R satisfies:

* Eis coercive on M with respect to X, that is, E(u) — +oo as ||ul|x — 400, u € M;
* FE is weakly lower semicontinuous on M.

Then E is bounded from below on M and attains its infimum on M.

The following theorem is the nonsmooth version of the zero-altitude Mountain Pass Theo-

rem (see Motreanu & Varga [92]).

Theorem 1.3. Let E : X — R be locally Lipschitz which satisfies the (P.S)-condition. Suppose there

exist uy,up € X and r € (0, |[u1 — uz| x) such that

inf FE > FE E .
B () = max(E(m), ()}

Then ¢ = inf  max E(~(t)) is a critical value of E. Moreover, there exists ug € X \ {u1,uz}
’Yer(ul,uz) tE[O,l]
such that

E(up) = ¢ > max{FE(u1), E(uz)}.

In the previous theorem we have denoted by dB(u, r) the sphere centered at u of radius 7,
that is
OB(u,r) ={veX: |v—ulx =r},

while I'(u1, uz) denotes the set of all continuous paths connecting the points u;, ug, that is
[(u1, ug) = {y € C([0,1], X) = 7(0) = w1, ¥(1) = ua}.

Before presenting the next result, let us recall that for a functional ¢ : X — R, the sets of the

type ¢~ 1((—o0, c]) with ¢ € R are called sub-level sets. The functional ¢ is said to be quasi-concave
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1.2. Elements of set-valued analysis

if the set ¢ !([¢, +00)) is convex for all ¢ € R. The following theorem is due to Ricceri [106].

Note that no smoothness is required on the functional f.

Theorem 1.4. Let X be a topological space, I C R an open interval and f : X x I — R a functional

satisfying the following conditions:
* A f(u, ) is quasi-concave and continuous for all u € X;
* u > f(u,\) has closed and compact sub-level sets for all A € I;

e sup inf f(u,A) < inf sup f(u, A).
el ueX flusA) ueX AGI; flusA)

Then there exists \* € I such that the functional v — f(u, \*) admits at least two global minimizers.

1.2 Elements of set-valued analysis

Set-valued analysis deals with the study of maps whose values are sets. The need for introduc-
ing multi-valued maps was recognized in the beginning of the twentieth century, but a system-
atic study of such maps started in the mid 1960’s and since nonsmooth analysis was born these
two relatively new branches of mathematics have undergone a remarkable development and
have provided each other with new tools and concepts, as maybe the most important multi-
valued maps are the subdifferential of a convex functional and Clarke’s generalized gradient
of a locally Lipschitz functional which are main ingredients in nonsmooth analysis.
Throughout this section £ and F' denote Hausdorff topological spaces and for x € E we
denote by N (z) the family of all neighborhoods of . Let T : X — Y be a set-valued map and

C C E. We use the following notations:
* D(T)={x € E: T(x)# 0} the domain of T}
e GT)={(z,y) e ExXF: z€ EFandy € T(x)} the graph of T;

e T(C)= | T(x)the image of C;
zeC
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1.2. Elements of set-valued analysis

e TH(C)={x € E: T(x) C C} the strong inverse image of C;
e T7(C)={x € E: T(x)NC # 0} the weak inverse image of C.
If (E, d) is a metric space, = € E and r > 0, then we denote by
* B(z,r)={y € E: d(z,y) < r} the open ball centered at x of radius 7;
* B(x,r)={y € E: d(z,y) < r} the closed ball centered at = of radius r
* 0B(z,r) ={y € E: d(z,y) = r} stands for the sphere centered at « of radius .

Definition 1.12. Let E, F' be two Hausdorff topological spaces. A set-valued map T : E — F is said

to be

(i) lower semicontinuous at a point xg € E (L.s.c. at xq for short), if for any open set V- C F such that
T(zo) NV # O we can find U € N (xo) such that T(x) NV # ( for all x € U. If this is true for

every xo € E, we say that T is lower semicontinuous (L.s.c for short);

(ii) upper semicontinuous at a point xy € E (u.s.c at zq for short), if for any open set V- C F such that
T(x0) €V we can find a neighborhood U of xq such that T'(x) C V forall x € U. If this is true

for every xo € E, we say that T is upper semicontinuous (u.s.c. for short);

(iii) closed, if for every net {x\},c; C E converging to x and {y},c; C F' converging to y such that

yx € T(zy) forall X € I, we have y € T'(x).

The following propositions are direct consequences of the above definition and provide
useful characterisations of l.s.c (u.s.c, closed) set-valued maps. For the proofs, one can con-
sult Papageorgiou & Yiallourou [101] (see Propositions 6.1.3 and 6.1.4) and Deimling [39] (see
Proposition 24.1).

Proposition 1.6. Let T : E — F be a set-valued map. The following statements are equivalent:
(i) T is lower semicontinuous;
(ii) For every closed set C C F, T+ (C) is closed in E;

10



CEU eTD Collection

1.2. Elements of set-valued analysis

(iii) If v € X, {zx}rer is a net in E such that x — x and V. C F is an open set such that

T(x) NV # 0, then we can find \g € I such that T'(x\) NV # (0 forall X € I with A\ > \o;

(iv) If v € X, {xa}rer C Eisanetin Eandy € T(x), then for every A € I we can find yy € T(x))

such that yy — y;

Proposition 1.7. Let T : E — F be a set-valued map. The following statements are equivalent:
(i) T is upper semicontinuous;
(ii) For every closed set C C F, T~ (C) is closed in E;

(iii) If v € X, {xx}rer is anet in E such that xy — x and V C E'is an open set such that T'(z) C V,
then we can find \g € I such that T(xy) C V forall A € I with A > X,

Proposition 1.8. Let T': D C E — F a set-valued map such that T (z) # 0 for all x € D.

(i) Let T'(z) be closed for all x € D C E. If T is u.s.c. and D is closed, then G(T') is closed. If T'(D) is
compact and D is closed, then T is u.s.c. if and only if G(T') is closed;

(ii) If D C E'is compact, T is u.s.c. and T'(x) is compact for all x € D, then T'(D) is compact.

Remark 1.1. The above propositions show that if T is single-valued, i.e. T(xz) = {y} C F, then the
notions of lower and upper semicontinuity coincide with the usual notion of continuity of a map between

two Hausdorff topological spaces.

We present next some results for set-valued maps which will be useful in proving the ex-
istence of solutions for various inequality problems in the following chapters. We start by
recalling that = € E is a fixed point of the set-valued map T': E — Eif x € T'(x). Also recall that
set-valued map 7' : £ — E is said to be a KKM map if, for every finite subset {z1,...,z,} C E,
co{z1,...,xn} C U?:1 T(z;), where co{z1, ..., z,} denotes the convex hull of {1, ..., z,}. The

following result is due to Ansari & Yao [5].

Theorem 1.5. Let K be a nonempty closed and convex subset of a Hausdorff topological vector space E

and let S,T : K C E — FE be two set-valued maps. Assume that:

11
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o for each x € K, S(z) is nonempty and co{S(z)} C T'(z);

o K = e intg S~ (y);

e if K is not compact, assume that there exists a nonempty compact convex subset Cy of K and a

nonempty compact subset Cy of K such that for each x € K \ C there exists §j € Cy with the

property that x € intx S~ (Y).
Then T has at least one fixed point.
The following version of the KKM Theorem has been proved by Ky Fan [45].

Theorem 1.6. Let K be a nonempty subset of a Hausdorff topological vector space E and let T' : K C
K — E be a set-valued map satisfying the following properties:

o T is a KKM map;
o T'(z) is closed in E for every x € K;
o there exists xo € K such that T'(x() is compact in E.

Then (\,ere T'(x) # 0.

Theorem 1.7. (Lin [73]) Let K be a nonempty convex subset of a Hausdorff topological vector space E.
Let P C K x K be a subset such that

(i) for each n € K theset A(n) ={¢ € K : (n,() € P}isclosed in K;

(ii) for each ¢ € K the set ©(¢) = {n € K : (n,() & P} is either convex or empty;
(iii) (n,n) € P foreachn € K;

(iv) K has a nonempty compact convex subset K¢ such that the set

B={(eK: (n,¢) € Pforalln e Ko}

is compact.

12
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Then there exists a point (o € B such that K x {(p} C P.

Theorem 1.8. (Mosco [88]) Let K be a nonempty compact and convex subset of a topological vector
space E and let ¢ : E — R U {400} be a proper convex lower semicontinuous functional such that

D(p)NK #0. Let £,¢ : E x E — R two functionals such that:

o &(z,y) < ((z,y) forall z,y € E;

o for each x € E the map y — &(x,y) is lower semicontinuous;
o for each y € E the map x — ((z,y) is concave.

Then for each p € R the following alternative holds true: either there exists yo € K N D(¢) such that
&(z,y0) + d(yo) — d(x) < p, forall x € E, or, there exists xo € E such that {(xo, zo) > .

1.3 Function spaces

Throughout this section we recall some basic facts on Lebesgue and Sobolev spaces, with con-
stant and variable exponents, and some useful definitions and properties of N-functions and
Orlicz spaces. Let O C R¥ be an open set. For 1 < p < oo recall that the Lebesgue space is
defined by

LP(Q) = {u : Q — R |u is measurable and / lu(x)|P dz < oo} ,
Q

and the corresponding norm is given by
1/p
full = | [ 1wy as|
Q
For p = 0o, we set
L>*(Q) = {u: Q — R |uis measurable and ess sup,cq|u(z)| < oo},
and the corresponding norm is given by
|t oo = Inf{C > 0] |u(z)| < Cae. onQ}.

13
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For 1 < p < oo we define

Lp

loc

(Q)={u:Q:—= Rlue LP(w) foreachw CC N}.
The following results will be useful in the sequel.

Theorem 1.9. (Fatou’s Lemma) Let {u,,},>1 be a sequence in L' () such that u,, > 0 a.e. in ). Then

/ lim inf u, (z) de < lim inf/ up(z) de.
) )

n—oo n—oo

For any 1 < p < co we denote by p’ the conjugate exponent of p, that is

Theorem 1.10. (Holder’s inequality) Assume that uw € LP(2) and v € L (Q) with 1 < p < co. Then
uv € LY(Q) and
[ do < ul ol
Q

Theorem 1.11. (Fischer-Riesz) (LP(S2), || - ||) is a Banach space for any 1 < p < oo. Moreover, LP(£2)

is reflexive for any 1 < p < oo and separable for any 1 < p < oo.

For a function u € L. (Q) the function v, € L. (Q) for which

loc loc
/u(x)Dago(a:) dx = (-1)'6*'/%(9;)@(3;) dz, forallp € C5°(),
Q Q

is called the weak derivative of order o of u and will be denoted by D“u. Here, o = (a1, ..., an),

with a; nonnegative integers, |o| = a1 + ... + ayn and

(0%
Do olal
- Qg ay *
0x{™"...0xy
It is obvious that if such a v, exists, it is unique up to sets of zero measure.

For a nonnegative integer m and 1 < p < oo, we define || - |, , as follows
1/p
s = | 3 [ 107 ds| . if1<p <o
Q

laj<m

14
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and

Hu”m,oo = max sup |D%ul.

lal<m @
We define the Sobolev spaces

WmP(Q) = {u € LP(Q) : D € LP(Q) for |a| < m}.

We point out the fact that (WP (Q), || - |lm,p) is a real Banach space. The closure of C§°(Q2) with
respect to the norm || - ||, is denoted by W;"”(€2). In general, W;"" () is strictly included in

WP (). In the case p = 2 we use the notation
H™(Q) = W™2(Q) and H*(Q) = Wi (Q).
These are Hilbert spaces with respect to the following scalar product

(U, V), = Z /QDau(x)Dav(a;) dz,

laf<m

where, as usual, D% = u. If Q is an open bounded subset of RY, with sufficiently smooth

boundary 02, then
H}(Q) = {ue HY(Q) : the trace of u on 92 vanishes }.

The following theorem, known in the literature as the Sobolev embedding theorem, is of particular
interest in the variational and qualitative analysis of differential inclusions and partial differ-
ential equations. We recall that, if (X, || - ||x) and (Y, || - ||y) are two Banach spaces, then X is
continuously embedded into Y if there exists an injective linear map ¢ : X — Y and a constant
C > 0 such that ||iully < C||lu||x forall u € X. We say that X is compactly embedded into Y if i is

a compact map, that is, ¢ maps bounded subsets of X into relatively compact subsets of Y.
Theorem 1.12. Assume 2 C RY is a bounded open set with Lipschitz boundary. Then
(i) If mp < N, then W™P(Q) is continuously embedded into LI(QY) for each 1 < q < N]Xif’)np' The

embedding is compact for q < NJ_Vifnp;

15
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(i) If0<k<m-— % <k + 1, then W™P(Q) is continuously embedded into C*#(Q), for 0 < B <

m—k— %. The embedding is compact for f < m — k — %.

If @ ¢ RY is a bounded open set with Lipschitz boundary then the Poincaré inequality

holds
Jull, < C||Vull,, forallu e WyP(Q),

where C' = C(Q) is a constant not depending on u. Hence
[ull = IVl

defines a norm on VVO1 P(€) which equivalent to the norm || - |1 5.

Let us recall next some definitions and basic properties of the variable exponent Lebesgue-
Sobolev spaces LP()(Q2), Wy ") () and Wol’?(') (Q2). Assume Q is a bounded open subset of R,

with sufficiently smooth boundary. We consider the set

C1(@ = {pec@): minpte) > 1}

€

and for each p € C () we denote

p~ = inf p(x) and pt =supp(z).
Sy xeQ)

Moreover, let

np(z) ¢
p(z) = Ble)
+00 otherwise.

For a function p € C(Q) the variable exponent Lebesgue space LP1) () is defined by

LPO@Q) = {u :Q — R: uis measurable and / |u(z)[P@) da < +oo} ,
)

and can be endowed with the norm (called Luxemburg norm) defined by

(z)
Hqu(.)—inf{<>0:/Qu(Cx)p d:pgl}.

16
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It can be proved that (Lp(‘)(Q), | - lp) is a reflexive and separable Banach space (see, e.g.,

Kovécik and Rékosnik [69]). If we denote by p/(z) = pfx()”’zl the pointwise conjugate exponent
of p(x), then for all u € LP()(Q2) and all v € LP () (Q) the following Holder-type inequality holds

1 1
< (p T p,) o el cr < 2l el o,

/Q w(z)v(z) dz

We also remember the definition of the p(-)-modular of the space LP)(Q2), which is the applica-
tion pp.y £P0)(Q) — R defined by

poo(0) = [ Jula)P do.

This application is extremely useful in manipulating the variable exponent Lebesgue-Sobolev

spaces as it satisfies the following relations

”qu() > 1(< 1; = 1) if and only if ,op()(u) > 1(< 1; = 1), (1.4)
. . - +

fully) > 1 implies [ull?) < gy (u) < ull” ), (1.5)
. . + -

Jully() < 1 implies [Jull’;) < ) () < [l (16)

Clearly, if p(z) = po for all x € (), then the Luxemburg norm reduces to norm of the classical

full = | [ o) de] "

For a p € C(Q) the (isotropic) variable exponent Sobolev space W'P()(Q) can be defined by

Lebesgue space LP({2), that is

WwleO) Q) = {u e LPO) : 9 e LPO(Q) foralli e {1,. .., n}} ,
and endowed with the norm

ullpey = Nullpey + [1Vullpey,

17
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becomes a separable and reflexive Banach space. Moreover, if p is log-Holder continuous, that

is, there exists M > 0 such that |p(z) — p(y)| < log*M ,forall z,y € Q satisfying |z —y| < 1/2,

then the space C*°(Q) is dense in W'»()(Q) anc(l‘ wzl)can define the Sobolev space with zero
boundary values VVO1 P (')(Q) as the closure of C§°(£2) with respect to the norm || - ||; ;). Note
that if ¢ € C, (Q) is a function such that ¢(z) < p*(z) for all z € €, then W, * 0)(Q) is compactly
embedded into L) (Q).

We recall now the definition of the anisotropic variable exponent Sobolev space WO1 PO (Q),

where ? : ) — R" is of the form

7 ()= (p1(x),...,pn(x)), forallzeQ,

and for each i € {1,...,n}, p; : @ — R is a log-Holder continuous function. The space

I/VO1 7O (©2) is defined as the closure of C§°(£2) with respect to the norm

lullz ey = D 10itlp,),
=1

and this space is a reflexive Banach space with respect to the above norm (see, e.g., Mihdilescu,
Pucci and Radulescu [85]).
For an easy manipulation of the space I/VO1 70 () we introduce pys, pm : Q@ — Rand P* € R

as follows

-1
py(z) = max pi(x), pm(z)= min p;(z), P*=n (Z i_ — 1) .

1<i<n 1<i<n

The following result, due to Mihdilescu, Pucci and Radulescu [85], provides useful infor-
mation concerning the embedding of Wo1 70O (Q) into rat) (Q).

Theorem 1.13. Assume 2 C R™ (n > 3) is an open bounded set having smooth boundary and, for each

i € {1,...,n}, p;i : Q = Ris a log-Holder continuous function such that the following relation holds

true

"1
Z—>1.

o Pi
Then, for any q € C+(Q) satisfying 1 < q(x) < max{p;,, P*} forall z € Q, WOI’?(')(Q) is compactly
embedded into L10)(Q).

18
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We recall below some basic notions and properties of N-functions and Orlicz spaces. For

more details one can consult [2, 25, 52, 63].

Definition 1.13. A continuous function ® : R — [0, 00) is called N-function if it satisfies the following

properties
(N1) ® is a convex and even function;

(N2) ®(t) = 0ifand only ift = 0;

@)

(N3) lim % = 0 and lim %2 = oo,
_)

t—ro0
It is well known that a convex function ® : R — [0, 00) which satisfies ®(0) = 0 can be
represented as
t
o) = [ pls)ds,
0
where ¢ : R — R is right-continuous and non-decreasing (see e.g. Krasnosel’skii & Rutickii

[63], Theorem 1.1). If, in addition, the function ¢ satisfies

(p1) ©(0) =0and p(t) > 0fort > 0;

(ip2) lim (1) = oo,
then the corresponding function ¢ is an N-function. For a given function ¢ : R — R which is

right-continuous, non-decreasing and satisfies (¢1) — (p2) we define

P(s) = sup t.
p(t)<s

One can easily see that ¢ can be recovered from ¢ via

o(t) = sup s.
B(s)<t

Moreover, if ¢ is strictly increasing, then ¢ = ¢ ~!. The function
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is also an N-function and ®, ®* are called complementary functions. They satisfy Young’s in-
equality
st < ®(t) + @*(s), foralls,teR, (1.7)

which holds with equality if s = ¢(t) or t = ¢(s). An important role in the embeddings of
Orlicz-Sobolev spaces is played by the Sobolev conjugate function of ®, denoted ®.,, which can be

1 tq’fl(s)s
®: (t)_/o 2 s,

S N

defined by

Definition 1.14. Let ® and ¥ be N-functions. We say that

o U dominates ® at infinity (we write & < W) if there exist to > 0 and k > 0 such that

®(t) < U(kt), forallt > to;

e & and W are equivalent (we write & ~ V) if & < W and ¥ < P;
e & increases essentially slower than W (we write & << V) if

)
lim ——~ =0, forallk > 0.

The Orlicz class K® () is defined as the set of functions
K?(Q) = {u : © — R measurable : / O (Ju(z)|)dx < oo}
Q

It is a known fact that Orlicz classes are convex sets but not necessarily linear spaces. We are

now in position to define the Orlicz spaces L* () and E®(Q) as follows
L®(Q) = the linear space generated by K®(0),
E*(Q) = the maximal linear subspace of K*(Q).

Obviously we have
E*(Q)C K*(Q) C L* (),
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with equality if and only if K® () is a linear space. The latter reduces to the fact that ¢ satisfies

the Ay-condition at infinity, i.e. there exist to > 0 and k£ > 0 such that
O(2t) < kd(t), forallt > t.
On the Orlicz space L?(f2) we can define the so-called Luxemburg norm by

]u|¢:inf{,u>0: /<I><|u|>d:c§1}.
Q H

Itis a fact that (L®(€2), | - |o) is a Banach space (see e.g. Adams [2]). Moreover, E®(Q) coincides
with the closure of bounded functions in L®(2) and it is complete and separable. An important

role in manipulating Orlicz spaces is played by the following Holder-type inequality

‘/uvdm
Q

Hence, for each v € L?"(Q) one can define R, : L®(Q) — R by

< 2lulg|v|p-, forallu e L*(Q), ve L* (Q).

R,(u) = /qu dx,

which is linear and bounded, so R, € (L?()) *. Thus, we can define the norm

/uv dx
Q

which is called the Orlicz norm on L?"(Q). Analogously, we can define the Orlicz norm on

[vllex :== || Roll(ze@)) = sup
lule<1

9

L%(Q). Clearly, the Luxemburg and Orlicz norms are equivalent as
ule < flulle < 2[ule.
Proposition 1.9. Let ¢ and ®* be complementary N-functions. Then,
L2(Q) = (E<I>*(Q))* and L' (Q) = (E®(Q))".

Moreover, L®(Q) is reflexive if and only if ® and ®* satisfy the Aqg-condition.
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The Orlicz-Sobolev space W' L* () can be defined by setting
WILP(Q) = {u e L*(Q) : Qu € L*(Q), 1 <i < N},
which a Banach space with respect to the norm
ult.0 = [ulo + [Vl [g -

The space W!E®(Q) is defined analogously and it is separable. The Orlicz-Sobolev space of
functions vanishing on the boundary Wi E? is the closure of C§°(2) in W!L®(Q2) with respect
to the norm | - |1 ¢. Define Wl L®(Q) as the weak* closure of C5°(Q) in W!L?(); hence by
Proposition 1.9, W L? (1) is the weak* closure of the dual of a separable space. The following

Poincaré-type inequality holds
/ ®(|u|) dz < / ®(d|Vul|) dz, forallu e WiL®(Q),
Q Q
where d = 2diam(€2), hence
[ull = [[Vul [

defines a norm equivalent to | - |14 on Wi L®(Q).
The following result points out the relation between WL®(Q2) and L¥(2) when ® and V¥

are N-functions.

Theorem 1.14. Let ® and ¥ be N-functions and let @, be the Sobolev conjugate function of .

(a) If U << @, and

> ¢-1(t)
/1 L+(1 dt = oo,

t N
then W' L® () is compactly embedded into LY (2) and W' L*®(Q) is continuously embedded into
L% (Q).
(b) If

oLt
/ ()dt<oo,
1

N+1
N
then W1L®(Q) is compactly embedded into LY (Q) and WLL®(Q) is continuously embedded
intoL>°(2).

22



CEU eTD Collection

1.3. Function spaces

A particular case of interest is when ¥ = & as it is known that & << @, whenever the

latter is defined as an N-function (see e.g. Garcia-Huidobro, Le, Mandsevich & Schmitt [52],

Proposition 2.1).
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Chapter 2

Some abstract results

In this chapter we prove three theorems that will play a key role in the proof of the main
results of the subsequent chapters. The first result represents a multiplicity theorem for the
critical points of a locally Lipschitz functional depending on a real parameter and extends a
recent result of Ricceri, while the second and third theorem provide information regarding the
subdifferentiability of integral functionals defined on variable exponent Lebesgue spaces and
Orlicz spaces, respectively. These results extend the well-known Aubin-Clarke theorem which

was formulated for L? spaces.

2.1 A four critical points theorem for parametrized locally Lipschitz

functionals

Let X be a real reflexive Banach space and Y, Z two Banach spaces such that there exist 7" :
X - Yand S : X — Z linear and compact. Let L : X — R be a sequentially weakly lower
semicontinuous C'! functional such that L’ : X — X* has the (S); property, i.e. if u, — uin X
and lim sup(L/(uy,), u, — u) < 0, then u,, — u. Assume in addition that J; : Y - R, J5: Z — R
are tV\:Lo_) lo(jcally Lipschitz functionals.

We are interested in studying the existence of critical points for functionals £, : X — R of
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the following type

Ex(w) i= L(u) — (J1 0 T)(u) — A(Jz 0 §)(u), @1

where A > 0 is a real parameter.
We point out the fact that it makes sense to talk about critical points for the functional
defined in (2.1) as &) is locally Lipschitz. In order to see this, let us fixu € X, A > 0and r > 0

and choose v,w € B(u;r). Since L € C'(X;R) we have
|L(w) — L(v)| = (L' (2), w = v)| < | L'(2)l|x+]lw — v]x,

where z = tw + (1 — t)v for some t € (0,1). But, B(u;r) is weakly compact thus there exists
M > 0 such that ||L(2)||x+ < M on B(u;r). Using the fact that .J;, .J> are locally Lipschitz

functionals we get

[Ex(w) — Ex(v)] | L(w) = L(v)[ + [(J1 0 T)(w) = (J1 o T)(v)| + Al(J2 © S)(w) = (J2 0.5)(v)|

IN

IN

Mlw —v||x + m1||Tw — Ty + Amz||Sw — Sv||z

< M +ma||Tllzix vy + Am2l|Slleix,z)] llw — vl x,

which shows that &, is locally Lipschitz.
We also point out the fact that the functional £, is sequentially weakly lower semicontin-
uous since we assumed L to be sequentially weakly lower semicontinuous and 7', S to be

compact operators.

In order to prove our main result we shall assume the following conditions are fulfilled:
(H1) there exists ug € X such that ug is a strict local minimum for L and
L(ug) = (J1 0 T)(uo) = (J2 0 .5)(uo) = 0;
(H2) for each A > 0 the functional £, is coercive and there exists u{ € X such that &, (uf) < 0;
(H3) there exists Ry > 0 such that

(J1oT)(u) < L(u) and (Jyo0S)(u) <0, forallu € B(ug;Ro)\ {uo};
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(H4) there exists p € R such that

sup inf {A [L(u) = (J1 o T)(u) + p] = (J2 0 5)(u)} <
A>0 u€

inf sup{\[L(u) — (J1 o T)(w) + p] — (a0 S)(w)}.
ueX A\>(
The following theorem extends the result obtained recently by B. Ricceri (see [107], Theorem

1) to the case of non-differentiable locally Lipschitz functionals.

Theorem 2.1. (N.C. & C. VARGA [37]) Assume that conditions (H1) — (#H3) are fulfilled. Then for
each A > 0 the functional £y defined in (2.1) has at least three critical points. If in addition (H4) holds,

then there exists X\* > 0 such that Ex« has at least four critical points.

Proof. The proof of Theorem 2.1 will be carried out in four steps an relies essentially on the zero
altitude mountain pass theorem for locally Lipschitz functionals (see Theorem 1.3) combined

with Theorem 1.4. Let us first fix A > 0 and assume that (#;) — (H3) are fulfilled.

STEP 1. uy is a critical point for &y.

Since ug € X is a strict local minimum for L there exists R; > 0 such that
L(u) >0, forallu € B(ugp; R1) \ {uo}- (2.2)

From (#3) we deduce that

(Jl o T)(u) + )\(JQ o S)(u)
L(u)

Taking Ry = min{ Ry, R;} from (2.2) and (2.3) we have

<1, foralluc B(UO; Ro) \ {UO} (23)

Ex(u) = L(u)—(J10T)(u) = A(J208) (u) > 0 = Ex(up), forall u € B(ug; Ra)\{uo}. (2.4)
We have proved thus that ug € X is a local minimum for &), therefore it is a critical point
for this functional.
STEP 2. The functional £, admits a global minimum point u; € X \ {uo}.

Indeed, such a point exists since the functional £, is sequentially weakly lower semicon-
tinuous and coercive, therefore it admits a global minimizer denoted u;. Moreover, from

(H2) we deduce that £, (u1) < 0, hence u; # uyg.

26



2.1. A four critical points theorem for parametrized locally Lipschitz functionals

CEU eTD Collection

STEP 3. There exists ug € X \ {up, u1} such that us is a critical point for &j.

Using the coercivity of £, and the fact that L' has the (S) property we are able to show

that our functional satisfies the (PS)-condition.

According to STEP 2 there exists u; € X such that £,(u1) < 0. On the other hand, £y (up) =

0 and we can choose 0 < r < min{ Ry, ||u; — up||x } such that
Ex(u) > max{&x(ug),Ex(ur)} =0, forallu € dB(up;r).

Applying Theorem 1.3 we conclude that there exists a critical point up € X \ {ug,u1}
for £, and &£,(u1) > 0. This completes the proof of the first part of the theorem, i.e. the

functional £y has at least three distinct critical points.

STEP 4. If in addition (#4) holds, then there exists \* > 0 such that £+ has two global minima.

Let us consider the functional f : X x (0,00) — R defined by
flu, p) = pL(u) = (Jio T)(u) + p] = (Ja 0.5)(u) = p€yp(u) + pp,

where p € R is the number from (H,).

We observe that for each u € X the functional p — f(u, ) is affine, therefore it is quasi-
concave. We also note that for each 1 > 0 the mapping u — f(u,p) is sequentially
weakly lower semicontinuous. Therefore for each ;1 > 0, the sub-level sets of u — f(u, )

are sequentially weakly closed.

Let us consider now the set S*(¢) = {u € X : f(u, ) < ¢} for some ¢ € R and a sequence
{un,} C S*(c). Obviously {u,} is bounded due to the fact that the functional v — f(u, i)
is coercive, which is clear since f(u,u) = &/, (u) + pp, €1y, is coercive and p > 0.
According to the Eberlein-Smulyan Theorem {u,,} admits a subsequence, still denoted
{un}, which converges weakly to some u € X. Keeping in mind that u,, € S*(c) forn >0
we deduce that

E1yplun) < ¢ —qup’ foralln > 0.
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Combining the above relation with the fact that £, ,, is sequentially weakly lower semi-

continuous we get
. c— up
gl/u(u) < hnrrﬁl\loréfgl/,u(un) < 1 )

which shows that f(u, ) < ¢, therefore the set S¥(c) is a sequentially weakly compact

subset of X. We have proved thus that, for each i« > 0, the sub-level sets of u — f(u, 1)
are sequentially weakly compact. Taking into account Remark 1 in [106] which states that
we can replace “closed and compact” by “sequentially closed and sequentially compact”
in Theorem 1.4 and using condition (7{4) we can apply Theorem 1.4 for the weak topology
of X and conclude that there exists 1* > 0 for which f(u, u*) = p*&;,+(u) + p*p has two
global minima. It is easy to check that any global minimum point of f(u, x*) is also a
global minimum point for &, /,«, and thus we get the existence of a point uz € X \ {u1}

such that
gl/lt* (ul) = 51/“* (U3) < 51/“* (U?/M*) <0= gl/ﬂ* (UO) < 51/“* (UQ),

which shows that us € X \ {ug, u1, ug}. Taking \* = 1/u* completes the proof.

2.2 Extensions of the Aubin-Clarke Theorem

In this section we prove two extensions of the Aubin-Clarke Theorem (see Clarke [24], Theorem
2.7.5) concerning the subdifferentiability of integral functionals defined on variable exponent

Lebesgue spaces or Orlicz spaces.

Letp € C1(2) and ¢ : Q@ x R — R be a function such that = — ¢(z,t) is measurable for all

t € R and, in addition, suppose ¢ satisfies one of the following conditions
(a) there exist m € LP ()(Q) such that

lo(z,t1) — p(z,t2)] < m(x)[t; —t2], forae.xz € Qandallty, s €R,
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or,

(b) the application t — ¢(x,t) is locally Lipschitz for a.e. x € Q and there exists ¢, > 0 such
that

€] < egltPO,
fora.e. x € Q,allt € Rand all £ € dop(x,t).

We introduce next the functional ¢ : LP() () — R defined by
P(w) = / o(z,w(z)) dz, forallw e LPU)(Q). (2.5)
Q

Theorem 2.2. (N.C. & G. MOROSANU [31]) Assume ¢ : Q@ x R — R is a function such that x —
©(x,t) is measurable for all t € R and either (a) or (b) holds. Then, the functional ¢ : LPO)(Q) — R
defined by (2.5) is locally Lipschitz and satisfies
#(w;2) < / @ (x, w(x); 2(x)) dz, forall w,z € LPO(Q). (2.6)
Q
Moreover, if (z, -) is regular at w(z) for a.e. x € Q, then ¢ is reqular at w and equality takes place in

(2.6).

Proof. First we prove that ¢ is locally Lipschitz. If (a) holds, this follows directly from the
Holder-type inequality. If (b) holds, we need to use Lebourg’s mean value theorem and the
properties of the modular.
Let us check now that
PO(w; 2) < | Pz, w(x); 2(x)) de, forall w, z € LPO(Q).
Q

We denote by h, s(w(z), z(z)) the difference quotient

hys(w(z), 2(x)) = oz, w(x) +0 + uz(;c)) — p(z,w(x) + 5).

Simple computations show that we can apply Fatou’s lemma to get the following estimate

limsup/ﬂhu,g(w(x),z(:z)) dzx < / limsup hy, 5(w(z), z(x)) dx,

5§—0 Q §—0
w0 w0
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which shows that
PO (w; 2) < / @ (z, w(z); z(x)) dz, forallw,z € LPM)(Q).
Q
Finally, let us prove that ¢ is regular at w if ¢(z,-) is regular at w(x) for a.e. = € . Using

Fatou’s lemma we have

d(w + pz) — ¢p(w)

#(w,z) > liminf

140 K
o [t L) ) e,
= Jo w0 K
s [ S i) e nte)
- Jaowulo Y

:/deMAWM

Q

::/wuwmwmwx
Q

> ¢(w;2).
Thus, everywhere above we have equality, ¢/ (w; z) exists for all z € LP()(Q) and
d(wiz) = [ P wix(e) do = [ Plou)iz) do = w2
g

We will extend next the Aubin-Clarke theorem to the framework of Orlicz spaces. Follow-
ing Clément, de Pagter, Sweers & de Thélin [25], we say that a function ¢ : R — R is admissible
if

o pc C(R,R);
e pis odd;

e ¢ is strictly increasing;

e o(R)=R.
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In this particular case, ¢ has an inverse and the complementary /N-function of ¢ is given by

In addition, if we assume that

1< <t < +oo,

where

. t‘P(t) + tp(t)
= f = _—
o =gy and et =sup g

then both ® and ®* satisfy the As-condition (see [25] Lemma C.6), hence L*®(2) and L® ()

are reflexive Banach spaces and each is the dual of the other (see Proposition 1.9). Moreover, if
1 < ¢~ < +00, then the following relations between the Luxemburg norm |- |¢ and the integral

Jo ®(| - |) dz can be established (see [25], Lemma C.7)
/QCID(]uD dr < |u|f ,Vu € L*(Q), Jule < 1, (2.7)
/Q(I)(|u|) dr > |ulf Vu e L*(Q), Jule > 1. (2.8)
In a similar manner one can prove thatif 1 < ¢ < oo, then
/Q<I>(|u]) dr > |u\“"+ Nu e L2(Q), |ule < 1, (2.9)
/QQ)(M) do < |ul2" Vu e L%(Q), [ule > 1. (2.10)
Assume 1) : R — R is an admissible function which satisfies
1<y <yt <oo 2.11)

and h : © x R — R is a function which is measurable with respect to the first variable and

satisfies one of the following conditions
(h1) there exists b € LY () such that
Az, t1) = h(z, t2)| < b(x)[tr — taf,
fora.e.z € Qandall t1,ty € R;
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(h2) there exist ¢ > 0 and b € LY" (Q) such that
€] < () + e ([¢]),
forae.z € Q,allt € Rand all £ € dch(x,t).
Assume ) satisfies (2.11), let ¥ be the corresponding N-function and define H : LY (Q) — Rby
H(w) = /Q Wz, w(z)) d. 2.12)

Theorem 2.3. (N.C., G. MOROSANU & C. VARGA [32]) Assume either (hl) or (h2) holds. Then,
the functional H defined in (2.12) is Lipschitz continuous on bounded domains of LY () and

dcH (w) C {g e LY (Q): ((z) € dch(z, w(z)) forae. o € Q} . (2.13)

Moreover, if h(z,-) is regular at w(x) for a.e. x € Q, then H is reqular at w and (2.13) holds with

equality.

Proof. Suppose w1, ws belong to a bounded subset of LY (12). If we assume (k1) holds, then the

Holder-type inequality for Orlicz spaces shows that

[H (w1) — H(ws)| <2

U W1 — W2|y,

hence H is Lipschitz continuous.

If (h2) is assumed, then by Lebourg’s mean value theorem, there exists Ay € (0,1) and

&(z) € Och(z,w(zx)) such that
E(x)(wy(x) — wa(x)) = h(z,wi(z)) — h(z, ws(x)), fora.e. x € Q,
with w(z) = Awi(z) + (1 — Ao)wz(z). Lemma A.5 in [25] shows that

w e LY(Q) = y(|o]) € LY (9),
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which combined with the Holder-type inequality for Orlicz spaces leads to
) = Ao < [ e wn(e) = b wa(@)] do
= [ @) ur (o) — wao) ds
[ 1@ + w0 @] o @) ~ wa(o)] do

[[ble= + el (jw])]g-] [wr = walv.

IA

IN

In order to prove that H is Lipschitz continuous on bounded domains we only need to

show that |¢(|w|)

may assume [(|w|)|g« > 1. Since w; and ws belong to a bounded subset of LY () and w is

g+ is bounded above by a constant independent of w; and w. Clearly we

a convex combination of them, then there exists a constant m > 1, independent of w; and ws,

such that ||y < m. On the other hand, (2.8) and the fact that (see [25] Corollary C.7)

1 1
PR CEDE
assure that
e (1)
1< [¢(|@])]g- < [p(la))|g- " = [0(@)]g. = < /Q‘I’*(?b(lwl)) dz.

Using Young's inequality, see (1.7), we have

2t
UH(p(t) < U(t) + W (P(1) = ty(t) < | h(s) ds < W(20),

t

and from the Aj-condition we get

[ o)) do<et e [ o) de

Q

Combining relations (2.7) and (2.10) with the fact that |@w|g < m we get
/ W (@) de < m*",
Q

hence

[Y(0) | < 1+ C2mw+,
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with ¢1, ¢, m suitable constants independent of w; and ws.

The definition of the generalized directional derivative shows that the map = +— h°(x, w(z); 2(z))

is measurable on 2. Moreover, each of the conditions (h1), (h2) implies the integrability of
hO(x, w(z); z(z)). Let us check now that
H(w; 2) < / RO (x, w(x); 2(x)) dx, forall w,z € LY (Q). (2.14)
Q
If (k1) is assumed, then (2.14) follows directly from Fatou’s lemma. On the other hand, if we

assume (h2) to hold, then by Lebourg’s mean value theorem, for each A > 0 we have

h(z,w(zx) + Xz(z)) — h(z,w(x))
A

= (£z, 2),

for some &, € dch(x,w(x)), with w(z) = pow(z) + (1 — po) [w(z) + Az(z)], 0 < po < 1. Again,
(2.14) follows by applying Fatou’s lemma.
In order to prove (2.13) let us fix £ € OcH(w). Then (see e.g. Remark 2.170 in Carl, Le &
Motreanu [19])
& € 0H (w3 -)(0),

where 0 stands for the subdifferential in the sense of convex analysis. The latter and relation

(2.14) show that ¢ also belongs to the subdifferential at 0 of the convex map
LY(Q) 32— / RO (x, w(x); 2(x)) du,
Q

and (2.13) follows from the subdifferentiation under the the integral for convex integrands (see
e.g. Denkowski, Migorski & Papageorgiou [40]).

For the final part of the Theorem, let us assume that h(z, -) is regular at w(x) for a.e. x € Q.
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Then, we can apply Fatou’s lemma to get

H(w+ Az) — H(w)

H(w;2) = limsup d
o
> fim g @+ A2) — H(w)
AL b\
> [ gy He0e) 2ol b)),
o MO A

— /h’(x,w(x);z(x)) dx
Q

_ / 1O (2, w(z); 2(x)) da
Q

> H(w;2),
which shows that the directional derivative H'(w; z) exists and

H'(w; 2) = H(w; 2) = /Qho(x,w(w);z(a:)) dr, forevery z € LY(Q).
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Chapter 3

Elliptic differential inclusions

depending on a parameter

Throughout this chapter we study some elliptic differential inclusions of the following type
—Au+ f € Noc®(u) + 0c¥ (u), 3.1

in a real Banach space X. Here, A > 0 is a real parameter, f € X* is given, A : X — X*isa
nonlinear (single-valued) operator and ®, ¥ : X — R are locally Lipschitz functionals, while
Jc stands for Clarke’s generalized gradient.

We study boundary value problems with various boundary conditions whose variational
formulation (in the sense of distributions) lead to a differential inclusion of the type (3.1), in
the case when X is a space of functions defined on an open, bounded and connected subset (2
of RV and A is a differential operator which may be viewed as a generalization of the Laplace
operator.

We say that u € X is a solution for problem (3.1) if there exist £ € dc®(u) and ¢ € oV (u) such
that
(fyw) = (Au,w) + A& w) + ((,w), forallw € X. (3.2)

In order prove that problem (3.2) possesses at least one solution we can adopt two strategies:
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¢ transforming (3.2) into a hemivariational inequality, by taking into account the definition of
Clarke’s generalized gradient (see Chapter 1, ) and replacing w = v — u to get

Find v € X such that

(fyv —u) < (Au,v —u) + A0 (u;v — u) + VO (u;0 —u), forallw € X, (3.3)

* using the nonsmooth critical point theory, developed by Chang [21], by defining the energy

functional £ : X — R as follows
Ex(u) = F(u) + A0(u) + W(u), (3.4)
with F: X — R a C!(X,R) function which satisfies F’(u) = Au — f and seek for critical
points of this functional.
3.1 The p(-)-Laplace operator with Steklov-type boundary condition

In this section we are concerned with the study of a differential inclusion of the type

24— € N (z, u), on 99,
Tp(x)

®)) { —div (|VuP®=2Vu) + |[uP® 2y € dcé(z,u), inQ,
1):

where 2 C RY (N > 3) is a bounded domain with smooth boundary, A > 0 is a real parameter,
p : Q — Ris a continuous function such that inf__gp(r) >N,¢: OxR — Rand ) : 902xR — R

are locally Lipschitz functionals with respect to the second variable and

ou

5 = ]Vu|p(x)_2Vu ‘n,
n

p(z)
n being the unit outward normal on 0f2.

In the case when p(x) = p, ¢(z,t) = 0 and ¢(z,t) = %|t|‘1 the problem (P;) becomes

) Apu = [ulP~2u in Q,
| [VuP22e = Auje2u on 09,
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and it was studied by J. Fernandez Bonder and J.D. Rossi [49] in the case 1 < ¢ < p* = £ (Ji,v__pl)

by using variational arguments combined with the Sobolev trace inequality. In [49] it is also
proved that if p = ¢ then problem (P) possesses a sequence of eigenvalues {\,, }, such that \,, —
oo as n — oo. Furthermore, S. Martinez and ].D. Rossi [76] proved that the first eigenvalue \;
of problem (P) (thatis, A\; < A for any other eigenvalue) when p = ¢ is isolated and simple. In
the linear case, that is p = ¢ = 2, problem (P) is known in the literature as the Steklov problem

(see e.g. I. Babuska and J. Osborn [8]).

Remark 3.1. If N < p~ < p(z) for any x € Q, then Theorem 2.2 from [46] ensures that the space
WP()(Q) is continuously embedded in WP~ (Q), and, since N < p~ it follows that WP0)(Q) is

compactly embedded in C(S2). Therefore, there exists a positive constant co, > 0 such that

lwlloo < coollull, forall u e WHPO(Q), (3.5)

where by || - ||oc we have denoted the usual norm on C(S2), that is |ulls = sup,q [u(z)|.

Definition 3.1. We say that u € W'P0)(Q) is a solution of problem (Py) if there exist &(x) €
oo (z,u(x)) and ((x) € dorp(x,u(x)) for a.e. x € Q such that for all v € WP (Q) we have

/ (—div(|Vu(a:)|p(z)_2Vu($))—|—|u(m)|p($)_2u(x)>v(1:) do = / £(z)o(z) do
Q Q

and

aau v(x) do = A ((z)v(z) do.
a0 OMp() a0

Here, and hereafter we shall assume the the following hypotheses hold:
(Hs) ¢ : Q x R — Ris a functional such that

(i) ¢(z,0) =0 fora.e. z €
(i) the function z — ¢(z, t) is measurable for every t € R;

(iii) the function ¢ — ¢(z,t) is locally Lipschitz for a.e. z € €;
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(iv) there exist ¢, > 0 and ¢ € C(Q) with 1 < g(x) < ¢* < p~ such that
()] < cglt]*7,
fora.e. z € Q, every t € Rand every {(x) € Oco(x,t).
(v) there exists §; > 0 such that ¢(x,t) < 0when 0 < |t| < 1, fora.e. x € Q.
(He) ¥ : 92 x R — R is a functional such that

(i) ¥(x,0) =0 for a.e. x € O
(ii) the function x — v (z,t) is measurable for every t € R;
(iii) the function ¢t — v(z, t) is locally Lipschitz for a.e. x € 0}

(iv) there exist ¢y, > 0 and r € C'(99Q) with 1 < r(z) < r* < p~ such that
C@)] < eyl !
fora.e. x € 09, every t € R and every ((x) € dc(x, t);
(v) there exists 62 > 0 such that ¢)(x,t) < 0 when 0 < |t| < Jo, for a.e. x € 0.

(H7) There exists 7 > max{d;, o2} such that 7?®) < p(z)¢(z,n) for a.e. z € Q and ¥ (z,1) > 0

fora.e. x € 0N.
(Hs) There exists m € L*(92) such that ¢(z,t) < m(x) forallt € Rand a.e. 7 € Q.
(Ho) There exists ;1 > max {coo (HIml L)) V75 coo(p* ||mHL1(Q))1/p*} such that

sup (x,t) < ap(x,n) < sup ¢(z,t).
[tI<p teR

The main result of this section is given by the following theorem.

Theorem 3.1. (N.C. & C. VARGA [37]) Assume that (Hs)-(Hr) hold true. Then for each A > 0
problem (P1) possesses at least two non-zero solutions. If in addition (Hs) and (Hg) hold, then there

exists \* > 0 such that problem (P1) possesses at least three non-zero solutions.
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Proof. Let us denote X = W'P()(Q), Y = Z = C(Q) and consider T : X — Y, S: X — Z
to be the embedding operators. It is clear that T, S are compact operators and for the sake of
simplicity, everywhere below, we will omit to write T'u and Su to denote the above operators,

writing u instead of T'u or Su. We introducenext L : X -+ R, J; : Y - Rand J;: Z — Ras

follows
1
L(u :/ Vu(z)P@) + |u(@)P@ | dz, forue X,
(W= |~ [IVu@ P + fu)
No) = [ ol y(a)) do, fory €Y.
Q
and
Ja(z) = Y(x,z(x)) do, forz e Z.
o9

We point out the fact that L is sequentially weakly lower semicontinuous and L' : X — X*,
(L (u),v) = /Q Vu(z) P2 Vu(z) - Vo) + [ul@)PD " 2u(z)v(z) do
has the (S) 4 property according to X.L. Fan and Q.H. Zhang (see [45], Theorem 3.1).
The idea is to prove that the functional £, : X — R defined by
Ex(u) = L(u) — Ji(u) — Ao (u),

satisfies the conditions of Theorem 2.1. Standard arguments show that each critical point of this
functional is a solution of problem (P ) in the sense of Definition 3.1. With this end in view we

go through the following steps.

STEP 1. The functionals .J; and .J; defined above are locally Lipschitz.

This follows directly from Lebourg’s mean value theorem.

STEP 2. ug = 0 satisfies hypothesis (H;).

Indeed, L(0) = J1(0) = J2(0) = 0 and for each R > 0 we have
L(u) >0, forallu€ Bx(0;R)\ {0},
which shows that ug = 0 is a strict minimum point for L.
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STEP 3. The functional £ is coercive.
Letu € X be fixed. A simple computation, combined with Lebourg’s mean value theorem
yields
Hw) < o [ ) o
Q
and

T < ey [ a9 do,
o0

Hence for u € X with |ju|| > 1 and ||u]l« > 1 we have

Ex(u) = L(u) — Ji(u) — AJa(u)

=L @) P @ PO de — [ b ul@))de — (Ve
[ [9u@p + u@yp®] do — [ oG uenas =2 [ vtwutaa

1 - + +
—llull” = ¢ meas(Q)[|ull = Acy, meas()ulls

v

1 _
> —lull” — cp meas(Q)cL] [[ul|7" — Ay meas(Q)cl [[ul|"".

We conclude that &, (u) — oo as ||ul| — cosincer™ < p~and ¢* < p~.

STEP 4. There exists 49 € X such that £,(up) < 0.

Choosing iig(z) = 7 for all x € Q and taking into account (#7) we conclude that

5>\(’L_L0) = L(ﬂo) —J1 (’L_LU) — )\JQ(’L_LQ)

= L p(z) . B

STEP 5. There exists Ry > 0 such that J; (u) < L(u) and J2(u) < 0 for all w € B(0; Ry) \ {0}.

Let us define Ry < min < 2-; 92 1 where ¢, is given in (3.5) and 4;, J; are given in (Hs)
c & g

0o ! Coo

and (Hs), respectively. For an arbitrarily fixed v € B(0; Ry), taking into account the way

we defined the operators 7" and .S, we have

u(@)] < [lullos < coollull < cooRo < 01, forallz € Q

and

[u(z)] < [|ulloo < coollul| < cooRo < 62, forall z € N
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Hypotheses (#5) and (#g) ensure that ¢(z,u(x)) < 0 and ¢(z,u(x)) < 0 for all u €
B(0; Ry), therefore J;(u) < 0 < L(u) and Ja(u) < 0 for all w € B(0; Ry) \ {0}.

STEP 6. There exists p € R such that

sup in)f( A[L(u) — Ji(u) + p] — J2(u) < in§( sup A [L(u) — Ji(u) + p] — J2(u).
A>0uE UEA X>0

Using the same arguments as B. Ricceri [106] (see the proof of Theorem 2) we conclude

that it suffices to find p € R and @1, 42 € X such that

L(u1) = Ji(w) < p < L(uz) — J1(u2) (3.6)
and
SUPyea J2(u) — Jo(t1) _ supyeq Jo(u) — Jo(u2) (37)
p— L(uy) + Jy(uy) p — L(uz) + Ji(u2) '

where A = (L — J1) ' ((—o0, p]).

Let us define @; = 7 and choose 5 such that

Y(z,u2(z)) > sup P(z, ).

[t|<p
We point out the fact that a us satisfying the above relation exists due to (Hg). Next we

define N

Cmind = () il = () =
p - p+ Coo Ll(Q)7 p+ Coo Ll(Q)

and observe that p > 0.

Taking into account inequality (3.5) and the properties of the modular, we are able to
prove that

lulloo < p, forallu e A.
We only have to check that (3.6) and (3.7) hold for @; and @2 chosen as above. From above

we conclude that us ¢ A and thus

sup Jo(u) < sup  Jo(u) < Jo(u1), supJa(u) < sup Ja(u) < Jo(uz),
ucA llulloo <pt ucA llulloo <p

and

L(uy) — Ji(u1) <0 < p < L(ug) — Ji(ag).
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The above steps show that the hypotheses of Theorem 2.1 are fulfilled. O

Remark 3.2. In the previous Theorem conditions (Hs) — (i) and (Hs) — (iv) can be replaced with the

following condition

o there exists a constant kg > 0 such that

‘(ﬁ(%,tl) — ¢($,t2)| < k’¢|t1 — t2‘7 fOT all tl,tg c R.

We can also replace conditions (Hg) — (iii) and (He) — (iv) with the following condition
o there exists a constant ky, > 0 such that for

W(x,tl) - w(x,tQ)’ < kw|t1 — t2|, fO?’ all t1,t5 € R.

Example 3.1. Let us provide next an example of two functions ¢ : @ x R — Rand ¢ : 002 x R — R
which satisfy the conditions required in Theorem 3.1. Let Q be an open bounded subset of RN with
smooth boundary and assume meas () > 1. Let p,q € C(Q) be such that p~ > N and q* < p~
and r € C(0Q) such that 1 < r(x) < r* < p~. We consider . > 1 sufficiently large, 0 < § <
min{é, (;:)Mp_qﬂ}. We consider now ¢ : @ x R — Rand ¢ : 9Q x R — R to be two
nonsmooth locally Lipschitz functionals defined by

Pz, t) = ¢ (t —6)1@), §<t<d+7%

and
|+ p|" @, t<—p
0, —pu<t<é
¥l t) = .
(t—0)(36 —t), 6<t<30
0, 36 < t,

and prove that hypotheses (Hs)-(Hg) are satisfied.
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Note that
0, t<é
q(z)(t — 5)‘1(“7)_1, d<t<o+ 75
80¢($,t> = q -1 ?
[ ,q(x (g } , t=0+73
(g)qw)cost 9), t>6+73
and
() (=t — )@, < —p
0, —u<t<d
[0, 20] =9
801/1(93775) =
—2t + 46 0<t<3d
[—24, 0] t=239
0, t > 30.

\

Thus, for any £(z) € Oc¢(z,t) and any ((x) € Y (z,t), we have

0 < |tjat=)—1
q+ﬁ—6Mﬂ‘1<q+<q+<@y@F1<6ﬁlupm 1
(@) < 9 ¢t — 8]2@ 1 < gt|ta@ -1
o (3" <o (3)" " a1,
(5)" < (®)
and
4 @1 < @1,
Tﬂt+uV@*1<r+<m+(%Q“@_l<4£§ﬂﬂﬂm—1
[((z)] < 0< |tr@-1
26 < 26 ('(Sﬂ)’”(’”)‘l < B g

0< ‘t‘r(z)—l

t<o
d<t<d+1
d+1<t<d+ 73
t=06+735
t>6+35

t<—1—p
—“l—pu<t<—p
—pn<t<d
0<t<30

t > 30.

It is clear from above that (Hs) and (He) hold. In order to see that (Hr7)-(Hg) are satisfied we point out

that the functional ¢ is bounded and choose n = 26 < 1. We have

Pl = (26)P@) <

(26)P” < N§¥" < N§1@®) <

pla)o") =
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On the other hand we observe that (x,t) attains its maximum at t = 2§ on [d,36], ¥(x,20) =
62 > 0and (x,t) = 0 on [—pu,d] U [36, ], which shows that supjy <, ¥(,t) = ¢(z,n), while
sup;eg ¥(x,t) = oo.

We close this section by pointing out the fact that the nonsmooth Ricceri-type multiplic-
ity results presented in Chapter 2 can be successfully applied to other kind of problems. An
example is the following ordinary differential inclusion with periodic boundary conditions

—u" +u € Aa(t)0cF(u) + 5(t)0cG(u) in [0,1]

(ODI) : { u(0) = u(1)

' (0) = /(1)
where A\ > 0 is a real parameter, F,G : R — R are locally Lipschitz and «, 8 : [0,1] — [0, 00)
are nonconstant functions. It can be proved that, under suitable assumptions, for each A > 0
problem (ODI) has at least two nonzero solutions and there exists A* > 0 for which problem
(ODI) has at least three nonzero solutions. Problems of this type have been insvetigated by F.
Faraci and A. Iannizzotto [48].

Another example is the following differential inclusion on the whole space RY
B { ~Ayu+ [uP2u € Aa(@)IoF(u(z)) + B(2)cClu(z)) inRY,
u(z) -0 as|z| — oo,

where ) is a positive real parameter, o, 3 : RY — R are given and F,G : R — R are two

locally Lipschitz functionals. A similar problem was studied by A. Kristdly, W. Marzantowicz

and Cs. Varga [66] using the principle of symmetric criticality. We point out the fact that slightly

modifying the conditions imposed in [66] we can apply Theorem 2.1 to obtain two (or even

three) nonzero solutions for problem (P,).

3.2 The p-Laplace-like operators with mixed boundary conditions

Let 2 be a bounded open subset of RY (N > 3) having smooth boundary and 2 < p < +o00. We
denote 092 = I the boundary of 2 and assume that I'y, I'; are two open measurable parts that

form a partition of " (i.e. T'; UTy = I" and I’y N 'y = () such that meas(I's) > 0.
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We are interested in boundary value problems involving a quasilinear elliptic differential

operator, a nonsmooth potential and mixed boundary conditions of the following type:

div(a(x, Vu)) € AOcF(z,u) — h(z), inQ
(P2) : —a(x,Vu) -n € p(r,u)0cG(x,u), onTy,

u =0, on Iy,
where a : Q x RV — R is of the form a(x, &) = (a1(z,£),...,an(x,&)), witha; : Q x RY - R
fori € {1,...,N}, A > 01is areal parameter, ' : @ x R - Rand G : I'; x R — R are locally
Lipschitz functionals with respect to the second variable, 1 : I't xR — Rand h : & — R
can be viewed as perturbation functions and n is the unit outward normal to 92. Here and
hereafter, the symbols dc F(z,t) and dcG(z,t) stand for the Clarke generalized gradients of
the mappings ¢t — F(x,t) and t — G(x,t), respectively.

Example 3.2. Set a(x,&) = |£|P72¢. Then a(x,€) is the continuous derivative with respect to the
second variable of the mapping A(x,&) = %|§\p, e a(x,§) = VeA(x,§). Then we get the p—Laplace
operator

div(|Vu|P~2Vu).

Example 3.3. Set a(z,&) = (14 |£2)P=2/2¢, Then a(x, ) is the continuous derivative with respect
to the second variable of the mapping A(x,§) = % [(1+[€)2)P/2 = 1], ie. a(x,€) = VeA(x,€). Then

we get the the mean curvature operator
div ((1 + ]Vu|2)(p_2)/2Vu) .

We point out the fact that our operator is not necessarily a potential operator, but we have
chosen these examples due to the fact that boundary value problems involving the above men-
tioned operators were studied intensively in the last decades since quasilinear operators can
model a variety of physical phenomena (e.g. the p-Laplacian is used in non-Newtonian fluids,
reaction-diffusion problems as well as in flow through porous media).

Let us turn now our attention towards the terms given by Clarke’s generalized gradient. To

our best knowledge differential inclusions similar to (Pz) have been studied in the past either
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with Neumann condition, or with Dirichlet condition on the entire boundary. This cases can be
obtained when I'y =T, or I'y = I'. We present next several particular cases of our problem that

have been treated in the last years by various authors.

CAsE 1. I'y =TI' (Neumann problem).

o If F" and G are primitives of some Carathéodory functions f : @ x R — Rand g :

0N xR —-R
F(z,t) = /tf(a:,s) ds and G(z,t) = /tg(:r,s) ds
0 0

then the functions t — F(x,t) and ¢t — G(z,t) are differentiable. Thus dc F(z,t) =
{f(z,t)}, 0cG(z,t) = {g(z,t)} and (P2) reduces to the following eigenvalue prob-
lem

{ div(a(z, Vu)) = Af(z,u) — h(z) inQ (3.8)

—a(x,Vu) -n = pu(z,u)g(x,u) on 0f)
A particular case of problem (3.8) was studied by Y.X. Huang [59] (there the author
studies the case when a(z, ) = [£|P72¢, f(x,t) = m(z)|t|P=%t, g = 0 and h = 0).
e In the case when the functionals f and g from the previous example are only locally
bounded, i.e. f € LS (2 x R)and g € LS (09 x R) thent — F(x,t) and t — G(x,1)

are locally Lipschitz functionals and, according to Proposition 1.7 in [90] we have
OcF (x,t) = [ f(z,1), f(z,t)] and  9cG(z.t) = [ g(x,1),9(x,1) ],

where

z,t) = lim ess inf x,s x,t) = lim ess su T, s
Flast) =l ess @) Tt =l e swp f(2.9)

and

x,t) = lim ess inf T, s g(x,t) = lim ess su z,s).
g(w,?) 510 |5—t\<5g( ) gz, t) 640 |s—t\zag( )

In this case problem (P3) reduces to

{ div(a(z, Vu)) € X[ f(z,u), f(z,u) ] —h(z) inQ (3.9)

—a(x,Vu) -n € u(x,u) [g(fc,u),g(:ﬁ,u) ] on 00
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A particular case of problem (3.9) was studied by F. Papalini [102] in the case of
the p-Laplacian. The approach is variational and is based on the nonsmooth critical

point theory for locally Lipschitz functionals developed by K.-C. Chang in [21].

e In the case when h = 0 and yu(z, t) = p > 0 problem (P2) becomes

div(a(z,Vu)) € AOcF(z,u), inQ
—a(z,Vu) -n € pdcG(z,u), on o,

(3.10)

A problem similar to (3.10) was studied by A. Kristaly, W. Marzantowicz and Cs.
Varga in [66] where the authors use a nonsmooth three critical points theorem to
prove that there exists a compact interval [a, b] with the property that for every A €
[a, b] there exists pp € (0, A + 1) such the for each u € [0, uo], the studied problem

possesses at least three distinct solutions.

CASE 2. I'y =T (Dirichlet problem).

In this case our problem can be rewritten equivalently as follows:
ue WyP(Q):  Au+ NoF(,u)3h in WP (Q), (3.11)

where Au(z) = —div a(z, Vu(z)).

Problem (3.11) was treated in the case A = 1 and h = 0 by S. Carl and D. Motreanu [20]
who used the method of sub and supersolutions to obtain general comparison results. We
also remember the work of Z. Liu and G. Liu [75] and ]. Wang [121] who studied eigen-
value problems for elliptic hemivariational inequalities that can be rewritten equivalently
as differential inclusions similar to (3.11). In [75] and [121] the authors used the surjectiv-

ity of multivalued pseudomonotone operators to prove the existence of solutions.

As we have seen above, in most papers dealing with differential inclusions of the type (P2)
nonsmooth critical point theory, or the pseudomonotonicity of a certain multivalued operator

play an essential role in obtaining the existence of solutions. However, in all the works we
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are aware of, additional assumptions on the structure of the elliptic operator and/or the gen-
eralized Clarke’s gradient are needed to obtain the existence of the solution (e.g. the elliptic
operator is of potential type, or the locally Lipschitz functional is required to be regular, or
to satisfy some conditions of Landesman-Lazer type, or the Clarke’s generalized gradient is
supposed to satisfy more restrictive growth conditions). Here, our approach is topological and
the novelty is that we are able to obtain the existence of at least one weak solution for any

A € (0, +00) without assuming any of the above restrictions.

We present next the conditions that need to be imposed in order to prove the main result of

this section.
(H10) Leta : © x RY — RY be an operator of the form a(z, &) = (a1(z,€),. .., an(x,£&)) which

satisfies

(i) foreachi € {1,..., N} a; : @ x RN — R is a Carathéodory function and there exists ¢y > 0
and a € L” (Q) such that
lai(2, )] < a(z) + coléP

fora.e. z € Qandall ¢ € RY;
(ii) there exist ¢c; > 0 and 3 € L'(Q) such that
a(x,§) - & > c1|éP — B(z),
fora.e. z € Qand all ¢ € RY;

(iii) for a.e. x € Q and all &, & € RY
[(1(.%’761) - a($,§2)] : (fl - 62) > 0.

(H11) Let F': 2 x R — R be a function which satisfies:
(i) for all £ € R the function x — F(x,t) is measurable;
(i) for a.e. € Q the function t — F(z,t) is locally Lipschitz;
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(iii) there exists co > 0 such that fora.e. z € Qand all t € R

|0cF (x,t)] < ea(1 + [HP7);

(iv) there exists y; € LP(Q2) such that fora.e. z € Qand allt € R
|FO, t; =) < ma) [P~
(H12) Let G : Ty x R — R be measurable with respect to the first variable and assume there
exists yo € Lp/(l“l) such that
G(z,t1) — Gz, t2)| < 72(@)[t1 — t2f,

fora.e. x € I'y and all ¢1,t2 € R.

(Hi3) p: Tt x R — Ris a Carathéodory function and there exists p* > 0 such that
0 < p(x,t) < p,

forae.x €eT'yandallt € R.
(7‘[14) h e ¥ (Q)

Let us introduce the functional space
V={ve WP(Q): yv = OonTy}

where v : WHP(Q) — LP(T) is the Sobolev trace operator. For simplicity, everywhere below,
we will omit to write v to indicate the Sobolev trace on the boundary, writing v instead of
yv. Since meas(I'y) > 0, it is well known that V is a closed subspace of W!?(Q) and can be
endowed with the norm

[ollv = IVl ),
which is equivalent to the usual norm on W'?(Q) due to the Poincaré-Friedrichs inequality

(see e.g. Proposition 2.94 in [19]).
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Definition 3.2. We say that u € V is a weak solution for problem (P3) if there exist ¢, € LP ()
satisfying C1(x) € dcF (x,u(x)) for ae. x € Qand (o € LV (I'y) satisfying Co(x) € dcG (x, u(x)) for

a.e. x € I'1 such that

(o)~ ) do = [ o) - u) do

Q

/Qa(x,Vu)-(Vu—Vu)d:E—i—)\/le(v—u)da:—k/F

1
forallveV.
The main result of this section is the following theorem.

Theorem 3.2. (N.C., I. FIROIU & F.D. PREDA [27]) Suppose that conditions (Hio) — (H14) are
fulfilled. Then for each A € (0,400) problem (P2) possesses at least one weak solution.

Before proving Theorem 3.2 we introduce the operator A : V' — V* defined by
(Au,v) = / a(z,Vu) - Vv dz, (3.12)
Q
and denote by ¢ the element of V* given by

(p,v) = / h(z)v dx.
Q
We have the following proposition which characterizes the weak solutions of problem (P3).

Proposition 3.1. An element w € V is a weak solution for problem (P2) if and only if it solves the

following hemivariational inequality

(HI)y Find w € V such that

(Au,v—u)+)\/F0(ac,u;v—u) dx—i—/ p(z, u)GO(z, u;v — u) do > (¢, v — u),
Q T

1

forallve V.

Finally, we point out the fact that we do not deal with a classical hemivariational inequality
due to the presence of the term [. y(z, u)G(z,u; v—u) do in the left-hand side of the inequality

and consequently several difficulties occur in determining the existence of solutions since the

classical methods fail to be applied directly.
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Proof of Theorem 3.2.  First we point out the fact that under (#19) the operator A : V' — V*

defined in (3.12) is well defined and satisfies the following properties:
o there exists c3 > 0 such that (Au, u) > ci|jull}, — 3, forallu € V;
o (Av — Au,v —u) > 0 forall u,v € V;
o (Auy,,v) — (Au,v) for all v € V, whenever u,, - uin V.

Let us fix A > 0. We shall prove next that there exists at least one v € V which solves (HI),. In

order to do this let us fix R > 0 and define K = By (0, R) = {u € V : ||lully < R} and

(v,u) € K x K | (Au,v —u) + A [, FO(z,u;v — u) do+
Jo, 1@, w)GO (2, us 0 — w) do > (¢, v — u)

P =

After some computations we are able to show that:

o Foreachv € K theset A(v) ={u € K : (v,u) € P} is weakly closed;
o Foreachu € K theset O(u) = {ve K : (v,u) € P} is either empty or convex;

oTheset B={ue€ K : (v,u) € P forall v € K} is weakly compact.

The above statements show that we can apply Lin’s theorem (see [73], Theorem ), for the weak
topology of the space V, with Ky = K = By(0,m) and obtain the existence of an element

U, € By (0,m) such that By (0,m) x {u;,} C P, which can be rewritten equivalently as

(AU, v — Up) + )\/ FO2 U, v — ) dz + [ GO, U v — ) do > (h,0 — u), (3.13)
Q I

for all v € By (0, m), which means that, for each positive integer m, the restriction of (HI), to

By (0, m) possesses at least one solution.

In order to compete the proof we need to prove that there exists m* > 0 such that
U+ € By (0,m") (3.14)
and this u,,+ solves (HI)y. This can be easily done as follows.
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Arguing by contradiction let us assume that ||u,,||y = m for all m > 0. Taking v = 0 in

(3.13) we obtain

<Aumaum> < <¢7um> +)‘/ Fo(l’,um;—um) d:L’—{—/ :u(xaum)GO(l'vum;_um) do
Q Iy
< ollv-lumlly + X [ n@umpt do+ 0 [ o) do
Q I
—1 *
< llvellumllv + Mvillze@ lumlzs 0y + £ 172l 2 0y lum oy
< Ellumllv + E2lluml

for some suitable constants ¢;, éo > 0. On the other hand, we know that
(A, Uy ) > cl||um||€/ — c3.

Combining the above estimates and keeping in mind that 1 < p and ||u, |y = m forall m > 0

we arrive at

eamP — e3 < EmP~l + Em.

Dividing by mP~! and letting m — oo we get a contradiction as the left-hand term of the
inequality diverges while the right-hand term remains bounded, which is impossible. This
contradiction shows that (3.14) holds.

Now let v € V be fixed. We know that |[u,« ||y < m* which allows us to choose t € (0, 1)

such that w = w,+ + t(v — uy+) € By (0,m*). Plugging w in (3.13) we have

t<¢a Clia um*) = <¢7 w — um*>

< (Aum*,w—um*>+)\/QF0(:L‘,um*;w—um*) dzr +
/F (2, U ) GO (2, U W — Upe ) do
1
= t[(Aum*,v—um*>+)\/QFO(x,um*;v—um*) dx +
/F (2, U ) GO (2, U U — U+ ) da] :
1

Dividing the above relation by ¢ > 0 we conclude that u,,- is indeed a solution for (H1).
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3.3 The 7 (-)-Laplace operator with the Dirichlet boundary condition

In this section we study the weak solvability of a differential inclusion involving a nonhomo-
geneous anisotropic differential operator of the following type
- >0 (\3iu|pi(m)_28iu) € Noca(z,u) + 0cB(x,u) in €,

i=1

(Pg) .
u =0 on 0f),

where Q@ C R” (n > 3) is a bounded open set with smooth boundary, A > 0 is a real parameter,
a, B : xR — R are two locally Lipschitz functions with respect to the second variable and, for
eachi € {1,...,n}, p; : Q@ — R is a continuous function such that 2 < p;(z) < n for all z € Q.
The notation J;u stands for the partial derivative of u with respect to the z; component, that
is Ou/0x;, while dco(z, t) denotes the Clarke generalized gradient of the function ¢ — «(z,1).
The definition and main properties of the Clarke generalized gradient will be given in the next
section.
We point out the fact that, if o(z,t) = ﬁ\t\qm and 3 = const., then problem (P3) reduces
to the following nonhomogeneous anisotropic eigenvalue problem
- f:lé?i (105ulP/®=20;u) = A|ul?@®~2y  inQ,

(3.15)
u=20 on 012,

which was studied by Mihailescu, Pucci and Radulescu [84, 85]. In these papers the authors
show that the “competition” between the growth rates of the functions p; and ¢ deeply influ-
ence the existence or nonexistence of the weak solutions. To our best knowledge these are the

first papers dealing with the anisotropic variable exponent J (-)-Laplace operator, i.e.

Apyu= zn;@- <|8iu|pi(m)_23iu> ,

where 7 : Q — R" is the vectorial function 7' (-) = (p1(-), ..., pn(-)). Alsoin these papers it was
introduced for the first time the anisotropic exponent Sobolev space WO1 7O () that allowed
an accurate study of problems of the type (3.15). We point out that the aforementioned space

can be viewed as a natural generalization of the variable exponent Sobolev space W& P (')(Q)
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(when pi(-) = --- = pn(-) = p(-)) as well as a natural generalization of the classical anisotropic

Sobolev space Wol’?(Q) (when p; are constant functions, i € {1,...,n}).

On the other hand, let us consider the case when o = const. and (3 is the primitive of some

Carathéodory function f: @ xR - R

Bz, t) = /f(x,s) ds.
0

Then the function ¢ — [(z,t) is differentiable and thus dc3(z,t) = {f(x,t)} and problem (P3)

reduces to the following nonhomogeneous anisotropic problem

50, (0P @ 20u) = f(r,u) i
i=1 (3.16)

u=20 on 02,

which was studied recently by Boureanu, Pucci and Radulescu [12], by using the symmetric

mountain-pass theorem of Ambrosetti and Rabinowitz.

The abstract framework required to study differential inclusions of the type (P3) lies at the

interface of three important directions in analysis:

e the nonsmooth analysis: the need for such theory comes naturally whenever we deal with
functions which are not differentiable everywhere, but are convex or locally Lipschitz
(see, e.g., Andrei, Costea and Matei [4], Chang [21], Clake [24], Costea and Varga [37, 38],
Kristaly, Radulescu and Varga [67], Motreanu and Panagiotopoulos [90], Motreanu and
Radulescu [91], Naniewicz and Panagiotopoulos [94], Panagiotopoulos [98, 99, 100]).

e the variable exponent Lebesgue-Sobolev spaces theory: problems involving the isotropic p(x)-
Laplace operator have captured special attention in the last decades since they can model
various phenomena which arise in elastic mechanics (see, e.g., Zhikov [123]), image restora-
tion (see, e.g., Chen, Levine and Rao [23]) or electrorheological fluids (see, e.g., Acerbi and
Mingione [1], Diening [42], Diening, Harjulehto, Hast6 and Ruzi¢ka [43], Halsey [55],
Ruzi¢ka [109], Costea and Mihdilescu [33], Mihailescu and Radulescu [86, 87]).
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e the anisotropic Sobolev spaces theory: the need for such theory comes naturally whenever we
deal with materials possessing inhomogeneities that have different behavior on different
space directions (see, e.g., Edmunds and Edmunds [44], Nikol’skii [97], Rdkosnik [104,
105], Troisi [119]).

Although the 7/ (-)-Laplace operator was introduced recently, in 2007 by Mihdilescu, Rad-
ulescu and Pucci, problems involving this operator, or similar operators, have captured special
attention in the last years (see Boureanu, Pucci and Radulescu [12], Fan [45], Mihailescu and
Morosanu [81], Mihailescu, Morosanu and Radulescu [82, 83], Stancu-Dumitru [117]). How-
ever, in all the works we are aware of, the energy functional attached to the problem is smooth,
while differential inclusions like problem (P3), for which the attached energy functional is only
locally Lipschitz and not differentiable, have not yet been studied.

In this section we prove a multiplicity result concerning the weak solutions of problem
(P3). Before defining the concept of weak solution we denote by X the anisotropic variable

exponent Sobolev space I/VO1 PO (©2) and by || - || the norm defined on this space, that is || - |5 (.

Definition 3.3. A function v € X is called a weak solution for problem (P3) if, for a.e. x € Q, there
exist () € Oca(x,u(x)) and ((x) € OcB(x,u(x)) such that

/ Z |8;ulPi ) 2 9udw da = /\/ &vdr + / Cvdx, forallve X.
Q= Q Q

In order to obtain our main result we shall assume fulfilled the following hypotheses.

(H15) Foreach i € {1,...,n} the function p; € C(Q) is log-Holder continuous, 2 < p;(z) < n

for all z € Q and p& < P*;
(H16) The function o :  x R — R satisfies

(i) a(x,0) =0 fora.e. z € Q;
(ii) z — a(z,t) is measurable for all t € R;

(iii) t — «(z,t) is locally Lipschitz for a.e. x € €;
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(iv) there exist ¢, > 0 and g € C(Q) such that 1 < ¢~ < ¢* < p;,, and
€(@)] < calt]?®

forae. z € Q,allt € Rand all {(x) € Oca(z,t);

(v) there exist u € (0,1), ap > 0 and tp > 0 such that
a(xz,t) <0, forall|t| < panda.e z €,

and

a(xz,tg) > a9 >0, forae ze.
(Hi7): The function § : © x R — R satisfies

(i) B(z,0) =0 fora.e. z € Q;
(ii) z — B(x,t) is measurable for all t € R;
(iii) there exists r € C (Q) with the property that 1 < r(z) < P*and K € L ()(Q) such
that
|B(z,t1) = Bz, t2)| < K(z)[t1 — 1o
fora.e.z € Qandall t1,ty € R;

(iv) B(z,t) <0, fora.e. z € Qandall t € R.
The main result of this section is given by the following theorem.

Theorem 3.3. (N.C. & G. MOROSANU [31]) Assume that (H15), (H16) and (H17) hold. Then there
exists \* > 0 such that for any X € (\*,4o00) problem (P3) possesses at least two non-zero weak

solutions.

Proof. Let us introduce the functionals J : X — R, A : LI0)(Q) — Rand © : L'O(Q) — R
defined by

" 19ulPi(@)
J(u) = /QZ 1Dl dx, A(w) := /Qa(a:,w(:c)) dx, O(z) := /Qﬂ(:c,z(:c)) dx.
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Standard arguments can be employed in order to conclude that the functional £, : X — R
defined by
Ex(u) = J(u) = O(u) = AA(u),
is locally Lipschitz and each critical point of this functional is a solution of problem (P3). More-
over, it can be shown that &) is sequentially weakly lower semicontinuous, coercive and satis-

fies the (PS)-condition. The following claims complete the proof.

CLAIM 1. There exists A* > 0 such that for any A > A\* we can determine v, € X for which
Ex(ug) < 0.
Let zyp € int € be such that the distance from z( to the boundary of €2 is maximal and

let Ry be this distance (Ry = max mi mm |z — y|). Clearly, for 0 < R < Ry/2, we have
z€Q yedN

B(zo;2R) C €. It can be easily seen that there exists uy € C§°(B(z¢; 2R)) such that

ug(r) = to for x € B(xo; R)
0 <wup(z) <ty forx e B(xo;2R)\ B(zo; R).

Since ug € C§°(B(z0;2R)), fori € {1,...,n}, there exists m; > 0 such that |O;ug(x)| < m;

in B(zo;2R). Then for m := max{1,m; ..., my,} we have

Ex(ug) = /lz\auo ‘pl /B:Euo dx—)\/ oz, u(x

n mpM
/ Z — dx —/ Bz, up(x)) de — )\/ a(z,up(x)) d.
B(wo;ZR) i=1 pm B({EQ;2R) B(wo;QR)

IN

Obviously,
- Baw@)ds = [ 5.0~ e ) da
B(z0;2R) B(z0;2R)
< / K(x)up(x) de < b,
B(z0;2R)

for a suitable constant 3; > 0.

On the other hand, splitting B(xz¢; 2R) into the sets
Dy = {x € B(z0;2R) : a(x,up(z)) <0}
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and

Dy = {x € B(z0;2R) : a(x,ug(z)) >0},
we observe that B(zg; R) C D. Applying Lebourg’s mean value theorem and taking into

account hypothesis (#16) one can easily prove that

/ a(z,uo(z)) de > —ag + OéownR )
B(zo;2R) n

where w,, is the area of the unit sphere in R” and «; > 0 is a suitable constant.

Thus N
mPm2"w, R™ wpR™
Ex(ug) € ————— 4B+ a1 — Aag—— <0,
DPm
+
n2"mPM w, R"+n(B1+a1)pm
for any A > oo LT Pm

CLAIM 2. The functional &, possesses two critical points u;,us € X \ {0}, provided that
A€ (A, +00).
The facts that £, is sequentially lower semicontinuous and coercive allow us to apply
Theorem 1.2 to obtain the existence of an element u; € X such that £, (u;1) = umel)r(l Ex(u).
Obviously u; is a critical point of £, as it is a global minimizer, while CLAIM 1 ensures
that £ (u1) < 0, which means that u; # 0. Furthermore, if there exists p € (0, ||u1]|) such

that

8&10{[)) Ex 2 0 =max{&,(0), Ex(u1)},

then we can apply Theorem 1.3 to obtain another critical point up € X \ {0, u }.

Let us consider s € C.(Q) such that pi, < s~ < st < P* and choose p > 0 such
that p < min{1, 1/c;, ||u1|}, where ¢; > 0 is the constant given by the compact inclusion

WETO(Q) & L50(Q), e,

lullsy < csllull,  forallu e WEPY(q).
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Then for each u € 9B(0; p) we have ||9;ull,,) < 1 (1 <i < n)and |ulls.) < 1. Thus for

u € X such that ||u|| = p we have

Ex(u) = J(u)— Ou) — M(u)
> 1+ /lauplw)d:p—/ﬁxu daz—A/ a(z,u(x)) dx
Py =1
I :
> oY ol = [ ateua) do.

M =1

Using the convexity of the function & : Ry — R, defined by h(t) = tPar we deduce that

Z 10; UHPM =

Defining Q) = {z € Q : |u(z)| < p} and Q = {z € Q : |u(z)| > p} and by the use of

— P

hypothesis (H16) — (v) and Lebourg’s mean value theorem we can prove that
[ ateute) do < e = ol <t e ol

for a suitable constant ¢ > 0.
Thus, for u € 0B(0; p)

_ 1 -
En(u) > ———— P — Aep? S T = P (H—Ac;ﬂ*—s ¢ p* )

p&an

Finally, we observe that the function % : [0, 1] — R defined by

1 S
h(t) = ———— — Acpd cs t° P
pynPa!
is continuous on [0, 1] and A(0) = ﬁ > 0, hence h > 0 in a small neighborhood
Drsm M~

at the right of the origin. Choosing p > 0 such that p belongs to this neighborhood and
p < min{l,1/c,, ||u1||} we deduce that £y(u) > 0 for all u € 9B(0; p) and this completes

the proof.
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We close this section with several examples of functions «, 8 : 2 x R — R for which condi-

tions (Hi6) and (H17) are fulfilled.

Example 3.4. Let {c;} be a sequence of positive real numbers such that e, | 0 as k — +o0. Let

q € C+(Q) besuch that 1 < g~ < q* < p,, and let oy, B : 2 x R — R to be defined by

ot +erl?@, fort € (~o0,~ei),
O(k(il?,t) = 07 fort € (_gkugk)7

ﬁh& —e|1®) ) fort € [eg, +00),

and
Br(x,t) =0, forall (z,t) € Q x R.
Then, Ocf(z,t) =0 forall (z,t) € Q x R, while
|t 4 er]|1@=2(t + &), fort € (—oo, —ep),
dcoy(x,t) = ¢ 0, fort € [—eg, ek,

|t — 8k|Q(x)_2(t — €1€), fOT’t c (6k, +OO).

Thus, for any £(z) € Oca(x,t), we have

‘t‘q(x)fl < q+171 |t|f1(1)717 fOT" ’t’ S [1 + €k +OO)7

3
ala)-1
g@l< e 1< (W)™ < et for il € (e, 1+ ),
k

0< qu_l |t[a(@) =1 for |t] € [0,¢ek).
k

We point out the fact that when k — +oo then problem (Pg) with oy, [ defined above reduces to
problem (3.15), hence this example shows that slightly perturbing problem (3.15) around the origin we

can obtain two nontrivial weak solutions instead of only one weak solution as Theorem 3 [85] states.

Example 3.5. Let 1 € (0,1), g1,q2 € C(Q) be such that 1 < q; < ¢ < q¢; < qf < p;, and let
a € L>(9) be such that a(x) < 0 for a.e. x € Q. We consider the functions o, 5 : @ x R — R to be
defined by

oz, t) =

{ 0, fort € (—oo, u),
mas {(t — @) #@), (¢ — =@}, fort € [, +50),
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and
Bla,t) = a(x)lt].
Then
07 forte(ooa/‘LL
qi(z)(t — )@= fort € (u, 1+ p),
doa(x,t) =
(01 (2), @2(2)] fort=1+p,
aa(2)(t — )@, fort € (1+p, +0),
and
—a(z), fort € (—o0,0),
OcB(z,t) =1 [a(x),—a(x)], fort=0,
a(z), fort € (0,400).
Thus for every £(z) € Oca(x,t) we have
0<% |g|mt=)1, fort € (—o0, 1],
w2
q2(z)—1 +
) a <af (4) < SFS RO forte (u 1+ ),
T)| <
g < S ftjetn1, fort=1+up,
piz 7t
+
gt — pE@1 < @1 forte [+ p,+o0).
I 2

Example 3.6. Let f,g € LS. (Q2 x R) and consider «, 5 : € x R be defined by

loc

oz(a:,t):/o f(z,s)ds and ﬁ(m,t):/o g(z,s) ds.

Obuviously, t — «a(x,t) and t — [(x,t) are locally Lipschitz and according to Proposition 1.7 in

Motreanu and Panagiotopoulos [90], we have
dca(z,t) = [ f(2,8), f(,t) | and  OcP(x,t) = [ g(x,t),9(z,1) |,

where for a function h € LS. (Q x R) we denote by

loc

h(z,t) =lim inf h(z,t) and h(z,t)=lm sup h(z,t).
h(z,1) 310 |s—t|<b (%) (@) 610 \s—t\lié (@.8)

Clearly, there are many ways in which we can choose f and g such that conditions (H16) and (H17) are

fulfilled.
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Chapter 4

Differential inclusions in

Orlicz-Sobolev spaces

4.1 Formulation of the problem

In this chapter we establish an existence result for differential inclusions involving quasilinear

elliptic operators in divergence form of the following type

Au = div (a(|Vu|)Vu) , 4.1)

subjected to Dirichlet boundary conditions, in a bounded domain with smooth boundary. More

exactly, we are interested in the existence of weak solutions for the problem

—div (a(|Vu|)Vu) € OcF(z,u), inQ,

(P)
u =0, on 0f),

where () is a bounded, open subset of R (N > 2) with smooth boundary 92 and a : [0, 00) —

[0, 00) is a mapping such that the function ¢ : R — R defined by

p(t) = a([t])t,
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is continuous, strictly increasing and onto. Here, F': 2 x R — R is a locally Lipschitz function
with respect to the second variable and, as usual, dcF(z,t) denotes the Clarke generalized
gradient of the mapping t — F(z,1).

As Ruf [108] pointed out, in dealing with variational problems of the type (P) two questions

arise naturally:
(Q1): Which is the appropriate function space for the problem to be well-posed, hence solvable?
(Q2): What kind of growth conditions on F would ensure the existence of weak solutions?

The answer to (Q1) is determined by two competing factors: on the one hand the space should
be "large enough" such that the functional attached to the problem satisfies an appropriate
compactness condition (e.g. Palais-Smale or Cerami condition) which ensures that a sequence
for which the functional converges to a critical value has a convergent subsequence; and, on
the other hand, the space should be "small enough" such that the functional has the desired
regularity (locally Lipschitz in our case). In the classical case of the p-Laplacian, i.e. a(s) = sP~2
and

Au = Apu = div (|[VuP~*Vu)

the suitable space in which the problem is studied is the Sobolev space W1?(§). However, in
our framework, the space LP(f2) needs to be replaced by the Orlicz space L®(f2) in which the
role of the convex function ¢ is played by the N-function ®. It is also worth mentioning that

these spaces fill a gap in the Sobolev embedding theorem as, for mp = N,
WmP(Q) — L1(Q), forall g € [p, 00),

but
WP(Q) 4 L(Q),

hence there is no smallest L? space in which W"™P(Q) can be embedded. Trudinger [120]
showed that the best target to embed the space W™?(Q) is the Orlicz space L®(2) with

®(t) = exp <|t|p/(7’_1)) ~1
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Regarding (Q2), it is well known that in the case of the p-Laplacian an important role is
played by the critical exponent in the Sobolev embedding theorem p* = Np/(IN — p) for which
the space setup works and one is able to prove existence results if subcritical growth assump-
tions are imposed, while in the critical case we may have nonexistence results. For example let

us consider the particular case
t
a(s) =1, Vs > 0 and F(t) = / F(3)ds
0

with f : R — R a continuous function. Then, F is differentiable and the 0o F(t) = {f(¢)} and

problem (P) becomes
—Au = f(u), inQ,
u =0, on 0f).

(4.2)

Clearly, the suitable choice for the function space is H{ () and if f has "subcritical growth",
that is
FOl <eateltl, 1<q¢<2"-1,

where 2* = 1\2,—]_\[2, then one can prove the existence of solutions, while in the "critical growth"

case
f)y =71

one can use Pohozaev’s identity to prove that problem (4.2) has only the trivial solution if €2 is
bounded and starshaped.

In this chapter, we consider the case when ¢ : R — R, ¢(t) = a(]t|)t, defines an admissible
function and the nonlinearity F' has subcritical growth and we will employ variational methods
to prove the existence of at least one weak solution for our problem. Let us start by specifying

what we understand by weak solution for problem (P).

Definition 4.1. A function u € W} L*(Q) is called weak solution for problem (P) if, for a.e. x € Q,
there exists £(x) € Oc F(x,u(x)) such that

/ a(|Vu|)Vu - Vv doe = / v da, forall v € Wi L®(Q).
Q Q
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4.2 An existence result

In order to apply the Direct Method in the Calculus of Variations and show that the energy
functional attached to problem () has a global minimizer, hence a critical point, we will im-

pose the following hypotheses.
(Hop) The functions ¢, 1 : R — R are admissible and satisfy

(i) ¢(t) = a(|t])t;
{)l<ep <pt<oocand 1<y~ <yt < og;

(iii) The corresponding N-function of v, i.e. ¥(t) = fg 1 (s) ds, increases essentially slower

than ®, whenever

© o7l

(Hp) F: Q x R — R is a Carathéodory function such that
(i) F(x,0) =0fora.e. x €
(ii) t = F'(x,t) is locally Lipschitz for a.e. z € ©;
(iii) there exists b € LY" (Q) such that
€l < blz) + v(|t)),
forae. z € Q,allt € Rand all ¢ € OcF(x,t).
Let us consider the functionals Jg : W3 L®(Q) — R and Jr : LY(Q) — R defined by
Tafu) = [ @Vl do

and
Jr(w) = / F(z,w(z)) dx.
Q
The energy functional corresponding to problem (P), E : W L?(Q2) — R, is given by

E(u) = Jo(u) — Jp(u). 4.3)
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Condition (Hp) ensures that Wi L®((2) is compactly embedded into LY (), hence E is well
defined. The following lemma guarantees the fact that, in order to solve problem (P), it suffices
to seek for critical points, in the sense of Definition 1.10, of the energy functional attached to

our problem.

Lemma 4.1. Assume (Hy) and (Hp) hold. Then the functional E : W3 L®(Q) — R defined in (4.3)

has the following properties:
(i) E is locally Lipschitz;
(ii) E is weakly lower semicontinuous;
(iii) each critical point of E is a weak solution for problem (Pr).
Proof. (i) According to Lemma A.6 in [25] Jp € C* (W} L?(Q),R) and
(Jp(u),v) = /Qa(]Vu\)Vu -Vou dx (4.4)
Since W L®(2) is compactly embedded into LY (2) there exists ¢; > 0 such that
lulg < ecillul, forallu € WgL*(Q), 4.5)

with || - || defined as in Section 1.3, that is ||u|| = | [Vu] |4. Let us fix now ug € Wl L®(Q)
and prove that there exists » > 0 sufficiently small such that E is Lipschitz continuous
on By pe(q)(uo, ) = {v € WgL®(Q) : [|v — uo|| < r}. Theorem 2.3 ensures the existence
of an 79 > 0 such that Jr is Lipschitz continuous on B LW(Q)(uO, r9), hence there exists a

positive constant L such that
\Jp(wl) — Jp(w2)| < L|w1 — wglqj, for all w1, W € BL\I/(Q)(U(),T[)). (46)
From (4.5) and (4.6) we get

|JF(U1) — JF(UQ)‘ < L01Hu1 — UQH, for all U, Uz € BW01L<I>(Q)(U(],7"0/C1). (4.7)
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On the other hand, for r = r¢/c; and uy, us € BW&ch(Q) (ug,r) we have

[Jo(u1) = Jo(uz)] < [(Jp(@),u1 — uz)]

IN

A E— R
for some % € {\ug + (1 — Auz : A(0,1)}. The space W} L®(Q) is reflexive, hence the ball
BW& e (o) (1o, 7) is weakly compact, therefore there exists m > 0 such that

||J</I>(a) ” [WOILfb(Q)]* <m. (4.8)
Taking into account (4.7) and (4.8) we conclude that E is a Lipschitz continuous functional
on BWOqu:(Q) (U[), ’I”).
(i) Let {u,} € W L®(Q) be such that u,, — u in W3 L®?(Q2). Reasoning as in Lemma 3.2 in [52]

we infer that Jg is weakly lower semicontinuous, hence

Jo(u) < liminf Jg(uy,).

n—o0

On the other hand, u,, — v in L¥(Q) and by Fatou’s lemma

limsup Jp(un) = limsup/F(x,un(x)) dz
Q

n—o0 n—oo

< /limsupF(af,Un(x» dx
Q

n—o0

= / F(xz,u(x)) dz
Q
= JF(U),

which shows that Jp is weakly upper semicontinuous on W L% (Q).

(iii) Let u € W}L®(Q) be a critical point of E. According to Propositions 2.3.1 and 2.3.2 in

Clarke [24]
0 € dcE(u) C Jp(u) — dcJr(u),

hence there exists n € d¢Jp(u) such that
(Jh(u),v) = (n,v), forallv e WEL®(Q). (4.9)
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Theorem 2.3 ensures the existence of a ¢ € LY (Q) which satisfies

£(x) € OcF(w,u(x)), fora.e. z € Q, 410)
(n,v) = [o&(x)v(z) dz, forallve WJIL®(Q). .
The conclusion follows at once from (4.4), (4.9) and (4.10).
O

Theorem 4.1. Suppose (Hy) and (Hp) are fulfilled and assume in addition that 4= < ¢~. Then

problem (P) has a nontrivial weak solution.

Proof. The idea is to prove that E is coercive and apply Theorem 1.2 to conclude that E pos-
sesses a global minimum point. To this end, let u € W} L*(9) be such that ||u| > 1. Then, from

(2.8), we have
Jo(u) > ||Vullg = [ul®. (4.11)

On the other hand, we can apply Lebourg’s mean value theorem to deduce that there exist

Mo € (0,1) and ¢ € cF(z, Aou) such that
F(z,u(r)) = F(z,u(z)) — F(z,0) = {(z)u(z), forae. z¢€Q.
Thus,

Jr(u) = / Fla, u(z)) do

Q
< [ [Clul dz
Q

stéww+wmwmmm

IN

1
2l luby + 5 [ Nolul(olul)
0JQ

Using Young's inequality we get
2)\0|u\

NMWMMDS/ B(s) ds < B(2Nolu]),

Xolul
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and the Aj-condition yields
/ Xo|ultp(Xolul) dz < / U(2\o|u|) de < Cy + Cg/ U(Ao|u|) dx,
Q Q Q
for some suitable positive constants C'; and Cs. Clearly, relations (2.8) and (2.9) imply
[ waluly do < 20 (July” +1uly”)-
Q
The above relations together with (4.5) lead to the following estimate
Jr(u) < Cy + Cyllull + Cs|jull*” + CeJull*", (4.12)

for some suitable positive constants Cs, Cy, Cs, Cs. Taking into account (4.11) and (4.12) we

infer that F(u) — oo as ||u|| — oo. O
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Chapter 5

Variational-like inequality problems

governed by set-valued operators

In 1989, J. Parida, M. Sahoo and S. Kumar [103] introduced a new type of inequality problem
of variational type which had the form
Find u € K such that
(A(u),n(v,u)) >0, forallve K, (5.1)

where K C R" is a nonempty closed and convex setand A : K — R", 5 : K x K — R" are two
continuous maps. The authors called (5.1) variational-like inequality problem and showed that
this kind of inequalities can be related to some mathematical programming problems. In the
recent years, various extensions of (5.1) have been proposed and analyzed by many authors
(see e.g. R. Ahmad and S.S. Irfan [7], M.-R. Bai et al. [9], N. Costea and V. Rddulescu [34], N.H.
Dien [41], Y.P. Fang and N.J. Huang [47], A.H. Siddiqi, A. Khaiq and Q.H. Ansari [116]) who
showed that variational-like inequality problems can be successfully applied in operations re-
search, optimization, mathematical programming and contact mechanics. For various iterative
schemes and algorithms for finding approximate solutions for variational-like inequalities as
well as convergence results we refer to Q.H. Ansari and J.-C Yao [6] and C.-H. Lee, Q.H. Ansari

and J.-C. Yao [72].
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The goal of this section is to extend the results obtained in [103] to the following setting:
X is a Banach space (not necessarily reflexive) with X* and X** = (X*)" its dual and bidual,
respectively, K is a nonempty closed and convex subset of X** and A4 : K — 2% is a set-
valued map. We denote by (-,-) the duality pairing between a Banach space and its dual; if
uwe X, fe X and { € X*™ by (f,u) we understand f(u), while by (f, &) we understand &(f).
We are interested in finding solutions for the following inequality problems

Find v € K ND(¢) such that
Ju* e A(u) - (u,n(v,u)) + ¢(v) —d(u) >0, forallve K (5.2)

and

Find v € K such that
Ju* € A(u) - (u*,n(v,u)) >0, forallve K (5.3)

wheren : K x K — X**, A: K — 2% is a set-valued map, ¢ : X** — R U {+oo} is a proper
convex and lower semicontinuous functional such that K := K N D(¢) # (. Here D(¢) stands
for the effective domain of the functional ¢, i.e. D(¢) = {u € X** : ¢(u) < +oo}. If ¢ is the

indicator function of the set K, i.e.

0, ue K
o
+Oo’ U ¢ K?

then problem (5.2) reduces to inequality problem (5.3). Moreover, if A is a single-valued op-
erator, then (5.2) becomes a generalized variational-like inequality which was introduced by N.H.
Dien [41]. If A is a single-valued operator and n(v,u) = v — u then inequality problem (5.3)
becomes a variational inequality whose study began in the 1960’s (see e.g. G. Fichera [50], FE.
Browder [14], P. Hartman and G. Stampacchia [57], ].L. Lions and G. Stampacchia [74]). For
more information and connections regarding such types of inequality problems we refer to F.

Giannessi, A. Maugeri and P.M. Pardalos [54].

Definition 5.1. A solution ug € KND(¢) of inequality problem (5.2) is called strong if (u*,n(v, ug))+
#(v) — P(ug) > 0 holds for all v € K and all u* € A(uyp).
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It is clear from the above definition that if A is a single-valued operator, then the concepts

of solution and strong solution are one and the same.

5.1 The case of nonreflexive Banach spaces

Throughout this subsection X will denote a nonreflexive Banach space and K will stand for a
nonempty closed and convex subset of X**. Before stating the results concerning the existence
of solutions for problem (5.2) we indicate below some hypotheses that will be needed in the

sequel.

(His) A : K — 2% is a set-valued map which is ls.c. from K endowed with the strong

topology into X* endowed with the w*-topology and has nonempty values;

(H19) A : K — 2% is a set valued map which is u.s.c. from K endowed with the strong

topology into X™* endowed with the w*-topology and has nonempty w*-compact values;

(Hao) ¢ : X™ — R U {400} is a proper convex lower semicontinuous functional such that

K4 := K N'D(¢) is nonempty;
(Ho1) m: K x K — X** is such that

o for all v € K the map u +— n(v, u) is continuous;

o for all u,v,w € K and all w* € A(w), the map v — (w*,n(v,u)) is convex and

(w*, nu,u)) > 0;

Theorem 5.1. (N.C., D.A.ION & C. LUPU [28]) Let X be a nonreflexive Banach space and K C X**
nonempty closed and convex. Assume that (Hao), (Ha21) and either (Hig) or (Hig) hold. If the set K,
is not compact, assume in addition that there exists a nonempty compact convex subset C of K such

that for each w € K4 \ C there exists ujy; € A(u) and v € C with the property that
(ug, (v, 1)) + $(v) — ¢(u) < 0.
Then inequality problem (5.2) has at least one strong solution.
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Proof. Arguing by contradiction let us assume that (5.2) has no strong solution. Then, for each

u € Ky there exist u* € A(u) and v = v(u, @*) € K such that
(@, n(v,u)) + ¢(v) — ¢(u) < 0. (5.4)

It is clear that the element v for which (5.4) takes place satisfies v € D(¢), therefore v € K. We

consider next the set-valued map F : K, — 2%¢ defined by
Flu) ={ve Ky: (@,n(v,u)) + ¢(v) — ¢p(u) <0},

where @* € A(u) is given in (5.4).
Using the hypotheses we are able to prove that the following statements hold:

CLAIM 1. For each u € K4 the set F'(u) is nonempty and convex;

CLAIM 2. For each v € K4 theset F1(v) = {u € Ky : v € F(u)} is open;

CLAM3. Ky = |J intg, F'(v).

’UEK¢

If the K4 is not compact then the last condition of our theorem implies that for each u € K4\ C
there exists o € C' such thatu € F~!(v) = int, F~!(v). This observation and the above Claims
ensure that all the conditions of Theorem 1.5 are satisfied for S = 7' = F’ and we deduce that

the set-valued map F' : K, — 2K+ has a fixed point ug € Ky, i.e. ug € F(up). This can be

rewritten equivalently as
0 < (tg, 1(uo, uo)) + ¢(uo) — P(uo) < 0.

We have obtained thus a contradiction which completes the proof. O

5.2 The case of reflexive Banach spaces

Throughout this subsection X will denote a real reflexive Banach space and K C X will be
a nonempty closed and convex set. In order to prove our existence results, throughout this

subsection, we shall use some of the following hypotheses:
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(Hao) A1 K — 2% is a set-valued map which L.s.c. from K endowed with the strong topology

into X* endowed with the w-topology and has nonempty values;

(Haz) A : K — 2% is a set valued map which is u.s.c. from K endowed with the strong

topology into X* endowed with the w-topology and has nonempty w-compact values;

(Ha4) ¢ : X — R U {400} is a proper convex lower semicontinuous functional such that

K4 = K N'D(¢) is nonempty;
(Has) n: K x K — X is such that

o for all v € K the map u — n(v,u) is continuous;

o for all u,v,w € K and all w* € A(w) the map v — (w*,n(v,u)) is convex and

(w*,n(u,u)) >0;
(Hae) n: K x K — X is such that

e n(u,v) +n(v,u) =0forall u,v € K;

o for all u,v,w € K and all w* € A(w) the map v — (w*,n(v,u)) is convex and lower

semicontinuous;
(Ha7) o : X — R is weakly lower semicontinuous functional such that lim sup @ > 0 for all
AL0
veEX;

(Hos) @ : X — R is a such that

e a(0) =0;
olimsup@ >0, forallv € X;
A0

e a(u) < limsup a(uy), whenever uy — uin X;

The following theorem is a variant of Theorem 5.1 in the framework of reflexive Banach

spaces.
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Theorem 5.2. (N.C., D.A. ION & C. LUPU [28]) Let X be a real reflexive Banach space and K C X
nonempty compact and convex. Assume that (Haa), (Hos) and either (Ha2) or (Ha3) hold. Then

inequality problem (5.2) has at least one strong solution.

The proof of Theorem 5.2 follows basically the same steps as the proof of Theorem 5.1,
therefore we shall omit it.

We point out the fact that in the above case when K is a compact convex subset of X we do
not impose any monotonicity conditions on the set-valued operator A. However, in applica-
tions, most problems lead to an inequality whose solution is sought in a closed and convex sub-
set of the space X. Weakening the hypotheses on K by assuming that K is only bounded, closed
and convex, we need to impose certain monotonicity properties on A. In the last decades more
and more efforts were made to introduce various generalizations of the monotonicity concept
from which we remember pseudomonotonicity, quasimonotonicity, ssmimonotonicity, relaxed
a monotonicity, relaxed n — a monotonicity, and these concepts were used to prove existence
results for various inequality problems, see e.g. M.-R. Bai et al. [9], M. Bianchi, N. Hadjisavvas
and S. Schaible [10], Y.Q. Chen [22], N. Costea and A. Matei [29, 30], N. Costea and V. Radulescu
[35, 36], Y.P. Fang and N.J. Huang [47], S. Karamardian and S. Schaible [60], S. Karamardian, S.
Schaible and J.P. Crouzeix [61], I.V. Konov and S. Schaible [68] and the references therein.

Definition 5.2. Let n : K x K — X and o : X — R be two single-valued maps. A set-valued map
T : K — 2% is said to be

e relaxed 1 — o monotone, if for all u,v € K, all v* € T'(v) and all uv* € T'(u) we have

(v —u®n(v,u)) = v —u); (5.5)
o relaxed 1 — o pseudomonotone, if for all u,v € K, all v* € T'(v) and all v* € T (u) we have
(u*,n(v,u)) > 0implies (v*,n(v,u)) > a(v — u); (5.6)
e relaxed 1 — o quasimonotone, if for all u,v € K, uw # v, all v* € T(v) and all u* € T'(u) we have
(u*,n(v,u)) > 0implies (v*,n(v,u)) > a(v —u). (5.7)

76



CEU eTD Collection

5.2. The case of reflexive Banach spaces

SPECIAL CASES.
1. n(v — u) = v — u. Then
e (5.5) reduces to: for all u,v € K, all v* € T'(v) and all u* € T'(u) we have
(" —u* v —u) > alv—u),

and 7T is said to be relaxed o monotone;

e (5.6) reduces to: for all u,v € K, all v* € T'(v) and all u* € T'(u) we have
(u*,v —u) > 0 implies (v*,v — u) > a(v — u),

and 7' is said to be relaxed o pseudomonotone;

e (5.7) reduces to: for all u,v € K, u # v, all v* € T(v) and all u* € T'(u) we have
(u*,v —u) > 0 implies (v*, v — u) > a(v — u),
and 7 is said to be relaxed o quasimonotone.
2.n(v—u) =v—uand a = 0. Then
e (5.5) reduces to: for all u,v € K, all v* € T'(v) and all u* € T'(u) we have
(v* —u*,v—u) >0,

and T is said to be monotone;

e (5.6) reduces to: for all u,v € K, all v* € T'(v) and all u* € T'(u) we have
(u*,v —u) > 0 implies (v*,v —u) > 0,

and 7' is said to be pseudomonotone;

o (5.7) reduces to: for all u,v € K, v # v, all v* € T'(v) and all u* € T'(u) we have
(u*,v —u) > 0 implies (v*,v — u) > 0,
and 7' is said to be quasimonotone.
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Example 5.1. Let a > 0 be a real number, K = [0,a] x [0,a] x {0} C R3 and define the set-valued

operators Ty, 15,15 : K — 2R 4g follows
Ti(u) = {(0,u3,u3) : uy =ugand —u; <uj <wui},
To(u) = {(0,u3,u3) : a/2 <uj <aand —u; <uz <wup},
Ts(u) = {(0,u5,u3): —a<wuy; <0and —u; <wuz <wup}.
Then that the following assertions hold true
o T is monotone;
o T5 is pseudomonotone, but not monotone;
o T3 is quasimonotone, but not pseudomonotone.
Defining o : R® — R by a(u) = 0 for all u € R3 it is easy to see that
o T is relaxed o monotone;
o T5 is relaxed o pseudomonotone, but not relaxed o monotone;

o T3 is relaxed o quasimonotone, but not relaxed o pseudomonotone.
Considering ) : K x K — R3 defined by n(v,u) = v — wand o : R? — R as above we conclude that

o T} is relaxed n — o monotone;
o T5 is relaxed 1 — o pseudomonotone, but not relaxed n — o monotone;

o T3 is relaxed n — « quasimonotone, but not relaxed n — o pseudomonotone.

Example 5.2. Let a > 0 be a real number, K = [0,a] x [0,a] x {0} C R3 and define Ty : K — 2R gs

follows

Ty(u) = {(0,u3,u3) : uy = —u3and —uy < ul < ur} .

Let a : R? — R be defined by a(u) = —2al|u||?. Then, Ty is relaxed o monotone and not monotone.
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Example 5.3. Let a,p > 1 be real numbers, K = [0,a] x [0,a] x {0} C R3 and define T : K — oR?
as follows
Ts(u) = {(0,u3,u3) : uy=—uband —uy <uf <u}.
Let n: R3 x R® — R? be defined by n(v,u) = (uf — v, ub —vb, uf —of), a : R? — R be defined
by a(u) = —3||u||. Then T is relaxed n — o monotone, but not relaxed o monotone.
On the other hand, if we define n : R? x R3 — R3 by n(v,u) = (v} — o}, ub — o8, v} — %) and
a:R3 — R by a(u) = 0is easy to check that Ts is relaxed n — o pseudomonotone and not relaxed o

monotone.

Example 5.4. Let a > 0 be a real number, K = [—a, a] X [—a, a] x {0} C R3 and define Tg : K — 2%°
as follows

To(u) = {(0,u3,u3) : uy =—ugand —a <uj <a}.
Then, T is relaxed o pseudomonotone with o : R3 — R, al(u) = —||u||? and Ty is not pseudomonotone.
Example 5.5. Let K = [0, 2x] x [0,27] x {0} C R3 and define Ty : K — 2&* as follows
Tr(u) = {(0,u3,u3) : uy =cosugand —u; < uz <u}.

We define o : R? — R by a(u) = —m||ul|? where m > 1 is a constant and we claim that T+ is relaxed

o quasimonotone, but not quasimonotone.

On the other hand, if we consider 1 : R® x R3 — R defined by
n(v,u) = (ug cosuy, ug cos ug, us Cos u3)

and o : R® — R defined by o (u) = 0 we observe that Ty is relaxed n — o quasimonotone, but not relaxed

o monotone.

From the above definitions and examples we have the following implications (while the
inverse of each implication is not true) which highlight the relations between different kinds of

generalized monotonicity for set-valued maps.
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monotone — pseudomonotone — quasimonotone
1 1 {
relaxed o monotone — relaxed o pseudomonotone — relaxed o quasimonotone
1 1 +
relaxed n — oo monotone | — | relaxed n — a pseudomonotone | — | relaxed n — a quasimonotone

We are now able to formulate another main result concerning the existence of solutions of

inequality problem (5.2) on bounded, closed and convex subsets.

Theorem 5.3. (N.C., D.A. ION & C. LUPU [28]) Let K be a nonempty bounded closed and convex
subset of the real reflexive Banach space X. Let A : K — 2X" be a relaxed n — o monotone map and

assume that (Hay), (Hoe) and (Har) hold. If in addition
o (Ha2) holds, then inequality problem (5.2) has at least one strong solution;
o (H23) holds, then inequality problem (5.2) has at least one solution.

Proof. We shall apply Mosco’s Theorem for the weak topology of X. First we note that K is
weakly compact as it is a bounded closed and convex subset of the real reflexive space X and
¢ : X — RU {400} is weakly lower semicontinuous as it is convex and lower semicontinuous.

We define £,( : X x X — R as follows

5(7}7“) =— inf <U*,77(’U,U)> —i—a(v—u)
v*€A(v)

and

C(v,u) = sup (u*,n(u,v)).

u*€A(u)
Let us fix u,v € X and choose ©v* € A(v) such that (v*,n(v,u)) = irilf( )(v*,n(v,u)). For an
v*eA(v
arbitrary fixed u* € A(u) we have
C(Uv ’LL) - {(U, U’) = sup <U,*7 77(“: ’U)> + inf <U*7 77(% 'LL)> - Oé(’l} - U)
u*€A(u) v*EA(v)

> (un(u,v) + (0, 0(v,u) — alv —u)
= (@ n(v,w)) = (u*,n(v,u)) — (v —u)

> 0.
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It is easy to check that the conditions imposed on 7 and « ensure that the map u — £(v,u) is
weakly lower semicontinuous, while the map v — ((v,u) is concave. Applying Theorem 1.8

for ;1 = 0 we conclude that there exists vy € K N D(¢) such that
E(v,ug) + P(ug) — p(v) <0, forallv e X,
since ((v,v) = 0 for all v € X. A simple computation shows that for each w € K we have
(w*, n(w,uo)) + d(w) — d(uo) = a(w —ug), forallw® € A(w). (5.8)

Let us fix v € K and define wy = up + A(v — up), with A € (0, 1). Then for a fixed w} € A(w))

from (5.8) we have

a(A(v—ug)) < (wx,n(wx, uo)) + ¢(wx) — ¢(uo)
< Mwi, (v, uo)) + (1= A){wy, n(uo, uo)) + Ad(v) + (1 — A (uo) — d(uo)
= Al(w},n(v,u0)) + ¢(v) — d(uo)]
which leads to

a(A(v —ugp))

3 < (wX,n(v,uo)) + ¢(v) — (uo). (5.9)

CASE 1. (Hgg) holds.

We shall prove next that v is a strong solution of inequality problem (5.2). Let uf € A(uo)
be arbitrarily fixed. Combining the fact that wy — ug as A | 0 with the fact that A is L.s.c.
from K endowed with the strong topology into X* endowed with the w—topology we
deduce that for each A € (0,1) we can find w} € A(w)) such that w} — ugjas A | 0. Taking

the superior limit in (5.9) as A | 0 and keeping in mind (H}) we get

0 < limsup “PAC=%)
ALO A
< limsup [(w}, n(v,ug)) + ¢(v) — d(uo)]

A0

= (ug, n(v,u0)) + é(v) — d(uo),

which shows that g is a strong solution of (5.2), since v € K and u§ € A(ug) were

arbitrarily fixed.
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CASE 2. (Hgg) holds.

We shall prove that ug is a solution of (5.2). Reasoning as in the proof of Theorem 5.1-
CASE 2 we infer that there exists 1§ € A(ug) and a subnet {w} },_; of {w}},¢ (0.1 Such that

w} — @} as A | 0. Combining this with relation (5.9) and hypothesis (H?) we conclude

that
0 < limsup 7&()\(1) ~ )
AL A
< lirrAlf&lp [(wX, (v, uo)) + ¢(v) — B(uo)]

= (ug, n(v,u0)) + ¢(v) — d(uo),
which shows that ug is a solution of (5.2), since v € K was arbitrarily fixed.

d

Weakening even more the hypotheses by assuming that the set-valued map A : K — 2% is
relaxed n — o quasimonotone instead of being relaxed n — o monotone the existence of solutions for
inequality problem (5.2) is an open problem in the case when K is nonempty bounded closed
and convex. However, in this case we can prove the following existence result concerning

inequality problem (5.3).

Theorem 5.4. (N.C., D.A. ION & C. LUPU [28]) Let K be a nonempty bounded closed and convex
subset of the real reflexive Banach space X. Let A : K — 2" be a relaxed n — o quasimonotone map

and assume that (Hag) and (Hag) hold. If in addition
o (H22) holds, then inequality problem (5.3) has at least one strong solution;
o (H23) holds, then inequality problem (5.3) has at least one solution.

Proof. Define G : K — 2% in the following way:

Gw)={ue K: (v*,n(v,u)) > alv—u) forallv* € A(v)}.
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First of all, let us observe that v € G(v) for all v € K and thus G(v) is nonempty for all v € K.
Now, we prove that G(v) is weakly closed for all v € K. Let {uy}rer C G(v) be a net such that

uy, converges weakly to some u € K. Then, we have

a(v—wu) < limsupa(v—uy)
< limsup(v*, n(v,uy))
= limsup [~ (v*, n(ux,v))]
= —liminf(v*, n(uy,v))
< =, n(u,v))
= (v, n(v, u)),

for all v* € A(v). It follows that u € G(v), so G(v) is weakly closed.

CASE 1. Gis a K KM map.

Since K is bounded closed and convex in X which is reflexive, it follows that K is weakly
compact and thus G(v) is weakly compact for all v € K as it is a weakly closed subset
of K. Applying the KKM Theorem (see Chapter 1, Theorem 1.6), we have (., G(v) #
() and the set of solutions of problem (5.3) is nonempty. In order to see that let ug €

Nyex G(v). This implies that for each w € K we have
(w*, n(w,u)) > alw—u), forallw* e A(w).
Let v be fixed in K and for A € (0, 1) define wy = ug + A\(v — ug). We infer that
a(A(v —up)) < Mwy, (v, uo)),

for all wy € A(wy).

Employing the same arguments as in the previous proof we conclude that ug is a strong
solution of inequality problem (5.3) if (#22) holds, while if (#23) holds then uy is a solu-
tion of inequality problem (5.3).
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CASE 2. GG is not a KKM map.

Consider {vq,v2,...,vn} € K and up = Ejvzl Ajv; with A; € [0,1] and Zjvzl Aj = 1such

that ug & U;V: 1 G(vj). The existence of such u is guaranteed by the fact that G is not a
KKM map. This implies that for all j € {1,..., N} there exists v; € A(v;) such that

(07, m(vj,u0)) < a(vj — uo) (5.10)

Now, we claim that there exists a neighborhood U of ug such that (5.10) takes place for all
w € UN K, that is

(07, n(vj,w)) < a(v; —w), forallweUNK.
Arguing by contradiction let us assume that for any neighborhood U of ug there exists an
index jo € {1,..., N} and an element wy € U N K such that
<U;ov77(vjovw0)> > a(vjo —wp), forall v;o € A(UJO)' (5.11)

Choose U = By (uo;\) and for each A\ > 0 one can find a jo € {1,...,N} and w) €

Bx (up; \) N K such that
<v;»‘0,n(vj0,w>\)> > a(v; —w,y) forall v;‘o € A(vjy).

Let us fix v} € A(vj,). Using the fact that wy — ug as A | 0 and taking the superior limit

in the above relation, we obtain

a(vjy —ug) < limsupa(vj, —wy)

A0
< limsup (v}, n(vj,, wy))
AL0
= —liminf(uj,, n(ws, vj,))
< —{vj,, n(uo, vj))

= <U;‘Foa U(UijO)%
which contradicts relation (5.10) and this contradiction completes the proof of the claim.

Now, using the fact that A is relaxed n — o quasimonotne map, we prove that

(w*,n(vj,w)) <0, forallwe KNU, allw* € A(w)andallje {1,...,N}. (5.12)
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In order to prove (5.12) let us assume by contradiction that there exists wg € K N U,
wy € A(wp) and jo € {1,..., N} such that (w§, n(vj,, wp)) > 0. From the fact that A is

relaxed 1 — o quasimonotone it follows that
(V35 M(Vjo, wo)) = a(vj, —wo), forall vy € A(vj,),

which contradicts the fact that (5.10) holds forallw € UN K and all j € {1,...,N}. On
the other hand, for arbitrary fixed w € K N U and w* € A(w) we have

N
<2D*,77(U(),w)> = <w*777 (Z)‘ﬂ}j?w)>

N
< Z)‘] w*, (v, w))

7j=1
<0.

Thus, we obtain

0 < {@*, =n(uo, w)) = (@*, n(w, uo)).

But w* € A(w) was choosen arbitrary and thus for each w € U N K we have
(w*,n(w,up)) >0, forallw* € A(w) (5.13)

We shall prove next that u( solves inequality problem (5.3). Consider v € K to be arbitrary
fixed.

Case2.1l.veU.
In this case the entire line segment (ug,v) = {up+ A(v—1up): A € (0,1)} is con-
tained in U N K and, according to (5.13), for each wy € (up,v) and each w3 € A(w))

we have

o
IA

(w3, n(wx, uo))
< )‘<w§\7 77(U7U0)> + (1 - )\)<wf\a77(U07U0)>

= )‘<w§\7 77(7% u0)>
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Let us assume that (H22) holds and fix v* € A(u). Then for each A € (0,1) we can
determine w3 € A(w)) such that wy — u*as A | 0.

If (H23) holds, then there exists uf; € A(ug) for which we can determine a subnet
{wi},e, of {w:{}ke(oﬂ) such that w} — ufin X*as A | 0.

Dividing by A > 0 the above relation and taking into account the previous observa-
tion we conclude (after passing to the limit as A | 0) that ug is a strong solution of

problem (5.3) if (H22) holds (ug is a solution of problem (5.3) if (#23) holds).

CASE2.2.ve K\ U.

Since K is convex and ug,v € K, then we have that (ugp,v) C K. From v ¢ U there
exists A\g € (0, 1) such that vg = up + Ao(v — ug) € (ug,v) and has the property that
the entire line segment (ug, vp) is contained in U N K. Thus, for each A € (0,1) the
element wy = ug + A(vg —ug) € KNV, but vy = uy + Ao(v — ugp), hence wy =
up + AoA(v —u) € KNV and wy — up as A | 0. Applying the same arguments as in
CASE 2.1 we infer that ug is a strong solution of problem (5.3) if (#22) holds (ug is a

solution of problem (5.3) if (#23) holds) and this completes our proof.

O]

Let us turn our attention towards the case when K is a unbounded closed and convex

subset of X. We shall establish next some sufficient conditions for the existence of solutions of

problems (5.2) and (5.3). For every r > 0 we define

K,={ueK: ||u|<r} and K, ={ue K: |ul <r},

and consider the problems

Find u, € K, N D(¢) such that

and

Juy € A(uy) = (uy,m(v,uyr)) + ¢(v) — p(uy) >0, forallv e K,, (5.14)
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Find u, € K, such that
Juy € A(uy) : (ur,n(v,u,)) >0 forallv € K,. (5.15)

It is clear from above that the solution sets of problems (5.14) and (5.15) are nonempty. We

have the following characterization for the existence of solutions in the case of unbounded

closed and convex subsets.

Theorem 5.5. (N.C., D.A. ION & C. LUPU [28]) Assume that the same hypotheses as in Theorem
5.3 hold without the assumption of boundedness of K. Then each of the following conditions is sufficient

for inequality problem (5.2) to admit at least one strong solution (solution):
(Hao) there exists ro > 0 and ug € K such that u, solves (5.14).
(Hao) there exists ro > 0 such that for each uw € K \ K, there exists v € K, such that

(w*,n(v,u)) + ¢(v) — d(u) <0, forallu* € A(u).

(Hs31) there exists u € K and a function ¢ : Ry — Ry with the property that lir+n c(r) = 400 such
T—r+00

that

inf  (u*,n(u,a)) > c(||lul])||ul|, forallue K.
u*€A(u)
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Chapter 6

A system of nonlinear hemivariational

inequalities

6.1 Formulation of the problem and existence results

Let n be a positive integer, let X1,...,X,, be real reflexive Banach spaces and let Y7,...,Y,
be real Banach spaces such that there exist linear and compact operators 7}, : X, — Y}, for
kEe{l,...,n}.

Our aim is to study the following system of nonlinear hemivariational inequalities :
(SNHI) Find (ug,...,u,) € K1 X ... x K, such that for all (v1,...,v,) € K1 X ... x K,

’lﬁl(ul, .. .,un,vl) + J%(ﬁl, B s 121) > <F1(U1, .. .,un),vl — U1>X1

)

wn(ula- . ,Un,”l)n) + J}%(ﬁl,...,'&n;f)n - ZALn) > <Fn(u17~ : 7un)7vn - un>Xn7
where foreach k € {1,...,n}

e K}, C X}, is a nonempty closed and convex subset;
ey : X1 x...x X x...x X, x X}, — Ris anonlinear functional;
o J:Y; x...xY, = Risaregular locally Lipschitz functional;

88



CEU eTD Collection

6.1. Formulation of the problem and existence results

o [} : X1 x...x Xy x...x X, = X/ is anonlinear operator;
° ﬁk = Tk(uk)

In order to establish the existence of at least one solution for problem (SNHI) we shall

assume fulfilled the following hypotheses:

(Hs2) Foreach k € {1,...,n}, the functional ¢, : X7 x ... x X} x ... x X,, X X, — R satisfies

(1) wk(ul, R 7 S ,un,uk) =0 for all u,, € Xy;

(ii) For each v, € X} the mapping (ui,...,u,) — Yg(ui,...,u,,vx) is weakly upper
semicontinuous;
(iii) For each (uy, ..., u,) € X X...x X,, the mapping v — Vg (u1, ..., Un, V) iS convex.
(H33) Foreach k € {1,...,n}, Fj, : X1 x...x X} x...x X, = X} is anonlinear operator such
that
I%iogf (Fg (uf"s - sug') s o — ') x, 2> (Fg (w1, un) 08 — ug) x,
whenever (u’, ..., ul") — (u1,...,u,) as m — oo and vy, € X is fixed.

The first main result of this chapter refers to the case when the sets K}, are bounded, closed

and convex and it is given by the following theorem.

Theorem 6.1. (N.C. & C. VARGA [38]) For each k € {1,...,n} let K}, C X} be a nonempty,
bounded, closed and convex set and let us assume that conditions (Hsz)-(Hss) hold. Then, the system

of nonlinear hemivariational inequalities (SNHI) admits at least one solution.

The existence of solutions for our system will be a direct consequence of the fact that the

inequality formulated below admits solutions. Let us introduce the following notations:
e X =Xix..xX,, K=Kix..xKyandY =Y x...xY,;
o u=(ug,...,up)and @ = (ty,...,0y);

n
e U: X XX =R, Y(u,v)= > ¥p(ur,...,uk ..., Up,V);
k=1
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* F: X = X" (Fu,v)y =Y (Frp(ui,...,upn), k) x,-
k=1

and formulate the following vector hemivariational inequality

(VHI) Find v € K such that
(u,v) + JO(;0 —4) > (Fu,v —u)x, forallve K.

Remark 6.1. If (H32)-(i) holds, then any solution u° = (ul,...,ud) € Ky x ... x K, of the vector
hemivariational inequality (VHI) is also a solution of the system (SNHI).

Indeed, if fora k € {1,...,n} we fix vy, € K}, and for j # k we consider v; = u?, using
Proposition 1.5 and the fact that u° solves (VHI) we obtain

n

<Fk (u(l),...,ug) , Uk —u2>Xk = Z<FJ (u(l),...,ug) ,Uj —u9->Xj
j=1
= <Fu0,v—u0>X

< U (u,0) 4+ J° (%0 — a)
n n

< Y oy (ol ) + Y TG (@, Al by — ad)
j=1 7j=1

= wk(u?,...,ug,...,ug,vk)+J7%(ﬁ?,...,ﬁ2;ﬁk—ﬁ2).

As k € {1,...,n} and v, € K} were arbitrarily fixed, we conclude that (uf,...,u0) €
K1 x ... x K, is a solution of our system (SNHI).
Proof of Theorem 6.1. According to Remark 6.1 it suffices to prove that problem (VHI) admits a

solution. With this end in view we consider the set A C K x K as follows
A={(v,u) € K x K: U(u,v) + JO(t; 9 — 4) — (Fu,v —u)x > 0}.

We prove next that the set A satisfies the conditions required in Theorem 1.7 for the weak

topology of the space X, that is,
e Foreachv € K theset N (v) = {u € K : (v,u) € A} is weakly closed in K.
* Foreach u € K theset M(u) = {ve K: (v,u) ¢ A} is either convex or empty.
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6.1. Formulation of the problem and existence results

* (u,u) € Aforeachu € K.
e Theset B={ue€ K : (v,u) € Aforallv € K} is compact.

We are now able to apply Lin’s theorem and conclude that there exists u’ € B C K such that

K x {u} C A. This means that
T(u®,v) + J0a° 0 — a°) > (Fu’,v —ul)x, forallv € K,

therefore u solves problem (VHI) and, accordingly to Remark 6.1, it is a solution of our sys-
tem of nonlinear hemivariational inequalities (SNHI), the proof of Theorem 6.1 being now

complete. O

We will show next that if we change the hypotheses on the nonlinear functionals 1, we
obtain another existence result for our inequality system. Let us consider that instead of (#32)

we have the following set of hypotheses
(Hssa) Foreach k € {1,...,n}, the functional ¢, : X7 x ... x X} x ... x X, X X, — R satisfies

(1) Yr(u1y .Uy .oy Up,ug) = 0 for all ug € Xy;
(ii) For each k € {1,...,n} and any pair (u1,...,ug, ..., upn), (V1,..., V%, ...,0p) € X1 X
..o x X x ... x X, we have
(U1, ooy Uy e oy Uy V) + Vi (V1 oy Vky ooy Uy ug) > 0;
(iii) For each (u1,...,u,) € X1 x ... x X,, the mapping vi, — ¥ (u1, ..., u,, vg) is weakly
lower semicontinuous;
(iv) For each v, € X}, the mapping (u1,...,u,) — Yg(u1, ..., u,, vx) is concave.

We are now in position to state our second main result of this chapter, which concerns the case

when the sets K}, are bounded, closed and convex for each k € {1,...,n}.

Theorem 6.2. (N.C. & C. VARGA [38]) For each k € {1,...,n} let K}, C X} be a nonempty,
bounded, closed and convex set and let us assume that conditions (H2)-(H3) hold. Then, the system of

nonlinear hemivariational inequalities (SNHI) admits at least one solution.
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In order to prove Theorem 6.2 we will need the following lemma.
Lemma 6.1. Assume that (H3) holds. Then
(a) ¥(u,v) +¥(v,u) >0 forallu,v € X;
(b) For each v € X the mapping u — —Y¥ (v, u) is weakly upper semicontinuous;
(c) For each w € X the mapping v — —V (v, u) is convex.
Proof of Theorem 6.2. Let us consider the set A C K x K defined by
A={(v,u) € K x K : =VU(v,u) + J(i;9 — @) — (Fu,v —u)x > 0}.

Lemma 6.1 ensures that we can follow the same steps as in the proof of Theorem 6.1 to conclude
that the conditions required in Lin’s theorem are fulfilled. Thus we get the existence of an

element u’ € K such that K x {u’} C A which is equivalent to
—0(v,u’) + JO(a"; 0 — %) > (Fu,v —u")x  forallv € K. (6.1)
On the other hand Lemma 6.1 tells us that
U(ul,v) + U(v,u’) >0, forallve K. (6.2)

Combining relations (6.1) and (6.2) we deduce that u” solves problem (VHI), therefore it is a
solution of problem (SNHI). O

Let us consider now the case when at least one of the subsets K} is unbounded and either
conditions (H32)-(Hss) or (Hss)-(Hsa) hold. We shall denote next by Bg(0; R) the closed ball

of the space E centered in the origin and of radius R, that is
BE(O, R) = {1} e FE: H’UHE < R}

Let R > 0 be such that the set K r = K} N By, (0; R) is nonempty for every k € {1,...,n}.
Then, for each k € {1,...,n} the set K i is nonempty, bounded, closed and convex and ac-

cording to Theorem 6.1 or Theorem 6.2 the following problem
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(SR) Find (uy,...,u,) € K1 g X ... x K, gsuch thatforall (vi,...,v,) € K1 g x...x Kppr

wl(ul, e ,un,vl) + Jq(ﬁl,. ey Ups U1 — ﬁl) > <F1(U1,. . .,un),vl — ’LL1>X1

)

V(U1 - Un,y V) + J%(ﬂly ey Uy O — Up) > (F(ut, 5 Un), Un — Un) X,
admits at least one solution.
We have the following existence result concerning the case of at least one unbounded sub-

set.

Theorem 6.3. (N.C. & C. VARGA [38]) For each k € {1,...,n} let K;, C X} be a nonempty,
closed and convex set and assume that there exists at least one index ko € {1,...,n} such that Ky,
is unbounded. Assume in addition that either (Hsz)-(H33) or (Hss)-(Hs34) hold. Then, the system of
nonlinear hemivariational inequalities (SNHI) admits at least one solution if and only if the following

condition holds true:

(H35) there exists R > 0 such that Ky, g is nonempty for every k € {1, ..., n} and at least one solution

(uf, ..., ul) of problem (SR) satisfies

u) € Bx,(0;R), forallk e {1,...,n}.

Corollary 6.1. Foreach k € {1,...,n} let K;; C X}, be a nonempty, closed and convex set and assume
that there exists at least one index ko € {1,...,n} such that Ky, is unbounded. Assume in addition
that either (Hg2)-(H33) or (Hasz)-(Hsa) hold. Then, a sufficient condition for (SNHI) to admit at least
one solution is

(Hs36) there exists Ry > 0 such that Ky, g, is nonempty for every k € {1,...,n} and for each

(U1, ... up) € Kix...x Kp\ K1 gy X...X Ky g, thereexists (v9,...,00) € K1 gy X...xKp R,

such that
1/1k(u1, .. .,un,v,g) + ch(ﬂl, .. .,Yln;@g — ﬂk) < (Fk(ul, .. .,un),vg — uk>Xk, (63)
forallk e {1,...,n}.
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In order to simplify some computations let us assume next that 0 € K}, for each k €

{1,...,n}. In this case K} p # () for every k € {1,...,n} and every R > 0.

Corollary 6.2. Foreach k € {1,...,n} let K}, C X}, be a nonempty, closed and convex set and assume
that there exists at least one index ko € {1,...,n} such that Ky, is unbounded and either (Hs2)-(Hs3)

or (Hss)-(Hsaa) hold. Assume, in addition, that for each k € {1, ... ,n} the following conditions hold

(Hs37) There exists a function ¢ : Ry — Ry with the property that tlim ¢(t) = 400 such that
—00
n
- Z¢k(u17 ttt ,Uk, e 7un)0) 2 C(HUHX)HUHX,
k=1

/
forall (un, ..., up) € X1 % .. x Xy, where w = (us,....,un) and ullx = (S luellk, )
(H3s) There exists Mj, > 0 such that

J%(wl,.. Wy e ,wn;—wk) < Mk”wkHka fOTﬂll (wl,...,wn) € Y1 X ... X Yn;

(Hsg) There exists my, > 0 such that

x <
Y —
||Fk(U1 ...,uk,...,un)ka mig, fbrﬂll(u1,...,un)€X1X...XXn.

Then the system (SNHI) admits at least one solution.

6.2 Existence of Nash generalized derivative points

Let E1, ..., E, be Banach spaces and for each k£ € {1,...,n} let K} be a nonempty subset of Ej.

We also assume that g;, : K7 x ... x Kj x ... x K, — R are given functionals. We recall below

the notion of Nash equilibrium point (see [95, 96]).

Definition 6.1. An element (uy, ..., ug,...,uy) € Ki X ... x K X ... x Ky, is a Nash equilibrium
point for the functionals gy, ..., gk, - - ., gn, if forevery k € {1,... ,n} and every (vy, ..., vg, ..., vn) €

Ki x...x Ky x...x K, we have
Gre(Uty o Uy oy Un) > G(UL, e Uy ey Unp).
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Let Dy, C Ej be an open set such that K, C Dy forallk € {1,...,n}. Foreachk € {1,...,n}
we consider the functional g, : K1 X...xDgXx...x K, — Rsuchthatuy — gr(ui,...,ug, ..., u,)

is locally Lipschitz. The following notion was introduced by Kristaly in [65].

Definition 6.2. An element (ui,...,ug,...,up) € Ki X ... x Ki x ... x K,, is a Nash gener-
alized derivative point for the functionals gi,...,gk,...,gn if for every k € {1,...,n} and every

(V1o oy Uy ooy ) € Ky X oo X K X ... X K, we have
0 .
ghk(“la"')“kv"'vunavk_uk) > 0.

We point out the fact that the above definition coincides with the notion of Nash stationary
point introduced by Kassay, Kolumban and Péles in [62] if every functional g, is differentiable
with respect to the k'!' variable. Moreover, every Nash equilibrium point is a Nash generalized

derivative point.
1. Foreach k € {1,...,n} let D} C X} be an open and consider the functional
gr - Ky x ... XD x...x K, >R,

such that gy is locally Lipschitz with respect to the k! variable and for each v, € X, the
mapping (ui, ..., Ug, ..., Up) — gg’k(ul, ey Uk, .., Up; V) is weakly upper semicontinu-
ous. Let us choose next J = 0, F}, = 0 and

wk(uh sy Uy e ,Un,'l)k) = gg,k(ula s Uky oo Un VR — uk)

(i) If for each k € {1,...,n} the set K C X}, is nonempty, bounded, closed and convex,

then Theorem 6.1 implies that there exists at least one point

(ud, ... ud,. . ul) e Ky x ... x Kpx...x K,
such that for all (vq,...,vg,...,v,) € K1 X ... X K X ... x K, we have
g%,g(u(f,...,ug,...,u%;vk —u)) >0, forallke{l,...,n},
thatis, (u?,...,ud,...,ud) € K1 x...x K x...x K, is a Nash generalized derivative
point for the functionals g1, ..., gk, - .. gn.
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(ii) Let us assume now that the sets K}, are nonempty, closed and convex and at least one

of them is unbounded. Assume in addition that there exists Ry > 0 such that K}, g,

is nonempty for every k € {1,...,n} and for each

(Ui, ey Uy tty) € Kp X0 X K X 00 X K \ Ky Ry X ... X K gy X ... X Ky Ry

there exists (v9,...,09,...,00) € K1 gy X ... X K, X ... X Ky g, such that
g27k(u1,...,uk,...,un;v2—ak) <0, forallk € {1,...,n}.

Then, according to Corollary 6.1, there exists at least one point (uf,...,uY,...,ud) €

Ky x...xKpx...x Kysuchthatforall (vy,...,vg,...,0,) € K1 X...xKpx...xK,

we have

ggvk(u?,...,ug,...,ug;vk —ud) >0, forallke{1,...,n},
which means that (u{,...,u?,...,u0) € K1 x...x Kix...x K, isa Nash generalized
derivative point for the functionals g1, ..., gk, ..., gn.

(iii) Let us assume now that the sets K, are nonempty, closed and convex and at least one
of them is unbounded. Assume in addition that there exists a function ¢ : Ry — R4

with the property that tlim ¢(t) = +oo such that
— 00

n
=Y gy s =) > e([ul| )|l x
k=1

forall (uy,...,uy) € K1 X ... x K.
Then, according to Corollary 6.2, there exists at least one point (uf, ..., u,...,u)) €

Kix...xKpx...x K,suchthatforall (vi,...,v5,...,0,) € K1 X...Xx K x...x K,

we have
0 (,0 0 0 0
Gh (U5 o Uy U s U — u) 2> 0,
forallk € {1,...,n}, which means that (u,...,ud,...,ul) € K1 x...xKgx...xK,
is a Nash generalized derivative point for the functionals g1, ..., gk, .. gn-

96



6.2. Existence of Nash generalized derivative points

CEU eTD Collection

2. Let us consider that for each k € {1,...,n} wehave ¢y =0, J =0and Fj, : X; x ... X

X X ... x X, — X; anonlinear operator such that (H2) holds.

i) For each &k € {1,...,n} we assume that the set K}, C X, is nonempty, bounded,
Pty

closed and convex. Then Theorem 6.1 implies that there exists at least one point

(ud,...,u?,...,ul) € Ky x...x Ki % ...x K, such that for all (v1,...,0%,...,0,) €

Ky x...x K x...x K, wehave
—(Fk(u?,...,u%,...,u%),vk—u2>xk >0, forallke{l,...,n},

which means that (u, ..., u?,...,ud) € Ki x...x K x...x K, is a Nash stationary
point for the functionals g1, ..., gk, ..., gn, Where g : K1 X ... x X x ... x K;, —
R is differentiable with respect to the k' variable and g;’ = —F, (here F, is the

restriction of Fj to K1 X ... X X X ... x Kp).

(i) Let us assume now that the sets K}, are nonempty, closed and convex and at least one
of them is unbounded. Assume in addition that there exists Ry > 0 such that K}, g,
is nonempty for every k € {1,...,n} and for each (u1,...,uk,...,up) € K1 X ... %
Ki X ...x Ky \ K1y X ... Xx K gy X ... X Ky g, there exists (v,...,09,...,00) €

Kipgy X ... x Ki R, X ... x Ky R, such that
<Fk(u1,...,uk,...,un),v2 —ug)x, >0, forallk € {1,...,n}.

Then, according to Corollary 6.1, there exists at least one point (uf, ..., u,...,ul) €

Kix...xKpx...x K,suchthatforall (vy,...,05,...,0,) € K1 X...Xx K x...xK,

we have

—(Fp(uf, .. oul, . ud), o —ulyx, >0, forallke {1,...,n},
which means that (uf, ..., u?,...,u0) € Ki x...x Ki x...x K, is a Nash stationary
point for the functionals gi,...,g,, where g, : K1 x ... x Xj; x ... x K;, = Ris
differentiable with respect to the k" variable and g}, , = —F.
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Chapter 7

Weak solvability for some contact

problems

7.1 Frictional problems for piezoelectric bodies in contact with a con-

ductive foundation

This subsection focuses on the weak solvability of a mechanical model describing the contact
between a piezoelectric body and a conductive foundation. The piezoelectric effect is charac-
terized by the coupling between the mechanical and the electrical properties of the materials.
This coupling leads to the appearance of electric potential when mechanical stress is present
and, conversely, mechanical stress is generated when electric potential is applied.

Before describing the problem let us first present some notations and preliminary material
which will be used throughout this subsection.

Let m be a positive integer and denote by S, the linear space of second order symmetric
tensors on R (S, = R7**™). We recall that the inner product and the corresponding norm on
Sy, are given by

T:0 =104, |Tls,=+71:7, forallt,oeS,,.

Here, and hereafter the summation over repeated indices is used, all indices running from 1 to
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Let 2 C R™ be an open bounded subset with a Lipschitz boundary I' and let v denote the

outward unit normal vector to I'. We introduce the spaces

H = IX(OR™)
H={r=(r;): 7j =7ji € LX(Q} = L2(%:S),
Hy={u€ H: eu) € H} = H(R™),
Hi={r€H: Divr e H},

where ¢ : H; — H and Div : H; — H denote the deformation and the divergence operators,

defined by

e(u) = (eij(u)), eij(u) = 5 (ax. + a;) D= <a 7) ,
Vi 7

The spaces H, H, H; and H, are Hilbert spaces endowed with the following inner products

(u,v) g = / uv; do, (0,7)y = / o:7dz,
Q Q

(u,0) g, = (u,0) g + (e(w),e(v)y,  (0,7)y, = (0,7)y + (Div o, Div 7)1 .
The associated norms in H, H, Hy, H1 will be denoted by || - ||z, || - |2, || - ||z, and || - ||,
respectively.

Given v € H; we denote by v its trace yv on T', where v : H'(Q;R™) — HY?(T;R™) C
L*(I'; R™) is the Sobolev trace operator. Given v € H'/?(T';R™) we denote by v, and v, the
normal and the tangential components of v on the boundary I', thatis v, = v-vand v, = v—v,v.
Similarly, for a regular tensor field o : 2 — S,,,, we define its normal and tangential components
to be the normal and the tangential components of the Cauchy vector ov, that is 0, = (ov) - v
and o, = ov — o,v. Recall that the following Green formula holds:

(0,e(v))yy + (Divo,v)y = / ov-vdl', forallve Hj. (7.1)
r

We shall describe next the model for which we shall derive a variational formulation. Let

us consider body B made of a piezoelectric material which initially occupies an open bounded

subset 2 C R™ (m = 2,3) with a smooth boundary 02 = I'. The body is subjected to volume
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forces of density fy and has volume electric charges of density go, while on the boundary we
impose mechanical and electrical constraints. In order to describe these constraints we consider
two partitions of I': the first partition is given by three mutually disjoint open parts I';, Iy and
'3 such that meas(I'; > 0) and the second partition consists of three disjoint open parts I, I
and I, such that meas(I'y) > 0,I'. = T's and T, UT}, = T'; UT5. The body is clamped on T'; and
a surface traction of density f» acts on I's. Moreover, the electric potential vanishes on I', and
a surface electric charge of density ¢ is applied on I'y. OnI's = I, the body comes in frictional
contact with a conductive obstacle, called foundation which has the electric potential ¢ .
Denoting by u : 2 — R™ the displacement field, by ¢(u) = (e;5(u)) the strain tensor, by
o : Q — S, the stress tensor, by D : Q@ — R™, D = (D;) the electric displacement field and by
¢ : 2 = R the electric potential we can now write the strong formulation of the problem which

describes the above process:

(Par) Find a displacement field u : © — R™ and an electric potential ¢ : Q@ — R such that

Div o + fo =0 in €, (7.2)
div D = qg in €2, (7.3)
o=E&e(u) +PTVyp inQ, (7.4)
D ="Pe(u) — BVyp in Q, (7.5)
u=0 onIy, (7.6)
=0 onTy,, (7.7)
ov = fy onT'y, (7.8)
D-v=gq, only, (7.9)
—g, =5 onl, (7.10)
—0, € Oaj(x,ur;) on g, (7.11)
D-vedyp(x,p—ppr) onTs. (7.12)

We point out the fact that once the displacement field u and the electric potential ¢ are de-

termined, the stress tensor o and the electric displacement field D can be obtained via relations
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(7.4) and (7.5), respectively.

Let us now explain the meaning of the equations and the conditions (7.2)-(7.12) in which,
for simplicity, we have omitted the dependence of the functions on the spatial variable z.

First, equations (7.2)-(7.3) are the governing equations consisting of the equilibrium condi-
tions, while equations (7.4)-(7.5) represent the electro-elastic constitutive law.

We assume that £ : Q2 x S,;, = &, is a nonlinear elasticity operator, P : Q x S, = R™ and
PT . Q x R™ — S, are the piezoelectric operator (third order tensor field) and its transpose,
respectively and B : Q2 x R™ — R™ denotes the electric permittivity operator (second order

tensor field) which is considered to be linear. The tensors P and P satisfy the equality
Pr-(=71:PT¢, forallT €S, andall ¢ € R™

and the components of the tensor P”" are given by Pz‘Tj i = Dkij-

When 7 — &(x,7) is linear, £(x, 7) = C(x)T with the elasticity coefficients C = (¢;;;) which
may be functions indicating the position in a nonhomogeneous material. The decoupled state
can be obtained by taking p;;j;, = 0, in this case we have purely elastic and purely electric
deformations.

Conditions (7.6) and (7.7) model the fact that the displacement field and the electrical poten-
tial vanish on I'y and I, respectively, while conditions (7.8) and (7.9) represent the traction and
the electric boundary conditions showing that the forces and the electric charges are prescribed
onI'; and I'y, respectively.

Conditions (7.10)-(7.12) describe the contact, the frictional and the electrical conductivity
conditions on the contact surface I's, respectively. Here, S is the normal load imposed on I's,
the functions j : I's x R — R™ and ¢ : I's x R — R are prescribed and ¢ is the electric
potential of the foundation.

The strong formulation of problem (P;;) consists in finding u : @ — R™and ¢ : @ — R
such that (7.2)-(7.12) hold. However, it is well known that, in general, the strong formulation
of a contact problem does not admit any solution. Therefore, we reformulate problem (P,r)

in a weaker sense, i.e. we shall derive its variational formulation. With this end in view, we
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introduce the functional spaces for the displacement field and the electrical potential
V={ve H'(QR™) : v=00nT1}, W={peH'(Q): p=00nT,}

which are closed subspaces of H; and H!(f2). We endow V and W with the following inner

products and the corresponding norms

(u,0)y = (e(w),e(V))ys  Nvllv = lle(w)lln

(e, 0w = Vo, V), lixllw =1IVxllu

and conclude that (V.| - ||v), (W, || - ||w) are Hilbert spaces.
Assuming sufficient regularity of the functions involved in the problem, using the Green

formula (7.1), the relations (7.2)-(7.12), the definition of the Clarke generalized gradient and

the equality

/(Jl/)-vdI‘:/ al,vl,df‘+/ o, - vy dl’
I's s s

we obtain the following variational formulation of problem (P;/) in terms of the displacement

field and the electric potential:

(Py) Find (u,¢) € V x W such that for all (v, x) € V x W

(Ee(u),e(v) —e(u))y + (PTV@,E(U) — 6(u))H + /F jf)g(zr, Ur;vr —ur) dl > (f,v—u)y
(BVp, VX = Vo)y — (Pe(u), Vx — Vo) g + /F oSz o —erix—@)dl > (¢, x—@)w .

where f € V and ¢ € W are the elements given by the Riesz’s representation theorem as follows

(f,v—u)V:/fo-vd:c—l— fo-vdl — Sv, dI,
Q Ty I's

(an)W:/CJoX dx—/ qox dr.
Q Iy

In the study of problem (Py ) we shall assume fulfilled the following hypotheses:
(He) The elasticity operator £ : Q@ x S, = Sy, is such that
(i) x — &(x, ) is measurable for all 7 € S,;
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(ii) 7 — E(x, 7) is continuous for a.e. x € §;

(iii) there exist ¢; > 0 and o € L%(Q) such that |E(z,7)||s,, < c(a(z) + |7|s,,) for all
T€S,,andae. z €

(iv) 7 — E(x,T) : (0 — 7) is weakly upper semicontinuous for all o € S,,, and a.e. z € ;

(v) there exists ¢ > 0 such that E(z,7) : 7 > CHTH?‘Sm forall7 € S,,, and a.e. z € Q.
(Hp) The piezoelectric operator P : Q x S, — R is such that

(i) P(z,7) =p(z)r forall T € S, and a.e. x € Q;

(ii) p(z) = (pijr(z)) With p;jir = pirj € L2(Q).
(Hp) B: Q x R™ — R™ is such that

(i) B(x,¢) = B(x)¢ for all ¢ € R™ and almost z € Q;

(i) B(z) = (Bij(x)) with B;; = Bji € L>(Q);

(iii) there exists m > 0 such that (3(x)¢) - ¢ > m|¢|? forall ¢ € R™ and a.e. 7 € Q.
(H;) 7 : Ts x R™ — Ris such that

(i) x — j(z, ) is measurable for all ( € R™;

(ii) ¢ = j(z, () is locally Lipschitz for a.e. z € I's;

(iii) there exist c3 > 0 such that |025(z, ()| < ¢3(1 +|¢]) forall ( € R™ and a.e. x € T's;

(iv) there exists ¢4 > 0 such that j,%(x, (;—C) <c4l¢| forall( e R™ and a.e. x € I';

(v) ¢ = j(z,() is regular for a.e. x € I's.
(He) ¢ : T's x R — R is such that

(i) x — ¢(x,t) is measurable for all ¢ € R;
(ii) ¢ = ¢(z,C) is locally Lipschitz for a.e. z € I's;

(iii) there exist c5 > 0 such that [02¢(x,t)| < cs|t| forallt € Rand a.e. v € I'3;
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(iv) t — ¢(z,t) is regular for a.e. z € I's.
(Hrq) fo € H, f2 € L*(T2;R™), qo € L*(2), qp € L*(T2), S € L™(T'3), S > 0, pr € L*(T'3).
The main result of this subsection is given by the following theorem.

Theorem 7.1. (N.C. & C. VARGA [38]) Assume fulfilled conditions (Hg), (Hp), (HB), (H;), (Hs)

and (Hy,q). Then problem (Pyv ) admits at least one solution.

Proof. We observe that problem (Py) is in fact a system of two coupled hemivariational in-
equalities. The idea is to apply one of the existence results obtained in Section 2. with suitable
choice of ¢, J, and Fj, (k € {1,2}).

First, let us take n = 2 and define X; =V, Xo = W, Yy = L?(I'3;R™), Ya = L?(I'3), K1 = X3
and Ky = Xo. Next we introduce 77 : X1 — Y7 and T, : X9 — Y3 defined by

Tl:iTo’Ymoimh—‘g’ TQZ’YOih—‘g?

where i, : V — H; = H'(Q;R™) is the embedding operator, v,,, : H; — HY/?(I';R™) is the
Sobolev trace operator, i, : H'/?(T;R™) — L?(T3;R™) is the operator defined by i, (v) = v,, i :
W — H'(Q) is the embedding operator and v : H'(Q) — H'/?(T') is the Sobolev trace operator.
Clearly T and T are linear and compact operators. We consider next 11 : X1 x Xo x X; = R

and 17 : X x X2 x X2 — R defined by
1/11(“7 ®, U) = (Eg(u)7 E(’U) - E(u)>7-[ + (Pvav 5(”) - E(U))H )

VYa(u, 0, x) = (BVp, VX = V) g — (Pe(u), VX — Vo) g,

J 1 Y1 x Ya — R defined by

J(w,n) = / jew@) dt+ | d(e,n(z) — o)) dr,
F3 I_‘3
and F1 : X1 X X2 — XT and F2 : X1 X X2 — X; defined by

Fl(u,(P):,ﬂ FQ(“?SO):Q-
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It is easy to infer from the above definitions that if (#¢), (Hp), (#) hold, then the functionals
Y1, o satisfy conditions (H1) and (H6). Taking (#,) and (#4) into account we conclude that J

is a regular locally Lipschitz functional which satisfies
Fwonz) = [ hlew()s(a) b
I's

JY(w,m;¢) = : ¢%(z,m(z) — p(z); ¢(x)) dT.

Obviously conditions (H2), (H7), (H8) are fulfilled, therefore we can apply Corollary 6.2 to

conclude that problem (Py ) admits at least one solution. O

7.2 The bipotential method for contact problems with nonmonotone

boundary conditions

This section focuses on the weak solvability of a general mathematical model which describes
the contact between a body and an obstacle. The process is assumed to be static and we work
under the small deformations hypothesis. The behavior of the materials is described by a pos-
sibly multivalued constitutive law written as a subdifferential inclusion, while the contact be-
tween the body and the foundation is described by two inclusions, corresponding to the normal
and the tangential directions, each inclusion involving the sum of a Clarke subdifferential and
the normal cone of a nonempty, closed and convex set.

Inspired and motivated by some recent papers in the literature we consider a variational
formulation in terms of bipotentials for our model. This leads to a system of two inequalities:
a hemivariational inequality related to the equilibrium law and a variational inequality related
to the functional extension of the constitutive law. The unknown of the system is a pair (u, o)
consisting of the displacement field and the Cauchy stress field. A key role in our approach is
played by the separable bipotential that can be defined as the sum of the constitutive map and
its Fenchel conjugate. Bipotentials were introduced in 1991 by de Saxcé & Feng [110] and within

a very short period of time this theory has undergone a remarkable development both in pure
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and applied mathematics as bipotentials were successfully applied in addressing various prob-
lems arising in mechanics (non-associated Driicker-Prager models in plasticity [18, 114], cam-
clay models in soil mechanics [113, 124], cyclic plasticity [11, 112] and viscoplasticity of metals
with kinematical hardening rule [58], Coulomb’s friction law [15, 70, 78], displacement-traction
models for elastic materials [79], contact models with Signorini’s boundary condition [77]). For
more details and connections regarding the theory of bipotentials see also [16, 17, 115]. The
bipotential approach has the advantage that it allows to approximate simultaneously the dis-
placement field and the Cauchy stress tensor and facilitated the implementation of new and
efficient numerical algorithms (see e.g. [51, 111]). However, in all the works we are aware
of, the bipotential method has been used only for problems with monotone boundary con-
ditions, mostly expressed as inclusions involving the subdifferential of a proper, convex and
lower semicontinuous function. Thus, the variational formulation for these problems leads to
a coupled system of variational inequalities. In this paper, due to the nonmonotone boundary

conditions two major differences arise:

e the set of admissible stress tensors is defined with respect to a given displacement field and
depends explicitly on this displacement field, in contrast to the case of monotone bound-
ary conditions when the set of admissible stress tensors is the same for all displacement

fields;

e the variational formulation leads to a system of inequalities consisting of a hemivariational

inequality and a variational inequality.

Consequently, several difficulties occur in determining the existence of weak solutions since

the classical methods fail to be applied directly.

7.2.1 The mechanical model and its variational formulation

Let us consider a body B which occupies the domain Q& C R™ (m = 2, 3) with a sufficiently
smooth boundary I' (e.g. Lipschitz continuous) and a unit outward normal v. The body is

acted upon by forces of density f, and it is mechanically constrained on the boundary. In order
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to describe these constraints we assume I' is partitioned into three Lebesgue measurable parts
I't,I'2, '3 such that I'y has positive Lebesgue measure. The body is clamped on I';, hence the
displacement field vanishes here, while surface tractions of density f acton I's. On I's the body
may come in contact with an obstacle which will be referred to as foundation. The process is
assumed to be static and the behavior of the material is modeled by a (possibly multivalued)
constitutive law expressed as a subdifferential inclusion. The contact between the body and
the foundation is modeled with respect to the normal and the tangent direction respectively,
to each corresponding an inclusion involving the sum between the Clarke subdifferential of a
locally Lipschitz function and the normal cone of a nonempty, closed and convex set.

It is well known that the subdifferential of a convex function is a monotone set-valued
operator, while the Clarke subdifferential is a set-valued operator which is not monotone in
general. This is why we say that the constitutive law is monotone and the boundary conditions
are nonmonotone.

The mathematical model which describes the above process is the following. For simplicity
we omit the dependence of some functions of the spatial variable.

(P) Find a displacement u : Q@ — R™ and a stress tensor o : 2 — S™ such that

—Div o = fy, in Q (7.13)

o€ dp(e(u)), ae. inf) (7.14)

u =0, on I’y (7.15)

ov = fo, on 'y (7.16)

—0, € 8%jl,(x,ul,) + Ney (uy), onTI's (7.17)

—0, € h(z,u;)0%), (z,ur;) + No,(uy), onTy (7.18)

where ¢ : §™ — R is convex and lower semicontinous, j, : I's x R =+ Rand j, : I's x R — R
are locally Lipschitz with respect to the second variable and i : I's x R™ — R is a prescribed
function. Here, C; C Rand (5 C R are nonempty closed and convex subsets and N¢, denotes

the normal cone of C}, (k = 1,2). For a Banach space F and a nonempty, closed and convex
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subset K C E, the normal cone of K at z is defined by
Ni(z)={€E": ({,y—a)pyp <0, forally e K}.

It is well known that

Ng(z) = 0l (),
where I is the indicator function of K, that is,

0, ifx € K,
Ik (z) =
400, otherwise.

Relation (7.13) represents the equilibrium equation, (7.14) is the constitutive law, (7.15)-
(7.16) are the displacement and traction boundary conditions and (7.17)-(7.18) describe the
contact between body and the foundation.

Relations between the stress tensor ¢ and the strain tensor ¢ of the type (7.14) describe
the constitutive laws of the deformation theory of plasticity, of Hencky plasticity with convex
yield function, of locking materials with convex locking functions etc. For concrete examples
and their physical interpretation one can consult Sections 3.3.1 and 3.3.2 in Panagiotopoulos
[98] (see also Section 3.1 in [99]). A particular case of interest regarding (7.14) is when the

constitutive map ¢ is Gateaux differentiable, thus the subdifferential inclusion reduces to
o = ¢/(e(w), (7.19)

which corresponds to nonlinear elastic materials.

Some classical constitutive laws which can be written in the form (7.19) are presented below:

(i) Assume that ¢ is defined by
1
where £ = (&;ju), 1 < 4,4, k, 1 < mis a fourth order tensor which satisfies the symmetry

property
Ep:Tm=p:ET, forall u,7 € S™,
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and the ellipticity property
Ep:p>clp)?, forall p e ™.

In this case (7.19) reduces to Hooke’s law, that is, 0 = £¢(u), and corresponds to linearly

elastic materials.
(ii) Assume that ¢ is defined by
1
o) = SEm: pt Blu— Pepl”,

where € is the elasticity tensor and satisfies the same properties as in the previous exam-
ple, 3 > 0 is a constant coefficient of the material, P : ™ — K is the projection operator

and K is the nonempty, closed and convex von Mises set

1
IC:{,uESm: QpD:uDgaQ,a>O}.

Here the notation ;” stands for the deviator of the tensor i, that is, u” = ju — %TT(M)I ,

with I being the identity tensor.

In this case (7.19) becomes
o= Ee(u)+26(I — Px)e(u),

which is known in the literature as the piecewise linear constitutive law (see e.g. Han &

Sofonea [56]).
(iii) Assume ¢ is defined by
. kfo . 1 D12
$p) =S Tr(wl:p+ 5 (!u | ) )

where ko > 0is a constant and ¢ : [0,00) — [0, 00) is a continuously differentiable consti-

tutive function.

In this case (7.19) becomes
AP N AR
o = koTr(e(w) + ¢ (\e (u)] ) D (),
and this describes the behavior of the Hencky materials (see e.g. Zeidler [122]).
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Boundary conditions of the type (7.17) and (7.18) model a large class of contact problems arising
in mechanics and engineering. For the case h = 1 many examples of nonmonotone laws of the
type

—0y € aCju(uz/) and —o; € 8Cj7-(u‘r)7
can be found in [99] Section 2.4, [94] Section 1.4 or [53] Section 2.8.

The case when the function h actually depends on the second variable allows the study of
contact problems with slip-dependent friction law (see e.g. [29, 80] for antiplane models and [30]
for general 3D models). This friction law reads as follows

U

—O0r < /L(.%’, ’uTDv —0r = ,u(x, ‘UTDﬁ if Ur 7& 07 (720)

where i : I's x [0, +00) — [0, +00) is the sliding threshold and it is assumed to satisfy
0 < p(x,t) < o, forae. z € 'gand all t > 0,

for some positive constant ji. It is easy to see that (7.18) can be put in the form (7.20) simply
by choosing

h(z,ur) = p(x, |ur|) and jr(z,ur) = |ur|.

We point out the fact that the above example cannot be written in the form —o, € dcj,(u,) as,
in general, for two locally Lipschitz functions h, g there does not exists j such that dcj(u) =
h(u)0cg(u). We would also like to point out that many boundary conditions of classical elastic-
ity are particular cases of (7.17) and (7.18), in most of these cases the functions j, and j, being

convex, hence leading to monotone boundary conditions. We list below some examples:

(a) The Winkler boundary condition

—o, = kouy, kg > 0.

This law is used in engineering as it describes the interaction between a deformable body

and the soil and can be expressed in the form (7.17) by setting

k
Cy =Rand j,(z,u,) = ?Ou?,
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More generally, if we want to describe the case when the body may lose contact with the

foundation, we can consider the following law

u, <0=0,=0,

u, > 0= —0o, = kouy.

The first relation corresponds to the case when there is no contact, while the second mod-
els the contact case. Obviously the above law can be expressed in the form (7.17) by

choosing

. 0, if u, <0,
Cq :Randju($7uu) = &
LDuZ, ifu, >0.

v

In [93] the following nonmonotone boundary conditions were imposed to model the con-
tact between a body and a Winkler-type foundation which may sustain limited values of

efforts
u, <0=0,=0,

Uy, € [O,G/) = —0y = k(]ulla

uy =a = —o, € [0, koal,

U, >a = o, =0.

This means that the rupture of the foundation is assumed to occur at those points in which
the limit effort is attained. The first condition holds in the noncontact zone, the second
describes the zone where the contact occurs and it is idealized by the Winkler law. The
maximal value of reactions that can be maintained by the foundation is given by kpa and
it is accomplished when u,, = a, with & being the Winkler coefficient. The fourth relation
holds in the zone where the foundation has been destroyed. The above Winkler-type law

can be written as an inclusion of the type (7.17) by setting

0, if u, <0,
ko,2
Cy =Rand j,(z,u,) = Sug, if0<u, <a,

a”, ifu, >a.
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Since all of the above examples only describe what happens in the normal direction, in
order to complete the model we must combine these with boundary conditions concern-
ing o, u,, or both. The simplest cases are u, = 0 (which corresponds to C> = {0}) and

or = S;, where S; = S;(z) is given (which corresponds to j,(z,u,;) = —S; - ur).
(b) The Signorini boundary conditions, which hold if the foundation is rigid and are as follows

u, <0=0,=0,

u, =0=0, <0,

or equivalently,

u, <0, 0, <0and o,u, = 0.
This can be written equivalently in form (7.17) by setting

Cy = (—o0,0] and j, = 0.

(c) In [78] the following static version of Coulomb’s law of dry friction with prescribed normal stress

was considered
—oy(z) = F(x)

|o7] < k(2)]ow,
or = —k(:):)|al,|ﬁ, if ur(z) #0.

We can write the above law in the form of (7.17) and (7.18) simply by setting
C1 =R, C2 =R", ju(z,uw) = F(@)uw, h(z,u;) = k(z)|F(z)| and j-(z, ur) = [us|.
The assumptions on the functions fy, f2, ¢, h, j, and j, required to prove our main result are
listed below.
(Hc) The constraint sets C; and C are convex cones, i.e.

0eCr and MNC,CCjforallA >0, k=1,2.
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(H¢) The density of the volume forces and the traction satisfy fy € H and fo € L*(T'o; R™).

(Hg) The constitutive function ¢ : S™ — R and its Fenchel conjugate ¢* : S™ — (—o0, +00]

satisfy

(i) ¢ is convex and lower semicontinuous;

(ii) there exists a;; > 0 such that ¢(7) > a1|7|?, for all 7 € S™;

(iii) there exists ap > 0 such that ¢* () > aw|u|?, for all u € S™;

(iv) ¢(e(v)) € LY(Q), forallv € V and ¢*(7) € L (Q), for all T € H.
(Hp) The function A : T's x R™ — R is such that

(i) I's > = — h(zx,() is measurable for each ¢ € R™;

(il)) R™ > ¢ + h(z,() is continuous for a.e. z € I's;

(iii) there exists hy > 0 such that 0 < h(z,() < ho for a.e. z € I's and all ¢ € R™.
(Hj,) The function j, : I's x R — R is such that

(i) T's >  — j,(x,t) is measurable for each t € R;

(ii) there exists p € L?(I'3) such that for a.e. z € '3 and all 1,1, € R
u(zt1) = Ju(z, t2)| < p(2)[ts — taf;
(iii) j, (2,0) € L'(T3).

(Hj,) The function j, : I's x R™ — R is such that

(i) 's > z = j,(z,() is measurable for each ( € R™;

(ii) there exist ¢ € L?(I'3) such that for a.e. x € I'3 and all (5, (> € R™

e (2, C1) = jr (@, Q)| < a(2)]C — Gl
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(iii) j-(z,0) € Ll(r?); R™).

The strong formulation of problem (P) consists in finding u :  — R™ and o : Q@ — S™,
regular enough, such that (7.13)-(7.18) are satisfied. However, it is a fact that for most contact
problems the strong formulation has no solution. Therefore, it is useful to reformulate problem
(P) in a weaker sense, i.e. we shall derive a variational formulation. With this end in mind, we

consider the following function space
V={veH :v=0ae onl} (7.21)

which is a closed subspace of Hj, hence a Hilbert space. Since the Lebesgue measure of I'; is

positive, it follows from Korn’s inequality that the following inner product
(u, v)y = (e(u),e(v))y (7.22)

generates a norm on V which is equivalent with the norm inherited from H;.
Let us provide a variational formulation for problem (P). To this end, we consider u a
strong solution, v € V' a test function and we multiply the first line of (P) by v — u. Using the

Green formula (7.1) we have

(fo,v—uw)g = —(Divo,v—u)y

= /F(m/)-(vu) dFﬂL(U»g(U)*S(u))H
= — [ for(v—u) dF‘/ [0v(vy — wy) + 07 - (vr —ur)] dI' + (0,6(v) — (u))n
| I's

forallv € V. Since V 3 v — (fo,v)g + fF2 f2 - v dI is linear and continuous, we can apply

Riesz’s representation theorem to conclude that there exists a unique element f € V such that

(f;v)v = (fo,v)u+ [ fa-vdl. (7.23)
s
Consider now the following nonempty, closed and convex subset of V/

A={veV:v(zx)eCiand v (z) € Cyforae xz eIz},
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which is called the set of admissible displacement fields.
Since C'1, C are convex cones, it follows that A is also a convex cone. Moreover, taking into

account Definitions 1.7 and 1.8, we deduce that for all v € A the following inequalities hold

—/ oy(vy —uy) dl' < / 39z, v, — uy) dT (7.24)
Fg F3
and
- / 0r (vr — ) dD < / B2, 7)1, tr vy — t17) dT (7.25)
F3 FS

Here, and hereafter, the generalized derivatives of the functions j, and j, are taken with
respect to the second variable, i.e. of the functions R 3 ¢ — j,(z,t) and R > ( — j (z,()
respectively, but for simplicity we omit to mention that in fact these are partial generalized

derivatives. On the other hand, taking Proposition 1.2 into account we can rewrite (7.14) as
e(u) € 9¢*(0), a.e.in Q,
and which after integration over 2 leads to
—(e(u),p— o)y + /Q ¢*(n) — ¢*(0) de > 0, forall u € H. (7.26)

Let us define the operator L : V' — H by Lv = ¢(v) and denote by L* : { — V its adjoint, that
is,
(L*p,v)y = (p, Lv)y, forallv € V and all 4 € H.

Using (7.23)-(7.26) we arrive at the following system of inequalities

(P) Find u € A and o € # such that

(L*O',’U—u)v +/ [jB(ZL’,Ul,;UV _ul/) +h($,u7—)j£($,u7—;v7— _UT)] dr > (f,’U—U)V, (727)
T's

(L — )+ /Q 0" (1) — 6*(0) da > 0, (7.28)
forall (v, ) € A x H.
The inequality (7.27) is related to the equilibrium relation, while (7.28) represents the func-

tional extension of the constitutive law (7.14). It is well-known (see e.g. [53], Theorem 1.3.21)

that relation (7.28) implies Lu € 0¢* (o) a.e. where in (2.
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Proposition 1.2 allows us to construct the separable bipotential a : S™ x 8™ — (—o0, +0],

which connects the constitutive law, the function ¢ and its conjugate ¢*, as follows
a(t,p) = ¢(1) + ¢*(n), forall 7, p € S™.
Using the bipotential a let us define A : V- x H — R by
Av,p) = /Qa(Lv,,u) dx, forallv e V,pu € H.
and note that, due to (Hy), A is well defined and
A(v, ) > o |||} + az||pl|3;, forallv € V,u e H.
Moreover, Proposition 1.2 ensures that
A(u,0) = (L*o,u)y and A(v,u) > (L*p,v)y, forallv € V, p € H. (7.29)
Combining (7.27) and (7.29) we get

A(v,0)— A(u, o) +/ [jg(ac,u,,; v, — wy) + h(z,ur) o (x, ur; vy — ur)] dI' > (f,v—u)y, (7.30)

I's
forall v € A.

Let us define now the set of admissible stress tensors with respect to the displacement u, to be the

following subset of H
Oy = {u eM: (L'pv)y + / o (@, s vp) + h(z,ur) 7 (2, urs or)] dU > (f,0)v, Yo € A} :
I's

Let w € A be fixed. Choosing v = u + w € A in (7.27) shows that o € ©,, hence ©,, # 0. It
is easy to check that ©, is an unbounded, closed and convex subset of H. Taking into account

(7.29) we have
Alu, ) + / G0, w3 w,) + hlw, ur) 12w, upiur)] dT > (f,u)y, forall p € O,
s
while for v = 0 € A in (7.27) we have

—A(u,0) —l—/ [59(z, ww; —wy) + Az, ur)j2 (@, urs —ur)| dT > —(f,u)y.
I's
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Adding the above relations, for all 1 € ©,, we have
0 < Aluwp) ~ Alwo) + [ 5w win) + 3o i —u)dE
s

—i—/r h(z,ur) (392, ursur) + 59(2, ur; —uy)) dl.
3
On the other hand, Proposition 1.3 and (Hy,) ensure that
/F (@, wsw) + o, w; —w) + h(a,ur) (57(2, urs ur) + 52 (2, ur; —ur)) ] d0 > 0. (7.31)
3
(Pb,.) Find u € A and o € ©, such that

A(v,0) — A(u,0) + st [79(@, up; vy — up) + h(x, ur)j2(z, ur; vr — ur)| dl > (f,0 — u)y,
A(ua M) - A('LL, U) > 0,

for all (v, ) € A X ©,,.

Each solution (u, o) € A x ©,, of problem (P2,,.) is called a weak solution for problem (P).

7.2.2 The connection with classical variational formulations

In this section we prove an existence result concerning the solutions of problem (P},,) by
using a recent result due to Costea & Varga [38]. First we highlight the connection between the
variational formulation in terms of bipotentials and other variational formulations such as the
primal and dual variational formulations. As we have seen in the previous section, multiplying
the first line of problem (P) by v—u, integrating over 2 and then taking the functional extension
of the constitutive law, we get a coupled system of inequalities, namely problem (P). The
primal variational formulation consists in rewriting (P) as an inequality which depends only
on the displacement field u, while the dual variational formulation consists in rewriting (P) in
terms of the stress tensor o. The primal variational formulation can be derived by reasoning in
the following way.

The second line of (P) implies that Lu € d¢*(¢) and this can be written equivalently as
o € 0¢(Lu), hence

o:(n—Lu) < () — ¢(Lu), forall p e S™.
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For each v € A, taking ;1 = Lv in the previous inequality and integrating over €2 yields
(Lo, v —u)y < / ¢(Lv) — ¢(Lu) dx, forall v € A.
Q

Now, combining the above relation and the first line of (P) we get the following problem

(Phar) Find u € A such that

F(v) — F(u) + / [jg(m,uy;vl, —wy) + h(z,ur) iz, ur; v, — uT)] dl' > (f,v —u)y,Yv € A,
I's

where F' : V' — Ris the convex and lower semicontinous function defined by

F(v) = /ng(Lv) dx.

Problem (PY,;) is called the primal variational formulation of problem (P).

Conversely, in order to transform (P) into a problem formulated in terms of the stress tensor

we reason in the following way. First let us define G : H — R by
Gp) = / ¢*(n) dz,
Q
and for a fixed w € A let ©,, be the following subset of H
O, = {M EH: (L*u,v)y +/ [59(z, wysv0) + Mz, we) iz, wesve)] dD > (f,0)v, Vo € A} .
I's

Let us consider the following inclusion

(P2) Find o € H such that
0 € 9G(0) + dle,, (0),

which we call the dual variational formulation with respect to w.

Now, looking at the first line of (P), i.e. relation (7.27), and keeping in mind the above

notations, we deduce that ©,, # () as o € ©,,. Moreover, for each i € ©,, we have
—(L*(p—o)u)y < / JB(HJ, Uy Uy) —i—jB(:U,u,,; —uy)dl’
s

+/ h($; UT) (j?(-rvuﬂ UT) +j9(x7u7'; _ur)) dar,
I's
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which combined with the second line of (P) leads to
G(,U,) - G(O’) 2 - / jz(/](x7 Uy ul/) + JB(‘T7 Uy, _uu)dr
I's
- / h(x,ur) (]S(SU’ Uriur) + j2($7 Ur, _UT)) dar,
I's

forall p € ©,.

A simple computation shows that any solution of (P¢) will also solve the above problem.

A particular case of interest regarding problem (P2) is if the set ©,, does not actually de-
pend on w. In this case problem (P%) will be simply denoted (P¢) and will be called the dual
variational formulation of problem (P). For example, this case is encountered when the functions
J» and j are convex and positive homogeneous, as it is the case of examples (a)-(c) presented
in the previous section.

In the above particular case, problem (f’) reduces to the following system of variational
inequalities

(P') Find u € A and o € H such that

(L*o,v —u)y + H(w) — H(u) > (f,v —u)y, forallveA
— (Lu, pp— )y + G(p) — G(o) > 0, forall p € H,

where H = joT,j: L?(T'3;R™) — R is defined by
i) = [ ) + i)
3

and T : V — L?(I's; R™) is given by Tv = [(y 0 i)(v)]|rs, with i : V — H; being the embedding
operator and v : Hy — H'Y?(T;R™) being the trace operator. On the other hand, for each
wE A,

Op:=0={peH: (L'p,v)y + Hwv) > (f,v)y, forallv e A},

and thus by taking v = 2u and v = 0 in the first line of (P’) we get

(Lo, u)y + H(u) = (f, u)v,
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hence

—(Lu,pp— o)y <0, forall p € ©.

Combining this and the second line of (P’) we get
G(u) —G(o) >0, forall p € ©,

which can be formulated equivalently as
(P9) Find o € H such that

0 € 0G(o) + dlg(0).
7.2.3 The existence of weak solutions

The following proposition points out the connection between the variational formulations pre-

sented above.

Proposition 7.1. A pair (u,0) € V x H is a solution for (P2, if and only if u solves (Plq,) and o
solves (733).

The main result of this section is given by the following theorem.

Theorem 7.2. (N.C., M. CSIRIK & C. VARGA [26]) Assume (Hc), (He), (Hn), (H;,), (Hj,) and
(H,) hold. Then problem (P}, ) has at least one solution.

Before proving the main result we need the following Aubin-Clarke type result concerning
the Clarke subdifferential of integral functions. Let us consider the function j : L? (I's; R™) x

L? (T'3;R™) — R defined by
J(y,z) = /F Jv (T, 20) + b (2, y7) jr (v, 27) dT. (7.32)
3

Lemma 7.1. Assume (Hy,), (H;,) and (H;, ) are fulfilled. Then, for each y € L?(I's; R™), the function

2+ j (y, z) is Lipschitz continuous and

],02 (y, 2 2) < / ]z(/) ($7 2v; 21/) +h (55, yT) ]2 (33, 273 27') dr. (7.33)
I's
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In order to prove Theorem 7.2 we consider the following system of nonlinear hemivaria-

tional inequalities.

(Sk, K,) Find (u,0) € K; x K such that

U1 (u,o,v) + Jﬂ(Tu, So;Tv —Tu) > (Fi(u,0),v —u)x,, forallve Kj,
Ya(u, o, 1) + J’%(Tu, So;Su— So) > (Fa(u,0),u—0)x,, forallue Ko,

where
e X, =V,Xy=H,K; C X;is closed and convex (i = 1,2), Y; = L?>(I'3;R™), Y2 = {0};
e 1 : X1 x X9 x X; — Ris defined by ¢ (u,0,v) = A(v,0) — A(u, 0);
e iy : X1 x X9 x Xg — Ris defined by ¢ (u, o, ) = A(u, ) — A(u, 0);

o7 : X, — Y isdefined by Tv = [(y 0 i)(v)]|r,, with i : V — H; the embedding operator and
v : Hy — HY?(T';R™) is the trace operator;

o S : Xy — Ysis defined by ST =0, for all 7 € Xo;

e J:Y; x Y, — Risdefined by J (y',y%) = j (v°,y"), where j : L?(T'3; R™) x L?(T3;R™) — R

is as in (7.32) and y" is a fixed element of L?(I'3; R™);
o [l : Xq x Xy — X is defined by Fi (v, u) = f;
o [y : X1 x X9 — Xy is defined by Fa(v, ) = 0.
Lemma 7.2. Assume (Hy,), (H;,), (Hj, ) and (Hy) are fulfilled. Then the following statements hold:
(i) Y1(u,0,u) = 0and Yo (u,0,0) =0, for all (u,0) € X7 x Xo;

(ii) for each v € X1 and each p € Xy the maps (u,0) — Y1 (u,0,v) and (u,o0) — P2(u, o, u) are

weakly upper semicontinuous;
(iii) for each (u, o) € X1 x Xy the maps v — Y1 (u, o, v) and p — 2(u, o, i) are convex;

(iv) liminf(F (ug, ok),v — uk)x, > (Fi(u,0),v — u)x, and Uminf(Fo(ug, or), 0 — ok)x, >
k—4o00 k—+o00

(Fy(u,0), p — o) x, whenever (ug, ox) — (u,0) as k — +oo;
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(v) there exists ¢ : Ry — R with the property . liin ¢(t) = +oo such that
—+00

01(, 0,04+, 0,0) < —¢ (\/Ilullk, + o1k, ) /lulk, + I, for all (u,0) € X1 x Xo;

(vi) The function J : Y7 x Yo — R is Lipschitz with respect to each variable. Moreover, for all
(y',9?), (', 2%) € Y1 x Y5 we have
I (vt 2Y) =% (80" 2"
and
JS (' % 2%) = 0;
(vii) There exists M > 0 such that

Jf)l (yl,yQ;—yl) < M||y1HY1,f0rall (yl,yQ) €Y xYy;
(viii) there exist m; > 0, i = 1,2, such that || F;(u, 0)||x, < my, forall (u,o) € X1 x Xa.

Proof of Theorem 7.2 The proof will be carried out in three steps as follows.

STEP 1. Let K1 C X; and K3 C X3 be closed and convex sets. Then (Sk, k,) admits at least

one solution.

This will be done by applying a slightly modified version of Corollary 3.7 in [38]. Lemma
7.2 ensures that all the conditions of the aforementioned corollary are satisfied except
the regularity of J. We point out the fact that in our case this condition needs not to be
imposed because the only reason it is imposed in the paper of Costea & Varga is to ensure

the following inequality
Tyt oyt 2t 2%) < U5 (vh vt et) + 5 (v v 2?)

which in this paper is automatically fulfilled because .J does not depend on the second

variable and the following equalities take place
IOyt 2) = IS (v o 2Y)

122



CEU eTD Collection

7.2. The bipotential method for contact problems with nonmonotone boundary conditions

and
JY (v y%2%) =0,

and this completes the first step.

STEP 2. Let K{,K{ C X; and K3,K3 C X, be closed and convex sets and let (u',o?)

and (u?, 0?) be solutions for (8 K1, K21) and (S K2, Kg), respectively. Then (u', 0?) solves

(SK117K22) and (u?,o') solves <SK%7K21).
The fact that (u', o) solves (8 K1, K%) means

Pi(ut, ot 0) + JY(Tul, Sots T — Tu') > (Fi(u!, o), v —ul)x,, Vve K]

(7.34)
bo(ut, ot p) + JY(Tut, St Sp— So') > (Fa(u' o), p—0')x,, Vi€ Ky
while the fact that (u?, o%) solves (S K2, Kg) shows
¥1(u?, 02, v) + JH(Tu2, So?;Tv — Tu?) > (Fy(u?,02),v —u?)x,, Vve K? (7.35)
z7ZJ2('U27 U2alu'> + J%(TUQ, 802; SM - SJZ) > (F2(u2a 02)7:“’ - U2)X27 VM S K22
Putting together the first line of (7.34) and the second line of (7.35) we get
Y1 (ut, ot v) + Jﬂ(Tul, SobyTv —Tul) > (Fi(ul,ol), v —ul)x,, VveK] 7.36)

wZ(Uzao-Qmu) + J,%(Tu27502; S/L - SO_Q) > (F2(u2a0-2)nu’ - 02)X2a \V//,L € I(22

On the other hand, keeping in mind the way 1, v», J, F1, F> were defined is it easy to
check that for any (v, u) € K x K2 the following equalities hold

wl(ulvalﬂj) = Qpl(ul?Oﬂv’U) and ¢2(U2a0’2»ﬂ) = ,(/12(,&170_27”)’
Jﬂ(Tul, Sol;Tv — Tu') = Jﬁ(Tul, So?; Tv — Tu')
J702(Tu2, So?: S — So?) = Jg(Tul, So?: S — Sot)

Fi(u!,ob) = Fi(ut,0?) and Fy(u?, 0%) = Fy(ul,0?).
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Using these equalities and (7.36) we obtain

Y1 (ut, 0%, v) + Jﬂ(Tul,SUQ;TU —Tut) > (Fy(ul,0?),v —ub)x,, YveK]
Po(ut, 0%, p) + J5(Tut, So?; Sp — So?) > (Fa(u',0%),p — 0%)x,, Yp € K3

hence (u', 5?) solves (S K1, K§> . In a similar way we can prove that (u?, o') solves <S K2, K21> .

STEP 3. There exist u € A and o € O, such that (u, o) solves (P2,,.).

Let us choose K{ = A and Ki = X». According to STEP 1 there exists a pair (u!,o!)
which solves (8 K1, K21> Next, we choose K? = A and K3 = ©,: and use again STEP 1 to
deduce that there exists a pair (u?, 0?) which solves <S K2, K22> Then, according to STEP
2, the pair (u', o?) will solve <8K11:K§)' Invoking the way 1,12, J, F1, Fb, Ki, K2 were

defined, it is clear that the pair (u,0) = (u!,0?) € A x O, is a solution of the system

A(v,0) — A(u,0) +jf)2 (yO,Tu;Tv — Tu) > (f,v—u)y, forallveA,
A(u, p) — A(u,0) > 0, for all 1 € O,

for all y° € L%*(T'3;R™), since y° was arbitrary fixed. Choosing y° = T'w an taking into

account (7.33) we conclude that (u, o) € A x ©, solves (P5,,), hence the proof is complete.

O

We close this section with some comments and remarks concerning the particular case when
the boundary conditions (7.17) and (7.18) reduce to the Signorini boundary condition combined

with a frictionless condition, that is o = 0. In this case
Cy = (—,0], C, = R™ and j,,j,,h =0,

while

A={veV:uv, <0onls},

and

O={peH: (neW))y > (f,v)y forallv € A}.

Problem (P, ) reduces to the following system of variational inequalities
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Find (u,0) € A x © such that for all (v, ) € A x ©

, U _U)V7

A(v,0) — A(u, 0) (7.37)
u, o

> (
) > 0.
This case was studied recently by Matei [77] who used the Direct Method in the Calculus of

Variations to prove that the functional £L: A x © — R
£(’U, /’L) - A(”? :u’> - (f7 U)V7

admits a global minimizer and each minimizer (u, o) of L is in fact a solution for (7.35). Our
proof is different, so even in this particular case our approach is new and supplements the
result obtained by Matei in [77]. Furthermore, as far as we are aware, there are no papers in the
literature in which the existence of the solutions for the variational approach via bipotentials
is proved by using systems of hemivariational inequalities. It would be interesting to consider

constitutive laws that involve bipotentials which are not separable.
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