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Abstract

The aim of this thesis is to study various nonsmooth variational problems which are governed by set-

valued maps such as the Clarke generalized gradient or the convex subdifferential.

The thesis has a strong interdisciplinary character combining results and methods from different

areas such as Nonsmooth and Convex Analysis, Set-Valued Analysis, PDE’s, Calculus of Variations,

Mechanics of Materials and Contact Mechanics. The problems considered here can be divided into

three main classes:

• boundary value problems involving differential operators subjected to various boundary constraints.

Several existence and multiplicity results for such problems are obtained by using mainly varia-

tional methods;

• inequality problems of variational type whose solutions are not necessarily critical points of certain en-

ergy functionals. Existence results for some problems of this type are derived by using topological

methods such as fixed point theorems for set-valued maps;

• mathematical models which arise in Contact Mechanics and describe the contact between a body and

a foundation. Two such models are investigated. Their variational formulations lead to some

hemivariational inequality systems which are solved by using our theoretical results.
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Introduction

The study of nonsmooth variational problems began in the 1960’s with the pioneering work

of Fichera [50] who introduced variational inequalities to solve an open problem in Contact

Mechanics proposed by Signorini in 1933. Few decades later, Panagiotopoulos [98, 99, 100]

introduced a new class of variational inequalities, called hemivariational inequalities, by re-

placing the convex subdifferential with the Clarke generalized gradient and successfully used

these problems to model various phenomena arising in Mechanics and Engineering. The term

nonsmooth is used due to the fact that, in general, the corresponding energy functional is not

differentiable.

The main purpose of the present thesis is to analyze some nonsmooth, non-standard vari-

ational problems which may be formulated in terms of differential inclusions involving the

Clarke generalized gradient and/or the convex subdifferential. In dealing with such problems

we employ either variational or topological methods to prove the existence of at least one so-

lution. The study of such problems is motivated by the fact that they can serve as models for

various phenomena arising in our daily life.

The thesis contains seven chapters which are briefly presented below.

Chapter 1 (Preliminaries) contains introductory notions and results from nonsmooth and

set-valued analysis such as the Gâteaux differentiability of convex functions, the subdifferential

of a convex function, the generalized gradient (Clarke subdifferential) of a locally Lipschitz

function, properties of lower and upper semicontinuous set-valued maps. Some definitions

and basic properties of various function spaces (classical Lebesgue and Sobolev spaces, variable
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exponent Lebesgue and Sobolev spaces and Orlicz spaces) are also recalled.

Chapter 2 (Some abstract results) contains three theorems which are useful in determining

critical points of locally Lipschitz functionals. First we consider locally Lipschitz functionals

defined on a real reflexive Banach space X of the form

Eλ = L(u)− (J1 ◦ T )(u)− λ(J2 ◦ S)(u)

where L : X → R is a sequentially weakly lower semicontinuous C1 functional, J1 : Y → R

and J2 : Z → R are locally Lipschitz functionals, T : X → Y and S : X → Z are linear and

compact operators and λ is a real parameter. We provide sufficient conditions for Eλ to posses

three critical points for each λ > 0 and if an additional assumption is fulfilled we prove that

there exists λ∗ > 0 such that Eλ∗ has at least four critical points.

The second and the third theorem provide information concerning the Clarke subdifferen-

tiability of integral functions defined on variable exponent Lebesgue spaces and Orlicz spaces,

respectively, and can be viewed as extensions of the Aubin-Clarke theorem (Clarke [24], Theo-

rem 2.7.5 ) which was formulated for integral functions defined on classical Lebesgue spaces.

More exactly, we consider the functionals φ : Lp(·)(Ω)→ R and H : LΨ(Ω)→ R defined by

φ(v) =

∫
Ω
ϕ(x, v(x)) dx, for all v ∈ Lp(·)(Ω),

and

H(w) =

∫
Ω
h(x,w(x)) dx, for all w ∈ LΨ(Ω),

respectively. We prove that these functionals are Lipschitz continuous on bounded domains

and the following inclusions hold

∂Cφ(v) ⊆
{
ξ ∈ Lp′(·)(Ω) : ξ(x) ∈ ∂Cϕ(x, v(x)), for a.e. x ∈ Ω

}
,

and

∂CH(w) ⊆
{
ζ ∈ LΨ∗(Ω) : ζ(x) ∈ ∂Ch(x,w(x)), for a.e. x ∈ Ω

}
.

The results presented in this chapter can be found in [37, 31, 32].
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Chapter 3 (Elliptic differential inclusions depending on a real parameter) comprises three

sections. In the first section (based on paper [37]) we consider a differential inclusion involving

the p(·)-Laplace operator, that is ∆p(·)u = div
(
|∇u|p(x)−2∇u

)
, with a Steklov type boundary

condition of the following type −∆p(·)u+ |u|p(x)−2u ∈ ∂Cφ(x, u), in Ω,

|∇u|p(x)−2 ∂u
∂n ∈ λ∂Cψ(x, u), on ∂Ω,

in a bounded domain Ω with smooth boundary ∂Ω.

We prove that for each λ > 0 the problem admits at least three weak solutions, and if an

additional assumption is fulfilled, there exists λ∗ > 0 such that the problem possesses at least

four weak solutions.

The second section (based on paper [27]) is devoted to the study of a differential inclusion

involving a p-Laplace-like operator in a bounded domain Ω, whose smooth boundary ∂Ω is di-

vided into two measurable parts Γ1 and Γ2, respectively. More precisely, we study the problem
div (a(x,∇u)) ∈ λ∂CF (x, u)− h(x), in Ω,

−a(x,∇u) · n ∈ µ(x, u)∂CG(x, u), on Γ1,

u = 0, on Γ2,

where a : Ω× RN → RN is of the form a(x, ξ) = (a1(x, ξ), . . . , aN (x, ξ)), with ai : Ω× RN → R,

for i ∈ {1, . . . , N}.

Employing topological arguments, we prove that for each λ > 0 the problem has at least

one weak solution.

In the third section (based on paper [31]) we study a differential inclusion involving the
−→p (·)-Laplace operator, that is ∆−→p (·)u =

∑N
i=1 ∂i(|∂iu|pi(x)−2∂iu), with a homogeneous Dirichlet

boundary condition of the following type −∆−→p (·)u ∈ λ∂Cα(x, u) + ∂Cβ(x, u), in Ω,

u = 0, on ∂Ω,

with Ω an open, bounded subset of RN .
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We use nonsmooth critical point theory to prove that for each λ > 0 the problem possesses

at least two nontrivial weak solutions.

Chapter 4 (Differential inclusions in Orlicz-Sobolev spaces) is devoted to the study of an el-

liptic differential inclusion with homogeneous Dirichlet boundary condition in Orlicz-Sobolev

spaces of the type  −div (a(|∇u|)∇u) ∈ ∂CF (x, u), in Ω,

u = 0, on ∂Ω,

where a : [0,∞)→ [0,∞) is such that the function ϕ(t) = a(|t|)t is continuous, strictly increas-

ing and onto on R.

The approach is variational and by means of the Direct Method in the Calculus of Variations

we are able to prove that the energy functional attached to our problem has a global minimizer,

hence it possesses a critical point. These results are based on the paper [32].

Chapter 5 (Variational-like inequality problems governed by set-valued operators) contains

existence results for for some variational-like inequality problems, in reflexive and nonreflexive

Banach spaces.When the set K, in which we seek solutions, is compact and convex, we do not

impose any monotonicity assumptions on the set-valued operator A, which appears in the

formulation of the inequality problems. In the case when K is only bounded, closed, and

convex, certain monotonicity assumptions are needed: we ask A to be relaxed η − α monotone

for generalized variational-like inequalities and relaxed η − α quasimonotone for variational-

like inequalities. We also provide sufficient conditions for the existence of solutions in the case

when K is unbounded, closed, and convex. The results presented in this chapter can be found

in [28].

Chapter 6 (A system of nonlinear hemivariational inequalities) comprises two sections. The

first section is devoted to the study of a general class of systems of nonlinear hemivariational

inequalities. Several existence results are established on bounded and unbounded closed, con-

vex subsets of real reflexive Banach spaces. In the second section we apply the abstract results

obtained in the previous section to establish existence results of Nash generalized derivative

points. These results are based on the paper [38].
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Chapter 7 (Weak solvability for some contact problems) is devoted to the study of two

mathematical models which describe the contact between a deformable body and a rigid ob-

stacle called foundation. In the first section (based on the paper [38]) we consider the case of

piezoelectric body and a conductive foundation. In the second section (based on the paper [26])

we analyze the case of a body whose behaviour is modelled by a monotone constitutive law

and on the potential contact zone we impose nonmonotone boundary conditions. We propose

a variational formulation in terms of bipotentials, whose unknown is a pair consisting of the

displacement field and the Cauchy stress field.
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Chapter 1

Preliminaries

Throughout this chapter we provide some notations and fundamental results which will be

used in the following chapters.

In this chapter, X denotes a real normed space and X∗ is its dual. The value of a functional

ξ ∈ X∗ at u ∈ X is denoted by 〈ξ, u〉X∗×X . The norm ofX is denoted by ‖·‖X , while ‖·‖∗ stands

for the norm of X∗. If there is no danger of confusion we will simply write 〈·, ·〉 to indicate the

duality pairing between a normed space and its dual and ‖ · ‖ to denote both the norms of X

and X∗. If X is a Hilbert space, then (·, ·)X stands for the inner product, unless X = RN or

X = SN (the linear spaces of second order symmetric tensors on RN , i.e. SN = RN×Ns ), in

which case the inner products and the corresponding norms are denoted by

u · v =
N∑
i=1

uivi, |v| =
√
v · v,

and

σ : τ =

N∑
i,j=1

σijτij , |τ | =
√
τ : τ .

We use the symbol→ to indicate the strong convergence in X and ⇀ for the weak convergence in

X . The weak-star convergence in X∗ is denoted by ⇁.

Assuming X and Y are two given normed spaces, a function T : X → Y is called operator.

An operator taking values in R ∪ {+∞} = (−∞,∞] is called functional.

1
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1.1. Elements of nonsmooth analysis

1.1 Elements of nonsmooth analysis

Definition 1.1. Let X be a real vector space and K a subset of X . The set K is said to be convex if

tu+ (1− t)v ∈ K,

whenever u, v ∈ K and t ∈ (0, 1). By convention the empty set ∅ is convex.

Definition 1.2. A functional φ : K → R is convex if K is a convex subset of a vector space X and for

each u, v ∈ K and 0 < t < 1

φ(tu+ (1− t)v) ≤ tφ(u) + (1− t)φ(v).

The functional φ is strictly convex if the above inequality is strict for u 6= v.

It is sometimes useful to work with functionals having infinite values. The effective domain

of a functional φ : X → (−∞,∞] is the set

D(φ) = {u ∈ X : φ(u) 6=∞}.

We say that φ is proper ifD(φ) 6= ∅. A functional taking infinite values is convex if the restriction

to D(φ) is convex. If −φ is convex (resp. strictly convex), then φ is said to be concave (resp.

strictly concave).

In the following X denotes a real Banach space.

Definition 1.3. The functional φ : X → (−∞,+∞] is said to be lower semicontinuous at u ∈ X if

lim inf
n→∞

φ(un) ≥ φ(u) (1.1)

whenever {un} ⊂ X converges to u in X. The function φ is lower semicontinuous if it is lower semicon-

tinuous at every point u ∈ X .

When inequality (1.1) holds for each sequence {un} ⊂ X that converges weakly to u, the

function φ is said to be weakly lower semicontinuous at u.

2
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1.1. Elements of nonsmooth analysis

A functional φ is said to be upper semicontinuous (resp. weakly upper semicontinuous) if −φ is

lower semicontinuous (resp. weakly lower semicontinuous).

If φ is a continuous function then it is also lower semicontiuous. The converse is not true,

as a lower semicontinuous function can be discontinuous. Since strong convergence in X im-

plies the weak convergence, it follows that a weakly lower semicontinuous function is lower

semicontinuous. Moreover, it can be shown that a proper convex function φ : X → (−∞,∞] is

lower semicontinuous if and only if it is weakly lower semicontinuous.

Let K ⊂ X and consider the function IK : X → (∞,+∞] defined by

IK(v) =

 0, if v ∈ K,

∞, otherwise.

The function IK is called the indicator function of the set K. It can be proved that the set K is

a nonempty closed convex set of X if and only if its indicator function IK is a proper convex

lower semicontinuous function.

Definition 1.4. Let φ : X → R and let u ∈ X . Then φ is Gâteaux differentiable at u if there exists an

element of X∗, denoted φ′(u), such that

lim
t↓0

φ(u+ tv)− φ(u)

t
= 〈φ′(u), v〉X∗×X , for all v ∈ X. (1.2)

The element φ′(u) that satisfies (1.2) is unique and is called the Gâteaux derivative of φ at u.

The functional φ : X → R is said to be Gâteaux differentiable if it is Gâteaux differentiable at

every point of X .

The convexity of Gâteaux differentiable functions can be characterized as follows.

Proposition 1.1. Let φ : X → R be a Gâteaux differentiable function. Then, the following statements

are equivalent:

i) φ is a convex functional;

ii) φ(v)− φ(u) ≥ 〈φ′(u), v − u〉X∗×X , for all v ∈ X ;

3
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1.1. Elements of nonsmooth analysis

iii) 〈φ′(v)− φ′(u), v − u〉X∗×X ≥ 0, for all u, v ∈ X .

A direct consequence of the above result is that convex and Gâteaux differentiable functions

are in fact lower semicontinuous. Proposition 1.1 also suggests the following generalization of

the Gâteaux derivative of a convex function.

Definition 1.5. Let φ : X → (−∞,+∞] be a convex function. The subdifferential of φ at a point

x ∈ D(φ) is the (possibly empty) set

∂φ(u) = {ξ ∈ X∗ : 〈ξ, v − u〉X∗×X ≤ φ(v)− φ(u), for all v ∈ X} , (1.3)

and ∂φ(u) = ∅ if u 6∈ D(φ).

It is well known that if φ is convex and Gâteaux differentiable at a point u ∈ int D(φ), then

∂φ(u) contains exactly one element, namely φ′(u).

The Fenchel conjugate of a function φ : X → (−∞,+∞] is the function φ∗ : X∗ → (−∞,+∞]

given by

φ∗(ξ) = sup
x∈X
{〈ξ, u〉X∗×X − φ(u)} .

Proposition 1.2. Let φ : X → (−∞,+∞] be a proper, convex and lower semicontinuous function.

Then

(i) φ∗ is proper, convex and lower semicontinuous;

(ii) φ(u) + φ∗(ξ) ≥ 〈ξ, u〉X∗×X , for all u ∈ X, ξ ∈ X∗;

(iii) ξ ∈ ∂φ(u)⇔ u ∈ ∂φ∗(ξ)⇔ φ(u) + φ∗(ξ) = 〈ξ, u〉X∗×X .

Definition 1.6. A bipotential is a function B : X ×X∗ → (−∞,+∞] satisfying the following condi-

tions

(i) for any u ∈ X , ifD(B(u, ·)) 6= ∅, thenB(u, ·) is proper and lower semicontinuous; for any ξ ∈ X∗,

if D(B(·, ξ)) 6= ∅, then B(·, ξ) is proper, convex and lower semicontinuous;

(ii) B(u, ξ) ≥ 〈ξ, u〉X∗×X , for all u ∈ X , ξ ∈ X∗;

4
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1.1. Elements of nonsmooth analysis

(iii) ξ ∈ ∂B(·, ξ)(u)⇔ u ∈ ∂B(u, ·)(ξ)⇔ B(u, ξ) = 〈ξ, u〉X∗×X .

We recall that a functional φ : X → R is called locally Lipschitz if for every u ∈ X there exist

a neighborhood U of u in X and a constant Lu > 0 such that

|φ(v)− φ(w)| ≤ Lu‖v − w‖X , for all v, w ∈ U.

Definition 1.7. Let φ : X → R be a locally Lipschitz functional. The Clarke generalized directional

derivative of φ at a point u ∈ X , in the direction v ∈ X , denoted φ0(u; v), is defined by

φ0(u; v) = lim sup
w→u
t↓0

φ(w + tv)− φ(w)

t
.

The following proposition points out some important properties of the generalized deriva-

tives.

Proposition 1.3. Let φ, ψ : X → R be locally Lipschitz. Then

i) v 7→ φ0(u; v) is finite, subadditve and satisfies

|φ0(u; v)| ≤ Lu‖v‖X ,

with Lu > 0 being the Lipschitz constant near u ∈ X ;

ii) (u, v) 7→ φ0(u; v) is upper semicontinuous;

iii) (−φ)0(u; v) = φ0(u;−v) and φ0(u; tv) = tφ0(u; v) for all u, v ∈ X and all t > 0;

iv) (φ+ ψ)0(u; v) ≤ φ0(u; v) + ψ0(u; v) for all u, v ∈ X .

For the proof see Clarke [24], Proposition 2.1.1.

Definition 1.8. Let φ : X → R be a locally Lipschitz functional. The generalized gradient (Clarke

subdifferential) of φ at a point u ∈ X , denoted ∂Cφ(u), is the subset of X∗ defined by

∂Cφ(u) = {ζ ∈ X∗ : φ0(u; v) ≥ 〈ζ, v〉X∗×X , for all v ∈ X}.

5
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1.1. Elements of nonsmooth analysis

An important property of the generalized gradient is that ∂Cφ(u) 6= ∅ for all u ∈ X . This

follows directly from the Hahn-Banach Theorem (see e.g. Brezis [13], Theorem 1.1). We also

point out the fact that if φ is convex, then ∂Cφ(u) coincides with the subdifferential of φ at u,

that is

∂Cφ(u) = ∂φ(u).

We list below some important properties of generalized gradients that will be useful in the

subsequent chapters.

Proposition 1.4. Let φ : X → R be Lipschitz continuous on a neighborhood of a point u ∈ X . Then

(i) ∂Cφ(u) is a convex, weak* compact subset of X∗ and

‖ζ‖∗ ≤ Lu, for all ζ ∈ ∂Cφ(u),

where Lu > 0 is the Lipschitz constant of φ near the point u.

(ii) φ0(u; v) = max{〈ζ, v〉X∗×X : ζ ∈ ∂Cφ(u)}, for all v ∈ X .

(iii) For any scalar s, one has

∂C(sφ)(u) = s∂Cφ(u);

(iv) If u is a local extremum point of φ, then 0 ∈ ∂Cφ(u);

(v) For any positive integer n, one has

∂C

(
n∑
i=1

φi

)
(u) ⊂

n∑
i=1

∂Cφi(u).

For the proof one can consult Clarke [24], Propositions 2.1.2, 2.3.1, 2.3.2 and 2.3.3.

Definition 1.9. A locally Lipschitz functional φ : X → R is said regular at u if, for all v ∈ X , the

usual one-sided directional derivative φ′(u; v) exists and φ′(u; v) = φ0(u; v).

For a function ψ : X1 × . . . × Xn → R which is locally Lipschitz with respect to the kth

variable we denote by ψ0
,k(u1, . . . , un; vk) the partial generalized derivative of ψ at uk ∈ Xk in the

6
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1.1. Elements of nonsmooth analysis

direction vk ∈ Xk and by ∂kCψ(u1, . . . , un) the partial generalized gradient of ψ with respect to the

variable uk. It is known that in general the sets ∂Cψ(u1, . . . , un) and ∂1
Cψ(u1, . . . , un) × . . . ×

∂nCψ(u1, . . . , un) are not contained one in the other (see e.g. Clarke, Section 2.5), but for regular

functionals, the following relations hold.

Proposition 1.5. Let ψ : X1 × . . .×Xn → R be a regular, locally Lipschitz functional. Then

(i) ∂Cψ(u1, . . . , un) ⊆ ∂1
Cψ(u1, . . . , un)× . . .× ∂nCψ(u1, . . . , un);

(ii) ψ0(u1, . . . , un; v1, . . . , vn) ≤
n∑
i=1

ψ0
,k(u1, . . . , un; vk).

The following result is known in the literature as Lebourg’s mean value theorem (see Lebourg

[71] or Clarke [24], p. 41).

Theorem 1.1. Let φ : X → R be locally Lipschitz and u, v ∈ X . Then there exist t ∈ (0, 1) and

ξt ∈ ∂Cφ (u+ t(v − u)) such that

φ(v)− φ(u) = 〈ξt, v − u〉X∗×X .

Definition 1.10. Let φ : X → R be locally Lipschitz and u ∈ X . We say that u is a critical point of φ

if 0 ∈ ∂Cφ(u), that is

φ0(u; v) ≥ 0, for all v ∈ X.

If u is a critical point of φ, then the number c = φ(u) is called critical value of φ. According

to Proposition 1.4 every local extremum point is also a critical point of φ.

Definition 1.11. A locally Lipschitz functional φ : X → R is said to satisfy (the nonsmooth) Palais-

Smale condition at level c, (PS)c-condition in short, if any sequence {un} ⊂ X which satisfies

• φ(un)→ c;

• there exists {εn} ⊂ R, εn ↓ 0 such that φ0(un; v − un) ≥ −εn‖v − un‖X for all v ∈ X ;

possesses a (strongly) convergent subsequence.

7
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1.1. Elements of nonsmooth analysis

We present next results that will be useful in determining critical points of locally Lipschitz

functionals in the sequel. The following theorem is fundamental in the Calculus of Variations

as it provides sufficient conditions for a functional to posses a global minimum. For the proof

see Struwe [118], Theorem 1.2.

Theorem 1.2. Suppose X is a real reflexive Banach space and let M ⊆ X be a weakly closed subset of

X . Suppose E : X → R satisfies:

• E is coercive on M with respect to X , that is, E(u)→ +∞ as ‖u‖X → +∞, u ∈M ;

• E is weakly lower semicontinuous on M .

Then E is bounded from below on M and attains its infimum on M .

The following theorem is the nonsmooth version of the zero-altitude Mountain Pass Theo-

rem (see Motreanu & Varga [92]).

Theorem 1.3. Let E : X → R be locally Lipschitz which satisfies the (PS)-condition. Suppose there

exist u1, u2 ∈ X and r ∈ (0, ‖u1 − u2‖X) such that

inf
u∈∂B(u1,r)

E(u) ≥ max{E(u1), E(u2)}.

Then c = inf
γ∈Γ(u1,u2)

max
t∈[0,1]

E(γ(t)) is a critical value of E. Moreover, there exists u0 ∈ X \ {u1, u2}

such that

E(u0) = c ≥ max{E(u1), E(u2)}.

In the previous theorem we have denoted by ∂B(u, r) the sphere centered at u of radius r,

that is

∂B(u, r) = {v ∈ X : ‖v − u‖X = r},

while Γ(u1, u2) denotes the set of all continuous paths connecting the points u1, u2, that is

Γ(u1, u2) = {γ ∈ C([0, 1], X) : γ(0) = u1, γ(1) = u2} .

Before presenting the next result, let us recall that for a functional φ : X → R, the sets of the

type φ−1((−∞, c]) with c ∈ R are called sub-level sets. The functional φ is said to be quasi-concave
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1.2. Elements of set-valued analysis

if the set φ−1([c,+∞)) is convex for all c ∈ R. The following theorem is due to Ricceri [106].

Note that no smoothness is required on the functional f .

Theorem 1.4. Let X be a topological space, I ⊆ R an open interval and f : X × I → R a functional

satisfying the following conditions:

• λ 7→ f(u, λ) is quasi-concave and continuous for all u ∈ X ;

• u 7→ f(u, λ) has closed and compact sub-level sets for all λ ∈ I ;

• sup
λ∈I

inf
u∈X

f(u, λ) < inf
u∈X

sup
λ∈I

f(u, λ).

Then there exists λ∗ ∈ I such that the functional u 7→ f(u, λ∗) admits at least two global minimizers.

1.2 Elements of set-valued analysis

Set-valued analysis deals with the study of maps whose values are sets. The need for introduc-

ing multi-valued maps was recognized in the beginning of the twentieth century, but a system-

atic study of such maps started in the mid 1960’s and since nonsmooth analysis was born these

two relatively new branches of mathematics have undergone a remarkable development and

have provided each other with new tools and concepts, as maybe the most important multi-

valued maps are the subdifferential of a convex functional and Clarke’s generalized gradient

of a locally Lipschitz functional which are main ingredients in nonsmooth analysis.

Throughout this section E and F denote Hausdorff topological spaces and for x ∈ E we

denote by N (x) the family of all neighborhoods of x. Let T : X → Y be a set-valued map and

C ⊂ E. We use the following notations:

• D(T ) = {x ∈ E : T (x) 6= ∅} the domain of T ;

• G(T ) = {(x, y) ∈ E × F : x ∈ E and y ∈ T (x)} the graph of T ;

• T (C) =
⋃
x∈C

T (x) the image of C;

9
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1.2. Elements of set-valued analysis

• T+(C) = {x ∈ E : T (x) ⊆ C} the strong inverse image of C;

• T−(C) = {x ∈ E : T (x) ∩ C 6= ∅} the weak inverse image of C.

If (E, d) is a metric space, x ∈ E and r > 0, then we denote by

• B(x, r) = {y ∈ E : d(x, y) < r} the open ball centered at x of radius r;

• B̄(x, r) = {y ∈ E : d(x, y) ≤ r} the closed ball centered at x of radius r

• ∂B(x, r) = {y ∈ E : d(x, y) = r} stands for the sphere centered at x of radius r.

Definition 1.12. Let E,F be two Hausdorff topological spaces. A set-valued map T : E → F is said

to be

(i) lower semicontinuous at a point x0 ∈ E (l.s.c. at x0 for short), if for any open set V ⊆ F such that

T (x0) ∩ V 6= ∅ we can find U ∈ N (x0) such that T (x) ∩ V 6= ∅ for all x ∈ U . If this is true for

every x0 ∈ E, we say that T is lower semicontinuous (l.s.c for short);

(ii) upper semicontinuous at a point x0 ∈ E (u.s.c at x0 for short), if for any open set V ⊆ F such that

T (x0) ⊆ V we can find a neighborhood U of x0 such that T (x) ⊆ V for all x ∈ U . If this is true

for every x0 ∈ E, we say that T is upper semicontinuous (u.s.c. for short);

(iii) closed, if for every net {xλ}λ∈I ⊂ E converging to x and {yλ}λ∈I ⊂ F converging to y such that

yλ ∈ T (xλ) for all λ ∈ I , we have y ∈ T (x).

The following propositions are direct consequences of the above definition and provide

useful characterisations of l.s.c (u.s.c, closed) set-valued maps. For the proofs, one can con-

sult Papageorgiou & Yiallourou [101] (see Propositions 6.1.3 and 6.1.4) and Deimling [39] (see

Proposition 24.1).

Proposition 1.6. Let T : E → F be a set-valued map. The following statements are equivalent:

(i) T is lower semicontinuous;

(ii) For every closed set C ⊆ F , T+(C) is closed in E;

10
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1.2. Elements of set-valued analysis

(iii) If x ∈ X , {xλ}λ∈I is a net in E such that xλ → x and V ⊆ F is an open set such that

T (x) ∩ V 6= ∅, then we can find λ0 ∈ I such that T (xλ) ∩ V 6= ∅ for all λ ∈ I with λ ≥ λ0;

(iv) If x ∈ X , {xλ}λ∈I ⊂ E is a net in E and y ∈ T (x), then for every λ ∈ I we can find yλ ∈ T (xλ)

such that yλ → y;

Proposition 1.7. Let T : E → F be a set-valued map. The following statements are equivalent:

(i) T is upper semicontinuous;

(ii) For every closed set C ⊆ F , T−(C) is closed in E;

(iii) If x ∈ X , {xλ}λ∈I is a net in E such that xλ → x and V ⊆ E is an open set such that T (x) ⊆ V ,

then we can find λ0 ∈ I such that T (xλ) ⊆ V for all λ ∈ I with λ ≥ λ0;

Proposition 1.8. Let T : D ⊆ E → F a set-valued map such that T (x) 6= ∅ for all x ∈ D.

(i) Let T (x) be closed for all x ∈ D ⊆ E. If T is u.s.c. and D is closed, then G(T ) is closed. If T (D) is

compact and D is closed, then T is u.s.c. if and only if G(T ) is closed;

(ii) If D ⊆ E is compact, T is u.s.c. and T (x) is compact for all x ∈ D, then T (D) is compact.

Remark 1.1. The above propositions show that if T is single-valued, i.e. T (x) = {y} ⊂ F , then the

notions of lower and upper semicontinuity coincide with the usual notion of continuity of a map between

two Hausdorff topological spaces.

We present next some results for set-valued maps which will be useful in proving the ex-

istence of solutions for various inequality problems in the following chapters. We start by

recalling that x ∈ E is a fixed point of the set-valued map T : E → E if x ∈ T (x). Also recall that

set-valued map T : E → E is said to be a KKM map if, for every finite subset {x1, . . . , xn} ⊂ E,

co{x1, . . . , xn} ⊆
⋃n
j=1 T (xj), where co{x1, . . . , xn} denotes the convex hull of {x1, . . . , xn}. The

following result is due to Ansari & Yao [5].

Theorem 1.5. Let K be a nonempty closed and convex subset of a Hausdorff topological vector space E

and let S, T : K ⊂ E → E be two set-valued maps. Assume that:

11
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1.2. Elements of set-valued analysis

• for each x ∈ K, S(x) is nonempty and co{S(x)} ⊆ T (x);

•K =
⋃
y∈K intKS

−1(y);

• if K is not compact, assume that there exists a nonempty compact convex subset C0 of K and a

nonempty compact subset C1 of K such that for each x ∈ K \ C1 there exists ȳ ∈ C0 with the

property that x ∈ intKS
−1(ȳ).

Then T has at least one fixed point.

The following version of the KKM Theorem has been proved by Ky Fan [45].

Theorem 1.6. Let K be a nonempty subset of a Hausdorff topological vector space E and let T : K ⊂

K → E be a set-valued map satisfying the following properties:

• T is a KKM map;

• T (x) is closed in E for every x ∈ K;

• there exists x0 ∈ K such that T (x0) is compact in E.

Then
⋂
x∈K T (x) 6= ∅.

Theorem 1.7. (Lin [73]) Let K be a nonempty convex subset of a Hausdorff topological vector space E.

Let P ⊆ K ×K be a subset such that

(i) for each η ∈ K the set Λ(η) = {ζ ∈ K : (η, ζ) ∈ P} is closed in K;

(ii) for each ζ ∈ K the set Θ(ζ) = {η ∈ K : (η, ζ) 6∈ P} is either convex or empty;

(iii) (η, η) ∈ P for each η ∈ K;

(iv) K has a nonempty compact convex subset K0 such that the set

B = {ζ ∈ K : (η, ζ) ∈ P for all η ∈ K0}

is compact.

12
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1.3. Function spaces

Then there exists a point ζ0 ∈ B such that K × {ζ0} ⊂ P .

Theorem 1.8. (Mosco [88]) Let K be a nonempty compact and convex subset of a topological vector

space E and let φ : E → R ∪ {+∞} be a proper convex lower semicontinuous functional such that

D(φ) ∩K 6= ∅. Let ξ, ζ : E × E → R two functionals such that:

• ξ(x, y) ≤ ζ(x, y) for all x, y ∈ E;

• for each x ∈ E the map y 7→ ξ(x, y) is lower semicontinuous;

• for each y ∈ E the map x 7→ ζ(x, y) is concave.

Then for each µ ∈ R the following alternative holds true: either there exists y0 ∈ K ∩ D(φ) such that

ξ(x, y0) + φ(y0)− φ(x) ≤ µ, for all x ∈ E, or, there exists x0 ∈ E such that ζ(x0, x0) > µ.

1.3 Function spaces

Throughout this section we recall some basic facts on Lebesgue and Sobolev spaces, with con-

stant and variable exponents, and some useful definitions and properties of N -functions and

Orlicz spaces. Let Ω ⊂ RN be an open set. For 1 ≤ p < ∞ recall that the Lebesgue space is

defined by

Lp(Ω) =

{
u : Ω→ R

∣∣∣∣u is measurable and
∫

Ω
|u(x)|p dx <∞

}
,

and the corresponding norm is given by

‖u‖p =

[∫
Ω
|u(x)|p dx

]1/p

.

For p =∞, we set

L∞(Ω) = {u : Ω→ R |u is measurable and ess supx∈Ω|u(x)| <∞} ,

and the corresponding norm is given by

‖u‖∞ = inf {C > 0 | |u(x)| ≤ C a.e. on Ω} .
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1.3. Function spaces

For 1 ≤ p ≤ ∞we define

Lploc(Ω) = {u : Ω :→ R |u ∈ Lp(ω) for each ω ⊂⊂ Ω} .

The following results will be useful in the sequel.

Theorem 1.9. (Fatou’s Lemma) Let {un}n≥1 be a sequence in L1(Ω) such that un ≥ 0 a.e. in Ω. Then∫
Ω

lim inf
n→∞

un(x) dx ≤ lim inf
n→∞

∫
Ω
un(x) dx.

For any 1 ≤ p ≤ ∞we denote by p′ the conjugate exponent of p, that is

1

p
+

1

p′
= 1.

Theorem 1.10. (Hölder’s inequality) Assume that u ∈ Lp(Ω) and v ∈ Lp′(Ω) with 1 ≤ p ≤ ∞. Then

uv ∈ L1(Ω) and ∫
Ω
uv dx ≤ ‖u‖p‖v‖p′ .

Theorem 1.11. (Fischer-Riesz) (Lp(Ω), ‖ · ‖p) is a Banach space for any 1 ≤ p ≤ ∞. Moreover, Lp(Ω)

is reflexive for any 1 < p <∞ and separable for any 1 ≤ p <∞.

For a function u ∈ L1
loc(Ω) the function vα ∈ L1

loc(Ω) for which∫
Ω
u(x)Dαϕ(x) dx = (−1)|α|

∫
Ω
vα(x)ϕ(x) dx, for all ϕ ∈ C∞0 (Ω),

is called the weak derivative of order α of u and will be denoted by Dαu. Here, α = (α1, . . . , αN ),

with αi nonnegative integers, |α| = α1 + . . .+ αN and

Dα =
∂|α|

∂xα1
1 . . . ∂xαNN

.

It is obvious that if such a vα exists, it is unique up to sets of zero measure.

For a nonnegative integer m and 1 ≤ p ≤ ∞, we define ‖ · ‖m,p as follows

‖u‖m,p =

 ∑
|α|≤m

∫
Ω
|Dαu|p dx

1/p

, if 1 ≤ p <∞,
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and

‖u‖m,∞ = max
|α|≤m

sup
Ω
|Dαu|.

We define the Sobolev spaces

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for |α| ≤ m} .

We point out the fact that (Wm,p(Ω), ‖ · ‖m,p) is a real Banach space. The closure of C∞0 (Ω) with

respect to the norm ‖ · ‖m,p is denoted by Wm,p
0 (Ω). In general, Wm,p

0 (Ω) is strictly included in

Wm,p(Ω). In the case p = 2 we use the notation

Hm(Ω) = Wm,2(Ω) and Hm
0 (Ω) = Wm,2

0 (Ω).

These are Hilbert spaces with respect to the following scalar product

(u, v)m =
∑
|α|≤m

∫
Ω
Dαu(x)Dαv(x) dx,

where, as usual, D0u = u. If Ω is an open bounded subset of RN , with sufficiently smooth

boundary ∂Ω, then

H1
0 (Ω) =

{
u ∈ H1(Ω) : the trace of u on ∂Ω vanishes

}
.

The following theorem, known in the literature as the Sobolev embedding theorem, is of particular

interest in the variational and qualitative analysis of differential inclusions and partial differ-

ential equations. We recall that, if (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are two Banach spaces, then X is

continuously embedded into Y if there exists an injective linear map i : X → Y and a constant

C > 0 such that ‖iu‖Y ≤ C‖u‖X for all u ∈ X . We say that X is compactly embedded into Y if i is

a compact map, that is, i maps bounded subsets of X into relatively compact subsets of Y .

Theorem 1.12. Assume Ω ⊂ RN is a bounded open set with Lipschitz boundary. Then

(i) If mp < N , then Wm,p(Ω) is continuously embedded into Lq(Ω) for each 1 ≤ q ≤ Np
N−mp . The

embedding is compact for q < Np
N−mp ;
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1.3. Function spaces

(ii) If 0 ≤ k < m− N
p < k + 1, then Wm,p(Ω) is continuously embedded into Ck,β(Ω), for 0 ≤ β ≤

m− k − k
p . The embedding is compact for β < m− k − k

p .

If Ω ⊂ RN is a bounded open set with Lipschitz boundary then the Poincaré inequality

holds

‖u‖p ≤ C‖∇u‖p, for all u ∈W 1,p
0 (Ω),

where C = C(Ω) is a constant not depending on u. Hence

‖u‖ = ‖∇u‖p,

defines a norm on W 1,p
0 (Ω) which equivalent to the norm ‖ · ‖1,p.

Let us recall next some definitions and basic properties of the variable exponent Lebesgue-

Sobolev spaces Lp(·)(Ω), W 1,p(·)
0 (Ω) andW 1,−→p (·)

0 (Ω). Assume Ω is a bounded open subset of RN ,

with sufficiently smooth boundary. We consider the set

C+(Ω̄) =

{
p ∈ C(Ω̄) : min

x∈Ω̄
p(x) > 1

}
and for each p ∈ C+(Ω̄) we denote

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

Moreover, let

p∗(x) =


np(x)
n−p(x) if p(x) < n,

+∞ otherwise.

For a function p ∈ C+(Ω̄) the variable exponent Lebesgue space Lp(·)(Ω) is defined by

Lp(·)(Ω) =

{
u : Ω→ R : u is measurable and

∫
Ω
|u(x)|p(x) dx < +∞

}
,

and can be endowed with the norm (called Luxemburg norm) defined by

‖u‖p(·) = inf

{
ζ > 0 :

∫
Ω

∣∣∣∣u(x)

ζ

∣∣∣∣p(x)

dx ≤ 1

}
.
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It can be proved that
(
Lp(·)(Ω), ‖ · ‖p(·)

)
is a reflexive and separable Banach space (see, e.g.,

Kováčik and Rákosník [69]). If we denote by p′(x) = p(x)
p(x)−1 the pointwise conjugate exponent

of p(x), then for all u ∈ Lp(·)(Ω) and all v ∈ Lp′(·)(Ω) the following Hölder-type inequality holds∣∣∣∣∫
Ω
u(x)v(x) dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖p(·)‖v‖p′(·) ≤ 2‖u‖p(·)‖v‖p′(·).

We also remember the definition of the p(·)-modular of the space Lp(·)(Ω), which is the applica-

tion ρp(·) : Lp(·)(Ω)→ R defined by

ρp(·)(u) =

∫
Ω
|u(x)|p(x) dx.

This application is extremely useful in manipulating the variable exponent Lebesgue-Sobolev

spaces as it satisfies the following relations

‖u‖p(·) > 1(< 1; = 1) if and only if ρp(·)(u) > 1(< 1; = 1), (1.4)

‖u‖p(·) > 1 implies ‖u‖p
−

p(·) ≤ ρp(·)(u) ≤ ‖u‖p
+

p(·), (1.5)

‖u‖p(·) < 1 implies ‖u‖p
+

p(·) ≤ ρp(·)(u) ≤ ‖u‖p
−

p(·). (1.6)

Clearly, if p(x) = p0 for all x ∈ Ω̄, then the Luxemburg norm reduces to norm of the classical

Lebesgue space Lp0(Ω), that is

‖u‖p0 =

[∫
Ω
|u(x)|p0 dx

]1/p0

.

For a p ∈ C+(Ω̄) the (isotropic) variable exponent Sobolev space W 1,p(·)(Ω) can be defined by

W 1,p(·)(Ω) =
{
u ∈ Lp(·) : ∂iu ∈ Lp(·)(Ω) for all i ∈ {1, . . . , n}

}
,

and endowed with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·),
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becomes a separable and reflexive Banach space. Moreover, if p is log-Hölder continuous, that

is, there exists M > 0 such that |p(x)− p(y)| ≤ −M
log(|x−y|) , for all x, y ∈ Ω satisfying |x− y| < 1/2,

then the space C∞(Ω̄) is dense in W 1,p(·)(Ω) and we can define the Sobolev space with zero

boundary values W 1,p(·)
0 (Ω) as the closure of C∞0 (Ω) with respect to the norm ‖ · ‖1,p(·). Note

that if q ∈ C+(Ω̄) is a function such that q(x) < p∗(x) for all x ∈ Ω̄, then W 1,p(·)
0 (Ω) is compactly

embedded into Lq(·)(Ω).

We recall now the definition of the anisotropic variable exponent Sobolev spaceW 1,−→p (·)
0 (Ω),

where −→p : Ω̄→ Rn is of the form

−→p (x) = (p1(x), . . . , pn(x)) , for all x ∈ Ω̄,

and for each i ∈ {1, . . . , n}, pi : Ω̄ → R is a log-Hölder continuous function. The space

W
1,−→p (·)
0 (Ω) is defined as the closure of C∞0 (Ω) with respect to the norm

‖u‖−→p (·) =

n∑
i=1

‖∂iu‖pi(·),

and this space is a reflexive Banach space with respect to the above norm (see, e.g., Mihăilescu,

Pucci and Rădulescu [85]).

For an easy manipulation of the spaceW 1,−→p (·)
0 (Ω) we introduce pM , pm : Ω̄→ R and P ∗ ∈ R

as follows

pM (x) = max
1≤i≤n

pi(x), pm(x) = min
1≤i≤n

pi(x), P ∗ = n

(
n∑
i=1

1

p−i
− 1

)−1

.

The following result, due to Mihăilescu, Pucci and Rădulescu [85], provides useful infor-

mation concerning the embedding of W 1,−→p (·)
0 (Ω) into Lq(·)(Ω).

Theorem 1.13. Assume Ω ⊂ Rn (n ≥ 3) is an open bounded set having smooth boundary and, for each

i ∈ {1, . . . , n}, pi : Ω̄ → R is a log-Hölder continuous function such that the following relation holds

true
n∑
i=1

1

p−i
> 1.

Then, for any q ∈ C+(Ω̄) satisfying 1 < q(x) < max{p+
m, P

∗} for all x ∈ Ω̄, W 1,−→p (·)
0 (Ω) is compactly

embedded into Lq(·)(Ω).
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We recall below some basic notions and properties of N -functions and Orlicz spaces. For

more details one can consult [2, 25, 52, 63].

Definition 1.13. A continuous function Φ : R→ [0,∞) is calledN -function if it satisfies the following

properties

(N1) Φ is a convex and even function;

(N2) Φ(t) = 0 if and only if t = 0;

(N3) lim
t→0

Φ(t)
t = 0 and lim

t→∞
Φ(t)
t =∞.

It is well known that a convex function Φ : R → [0,∞) which satisfies Φ(0) = 0 can be

represented as

Φ(t) =

∫ t

0
ϕ(s)ds,

where ϕ : R → R is right-continuous and non-decreasing (see e.g. Krasnosel’skiı̆ & Rutickiı̆

[63], Theorem 1.1). If, in addition, the function ϕ satisfies

(ϕ1) ϕ(0) = 0 and ϕ(t) > 0 for t > 0;

(ϕ2) lim
t→∞

ϕ(t) =∞,

then the corresponding function Φ is an N -function. For a given function ϕ : R → R which is

right-continuous, non-decreasing and satisfies (ϕ1)− (ϕ2) we define

ϕ̃(s) = sup
ϕ(t)≤s

t.

One can easily see that ϕ can be recovered from ϕ̃ via

ϕ(t) = sup
ϕ̃(s)≤t

s.

Moreover, if ϕ is strictly increasing, then ϕ̃ = ϕ−1. The function

Φ∗(s) =

∫ s

0
ϕ̃(τ)dτ,
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1.3. Function spaces

is also an N -function and Φ, Φ∗ are called complementary functions. They satisfy Young’s in-

equality

st ≤ Φ(t) + Φ∗(s), for all s, t ∈ R, (1.7)

which holds with equality if s = ϕ(t) or t = ϕ̃(s). An important role in the embeddings of

Orlicz-Sobolev spaces is played by the Sobolev conjugate function of Φ, denoted Φ∗, which can be

defined by

Φ−1
∗ (t) =

∫ t

0

Φ−1(s)

s
N+1
N

ds.

Definition 1.14. Let Φ and Ψ be N -functions. We say that

• Ψ dominates Φ at infinity (we write Φ ≺ Ψ) if there exist t0 > 0 and k > 0 such that

Φ(t) ≤ Ψ(kt), for all t ≥ t0;

• Φ and Ψ are equivalent (we write Φ ∼ Ψ) if Φ ≺ Ψ and Ψ ≺ Φ;

• Φ increases essentially slower than Ψ (we write Φ ≺≺ Ψ) if

lim
t→∞

Φ(kt)

Ψ(t)
= 0, for all k > 0.

The Orlicz class KΦ(Ω) is defined as the set of functions

KΦ(Ω) =

{
u : Ω→ R measurable :

∫
Ω

Φ(|u(x)|)dx <∞
}

It is a known fact that Orlicz classes are convex sets but not necessarily linear spaces. We are

now in position to define the Orlicz spaces LΦ(Ω) and EΦ(Ω) as follows

LΦ(Ω) = the linear space generated by KΦ(Ω),

EΦ(Ω) = the maximal linear subspace of KΦ(Ω).

Obviously we have

EΦ(Ω) ⊆ KΦ(Ω) ⊆ LΦ(Ω),
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1.3. Function spaces

with equality if and only ifKΦ(Ω) is a linear space. The latter reduces to the fact that Φ satisfies

the ∆2-condition at infinity, i.e. there exist t0 > 0 and k > 0 such that

Φ(2t) ≤ kΦ(t), for all t ≥ t0.

On the Orlicz space LΦ(Ω) we can define the so-called Luxemburg norm by

|u|Φ = inf

{
µ > 0 :

∫
Ω

Φ

(
|u|
µ

)
dx ≤ 1

}
.

It is a fact that
(
LΦ(Ω), | · |Φ

)
is a Banach space (see e.g. Adams [2]). Moreover, EΦ(Ω) coincides

with the closure of bounded functions in LΦ(Ω) and it is complete and separable. An important

role in manipulating Orlicz spaces is played by the following Hölder-type inequality∣∣∣∣∫
Ω
uv dx

∣∣∣∣ ≤ 2|u|Φ|v|Φ∗ , for all u ∈ LΦ(Ω), v ∈ LΦ∗(Ω).

Hence, for each v ∈ LΦ∗(Ω) one can define Rv : LΦ(Ω)→ R by

Rv(u) =

∫
Ω
uv dx,

which is linear and bounded, so Rv ∈
(
LΦ(Ω)

)∗. Thus, we can define the norm

‖v‖Φ∗ := ‖Rv‖(LΦ(Ω))∗ = sup
|u|Φ≤1

∣∣∣∣∫
Ω
uv dx

∣∣∣∣ ,
which is called the Orlicz norm on LΦ∗(Ω). Analogously, we can define the Orlicz norm on

LΦ(Ω). Clearly, the Luxemburg and Orlicz norms are equivalent as

|u|Φ ≤ ‖u‖Φ ≤ 2|u|Φ.

Proposition 1.9. Let Φ and Φ∗ be complementary N -functions. Then,

LΦ(Ω) =
(
EΦ∗(Ω)

)∗
and LΦ∗(Ω) =

(
EΦ(Ω)

)∗
.

Moreover, LΦ(Ω) is reflexive if and only if Φ and Φ∗ satisfy the ∆2-condition.
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1.3. Function spaces

The Orlicz-Sobolev space W 1LΦ(Ω) can be defined by setting

W 1LΦ(Ω) =
{
u ∈ LΦ(Ω) : ∂iu ∈ LΦ(Ω), 1 ≤ i ≤ N

}
,

which a Banach space with respect to the norm

|u|1,Φ = |u|Φ + | |∇u| |Φ .

The space W 1EΦ(Ω) is defined analogously and it is separable. The Orlicz-Sobolev space of

functions vanishing on the boundary W 1
0E

Φ is the closure of C∞0 (Ω) in W 1LΦ(Ω) with respect

to the norm | · |1,Φ. Define W 1
0L

Φ(Ω) as the weak∗ closure of C∞0 (Ω) in W 1LΦ(Ω); hence by

Proposition 1.9, W 1
0L

Φ(Ω) is the weak∗ closure of the dual of a separable space. The following

Poincaré-type inequality holds∫
Ω

Φ(|u|) dx ≤
∫

Ω
Φ(d|∇u|) dx, for all u ∈W 1

0L
Φ(Ω),

where d = 2diam(Ω), hence

‖u‖ = | |∇u| |Φ

defines a norm equivalent to | · |1,Φ on W 1
0L

Φ(Ω).

The following result points out the relation between W 1LΦ(Ω) and LΨ(Ω) when Φ and Ψ

are N -functions.

Theorem 1.14. Let Φ and Ψ be N -functions and let Φ∗ be the Sobolev conjugate function of Φ.

(a) If Ψ ≺≺ Φ∗ and ∫ ∞
1

Φ−1(t)

t
N+1
N

dt =∞,

thenW 1LΦ(Ω) is compactly embedded into LΨ(Ω) andW 1LΦ(Ω) is continuously embedded into

LΦ∗(Ω).

(b) If ∫ ∞
1

Φ−1(t)

t
N+1
N

dt <∞,

then W 1LΦ(Ω) is compactly embedded into LΨ(Ω) and W 1LΦ(Ω) is continuously embedded

intoL∞(Ω).
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1.3. Function spaces

A particular case of interest is when Ψ = Φ as it is known that Φ ≺≺ Φ∗ whenever the

latter is defined as an N -function (see e.g. García-Huidobro, Le, Manásevich & Schmitt [52],

Proposition 2.1).
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Chapter 2

Some abstract results

In this chapter we prove three theorems that will play a key role in the proof of the main

results of the subsequent chapters. The first result represents a multiplicity theorem for the

critical points of a locally Lipschitz functional depending on a real parameter and extends a

recent result of Ricceri, while the second and third theorem provide information regarding the

subdifferentiability of integral functionals defined on variable exponent Lebesgue spaces and

Orlicz spaces, respectively. These results extend the well-known Aubin-Clarke theorem which

was formulated for Lp spaces.

2.1 A four critical points theorem for parametrized locally Lipschitz

functionals

Let X be a real reflexive Banach space and Y,Z two Banach spaces such that there exist T :

X → Y and S : X → Z linear and compact. Let L : X → R be a sequentially weakly lower

semicontinuous C1 functional such that L′ : X → X∗ has the (S)+ property, i.e. if un ⇀ u in X

and lim sup
n→∞

〈L′(un), un − u〉 ≤ 0, then un → u. Assume in addition that J1 : Y → R, J2 : Z → R

are two locally Lipschitz functionals.

We are interested in studying the existence of critical points for functionals Eλ : X → R of
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2.1. A four critical points theorem for parametrized locally Lipschitz functionals

the following type

Eλ(u) := L(u)− (J1 ◦ T )(u)− λ(J2 ◦ S)(u), (2.1)

where λ > 0 is a real parameter.

We point out the fact that it makes sense to talk about critical points for the functional

defined in (2.1) as Eλ is locally Lipschitz. In order to see this, let us fix u ∈ X , λ > 0 and r > 0

and choose v, w ∈ B̄(u; r). Since L ∈ C1(X;R) we have

|L(w)− L(v)| = |〈L′(z), w − v〉| ≤ ‖L′(z)‖X∗‖w − v‖X ,

where z = tw + (1 − t)v for some t ∈ (0, 1). But, B̄(u; r) is weakly compact thus there exists

M > 0 such that ‖L′(z)‖X∗ ≤ M on B̄(u; r). Using the fact that J1, J2 are locally Lipschitz

functionals we get

|Eλ(w)− Eλ(v)| ≤ |L(w)− L(v)|+ |(J1 ◦ T )(w)− (J1 ◦ T )(v)|+ λ|(J2 ◦ S)(w)− (J2 ◦ S)(v)|

≤ M‖w − v‖X +m1‖Tw − Tv‖Y + λm2‖Sw − Sv‖Z

≤
[
M +m1‖T‖L(X,Y ) + λm2‖S‖L(X,Z)

]
‖w − v‖X ,

which shows that Eλ is locally Lipschitz.

We also point out the fact that the functional Eλ is sequentially weakly lower semicontin-

uous since we assumed L to be sequentially weakly lower semicontinuous and T , S to be

compact operators.

In order to prove our main result we shall assume the following conditions are fulfilled:

(H1) there exists u0 ∈ X such that u0 is a strict local minimum for L and

L(u0) = (J1 ◦ T )(u0) = (J2 ◦ S)(u0) = 0;

(H2) for each λ > 0 the functional Eλ is coercive and there exists u0
λ ∈ X such that Eλ(u0

λ) < 0;

(H3) there exists R0 > 0 such that

(J1 ◦ T )(u) ≤ L(u) and (J2 ◦ S)(u) ≤ 0, for all u ∈ B̄(u0;R0) \ {u0};
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2.1. A four critical points theorem for parametrized locally Lipschitz functionals

(H4) there exists ρ ∈ R such that

sup
λ>0

inf
u∈X
{λ [L(u)− (J1 ◦ T )(u) + ρ]− (J2 ◦ S)(u)} <

inf
u∈X

sup
λ>0
{λ [L(u)− (J1 ◦ T )(u) + ρ]− (J2 ◦ S)(u)}.

The following theorem extends the result obtained recently by B. Ricceri (see [107], Theorem

1) to the case of non-differentiable locally Lipschitz functionals.

Theorem 2.1. (N.C. & C. VARGA [37]) Assume that conditions (H1) − (H3) are fulfilled. Then for

each λ > 0 the functional Eλ defined in (2.1) has at least three critical points. If in addition (H4) holds,

then there exists λ∗ > 0 such that Eλ∗ has at least four critical points.

Proof. The proof of Theorem 2.1 will be carried out in four steps an relies essentially on the zero

altitude mountain pass theorem for locally Lipschitz functionals (see Theorem 1.3) combined

with Theorem 1.4. Let us first fix λ > 0 and assume that (H1)− (H3) are fulfilled.

STEP 1. u0 is a critical point for Eλ.

Since u0 ∈ X is a strict local minimum for L there exists R1 > 0 such that

L(u) > 0, for all u ∈ B̄(u0;R1) \ {u0}. (2.2)

From (H3) we deduce that

(J1 ◦ T )(u) + λ(J2 ◦ S)(u)

L(u)
≤ 1, for all u ∈ B̄(u0;R0) \ {u0}. (2.3)

Taking R2 = min{R0, R1} from (2.2) and (2.3) we have

Eλ(u) = L(u)−(J1◦T )(u)−λ(J2◦S)(u) ≥ 0 = Eλ(u0), for all u ∈ B̄(u0;R2)\{u0}. (2.4)

We have proved thus that u0 ∈ X is a local minimum for Eλ, therefore it is a critical point

for this functional.

STEP 2. The functional Eλ admits a global minimum point u1 ∈ X \ {u0}.

Indeed, such a point exists since the functional Eλ is sequentially weakly lower semicon-

tinuous and coercive, therefore it admits a global minimizer denoted u1. Moreover, from

(H2) we deduce that Eλ(u1) < 0, hence u1 6= u0.
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2.1. A four critical points theorem for parametrized locally Lipschitz functionals

STEP 3. There exists u2 ∈ X \ {u0, u1} such that u2 is a critical point for Eλ.

Using the coercivity of Eλ and the fact that L′ has the (S)+ property we are able to show

that our functional satisfies the (PS)-condition.

According to STEP 2 there exists u1 ∈ X such that Eλ(u1) < 0. On the other hand, Eλ(u0) =

0 and we can choose 0 < r < min{R2, ‖u1 − u0‖X} such that

Eλ(u) ≥ max{Eλ(u0), Eλ(u1)} = 0, for all u ∈ ∂B̄(u0; r).

Applying Theorem 1.3 we conclude that there exists a critical point u2 ∈ X \ {u0, u1}

for Eλ and Eλ(u1) ≥ 0. This completes the proof of the first part of the theorem, i.e. the

functional Eλ has at least three distinct critical points.

STEP 4. If in addition (H4) holds, then there exists λ∗ > 0 such that Eλ∗ has two global minima.

Let us consider the functional f : X × (0,∞)→ R defined by

f(u, µ) = µ [L(u)− (J1 ◦ T )(u) + ρ]− (J2 ◦ S)(u) = µE1/µ(u) + µρ,

where ρ ∈ R is the number from (H4).

We observe that for each u ∈ X the functional µ 7→ f(u, µ) is affine, therefore it is quasi-

concave. We also note that for each µ > 0 the mapping u 7→ f(u, µ) is sequentially

weakly lower semicontinuous. Therefore for each µ > 0, the sub-level sets of u 7→ f(u, µ)

are sequentially weakly closed.

Let us consider now the set Sµ(c) = {u ∈ X : f(u, µ) ≤ c} for some c ∈ R and a sequence

{un} ⊂ Sµ(c). Obviously {un} is bounded due to the fact that the functional u 7→ f(u, µ)

is coercive, which is clear since f(u, µ) = µE1/µ(u) + µρ, E1/µ is coercive and µ > 0.

According to the Eberlein-Smulyan Theorem {un} admits a subsequence, still denoted

{un}, which converges weakly to some u ∈ X . Keeping in mind that un ∈ Sµ(c) for n > 0

we deduce that

E1/µ(un) ≤ c− µρ
µ

, for all n > 0.
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2.2. Extensions of the Aubin-Clarke Theorem

Combining the above relation with the fact that E1/µ is sequentially weakly lower semi-

continuous we get

E1/µ(u) ≤ lim inf
n→∞

E1/µ(un) ≤ c− µρ
µ

,

which shows that f(u, µ) ≤ c, therefore the set Sµ(c) is a sequentially weakly compact

subset of X . We have proved thus that, for each µ > 0, the sub-level sets of u 7→ f(u, µ)

are sequentially weakly compact. Taking into account Remark 1 in [106] which states that

we can replace “closed and compact” by “sequentially closed and sequentially compact”

in Theorem 1.4 and using condition (H4) we can apply Theorem 1.4 for the weak topology

of X and conclude that there exists µ∗ > 0 for which f(u, µ∗) = µ∗E1/µ∗(u) + µ∗ρ has two

global minima. It is easy to check that any global minimum point of f(u, µ∗) is also a

global minimum point for E1/µ∗ , and thus we get the existence of a point u3 ∈ X \ {u1}

such that

E1/µ∗(u1) = E1/µ∗(u3) ≤ E1/µ∗(u
0
1/µ∗) < 0 = E1/µ∗(u0) ≤ E1/µ∗(u2),

which shows that u3 ∈ X \ {u0, u1, u2}. Taking λ∗ = 1/µ∗ completes the proof.

2.2 Extensions of the Aubin-Clarke Theorem

In this section we prove two extensions of the Aubin-Clarke Theorem (see Clarke [24], Theorem

2.7.5) concerning the subdifferentiability of integral functionals defined on variable exponent

Lebesgue spaces or Orlicz spaces.

Let p ∈ C+(Ω̄) and ϕ : Ω × R → R be a function such that x 7→ ϕ(x, t) is measurable for all

t ∈ R and, in addition, suppose ϕ satisfies one of the following conditions

(a) there exist m ∈ Lp′(·)(Ω) such that

|ϕ(x, t1)− ϕ(x, t2)| ≤ m(x)|t1 − t2|, for a.e. x ∈ Ω and all t1, t2 ∈ R,
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2.2. Extensions of the Aubin-Clarke Theorem

or,

(b) the application t 7→ ϕ(x, t) is locally Lipschitz for a.e. x ∈ Ω and there exists cϕ > 0 such

that

|ξ| ≤ cϕ|t|p(x)−1,

for a.e. x ∈ Ω, all t ∈ R and all ξ ∈ ∂Cϕ(x, t).

We introduce next the functional φ : Lp(·)(Ω)→ R defined by

φ(w) =

∫
Ω
ϕ(x,w(x)) dx, for all w ∈ Lp(·)(Ω). (2.5)

Theorem 2.2. (N.C. & G. MOROŞANU [31]) Assume ϕ : Ω × R → R is a function such that x 7→

ϕ(x, t) is measurable for all t ∈ R and either (a) or (b) holds. Then, the functional φ : Lp(·)(Ω) → R

defined by (2.5) is locally Lipschitz and satisfies

φ0(w; z) ≤
∫

Ω
ϕ0(x,w(x); z(x)) dx, for all w, z ∈ Lp(·)(Ω). (2.6)

Moreover, if ϕ(x, ·) is regular at w(x) for a.e. x ∈ Ω, then φ is regular at w and equality takes place in

(2.6).

Proof. First we prove that φ is locally Lipschitz. If (a) holds, this follows directly from the

Hölder-type inequality. If (b) holds, we need to use Lebourg’s mean value theorem and the

properties of the modular.

Let us check now that

φ0(w; z) ≤
∫

Ω
ϕ0(x,w(x); z(x)) dx, for all w, z ∈ Lp(·)(Ω).

We denote by hµ,δ(w(x), z(x)) the difference quotient

hµ,δ(w(x), z(x)) =
ϕ(x,w(x) + δ + µz(x))− ϕ(x,w(x) + δ)

µ
.

Simple computations show that we can apply Fatou’s lemma to get the following estimate

lim sup
δ→0
µ↓0

∫
Ω
hµ,δ(w(x), z(x)) dx ≤

∫
Ω

lim sup
δ→0
µ↓0

hµ,δ(w(x), z(x)) dx,
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2.2. Extensions of the Aubin-Clarke Theorem

which shows that

φ0(w; z) ≤
∫

Ω
ϕ0(x,w(x); z(x)) dx, for all w, z ∈ Lp(·)(Ω).

Finally, let us prove that φ is regular at w if ϕ(x, ·) is regular at w(x) for a.e. x ∈ Ω. Using

Fatou’s lemma we have

φ0(w, z) ≥ lim inf
µ↓0

φ(w + µz)− φ(w)

µ

≥
∫

Ω
lim inf
µ↓0

ϕ(z, w(x) + µz(x))− ϕ(x,w(x))

µ
dx

≥
∫

Ω
lim
µ↓0

ϕ(z, w(x) + µz(x))− ϕ(x,w(x))

µ
dx

=

∫
Ω
ϕ′(x,w(x); z(x)) dx

=

∫
Ω
ϕ0(x,w(x); z(x)) dx

≥ φ0(w; z).

Thus, everywhere above we have equality, φ′(w; z) exists for all z ∈ Lp(·)(Ω) and

φ′(w; z) =

∫
Ω
ϕ′(x,w(z); z(x)) dx =

∫
Ω
ϕ0(x,w(z); z(x)) dx = φ0(w, z).

We will extend next the Aubin-Clarke theorem to the framework of Orlicz spaces. Follow-

ing Clément, de Pagter, Sweers & de Thélin [25], we say that a function ϕ : R→ R is admissible

if

• ϕ ∈ C(R,R);

• ϕ is odd;

• ϕ is strictly increasing;

• ϕ(R) = R.
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2.2. Extensions of the Aubin-Clarke Theorem

In this particular case, ϕ has an inverse and the complementary N -function of Φ is given by

Φ∗(s) =

∫ s

0
ϕ−1(τ) dτ.

In addition, if we assume that

1 < ϕ− ≤ ϕ+ < +∞,

where

ϕ− = inf
t>0

tϕ(t)

Φ(t)
and ϕ+ = sup

t>0

tϕ(t)

Φ(t)
,

then both Φ and Φ∗ satisfy the ∆2-condition (see [25] Lemma C.6), hence LΦ(Ω) and LΦ∗(Ω)

are reflexive Banach spaces and each is the dual of the other (see Proposition 1.9). Moreover, if

1 < ϕ− < +∞, then the following relations between the Luxemburg norm | · |Φ and the integral∫
Ω Φ(| · |) dx can be established (see [25], Lemma C.7)∫

Ω
Φ(|u|) dx ≤ |u|ϕ

−

Φ , ∀u ∈ LΦ(Ω), |u|Φ < 1, (2.7)∫
Ω

Φ(|u|) dx ≥ |u|ϕ
−

Φ , ∀u ∈ LΦ(Ω), |u|Φ > 1. (2.8)

In a similar manner one can prove that if 1 < ϕ+ <∞, then∫
Ω

Φ(|u|) dx ≥ |u|ϕ
+

Φ , ∀u ∈ LΦ(Ω), |u|Φ < 1, (2.9)∫
Ω

Φ(|u|) dx ≤ |u|ϕ
+

Φ ,∀u ∈ LΦ(Ω), |u|Φ > 1. (2.10)

Assume ψ : R→ R is an admissible function which satisfies

1 < ψ− ≤ ψ+ <∞ (2.11)

and h : Ω × R → R is a function which is measurable with respect to the first variable and

satisfies one of the following conditions

(h1) there exists b ∈ LΨ∗(Ω) such that

|h(x, t1)− h(x, t2)| ≤ b(x)|t1 − t2|,

for a.e. x ∈ Ω and all t1, t2 ∈ R;
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2.2. Extensions of the Aubin-Clarke Theorem

(h2) there exist c > 0 and b ∈ LΨ∗(Ω) such that

|ξ| ≤ b(x) + cψ(|t|),

for a.e. x ∈ Ω, all t ∈ R and all ξ ∈ ∂Ch(x, t).

Assume ψ satisfies (2.11), let Ψ be the corresponding N -function and define H : LΨ(Ω)→ R by

H(w) =

∫
Ω
h(x,w(x)) dx. (2.12)

Theorem 2.3. (N.C., G. MOROŞANU & C. VARGA [32]) Assume either (h1) or (h2) holds. Then,

the functional H defined in (2.12) is Lipschitz continuous on bounded domains of LΨ(Ω) and

∂CH(w) ⊆
{
ζ ∈ LΨ∗(Ω) : ζ(x) ∈ ∂Ch(x,w(x)) for a.e. x ∈ Ω

}
. (2.13)

Moreover, if h(x, ·) is regular at w(x) for a.e. x ∈ Ω, then H is regular at w and (2.13) holds with

equality.

Proof. Suppose w1, w2 belong to a bounded subset of LΨ(Ω). If we assume (h1) holds, then the

Hölder-type inequality for Orlicz spaces shows that

|H(w1)−H(w2)| ≤ 2|b|Ψ∗ |w1 − w2|Ψ,

hence H is Lipschitz continuous.

If (h2) is assumed, then by Lebourg’s mean value theorem, there exists λ0 ∈ (0, 1) and

ξ̄(x) ∈ ∂Ch(x, w̄(x)) such that

ξ̄(x)(w1(x)− w2(x)) = h(x,w1(x))− h(x,w2(x)), for a.e. x ∈ Ω,

with w̄(x) = λ0w1(x) + (1− λ0)w2(x). Lemma A.5 in [25] shows that

w̄ ∈ LΨ(Ω)⇒ ψ(|w̄|) ∈ LΨ∗(Ω),
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2.2. Extensions of the Aubin-Clarke Theorem

which combined with the Hölder-type inequality for Orlicz spaces leads to

|H(w1)−H(w2)| ≤
∫

Ω
|h(x,w1(x))− h(x,w2(x))| dx

=

∫
Ω
|ξ̄(x)||w1(x)− w2(x)| dx

≤
∫

Ω
[b(x) + ψ(|w̄(x)|)] |w1(x)− w2(x)| dx

≤ [|b|Ψ∗ + c |ψ(|w̄|)|Ψ∗ ] |w1 − w2|Ψ.

In order to prove that H is Lipschitz continuous on bounded domains we only need to

show that |ψ(|w̄|)|Ψ∗ is bounded above by a constant independent of w1 and w2. Clearly we

may assume |ψ(|w̄|)|Ψ∗ > 1. Since w1 and w2 belong to a bounded subset of LΨ(Ω) and w̄ is

a convex combination of them, then there exists a constant m > 1, independent of w1 and w2,

such that |w̄|Ψ ≤ m. On the other hand, (2.8) and the fact that (see [25] Corollary C.7)

1

ψ+
+

1

(ψ−1)−
= 1,

assure that

1 < |ψ(|w̄|)|Ψ∗ ≤ |ψ(|w̄|)|
ψ+

ψ+−1

Ψ∗ = |ψ(|w̄|)|(ψ
−1)−

Ψ∗ ≤
∫

Ω
Ψ∗(ψ(|w̄|)) dx.

Using Young’s inequality, see (1.7), we have

Ψ∗(ψ(t)) ≤ Ψ(t) + Ψ∗(ψ(t)) = tψ(t) ≤
∫ 2t

t
ψ(s) ds ≤ Ψ(2t),

and from the ∆2-condition we get∫
Ω

Ψ∗(ψ(|w̄|)) dx ≤ c1 + c2

∫
Ω

Ψ(|w̄|) dx.

Combining relations (2.7) and (2.10) with the fact that |w̄|Ψ ≤ m we get∫
Ω

Ψ(|w̄|) dx ≤ mψ+
,

hence

|ψ(w̄)|Ψ∗ ≤ c1 + c2m
ψ+
,
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2.2. Extensions of the Aubin-Clarke Theorem

with c1, c2,m suitable constants independent of w1 and w2.

The definition of the generalized directional derivative shows that the map x 7→ h0(x,w(x); z(x))

is measurable on Ω. Moreover, each of the conditions (h1), (h2) implies the integrability of

h0(x,w(x); z(x)). Let us check now that

H0(w; z) ≤
∫

Ω
h0(x,w(x); z(x)) dx, for all w, z ∈ LΨ(Ω). (2.14)

If (h1) is assumed, then (2.14) follows directly from Fatou’s lemma. On the other hand, if we

assume (h2) to hold, then by Lebourg’s mean value theorem, for each λ > 0 we have

h(x,w(x) + λz(x))− h(x,w(x))

λ
= 〈ξx, z〉,

for some ξx ∈ ∂Ch(x, w̄(x)), with w̄(x) = µ0w(x) + (1 − µ0) [w(x) + λz(x)], 0 < µ0 < 1. Again,

(2.14) follows by applying Fatou’s lemma.

In order to prove (2.13) let us fix ξ ∈ ∂CH(w). Then (see e.g. Remark 2.170 in Carl, Le &

Motreanu [19])

ξ ∈ ∂H0(w; ·)(0),

where ∂ stands for the subdifferential in the sense of convex analysis. The latter and relation

(2.14) show that ξ also belongs to the subdifferential at 0 of the convex map

LΨ(Ω) 3 z 7→
∫

Ω
h0(x,w(x); z(x)) dx,

and (2.13) follows from the subdifferentiation under the the integral for convex integrands (see

e.g. Denkowski, Migorski & Papageorgiou [40]).

For the final part of the Theorem, let us assume that h(x, ·) is regular at w(x) for a.e. x ∈ Ω.
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2.2. Extensions of the Aubin-Clarke Theorem

Then, we can apply Fatou’s lemma to get

H0(w; z) = lim sup
z̄→z
λ↓0

H(w + λz̄)−H(w)

λ

≥ lim inf
λ↓

H(w + λz)−H(w)

λ

≥
∫

Ω
lim inf
λ↓0

h(x,w(x) + λz(x))− h(x,w(x))

λ
dx

=

∫
Ω
h′(x,w(x); z(x)) dx

=

∫
Ω
h0(x,w(x); z(x)) dx

≥ H0(w; z),

which shows that the directional derivative H ′(w; z) exists and

H ′(w; z) = H0(w; z) =

∫
Ω
h0(x,w(x); z(x)) dx, for every z ∈ LΨ(Ω).
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Chapter 3

Elliptic differential inclusions

depending on a parameter

Throughout this chapter we study some elliptic differential inclusions of the following type

−Au+ f ∈ λ∂CΦ(u) + ∂CΨ(u), (3.1)

in a real Banach space X . Here, λ > 0 is a real parameter, f ∈ X∗ is given, A : X → X∗ is a

nonlinear (single-valued) operator and Φ,Ψ : X → R are locally Lipschitz functionals, while

∂C stands for Clarke’s generalized gradient.

We study boundary value problems with various boundary conditions whose variational

formulation (in the sense of distributions) lead to a differential inclusion of the type (3.1), in

the case when X is a space of functions defined on an open, bounded and connected subset Ω

of RN and A is a differential operator which may be viewed as a generalization of the Laplace

operator.

We say that u ∈ X is a solution for problem (3.1) if there exist ξ ∈ ∂CΦ(u) and ζ ∈ ∂CΨ(u) such

that

〈f, w〉 = 〈Au,w〉+ λ〈ξ, w〉+ 〈ζ, w〉, for all w ∈ X. (3.2)

In order prove that problem (3.2) possesses at least one solution we can adopt two strategies:
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3.1. The p(·)-Laplace operator with Steklov-type boundary condition

• transforming (3.2) into a hemivariational inequality, by taking into account the definition of

Clarke’s generalized gradient (see Chapter 1, ) and replacing w = v − u to get

Find u ∈ X such that

〈f, v − u〉 ≤ 〈Au, v − u〉+ λΦ0(u; v − u) + Ψ0(u; v − u), for all v ∈ X, (3.3)

• using the nonsmooth critical point theory, developed by Chang [21], by defining the energy

functional E : X → R as follows

Eλ(u) = F (u) + λΦ(u) + Ψ(u), (3.4)

with F : X → R a C1(X,R) function which satisfies F ′(u) = Au− f and seek for critical

points of this functional.

3.1 The p(·)-Laplace operator with Steklov-type boundary condition

In this section we are concerned with the study of a differential inclusion of the type

(P1) :

 −div (|∇u|p(x)−2∇u) + |u|p(x)−2u ∈ ∂Cφ(x, u), in Ω,

∂u
∂np(x)

∈ λ∂Cψ(x, u), on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, λ > 0 is a real parameter,

p : Ω→ R is a continuous function such that infx∈Ω p(x) > N , φ : Ω×R→ R and ψ : ∂Ω×R→ R

are locally Lipschitz functionals with respect to the second variable and

∂u

∂np(x)
= |∇u|p(x)−2∇u · n,

n being the unit outward normal on ∂Ω.

In the case when p(x) ≡ p, φ(x, t) ≡ 0 and ψ(x, t) = 1
q |t|

q the problem (P1) becomes

(P) :

 ∆pu = |u|p−2u in Ω,

|∇u|p−2 ∂u
∂n = λ|u|q−2u on ∂Ω,
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3.1. The p(·)-Laplace operator with Steklov-type boundary condition

and it was studied by J. Fernández Bonder and J.D. Rossi [49] in the case 1 < q < p∗ = p(N−1)
N−p

by using variational arguments combined with the Sobolev trace inequality. In [49] it is also

proved that if p = q then problem (P) possesses a sequence of eigenvalues {λn}, such that λn →

∞ as n → ∞. Furthermore, S. Martinez and J.D. Rossi [76] proved that the first eigenvalue λ1

of problem (P) (that is, λ1 ≤ λ for any other eigenvalue) when p = q is isolated and simple. In

the linear case, that is p = q = 2, problem (P) is known in the literature as the Steklov problem

(see e.g. I. Babuška and J. Osborn [8]).

Remark 3.1. If N < p− ≤ p(x) for any x ∈ Ω, then Theorem 2.2 from [46] ensures that the space

W 1,p(·)(Ω) is continuously embedded in W 1,p−(Ω), and, since N < p− it follows that W 1,p(·)(Ω) is

compactly embedded in C(Ω). Therefore, there exists a positive constant c∞ > 0 such that

‖u‖∞ ≤ c∞‖u‖, for all u ∈W 1,p(·)(Ω), (3.5)

where by ‖ · ‖∞ we have denoted the usual norm on C(Ω), that is ‖u‖∞ = supx∈Ω |u(x)|.

Definition 3.1. We say that u ∈ W 1,p(·)(Ω) is a solution of problem (P1) if there exist ξ(x) ∈

∂Cφ(x, u(x)) and ζ(x) ∈ ∂Cψ(x, u(x)) for a.e. x ∈ Ω such that for all v ∈W 1,p(·)(Ω) we have∫
Ω

(
−div (|∇u(x)|p(x)−2∇u(x)) + |u(x)|p(x)−2u(x)

)
v(x) dx =

∫
Ω
ξ(x)v(x) dx

and ∫
∂Ω

∂u

∂np(·)
v(x) dσ = λ

∫
∂Ω
ζ(x)v(x) dσ.

Here, and hereafter we shall assume the the following hypotheses hold:

(H5) φ : Ω× R→ R is a functional such that

(i) φ(x, 0) = 0 for a.e. x ∈ Ω;

(ii) the function x 7→ φ(x, t) is measurable for every t ∈ R;

(iii) the function t 7→ φ(x, t) is locally Lipschitz for a.e. x ∈ Ω;

38



C
E

U
eT

D
C

ol
le

ct
io

n

3.1. The p(·)-Laplace operator with Steklov-type boundary condition

(iv) there exist cφ > 0 and q ∈ C(Ω) with 1 < q(x) ≤ q+ < p− such that

|ξ(x)| ≤ cφ|t|q(x)−1,

for a.e. x ∈ Ω, every t ∈ R and every ξ(x) ∈ ∂Cφ(x, t).

(v) there exists δ1 > 0 such that φ(x, t) ≤ 0 when 0 < |t| ≤ δ1, for a.e. x ∈ Ω.

(H6) ψ : ∂Ω× R→ R is a functional such that

(i) ψ(x, 0) = 0 for a.e. x ∈ ∂Ω;

(ii) the function x 7→ ψ(x, t) is measurable for every t ∈ R;

(iii) the function t 7→ ψ(x, t) is locally Lipschitz for a.e. x ∈ ∂Ω;

(iv) there exist cψ > 0 and r ∈ C(∂Ω) with 1 < r(x) ≤ r+ < p− such that

|ζ(x)| ≤ cψ|t|r(x)−1

for a.e. x ∈ ∂Ω, every t ∈ R and every ζ(x) ∈ ∂Cψ(x, t);

(v) there exists δ2 > 0 such that ψ(x, t) ≤ 0 when 0 < |t| ≤ δ2, for a.e. x ∈ ∂Ω.

(H7) There exists η > max{δ1, δ2} such that ηp(x) ≤ p(x)φ(x, η) for a.e. x ∈ Ω and ψ(x, η) > 0

for a.e. x ∈ ∂Ω.

(H8) There exists m ∈ L1(Ω) such that φ(x, t) ≤ m(x) for all t ∈ R and a.e. x ∈ Ω.

(H9) There exists µ > max
{
c∞(p+‖m‖L1(Ω))

1/p− ; c∞(p+‖m‖L1(Ω))
1/p+

}
such that

sup
|t|≤µ

ψ(x, t) ≤ ψ(x, η) < sup
t∈R

ψ(x, t).

The main result of this section is given by the following theorem.

Theorem 3.1. (N.C. & C. VARGA [37]) Assume that (H5)-(H7) hold true. Then for each λ > 0

problem (P1) possesses at least two non-zero solutions. If in addition (H8) and (H9) hold, then there

exists λ∗ > 0 such that problem (P1) possesses at least three non-zero solutions.
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3.1. The p(·)-Laplace operator with Steklov-type boundary condition

Proof. Let us denote X = W 1,p(·)(Ω), Y = Z = C(Ω) and consider T : X → Y , S : X → Z

to be the embedding operators. It is clear that T, S are compact operators and for the sake of

simplicity, everywhere below, we will omit to write Tu and Su to denote the above operators,

writing u instead of Tu or Su. We introduce next L : X → R, J1 : Y → R and J2 : Z → R as

follows

L(u) =

∫
Ω

1

p(x)

[
|∇u(x)|p(x) + |u(x)|p(x)

]
dx, for u ∈ X,

J1(y) =

∫
Ω
φ(x, y(x)) dx, for y ∈ Y,

and

J2(z) =

∫
∂Ω
ψ(x, z(x)) dσ, for z ∈ Z.

We point out the fact that L is sequentially weakly lower semicontinuous and L′ : X → X∗,

〈L′(u), v〉 =

∫
Ω
|∇u(x)|p(x)−2∇u(x) · ∇v(x) + |u(x)|p(x)−2u(x)v(x) dx

has the (S)+ property according to X.L. Fan and Q.H. Zhang (see [45], Theorem 3.1).

The idea is to prove that the functional Eλ : X → R defined by

Eλ(u) = L(u)− J1(u)− λJ2(u),

satisfies the conditions of Theorem 2.1. Standard arguments show that each critical point of this

functional is a solution of problem (P1) in the sense of Definition 3.1. With this end in view we

go through the following steps.

STEP 1. The functionals J1 and J2 defined above are locally Lipschitz.

This follows directly from Lebourg’s mean value theorem.

STEP 2. u0 = 0 satisfies hypothesis (H1).

Indeed, L(0) = J1(0) = J2(0) = 0 and for each R > 0 we have

L(u) > 0, for all u ∈ B̄X(0;R) \ {0},

which shows that u0 = 0 is a strict minimum point for L.
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3.1. The p(·)-Laplace operator with Steklov-type boundary condition

STEP 3. The functional Eλ is coercive.

Let u ∈ X be fixed. A simple computation, combined with Lebourg’s mean value theorem

yields

J1(u) ≤ cφ
∫

Ω
‖u‖q(x)

∞ dx,

and

J2(u) ≤ cψ
∫
∂Ω
‖u‖r(x)

∞ dσ.

Hence for u ∈ X with ‖u‖ > 1 and ‖u‖∞ > 1 we have

Eλ(u) = L(u)− J1(u)− λJ2(u)

=

∫
Ω

1

p(x)

[
|∇u(x)|p(x) + |u(x)|p(x)

]
dx−

∫
Ω
φ(x, u(x))dx− λ

∫
∂Ω
ψ(x, u(x))dσ

≥ 1

p+
‖u‖p− − cφ meas(Ω)‖u‖q+

∞ − λcψ meas(Ω)‖u‖r+

∞

≥ 1

p+
‖u‖p− − cφ meas(Ω)cq

+

∞ ‖u‖q
+ − λcψ meas(Ω)cr

+

∞ ‖u‖r
+
.

We conclude that Eλ(u)→∞ as ‖u‖ → ∞ since r+ < p− and q+ < p−.

STEP 4. There exists ū0 ∈ X such that Eλ(ū0) < 0.

Choosing ū0(x) = η for all x ∈ Ω and taking into account (H7) we conclude that

Eλ(ū0) = L(ū0)− J1(ū0)− λJ2(ū0)

=

∫
Ω

1

p(x)
ηp(x) dx−

∫
Ω
φ(x, η) dx− λ

∫
∂Ω
ψ(x, η) dσ < 0.

STEP 5. There exists R0 > 0 such that J1(u) ≤ L(u) and J2(u) ≤ 0 for all u ∈ B(0;R0) \ {0}.

Let us define R0 < min
{
δ1
c∞

; δ2
c∞

}
where c∞ is given in (3.5) and δ1, δ2 are given in (H5)

and (H5), respectively. For an arbitrarily fixed u ∈ B(0;R0), taking into account the way

we defined the operators T and S, we have

|u(x)| ≤ ‖u‖∞ ≤ c∞‖u‖ ≤ c∞R0 < δ1, for all x ∈ Ω

and

|u(x)| ≤ ‖u‖∞ ≤ c∞‖u‖ ≤ c∞R0 < δ2, for all x ∈ ∂Ω.
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3.1. The p(·)-Laplace operator with Steklov-type boundary condition

Hypotheses (H5) and (H6) ensure that φ(x, u(x)) ≤ 0 and ψ(x, u(x)) ≤ 0 for all u ∈

B(0;R0), therefore J1(u) ≤ 0 < L(u) and J2(u) ≤ 0 for all u ∈ B(0;R0) \ {0}.

STEP 6. There exists ρ ∈ R such that

sup
λ>0

inf
u∈X

λ [L(u)− J1(u) + ρ]− J2(u) < inf
u∈X

sup
λ>0

λ [L(u)− J1(u) + ρ]− J2(u).

Using the same arguments as B. Ricceri [106] (see the proof of Theorem 2) we conclude

that it suffices to find ρ ∈ R and ū1, ū2 ∈ X such that

L(ū1)− J1(ū1) < ρ < L(ū2)− J1(ū2) (3.6)

and
supu∈A J2(u)− J2(ū1)

ρ− L(ū1) + J1(ū1)
<

supu∈A J2(u)− J2(ū2)

ρ− L(ū2) + J1(ū2)
, (3.7)

where A = (L− J1)−1((−∞, ρ]).

Let us define ū1 ≡ η and choose ū2 such that

ψ(x, ū2(x)) > sup
|t|≤µ

ψ(x, t).

We point out the fact that a ū2 satisfying the above relation exists due to (H9). Next we

define

ρ = min

{
1

p+

(
µ

c∞

)p+

− ‖m‖L1(Ω);
1

p+

(
µ

c∞

)p−
− ‖m‖L1(Ω)

}
and observe that ρ > 0.

Taking into account inequality (3.5) and the properties of the modular, we are able to

prove that

‖u‖∞ ≤ µ, for all u ∈ A.

We only have to check that (3.6) and (3.7) hold for ū1 and ū2 chosen as above. From above

we conclude that ū2 6∈ A and thus

sup
u∈A

J2(u) ≤ sup
‖u‖∞≤µ

J2(u) ≤ J2(ū1), sup
u∈A

J2(u) ≤ sup
‖u‖∞≤µ

J2(u) ≤ J2(ū2),

and

L(ū1)− J1(ū1) ≤ 0 < ρ < L(ū2)− J1(ū2).
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3.1. The p(·)-Laplace operator with Steklov-type boundary condition

The above steps show that the hypotheses of Theorem 2.1 are fulfilled.

Remark 3.2. In the previous Theorem conditions (H5)− (iii) and (H5)− (iv) can be replaced with the

following condition

• there exists a constant kφ > 0 such that

|φ(x, t1)− φ(x, t2)| ≤ kφ|t1 − t2|, for all t1, t2 ∈ R.

We can also replace conditions (H6)− (iii) and (H6)− (iv) with the following condition

• there exists a constant kψ > 0 such that for

|ψ(x, t1)− ψ(x, t2)| ≤ kψ|t1 − t2|, for all t1, t2 ∈ R.

Example 3.1. Let us provide next an example of two functions φ : Ω × R → R and ψ : ∂Ω × R → R

which satisfy the conditions required in Theorem 3.1. Let Ω be an open bounded subset of RN with

smooth boundary and assume meas (Ω) ≥ 1. Let p, q ∈ C+(Ω) be such that p− > N and q+ < p−

and r ∈ C(∂Ω) such that 1 < r(x) < r+ < p−. We consider µ > 1 sufficiently large, 0 < δ <

min

{
1
3 ,
(

N

2p−

)1/(p−−q+)
}

. We consider now φ : Ω × R → R and ψ : ∂Ω × R → R to be two

nonsmooth locally Lipschitz functionals defined by

φ(x, t) =


0, t ≤ δ

(t− δ)q(x), δ ≤ t < δ + π
2(

π
2

)q(x)
sin(t− δ), δ + π

2 ≤ t,

and

ψ(x, t) =



|t+ µ|r(x), t ≤ −µ

0, −µ < t ≤ δ

(t− δ)(3δ − t), δ ≤ t < 3δ

0, 3δ ≤ t,

and prove that hypotheses (H5)-(H9) are satisfied.
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3.1. The p(·)-Laplace operator with Steklov-type boundary condition

Note that

∂Cφ(x, t) =



0, t ≤ δ

q(x)(t− δ)q(x)−1, δ < t < δ + π
2[

0, q(x)
(
π
2

)q(x)−1
]
, t = δ + π

2(
π
2

)q(x)
cos(t− δ), t > δ + π

2

and

∂Cψ(x, t) =



−r(x)(−t− µ)r(x)−1, t < −µ

0, −µ ≤ t < δ

[0, 2δ] , t = δ

−2t+ 4δ, δ < t < 3δ

[−2δ, 0] , t = 3δ

0, t > 3δ.

Thus, for any ξ(x) ∈ ∂Cφ(x, t) and any ζ(x) ∈ ψ(x, t), we have

|ξ(x)| ≤



0 < |t|q(x)−1, t ≤ δ

q+|t− δ|q(x)−1 < q+ < q+
(
|t|
δ

)q(x)−1
< q+

δq+−1
|t|q(x)−1, δ < t < δ + 1

q+|t− δ|q(x)−1 < q+|t|q(x)−1, δ + 1 ≤ t < δ + π
2

q+
(
π
2

)q+−1
< q+

(
π
2

)q+−1 |t|q(x)−1, t = δ + π
2(

π
2

)q+

<
(
π
2

)q+

|t|q(x)−1, t > δ + π
2

and

|ζ(x)| ≤



r+|t+ µ|r(x)−1 < r+|t|r(x)−1, t < −1− µ

r+|t+ µ|r(x)−1 < r+ < r+
(
|t|
µ

)r(x)−1
< r+

µr−−1
|t|r(x)−1, −1− µ < t < −µ

0 < |t|r(x)−1, −µ ≤ t < δ

2δ ≤ 2δ
(
|t|
δ

)r(x)−1
< 2δ

δr−−1
|t|r(x)−1, δ ≤ t ≤ 3δ

0 < |t|r(x)−1, t > 3δ.

It is clear from above that (H5) and (H6) hold. In order to see that (H7)-(H9) are satisfied we point out

that the functional φ is bounded and choose η = 2δ < 1. We have

ηp(x) = (2δ)p(x) ≤ (2δ)p
− ≤ Nδq+ ≤ Nδq(x) ≤ p(x)δq(x) = p(x)φ(x, η).
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3.2. The p-Laplace-like operators with mixed boundary conditions

On the other hand we observe that ψ(x, t) attains its maximum at t = 2δ on [δ, 3δ], ψ(x, 2δ) =

δ2 > 0 and ψ(x, t) = 0 on [−µ, δ] ∪ [3δ, µ], which shows that sup|t|≤µ ψ(x, t) = ψ(x, η), while

supt∈R ψ(x, t) =∞.

We close this section by pointing out the fact that the nonsmooth Ricceri-type multiplic-

ity results presented in Chapter 2 can be successfully applied to other kind of problems. An

example is the following ordinary differential inclusion with periodic boundary conditions

(ODI) :


−u′′ + u ∈ λα(t)∂CF (u) + β(t)∂CG(u) in [0, 1]

u(0) = u(1)

u′(0) = u′(1)

where λ > 0 is a real parameter, F,G : R → R are locally Lipschitz and α, β : [0, 1] → [0,∞)

are nonconstant functions. It can be proved that, under suitable assumptions, for each λ > 0

problem (ODI) has at least two nonzero solutions and there exists λ∗ > 0 for which problem

(ODI) has at least three nonzero solutions. Problems of this type have been insvetigated by F.

Faraci and A. Iannizzotto [48].

Another example is the following differential inclusion on the whole space RN

(P̃λ) :

 −∆pu+ |u|p−2u ∈ λα(x)∂CF (u(x)) + β(x)∂CG(u(x)) in RN ,

u(x)→ 0 as |x| → ∞,

where λ is a positive real parameter, α, β : RN → R are given and F,G : R → R are two

locally Lipschitz functionals. A similar problem was studied by A. Kristály, W. Marzantowicz

and Cs. Varga [66] using the principle of symmetric criticality. We point out the fact that slightly

modifying the conditions imposed in [66] we can apply Theorem 2.1 to obtain two (or even

three) nonzero solutions for problem (P̃λ).

3.2 The p-Laplace-like operators with mixed boundary conditions

Let Ω be a bounded open subset of RN (N ≥ 3) having smooth boundary and 2 ≤ p < +∞. We

denote ∂Ω = Γ the boundary of Ω and assume that Γ1, Γ2 are two open measurable parts that

form a partition of Γ (i.e. Γ1 ∪ Γ2 = Γ and Γ1 ∩ Γ2 = ∅) such that meas(Γ2) > 0.
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3.2. The p-Laplace-like operators with mixed boundary conditions

We are interested in boundary value problems involving a quasilinear elliptic differential

operator, a nonsmooth potential and mixed boundary conditions of the following type:

(P2) :


div(a(x,∇u)) ∈ λ∂CF (x, u)− h(x), in Ω

−a(x,∇u) · n ∈ µ(x, u)∂CG(x, u), on Γ1,

u = 0, on Γ2,

where a : Ω× RN → RN is of the form a(x, ξ) = (a1(x, ξ), . . . , aN (x, ξ)), with ai : Ω× RN → R

for i ∈ {1, . . . , N}, λ > 0 is a real parameter, F : Ω × R → R and G : Γ1 × R → R are locally

Lipschitz functionals with respect to the second variable, µ : Γ1 × R → R and h : Ω → R

can be viewed as perturbation functions and n is the unit outward normal to ∂Ω. Here and

hereafter, the symbols ∂CF (x, t) and ∂CG(x, t) stand for the Clarke generalized gradients of

the mappings t 7→ F (x, t) and t 7→ G(x, t), respectively.

Example 3.2. Set a(x, ξ) = |ξ|p−2ξ. Then a(x, ξ) is the continuous derivative with respect to the

second variable of the mapping A(x, ξ) = 1
p |ξ|

p, i.e. a(x, ξ) = ∇ξA(x, ξ). Then we get the p−Laplace

operator

div(|∇u|p−2∇u).

Example 3.3. Set a(x, ξ) = (1 + |ξ|2)(p−2)/2ξ. Then a(x, ξ) is the continuous derivative with respect

to the second variable of the mapping A(x, ξ) = 1
p

[
(1 + |ξ|2)p/2 − 1

]
, i.e. a(x, ξ) = ∇ξA(x, ξ). Then

we get the the mean curvature operator

div
(

(1 + |∇u|2)(p−2)/2∇u
)
.

We point out the fact that our operator is not necessarily a potential operator, but we have

chosen these examples due to the fact that boundary value problems involving the above men-

tioned operators were studied intensively in the last decades since quasilinear operators can

model a variety of physical phenomena (e.g. the p-Laplacian is used in non-Newtonian fluids,

reaction-diffusion problems as well as in flow through porous media).

Let us turn now our attention towards the terms given by Clarke’s generalized gradient. To

our best knowledge differential inclusions similar to (P2) have been studied in the past either
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3.2. The p-Laplace-like operators with mixed boundary conditions

with Neumann condition, or with Dirichlet condition on the entire boundary. This cases can be

obtained when Γ1 = Γ, or Γ2 = Γ. We present next several particular cases of our problem that

have been treated in the last years by various authors.

CASE 1. Γ1 = Γ (Neumann problem).

• If F and G are primitives of some Carathéodory functions f : Ω × R → R and g :

∂Ω× R→ R

F (x, t) =

∫ t

0
f(x, s) ds and G(x, t) =

∫ t

0
g(x, s) ds

then the functions t 7→ F (x, t) and t 7→ G(x, t) are differentiable. Thus ∂CF (x, t) =

{f(x, t)}, ∂CG(x, t) = {g(x, t)} and (P2) reduces to the following eigenvalue prob-

lem  div(a(x,∇u)) = λf(x, u)− h(x) in Ω

−a(x,∇u) · n = µ(x, u)g(x, u) on ∂Ω
(3.8)

A particular case of problem (3.8) was studied by Y.X. Huang [59] (there the author

studies the case when a(x, ξ) = |ξ|p−2ξ, f(x, t) = m(x)|t|p−2t, g ≡ 0 and h ≡ 0).

• In the case when the functionals f and g from the previous example are only locally

bounded, i.e. f ∈ L∞loc(Ω×R) and g ∈ L∞loc(∂Ω×R) then t 7→ F (x, t) and t 7→ G(x, t)

are locally Lipschitz functionals and, according to Proposition 1.7 in [90] we have

∂CF (x, t) =
[
f(x, t), f(x, t)

]
and ∂CG(x, t) =

[
g(x, t), g(x, t)

]
,

where

f(x, t) = lim
δ↓0

ess inf
|s−t|<δ

f(x, s) f(x, t) = lim
δ↓0

ess sup
|s−t|<δ

f(x, s)

and

g(x, t) = lim
δ↓0

ess inf
|s−t|<δ

g(x, s) g(x, t) = lim
δ↓0

ess sup
|s−t|<δ

g(x, s).

In this case problem (P2) reduces to div(a(x,∇u)) ∈ λ
[
f(x, u), f(x, u)

]
− h(x) in Ω

−a(x,∇u) · n ∈ µ(x, u)
[
g(x, u), g(x, u)

]
on ∂Ω

(3.9)
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3.2. The p-Laplace-like operators with mixed boundary conditions

A particular case of problem (3.9) was studied by F. Papalini [102] in the case of

the p-Laplacian. The approach is variational and is based on the nonsmooth critical

point theory for locally Lipschitz functionals developed by K.-C. Chang in [21].

• In the case when h ≡ 0 and µ(x, t) ≡ µ > 0 problem (P2) becomes div(a(x,∇u)) ∈ λ∂CF (x, u), in Ω

−a(x,∇u) · n ∈ µ∂CG(x, u), on ∂Ω,
(3.10)

A problem similar to (3.10) was studied by A. Kristály, W. Marzantowicz and Cs.

Varga in [66] where the authors use a nonsmooth three critical points theorem to

prove that there exists a compact interval [a, b] with the property that for every λ ∈

[a, b] there exists µ0 ∈ (0, λ + 1) such the for each µ ∈ [0, µ0], the studied problem

possesses at least three distinct solutions.

CASE 2. Γ2 = Γ (Dirichlet problem).

In this case our problem can be rewritten equivalently as follows:

u ∈W 1,p
0 (Ω) : Au+ λ∂CF (·, u) 3 h in W−1,p′(Ω), (3.11)

where Au(x) = −div a(x,∇u(x)).

Problem (3.11) was treated in the case λ = 1 and h ≡ 0 by S. Carl and D. Motreanu [20]

who used the method of sub and supersolutions to obtain general comparison results. We

also remember the work of Z. Liu and G. Liu [75] and J. Wang [121] who studied eigen-

value problems for elliptic hemivariational inequalities that can be rewritten equivalently

as differential inclusions similar to (3.11). In [75] and [121] the authors used the surjectiv-

ity of multivalued pseudomonotone operators to prove the existence of solutions.

As we have seen above, in most papers dealing with differential inclusions of the type (P2)

nonsmooth critical point theory, or the pseudomonotonicity of a certain multivalued operator

play an essential role in obtaining the existence of solutions. However, in all the works we
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3.2. The p-Laplace-like operators with mixed boundary conditions

are aware of, additional assumptions on the structure of the elliptic operator and/or the gen-

eralized Clarke’s gradient are needed to obtain the existence of the solution (e.g. the elliptic

operator is of potential type, or the locally Lipschitz functional is required to be regular, or

to satisfy some conditions of Landesman-Lazer type, or the Clarke’s generalized gradient is

supposed to satisfy more restrictive growth conditions). Here, our approach is topological and

the novelty is that we are able to obtain the existence of at least one weak solution for any

λ ∈ (0,+∞) without assuming any of the above restrictions.

We present next the conditions that need to be imposed in order to prove the main result of

this section.

(H10) Let a : Ω × RN → RN be an operator of the form a(x, ξ) = (a1(x, ξ), . . . , aN (x, ξ)) which

satisfies

(i) for each i ∈ {1, . . . , N} ai : Ω× RN → R is a Carathéodory function and there exists c0 > 0

and α ∈ Lp′(Ω) such that

|ai(x, ξ)| ≤ α(x) + c0|ξ|p−1,

for a.e. x ∈ Ω and all ξ ∈ RN ;

(ii) there exist c1 > 0 and β ∈ L1(Ω) such that

a(x, ξ) · ξ ≥ c1|ξ|p − β(x),

for a.e. x ∈ Ω and all ξ ∈ RN ;

(iii) for a.e. x ∈ Ω and all ξ1, ξ2 ∈ RN

[a(x, ξ1)− a(x, ξ2)] · (ξ1 − ξ2) ≥ 0.

(H11) Let F : Ω× R→ R be a function which satisfies:

(i) for all t ∈ R the function x 7→ F (x, t) is measurable;

(ii) for a.e. x ∈ Ω the function t 7→ F (x, t) is locally Lipschitz;
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3.2. The p-Laplace-like operators with mixed boundary conditions

(iii) there exists c2 > 0 such that for a.e. x ∈ Ω and all t ∈ R

|∂CF (x, t)| ≤ c2(1 + |t|p−1);

(iv) there exists γ1 ∈ Lp(Ω) such that for a.e. x ∈ Ω and all t ∈ R

|F 0(x, t;−t)| ≤ γ1(x)|t|p−1.

(H12) Let G : Γ1 × R → R be measurable with respect to the first variable and assume there

exists γ2 ∈ Lp
′
(Γ1) such that

|G(x, t1)−G(x, t2)| ≤ γ2(x)|t1 − t2|,

for a.e. x ∈ Γ1 and all t1, t2 ∈ R.

(H13) µ : Γ1 × R→ R is a Carathéodory function and there exists µ∗ > 0 such that

0 ≤ µ(x, t) ≤ µ∗,

for a.e. x ∈ Γ1 and all t ∈ R.

(H14) h ∈ Lp′(Ω).

Let us introduce the functional space

V =
{
v ∈W 1,p(Ω) : γv = 0 on Γ2

}
where γ : W 1,p(Ω) → Lp(Γ) is the Sobolev trace operator. For simplicity, everywhere below,

we will omit to write γv to indicate the Sobolev trace on the boundary, writing v instead of

γv. Since meas(Γ2) > 0, it is well known that V is a closed subspace of W 1,p(Ω) and can be

endowed with the norm

‖v‖V = ‖∇v‖Lp(Ω),

which is equivalent to the usual norm on W 1,p(Ω) due to the Poincaré-Friedrichs inequality

(see e.g. Proposition 2.94 in [19]).
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3.2. The p-Laplace-like operators with mixed boundary conditions

Definition 3.2. We say that u ∈ V is a weak solution for problem (P2) if there exist ζ1 ∈ Lp
′
(Ω)

satisfying ζ1(x) ∈ ∂CF (x, u(x)) for a.e. x ∈ Ω and ζ2 ∈ Lp
′
(Γ1) satisfying ζ2(x) ∈ ∂CG(x, u(x)) for

a.e. x ∈ Γ1 such that∫
Ω
a(x,∇u) · (∇v −∇u) dx+ λ

∫
Ω
ζ1(v − u) dx+

∫
Γ1

µ(x, u)ζ2(v − u) dσ =

∫
Ω
h(x)(v − u) dx,

for all v ∈ V .

The main result of this section is the following theorem.

Theorem 3.2. (N.C., I. FIROIU & F.D. PREDA [27]) Suppose that conditions (H10) − (H14) are

fulfilled. Then for each λ ∈ (0,+∞) problem (P2) possesses at least one weak solution.

Before proving Theorem 3.2 we introduce the operator A : V → V ∗ defined by

〈Au, v〉 =

∫
Ω
a(x,∇u) · ∇v dx, (3.12)

and denote by φ the element of V ∗ given by

〈φ, v〉 =

∫
Ω
h(x)v dx.

We have the following proposition which characterizes the weak solutions of problem (P2).

Proposition 3.1. An element u ∈ V is a weak solution for problem (P2) if and only if it solves the

following hemivariational inequality

(HI)λ Find u ∈ V such that

〈Au, v − u〉+ λ

∫
Ω
F 0(x, u; v − u) dx+

∫
Γ1

µ(x, u)G0(x, u; v − u) dσ ≥ 〈φ, v − u〉,

for all v ∈ V .

Finally, we point out the fact that we do not deal with a classical hemivariational inequality

due to the presence of the term
∫

Γ1
µ(x, u)G0(x, u; v−u) dσ in the left-hand side of the inequality

and consequently several difficulties occur in determining the existence of solutions since the

classical methods fail to be applied directly.
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3.2. The p-Laplace-like operators with mixed boundary conditions

Proof of Theorem 3.2. First we point out the fact that under (H10) the operator A : V → V ∗

defined in (3.12) is well defined and satisfies the following properties:

• there exists c3 > 0 such that 〈Au, u〉 ≥ c1‖u‖pV − c3, for all u ∈ V ;

• 〈Av −Au, v − u〉 ≥ 0 for all u, v ∈ V ;

• 〈Aum, v〉 → 〈Au, v〉 for all v ∈ V , whenever um → u in V .

Let us fix λ > 0. We shall prove next that there exists at least one u ∈ V which solves (HI)λ. In

order to do this let us fix R > 0 and define K = B̄V (0, R) = {u ∈ V : ‖u‖V ≤ R} and

P =

 (v, u) ∈ K ×K 〈Au, v − u〉+ λ
∫

Ω F
0(x, u; v − u) dx+∫

Γ1
µ(x, u)G0(x, u; v − u) dσ ≥ 〈φ, v − u〉

 .

After some computations we are able to show that:

◦ For each v ∈ K the set Λ(v) = {u ∈ K : (v, u) ∈ P} is weakly closed;

◦ For each u ∈ K the set Θ(u) = {v ∈ K : (v, u) 6∈ P} is either empty or convex;

◦ The set B = {u ∈ K : (v, u) ∈ P for all v ∈ K} is weakly compact.

The above statements show that we can apply Lin’s theorem (see [73], Theorem ), for the weak

topology of the space V , with K0 = K = B̄V (0,m) and obtain the existence of an element

um ∈ B̄V (0,m) such that B̄V (0,m)× {um} ⊆ P , which can be rewritten equivalently as

〈Aum, v − um〉+ λ

∫
Ω
F 0(x, um, v − um) dx+

∫
Γ1

G0(x, um; v − um) dσ ≥ 〈φ, v − um〉, (3.13)

for all v ∈ B̄V (0,m), which means that, for each positive integer m, the restriction of (HI)λ to

B̄V (0,m) possesses at least one solution.

In order to compete the proof we need to prove that there exists m∗ > 0 such that

um∗ ∈ BV (0,m∗) (3.14)

and this um∗ solves (HI)λ. This can be easily done as follows.

52



C
E

U
eT

D
C

ol
le

ct
io

n

3.2. The p-Laplace-like operators with mixed boundary conditions

Arguing by contradiction let us assume that ‖um‖V = m for all m > 0. Taking v = 0 in

(3.13) we obtain

〈Aum, um〉 ≤ 〈φ, um〉+ λ

∫
Ω
F 0(x, um;−um) dx+

∫
Γ1

µ(x, um)G0(x, um;−um) dσ

≤ ‖φ‖V ∗‖um‖V + λ

∫
Ω
γ1(x)|um|p−1 dx+ µ∗

∫
Γ1

γ2(x)|um| dσ

≤ ‖φ‖V ∗‖um‖V + λ‖γ1‖Lp(Ω)‖um‖
p−1
Lp(Ω) + µ∗‖γ2‖Lp′ (Γ1)‖um‖Lp(Γ1)

≤ c̃1‖um‖V + c̃2‖um‖p−1
V ,

for some suitable constants c̃1, c̃2 > 0. On the other hand, we know that

〈Aum, um〉 ≥ c1‖um‖pV − c3.

Combining the above estimates and keeping in mind that 1 < p and ‖um‖V = m for all m > 0

we arrive at

c1m
p − c3 ≤ c̃1m

p−1 + c̃2m.

Dividing by mp−1 and letting m → ∞ we get a contradiction as the left-hand term of the

inequality diverges while the right-hand term remains bounded, which is impossible. This

contradiction shows that (3.14) holds.

Now let v ∈ V be fixed. We know that ‖um∗‖V < m∗ which allows us to choose t ∈ (0, 1)

such that w = um∗ + t(v − um∗) ∈ B̄V (0,m∗). Plugging w in (3.13) we have

t〈φ, v − um∗〉 = 〈φ,w − um∗〉

≤ 〈Aum∗ , w − um∗〉+ λ

∫
Ω
F 0(x, um∗ ;w − um∗) dx+∫

Γ1

µ(x, um∗)G
0(x, um∗ ;w − um∗) dσ

= t

[
〈Aum∗ , v − um∗〉+ λ

∫
Ω
F 0(x, um∗ ; v − um∗) dx +∫

Γ1

µ(x, um∗)G
0(x, um∗ ; v − um∗) dσ

]
.

Dividing the above relation by t > 0 we conclude that um∗ is indeed a solution for (HI)λ.
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

3.3 The−→p (·)-Laplace operator with the Dirichlet boundary condition

In this section we study the weak solvability of a differential inclusion involving a nonhomo-

geneous anisotropic differential operator of the following type

(P3) :


−

n∑
i=1

∂i
(
|∂iu|pi(x)−2∂iu

)
∈ λ∂Cα(x, u) + ∂Cβ(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ Rn (n ≥ 3) is a bounded open set with smooth boundary, λ > 0 is a real parameter,

α, β : Ω×R→ R are two locally Lipschitz functions with respect to the second variable and, for

each i ∈ {1, . . . , n}, pi : Ω̄ → R is a continuous function such that 2 ≤ pi(x) < n for all x ∈ Ω̄.

The notation ∂iu stands for the partial derivative of u with respect to the xi component, that

is ∂u/∂xi, while ∂Cα(x, t) denotes the Clarke generalized gradient of the function t 7→ α(x, t).

The definition and main properties of the Clarke generalized gradient will be given in the next

section.

We point out the fact that, if α(x, t) = 1
q(x) |t|

q(x) and β ≡ const., then problem (P3) reduces

to the following nonhomogeneous anisotropic eigenvalue problem
−

n∑
i=1

∂i
(
|∂iu|pi(x)−2∂iu

)
= λ|u|q(x)−2u in Ω,

u = 0 on ∂Ω,

(3.15)

which was studied by Mihǎilescu, Pucci and Rǎdulescu [84, 85]. In these papers the authors

show that the “competition” between the growth rates of the functions pi and q deeply influ-

ence the existence or nonexistence of the weak solutions. To our best knowledge these are the

first papers dealing with the anisotropic variable exponent −→p (·)-Laplace operator, i.e.

∆−→p (·)u =

n∑
i=1

∂i

(
|∂iu|pi(x)−2∂iu

)
,

where−→p : Ω̄→ Rn is the vectorial function−→p (·) = (p1(·), . . . , pn(·)). Also in these papers it was

introduced for the first time the anisotropic exponent Sobolev space W 1,−→p (·)
0 (Ω) that allowed

an accurate study of problems of the type (3.15). We point out that the aforementioned space

can be viewed as a natural generalization of the variable exponent Sobolev space W 1,p(·)
0 (Ω)
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

(when p1(·) = · · · = pn(·) = p(·)) as well as a natural generalization of the classical anisotropic

Sobolev space W 1,−→p
0 (Ω) (when pi are constant functions, i ∈ {1, . . . , n}).

On the other hand, let us consider the case when α ≡ const. and β is the primitive of some

Carathéodory function f : Ω× R→ R

β(x, t) =

t∫
0

f(x, s) ds.

Then the function t 7→ β(x, t) is differentiable and thus ∂Cβ(x, t) = {f(x, t)} and problem (P3)

reduces to the following nonhomogeneous anisotropic problem
−

n∑
i=1

∂i
(
|∂iu|pi(x)−2∂iu

)
= f(x, u) in Ω,

u = 0 on ∂Ω,

(3.16)

which was studied recently by Boureanu, Pucci and Rǎdulescu [12], by using the symmetric

mountain-pass theorem of Ambrosetti and Rabinowitz.

The abstract framework required to study differential inclusions of the type (P3) lies at the

interface of three important directions in analysis:

• the nonsmooth analysis: the need for such theory comes naturally whenever we deal with

functions which are not differentiable everywhere, but are convex or locally Lipschitz

(see, e.g., Andrei, Costea and Matei [4], Chang [21], Clake [24], Costea and Varga [37, 38],

Kristály, Rǎdulescu and Varga [67], Motreanu and Panagiotopoulos [90], Motreanu and

Rǎdulescu [91], Naniewicz and Panagiotopoulos [94], Panagiotopoulos [98, 99, 100]).

• the variable exponent Lebesgue-Sobolev spaces theory: problems involving the isotropic p(x)-

Laplace operator have captured special attention in the last decades since they can model

various phenomena which arise in elastic mechanics (see, e.g., Zhikov [123]), image restora-

tion (see, e.g., Chen, Levine and Rao [23]) or electrorheological fluids (see, e.g., Acerbi and

Mingione [1], Diening [42], Diening, Harjulehto, Hästö and Ružička [43], Halsey [55],

Ružička [109], Costea and Mihǎilescu [33], Mihǎilescu and Rǎdulescu [86, 87]).
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

• the anisotropic Sobolev spaces theory: the need for such theory comes naturally whenever we

deal with materials possessing inhomogeneities that have different behavior on different

space directions (see, e.g., Edmunds and Edmunds [44], Nikol’skii [97], Rákosník [104,

105], Troisi [119]).

Although the −→p (·)-Laplace operator was introduced recently, in 2007 by Mihǎilescu, Rad-

ulescu and Pucci, problems involving this operator, or similar operators, have captured special

attention in the last years (see Boureanu, Pucci and Rǎdulescu [12], Fan [45], Mihǎilescu and

Moroşanu [81], Mihǎilescu, Moroşanu and Rǎdulescu [82, 83], Stancu-Dumitru [117]). How-

ever, in all the works we are aware of, the energy functional attached to the problem is smooth,

while differential inclusions like problem (P3), for which the attached energy functional is only

locally Lipschitz and not differentiable, have not yet been studied.

In this section we prove a multiplicity result concerning the weak solutions of problem

(P3). Before defining the concept of weak solution we denote by X the anisotropic variable

exponent Sobolev space W 1,−→p (·)
0 (Ω) and by ‖ · ‖ the norm defined on this space, that is ‖ · ‖−→p (·).

Definition 3.3. A function u ∈ X is called a weak solution for problem (P3) if, for a.e. x ∈ Ω, there

exist ξ(x) ∈ ∂Cα(x, u(x)) and ζ(x) ∈ ∂Cβ(x, u(x)) such that∫
Ω

n∑
i=1

|∂iu|pi(x)−2∂iu∂iv dx = λ

∫
Ω
ξv dx+

∫
Ω
ζv dx, for all v ∈ X.

In order to obtain our main result we shall assume fulfilled the following hypotheses.

(H15) For each i ∈ {1, . . . , n} the function pi ∈ C+(Ω̄) is log-Hölder continuous, 2 ≤ pi(x) < n

for all x ∈ Ω̄ and p+
M < P ∗;

(H16) The function α : Ω× R→ R satisfies

(i) α(x, 0) = 0 for a.e. x ∈ Ω;

(ii) x 7→ α(x, t) is measurable for all t ∈ R;

(iii) t 7→ α(x, t) is locally Lipschitz for a.e. x ∈ Ω;
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

(iv) there exist cα > 0 and q ∈ C+(Ω̄) such that 1 < q− ≤ q+ < p−m and

|ξ(x)| ≤ cα|t|q(x)−1

for a.e. x ∈ Ω, all t ∈ R and all ξ(x) ∈ ∂Cα(x, t);

(v) there exist µ ∈ (0, 1), α0 > 0 and t0 > 0 such that

α(x, t) ≤ 0, for all |t| < µ and a.e. x ∈ Ω,

and

α(x, t0) ≥ α0 > 0, for a.e. x ∈ Ω.

(H17): The function β : Ω× R→ R satisfies

(i) β(x, 0) = 0 for a.e. x ∈ Ω;

(ii) x 7→ β(x, t) is measurable for all t ∈ R;

(iii) there exists r ∈ C+(Ω̄) with the property that 1 < r(x) < P ∗ and K ∈ Lr′(·)(Ω) such

that

|β(x, t1)− β(x, t2)| ≤ K(x)|t1 − t2|

for a.e. x ∈ Ω and all t1, t2 ∈ R;

(iv) β(x, t) ≤ 0, for a.e. x ∈ Ω and all t ∈ R.

The main result of this section is given by the following theorem.

Theorem 3.3. (N.C. & G. MOROŞANU [31]) Assume that (H15), (H16) and (H17) hold. Then there

exists λ∗ > 0 such that for any λ ∈ (λ∗,+∞) problem (P3) possesses at least two non-zero weak

solutions.

Proof. Let us introduce the functionals J : X → R, Λ : Lq(·)(Ω) → R and Θ : Lr(·)(Ω) → R

defined by

J(u) :=

∫
Ω

n∑
i=1

|∂iu|pi(x)

pi(x)
dx, Λ(w) :=

∫
Ω
α(x,w(x)) dx, Θ(z) :=

∫
Ω
β(x, z(x)) dx.
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

Standard arguments can be employed in order to conclude that the functional Eλ : X → R

defined by

Eλ(u) = J(u)−Θ(u)− λΛ(u),

is locally Lipschitz and each critical point of this functional is a solution of problem (P3). More-

over, it can be shown that Eλ is sequentially weakly lower semicontinuous, coercive and satis-

fies the (PS)-condition. The following claims complete the proof.

CLAIM 1. There exists λ∗ > 0 such that for any λ > λ∗ we can determine u0 ∈ X for which

Eλ(u0) < 0.

Let x0 ∈ int Ω be such that the distance from x0 to the boundary of Ω is maximal and

let R0 be this distance (R0 = max
x∈Ω

min
y∈∂Ω

|x − y|). Clearly, for 0 < R < R0/2, we have

B̄(x0; 2R) ⊆ Ω. It can be easily seen that there exists u0 ∈ C∞0 (B(x0; 2R)) such that u0(x) = t0 for x ∈ B̄(x0;R)

0 ≤ u0(x) ≤ t0 for x ∈ B(x0; 2R) \B(x0;R).

Since u0 ∈ C∞0 (B(x0; 2R)), for i ∈ {1, . . . , n}, there exists mi > 0 such that |∂iu0(x)| ≤ mi

in B(x0; 2R). Then for m := max{1,m1 . . . ,mn}we have

Eλ(u0) =

∫
Ω

n∑
i=1

|∂iu0(x)|pi(x)

pi(x)
dx−

∫
Ω
β(x, u0(x)) dx− λ

∫
Ω
α(x, u0(x)) dx

≤
∫
B(x0;2R)

n∑
i=1

mp+
M

p−m
dx−

∫
B(x0;2R)

β(x, u0(x)) dx− λ
∫
B(x0;2R)

α(x, u0(x)) dx.

Obviously,

−
∫
B(x0;2R)

β(x, u0(x)) dx =

∫
B(x0;2R)

β(x, 0)− β(x, u0(x)) dx

≤
∫
B(x0;2R)

K(x)u0(x) dx ≤ β1,

for a suitable constant β1 > 0.

On the other hand, splitting B(x0; 2R) into the sets

D1 = {x ∈ B(x0; 2R) : α(x, u0(x)) ≤ 0}
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

and

D2 = {x ∈ B(x0; 2R) : α(x, u0(x)) > 0} ,

we observe thatB(x0;R) ⊂ D2. Applying Lebourg’s mean value theorem and taking into

account hypothesis (H16) one can easily prove that∫
B(x0;2R)

α(x, u0(x)) dx ≥ −α1 + α0
ωnR

n

n
,

where ωn is the area of the unit sphere in Rn and α1 > 0 is a suitable constant.

Thus

Eλ(u0) ≤ mp+
M 2nωnR

n

p−m
+ β1 + α1 − λα0

ωnR
n

n
< 0,

for any λ > n2nm
p+
M ωnRn+n(β1+α1)p−m

α0ωnRn
.

CLAIM 2. The functional Eλ possesses two critical points u1, u2 ∈ X \ {0}, provided that

λ ∈ (λ∗,+∞).

The facts that Eλ is sequentially lower semicontinuous and coercive allow us to apply

Theorem 1.2 to obtain the existence of an element u1 ∈ X such that Eλ(u1) = min
u∈X
Eλ(u).

Obviously u1 is a critical point of Eλ as it is a global minimizer, while CLAIM 1 ensures

that Eλ(u1) < 0, which means that u1 6= 0. Furthermore, if there exists ρ ∈ (0, ‖u1‖) such

that

inf
∂B(0;ρ)

Eλ ≥ 0 = max{Eλ(0), Eλ(u1)},

then we can apply Theorem 1.3 to obtain another critical point u2 ∈ X \ {0, u1}.

Let us consider s ∈ C+(Ω̄) such that p+
M < s− ≤ s+ < P ∗ and choose ρ > 0 such

that ρ < min{1, 1/cs, ‖u1‖}, where cs > 0 is the constant given by the compact inclusion

W
1,−→p (·)
0 (Ω) ↪→ Ls(·)(Ω), i.e.,

‖u‖s(·) ≤ cs‖u‖, for all u ∈W 1,−→p (·)
0 (Ω).
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

Then for each u ∈ ∂B(0; ρ) we have ‖∂iu‖pi(·) < 1 (1 ≤ i ≤ n) and ‖u‖s(·) < 1. Thus for

u ∈ X such that ‖u‖ = ρ we have

Eλ(u) = J(u)−Θ(u)− λΛ(u)

≥ 1

p+
M

n∑
i=1

∫
Ω
|∂iu|pi(x) dx−

∫
Ω
β(x, u(x)) dx− λ

∫
Ω
α(x, u(x)) dx

≥ 1

p+
M

n∑
i=1

‖∂iu‖
p+
M

pi(·) − λ
∫

Ω
α(x, u(x)) dx.

Using the convexity of the function h : R+ → R+ defined by h(t) = tp
+
M we deduce that

n∑
i=1

‖∂iu‖
p+
M

pi(·) ≥
1

np
+
M−1
‖u‖p

+
M .

Defining Ω1 = {x ∈ Ω : |u(x)| < µ} and Ω2 = {x ∈ Ω : |u(x)| ≥ µ} and by the use of

hypothesis (H16)− (v) and Lebourg’s mean value theorem we can prove that∫
Ω
α(x, u(x)) dx ≤ cµq+−s−‖u‖s−s(·) ≤ cµ

q+−s−cs
−
s ‖u‖s

−
,

for a suitable constant c > 0.

Thus, for u ∈ ∂B(0; ρ)

Eλ(u) ≥ 1

p+
Mn

p+
M−1

ρp
+
M − λcµq+−s−cs

−
s ρs

−
= ρp

+
M

(
1

p+
Mn

p+
M−1

− λcµq+−s−cs
−
s ρs

−−p+
M

)
.

Finally, we observe that the function h : [0, 1]→ R defined by

h(t) =
1

p+
Mn

p+
M−1

− λcµq+−s−cs
−
s ts

−−p+
M

is continuous on [0, 1] and h(0) = 1

p+
Mn

p+
M
−1

> 0, hence h > 0 in a small neighborhood

at the right of the origin. Choosing ρ > 0 such that ρ belongs to this neighborhood and

ρ < min{1, 1/cs, ‖u1‖} we deduce that Eλ(u) > 0 for all u ∈ ∂B(0; ρ) and this completes

the proof.
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

We close this section with several examples of functions α, β : Ω× R→ R for which condi-

tions (H16) and (H17) are fulfilled.

Example 3.4. Let {εk} be a sequence of positive real numbers such that εk ↓ 0 as k → +∞. Let

q ∈ C+(Ω̄) be such that 1 < q− ≤ q+ < p−m and let αk, βk : Ω× R→ R to be defined by

αk(x, t) =


1

q(x) |t+ εk|q(x), for t ∈ (−∞,−εk],

0, for t ∈ (−εk, εk),
1

q(x) |t− εk|
q(x), for t ∈ [εk,+∞),

and

βk(x, t) = 0, for all (x, t) ∈ Ω× R.

Then, ∂Cβ(x, t) = 0 for all (x, t) ∈ Ω× R, while

∂Cαk(x, t) =


|t+ εk|q(x)−2(t+ εk), for t ∈ (−∞,−εk),

0, for t ∈ [−εk, εk],

|t− εk|q(x)−2(t− εk), for t ∈ (εk,+∞).

Thus, for any ξ(x) ∈ ∂Cα(x, t), we have

|ξ(x)| ≤


|t|q(x)−1 ≤ 1

εq
+−1
k

|t|q(x)−1, for |t| ∈ [1 + εk,+∞),

1 ≤
(
|t|
εk

)q(x)−1
≤ 1

εq
+−1
k

|t|q(x)−1, for |t| ∈ (εk, 1 + εk),

0 ≤ 1

εq
+−1
k

|t|q(x)−1, for |t| ∈ [0, εk).

We point out the fact that when k → +∞ then problem (P3) with αk, βk defined above reduces to

problem (3.15), hence this example shows that slightly perturbing problem (3.15) around the origin we

can obtain two nontrivial weak solutions instead of only one weak solution as Theorem 3 [85] states.

Example 3.5. Let µ ∈ (0, 1), q1, q2 ∈ C+(Ω̄) be such that 1 < q−1 ≤ q+
1 < q−2 ≤ q+

2 < p−m and let

a ∈ L∞(Ω) be such that a(x) < 0 for a.e. x ∈ Ω. We consider the functions α, β : Ω × R → R to be

defined by

α(x, t) =

 0, for t ∈ (−∞, µ),

max
{

(t− µ)q1(x), (t− µ)q2(x)
}
, for t ∈ [µ,+∞),
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3.3. The p(·)-Laplace operator with the Dirichlet boundary condition

and

β(x, t) = a(x)|t|.

Then

∂Cα(x, t) =



0, for t ∈ (∞, µ],

q1(x)(t− µ)q1(x)−1, for t ∈ (µ, 1 + µ),

[q1(x), q2(x)] , for t = 1 + µ,

q2(x)(t− µ)q2(x)−1, for t ∈ (1 + µ,+∞),

and

∂Cβ(x, t) =


−a(x), for t ∈ (−∞, 0),

[a(x),−a(x)] , for t = 0,

a(x), for t ∈ (0,+∞).

Thus for every ξ(x) ∈ ∂Cα(x, t) we have

|ξ(x)| ≤



0 ≤ q+
2

µq
+
2 −1
|t|q2(x)−1, for t ∈ (−∞, µ],

q+
1 ≤ q

+
2

(
|t|
µ

)q2(x)−1
≤ q+

2

µq
+
2 −1
|t|q2(x)−1, for t ∈ (µ, 1 + µ),

q+
2 ≤

q+
2

µq
+
2 −1
|t|q2(x)−1, for t = 1 + µ,

q+
2 |t− µ|q2(x)−1 ≤ q+

2

µq
+
2 −1
|t|q2(x)−1, for t ∈ [1 + µ,+∞).

Example 3.6. Let f, g ∈ L∞loc(Ω× R) and consider α, β : Ω× R be defined by

α(x, t) =

∫ t

0
f(x, s) ds and β(x, t) =

∫ t

0
g(x, s) ds.

Obviously, t 7→ α(x, t) and t 7→ β(x, t) are locally Lipschitz and according to Proposition 1.7 in

Motreanu and Panagiotopoulos [90], we have

∂Cα(x, t) =
[
f(x, t), f(x, t)

]
and ∂Cβ(x, t) =

[
g(x, t), g(x, t)

]
,

where for a function h ∈ L∞loc(Ω× R) we denote by

h(x, t) = lim
δ↓0

inf
|s−t|<δ

h(x, t) and h(x, t) = lim
δ↓0

sup
|s−t|<δ

h(x, t).

Clearly, there are many ways in which we can choose f and g such that conditions (H16) and (H17) are

fulfilled.
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Chapter 4

Differential inclusions in

Orlicz-Sobolev spaces

4.1 Formulation of the problem

In this chapter we establish an existence result for differential inclusions involving quasilinear

elliptic operators in divergence form of the following type

Au := div (a(|∇u|)∇u) , (4.1)

subjected to Dirichlet boundary conditions, in a bounded domain with smooth boundary. More

exactly, we are interested in the existence of weak solutions for the problem

(P) :


−div (a(|∇u|)∇u) ∈ ∂CF (x, u), in Ω,

u = 0, on ∂Ω,

where Ω is a bounded, open subset of RN (N ≥ 2) with smooth boundary ∂Ω and a : [0,∞)→

[0,∞) is a mapping such that the function ϕ : R→ R defined by

ϕ(t) = a(|t|)t,

63



C
E

U
eT

D
C

ol
le

ct
io

n

4.1. Formulation of the problem

is continuous, strictly increasing and onto. Here, F : Ω× R→ R is a locally Lipschitz function

with respect to the second variable and, as usual, ∂CF (x, t) denotes the Clarke generalized

gradient of the mapping t 7→ F (x, t).

As Ruf [108] pointed out, in dealing with variational problems of the type (P) two questions

arise naturally:

(Q1): Which is the appropriate function space for the problem to be well-posed, hence solvable?

(Q2): What kind of growth conditions on F would ensure the existence of weak solutions?

The answer to (Q1) is determined by two competing factors: on the one hand the space should

be "large enough" such that the functional attached to the problem satisfies an appropriate

compactness condition (e.g. Palais-Smale or Cerami condition) which ensures that a sequence

for which the functional converges to a critical value has a convergent subsequence; and, on

the other hand, the space should be "small enough" such that the functional has the desired

regularity (locally Lipschitz in our case). In the classical case of the p-Laplacian, i.e. a(s) = sp−2

and

Au = ∆pu = div
(
|∇u|p−2∇u

)
the suitable space in which the problem is studied is the Sobolev space W 1,p(Ω). However, in

our framework, the space Lp(Ω) needs to be replaced by the Orlicz space LΦ(Ω) in which the

role of the convex function tp is played by the N -function Φ. It is also worth mentioning that

these spaces fill a gap in the Sobolev embedding theorem as, for mp = N ,

Wm,p(Ω) ↪→ Lq(Ω), for all q ∈ [p,∞),

but

Wm,p(Ω) 6↪→ L∞(Ω),

hence there is no smallest Lq space in which Wm,p(Ω) can be embedded. Trudinger [120]

showed that the best target to embed the space Wm,p(Ω) is the Orlicz space LΦ(Ω) with

Φ(t) = exp
(
|t|p/(p−1)

)
− 1.
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4.1. Formulation of the problem

Regarding (Q2), it is well known that in the case of the p-Laplacian an important role is

played by the critical exponent in the Sobolev embedding theorem p∗ = Np/(N − p) for which

the space setup works and one is able to prove existence results if subcritical growth assump-

tions are imposed, while in the critical case we may have nonexistence results. For example let

us consider the particular case

a(s) = 1, ∀s ≥ 0 and F (t) =

∫ t

0
f(s)ds

with f : R → R a continuous function. Then, F is differentiable and the ∂CF (t) = {f(t)} and

problem (P) becomes  −∆u = f(u), in Ω,

u = 0, on ∂Ω.
(4.2)

Clearly, the suitable choice for the function space is H1
0 (Ω) and if f has "subcritical growth",

that is

|f(t)| ≤ c1 + c2|t|q, 1 < q < 2∗ − 1,

where 2∗ = 2N
N−2 , then one can prove the existence of solutions, while in the "critical growth"

case

f(t) = t2
∗−1,

one can use Pohozaev’s identity to prove that problem (4.2) has only the trivial solution if Ω is

bounded and starshaped.

In this chapter, we consider the case when ϕ : R → R, ϕ(t) = a(|t|)t, defines an admissible

function and the nonlinearity F has subcritical growth and we will employ variational methods

to prove the existence of at least one weak solution for our problem. Let us start by specifying

what we understand by weak solution for problem (P).

Definition 4.1. A function u ∈ W 1
0L

Φ(Ω) is called weak solution for problem (P) if, for a.e. x ∈ Ω,

there exists ξ(x) ∈ ∂CF (x, u(x)) such that∫
Ω
a(|∇u|)∇u · ∇v dx =

∫
Ω
ξv dx, for all v ∈W 1

0L
Φ(Ω).
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4.2. An existence result

4.2 An existence result

In order to apply the Direct Method in the Calculus of Variations and show that the energy

functional attached to problem (P) has a global minimizer, hence a critical point, we will im-

pose the following hypotheses.

(H0) The functions ϕ,ψ : R→ R are admissible and satisfy

(i) ϕ(t) = a(|t|)t;

(ii) 1 < ϕ− ≤ ϕ+ <∞ and 1 < ψ− ≤ ψ+ <∞;

(iii) The corresponding N -function of ψ, i.e. Ψ(t) =
∫ t

0 ψ(s) ds, increases essentially slower

than Φ∗ whenever ∫ ∞
1

φ−1(t)

t(N+1)/N
dt =∞.

(HF ) F : Ω× R→ R is a Carathéodory function such that

(i) F (x, 0) = 0 for a.e. x ∈ Ω;

(ii) t 7→ F (x, t) is locally Lipschitz for a.e. x ∈ Ω;

(iii) there exists b ∈ LΨ∗(Ω) such that

|ξ| ≤ b(x) + ψ(|t|),

for a.e. x ∈ Ω, all t ∈ R and all ξ ∈ ∂CF (x, t).

Let us consider the functionals JΦ : W 1
0L

Φ(Ω)→ R and JF : LΨ(Ω)→ R defined by

JΦ(u) =

∫
Ω

Φ(|∇u|) dx,

and

JF (w) =

∫
Ω
F (x,w(x)) dx.

The energy functional corresponding to problem (P), E : W 1
0L

Φ(Ω)→ R, is given by

E(u) = JΦ(u)− JF (u). (4.3)
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4.2. An existence result

Condition (H0) ensures that W 1
0L

Φ(Ω) is compactly embedded into LΨ(Ω), hence E is well

defined. The following lemma guarantees the fact that, in order to solve problem (P), it suffices

to seek for critical points, in the sense of Definition 1.10, of the energy functional attached to

our problem.

Lemma 4.1. Assume (H0) and (HF ) hold. Then the functional E : W 1
0L

Φ(Ω) → R defined in (4.3)

has the following properties:

(i) E is locally Lipschitz;

(ii) E is weakly lower semicontinuous;

(iii) each critical point of E is a weak solution for problem (P1).

Proof. (i) According to Lemma A.6 in [25] JΦ ∈ C1
(
W 1

0L
Φ(Ω),R

)
and

〈J ′Φ(u), v〉 =

∫
Ω
a(|∇u|)∇u · ∇v dx (4.4)

Since W 1
0L

Φ(Ω) is compactly embedded into LΨ(Ω) there exists c1 > 0 such that

|u|Ψ ≤ c1‖u‖, for all u ∈W 1
0L

Φ(Ω), (4.5)

with ‖ · ‖ defined as in Section 1.3, that is ‖u‖ = | |∇u| |Φ. Let us fix now u0 ∈ W 1
0L

Φ(Ω)

and prove that there exists r > 0 sufficiently small such that E is Lipschitz continuous

on B̄W 1
0L

Φ(Ω)(u0, r) =
{
v ∈W 1

0L
Φ(Ω) : ‖v − u0‖ ≤ r

}
. Theorem 2.3 ensures the existence

of an r0 > 0 such that JF is Lipschitz continuous on B̄LΨ(Ω)(u0, r0), hence there exists a

positive constant L such that

|JF (w1)− JF (w2)| ≤ L|w1 − w2|Ψ, for all w1, w2 ∈ B̄LΨ(Ω)(u0, r0). (4.6)

From (4.5) and (4.6) we get

|JF (u1)− JF (u2)| ≤ Lc1‖u1 − u2‖, for all u1, u2 ∈ B̄W 1
0L

Φ(Ω)(u0, r0/c1). (4.7)
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On the other hand, for r = r0/c1 and u1, u2 ∈ B̄W 1
0L

Φ(Ω)(u0, r) we have

|JΦ(u1)− JΦ(u2)| ≤ |〈J ′Φ(ū), u1 − u2〉|

≤ ‖J ′Φ(ū)‖[W 1
0L

Φ(Ω)]
∗‖u1 − u2‖,

for some ū ∈ {λu1 + (1− λ)u2 : λ(0, 1)}. The space W 1
0L

Φ(Ω) is reflexive, hence the ball

B̄W 1
0L

Φ(Ω)(u0, r) is weakly compact, therefore there exists m > 0 such that

‖J ′Φ(ū)‖[W 1
0L

Φ(Ω)]
∗ ≤ m. (4.8)

Taking into account (4.7) and (4.8) we conclude thatE is a Lipschitz continuous functional

on B̄W 1
0L

Φ(Ω)(u0, r).

(ii) Let {un} ⊂W 1
0L

Φ(Ω) be such that un ⇀ u in W 1
0L

Φ(Ω). Reasoning as in Lemma 3.2 in [52]

we infer that JΦ is weakly lower semicontinuous, hence

JΦ(u) ≤ lim inf
n→∞

JΦ(un).

On the other hand, un → u in LΨ(Ω) and by Fatou’s lemma

lim sup
n→∞

JF (un) = lim sup
n→∞

∫
Ω
F (x, un(x)) dx

≤
∫

Ω
lim sup
n→∞

F (x, un(x)) dx

=

∫
Ω
F (x, u(x)) dx

= JF (u),

which shows that JF is weakly upper semicontinuous on W 1
0L

Φ(Ω).

(iii) Let u ∈ W 1
0L

Φ(Ω) be a critical point of E. According to Propositions 2.3.1 and 2.3.2 in

Clarke [24]

0 ∈ ∂CE(u) ⊆ J ′Φ(u)− ∂CJF (u),

hence there exists η ∈ ∂CJF (u) such that

〈J ′Φ(u), v〉 = 〈η, v〉, for all v ∈W 1
0L

Φ(Ω). (4.9)
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4.2. An existence result

Theorem 2.3 ensures the existence of a ξ ∈ LΨ∗(Ω) which satisfies ξ(x) ∈ ∂CF (x, u(x)), for a.e. x ∈ Ω,

〈η, v〉 =
∫

Ω ξ(x)v(x) dx, for all v ∈W 1
0L

Φ(Ω).
(4.10)

The conclusion follows at once from (4.4), (4.9) and (4.10).

Theorem 4.1. Suppose (H0) and (HF ) are fulfilled and assume in addition that ψ+ < ϕ−. Then

problem (P) has a nontrivial weak solution.

Proof. The idea is to prove that E is coercive and apply Theorem 1.2 to conclude that E pos-

sesses a global minimum point. To this end, let u ∈W 1
0L

Φ(Ω) be such that ‖u‖ > 1. Then, from

(2.8), we have

JΦ(u) ≥ | |∇u| |ϕ
−

Φ = ‖u‖ϕ− . (4.11)

On the other hand, we can apply Lebourg’s mean value theorem to deduce that there exist

λ0 ∈ (0, 1) and ζ̄ ∈ ∂CF (x, λ0u) such that

F (x, u(x)) = F (x, u(x))− F (x, 0) = ζ̄(x)u(x), for a.e. x ∈ Ω.

Thus,

JF (u) =

∫
Ω
F (x, u(x)) dx

≤
∫

Ω
|ζ̄||u| dx

≤
∫

Ω
[b(x) + ψ (λ0|u|)] |u| dx

≤ 2|b|Ψ∗ |u|Ψ +
1

λ0

∫
Ω
λ0|u|ψ(λ0|u|) dx.

Using Young’s inequality we get

λ0|u|ψ(λ0|u|) ≤
∫ 2λ0|u|

λ0|u|
ψ(s) ds ≤ Ψ(2λ0|u|),
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4.2. An existence result

and the ∆2-condition yields∫
Ω
λ0|u|ψ(λ0|u|) dx ≤

∫
Ω

Ψ(2λ0|u|) dx ≤ C1 + C2

∫
Ω

Ψ(λ0|u|) dx,

for some suitable positive constants C1 and C2. Clearly, relations (2.8) and (2.9) imply∫
Ω

Ψ(λ0|u|) dx ≤ λ0

(
|u|ψ

+

Ψ + |u|ψ
−

Ψ

)
.

The above relations together with (4.5) lead to the following estimate

JF (u) ≤ C3 + C4‖u‖+ C5‖u‖ψ
−

+ C6‖u‖ψ
+
, (4.12)

for some suitable positive constants C3, C4, C5, C6. Taking into account (4.11) and (4.12) we

infer that E(u)→∞ as ‖u‖ → ∞.
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Chapter 5

Variational-like inequality problems

governed by set-valued operators

In 1989, J. Parida, M. Sahoo and S. Kumar [103] introduced a new type of inequality problem

of variational type which had the form

Find u ∈ K such that

〈A(u), η(v, u)〉 ≥ 0, for all v ∈ K, (5.1)

where K ⊆ Rn is a nonempty closed and convex set and A : K → Rn, η : K ×K → Rn are two

continuous maps. The authors called (5.1) variational-like inequality problem and showed that

this kind of inequalities can be related to some mathematical programming problems. In the

recent years, various extensions of (5.1) have been proposed and analyzed by many authors

(see e.g. R. Ahmad and S.S. Irfan [7], M.-R. Bai et al. [9], N. Costea and V. Rădulescu [34], N.H.

Dien [41], Y.P. Fang and N.J. Huang [47], A.H. Siddiqi, A. Khaiq and Q.H. Ansari [116]) who

showed that variational-like inequality problems can be successfully applied in operations re-

search, optimization, mathematical programming and contact mechanics. For various iterative

schemes and algorithms for finding approximate solutions for variational-like inequalities as

well as convergence results we refer to Q.H. Ansari and J.-C Yao [6] and C.-H. Lee, Q.H. Ansari

and J.-C. Yao [72].
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The goal of this section is to extend the results obtained in [103] to the following setting:

X is a Banach space (not necessarily reflexive) with X∗ and X∗∗ = (X∗)∗ its dual and bidual,

respectively, K is a nonempty closed and convex subset of X∗∗ and A : K → 2X
∗

is a set-

valued map. We denote by 〈·, ·〉 the duality pairing between a Banach space and its dual; if

u ∈ X , f ∈ X∗ and ξ ∈ X∗∗ by 〈f, u〉 we understand f(u), while by 〈f, ξ〉 we understand ξ(f).

We are interested in finding solutions for the following inequality problems

Find u ∈ K ∩ D(φ) such that

∃u∗ ∈ A(u) : 〈u∗, η(v, u)〉+ φ(v)− φ(u) ≥ 0, for all v ∈ K (5.2)

and

Find u ∈ K such that

∃u∗ ∈ A(u) : 〈u∗, η(v, u)〉 ≥ 0, for all v ∈ K (5.3)

where η : K ×K → X∗∗, A : K → 2X
∗

is a set-valued map, φ : X∗∗ → R ∪ {+∞} is a proper

convex and lower semicontinuous functional such that Kφ := K ∩D(φ) 6= ∅. Here D(φ) stands

for the effective domain of the functional φ, i.e. D(φ) = {u ∈ X∗∗ : φ(u) < +∞}. If φ is the

indicator function of the set K, i.e.

φ(u) =

 0, u ∈ K

+∞, u 6∈ K,

then problem (5.2) reduces to inequality problem (5.3). Moreover, if A is a single-valued op-

erator, then (5.2) becomes a generalized variational-like inequality which was introduced by N.H.

Dien [41]. If A is a single-valued operator and η(v, u) = v − u then inequality problem (5.3)

becomes a variational inequality whose study began in the 1960’s (see e.g. G. Fichera [50], F.E.

Browder [14], P. Hartman and G. Stampacchia [57], J.L. Lions and G. Stampacchia [74]). For

more information and connections regarding such types of inequality problems we refer to F.

Giannessi, A. Maugeri and P.M. Pardalos [54].

Definition 5.1. A solution u0 ∈ K∩D(φ) of inequality problem (5.2) is called strong if 〈u∗, η(v, u0)〉+

φ(v)− φ(u0) ≥ 0 holds for all v ∈ K and all u∗ ∈ A(u0).
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5.1. The case of nonreflexive Banach spaces

It is clear from the above definition that if A is a single-valued operator, then the concepts

of solution and strong solution are one and the same.

5.1 The case of nonreflexive Banach spaces

Throughout this subsection X will denote a nonreflexive Banach space and K will stand for a

nonempty closed and convex subset of X∗∗. Before stating the results concerning the existence

of solutions for problem (5.2) we indicate below some hypotheses that will be needed in the

sequel.

(H18) A : K → 2X
∗

is a set-valued map which is l.s.c. from K endowed with the strong

topology into X∗ endowed with the w∗-topology and has nonempty values;

(H19) A : K → 2X
∗

is a set valued map which is u.s.c. from K endowed with the strong

topology into X∗ endowed with the w∗-topology and has nonempty w∗-compact values;

(H20) φ : X∗∗ → R ∪ {+∞} is a proper convex lower semicontinuous functional such that

Kφ := K ∩ D(φ) is nonempty;

(H21) η : K ×K → X∗∗ is such that

• for all v ∈ K the map u 7→ η(v, u) is continuous;

• for all u, v, w ∈ K and all w∗ ∈ A(w), the map v 7→ 〈w∗, η(v, u)〉 is convex and

〈w∗, η(u, u)〉 ≥ 0 ;

Theorem 5.1. (N.C., D.A. ION & C. LUPU [28]) LetX be a nonreflexive Banach space andK ⊆ X∗∗

nonempty closed and convex. Assume that (H20), (H21) and either (H18) or (H19) hold. If the set Kφ

is not compact, assume in addition that there exists a nonempty compact convex subset C of Kφ such

that for each u ∈ Kφ \ C there exists u∗0 ∈ A(u) and v̄ ∈ C with the property that

〈u∗0, η(v̄, u)〉+ φ(v̄)− φ(u) < 0.

Then inequality problem (5.2) has at least one strong solution.
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5.2. The case of reflexive Banach spaces

Proof. Arguing by contradiction let us assume that (5.2) has no strong solution. Then, for each

u ∈ Kφ there exist ū∗ ∈ A(u) and v = v(u, ū∗) ∈ K such that

〈ū∗, η(v, u)〉+ φ(v)− φ(u) < 0. (5.4)

It is clear that the element v for which (5.4) takes place satisfies v ∈ D(φ), therefore v ∈ Kφ. We

consider next the set-valued map F : Kφ → 2Kφ defined by

F (u) = {v ∈ Kφ : 〈ū∗, η(v, u)〉+ φ(v)− φ(u) < 0} ,

where ū∗ ∈ A(u) is given in (5.4).

Using the hypotheses we are able to prove that the following statements hold:

CLAIM 1. For each u ∈ Kφ the set F (u) is nonempty and convex;

CLAIM 2. For each v ∈ Kφ the set F−1(v) = {u ∈ Kφ : v ∈ F (u)} is open;

CLAIM 3. Kφ =
⋃

v∈Kφ
intKφF

−1(v).

If the Kφ is not compact then the last condition of our theorem implies that for each u ∈ Kφ \C

there exists v̄ ∈ C such that u ∈ F−1(v̄) = intKφF
−1(v̄). This observation and the above Claims

ensure that all the conditions of Theorem 1.5 are satisfied for S = T = F and we deduce that

the set-valued map F : Kφ → 2Kφ has a fixed point u0 ∈ Kφ, i.e. u0 ∈ F (u0). This can be

rewritten equivalently as

0 ≤ 〈ū∗0, η(u0, u0)〉+ φ(u0)− φ(u0) < 0.

We have obtained thus a contradiction which completes the proof.

5.2 The case of reflexive Banach spaces

Throughout this subsection X will denote a real reflexive Banach space and K ⊆ X will be

a nonempty closed and convex set. In order to prove our existence results, throughout this

subsection, we shall use some of the following hypotheses:
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5.2. The case of reflexive Banach spaces

(H22)A : K → 2X
∗

is a set-valued map which l.s.c. fromK endowed with the strong topology

into X∗ endowed with the w-topology and has nonempty values;

(H23) A : K → 2X
∗

is a set valued map which is u.s.c. from K endowed with the strong

topology into X∗ endowed with the w-topology and has nonempty w-compact values;

(H24) φ : X → R ∪ {+∞} is a proper convex lower semicontinuous functional such that

Kφ := K ∩ D(φ) is nonempty;

(H25) η : K ×K → X is such that

• for all v ∈ K the map u 7→ η(v, u) is continuous;

• for all u, v, w ∈ K and all w∗ ∈ A(w) the map v 7→ 〈w∗, η(v, u)〉 is convex and

〈w∗, η(u, u)〉 ≥ 0 ;

(H26) η : K ×K → X is such that

• η(u, v) + η(v, u) = 0 for all u, v ∈ K;

• for all u, v, w ∈ K and all w∗ ∈ A(w) the map v 7→ 〈w∗, η(v, u)〉 is convex and lower

semicontinuous;

(H27) α : X → R is weakly lower semicontinuous functional such that lim sup
λ↓0

α(λv)
λ ≥ 0 for all

v ∈ X ;

(H28) α : X → R is a such that

• α(0) = 0;

• lim sup
λ↓0

α(λv)
λ ≥ 0, for all v ∈ X ;

• α(u) ≤ lim supα(uλ), whenever uλ ⇀ u in X;

The following theorem is a variant of Theorem 5.1 in the framework of reflexive Banach

spaces.

75



C
E

U
eT

D
C

ol
le

ct
io

n

5.2. The case of reflexive Banach spaces

Theorem 5.2. (N.C., D.A. ION & C. LUPU [28]) Let X be a real reflexive Banach space and K ⊆ X

nonempty compact and convex. Assume that (H24), (H25) and either (H22) or (H23) hold. Then

inequality problem (5.2) has at least one strong solution.

The proof of Theorem 5.2 follows basically the same steps as the proof of Theorem 5.1,

therefore we shall omit it.

We point out the fact that in the above case when K is a compact convex subset of X we do

not impose any monotonicity conditions on the set-valued operator A. However, in applica-

tions, most problems lead to an inequality whose solution is sought in a closed and convex sub-

set of the spaceX . Weakening the hypotheses onK by assuming thatK is only bounded, closed

and convex, we need to impose certain monotonicity properties on A. In the last decades more

and more efforts were made to introduce various generalizations of the monotonicity concept

from which we remember pseudomonotonicity, quasimonotonicity, semimonotonicity, relaxed

α monotonicity, relaxed η − α monotonicity, and these concepts were used to prove existence

results for various inequality problems, see e.g. M.-R. Bai et al. [9], M. Bianchi, N. Hadjisavvas

and S. Schaible [10], Y.Q. Chen [22], N. Costea and A. Matei [29, 30], N. Costea and V. Rădulescu

[35, 36], Y.P. Fang and N.J. Huang [47], S. Karamardian and S. Schaible [60], S. Karamardian, S.

Schaible and J.P. Crouzeix [61], I.V. Konov and S. Schaible [68] and the references therein.

Definition 5.2. Let η : K ×K → X and α : X → R be two single-valued maps. A set-valued map

T : K → 2X
∗ is said to be

• relaxed η − α monotone, if for all u, v ∈ K, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈v∗ − u∗, η(v, u)〉 ≥ α(v − u); (5.5)

• relaxed η − α pseudomonotone, if for all u, v ∈ K, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈u∗, η(v, u)〉 ≥ 0 implies 〈v∗, η(v, u)〉 ≥ α(v − u); (5.6)

• relaxed η − α quasimonotone, if for all u, v ∈ K, u 6= v, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈u∗, η(v, u)〉 > 0 implies 〈v∗, η(v, u)〉 ≥ α(v − u). (5.7)
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5.2. The case of reflexive Banach spaces

SPECIAL CASES.

1. η(v − u) = v − u. Then

• (5.5) reduces to: for all u, v ∈ K, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈v∗ − u∗, v − u〉 ≥ α(v − u),

and T is said to be relaxed α monotone;

• (5.6) reduces to: for all u, v ∈ K, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈u∗, v − u〉 ≥ 0 implies 〈v∗, v − u〉 ≥ α(v − u),

and T is said to be relaxed α pseudomonotone;

• (5.7) reduces to: for all u, v ∈ K, u 6= v, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈u∗, v − u〉 > 0 implies 〈v∗, v − u〉 ≥ α(v − u),

and T is said to be relaxed α quasimonotone.

2. η(v − u) = v − u and α ≡ 0. Then

• (5.5) reduces to: for all u, v ∈ K, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈v∗ − u∗, v − u〉 ≥ 0,

and T is said to be monotone;

• (5.6) reduces to: for all u, v ∈ K, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈u∗, v − u〉 ≥ 0 implies 〈v∗, v − u〉 ≥ 0,

and T is said to be pseudomonotone;

• (5.7) reduces to: for all u, v ∈ K, u 6= v, all v∗ ∈ T (v) and all u∗ ∈ T (u) we have

〈u∗, v − u〉 > 0 implies 〈v∗, v − u〉 ≥ 0,

and T is said to be quasimonotone.
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5.2. The case of reflexive Banach spaces

Example 5.1. Let a > 0 be a real number, K = [0, a] × [0, a] × {0} ⊂ R3 and define the set-valued

operators T1, T2, T3 : K → 2R
3 as follows

T1(u) = {(0, u∗2, u∗3) : u∗2 = u2 and − u1 ≤ u∗3 ≤ u1} ,

T2(u) = {(0, u∗2, u∗3) : a/2 ≤ u∗2 ≤ a and − u1 ≤ u∗3 ≤ u1} ,

T3(u) = {(0, u∗2, u∗3) : −a ≤ u∗2 ≤ 0 and − u1 ≤ u∗3 ≤ u1} .

Then that the following assertions hold true

• T1 is monotone;

• T2 is pseudomonotone, but not monotone;

• T3 is quasimonotone, but not pseudomonotone.

Defining α : R3 → R by α(u) = 0 for all u ∈ R3 it is easy to see that

• T1 is relaxed α monotone;

• T2 is relaxed α pseudomonotone, but not relaxed α monotone;

• T3 is relaxed α quasimonotone, but not relaxed α pseudomonotone.

Considering η : K ×K → R3 defined by η(v, u) = v − u and α : R3 → R as above we conclude that

• T1 is relaxed η − α monotone;

• T2 is relaxed η − α pseudomonotone, but not relaxed η − α monotone;

• T3 is relaxed η − α quasimonotone, but not relaxed η − α pseudomonotone.

Example 5.2. Let a > 0 be a real number, K = [0, a]× [0, a]× {0} ⊂ R3 and define T4 : K → 2R
3 as

follows

T4(u) =
{

(0, u∗2, u
∗
3) : u∗2 = −u2

2 and − u1 ≤ u∗3 ≤ u1

}
.

Let α : R3 → R be defined by α(u) = −2a‖u‖2. Then, T4 is relaxed α monotone and not monotone.

78



C
E

U
eT

D
C

ol
le

ct
io

n

5.2. The case of reflexive Banach spaces

Example 5.3. Let a, p > 1 be real numbers, K = [0, a]× [0, a]× {0} ⊂ R3 and define T5 : K → 2R
3

as follows

T5(u) = {(0, u∗2, u∗3) : u∗2 = −up2 and − u1 ≤ u∗3 ≤ u1}.

Let η : R3 × R3 → R3 be defined by η(v, u) = (up1 − v
p
1 , u

p
2 − v

p
2 , u

p
3 − v

p
3), α : R3 → R be defined

by α(u) = −1
2‖u‖. Then T5 is relaxed η − α monotone, but not relaxed α monotone.

On the other hand, if we define η : R3 × R3 → R3 by η(v, u) = (up1 − v
p
1 , u

p
2 − v

p
2 , u

p
3 − v

p
3) and

α : R3 → R by α(u) = 0 is easy to check that T5 is relaxed η − α pseudomonotone and not relaxed α

monotone.

Example 5.4. Let a > 0 be a real number, K = [−a, a]× [−a, a]×{0} ⊂ R3 and define T6 : K → 2R
3

as follows

T6(u) = {(0, u∗2, u∗3) : u∗2 = −u2 and − a ≤ u∗3 ≤ a} .

Then, T6 is relaxed α pseudomonotone with α : R3 → R, α(u) = −‖u‖2 and T6 is not pseudomonotone.

Example 5.5. Let K = [0, 2π]× [0, 2π]× {0} ⊂ R3 and define T7 : K → 2R
3 as follows

T7(u) = {(0, u∗2, u∗3) : u∗2 = cosu2 and − u1 ≤ u∗3 ≤ u1} .

We define α : R3 → R by α(u) = −m‖u‖2 where m > 1 is a constant and we claim that T7 is relaxed

α quasimonotone, but not quasimonotone.

On the other hand, if we consider η : R3 × R3 → R defined by

η(v, u) = (u1 cosu1, u2 cosu2, u3 cosu3)

and α : R3 → R defined by α(u) = 0 we observe that T7 is relaxed η−α quasimonotone, but not relaxed

α monotone.

From the above definitions and examples we have the following implications (while the

inverse of each implication is not true) which highlight the relations between different kinds of

generalized monotonicity for set-valued maps.
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5.2. The case of reflexive Banach spaces

monotone → pseudomonotone → quasimonotone

↓ ↓ ↓

relaxed α monotone → relaxed α pseudomonotone → relaxed α quasimonotone

↓ ↓ ↓

relaxed η − α monotone → relaxed η − α pseudomonotone → relaxed η − α quasimonotone

We are now able to formulate another main result concerning the existence of solutions of

inequality problem (5.2) on bounded, closed and convex subsets.

Theorem 5.3. (N.C., D.A. ION & C. LUPU [28]) Let K be a nonempty bounded closed and convex

subset of the real reflexive Banach space X . Let A : K → 2X
∗ be a relaxed η − α monotone map and

assume that (H24), (H26) and (H27) hold. If in addition

• (H22) holds, then inequality problem (5.2) has at least one strong solution;

• (H23) holds, then inequality problem (5.2) has at least one solution.

Proof. We shall apply Mosco’s Theorem for the weak topology of X . First we note that K is

weakly compact as it is a bounded closed and convex subset of the real reflexive space X and

φ : X → R ∪ {+∞} is weakly lower semicontinuous as it is convex and lower semicontinuous.

We define ξ, ζ : X ×X → R as follows

ξ(v, u) = − inf
v∗∈A(v)

〈v∗, η(v, u)〉+ α(v − u)

and

ζ(v, u) = sup
u∗∈A(u)

〈u∗, η(u, v)〉.

Let us fix u, v ∈ X and choose v̄∗ ∈ A(v) such that 〈v̄∗, η(v, u)〉 = inf
v∗∈A(v)

〈v∗, η(v, u)〉. For an

arbitrary fixed u∗ ∈ A(u) we have

ζ(v, u)− ξ(v, u) = sup
u∗∈A(u)

〈u∗, η(u, v)〉+ inf
v∗∈A(v)

〈v∗, η(v, u)〉 − α(v − u)

≥ 〈u∗, η(u, v)〉+ 〈v̄∗, η(v, u)〉 − α(v − u)

= 〈v̄∗, η(v, u)〉 − 〈u∗, η(v, u)〉 − α(v − u)

≥ 0.
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5.2. The case of reflexive Banach spaces

It is easy to check that the conditions imposed on η and α ensure that the map u 7→ ξ(v, u) is

weakly lower semicontinuous, while the map v 7→ ζ(v, u) is concave. Applying Theorem 1.8

for µ = 0 we conclude that there exists u0 ∈ K ∩ D(φ) such that

ξ(v, u0) + φ(u0)− φ(v) ≤ 0, for all v ∈ X,

since ζ(v, v) = 0 for all v ∈ X . A simple computation shows that for each w ∈ K we have

〈w∗, η(w, u0)〉+ φ(w)− φ(u0) ≥ α(w − u0), for all w∗ ∈ A(w). (5.8)

Let us fix v ∈ K and define wλ = u0 + λ(v − u0), with λ ∈ (0, 1). Then for a fixed w∗λ ∈ A(wλ)

from (5.8) we have

α(λ(v − u0)) ≤ 〈w∗λ, η(wλ, u0)〉+ φ(wλ)− φ(u0)

≤ λ〈w∗λ, η(v, u0)〉+ (1− λ)〈w∗λ, η(u0, u0)〉+ λφ(v) + (1− λ)φ(u0)− φ(u0)

= λ [〈w∗λ, η(v, u0)〉+ φ(v)− φ(u0)] ,

which leads to
α(λ(v − u0))

λ
≤ 〈w∗λ, η(v, u0)〉+ φ(v)− φ(u0). (5.9)

CASE 1. (H22) holds.

We shall prove next that u0 is a strong solution of inequality problem (5.2). Let u∗0 ∈ A(u0)

be arbitrarily fixed. Combining the fact that wλ → u0 as λ ↓ 0 with the fact that A is l.s.c.

from K endowed with the strong topology into X∗ endowed with the w−topology we

deduce that for each λ ∈ (0, 1) we can find w∗λ ∈ A(wλ) such that w∗λ ⇀ u∗0 as λ ↓ 0. Taking

the superior limit in (5.9) as λ ↓ 0 and keeping in mind (H1
α) we get

0 ≤ lim sup
λ↓0

α(λ(v − u0))

λ

≤ lim sup
λ↓0

[〈w∗λ, η(v, u0)〉+ φ(v)− φ(u0)]

= 〈u∗0, η(v, u0)〉+ φ(v)− φ(u0),

which shows that u0 is a strong solution of (5.2), since v ∈ K and u∗0 ∈ A(u0) were

arbitrarily fixed.
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5.2. The case of reflexive Banach spaces

CASE 2. (H23) holds.

We shall prove that u0 is a solution of (5.2). Reasoning as in the proof of Theorem 5.1-

CASE 2 we infer that there exists ū∗0 ∈ A(u0) and a subnet {w∗λ}λ∈J of {w∗λ}λ∈(0,1) such that

w∗λ ⇀ ū∗0 as λ ↓ 0. Combining this with relation (5.9) and hypothesis (H1
α) we conclude

that

0 ≤ lim sup
λ↓0

α(λ(v − u0))

λ

≤ lim sup
λ↓0

[〈w∗λ, η(v, u0)〉+ φ(v)− φ(u0)]

= 〈ū∗0, η(v, u0)〉+ φ(v)− φ(u0),

which shows that u0 is a solution of (5.2), since v ∈ K was arbitrarily fixed.

Weakening even more the hypotheses by assuming that the set-valued map A : K → 2X
∗

is

relaxed η−α quasimonotone instead of being relaxed η−α monotone the existence of solutions for

inequality problem (5.2) is an open problem in the case when K is nonempty bounded closed

and convex. However, in this case we can prove the following existence result concerning

inequality problem (5.3).

Theorem 5.4. (N.C., D.A. ION & C. LUPU [28]) Let K be a nonempty bounded closed and convex

subset of the real reflexive Banach space X . Let A : K → 2X
∗ be a relaxed η − α quasimonotone map

and assume that (H26) and (H28) hold. If in addition

• (H22) holds, then inequality problem (5.3) has at least one strong solution;

• (H23) holds, then inequality problem (5.3) has at least one solution.

Proof. Define G : K → 2X in the following way:

G(v) = {u ∈ K : 〈v∗, η(v, u)〉 ≥ α(v − u) for all v∗ ∈ A(v)} .
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5.2. The case of reflexive Banach spaces

First of all, let us observe that v ∈ G(v) for all v ∈ K and thus G(v) is nonempty for all v ∈ K.

Now, we prove that G(v) is weakly closed for all v ∈ K. Let {uλ}λ∈I ⊂ G(v) be a net such that

uλ converges weakly to some u ∈ K. Then, we have

α(v − u) ≤ lim supα(v − uλ)

≤ lim sup〈v∗, η(v, uλ)〉

= lim sup [−〈v∗, η(uλ, v)〉]

= − lim inf〈v∗, η(uλ, v)〉

≤ −〈v∗, η(u, v)〉

= 〈v∗, η(v, u)〉,

for all v∗ ∈ A(v). It follows that u ∈ G(v), so G(v) is weakly closed.

CASE 1. G is a KKM map.

SinceK is bounded closed and convex inX which is reflexive, it follows thatK is weakly

compact and thus G(v) is weakly compact for all v ∈ K as it is a weakly closed subset

of K. Applying the KKM Theorem (see Chapter 1, Theorem 1.6), we have
⋂
v∈K G(v) 6=

∅ and the set of solutions of problem (5.3) is nonempty. In order to see that let u0 ∈⋂
v∈K G(v). This implies that for each w ∈ K we have

〈w∗, η(w, u)〉 ≥ α(w − u), for all w∗ ∈ A(w).

Let v be fixed in K and for λ ∈ (0, 1) define wλ = u0 + λ(v − u0). We infer that

α(λ(v − u0)) ≤ λ〈w∗λ, η(v, u0)〉,

for all w∗λ ∈ A(wλ).

Employing the same arguments as in the previous proof we conclude that u0 is a strong

solution of inequality problem (5.3) if (H22) holds, while if (H23) holds then u0 is a solu-

tion of inequality problem (5.3).
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5.2. The case of reflexive Banach spaces

CASE 2. G is not a KKM map.

Consider {v1, v2, . . . , vN} ⊆ K and u0 =
∑N

j=1 λjvj with λj ∈ [0, 1] and
∑N

j=1 λj = 1 such

that u0 6∈
⋃N
j=1G(vj). The existence of such u0 is guaranteed by the fact that G is not a

KKM map. This implies that for all j ∈ {1, . . . , N} there exists v̄∗j ∈ A(vj) such that

〈v̄∗j , η(vj , u0)〉 < α(vj − u0) (5.10)

Now, we claim that there exists a neighborhood U of u0 such that (5.10) takes place for all

w ∈ U ∩K, that is

〈v̄∗j , η(vj , w)〉 < α(vj − w), for all w ∈ U ∩K.

Arguing by contradiction let us assume that for any neighborhood U of u0 there exists an

index j0 ∈ {1, . . . , N} and an element w0 ∈ U ∩K such that

〈v∗j0 , η(vj0 , w0)〉 ≥ α(vj0 − w0), for all v∗j0 ∈ A(vj0). (5.11)

Choose U = B̄X (u0;λ) and for each λ > 0 one can find a j0 ∈ {1, . . . , N} and wλ ∈

B̄X (u0;λ) ∩K such that

〈v∗j0 , η(vj0 , wλ)〉 ≥ α(vj − wλ) for all v∗j0 ∈ A(vj0).

Let us fix v∗j0 ∈ A(vj0). Using the fact that wλ → u0 as λ ↓ 0 and taking the superior limit

in the above relation, we obtain

α(vj0 − u0) ≤ lim sup
λ↓0

α(vj0 − wλ)

≤ lim sup
λ↓0

〈v∗j0 , η(vj0 , wλ)〉

= − lim inf
λ↓0

〈v∗j0 , η(wλ, vj0)〉

≤ −〈v∗j0 , η(u0, vj0)〉

= 〈v∗j0 , η(vj0 , u0)〉,

which contradicts relation (5.10) and this contradiction completes the proof of the claim.

Now, using the fact that A is relaxed η − α quasimonotne map, we prove that

〈w∗, η(vj , w)〉 ≤ 0, for all w ∈ K ∩ U, all w∗ ∈ A(w) and all j ∈ {1, . . . , N}. (5.12)
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5.2. The case of reflexive Banach spaces

In order to prove (5.12) let us assume by contradiction that there exists w0 ∈ K ∩ U ,

w∗0 ∈ A(w0) and j0 ∈ {1, . . . , N} such that 〈w∗0, η(vj0 , w0)〉 > 0. From the fact that A is

relaxed η − α quasimonotone it follows that

〈v∗j0 , η(vj0 , w0)〉 ≥ α(vj0 − w0), for all v∗j0 ∈ A(vj0),

which contradicts the fact that (5.10) holds for all w ∈ U ∩K and all j ∈ {1, . . . , N}. On

the other hand, for arbitrary fixed w ∈ K ∩ U and w̄∗ ∈ A(w) we have

〈w̄∗, η(u0, w)〉 =

〈
w̄∗, η

 N∑
j=1

λjvj , w

〉

≤
N∑
j=1

λj〈w̄∗, η(vj , w)〉

≤ 0.

Thus, we obtain

0 ≤ 〈w̄∗,−η(u0, w)〉 = 〈w̄∗, η(w, u0)〉.

But w̄∗ ∈ A(w) was choosen arbitrary and thus for each w ∈ U ∩K we have

〈w∗, η(w, u0)〉 ≥ 0, for all w∗ ∈ A(w) (5.13)

We shall prove next that u0 solves inequality problem (5.3). Consider v ∈ K to be arbitrary

fixed.

CASE 2.1. v ∈ U .

In this case the entire line segment (u0, v) = {u0 + λ(v − u0) : λ ∈ (0, 1)} is con-

tained in U ∩K and, according to (5.13), for each wλ ∈ (u0, v) and each w∗λ ∈ A(wλ)

we have

0 ≤ 〈w∗λ, η(wλ, u0)〉

≤ λ〈w∗λ, η(v, u0)〉+ (1− λ)〈w∗λ, η(u0, u0)〉

= λ〈w∗λ, η(v, u0)〉
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5.2. The case of reflexive Banach spaces

Let us assume that (H22) holds and fix u∗ ∈ A(u). Then for each λ ∈ (0, 1) we can

determine w̄∗λ ∈ A(wλ) such that w̄∗λ ⇀ u∗ as λ ↓ 0.

If (H23) holds, then there exists ū∗0 ∈ A(u0) for which we can determine a subnet

{w∗λ}λ∈J of {w∗λ}λ∈(0,1) such that w∗λ ⇀ ū∗0 in X∗ as λ ↓ 0.

Dividing by λ > 0 the above relation and taking into account the previous observa-

tion we conclude (after passing to the limit as λ ↓ 0) that u0 is a strong solution of

problem (5.3) if (H22) holds (u0 is a solution of problem (5.3) if (H23) holds).

CASE 2.2. v ∈ K \ U .

Since K is convex and u0, v ∈ K, then we have that (u0, v) ⊆ K. From v 6∈ U there

exists λ0 ∈ (0, 1) such that v0 = u0 + λ0(v − u0) ∈ (u0, v) and has the property that

the entire line segment (u0, v0) is contained in U ∩ K. Thus, for each λ ∈ (0, 1) the

element wλ = u0 + λ(v0 − u0) ∈ K ∩ V , but v0 = u0 + λ0(v − u0), hence wλ =

u0 + λ0λ(v − u) ∈ K ∩ V and wλ → u0 as λ ↓ 0. Applying the same arguments as in

CASE 2.1 we infer that u0 is a strong solution of problem (5.3) if (H22) holds (u0 is a

solution of problem (5.3) if (H23) holds) and this completes our proof.

Let us turn our attention towards the case when K is a unbounded closed and convex

subset of X . We shall establish next some sufficient conditions for the existence of solutions of

problems (5.2) and (5.3). For every r > 0 we define

Kr = {u ∈ K : ‖u‖ ≤ r} and K−r = {u ∈ K : ‖u‖ < r},

and consider the problems

Find ur ∈ Kr ∩ D(φ) such that

∃u∗r ∈ A(ur) : 〈u∗r , η(v, ur)〉+ φ(v)− φ(ur) ≥ 0, for all v ∈ Kr, (5.14)

and
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5.2. The case of reflexive Banach spaces

Find ur ∈ Kr such that

∃u∗r ∈ A(ur) : 〈u∗r , η(v, ur)〉 ≥ 0 for all v ∈ Kr. (5.15)

It is clear from above that the solution sets of problems (5.14) and (5.15) are nonempty. We

have the following characterization for the existence of solutions in the case of unbounded

closed and convex subsets.

Theorem 5.5. (N.C., D.A. ION & C. LUPU [28]) Assume that the same hypotheses as in Theorem

5.3 hold without the assumption of boundedness of K. Then each of the following conditions is sufficient

for inequality problem (5.2) to admit at least one strong solution (solution):

(H29) there exists r0 > 0 and u0 ∈ K−r0 such that ur0 solves (5.14).

(H30) there exists r0 > 0 such that for each u ∈ K \Kr0 there exists v̄ ∈ Kr0 such that

〈u∗, η(v̄, u)〉+ φ(v̄)− φ(u) ≤ 0, for all u∗ ∈ A(u).

(H31) there exists ū ∈ K and a function c : R+ → R+ with the property that lim
r→+∞

c(r) = +∞ such

that

inf
u∗∈A(u)

〈u∗, η(u, ū)〉 ≥ c(‖u‖)‖u‖, for all u ∈ K.
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Chapter 6

A system of nonlinear hemivariational

inequalities

6.1 Formulation of the problem and existence results

Let n be a positive integer, let X1, . . . , Xn be real reflexive Banach spaces and let Y1, . . . , Yn

be real Banach spaces such that there exist linear and compact operators Tk : Xk → Yk, for

k ∈ {1, . . . , n}.

Our aim is to study the following system of nonlinear hemivariational inequalities :

(SNHI) Find (u1, . . . , un) ∈ K1 × . . .×Kn such that for all (v1, . . . , vn) ∈ K1 × . . .×Kn
ψ1(u1, . . . , un, v1) + J0

,1(û1, . . . , ûn; v̂1 − û1) ≥ 〈F1(u1, . . . , un), v1 − u1〉X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψn(u1, . . . , un, vn) + J0
,n(û1, . . . , ûn; v̂n − ûn) ≥ 〈Fn(u1, . . . , un), vn − un〉Xn ,

where for each k ∈ {1, . . . , n}

•Kk ⊆ Xk is a nonempty closed and convex subset;

• ψk : X1 × . . .×Xk × . . .×Xn ×Xk → R is a nonlinear functional;

• J : Y1 × . . .× Yn → R is a regular locally Lipschitz functional;
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6.1. Formulation of the problem and existence results

• Fk : X1 × . . .×Xk × . . .×Xn → X∗k is a nonlinear operator;

• ûk = Tk(uk).

In order to establish the existence of at least one solution for problem (SNHI) we shall

assume fulfilled the following hypotheses:

(H32) For each k ∈ {1, . . . , n}, the functional ψk : X1 × . . .×Xk × . . .×Xn ×Xk → R satisfies

(i) ψk(u1, . . . , uk, . . . , un, uk) = 0 for all uk ∈ Xk;

(ii) For each vk ∈ Xk the mapping (u1, . . . , un) 7→ ψk(u1, . . . , un, vk) is weakly upper

semicontinuous;

(iii) For each (u1, . . . , un) ∈ X1× . . .×Xn the mapping vk 7→ ψk(u1, . . . , un, vk) is convex.

(H33) For each k ∈ {1, . . . , n}, Fk : X1× . . .×Xk× . . .×Xn → X∗k is a nonlinear operator such

that

lim inf
m→∞

〈Fk (um1 , . . . , u
m
n ) , vk − umk 〉Xk ≥ 〈Fk (u1, . . . , un) , vk − uk〉Xk

whenever (um1 , . . . , u
m
n ) ⇀ (u1, . . . , un) as m→∞ and vk ∈ Xk is fixed.

The first main result of this chapter refers to the case when the sets Kk are bounded, closed

and convex and it is given by the following theorem.

Theorem 6.1. (N.C. & C. VARGA [38]) For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty,

bounded, closed and convex set and let us assume that conditions (H32)-(H33) hold. Then, the system

of nonlinear hemivariational inequalities (SNHI) admits at least one solution.

The existence of solutions for our system will be a direct consequence of the fact that the

inequality formulated below admits solutions. Let us introduce the following notations:

• X = X1 × . . .×Xn, K = K1 × . . .×Kn and Y = Y1 × . . .× Yn;

• u = (u1, . . . , un) and û = (û1, . . . , ûn);

• Ψ : X ×X → R, Ψ(u, v) =
n∑
k=1

ψk(u1, . . . , uk, . . . , un, vk);
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6.1. Formulation of the problem and existence results

• F : X → X∗, 〈Fu, v〉X =
n∑
k=1

〈Fk(u1, . . . , un), vk〉Xk .

and formulate the following vector hemivariational inequality

(VHI) Find u ∈ K such that

Ψ(u, v) + J0(û; v̂ − û) ≥ 〈Fu, v − u〉X , for all v ∈ K.

Remark 6.1. If (H32)-(i) holds, then any solution u0 = (u0
1, . . . , u

0
n) ∈ K1 × . . . ×Kn of the vector

hemivariational inequality (VHI) is also a solution of the system (SNHI).

Indeed, if for a k ∈ {1, . . . , n} we fix vk ∈ Kk and for j 6= k we consider vj = u0
j , using

Proposition 1.5 and the fact that u0 solves (VHI) we obtain

〈
Fk
(
u0

1, . . . , u
0
n

)
, vk − u0

k

〉
Xk

=

n∑
j=1

〈
Fj
(
u0

1, . . . , u
0
n

)
, vj − u0

j

〉
Xj

=
〈
Fu0, v − u0

〉
X

≤ Ψ
(
u0, v

)
+ J0

(
û0; v̂ − û0

)
≤

n∑
j=1

ψj
(
u0

1, . . . , u
0
j , . . . , u

0
n, vj

)
+

n∑
j=1

J0
,j

(
û0

1, . . . , û
0
n; v̂j − û0

j

)
= ψk

(
u0

1, . . . , u
0
k, . . . , u

0
n, vk

)
+ J0

,k

(
û0

1, . . . , û
0
n; v̂k − û0

k

)
.

As k ∈ {1, . . . , n} and vk ∈ Kk were arbitrarily fixed, we conclude that (u0
1, . . . , u

0
n) ∈

K1 × . . .×Kn is a solution of our system (SNHI).

Proof of Theorem 6.1. According to Remark 6.1 it suffices to prove that problem (VHI) admits a

solution. With this end in view we consider the set A ⊂ K ×K as follows

A =
{

(v, u) ∈ K ×K : Ψ(u, v) + J0(û; v̂ − û)− 〈Fu, v − u〉X ≥ 0
}
.

We prove next that the set A satisfies the conditions required in Theorem 1.7 for the weak

topology of the space X , that is,

• For each v ∈ K the set N (v) = {u ∈ K : (v, u) ∈ A} is weakly closed in K.

• For each u ∈ K the setM(u) = {v ∈ K : (v, u) 6∈ A} is either convex or empty.
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6.1. Formulation of the problem and existence results

• (u, u) ∈ A for each u ∈ K.

• The set B = {u ∈ K : (v, u) ∈ A for all v ∈ K} is compact.

We are now able to apply Lin’s theorem and conclude that there exists u0 ∈ B ⊆ K such that

K × {u0} ⊂ A. This means that

Ψ(u0, v) + J0(û0; v̂ − û0) ≥ 〈Fu0, v − u0〉X , for all v ∈ K,

therefore u0 solves problem (VHI) and, accordingly to Remark 6.1, it is a solution of our sys-

tem of nonlinear hemivariational inequalities (SNHI), the proof of Theorem 6.1 being now

complete.

We will show next that if we change the hypotheses on the nonlinear functionals ψk we

obtain another existence result for our inequality system. Let us consider that instead of (H32)

we have the following set of hypotheses

(H34) For each k ∈ {1, . . . , n}, the functional ψk : X1 × . . .×Xk × . . .×Xn ×Xk → R satisfies

(i) ψk(u1, . . . , uk, . . . , un, uk) = 0 for all uk ∈ Xk;

(ii) For each k ∈ {1, . . . , n} and any pair (u1, . . . , uk, . . . , un), (v1, . . . , vk, . . . , vn) ∈ X1 ×

. . .×Xk × . . .×Xn we have

ψk(u1, . . . , uk, . . . , un, vk) + ψk(v1, . . . , vk, . . . , vn, uk) ≥ 0;

(iii) For each (u1, . . . , un) ∈ X1× . . .×Xn the mapping vk 7→ ψk(u1, . . . , un, vk) is weakly

lower semicontinuous;

(iv) For each vk ∈ Xk the mapping (u1, . . . , un) 7→ ψk(u1, . . . , un, vk) is concave.

We are now in position to state our second main result of this chapter, which concerns the case

when the sets Kk are bounded, closed and convex for each k ∈ {1, . . . , n}.

Theorem 6.2. (N.C. & C. VARGA [38]) For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty,

bounded, closed and convex set and let us assume that conditions (H2)-(H3) hold. Then, the system of

nonlinear hemivariational inequalities (SNHI) admits at least one solution.
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6.1. Formulation of the problem and existence results

In order to prove Theorem 6.2 we will need the following lemma.

Lemma 6.1. Assume that (H3) holds. Then

(a) Ψ(u, v) + Ψ(v, u) ≥ 0 for all u, v ∈ X ;

(b) For each v ∈ X the mapping u 7→ −Ψ(v, u) is weakly upper semicontinuous;

(c) For each u ∈ X the mapping v 7→ −Ψ(v, u) is convex.

Proof of Theorem 6.2. Let us consider the set A ⊂ K ×K defined by

A = {(v, u) ∈ K ×K : −Ψ(v, u) + J0(û; v̂ − û)− 〈Fu, v − u〉X ≥ 0}.

Lemma 6.1 ensures that we can follow the same steps as in the proof of Theorem 6.1 to conclude

that the conditions required in Lin’s theorem are fulfilled. Thus we get the existence of an

element u0 ∈ K such that K × {u0} ⊂ Awhich is equivalent to

−Ψ(v, u0) + J0(û0; v̂ − û0) ≥ 〈Fu0, v − u0〉X for all v ∈ K. (6.1)

On the other hand Lemma 6.1 tells us that

Ψ(u0, v) + Ψ(v, u0) ≥ 0, for all v ∈ K. (6.2)

Combining relations (6.1) and (6.2) we deduce that u0 solves problem (VHI), therefore it is a

solution of problem (SNHI).

Let us consider now the case when at least one of the subsets Kk is unbounded and either

conditions (H32)-(H33) or (H33)-(H34) hold. We shall denote next by B̄E(0;R) the closed ball

of the space E centered in the origin and of radius R, that is

B̄E(0;R) = {v ∈ E : ‖v‖E ≤ R}.

Let R > 0 be such that the set Kk,R = Kk ∩ B̄Xk(0;R) is nonempty for every k ∈ {1, . . . , n}.

Then, for each k ∈ {1, . . . , n} the set Kk,R is nonempty, bounded, closed and convex and ac-

cording to Theorem 6.1 or Theorem 6.2 the following problem
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6.1. Formulation of the problem and existence results

(SR) Find (u1, . . . , un) ∈ K1,R × . . .×Kn,R such that for all (v1, . . . , vn) ∈ K1,R × . . .×Kn,R
ψ1(u1, . . . , un, v1) + J0

,1(û1, . . . , ûn; v̂1 − û1) ≥ 〈F1(u1, . . . , un), v1 − u1〉X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψn(u1, . . . , un, vn) + J0
,n(û1, . . . , ûn; v̂n − ûn) ≥ 〈Fn(u1, . . . , un), vn − un〉Xn ,

admits at least one solution.

We have the following existence result concerning the case of at least one unbounded sub-

set.

Theorem 6.3. (N.C. & C. VARGA [38]) For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty,

closed and convex set and assume that there exists at least one index k0 ∈ {1, . . . , n} such that Kk0

is unbounded. Assume in addition that either (H32)-(H33) or (H33)-(H34) hold. Then, the system of

nonlinear hemivariational inequalities (SNHI) admits at least one solution if and only if the following

condition holds true:

(H35) there existsR > 0 such thatKk,R is nonempty for every k ∈ {1, . . . , n} and at least one solution

(u0
1, . . . , u

0
n) of problem (SR) satisfies

u0
k ∈ BXk(0;R), for all k ∈ {1, . . . , n}.

Corollary 6.1. For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty, closed and convex set and assume

that there exists at least one index k0 ∈ {1, . . . , n} such that Kk0 is unbounded. Assume in addition

that either (H32)-(H33) or (H33)-(H34) hold. Then, a sufficient condition for (SNHI) to admit at least

one solution is

(H36) there exists R0 > 0 such that Kk,R0 is nonempty for every k ∈ {1, . . . , n} and for each

(u1, . . . , un) ∈ K1×. . .×Kn\K1,R0×. . .×Kn,R0 there exists (v0
1, . . . , v

0
n) ∈ K1,R0×. . .×Kn,R0

such that

ψk(u1, . . . , un, v
0
k) + J0

,k(û1, . . . , ûn; v̂0
k − ûk) < 〈Fk(u1, . . . , un), v0

k − uk〉Xk , (6.3)

for all k ∈ {1, . . . , n}.
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6.2. Existence of Nash generalized derivative points

In order to simplify some computations let us assume next that 0 ∈ Kk for each k ∈

{1, . . . , n}. In this case Kk,R 6= ∅ for every k ∈ {1, . . . , n} and every R > 0.

Corollary 6.2. For each k ∈ {1, . . . , n} let Kk ⊂ Xk be a nonempty, closed and convex set and assume

that there exists at least one index k0 ∈ {1, . . . , n} such that Kk0 is unbounded and either (H32)-(H33)

or (H33)-(H34) hold. Assume, in addition, that for each k ∈ {1, . . . , n} the following conditions hold

(H37) There exists a function c : R+ → R+ with the property that lim
t→∞

c(t) = +∞ such that

−
n∑
k=1

ψk(u1, . . . , uk, . . . , un, 0) ≥ c(‖u‖X)‖u‖X ,

for all (u1, . . . , un) ∈ X1× . . .×Xn, where u = (u1, . . . , un) and ‖u‖X =
(∑n

k=1 ‖uk‖2Xk
)1/2

;

(H38) There exists Mk > 0 such that

J0
,k(w1, . . . , wk, . . . , wn;−wk) ≤Mk‖wk‖Yk , for all (w1, . . . , wn) ∈ Y1 × . . .× Yn;

(H39) There exists mk > 0 such that

‖Fk(u1, . . . , uk, . . . , un)‖X∗k ≤ mk, for all (u1, . . . , un) ∈ X1 × . . .×Xn.

Then the system (SNHI) admits at least one solution.

6.2 Existence of Nash generalized derivative points

Let E1, . . . , En be Banach spaces and for each k ∈ {1, . . . , n} let Kk be a nonempty subset of Ek.

We also assume that gk : K1 × . . .×Kk × . . .×Kn → R are given functionals. We recall below

the notion of Nash equilibrium point (see [95, 96]).

Definition 6.1. An element (u1, . . . , uk, . . . , un) ∈ K1 × . . .×Kk × . . .×Kn is a Nash equilibrium

point for the functionals g1, . . . , gk, . . . , gn, if for every k ∈ {1, . . . , n} and every (v1, . . . , vk, . . . , vn) ∈

K1 × . . .×Kk × . . .×Kn we have

gk(u1, . . . , vk, . . . , un) ≥ gk(u1, . . . , uk, . . . , un).
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6.2. Existence of Nash generalized derivative points

LetDk ⊂ Ek be an open set such thatKk ⊂ Dk for all k ∈ {1, . . . , n}. For each k ∈ {1, . . . , n}

we consider the functional gk : K1×. . .×Dk×. . .×Kn → R such that uk 7→ gk(u1, . . . , uk, . . . , un)

is locally Lipschitz. The following notion was introduced by Kristály in [65].

Definition 6.2. An element (u1, . . . , uk, . . . , un) ∈ K1 × . . . × Kk × . . . × Kn is a Nash gener-

alized derivative point for the functionals g1, . . . , gk, . . . , gn if for every k ∈ {1, . . . , n} and every

(v1, . . . , vk, . . . , vn) ∈ K1 × . . .×Kk × . . .×Kn we have

g0
k,k(u1, . . . , uk, . . . , un; vk − uk) ≥ 0.

We point out the fact that the above definition coincides with the notion of Nash stationary

point introduced by Kassay, Kolumbán and Páles in [62] if every functional gk is differentiable

with respect to the kth variable. Moreover, every Nash equilibrium point is a Nash generalized

derivative point.

1. For each k ∈ {1, . . . , n} let Dk ⊆ Xk be an open and consider the functional

gk : K1 × . . .×Dk × . . .×Kn → R,

such that gk is locally Lipschitz with respect to the kth variable and for each vk ∈ Xk the

mapping (u1, . . . , uk, . . . , un) 7→ g0
k,k(u1, . . . , uk, . . . , un; vk) is weakly upper semicontinu-

ous. Let us choose next J ≡ 0, Fk ≡ 0 and

ψk(u1, . . . , uk, . . . , un, vk) = g0
k,k(u1, . . . , uk, . . . , un; vk − uk).

(i) If for each k ∈ {1, . . . , n} the set Kk ⊂ Xk is nonempty, bounded, closed and convex,

then Theorem 6.1 implies that there exists at least one point

(u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1 × . . .×Kk × . . .×Kn

such that for all (v1, . . . , vk, . . . , vn) ∈ K1 × . . .×Kk × . . .×Kn we have

g0
k,k(u

0
1, . . . , u

0
k, . . . , u

0
n; vk − u0

k) ≥ 0, for all k ∈ {1, . . . , n},

that is, (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1×. . .×Kk×. . .×Kn is a Nash generalized derivative

point for the functionals g1, . . . , gk, . . . gn.
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6.2. Existence of Nash generalized derivative points

(ii) Let us assume now that the setsKk are nonempty, closed and convex and at least one

of them is unbounded. Assume in addition that there exists R0 > 0 such that Kk,R0

is nonempty for every k ∈ {1, . . . , n} and for each

(u1, . . . , uk, . . . , un) ∈ K1 × . . .×Kk × . . .×Kn \K1,R0 × . . .×Kk,R0 × . . .×Kn,R0

there exists (v0
1, . . . , v

0
k, . . . , v

0
n) ∈ K1,R0 × . . .×Kk,R0 × . . .×Kn,R0 such that

g0
k,k(u1, . . . , uk, . . . , un; v0

k − ûk) < 0, for all k ∈ {1, . . . , n}.

Then, according to Corollary 6.1, there exists at least one point (u0
1, . . . , u

0
k, . . . , u

0
n) ∈

K1× . . .×Kk× . . .×Kn such that for all (v1, . . . , vk, . . . , vn) ∈ K1× . . .×Kk× . . .×Kn

we have

g0
k,k(u

0
1, . . . , u

0
k, . . . , u

0
n; vk − u0

k) ≥ 0, for all k ∈ {1, . . . , n},

which means that (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1×. . .×Kk×. . .×Kn is a Nash generalized

derivative point for the functionals g1, . . . , gk, . . . , gn.

(iii) Let us assume now that the setsKk are nonempty, closed and convex and at least one

of them is unbounded. Assume in addition that there exists a function c : R+ → R+

with the property that lim
t→∞

c(t) = +∞ such that

−
n∑
k=1

g0
k,k(u1, . . . , uk, . . . , un;−uk) ≥ c(‖u‖X)‖u‖X ,

for all (u1, . . . , un) ∈ K1 × . . .×Kn.

Then, according to Corollary 6.2, there exists at least one point (u0
1, . . . , u

0
k, . . . , u

0
n) ∈

K1× . . .×Kk× . . .×Kn such that for all (v1, . . . , vk, . . . , vn) ∈ K1× . . .×Kk× . . .×Kn

we have

g0
k,k(u

0
1, . . . , u

0
k, . . . , u

0
n; vk − u0

k) ≥ 0,

for all k ∈ {1, . . . , n}, which means that (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1×. . .×Kk×. . .×Kn

is a Nash generalized derivative point for the functionals g1, . . . , gk, . . . gn.
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6.2. Existence of Nash generalized derivative points

2. Let us consider that for each k ∈ {1, . . . , n} we have ψk ≡ 0, J ≡ 0 and Fk : X1 × . . . ×

Xk × . . .×Xn → X∗k a nonlinear operator such that (H2) holds.

(i) For each k ∈ {1, . . . , n} we assume that the set Kk ⊂ Xk is nonempty, bounded,

closed and convex. Then Theorem 6.1 implies that there exists at least one point

(u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1× . . .×Kk × . . .×Kn such that for all (v1, . . . , vk, . . . , vn) ∈

K1 × . . .×Kk × . . .×Kn we have

−〈Fk(u0
1, . . . , u

0
k, . . . , u

0
n), vk − u0

k〉Xk ≥ 0, for all k ∈ {1, . . . , n},

which means that (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1× . . .×Kk× . . .×Kn is a Nash stationary

point for the functionals g1, . . . , gk, . . . , gn, where gk : K1 × . . . × Xk × . . . × Kn →

R is differentiable with respect to the kth variable and g′k,k = −F̃k (here F̃k is the

restriction of Fk to K1 × . . .×Xk × . . .×Kn).

(ii) Let us assume now that the setsKk are nonempty, closed and convex and at least one

of them is unbounded. Assume in addition that there exists R0 > 0 such that Kk,R0

is nonempty for every k ∈ {1, . . . , n} and for each (u1, . . . , uk, . . . , un) ∈ K1 × . . . ×

Kk × . . . ×Kn \K1,R0 × . . . ×Kk,R0 × . . . ×Kn,R0 there exists (v0
1, . . . , v

0
k, . . . , v

0
n) ∈

K1,R0 × . . .×Kk,R0 × . . .×Kn,R0 such that

〈Fk(u1, . . . , uk, . . . , un), v0
k − uk〉Xk > 0, for all k ∈ {1, . . . , n}.

Then, according to Corollary 6.1, there exists at least one point (u0
1, . . . , u

0
k, . . . , u

0
n) ∈

K1× . . .×Kk× . . .×Kn such that for all (v1, . . . , vk, . . . , vn) ∈ K1× . . .×Kk× . . .×Kn

we have

−〈Fk(u0
1, . . . , u

0
k, . . . , u

0
n), vk − u0

k〉Xk ≥ 0, for all k ∈ {1, . . . , n},

which means that (u0
1, . . . , u

0
k, . . . , u

0
n) ∈ K1× . . .×Kk× . . .×Kn is a Nash stationary

point for the functionals g1, . . . , gn, where gk : K1 × . . . × Xk × . . . × Kn → R is

differentiable with respect to the kth variable and g′k,k = −F̃k.
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Chapter 7

Weak solvability for some contact

problems

7.1 Frictional problems for piezoelectric bodies in contact with a con-

ductive foundation

This subsection focuses on the weak solvability of a mechanical model describing the contact

between a piezoelectric body and a conductive foundation. The piezoelectric effect is charac-

terized by the coupling between the mechanical and the electrical properties of the materials.

This coupling leads to the appearance of electric potential when mechanical stress is present

and, conversely, mechanical stress is generated when electric potential is applied.

Before describing the problem let us first present some notations and preliminary material

which will be used throughout this subsection.

Let m be a positive integer and denote by Sm the linear space of second order symmetric

tensors on Rm (Sm = Rm×ms ). We recall that the inner product and the corresponding norm on

Sm are given by

τ : σ = τijσij , ‖τ‖Sm =
√
τ : τ , for all τ, σ ∈ Sm.

Here, and hereafter the summation over repeated indices is used, all indices running from 1 to
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7.1. Frictional problems for piezoelectric bodies in contact with a conductive foundation

m.

Let Ω ⊂ Rm be an open bounded subset with a Lipschitz boundary Γ and let ν denote the

outward unit normal vector to Γ. We introduce the spaces

H = L2(Ω;Rm),

H =
{
τ = (τij) : τij = τji ∈ L2(Ω)

}
= L2(Ω;Sm),

H1 = {u ∈ H : ε(u) ∈ H} = H1(Ω;Rm),

H1 = {τ ∈ H : Div τ ∈ H},

where ε : H1 → H and Div : H1 → H denote the deformation and the divergence operators,

defined by

ε(u) = (εij(u)), εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Div τ =

(
∂τij
∂xj

)
,

The spaces H ,H, H1 andH1 are Hilbert spaces endowed with the following inner products

(u, v)H =

∫
Ω
uivi dx, (σ, τ)H =

∫
Ω
σ : τ dx,

(u, v)H1
= (u, v)H + (ε(u), ε(v))H , (σ, τ)H1

= (σ, τ)H + (Div σ,Div τ)H .

The associated norms in H , H, H1, H1 will be denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1 ,

respectively.

Given v ∈ H1 we denote by v its trace γv on Γ, where γ : H1(Ω;Rm) → H1/2(Γ;Rm) ⊂

L2(Γ;Rm) is the Sobolev trace operator. Given v ∈ H1/2(Γ;Rm) we denote by vν and vτ the

normal and the tangential components of v on the boundary Γ, that is vν = v·ν and vτ = v−vνν.

Similarly, for a regular tensor field σ : Ω→ Sm, we define its normal and tangential components

to be the normal and the tangential components of the Cauchy vector σν, that is σν = (σν) · ν

and στ = σν − σνν. Recall that the following Green formula holds:

(σ, ε(v))H + (Div σ, v)H =

∫
Γ
σν · v dΓ, for all v ∈ H1. (7.1)

We shall describe next the model for which we shall derive a variational formulation. Let

us consider body B made of a piezoelectric material which initially occupies an open bounded

subset Ω ⊂ Rm (m = 2, 3) with a smooth boundary ∂Ω = Γ. The body is subjected to volume
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7.1. Frictional problems for piezoelectric bodies in contact with a conductive foundation

forces of density f0 and has volume electric charges of density q0, while on the boundary we

impose mechanical and electrical constraints. In order to describe these constraints we consider

two partitions of Γ: the first partition is given by three mutually disjoint open parts Γ1, Γ2 and

Γ3 such that meas(Γ1 > 0) and the second partition consists of three disjoint open parts Γa, Γb

and Γc such that meas(Γa) > 0, Γc = Γ3 and Γa ∪ Γb = Γ1 ∪ Γ2. The body is clamped on Γ1 and

a surface traction of density f2 acts on Γ2. Moreover, the electric potential vanishes on Γa and

a surface electric charge of density qb is applied on Γb. On Γ3 = Γc the body comes in frictional

contact with a conductive obstacle, called foundation which has the electric potential ϕF .

Denoting by u : Ω → Rm the displacement field, by ε(u) = (εij(u)) the strain tensor, by

σ : Ω → Sm the stress tensor, by D : Ω → Rm, D = (Di) the electric displacement field and by

ϕ : Ω→ R the electric potential we can now write the strong formulation of the problem which

describes the above process:

(PM ) Find a displacement field u : Ω→ Rm and an electric potential ϕ : Ω→ R such that

Div σ + f0 = 0 in Ω, (7.2)

div D = q0 in Ω, (7.3)

σ = Eε(u) + PT∇ϕ in Ω, (7.4)

D = Pε(u)− B∇ϕ in Ω, (7.5)

u = 0 on Γ1, (7.6)

ϕ = 0 on Γa, (7.7)

σν = f2 on Γ2, (7.8)

D · ν = qb on Γb, (7.9)

−σν = S on Γ3, (7.10)

−στ ∈ ∂2j(x, uτ ) on Γ3, (7.11)

D · ν ∈ ∂2φ(x, ϕ− ϕF ) on Γ3. (7.12)

We point out the fact that once the displacement field u and the electric potential ϕ are de-

termined, the stress tensor σ and the electric displacement field D can be obtained via relations
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7.1. Frictional problems for piezoelectric bodies in contact with a conductive foundation

(7.4) and (7.5), respectively.

Let us now explain the meaning of the equations and the conditions (7.2)-(7.12) in which,

for simplicity, we have omitted the dependence of the functions on the spatial variable x.

First, equations (7.2)-(7.3) are the governing equations consisting of the equilibrium condi-

tions, while equations (7.4)-(7.5) represent the electro-elastic constitutive law.

We assume that E : Ω × Sm → Sm is a nonlinear elasticity operator, P : Ω × Sm → Rm and

PT : Ω × Rm → Sm are the piezoelectric operator (third order tensor field) and its transpose,

respectively and B : Ω × Rm → Rm denotes the electric permittivity operator (second order

tensor field) which is considered to be linear. The tensors P and PT satisfy the equality

Pτ · ζ = τ : PT ζ, for all τ ∈ Sm and all ζ ∈ Rm

and the components of the tensor PT are given by pTijk = pkij .

When τ 7→ E(x, τ) is linear, E(x, τ) = C(x)τ with the elasticity coefficients C = (cijkl) which

may be functions indicating the position in a nonhomogeneous material. The decoupled state

can be obtained by taking pijk = 0, in this case we have purely elastic and purely electric

deformations.

Conditions (7.6) and (7.7) model the fact that the displacement field and the electrical poten-

tial vanish on Γ1 and Γa, respectively, while conditions (7.8) and (7.9) represent the traction and

the electric boundary conditions showing that the forces and the electric charges are prescribed

on Γ2 and Γb, respectively.

Conditions (7.10)-(7.12) describe the contact, the frictional and the electrical conductivity

conditions on the contact surface Γ3, respectively. Here, S is the normal load imposed on Γ3,

the functions j : Γ3 × Rm → Rm and φ : Γ3 × R → R are prescribed and ϕF is the electric

potential of the foundation.

The strong formulation of problem (PM ) consists in finding u : Ω → Rm and ϕ : Ω → R

such that (7.2)-(7.12) hold. However, it is well known that, in general, the strong formulation

of a contact problem does not admit any solution. Therefore, we reformulate problem (PM )

in a weaker sense, i.e. we shall derive its variational formulation. With this end in view, we
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7.1. Frictional problems for piezoelectric bodies in contact with a conductive foundation

introduce the functional spaces for the displacement field and the electrical potential

V =
{
v ∈ H1(Ω;Rm) : v = 0 on Γ1

}
, W =

{
ϕ ∈ H1(Ω) : ϕ = 0 on Γa

}
which are closed subspaces of H1 and H1(Ω). We endow V and W with the following inner

products and the corresponding norms

(u, v)V = (ε(u), ε(v))H , ‖v‖V = ‖ε(v)‖H

(ϕ, χ)W = (∇ϕ,∇χ)H , ‖χ‖W = ‖∇χ‖H

and conclude that (V, ‖ · ‖V ), (W, ‖ · ‖W ) are Hilbert spaces.

Assuming sufficient regularity of the functions involved in the problem, using the Green

formula (7.1), the relations (7.2)-(7.12), the definition of the Clarke generalized gradient and

the equality ∫
Γ3

(σν) · v dΓ =

∫
Γ3

σνvν dΓ +

∫
Γ3

στ · vτ dΓ

we obtain the following variational formulation of problem (PM ) in terms of the displacement

field and the electric potential:

(PV ) Find (u, ϕ) ∈ V ×W such that for all (v, χ) ∈ V ×W

(Eε(u), ε(v)− ε(u))H +
(
PT∇ϕ, ε(v)− ε(u)

)
H +

∫
Γ3

j0
,2(x, uτ ; vτ − uτ ) dΓ ≥ (f, v − u)V

(B∇ϕ,∇χ−∇ϕ)H − (Pε(u),∇χ−∇ϕ)H +

∫
Γ3

φ0
,2(x, ϕ− ϕF ;χ− ϕ) dΓ ≥ (q, χ− ϕ)W ,

where f ∈ V and q ∈W are the elements given by the Riesz’s representation theorem as follows

(f, v − u)V =

∫
Ω
f0 · v dx+

∫
Γ2

f2 · v dΓ−
∫

Γ3

Svν dΓ,

(q, χ)W =

∫
Ω
q0χ dx−

∫
Γb

q2χ dΓ.

In the study of problem (PV ) we shall assume fulfilled the following hypotheses:

(HE) The elasticity operator E : Ω× Sm → Sm is such that

(i) x 7→ E(x, τ) is measurable for all τ ∈ Sm;
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7.1. Frictional problems for piezoelectric bodies in contact with a conductive foundation

(ii) τ 7→ E(x, τ) is continuous for a.e. x ∈ Ω;

(iii) there exist c1 > 0 and α ∈ L2(Ω) such that ‖E(x, τ)‖Sm ≤ c(α(x) + ‖τ‖Sm) for all

τ ∈ Sm and a.e. x ∈ Ω;

(iv) τ 7→ E(x, τ) : (σ − τ) is weakly upper semicontinuous for all σ ∈ Sm and a.e. x ∈ Ω;

(v) there exists c2 > 0 such that E(x, τ) : τ ≥ c‖τ‖2Sm for all τ ∈ Sm and a.e. x ∈ Ω.

(HP) The piezoelectric operator P : Ω× Sm → Rm is such that

(i) P(x, τ) = p(x)τ for all τ ∈ Sm and a.e. x ∈ Ω;

(ii) p(x) = (pijk(x)) with pijk = pikj ∈ L∞(Ω).

(HB) B : Ω× Rm → Rm is such that

(i) B(x, ζ) = β(x)ζ for all ζ ∈ Rm and almost x ∈ Ω;

(ii) β(x) = (βij(x)) with βij = βji ∈ L∞(Ω);

(iii) there exists m > 0 such that (β(x)ζ) · ζ ≥ m|ζ|2 for all ζ ∈ Rm and a.e. x ∈ Ω.

(Hj) j : Γ3 × Rm → R is such that

(i) x 7→ j(x, ζ) is measurable for all ζ ∈ Rm;

(ii) ζ 7→ j(x, ζ) is locally Lipschitz for a.e. x ∈ Γ3;

(iii) there exist c3 > 0 such that |∂2j(x, ζ)| ≤ c3(1 + |ζ|) for all ζ ∈ Rm and a.e. x ∈ Γ3;

(iv) there exists c4 > 0 such that j0
,2(x, ζ;−ζ) ≤ c4|ζ| for all ζ ∈ Rm and a.e. x ∈ Γ3;

(v) ζ 7→ j(x, ζ) is regular for a.e. x ∈ Γ3.

(Hφ) φ : Γ3 × R→ R is such that

(i) x 7→ φ(x, t) is measurable for all t ∈ R;

(ii) ζ 7→ φ(x, ζ) is locally Lipschitz for a.e. x ∈ Γ3;

(iii) there exist c5 > 0 such that |∂2φ(x, t)| ≤ c5|t| for all t ∈ R and a.e. x ∈ Γ3;
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7.1. Frictional problems for piezoelectric bodies in contact with a conductive foundation

(iv) t 7→ φ(x, t) is regular for a.e. x ∈ Γ3.

(Hf,q) f0 ∈ H , f2 ∈ L2(Γ2;Rm), q0 ∈ L2(Ω), qb ∈ L2(Γ2), S ∈ L∞(Γ3), S ≥ 0, ϕF ∈ L2(Γ3).

The main result of this subsection is given by the following theorem.

Theorem 7.1. (N.C. & C. VARGA [38]) Assume fulfilled conditions (HE), (HP), (HB), (Hj), (Hφ)

and (Hf,q). Then problem (PV ) admits at least one solution.

Proof. We observe that problem (PV ) is in fact a system of two coupled hemivariational in-

equalities. The idea is to apply one of the existence results obtained in Section 2. with suitable

choice of ψk, J , and Fk (k ∈ {1, 2}).

First, let us take n = 2 and defineX1 = V , X2 = W , Y1 = L2(Γ3;Rm), Y2 = L2(Γ3), K1 = X1

and K2 = X2. Next we introduce T1 : X1 → Y1 and T2 : X2 → Y2 defined by

T1 = iτ ◦ γm ◦ im|Γ3 , T2 = γ ◦ i|Γ3 ,

where im : V → H1 = H1(Ω;Rm) is the embedding operator, γm : H1 → H1/2(Γ;Rm) is the

Sobolev trace operator, iτ : H1/2(Γ;Rm)→ L2(Γ3;Rm) is the operator defined by iτ (v) = vτ , i :

W → H1(Ω) is the embedding operator and γ : H1(Ω)→ H1/2(Γ) is the Sobolev trace operator.

Clearly T1 and T2 are linear and compact operators. We consider next ψ1 : X1 ×X2 ×X1 → R

and ψ2 : X1 ×X2 ×X2 → R defined by

ψ1(u, ϕ, v) = (Eε(u), ε(v)− ε(u))H +
(
PT∇ϕ, ε(v)− ε(u)

)
H ,

ψ2(u, ϕ, χ) = (B∇ϕ,∇χ−∇ϕ)H − (Pε(u),∇χ−∇ϕ)H ,

J : Y1 × Y2 → R defined by

J(w, η) =

∫
Γ3

j(x,w(x)) dΓ +

∫
Γ3

φ(x, η(x)− ϕ(x)) dΓ,

and F1 : X1 ×X2 → X∗1 and F2 : X1 ×X2 → X∗2 defined by

F1(u, ϕ) = f, F2(u, ϕ) = q.
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

It is easy to infer from the above definitions that if (HE), (HP), (HB) hold, then the functionals

ψ1, ψ2 satisfy conditions (H1) and (H6). Taking (Hj) and (Hφ) into account we conclude that J

is a regular locally Lipschitz functional which satisfies

J0
,1(w, η; z) =

∫
Γ3

j0
,2(x,w(x); z(x)) dΓ

J0
,2(w, η; ζ) =

∫
Γ3

φ0
,2(x, η(x)− ϕ(x); ζ(x)) dΓ.

Obviously conditions (H2), (H7), (H8) are fulfilled, therefore we can apply Corollary 6.2 to

conclude that problem (PV ) admits at least one solution.

7.2 The bipotential method for contact problems with nonmonotone

boundary conditions

This section focuses on the weak solvability of a general mathematical model which describes

the contact between a body and an obstacle. The process is assumed to be static and we work

under the small deformations hypothesis. The behavior of the materials is described by a pos-

sibly multivalued constitutive law written as a subdifferential inclusion, while the contact be-

tween the body and the foundation is described by two inclusions, corresponding to the normal

and the tangential directions, each inclusion involving the sum of a Clarke subdifferential and

the normal cone of a nonempty, closed and convex set.

Inspired and motivated by some recent papers in the literature we consider a variational

formulation in terms of bipotentials for our model. This leads to a system of two inequalities:

a hemivariational inequality related to the equilibrium law and a variational inequality related

to the functional extension of the constitutive law. The unknown of the system is a pair (u, σ)

consisting of the displacement field and the Cauchy stress field. A key role in our approach is

played by the separable bipotential that can be defined as the sum of the constitutive map and

its Fenchel conjugate. Bipotentials were introduced in 1991 by de Saxcé & Feng [110] and within

a very short period of time this theory has undergone a remarkable development both in pure
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

and applied mathematics as bipotentials were successfully applied in addressing various prob-

lems arising in mechanics (non-associated Drücker-Prager models in plasticity [18, 114], cam-

clay models in soil mechanics [113, 124], cyclic plasticity [11, 112] and viscoplasticity of metals

with kinematical hardening rule [58], Coulomb’s friction law [15, 70, 78], displacement-traction

models for elastic materials [79], contact models with Signorini’s boundary condition [77]). For

more details and connections regarding the theory of bipotentials see also [16, 17, 115]. The

bipotential approach has the advantage that it allows to approximate simultaneously the dis-

placement field and the Cauchy stress tensor and facilitated the implementation of new and

efficient numerical algorithms (see e.g. [51, 111]). However, in all the works we are aware

of, the bipotential method has been used only for problems with monotone boundary con-

ditions, mostly expressed as inclusions involving the subdifferential of a proper, convex and

lower semicontinuous function. Thus, the variational formulation for these problems leads to

a coupled system of variational inequalities. In this paper, due to the nonmonotone boundary

conditions two major differences arise:

• the set of admissible stress tensors is defined with respect to a given displacement field and

depends explicitly on this displacement field, in contrast to the case of monotone bound-

ary conditions when the set of admissible stress tensors is the same for all displacement

fields;

• the variational formulation leads to a system of inequalities consisting of a hemivariational

inequality and a variational inequality.

Consequently, several difficulties occur in determining the existence of weak solutions since

the classical methods fail to be applied directly.

7.2.1 The mechanical model and its variational formulation

Let us consider a body B which occupies the domain Ω ⊂ Rm (m = 2, 3) with a sufficiently

smooth boundary Γ (e.g. Lipschitz continuous) and a unit outward normal ν. The body is

acted upon by forces of density f0 and it is mechanically constrained on the boundary. In order
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

to describe these constraints we assume Γ is partitioned into three Lebesgue measurable parts

Γ1,Γ2,Γ3 such that Γ1 has positive Lebesgue measure. The body is clamped on Γ1, hence the

displacement field vanishes here, while surface tractions of density f2 act on Γ2. On Γ3 the body

may come in contact with an obstacle which will be referred to as foundation. The process is

assumed to be static and the behavior of the material is modeled by a (possibly multivalued)

constitutive law expressed as a subdifferential inclusion. The contact between the body and

the foundation is modeled with respect to the normal and the tangent direction respectively,

to each corresponding an inclusion involving the sum between the Clarke subdifferential of a

locally Lipschitz function and the normal cone of a nonempty, closed and convex set.

It is well known that the subdifferential of a convex function is a monotone set-valued

operator, while the Clarke subdifferential is a set-valued operator which is not monotone in

general. This is why we say that the constitutive law is monotone and the boundary conditions

are nonmonotone.

The mathematical model which describes the above process is the following. For simplicity

we omit the dependence of some functions of the spatial variable.

(P) Find a displacement u : Ω→ Rm and a stress tensor σ : Ω→ Sm such that

−Div σ = f0, in Ω (7.13)

σ ∈ ∂φ(ε(u)), a.e. in Ω (7.14)

u = 0, on Γ1 (7.15)

σν = f2, on Γ2 (7.16)

−σν ∈ ∂2
Cjν(x, uν) +NC1(uν), on Γ3 (7.17)

−στ ∈ h(x, uτ )∂2
Cjτ (x, uτ ) +NC2(uτ ), on Γ3 (7.18)

where φ : Sm → R is convex and lower semicontinous, jν : Γ3 × R→ R and jτ : Γ3 × Rm → R

are locally Lipschitz with respect to the second variable and h : Γ3 × Rm → R is a prescribed

function. Here,C1 ⊂ R andC2 ⊂ Rm are nonempty closed and convex subsets andNCk denotes

the normal cone of Ck (k = 1, 2). For a Banach space E and a nonempty, closed and convex
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

subset K ⊂ E, the normal cone of K at x is defined by

NK(x) =
{
ξ ∈ E∗ : 〈ξ, y − x〉E∗×E ≤ 0, for all y ∈ K

}
.

It is well known that

NK(x) = ∂IK(x),

where IK is the indicator function of K, that is,

IK(x) =

 0, if x ∈ K,

+∞, otherwise.

Relation (7.13) represents the equilibrium equation, (7.14) is the constitutive law, (7.15)-

(7.16) are the displacement and traction boundary conditions and (7.17)-(7.18) describe the

contact between body and the foundation.

Relations between the stress tensor σ and the strain tensor ε of the type (7.14) describe

the constitutive laws of the deformation theory of plasticity, of Hencky plasticity with convex

yield function, of locking materials with convex locking functions etc. For concrete examples

and their physical interpretation one can consult Sections 3.3.1 and 3.3.2 in Panagiotopoulos

[98] (see also Section 3.1 in [99]). A particular case of interest regarding (7.14) is when the

constitutive map φ is Gâteaux differentiable, thus the subdifferential inclusion reduces to

σ = φ′(ε(u)), (7.19)

which corresponds to nonlinear elastic materials.

Some classical constitutive laws which can be written in the form (7.19) are presented below:

(i) Assume that φ is defined by

φ(µ) =
1

2
Eµ : µ,

where E = (Eijkl), 1 ≤ i, j, k, l ≤ m is a fourth order tensor which satisfies the symmetry

property

Eµ : τ = µ : Eτ, for all µ, τ ∈ Sm,
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

and the ellipticity property

Eµ : µ ≥ c|µ|2, for all µ ∈ Sm.

In this case (7.19) reduces to Hooke’s law, that is, σ = Eε(u), and corresponds to linearly

elastic materials.

(ii) Assume that φ is defined by

φ(µ) =
1

2
Eµ : µ+ β |µ− PKµ|2 ,

where E is the elasticity tensor and satisfies the same properties as in the previous exam-

ple, β > 0 is a constant coefficient of the material, P : Sm → K is the projection operator

and K is the nonempty, closed and convex von Mises set

K =

{
µ ∈ Sm :

1

2
µD : µD ≤ a2, a > 0

}
.

Here the notation µD stands for the deviator of the tensor µ, that is, µD = µ − 1
mTr(µ)I ,

with I being the identity tensor.

In this case (7.19) becomes

σ = Eε(u) + 2β(I − PK)ε(u),

which is known in the literature as the piecewise linear constitutive law (see e.g. Han &

Sofonea [56]).

(iii) Assume φ is defined by

φ(µ) =
k0

2
Tr(µ)I : µ+

1

2
ϕ
(∣∣µD∣∣2) ,

where k0 > 0 is a constant and ϕ : [0,∞)→ [0,∞) is a continuously differentiable consti-

tutive function.

In this case (7.19) becomes

σ = k0Tr(ε(u))I + ϕ′
(∣∣εD(u)

∣∣2) εD(u),

and this describes the behavior of the Hencky materials (see e.g. Zeidler [122]).
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

Boundary conditions of the type (7.17) and (7.18) model a large class of contact problems arising

in mechanics and engineering. For the case h ≡ 1 many examples of nonmonotone laws of the

type

−σν ∈ ∂Cjν(uν) and − στ ∈ ∂Cjτ (uτ ),

can be found in [99] Section 2.4, [94] Section 1.4 or [53] Section 2.8.

The case when the function h actually depends on the second variable allows the study of

contact problems with slip-dependent friction law (see e.g. [29, 80] for antiplane models and [30]

for general 3D models). This friction law reads as follows

−στ ≤ µ(x, |uτ |), −στ = µ(x, |uτ |)
uτ
|uτ |

if uτ 6= 0, (7.20)

where µ : Γ3 × [0,+∞)→ [0,+∞) is the sliding threshold and it is assumed to satisfy

0 ≤ µ(x, t) ≤ µ0, for a.e. x ∈ Γ3 and all t ≥ 0,

for some positive constant µ0. It is easy to see that (7.18) can be put in the form (7.20) simply

by choosing

h(x, uτ ) = µ(x, |uτ |) and jτ (x, uτ ) = |uτ |.

We point out the fact that the above example cannot be written in the form −στ ∈ ∂Cjτ (uτ ) as,

in general, for two locally Lipschitz functions h, g there does not exists j such that ∂Cj(u) =

h(u)∂Cg(u). We would also like to point out that many boundary conditions of classical elastic-

ity are particular cases of (7.17) and (7.18), in most of these cases the functions jν and jτ being

convex, hence leading to monotone boundary conditions. We list below some examples:

(a) The Winkler boundary condition

−σν = k0uν , k0 > 0.

This law is used in engineering as it describes the interaction between a deformable body

and the soil and can be expressed in the form (7.17) by setting

C1 = R and jν(x, uν) =
k0

2
u2
ν .
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

More generally, if we want to describe the case when the body may lose contact with the

foundation, we can consider the following law uν < 0⇒ σν = 0,

uν ≥ 0⇒ −σν = k0uν .

The first relation corresponds to the case when there is no contact, while the second mod-

els the contact case. Obviously the above law can be expressed in the form (7.17) by

choosing

C1 = R and jν(x, uν) =

 0, if uν < 0,

k0
2 u

2
ν , if uν ≥ 0.

In [93] the following nonmonotone boundary conditions were imposed to model the con-

tact between a body and a Winkler-type foundation which may sustain limited values of

efforts 

uν < 0⇒ σν = 0,

uν ∈ [0, a)⇒ −σν = k0uν ,

uν = a⇒ −σν ∈ [0, k0a],

uν > a⇒ σν = 0.

This means that the rupture of the foundation is assumed to occur at those points in which

the limit effort is attained. The first condition holds in the noncontact zone, the second

describes the zone where the contact occurs and it is idealized by the Winkler law. The

maximal value of reactions that can be maintained by the foundation is given by k0a and

it is accomplished when uν = a, with k0 being the Winkler coefficient. The fourth relation

holds in the zone where the foundation has been destroyed. The above Winkler-type law

can be written as an inclusion of the type (7.17) by setting

C1 = R and jν(x, uν) =


0, if uν < 0,

k0
2 u

2
ν , if 0 ≤ uν < a,

k0
2 a

2, if uν ≥ a.
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

Since all of the above examples only describe what happens in the normal direction, in

order to complete the model we must combine these with boundary conditions concern-

ing στ , uτ , or both. The simplest cases are uτ = 0 (which corresponds to C2 = {0}) and

στ = Sτ , where Sτ = Sτ (x) is given (which corresponds to jτ (x, uτ ) = −Sτ · uτ ).

(b) The Signorini boundary conditions, which hold if the foundation is rigid and are as follows uν < 0⇒ σν = 0,

uν = 0⇒ σν ≤ 0,

or equivalently,

uν ≤ 0, σν ≤ 0 and σνuν = 0.

This can be written equivalently in form (7.17) by setting

C1 = (−∞, 0] and jν ≡ 0.

(c) In [78] the following static version of Coulomb’s law of dry friction with prescribed normal stress

was considered 
−σν(x) = F (x)

|στ | ≤ k(x)|σν |,

στ = −k(x)|σν | uτ|uτ | , if uτ (x) 6= 0.

We can write the above law in the form of (7.17) and (7.18) simply by setting

C1 = R, C2 = Rm, jν(x, uν) = F (x)uν , h(x, uτ ) = k(x)|F (x)| and jτ (x, uτ ) = |uτ |.

The assumptions on the functions f0, f2, φ, h, jν and jτ required to prove our main result are

listed below.

(HC) The constraint sets C1 and C2 are convex cones, i.e.

0 ∈ Ck and λCk ⊂ Ck for all λ > 0, k = 1, 2.
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

(Hf ) The density of the volume forces and the traction satisfy f0 ∈ H and f2 ∈ L2(Γ2;Rm).

(Hφ) The constitutive function φ : Sm → R and its Fenchel conjugate φ∗ : Sm → (−∞,+∞]

satisfy

(i) φ is convex and lower semicontinuous;

(ii) there exists α1 > 0 such that φ(τ) ≥ α1|τ |2, for all τ ∈ Sm;

(iii) there exists α2 > 0 such that φ∗(µ) ≥ α2|µ|2, for all µ ∈ Sm;

(iv) φ(ε(v)) ∈ L1(Ω), for all v ∈ V and φ∗(τ) ∈ L1(Ω), for all τ ∈ H.

(Hh) The function h : Γ3 × Rm → R is such that

(i) Γ3 3 x 7→ h(x, ζ) is measurable for each ζ ∈ Rm;

(ii) Rm 3 ζ 7→ h(x, ζ) is continuous for a.e. x ∈ Γ3;

(iii) there exists h0 > 0 such that 0 ≤ h(x, ζ) ≤ h0 for a.e. x ∈ Γ3 and all ζ ∈ Rm.

(Hjν ) The function jν : Γ3 × R→ R is such that

(i) Γ3 3 x 7→ jν(x, t) is measurable for each t ∈ R;

(ii) there exists p ∈ L2(Γ3) such that for a.e. x ∈ Γ3 and all t1, t2 ∈ R

|jν(x, t1)− jν(x, t2)| ≤ p(x)|t1 − t2|;

(iii) jν(x, 0) ∈ L1(Γ3).

(Hjτ ) The function jτ : Γ3 × Rm → R is such that

(i) Γ3 3 x 7→ jτ (x, ζ) is measurable for each ζ ∈ Rm;

(ii) there exist q ∈ L2(Γ3) such that for a.e. x ∈ Γ3 and all ζ2, ζ2 ∈ Rm

|jτ (x, ζ1)− jτ (x, ζ2)| ≤ q(x)|ζ1 − ζ2|;
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

(iii) jτ (x, 0) ∈ L1(Γ3;Rm).

The strong formulation of problem (P) consists in finding u : Ω → Rm and σ : Ω → Sm,

regular enough, such that (7.13)-(7.18) are satisfied. However, it is a fact that for most contact

problems the strong formulation has no solution. Therefore, it is useful to reformulate problem

(P) in a weaker sense, i.e. we shall derive a variational formulation. With this end in mind, we

consider the following function space

V = {v ∈ H1 : v = 0 a.e. on Γ1} (7.21)

which is a closed subspace of H1, hence a Hilbert space. Since the Lebesgue measure of Γ1 is

positive, it follows from Korn’s inequality that the following inner product

(u, v)V = (ε(u), ε(v))H (7.22)

generates a norm on V which is equivalent with the norm inherited from H1.

Let us provide a variational formulation for problem (P). To this end, we consider u a

strong solution, v ∈ V a test function and we multiply the first line of (P) by v − u. Using the

Green formula (7.1) we have

(f0, v − u)H = − (Div σ, v − u)H

= −
∫

Γ
(σν) · (v − u) dΓ + (σ, ε(v)− ε(u))H

= −
∫

Γ2

f2 · (v − u) dΓ−
∫

Γ3

[σν(vν − uν) + στ · (vτ − uτ )] dΓ + (σ, ε(v)− ε(u))H

for all v ∈ V . Since V 3 v 7→ (f0, v)H +
∫

Γ2
f2 · v dΓ is linear and continuous, we can apply

Riesz’s representation theorem to conclude that there exists a unique element f ∈ V such that

(f, v)V = (f0, v)H +

∫
Γ2

f2 · v dΓ. (7.23)

Consider now the following nonempty, closed and convex subset of V

Λ = {v ∈ V : vν(x) ∈ C1 and vτ (x) ∈ C2 for a.e. x ∈ Γ3} ,
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

which is called the set of admissible displacement fields.

Since C1, C2 are convex cones, it follows that Λ is also a convex cone. Moreover, taking into

account Definitions 1.7 and 1.8, we deduce that for all v ∈ Λ the following inequalities hold

−
∫

Γ3

σν(vν − uν) dΓ ≤
∫

Γ3

j0
ν(x, uν ; vν − uν) dΓ (7.24)

and

−
∫

Γ3

στ · (vτ − uτ ) dΓ ≤
∫

Γ3

h(x, uτ )j0
τ (x, uτ ; vτ − uτ ) dΓ. (7.25)

Here, and hereafter, the generalized derivatives of the functions jν and jτ are taken with

respect to the second variable, i.e. of the functions R 3 t 7→ jν(x, t) and Rm 3 ζ 7→ jτ (x, ζ)

respectively, but for simplicity we omit to mention that in fact these are partial generalized

derivatives. On the other hand, taking Proposition 1.2 into account we can rewrite (7.14) as

ε(u) ∈ ∂φ∗(σ), a.e. in Ω,

and which after integration over Ω leads to

−(ε(u), µ− σ)H +

∫
Ω
φ∗(µ)− φ∗(σ) dx ≥ 0, for all µ ∈ H. (7.26)

Let us define the operator L : V → H by Lv = ε(v) and denote by L∗ : H → V its adjoint, that

is,

(L∗µ, v)V = (µ,Lv)H, for all v ∈ V and all µ ∈ H.

Using (7.23)-(7.26) we arrive at the following system of inequalities

(P̃) Find u ∈ Λ and σ ∈ H such that

(L∗σ, v − u)V +

∫
Γ3

[
j0
ν(x, uν ; vν − uν) + h(x, uτ )j0

τ (x, uτ ; vτ − uτ )
]
dΓ ≥ (f, v − u)V , (7.27)

−(Lu, µ− σ)H +

∫
Ω
φ∗(µ)− φ∗(σ) dx ≥ 0, (7.28)

for all (v, µ) ∈ Λ×H.

The inequality (7.27) is related to the equilibrium relation, while (7.28) represents the func-

tional extension of the constitutive law (7.14). It is well-known (see e.g. [53], Theorem 1.3.21)

that relation (7.28) implies Lu ∈ ∂φ∗(σ) a.e. where in Ω.
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

Proposition 1.2 allows us to construct the separable bipotential a : Sm × Sm → (−∞,+∞],

which connects the constitutive law, the function φ and its conjugate φ∗, as follows

a(τ, µ) = φ(τ) + φ∗(µ), for all τ, µ ∈ Sm.

Using the bipotential a let us define A : V ×H → R by

A(v, µ) =

∫
Ω
a(Lv, µ) dx, for all v ∈ V, µ ∈ H.

and note that, due to (Hφ), A is well defined and

A(v, µ) ≥ α1‖v‖2V + α2‖µ‖2H, for all v ∈ V, µ ∈ H.

Moreover, Proposition 1.2 ensures that

A(u, σ) = (L∗σ, u)V and A(v, µ) ≥ (L∗µ, v)V , for all v ∈ V, µ ∈ H. (7.29)

Combining (7.27) and (7.29) we get

A(v, σ)−A(u, σ) +

∫
Γ3

[
j0
ν(x, uν ; vν − uν) + h(x, uτ )j0

τ (x, uτ ; vτ − uτ )
]
dΓ ≥ (f, v−u)V , (7.30)

for all v ∈ Λ.

Let us define now the set of admissible stress tensors with respect to the displacement u, to be the

following subset ofH

Θu =

{
µ ∈ H : (L∗µ, v)V +

∫
Γ3

[
j0
ν(x, uν ; vν) + h(x, uτ )j0

τ (x, uτ ; vτ )
]
dΓ ≥ (f, v)V , ∀v ∈ Λ

}
.

Let w ∈ Λ be fixed. Choosing v = u + w ∈ Λ in (7.27) shows that σ ∈ Θu, hence Θu 6= ∅. It

is easy to check that Θu is an unbounded, closed and convex subset of H. Taking into account

(7.29) we have

A(u, µ) +

∫
Γ3

[
j0
ν(x, uν ;uν) + h(x, uτ )j0

τ (x, uτ ;uτ )
]
dΓ ≥ (f, u)V , for all µ ∈ Θu,

while for v = 0 ∈ Λ in (7.27) we have

−A(u, σ) +

∫
Γ3

[
j0
ν(x, uν ;−uν) + h(x, uτ )j0

τ (x, uτ ;−uτ )
]
dΓ ≥ −(f, u)V .
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

Adding the above relations, for all µ ∈ Θu we have

0 ≤ A(u, µ)−A(u, σ) +

∫
Γ3

j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν)dΓ

+

∫
Γ3

h(x, uτ )
(
j0
τ (x, uτ ;uτ ) + j0

τ (x, uτ ;−uτ )
)
dΓ.

On the other hand, Proposition 1.3 and (Hh) ensure that∫
Γ3

[
j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν) + h(x, uτ )
(
j0
τ (x, uτ ;uτ ) + j0

τ (x, uτ ;−uτ )
)]

dΓ ≥ 0. (7.31)

(
Pbvar

)
Find u ∈ Λ and σ ∈ Θu such that A(v, σ)−A(u, σ) +

∫
Γ3

[
j0
ν(x, uν ; vν − uν) + h(x, uτ )j0

τ (x, uτ ; vτ − uτ )
]
dΓ ≥ (f, v − u)V ,

A(u, µ)−A(u, σ) ≥ 0,

for all (v, µ) ∈ Λ×Θu.

Each solution (u, σ) ∈ Λ×Θu of problem
(
Pbvar

)
is called a weak solution for problem (P).

7.2.2 The connection with classical variational formulations

In this section we prove an existence result concerning the solutions of problem
(
Pbvar

)
by

using a recent result due to Costea & Varga [38]. First we highlight the connection between the

variational formulation in terms of bipotentials and other variational formulations such as the

primal and dual variational formulations. As we have seen in the previous section, multiplying

the first line of problem (P) by v−u, integrating over Ω and then taking the functional extension

of the constitutive law, we get a coupled system of inequalities, namely problem (P̃). The

primal variational formulation consists in rewriting (P̃) as an inequality which depends only

on the displacement field u, while the dual variational formulation consists in rewriting (P̃) in

terms of the stress tensor σ. The primal variational formulation can be derived by reasoning in

the following way.

The second line of (P̃) implies that Lu ∈ ∂φ∗(σ) and this can be written equivalently as

σ ∈ ∂φ(Lu), hence

σ : (µ− Lu) ≤ φ(µ)− φ(Lu), for all µ ∈ Sm.
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

For each v ∈ Λ, taking µ = Lv in the previous inequality and integrating over Ω yields

(L∗σ, v − u)V ≤
∫

Ω
φ(Lv)− φ(Lu) dx, for all v ∈ Λ.

Now, combining the above relation and the first line of (P̃) we get the following problem

(Ppvar) Find u ∈ Λ such that

F (v)− F (u) +

∫
Γ3

[
j0
ν(x, uν ; vν − uν) + h(x, uτ )j0

τ (x, uτ ; vτ − uτ )
]
dΓ ≥ (f, v − u)V , ∀v ∈ Λ,

where F : V → R is the convex and lower semicontinous function defined by

F (v) =

∫
Ω
φ(Lv) dx.

Problem (Ppvar) is called the primal variational formulation of problem (P).

Conversely, in order to transform (P̃) into a problem formulated in terms of the stress tensor

we reason in the following way. First let us define G : H → R by

G(µ) =

∫
Ω
φ∗(µ) dx,

and for a fixed w ∈ Λ let Θw be the following subset ofH

Θw =

{
µ ∈ H : (L∗µ, v)V +

∫
Γ3

[
j0
ν(x,wν ; vν) + h(x,wτ )j0

τ (x,wτ ; vτ )
]
dΓ ≥ (f, v)V , ∀v ∈ Λ

}
.

Let us consider the following inclusion(
Pdw
)

Find σ ∈ H such that

0 ∈ ∂G(σ) + ∂IΘw(σ),

which we call the dual variational formulation with respect to w.

Now, looking at the first line of (P̃), i.e. relation (7.27), and keeping in mind the above

notations, we deduce that Θu 6= ∅ as σ ∈ Θu. Moreover, for each µ ∈ Θu we have

−(L∗(µ− σ), u)V ≤
∫

Γ3

j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν)dΓ

+

∫
Γ3

h(x, uτ )
(
j0
τ (x, uτ ;uτ ) + j0

τ (x, uτ ;−uτ )
)
dΓ,
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

which combined with the second line of (P̃) leads to

G(µ)−G(σ) ≥ −
∫

Γ3

j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν)dΓ

−
∫

Γ3

h(x, uτ )
(
j0
τ (x, uτ ;uτ ) + j0

τ (x, uτ ;−uτ )
)
dΓ,

for all µ ∈ Θu.

A simple computation shows that any solution of
(
Pdu
)

will also solve the above problem.

A particular case of interest regarding problem
(
Pdw
)

is if the set Θw does not actually de-

pend on w. In this case problem
(
Pdw
)

will be simply denoted
(
Pd
)

and will be called the dual

variational formulation of problem (P). For example, this case is encountered when the functions

jν and jτ are convex and positive homogeneous, as it is the case of examples (a)-(c) presented

in the previous section.

In the above particular case, problem
(
P̃
)

reduces to the following system of variational

inequalities

(P̃′) Find u ∈ Λ and σ ∈ H such that (L∗σ, v − u)V +H(v)−H(u) ≥ (f, v − u)V , for all v ∈ Λ

− (Lu, µ− σ)H +G(µ)−G(σ) ≥ 0, for all µ ∈ H,

where H = j ◦ T , j : L2 (Γ3;Rm)→ R is defined by

j(y) =

∫
Γ3

jν(x, yν) + jτ (x, yτ ) dΓ,

and T : V → L2(Γ3;Rm) is given by Tv = [(γ ◦ i)(v)]|Γ3 , with i : V → H1 being the embedding

operator and γ : H1 → H1/2(Γ;Rm) being the trace operator. On the other hand, for each

w ∈ Λ,

Θw := Θ = {µ ∈ H : (L∗µ, v)V +H(v) ≥ (f, v)V , for all v ∈ Λ} ,

and thus by taking v = 2u and v = 0 in the first line of (P̃′) we get

(L∗σ, u)V +H(u) = (f, u)V ,
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

hence

−(Lu, µ− σ)H ≤ 0, for all µ ∈ Θ.

Combining this and the second line of (P̃′) we get

G(µ)−G(σ) ≥ 0, for all µ ∈ Θ,

which can be formulated equivalently as(
Pd
)

Find σ ∈ H such that

0 ∈ ∂G(σ) + ∂IΘ(σ).

7.2.3 The existence of weak solutions

The following proposition points out the connection between the variational formulations pre-

sented above.

Proposition 7.1. A pair (u, σ) ∈ V × H is a solution for
(
Pbvar

)
if and only if u solves (Ppvar) and σ

solves
(
Pdu
)
.

The main result of this section is given by the following theorem.

Theorem 7.2. (N.C., M. CSIRIK & C. VARGA [26]) Assume (HC), (Hf ), (Hh), (Hjν ), (Hjτ ) and

(Hφ) hold. Then problem
(
Pbvar

)
has at least one solution.

Before proving the main result we need the following Aubin-Clarke type result concerning

the Clarke subdifferential of integral functions. Let us consider the function j : L2 (Γ3;Rm) ×

L2 (Γ3;Rm)→ R defined by

j (y, z) =

∫
Γ3

jν (x, zν) + h (x, yτ ) jτ (x, zτ ) dΓ. (7.32)

Lemma 7.1. Assume (Hh), (Hjν ) and (Hjτ ) are fulfilled. Then, for each y ∈ L2(Γ3;Rm), the function

z 7→ j (y, z) is Lipschitz continuous and

j0
,2 (y, z; z̄) ≤

∫
Γ3

j0
ν (x, zν ; z̄ν) + h (x, yτ ) j0

τ (x, zτ ; z̄τ ) dΓ. (7.33)
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

In order to prove Theorem 7.2 we consider the following system of nonlinear hemivaria-

tional inequalities.

(SK1,K2) Find (u, σ) ∈ K1 ×K2 such that ψ1(u, σ, v) + J0
,1(Tu, Sσ;Tv − Tu) ≥ (F1(u, σ), v − u)X1 , for all v ∈ K1,

ψ2(u, σ, µ) + J0
,2(Tu, Sσ;Sµ− Sσ) ≥ (F2(u, σ), µ− σ)X2 , for all µ ∈ K2,

where

• X1 = V , X2 = H, Ki ⊂ Xi is closed and convex (i = 1, 2), Y1 = L2(Γ3;Rm), Y2 = {0};

• ψ1 : X1 ×X2 ×X1 → R is defined by ψ1(u, σ, v) = A(v, σ)−A(u, σ);

• ψ2 : X1 ×X2 ×X2 → R is defined by ψ2(u, σ, µ) = A(u, µ)−A(u, σ);

• T : X1 → Y1 is defined by Tv = [(γ ◦ i)(v)]|Γ3 , with i : V → H1 the embedding operator and

γ : H1 → H1/2(Γ;Rm) is the trace operator;

• S : X2 → Y2 is defined by Sτ = 0, for all τ ∈ X2;

• J : Y1× Y2 → R is defined by J
(
y1, y2

)
= j

(
y0, y1

)
, where j : L2(Γ3;Rm)×L2(Γ3;Rm)→ R

is as in (7.32) and y0 is a fixed element of L2(Γ3;Rm);

• F1 : X1 ×X2 → X1 is defined by F1(v, µ) = f ;

• F2 : X1 ×X2 → X2 is defined by F2(v, µ) = 0.

Lemma 7.2. Assume (Hh), (Hjν ), (Hjτ ) and (Hφ) are fulfilled. Then the following statements hold:

(i) ψ1(u, σ, u) = 0 and ψ2(u, σ, σ) = 0, for all (u, σ) ∈ X1 ×X2;

(ii) for each v ∈ X1 and each µ ∈ X2 the maps (u, σ) 7→ ψ1(u, σ, v) and (u, σ) 7→ ψ2(u, σ, µ) are

weakly upper semicontinuous;

(iii) for each (u, σ) ∈ X1 ×X2 the maps v 7→ ψ1(u, σ, v) and µ 7→ ψ2(u, σ, µ) are convex;

(iv) lim inf
k→+∞

(F1(uk, σk), v − uk)X1 ≥ (F1(u, σ), v − u)X1 and lim inf
k→+∞

(F2(uk, σk), µ − σk)X2 ≥

(F2(u, σ), µ− σ)X2 whenever (uk, σk) ⇀ (u, σ) as k → +∞;
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

(v) there exists c : R+ → R+ with the property lim
t→+∞

c(t) = +∞ such that

ψ1(u, σ, 0)+ψ2(u, σ, 0) ≤ −c
(√
‖u‖2X1

+ ‖σ‖2X2

)√
‖u‖2X1

+ ‖σ‖2X2
, for all (u, σ) ∈ X1×X2;

(vi) The function J : Y1 × Y2 → R is Lipschitz with respect to each variable. Moreover, for all(
y1, y2

)
,
(
z1, z2

)
∈ Y1 × Y2 we have

J0
,1

(
y1, y2; z1

)
= j0

,2

(
y0, y1; z1

)
and

J0
,2

(
y1, y2; z2

)
= 0;

(vii) There exists M > 0 such that

J0
,1

(
y1, y2;−y1

)
≤M

∥∥y1
∥∥
Y1
, for all

(
y1, y2

)
∈ Y1 × Y2;

(viii) there exist mi > 0, i = 1, 2, such that ‖Fi(u, σ)‖Xi ≤ mi, for all (u, σ) ∈ X1 ×X2.

Proof of Theorem 7.2 The proof will be carried out in three steps as follows.

STEP 1. Let K1 ⊂ X1 and K2 ⊂ X2 be closed and convex sets. Then (SK1,K2) admits at least

one solution.

This will be done by applying a slightly modified version of Corollary 3.7 in [38]. Lemma

7.2 ensures that all the conditions of the aforementioned corollary are satisfied except

the regularity of J . We point out the fact that in our case this condition needs not to be

imposed because the only reason it is imposed in the paper of Costea & Varga is to ensure

the following inequality

J0
(
y1, y2; z1, z2

)
≤ J0

,1

(
y1, y2; z1

)
+ J0

,2

(
y1, y2; z2

)
which in this paper is automatically fulfilled because J does not depend on the second

variable and the following equalities take place

J0
(
y1, y2; z1, z2

)
= J0

,1

(
y1, y2; z1

)
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and

J0
,2

(
y1, y2; z2

)
= 0,

and this completes the first step.

STEP 2. Let K1
1 ,K

2
1 ⊂ X1 and K1

2 ,K
2
2 ⊂ X2 be closed and convex sets and let

(
u1, σ1

)
and

(
u2, σ2

)
be solutions for

(
SK1

1 ,K
1
2

)
and

(
SK2

1 ,K
2
2

)
, respectively. Then

(
u1, σ2

)
solves(

SK1
1 ,K

2
2

)
and

(
u2, σ1

)
solves

(
SK2

1 ,K
1
2

)
.

The fact that
(
u1, σ1

)
solves

(
SK1

1 ,K
1
2

)
means ψ1(u1, σ1, v) + J0

,1(Tu1, Sσ1;Tv − Tu1) ≥ (F1(u1, σ1), v − u1)X1 , ∀v ∈ K1
1

ψ2(u1, σ1, µ) + J0
,2(Tu1, Sσ1;Sµ− Sσ1) ≥ (F2(u1, σ1), µ− σ1)X2 , ∀µ ∈ K1

2

(7.34)

while the fact that
(
u2, σ2

)
solves

(
SK2

1 ,K
2
2

)
shows ψ1(u2, σ2, v) + J0

,1(Tu2, Sσ2;Tv − Tu2) ≥ (F1(u2, σ2), v − u2)X1 , ∀v ∈ K2
1

ψ2(u2, σ2, µ) + J0
,2(Tu2, Sσ2;Sµ− Sσ2) ≥ (F2(u2, σ2), µ− σ2)X2 , ∀µ ∈ K2

2

(7.35)

Putting together the first line of (7.34) and the second line of (7.35) we get ψ1(u1, σ1, v) + J0
,1(Tu1, Sσ1;Tv − Tu1) ≥ (F1(u1, σ1), v − u1)X1 , ∀v ∈ K1

1

ψ2(u2, σ2, µ) + J0
,2(Tu2, Sσ2;Sµ− Sσ2) ≥ (F2(u2, σ2), µ− σ2)X2 , ∀µ ∈ K2

2

(7.36)

On the other hand, keeping in mind the way ψ1, ψ2, J, F1, F2 were defined is it easy to

check that for any (v, µ) ∈ K1
1 ×K2

2 the following equalities hold

ψ1(u1, σ1, v) = ψ1(u1, σ2, v) and ψ2(u2, σ2, µ) = ψ2(u1, σ2, µ),

J0
,1(Tu1, Sσ1;Tv − Tu1) = J0

,1(Tu1, Sσ2;Tv − Tu1)

J0
,2(Tu2, Sσ2;Sµ− Sσ2) = J0

,2(Tu1, Sσ2;Sµ− Sσ1)

F1(u1, σ1) = F1(u1, σ2) and F2(u2, σ2) = F2(u1, σ2).
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

Using these equalities and (7.36) we obtain ψ1(u1, σ2, v) + J0
,1(Tu1, Sσ2;Tv − Tu1) ≥ (F1(u1, σ2), v − u1)X1 , ∀v ∈ K1

1

ψ2(u1, σ2, µ) + J0
,2(Tu1, Sσ2;Sµ− Sσ2) ≥ (F2(u1, σ2), µ− σ2)X2 , ∀µ ∈ K2

2

hence
(
u1, σ2

)
solves

(
SK1

1 ,K
2
2

)
. In a similar way we can prove that

(
u2, σ1

)
solves

(
SK2

1 ,K
1
2

)
.

STEP 3. There exist u ∈ Λ and σ ∈ Θu such that (u, σ) solves
(
Pbvar

)
.

Let us choose K1
1 = Λ and K1

2 = X2. According to STEP 1 there exists a pair (u1, σ1)

which solves
(
SK1

1 ,K
1
2

)
. Next, we choose K2

1 = Λ and K2
2 = Θu1 and use again STEP 1 to

deduce that there exists a pair (u2, σ2) which solves
(
SK2

1 ,K
2
2

)
. Then, according to STEP

2, the pair (u1, σ2) will solve
(
SK1

1 ,K
2
2

)
. Invoking the way ψ1, ψ2, J, F1, F2,K

1
1 ,K

2
2 were

defined, it is clear that the pair (u, σ) = (u1, σ2) ∈ Λ×Θu is a solution of the system A(v, σ)−A(u, σ) + j0
,2

(
y0, Tu;Tv − Tu

)
≥ (f, v − u)V , for all v ∈ Λ,

A(u, µ)−A(u, σ) ≥ 0, for all µ ∈ Θu,

for all y0 ∈ L2(Γ3;Rm), since y0 was arbitrary fixed. Choosing y0 = Tu an taking into

account (7.33) we conclude that (u, σ) ∈ Λ×Θu solves
(
Pbvar

)
, hence the proof is complete.

We close this section with some comments and remarks concerning the particular case when

the boundary conditions (7.17) and (7.18) reduce to the Signorini boundary condition combined

with a frictionless condition, that is στ = 0. In this case

C1 = (−∞, 0], C2 = Rm and jν , jτ , h ≡ 0,

while

Λ = {v ∈ V : vν ≤ 0 on Γ3},

and

Θ = {µ ∈ H : (µ, ε(v))H ≥ (f, v)V for all v ∈ Λ}.

Problem
(
Pbvar

)
reduces to the following system of variational inequalities
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7.2. The bipotential method for contact problems with nonmonotone boundary conditions

Find (u, σ) ∈ Λ×Θ such that for all (v, µ) ∈ Λ×Θ A(v, σ)−A(u, σ) ≥ (f, v − u)V ,

A(u, µ)−A(u, σ) ≥ 0.
(7.37)

This case was studied recently by Matei [77] who used the Direct Method in the Calculus of

Variations to prove that the functional L : Λ×Θ→ R

L(v, µ) = A(v, µ)− (f, v)V ,

admits a global minimizer and each minimizer (u, σ) of L is in fact a solution for (7.35). Our

proof is different, so even in this particular case our approach is new and supplements the

result obtained by Matei in [77]. Furthermore, as far as we are aware, there are no papers in the

literature in which the existence of the solutions for the variational approach via bipotentials

is proved by using systems of hemivariational inequalities. It would be interesting to consider

constitutive laws that involve bipotentials which are not separable.
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[86] M. MIHĂILESCU & V. RĂDULESCU, A multiplicity result for a nonlinear degenerate problem arising in the theory

of electrorheological fluids, Proc. Roy. Soc. London Ser. A 462 (2006), 2625-2641.

131



C
E

U
eT

D
C

ol
le

ct
io

n

BIBLIOGRAPHY
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