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CHAPTER 1

Basic De�nitions, Theorems and Notions About Knot Concordance

1.1 Introduction

In the 1960s, Fox and Milnor [7] gave the de�nition of knot concordance and after that

there has been quite a progress in this area. Main objective of the research has been

to understand the structure of these concordance groups, since they are complicated

and big groups. Levine [12] proved that the algebraic concordance group GZ ∼=

Z∞⊕Z∞2 ⊕Z∞4 . Then in the 1980s, both Levine's and Casson-Gordon's [2] work led to

understanding of topologically slice category of knots. A more recent approach comes

from Donaldson's diagonalization theorem [6] which is originally about 4-manifold

theory, but can be applied to knot theory to show that there are knots which are

algebraically slice, but not smoothly slice. Freedman's [8] theorem which states that

the knots with Alexander polynomial one is topologically slice also helped us construct

knots which are topologically slice, but not smoothly. This construction is quite

important in 4-dimensional manifold theory. With the help of these knots, it is

possible to provide 4-manifolds which are homeomorphic, but not di�eomorphic to the

standard Euclidean space R4 (exotic R4). Despite all these advances, there remains

many open problems and conjectures. The most recent progress in the area is due to

Cochran-Orr-Teichner [4]. They provide a �ner �ltration of the concordance group

which gives us a deeper insight and understanding of the group.

1



C
E

U
eT

D
C

ol
le

ct
io

n

1.1.1 A short outline of the work

This thesis will consist of four chapters. The main purpose of this work is to combine

all these theorems and concepts to provide a nice picture about knot concordance.

I believe that it will be useful especially for graduate students who are planning to

pursue a research in this area. I will try to put all these previously done works together

and also try to �ll in some gaps providing examples and computations. Throughout

the text, basic knowledge of algebraic topology is assumed.

The �rst chapter will be the introductory chapter to provide some basic knowledge

about the topic to the reader. After de�ning the isotopy relation, the de�nition of

sliceness in three di�erent categories will be given. An equivalence relation K1 ∼ K2

will be de�ned on the isotopy classes of knots and this requires some properties of

connected sum of K1 with the mirror image of K2. This will lead us to the notion of

"concordance". We will show that this relation enables us to have a group structure

by providing an inverse element. We will also de�ne the slice genus in the topological

and smooth case which will be used later in other chapters. The main theorems

about the concordance groups will be mentioned and the homomorphisms between

these groups will be introduced. The whole picture will look like;

C
onto→ Ctop

onto→ GZ ∼= Z∞ ⊕ Z∞2 ⊕ Z∞4

where C denotes the smooth concordance group, Ctop the topological concordance

group and GZ is the algebraic concordance group. In the following chapters, if we call

the �rst map φ1 and the second one φ2, the main object will be to show that these

homomorphisms have non-trivial kernel; we also introduce some invariants which can

2
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be combined to prove the isomorphism between the algebraic concordance group and

Z∞ ⊕ Z∞2 ⊕ Z∞4 .

The following, second chapter is devoted to the isomorphism between GZ and

Z∞ ⊕ Z∞2 ⊕ Z∞4 . To prove this isomorphism, Levine [12] introduced many homo-

morphisms from GZ to these summands. The algebraic concordance de�nition comes

from the Seifert form or matrix of a given knot, therefore the techniques used in this

chapter will be rather algebraic, sometimes referring to linear algebra. We will de�ne

the isometric structures and the Witt group of a ring or a �nite �eld on which the

invariants are easier to de�ne. With this approach, we will discuss the invariants

coming from these structures, which help us to detect the order of a knot in the alge-

braic concordance group. We will refer to Livingston's [17] example to compute the

orders and show that the algebraic concordance group contains an in�nite, 2-torsion

and 4-torsion summand. The computation of these invariants will be algebraic and

number theoretic mostly.

Knowing that a knot K is algebraically slice, Donaldson's diagonalization the-

orem [6] can be used to provide a further obstruction for a knot being smoothly slice.

In this chapter, we will work with the knots which are algebraically slice but not

smoothly slice. The important notions will be cyclic cover of a knot exterior, branched

covers of S3 branched over a knot K, and also branched covers of D4 branched over

the slice surface of a knot. These will be useful for the construction which will closely

follow [13]. Basically, we will focus on twist knots which will be denoted withW±
k and

do the computations for the value k = 6. Throughout the chapter, we will see that

3
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by the help of intersection forms, and constructing a special 4-manifold, it is possible

to extract some information about smooth sliceness of a knot. In the end, presenting

these examples, we will show that the map φ1 ◦ φ2 : C → GZ has non-trivial kernel.

The �nal chapter will be dedicated to the investigation of the �rst homomor-

phism, φ1 : C
onto→ Ctop. The kernel of this map consists of the knots which are

topologically slice, but not smoothly slice. The existence of such knots will depend

on Freedman's theorem [8] in which he states that the knots with Alexander polyno-

mial one are topologically slice and the τ invariant constructed using grid homology.

We will follow the work in progress [20]. At the beginning of this last chapter, we

will introduce the grid representation of knots and how to construct a chain complex

using this combinatorial approach. Then the homology with two gradings, namely

Maslov and Alexander gradings, will provide us the necessary tools to detect these

knots. Mainly, the τ invariant will provide a lower bound for the slice genus which

helps us to distinguish topological and smooth categories. As an example, we will

present the Whitehead double of the left handed trefoil with appropriate framing and

show that it lies in the kernel of φ1 and it is nontrivial.

1.2 Three Di�erent Concordance Relations

Let us start by de�ning our main objects of interest; knots in S3. For the rest of this

introductory chapter, we will be talking about knot concordance in three di�erent

categories which are somehow related but at the same time far from being equal.

De�nition 1.1. A knot is an (smooth) embedding of S1 into S3, i.e. S1 ↪→ S3.

In general an embedding of S1 is not necessarily smooth, but for our purposes

4
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it will be always a C∞ embedding. Here are some examples of my favourite knots;

Figure 1.1: Right Handed Trefoil Figure 1.2: A twist knot W+
k

Now, we would like to introduce an equivalence relation in the set of all knots

which helps us to understand and somehow categorise the knots we know.

De�nition 1.2. The knots K1 and K2 are isotopic if there is a map f : S1× [0, 1]→

S3 such that f(S1 × {1}) = K1 and f(S1 × {0}) = K2, and also for every x ∈ [0, 1]

f(S1 × {x}) = Kx is a knot.

Assuming that S1 is oriented, this actually gives an orientation on the knot.

For the rest of the work, we will be mostly working with oriented knots and links

unless stated otherwise. This de�nition tells us that if we have two knots say K1 and

K2 in S
3 and we can turn one of them into the other while having a knot in each slice,

these two knots are isotopic. We can see that isotopy de�nes an equivalence relation

in the set of knots. Re�exivity and symmetry are immediate, for transitivity one can

consider two di�erent maps, say f : S1× [0, 1]→ S3 and g : S1× [0, 1]→ S3 such that

f(S1×{0}) = K1 , f(S1×{1}) = K2 and also g(S1×{0}) = K2 , g(S1×{1}) = K3.

We can glue these isotopies in a way that it gives an isotopy from K1 to K3.

Quite similar to the isotopy we have already de�ned, now we will de�ne ambient

isotopy.

5
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De�nition 1.3. Two oriented knots K1 and K2 (or links) are ambiently isotopic if

there is a smooth map F : S3×[0, 1]→ S3 such that Fx = F |S3×{x} is a di�eomorphism

for each x ∈ [0, 1], F0 = idS3, F1(K1) = K2.

It can be seen that ambient isotopy is also an equivalence relation and we will

call an equivalence class of a knot (or a link) under this equivalence class knot (or

link) type.

We will weaken this condition and introduce the "concordance" relation. Be-

fore de�ning the concordance relation, we will recall some basic de�nitions and notions

which will be used in the de�niton of the concordance group as well.

De�nition 1.4. Given an oriented knot (K,S3) we can obtain three di�erent forms

of the knot K; the mirror image of K is mK = (K,−S3), the reverse of K is

rK = (−K,S3) and the inverse of K is de�ned to be mr(K) = (−K,−S3) where the

minus sign refers to the opposite orientation.

Later on mr(K) will be the inverse of K in the concordance group. To obtain

the mirror image of K, one can simply consider the projection of the knot onto the

plane and change all the crossings of the knot. As an example, the mirror image of

the right handed trefoil will be the left handed trefoil.

Figure 1.3: Right Handed Trefoil Figure 1.4: Mirror image of RHT

6
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De�nition 1.5. Given two oriented, connected n-manifolds M1 and M2, we can

de�ne the connected sum of these manifolds M1#M2 as follows; let N1 and N2 be two

open n-balls embedded in M1 and M2 respectively. To construct the connected sum,

we simply consider M1−N1 and M2−N2, and take the quotient of the disjoint union

of these punctured manifolds and glue them along the boundary with an orientation

reversing map.

To visualize it;

Figure 1.5: Connected sum of two manifolds

When we consider the connected sum of two knots, we utilize the same idea

that we used for the manifolds. Instead of n-balls, we delete two arcs from the knots,

and glue them with arcs again. Important part is that these connecting arcs should

intersect with the seperating plane only once, so the connected sum operation is well-

de�ned. Moreover, while constructing the connected sum of two knots K1 and K2,

we do it in a way that the orientation of two knots match. Here in Figure 1.6, we can

see an example of the connected sum of RHT and LHT.

7
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Figure 1.6: Connected sum of RHT and LHT

When we de�ne the connected sum of knots in this way, we have a well-de�ned

binary operation in the isotopy classes of knots. It is obivous that the connected sum

is commutative and associative. In this picture, the unknot serves as the identity

element. This should bring the idea that we can have an abelian group, but the

problem is that we do not have the inverse element. For any nontrivial knot, we

cannot �nd a knot such that the connected sum with the new knot is the unknot.

This will lead us to the concordance relation which will provide us su�cient conditions

to have an abelian group, with an inverse element.

One of the main concepts of concordance will be the sliceness. First, let us

de�ne this term.

De�nition 1.6. A knot K is called smoothly slice if there exists a smooth embedding

(D2, K) ↪→ (D4, S3) such that ∂D2 = K.

One can imagine this as our knot K living in S3 and bounding a smooth D2

in D4. In a schematic picture;

8
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Figure 1.7: A smooth disk in D4

It is important that the disk bounded by K is smooth. Otherwise, it will give

rise to another de�nition called topological sliceness.

De�nition 1.7. A knot K is called topologically slice if there exists a continuous

embedding (D2 ×D2, K ×D2) ↪→ (D4, S3) such that ∂D2 = K.

In topological sliceness, we embed K and our topological D2 with their tubular

neighborhoods. It is important to realize that these two concepts are actually far from

being the same. There are knots which are topologically slice, but not smoothly slice

as we shall see in the last chapter. Using the smooth embedding of D2 in D4, it

can be shown that a smoothly slice knot is also topologically slice, but the converse

statement is not true.

We have de�ned sliceness depending on whether or not our knot bounds a

smooth or topological D2 in D4. A knot does not necessarily bound a D2 in D4,

instead it can bound another surface. We will refer to these surfaces smoothly slice

surface or topological slice surface. We will also de�ne the smooth slice genus and

9
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topological slice genus based on this surfaces.

De�nition 1.8. A surface F is called a smoothly slice surface for the knot K if there

exists a smooth embedding (K,F ) ↪→ (S3, D4) where ∂F = K. In a similar fashion,

F is called a topological slice surface for K if there exists a continuous embedding

(K ×D2, F ×D2) ↪→ (S3, D4) such that ∂F = K.

Associated to the smoothly slice surface or the topological slice surface of a

knot, now we will de�ne the smoothly slice genus and topological slice genus number.

De�nition 1.9. The smooth slice genus, denoted as gs(K), is de�ned to be min{g(F )|

F is a smoothly slice surface for K}. As expected, the topological slice genus gtop(K) =

min{g(F )| F is a topological slice surface for K}.

It can be seen that gs(K) = 0 and gtop(K) = 0 implies smooth and topological

sliceness respectively. Now we will mention a key theorem for the construction of

concordance group.

Theorem 1.10. For any knot K ⊂ S3, K#mr(K) is slice, where mr(K) is the

inverse of K as de�ned previously.

Proof. It is convenient to think of a knot K in R3. Since we know that R3 = S3 −

{point}, we can imagine that K is in R3 and all the previous constructions work. The

main idea underlying this is that we can consider this extra point as a point at in�nity

and eventually adding this point to R3, it wraps up to S3 and this S3 is the boundary

ofD4. In the schematic picture, Figure 1.8, the planar rectangle represents R3 and the

rectangular box it bounds represents R4
+. Now let R3

+ = {(x1, x2, x3, 0) | x3 ≥ 0} ⊂ R4

to be the positive half space and assume that the knot K is in R3
+. We will use the

10
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spinning argument to construct the slice surface. Let A be an arc connecting K and

∂R3
+ in a way that when adjoined with an arc on ∂R3

+, it gives a knot isotopic to

K. Now delete a small arc from K and connect it to ∂R3
+ with the arc A. Call the

resulted, knotted arc A
′
in R3

+. For a point x = (x1, x2, x3, 0) ∈ R3
+, we can spin it

by using the formula xθ = (x1, x2, x3cos θ, x3sin θ) for 0 ≤ θ ≤ π. As shown in Figure

1.8, this spins the point in a circular trajectory landing on the other half space R3
−.

We spin all the points for any X ⊂ R3
+, i.e. Xs = {xθ | x ∈ X, 0 ≤ θ ≤ π}.

Hence, we can see that by spinning K, we obtain mr(K) in R3
− and furthermore

∂((A
′
)s) = K#mr(K). Of course, we do not just spin the knot, but the whole half

space R3
+ and we obtain R4

+. Finally, we need to see that in fact (A
′
)s gives a smooth

D2. It is possible to see this fact if we consider the embedding map of the knot K and

the map describing the spinning. First of all, recall that we are always considering

smoothly embedded knots. Consider the embedding map as a map from [0, 2π] to

R3 ⊂ R4. Therefore the embedding map which gives the coordinates of the knot,

say t 7→ (x(t), y(t), z(t), 0), is smooth. After that, we compose it with the spinning

map which describes the motion in R4 and can be given as (x(t), y(t), z(t), 0) 7→

(x(t), y(t), z(t)cosθ, z(t)cosθ). It is not di�cult to see that this map is smooth in

both θ and t. Therefore, we can see that the whole motion of spinning is smooth. As

a result, we obtain a smooth D2.
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Figure 1.8: The spinning argument explained

We have proved that K#mr(K) is slice, equivalently gs(K#mr(K)) = 0 for

any knot K. By showing this, we have found a candidate for the inverse element. As

one can guess, mr(K) will be the inverse element for any knot K in the concordance

group. Here comes the de�nition of concordance.

De�nition 1.11. Two knots K1 and K2 are said to be concordant if K1#mr(K2) is

slice, where mr(K2) denotes the inverse of K2. We denote it as K1 ∼ K2.

At �rst sight, this de�nition seems a little arti�cial. One can say that we

started with the isotopy classes of knots and somehow we need a similar relation to

classify them. The following theorem shows that an equivalent de�nition of concor-

dance exhibits some similarities with the notion of isotopy.
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Theorem 1.12. Two knots K1 and K2 are concordant if and only if they bound a

smooth 2-manifold C di�eomorphic to a cylinder, i.e. S1 × I, in S3 × I such that

C ∩ (S3 × {1}) = K1 and C ∩ (S3 × {0}) = K2 where I denotes the unit interval.

Proof. Assume that we have such smooth, proper embedding C of a cylinder, S1 × I

such that C ∩ (S3 × {1}) = K1 and C ∩ (S3 × {0}) = K2. We should construct the

smooth disk bounded by K1#mr(K2). Due to lack of dimensions we live in, it will

not be easy to visualize this.

Rigorously, �rst we will consider the tubular neighborhood of C. So we have

(C×D2)×I. One can think of this as the cylinder thickened a little bit inside S3×I.

To obtain the connected sum of the knots, we need to cut this cylinder with a proper

arc. After a suitable self-di�eomorphism of S3 × I, we can assume there exists an

embedding of C with its tubular neighborhood; φ : (S1 × D2) × I ↪→ S3 × I. Let's

choose an arc A ⊂ S1 which will cut our surface C and also S3 × I resulting in the

smooth disk in D4 that we wanted to construct. Notice that φ(A × {0} × I) ⊂ K1

and φ|(A×D2×I) is the product of inclusion A × D2 ↪→ S3 with idI . Now we can

remove some parts to obtain the smooth disk. So remove ((A×D2)× I) from S3× I.

Moreover, remove A × {0} × I from C. Therefore we obtain the slice disk in D4

bounded by K1#mr(K2) ∈ ∂D4.

For a better visualization see Figure 1.9 where the arc A and the tubular

neighborhoods we remove are shown;
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Figure 1.9: A simple visualization of concordance

The other part of equivalence is quite easy to see. If we are given a slice disk

bounded by K1#mr(K2), we can remove a su�ciently small open 4-ball from the

center of the slice disk, then we obtain the cylinder C embedded in S1 × I.

Figure 1.10: A small D4 removed from the slice disk

14



C
E

U
eT

D
C

ol
le

ct
io

n

Here we can see that K1#mr(K2) is concordant to the unknot. To obtain the

precise construction, we have two copies of S3, and at 0 level, we considerK2#mr(K2)

bounding the C. We know that K2 and mr(K2) bound a smooth disk in D4. Closing

the cylinder with that smooth disk we obtaing the embedded cylinder such that

C ∩ (S3 × {1}) = K1 and C ∩ (S3 × {0}) = K2.

It is not di�cult to see that knot concordance is an equivalence relation on

the set of knots. If two knots are isotopic, they are also concordant to each other. We

know that the connected sum operation is well-de�ned, associative and commutative.

Hence we can state the theorem we have been waiting for:

Theorem 1.13. Under the connected sum operation de�ned for the knot concordance,

the knot concordance classes form an abelian group denoted by C.

Proof. Here we will just mention the obvious facts about C being an abelian group.

First of all, knot concordance gives an equivalence relation. For re�exivity, given any

knotK we can considerK×I ,where I is the unit interval, inside S3×I, henceK ∼ K

is clear. For symmetry, we can just turn "upside down" the concordance between K1

and K2. For transitivity, we have the concordances between K1, K2 and K2, K3. By

stacking them properly, it is easy to see that we obtain the concordance between K1

and K3. To prove that connected sum is well-de�ned, we will just try to show you the

picture. Basically, we repeat a similar procedure that we did in the previous theorem.

Assume that K1 ∼ K2 and J1 ∼ J2 where C1 and C2 are corresponding concordances.

We need to show that K1#J1 ∼ K2#J2.
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Figure 1.11: How to combine two concordances by removing an arc

As you can see in the picture, we choose two arcs again, and remove the tubular

neighborhood of arcs from S3×I and cut the cylinders along these arcs say A1 and A2.

More precisely, we have C1− (A1×I) and C2− (A2×I). After that we glue these two

concordances properly through an orientation reversing di�eomorphism identifying

boundaries of these arcs and tubular neighborhoods with each other.

The associativity and the commutativity follow from the properties of the

connected sum operation itself, and the identity element is the concordance class of

the unknot and for any knot K, inverse element is mr(K) which is the mirror image

of K with the reversed orientation. Throughout the text, we will reserve C for the

smooth concordance group.

We can consider the same setting for topological concordance. We will de-

note the topological concordance group with Ctop. It is already mentioned that any
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smoothly slice knot is also topologically slice, so we can consider the map φ1 : C →

Ctop sending the smooth concordance class of K to the topological concordance class

of the same knot. This map is a group homomorphism which is onto. The kernel

of this homomorphism consists of the knots which are topologically slice, but not

smoothly slice. In the last chapter, we will show that actually this homomorphism

is not an isomorphism. Before de�ning the algebraic concordance group GZ, we will

give some preliminary de�nitions.

First of all, we will adopt the following convention to assign a sign for the crossings

of a given oriented knot K ⊂ S3.

Figure 1.12: Assigning signs to the crossings

De�nition 1.14. Let K1 and K2 be two disjoint, oriented knots and their union is

represented by a diagram D. The linking number lk(K1, K2) of K1 with K2 is the half

of the sum of the signs of those crossings where both strands are not from the same

component.

Here, even though we will not argue for it, we should note that the linking

number is independent of the knot diagram we choose.

De�nition 1.15. A compact, connected, oriented and smoothly embedded surface
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F with boundary in R3 is called a Seifert surface of K if it is the boundary of the

oriented knot (or link) K, i.e. ∂F = K and orientation coming from ∂F agrees

with the orientation of K. The Seifert genus of K is de�ned as g(K) = min{g(F ) |

F is a Seifert surface for K}.

It is natural to ask when we are given such a knot K whether this surface

is unique or not. At �rst sight, considering the simplest case, the unknot, we can

see that there can be many di�erent surfaces bounded by the unknot. However, the

following theorem will tell us that it is possible to make these surfaces equal by using

an operation called "stabilization". We shall brie�y explain how this "stabilization"

works.

Given the surface F , pick two points p, q ∈ Int(F ) and connect these points

with an arc α in S3 − F and assume that it approaches F from the same side. We

then just delete a small disk neighborhoods of p and q and add a "tube" around

α. We obtain a new surface F
′
which inherits an orientation from F and has genus

g(F
′
) = g(F ) + 1. Tha main idea is that, by using this operation su�ciently many

times we can make two Seifert surfaces equal. Here is a picture of stabilization;

Figure 1.13: Stabilization of a Seifert surface and the new generators of the homology
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Theorem 1.16 (Reidemeister-Singer Theorem, [24]). Let F1 and F2 be two Seifert

surfaces for an oriented knot K (or a link), then F1 and F2 can be stabilized su�ciently

many times to obtain ambiently isotopic surfaces F
′
1 and F

′
2.

Given a knot K, its Seifert surface F provides a bilinear form on H1(F ;Z).

This form is called the Seifert form and we will de�ne it as follow. Let x, y ∈ H1(F ;Z),

then these elements can be represented by pairwise disjoint, oriented, simple closed

curves; γx, γy respectively. Furthermore, let γ+x denote the push-o� of γx in the

positive normal direction of F .

De�nition 1.17. The Seifert form θ for the Seifert surface F of the knot (or link)

K is de�ned by

θ(x, y) = lk(γx, γ
+
y )

where x, y ∈ H1(F ;Z).

It can be seen that this de�nition is independent of the chosen representa-

tives. Now we can de�ne the Seifert matrix. After chossing a basis {u1, u2, . . . , un}

for H1(F ;Z) we can represent these basis elements with embedded curves α1, . . . , αn.

The Seifert matrix is (Si,j) = (lk(αi, α
+
j )). We shall make use of the Seifert matrices

quite frequently. Later on, we will de�ne some invariants coming from Seifert matri-

ces. We would like to give two remarks before proceeding to the notion of algebraic

concordance.

� Parallel to our discussion about the Seifert surfaces, the Seifert matrices can

be di�erent for the same knot (or link). A similar method can be applied to

the matrices and two Seifert matrices can be "stabilized" to give equivalent
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matrices. The main reasoning comes from that when we stabilize a Seifert

surface and increase the genus by 1, we actually add two new generators to

H1(F ;Z). Then we can modify the Seifert matrix by extending the basis for

H1(F ;Z). Two Seifert matrices will be called S-equivalent if they di�er by a

sequence of stabilizations and basis changes.

� Even though we have de�ned the Seifert matrices with integer entries, later in

the text we will mention Seifert matrices over a �eld F. Here is how we can de�ne

it. An even-dimensional matrix A with entries in a �eld F is called a Seifert

matrix or an F-Seifert matrix if it satis�es det((A − AT )(A + AT )) 6= 0. The

corresponding Seifert form is a bilinear form on a vector space V of dimension

equal to the dimension of A, given by θ(x, y) = xTAy for x, y ∈ V written as

column vectors.

Now we have the necessary preparation to de�ne algebraic concordance.

De�nition 1.18. A (2n × 2n) dimensional Seifert matrix A is algebraically slice if

it is congruent to a matrix with a half dimensional block of zeros on the top left part,

i.e. there exist a nonsingular matrix P such that;

PAP T =

(
0 B
C D

)
.

A knot K is called algebraically slice if it has a Seifert matrix which is algebraically

slice.

Equivalently, we can think of algebraic sliceness in terms of the Seifert form

corresponding to the Seifert matrix given in the de�nition. We say that this Seifert

form is algebraically slice or metabolic if there is an n-dimensional summand of the
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underlying free Z-module on which the form vanishes. This form is called the metab-

olizer of the form.

If a Seifert matrix of a knot is algebraically slice, then by S-equivalence, then all of

them are, independent of the choice of Seifert surface.

It is natural to think about the di�erence between algebraically sliceness and sliceness.

Before stating the relation between these two, we will just mention one theorem.

Theorem 1.19 ( [15], Theorem 3.1.2). Assume K is a slice knot, F is a Seifert

surface for K and θ the Seifert form, then there exists a summand H of H1(F ) such

that;

(1) rk(H) = 1
2
rk(H1(F ))

(2) θH×H = 0

Corollary 1.20. A slice knot is algebraically slice.

Converse of the corollary above is not true as we shall see in Chapter 3. The

simplest examples are the twist knots W±
k which can be seen in Figure 1.2. In the

next chapters, we will see that a twist knot W±
k is algebraically slice if and only if

4k+ 1 = l2. These examples are also the �rst known examples of Casson and Gordon

which are algebraically slice but not slice.

We showed that under the connected sum operation, we can form an abelian

group called concordance group. Now, we would like to discuss another concordance

relation which will provide an abelian group again. The key elements will be the

Seifert matrices, and we will utilize the orthogonal sums of matrices.

De�nition 1.21. A 2n × 2n dimensional Seifert matrix over a �eld F is called al-
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gebraically slice or metabolic if there exists and n-dimensional subspace of V ∼= F2n

on which the corresponding form vanishes. In the language of matrices, there exists

a nonsingular matrix P such that;

PAP T =

(
0 B
C D

)

where the top left 0 is an n× n block of zeros.

De�nition 1.22. Given two Seifert matrices A1 and A2, we will call them Witt

equivalent or algebraically concordant if;

A1 ⊕ A2 =

(
A1 0
0 −A2

)

is algebraically slice. We denote this by A1 ∼ A2.

We have another relation on the isotopy classes of knots. We would like to

show that this actually gives an equivalence relation. To prove this, besides some

algebraic manipulation of matrices, we need one lemma known as Witt Cancellation

Lemma.

Lemma 1.23 ( [15], Lemma 3.4.5). Let N and A be matrices of dimensions 2k and

2m respectively. Suppose that N and A⊕N are algebraically slice and that N −NT

has non-zero determinant. Then A is algebraically slice.

Theorem 1.24. Algebraic concordance is an equivalence relation.

Proof. Let A, B and C be Seifert matrices with dim(A) = 2m and dim(B) = 2n.

(1) Re�exivity: We need to show that A⊕−A is algebraically slice. Clearly,

A⊕−A =

(
A 0
0 −A

)
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Let P be the 4m× 4m matrix adding (2m+ i)th row to the ith row for 1 ≤ i ≤

2m. Clearly, P is a matrix corresponding to elementary row operations and it

is nonsingular and if we consider P (A⊕−A)P T ;

P (A⊕−A)P T =

(
0 −A
−A −A

)

which de�nitely contains a (2m)-dimensional diagonal block of zeros.

(2) Symmetry: Assume A ∼ B. Then we know there exists a nonsingular matrix P

such that P (A⊕−B)P T is algebraically slice. Hence it has (m+n) dimensional

block of zeros.

P (A⊕−B)P T =

(
. .
. .

)(
A 0
0 −B

)(
. .
. .

)
=

(
0 D
E F

)

To show that B⊕−A is also algebraically slice, consider a new matrix Q which

has rows of P with the following change; let R1, R2, ..., R2n+2m be the rows of

P . Q is obtained by switching the �rst 2m rows of P with the remaining 2n

rows respectively. So Q has the rows R2m+1, R2m+2, ..., R2m+2n, R1, R2, ..., R2m.

Hence if we write entries of P and Q in blocks we have,

P =

(
P11 P12

P21 P22

)
and Q =

(
P21 P22

P11 P12

)

where the �rst row in P with entries P11 and P12 is a block of size 2m×(2m+2n),

and similarly second row is a block of size 2n × (2m + 2n). To obtain Q, we

just switch these two rows. If we write down these huge matrices and check the

corresponding elementary row and column operations, we will see that with this

change, new matrix Q will perform the necessary changes in the �rst 2n × 2n
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block of B, and also 2m× 2m block of −A. So we have,

Q(B ⊕−A)QT =

(
. .
. .

)(
B 0
0 −A

)(
. .
. .

)
=

(
0 D′

E ′ F ′

)

Hence, B ∼ A.

(3) Transitivity: Assume that A ∼ B and B ∼ C, i.e. A ⊕ −B and B ⊕ −C are

algebraically slice. It is easy to see that we have the following relation between

the orthogonal sum of algebraically slice matrices;

(A⊕−B)⊕(B⊕−C) =


A 0 0 0
0 −B 0 0
0 0 B 0
0 0 0 −C

 = A⊕(−B⊕B)⊕−C ∼ (A⊕−C)⊕(B⊕−B)

We know that (B⊕−B) is algebraically slice, and by Witt cancellation lemma,

A⊕−C is also algebraically slice.

Therefore, we have seen that algebraic concordance is an equivalence relation.

De�nition 1.25. Equivalence classes of F-Seifert matrices under the algebraic con-

cordance relation form a group under orthogonal sum. We call this group the algebraic

concordance group and denote it simply by GF. Generally we will focus on two cases;

the integral algebraic concordance group GZ and the rational algebraic concordance

group GQ. The main di�erence is the choice for the entries of the Seifert matrices we

have de�ned previously.

Theorem 1.26. If we consider a map sending the concordance class of a knot to

its algebraic concordance class of its Seifert matrix, we obtain a well-de�ned group

homomorphism from C to GZ. Note that this homomorphism is also onto.
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Throughout the �rst chapter, we have given some basic de�nitions and theo-

rems which helped us to have a better understanding of the subject. Keep in mind

that our main objects are knots which are nothing but smooth embeddings of S1

into S3. Starting with this simple-looking objects, we obtained abelian groups, and

after that we saw that by sending one equivalence class to another, we can obtain

onto homomorphisms. In the second chapter, we will analyze the structure of the

algebraic concordance group.
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CHAPTER 2

Algebraic Concordance, Isometric Structures and the Witt Group

2.1 Basic Constructions and Their Relation

The algebraic concordance group was de�ned in the previous chapter. Here we will

try to outline the ideas and invariants which are used to understand the structure of

the algebraic concordance group. Levine [12] proved that;

GZ ∼= Z∞ ⊕ Z∞2 ⊕ Z∞4 .

He achieved this by de�ning a full set of invariants. In this chapter, we will not prove

this isomorphism. Following Livingston's [17] work closely, we will de�ne the neces-

sary constructions to show that the algebraic concordance group actually contains a

sum isomorphic Z∞, Z∞2 and Z∞4 . We will de�ne some algebraic invariants of knots

useful not only for this purpose, but in general applicable everywhere. After that

some examples will be provided to show that GZ has elements of order in�nity, of 2

and of 4.

De�nition 2.1. Let K ⊂ S3 and let A be a Seifert matrix for K. Then the determi-

nant of K is de�ned as |det(A+ AT )|.

The next invariant is maybe one of the most commonly used one;

De�nition 2.2. The Alexander polynomial of K is de�ned to be ∆K(t) = det(A −

tAT ) where again A is a Seifert matrix for K.

De�nition 2.3. Let F be a Seifert surface for K and A is a Seifert matrix of F .
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The signature σ(K) is de�ned to be the signature of the symmetrized Seifert matrix

A + AT , i.e. the number of positive entries minus the number of negative entries on

the diagonal form.

Clearly, we need to know that all these de�nitions make sense, i.e. they do

not depend on the choice of a Seifert surface, or a Seifert matrix. We will give a brief

argument why all these de�nitions only depend on the given knot.

Lemma 2.4 ( [20], Lemma 2.3.4). If F is a Seifert surface for K and F
′
is a stabi-

lization of F , then there is a basis for H1(F
′
;Z) whose Seifert matrix has the form A ψ 0

0 0 1
0 0 0

 or

 A 0 0
ψT 0 0
0 1 0


where A is a Seifert matrix for F and ψ is some vector.

Figure 2.1: Stabilized Seifert surface and computation of linking numbers

To see why this lemma is true, let {u1, · · · , un} be a basis for H1(F ;Z) giving

27



C
E

U
eT

D
C

ol
le

ct
io

n

the Seifert matrix A. After stabilizing the surface F , we add two new homology classes

y and x. This means we add two rows and columns to the Seifert matrix A. Basically,

we need to understand how these two new homology classes link with the others,

themselves and each other. First, observe that lk(ui, x
+) = lk(x, u+i ) = 0 for all

1 ≤ i ≤ n and also lk(x, x+) = 0. Moreover, depending on which side the stabilizing

curve approaches F , we have either lk(x, y+) = 0 and lk(x+, y) = 1 or lk(x, y+) = 1

and lk(x+, y) = 0. In Figure 2.1, the computation of the linking numbers are pictured.

Now changing the basis by adding the multiples of x if necessary to the ui's and y, we

obtain a Seifert form as expected. By Theorem 1.16, we know that given two di�erent

Seifert surfaces for K, we can stabilize them until they are ambiently isotopic. This

lemma tells us how the Seifert matrices will change after a stabilization. It can be

shown that with a change of basis, the invariants do not depend on the chosen Seifert

matrix.

It is possible to see that the signature does not change after one stabilization.

Let F
′
be obtained from F with one stabilization. Denote the Seifert matrix of F

with A and the Seifert matrix of F
′
with A

′
. The symmetrized Seifert matrix will be;

A
′
+ (A

′
)T =


A+ AT

∗ 0...
...

∗ 0
∗ · · · ∗ 0 1
0 · · · 0 1 0


where ∗ denotes some non-zero entries. Now using elementary row and column oper-

ations, �rst switch last two rows, then switch last two columns. We obtain;
A+ AT

0 ∗...
...

0 ∗
0 · · · 0 0 1
∗ · · · ∗ 1 0
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Now using 1's in the last row and column, we can make the entries denoted with ∗

0, and then it is not di�cult to see that the contribution of the small 2 × 2 matrix

on the bottom right corner to the signature is 0. Hence we can conclude that the

signature does not change after a stabilization.

The determinant, the Alexander polynomial and the signature are all invariants which

prove to be quite useful in some cases and we should be using them whenever needed.

As mentioned in the previous chapter, we can consider both GZ and GQ. It is also

known that there is a group homomorphism between these group sending the inte-

gral algebraic concordance class of a knot to its rational algebraic concordance class,

which is injective. After mentioning this fact, we can continue with the de�nitions

of isometric structure, Witt group and the invariants de�ned on the rational Witt

group.

De�nition 2.5. Let F be a �eld of characteristic not equal to 2. An isometric struc-

ture over a �eld F is a triple (V, Q, B) where V is a 2n-dimensional vector space, Q is

a non-singular, symmetric, bilinear form on V and B is an isometry of V with respect

to Q, which means Q(x, y) = Q(Bx,By) for all x, y ∈ V . This isometric structure

will be called admissible if the characteristic polynomial of B, ∆B(t) = det(B − tI)

satis�es ∆B(1)∆B(−1) 6= 0.

Following Levine and Livingston, �xing a basis of V ∼= F2n, we can represent

B by a non-singular matrix, and B(x) is the matrix product Bx; Q is represented by

a symmetric matrix Q(x, y) equal to the matrix product xTQy. Now we will de�ne

the binary operation on the isometric structures which will provide an equivalence

relation on the set. Consider two isometric structures (V,QV , BV ) and (W,QW , BW )
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where V and W are 2n and 2m dimensional F vector spaces. Now de�ne;

(V,QV , BV )⊕ (W,QW , BW ) = (V ⊕W,QV ⊥ QW , BV ⊕BW )

where the direct sum of isometries BV ⊕BW : V ⊕W → V ⊕W is de�ned to be;

(BV ⊕BW )(v ⊕ w) = BV (v)⊕BW (w)

and the orthogonal sum of forms QV ⊥ QW : (V ⊕W )× (V ⊕W )→ F is given by;

(QV ⊥ QW )(v1 ⊕ w1, v2 ⊕ w2) = QV (v1, v2) +QW (w1, w2).

It is not di�cult to check that this is a binary operation. Now here is the de�nition

of the equivalence relation:

De�nition 2.6. An isometric structure (V, Q, B) of dimension 2n is called metabolic

or Witt trivial, if there is an n-dimensional B-invariant subspace of V on which Q

vanishes. Two isometric structures (V1, Q1, B1), (V2, Q2, B2) are called Witt equivalent

if (V1, Q1, B1)⊕ (V2,−Q2, B2) is Witt trivial.

Using the de�nition of isometric structures, the binary operation de�ned on

isometric structures and Witt cancellation lemma for isometric structures, one can

see that this actually de�nes an equivalence relation on the set of isometric structures.

Moreover, it induces an abelian group;

De�nition 2.7. The abelian group of Witt classes of isometric structures with the

given binary operation is denoted as GF.

We will not outline the details of proving that this structure is actually an

abelian group. Instead, we will mention a special isometric structure which will

be crucial while describing the connection between Seifert matrices and isometric
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structures.

Let A be a 2n× 2n, nonsingular F-Seifert matrix. Then (F2n, A+AT , A−1AT ), where

B = A + AT and Q = A−1AT is an admissible isometric structure. First of all, we

should see that this is an isometric structure. The nonsingularity of Q comes from the

fact that A is a Seifert matrix, and we know that A+AT has non-zero determinant.

It is also clearly symmetric and bilinear from the de�nition. Moreover, B is a linear

transformation of F2n, and by using some matrix multiplication manipulations it can

be shown that it is an isometry with respect to Q. To see that it is also admissible,

we can do the following trick;

∆B(t) = det(A−1AT − tI) = det(A−1AT − tA−1A) = det(A−1(AT − tA))

Determinant is multiplicative so we can write it as;

det(A−1)det(AT − tA)

We know that A is non-singular so det(A) and det(A−1) are not equal to zero. Also

for t = 1 and t = −1, det(AT − A) and det(AT + A) are also non-zero, because A is

a Seifert matrix. Therefore, the isometric structure we have de�ned is admissible.

Now we can de�ne the map ψ1 : GF → GF sending a Seifert matrix to an isometric

structure.

Theorem 2.8. GF ∼= GF via following maps which are inverses of each other;

ψ1 : GF → GF

A 7→ (F2n, A+ AT , A−1AT )
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and also ψ−11 = ψ2

ψ2 : GF → GF

(V,Q,B) 7→ Q(I +B)−1

The main idea to prove this theorem relies on manipulation of matrices. We

have already seen that (F2n, A+AT , A−1AT ) gives an admissible isometric structure.

Similarly, one can check that Q(I + B)−1 de�nes a Seifert matrix. Again this will

require some computation with matrices, transposes and inverses. It is su�cient to

con�rm that det(A− AT ) = 1 for A = Q(I + B)−1. We know that Q is non-singular

and admissibility of the isometric structure implies that I +B is also non-singular.

Check what the compositions ψ1ψ2 and ψ2ψ1 are:

ψ2ψ1(A) = (A+ AT )(I + A−1AT )−1 = A(I + A−1AT )(I + A−1AT )−1 = A

where �rst ψ1(A) = (F2n, A+AT , A−1AT )) and then ψ2 maps this isometric structure

to Q(I +B)−1 where Q = A+ AT and B = A−1AT .

For the other direction, we have:

ψ2(V,Q,B) = Q(I +B)−1.

Then this Seifert matrix under ψ1 maps to the isometric structure;

(F2n, Q(I +B)−1 + (Q(I +B)−1)T , (Q(I +B)−1)−1(Q(I +B)−1)T ).

It can not been seen directly that this actually equals to (V,Q,B). Two facts which

can be found in [15] will give us the result. The �rst one is:

Q(I +B)−1 + (Q(I +B)−1)T = Q((I +B)−1 + (I +B−1)−1).
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And the second one is:

(I +B)−1 + (I +B−1)−1 = I.

These results primarily depend on the fact that we have an admissible isometric

structure, and combining these two;

Q(I +B)−1 + (Q(I +B)−1)T = Q((I +B)−1 + (I +B−1)−1) = QI = Q

A similar argument shows that (Q(I +B)−1)−1(Q(I +B)−1)T = B.

Hence, we have the necessary isomorphism between the algebraic concordance group

GF and group of isometric structures GF.

Now we will mention some invariants de�ned on the Witt group. As Liv-

ingston says in [17], these invariants can be combined to give an isomorphism from

the algebraic concordance group to the sum Z∞⊕Z∞2 ⊕Z∞4 . To this end, now we will

present the de�nition of the Witt group. It will be useful to de�ne homomorphisms

from GQ to the Witt groups and use the invariants arising from here. We will consider

the Witt groups over Q, �nite �elds Fp and also �eld of rational functions Q(t) where

the signature function is de�ned.

Let R be a commutative ring with a homomorphism τ : R → R such that τ 2 = 1.

These maps are called involutions. Some examples that we might utilize are rational

numbers Q with trivial involution, �eld of rational functions Q(t) with the involution

t→ t−1 and �nite �elds Fp with trivial involution.

De�nition 2.9. Let R be such a ring and consider a nonsingular, symmetric, bilinear

form B on a free rank R-module H where symmetry is with respect to the involution τ ,

i.e. B(x, y) = τ(B(y, x)), nonsingularity will tell us the map H → Hom(H,R) given
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by x → φx(y) = B(x, y) is an isomorphism, and �nally bilinearity means linearity

in the �rst variable and antilinearity in the second one, i.e. B(x, αy) = τ(α)B(x, y).

Parallel to the de�nitions of algebraic concordance previously given, such a form B

is called metabolic if there exists a submodule of M , with half rank; rank(H) =

2rank(M), and on this submodule B is trivial. Two forms B1 and B2 are called

metabolic if the direct sum B1 ⊕ −B2 is metabolic. The set of equivalence classes is

de�ned to be the Witt group of R and denoted as W (R).

The veri�cation of the fact that this relation actually gives and equivalence

relation and under the direct sum operation W (R) forms an Abelian group is quite

similar to the proof of algebraic concordance. For further details, the reader may

refer to [15].

2.2 Invariants from Witt Groups

Now, we can de�ne the invariants arising from the Witt groups. We will also refer to

some examples which can be computed relatively easily. First of all, observe that if

we are given a rational Seifert form A, we can construct the nonsingular, symmetric

form A + AT . So the map A→ (A + AT ) gives a well-de�ned group homomorphism

GQ → W (Q).

Before giving the de�nitions of the invariants, we will focus on a certain family of knots

denoted as K(a, b, c). We will be considering these knots for computational purposes.

Here a, b denotes the number of full twists and c is an odd number denoting the

number of half twists between two bands. You can see how this knot looks like in
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this picture;

Figure 2.2: A general diagram for K(a, b, c)

For K(a, b, c) with basis elements α and β, shown in the �gure above, for the

�rst homology, we will get the following Seifert matrix;

AK(a,b,c) =

(
a (c+ 1)/2

(c− 1)/2 b

)

1. The signature function : This will be the simplest invariant on W (Q) and it is

de�ned in a similar way with the previously de�ned signature. We consider the matrix

respresenting the corresponding form and diagonalize it over Q. Then, the number

of positive entries minus the number of negative entries is called the signature, and

denoted as σ. This gives a homomorphism from W (Q) to Z. Given a rational Seifert

form A, we compose two maps, i.e. A → A + AT → σ(A + AT ) which gives the

signature homomorphism. We will consider the knots K(1, k, 1) for k > 0.

Look at the Seifert matrix of K(1, k, 1),

AK(1,k,1) =

(
1 1
0 k

)
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where k > 0. First symmetrize it,

AK(1,k,1) + ATK(1,k,1) =

(
2 1
1 2k

)

Now we can diagonalize it to see the signature;

AK(1,k,1) + ATK(1,k,1) =

(
2 1
1 2k

)
→
(

2 0
0 (4k − 1)/2

)

It is obvious that when k > 0 this matrix has signature 2. So σ(AK(1,k,1)) = 2. As

previously discussed, the signature map gives a homomorphism in Hom(GQ,Z). The

signature itself is not su�cient to show that the algebraic concordance group contains

a summand isomorphic to Z∞, but su�cient to conclude that it contains Z. This is

due to the additivity of the signature;

σ(A⊕B) = σ(

(
A 0
0 B

)
) = σ(A) + σ(B)

and also the fact that if A is algebraically slice, the signature is 0. We will not argue

for the general case, but if a 2×2 Seifert matrix is algebraically slice, we can see that

the signature vanishes. Let A be a 2 × 2 Seifert matrix which is algebraically slice.

Then we know that there exists a nonsingular matrix P such that;

PAP T =

(
0 b
c d

)
.

Symmetrizing this matrix over the rationals and computing its eigenvalues we can see

that the signature is 0. For a larger Seifert matrix, a similar reasoning can be used

to prove the statement.

From the statements about the additivity property of the signature and the signature

of an algebraically slice knot, we can conclude that the Seifert matrix AK(1,k,1) is of
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in�nite order in the algebraic concordance group. Yet, we still do not have the neces-

sary machinery to prove that the algebraic concordance has a summand isomorphic

to Z∞. We will not argue for this, but this family of knots are linearly independent.

Using this fact, it is possible to show the existence of Z∞ summand in the algebraic

concordance group.

2. Invariants from W (Fp): We can consider the Witt group of �nite �elds and

de�ne some invariants here. For each prime p, we can de�ne the homomorphism

φp : W (Q) → W (Fp). We will brie�y explain how this map works, but we will not

present any proofs for the arguments used in the explanation. First of all, any form

over a �eld is Witt equivalent to a diagonal form, in matrix notation say ⊕i(αi) where

αi's are elements from the �eld. The function φp is de�ned on the generators (αi) as

follows; write α = apk where a and p are relatively prime, then φp((α)) = (a) ∈ W (Fp)

if k is odd and it is equal to (0) ∈ W (Fp) if k is even. This actually gives the well-

de�ned homomorphism. Another fact that we quote is that for prime p, W (Fp) is

isomorphic to Z2 if p ≡ 1 mod 4, and isomorphic to Z4 if p ≡ 3 mod 4. Using this

construction, it is possible to show that there are elements in algebraic concordance

group which have order 2 or 4.

Here we have exhibited two constructions which can be extracted from the Witt

groups. Clearly, these are useful to understand the order of some Seifert forms in the

algebraic concordance group. We will �nish this chapter by quoting another theorem

of Levine which identi�es the order of particular forms. We will use this theorem to

show the order of a particular Seifert matrix. Here is the statement;
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Theorem 2.10. Let A be a Seifert form of a knot and ∆A(t) denote its Alexander

polynomial which is an irreducible quadratic polynomial. Then A is of �nite order in

the algebraic concordance group if and only if ∆A(1)∆A(−1) < 0. In this case A is

of order 4 if |∆A(−1)| = pαq for some prime p, p and q are relatively prime, where α

is odd and p ≡ 3 (mod 4), otherwise it is of order 2.

Going back to the family of knots K(a, b, c), this time we set the values a = 1,

b = −5 and c = 1. Implementing these, we get the following Seifert form;

A =

(
1 1
0 −5

)

Figure 2.3: The knot K(1,−5, 1) and the generators

For this example, if we compute its Alexander polynomial;

∆A(t) = det(A− tAT ) = det

(
1− t 1
−t −5 + 5t

)
= −5t2 + 11t− 5

which is an irreducible quadratic polynomial over Q. By computing ∆A(1)∆A(−1) =

−21 we can apply the previous theorem. Since |∆A(−1)| = 21 = 3 · 7, this form has

order 4 in the algebraic concordance group.
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So far, we have seen that with the help of isometric structures and certain Witt

groups of rings and �nite �elds, it is possible to detect the order of an element in the

algebraic concordance group. Clearly, these invariants are not su�cient to prove the

isomorphism GZ ∼= Z∞⊕Z∞2 ⊕Z∞4 , one needs to go further and de�ne some polynomial

invariants coming from the Witt groups again. Since it is beyond the scope of this

work, we wanted to show that the structure of the algebraic concordance group is

understood by means of this algebraic and number theoretic invariants. In the next

chapter, we will discuss the homomorphism φ1 ◦ φ2 : C → GZ and explain that it has

nontrivial kernel.
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CHAPTER 3

Donaldson's Theorem Applied to Sliceness

3.1 Sliceness Obstruction from Donaldson

In this chapter, the main objective is to distinguish between the algebraically slice and

the smoothly slice category. To this end, we will follow a technique using the sliceness

obstruction arising from Donaldson's diagonalization theorem [6] about the de�nite

intersection forms. The main examples are the twist knots, previously denoted as

W±
k for k = 0, 1, 2, .... To simplify the notation, in this chapter we will omit the

plus/minus sign in W±
k and Wk will denote the twist knot with a positive clasp. We

still should note that this sign is related to the introduction of the clasp. In Figure

3.1, both the positive and negative clasps are presented. It is known that for this set

of knots, Wk is algebraically slice if and only if 4k + 1 = l2 [3]. We will show that

when k = 6, W6 is algebraically slice, but not smoothly slice. First of all, we would

like to show that Wk is algebraically slice if and only if 4k + 1 = l2. We will utilize

this fact in our construction.

Theorem 3.1. The twist knot Wk for k = 0, 1, 2, . . . is algebraically slice if and only

if 4k + 1 = l2.

Proof. We can directly compute the Seifert matrix of Wk by constructing one of

its Seifert surfaces and computing linking numbers for the generators of the �rst

homology of the Seifert surface. See Figure 3.2 where a Seifert surface for Wk is
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presented.

Figure 3.1: A twist knot Wk with a positive clasp

There are two generators of the �rst homology of this Seifert surface and they

are represented by curves a and b in Figure 3.2. Recall the de�nition of linking number

and how we used it in the Seifert form. We consider the push-o� of one of the curves

in the normal direction of the Seifert surface and compute the linking number.

In Figure 3.2, below the Seifert surface of Wk, we can see how the curves look

like after we push-o� one of them. We compute all the entries of this 2 × 2 matrix

and obtain the following matrix:

SWk
=

(
−1 1
0 k

)
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Figure 3.2: Seifert surface, generators and linking numbers

Recall that a knot K ⊂ S3 is algebraically slice if for a Seifert matrix of K,

say S, there exists a nonsingular matrix P such that,

PSP T =

(
0 .
. .

)

where both P and S are 2n× 2n matrices and 0 denotes an n× n block of 0's.

So let

P =

(
a b
c d

)
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where ad− bc 6= 0, and a, b, c, d ∈ Z.

Let us do the obvious computation;

P (SWk
)P T =

(
a b
c d

)(
−1 1
0 k

)(
a c
b d

)

After computations we obtain;

P (SWk
)P T =

(
−a2 + ab+ kb2 .

. .

)
=

(
0 .
. .

)

So if we assume that Wk is algebraically slice, then this expression a2− ab− kb2 = 0.

Consider this quadratic as a polynomial in a or b, and compute the discriminant. In

either case we obtain ∆ = b2(4k+1) or ∆ = a2(4k+1). We know that in order to have

rational solutions for the quadratic, the discriminant should be a square. Therefore,

4k + 1 = l2 for some l.

The other direction is also similar. If we assume that 4k + 1 = l2, then we see that

this quadratic has rational solutions. This implies the existence of a matrix P which

will turn the Seifert matrix of K into the form we desire.

As a result, we have the necessary condition for the algebraic sliceness of Wk.

For the rest of the chapter, we will be considering Wk for a particular value unless

speci�cally pointed out in the text. We will use the value k = 6, namely the knot W6

of this family where 4k + 1 = 4 × 6 + 1 = 25 = l2, hence l = 5. We know that W6

is algebraically slice, now using Donaldson's diagonalization theorem, we will prove

that W6 is not smoothly slice. We will follow the description and methods in [13].

Before proceeding with the theory, we would like to talk about branched covers which

will be used throughout the chapter. Here is the formal de�nition of a branched cover
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and some examples. For our purposes, we will only consider double branched covers

later.

De�nition 3.2. Let M and N be two n-dimensional manifolds, and A and B be n-2

dimensional submanifolds respectively. Then a continuous function f : M → N is

called a branched covering branched over B if f(A) = B , f(M − A) = N − B and

for any open U ∈ N −B f is a local homeomorphism.

This de�nition tells us that f behaves like a regular cover away from the branch

set in N. So f : M − A → N − B is a covering space. Each branch point a ∈ A has

a branch index k, which means that around a, the function f is k-to-one. For this

k-fold branch covers, our prototype will be the functions of the form f : C→ C and

z 7→ zk where z is complex and k ≥ 1.

Example 3.2. Let D2 = {z ∈ C | |z| ≤ 1} and consider the map from this D2 to

itself which is de�ned as p : z → zk. Then p is a k-fold branched covering with a

unique branch point z = 0.

This is an example of a branched covering of D2 with only one branch point.

One can construct another branched covering with more than one branch point. For

more examples the reader can refer to [22] or [21]. But before going any further a

more geometric example can provide a better understanding of the branched covers.

Example 3.3. Let Σg be a closed, oriented genus g surface, then we can construct a

2-fold branched covering as follows:

Consider p : Σg → S2 de�ned by means of a symmetry through an axis passing through

Σg. From the picture, it is clear that after rotating the genus g surface around this
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axis, the quotient space will be homeomorphic to S2. We obtain a 2-fold branched

covering p : Σg → S2 with 2g + 2 branch points.

Figure 3.3: The case for genus 1 with 4 branch points

For our purposes, we will focus on branched covers of S3. Since the branch set

is always codimension 2, our branch sets will be knots or links. So let φ : M → X(K)

be a �nite covering of a knot complement, X(K) = S3 − K. For each boundary

component of M (each of which is homeomorphic to T 2) attach a solid torus V =

S1×D2, by identifying each meridian of S1×D2 with a preimage of a meridian of K.

As a result, each meridian of V which is a curve of the form {pt.} × ∂D2 is mapped

to a meridian of K via a covering map. Sending each such disk {pt.} × D2 of V to

a normal disk of K, we can extend this map to the whole V via our prototype map

z 7→ zk de�ned previously.

The most important example arises from the case of the N -fold cyclic cover of M

of X(K). The boundary of M is a single torus and similarly, same map gives a

cyclic N -fold cover of the meridian. Hence, attaching a single solid torus to M , we
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built a new 3-manifold B. The core of the solid torus (the branched set of the map

p : B → S3) is mapped homeomorphically onto K. All this should give us a clearer

picture of a branched cover. Before stating the Donaldson's theorem, we should de�ne

the intersection form of a 4-manifold.

De�nition 3.3. Let X be a compact, oriented, topological 4-manifold. The symmetric

bilinear form

QX : H2(X, ∂X;Z)×H2(X, ∂X;Z)→ Z

de�ned as QX(a, b) = 〈a∪ b, [X, ∂X]〉 = a · b ∈ Z is called the intersection form of X.

Here [X, ∂X] denotes the fundamental class in H4(X, ∂X;Z) and ∪ denotes the cup

product. Since by Poincaré duality we have H2(X;Z) ∼= H2(X, ∂X;Z), QX is de�ned

on H2(X;Z)×H2(X;Z) as well.

We know that QX(a, b) = 0 if a or b is a torsion element, which implies that

QX can be considered on homology divided by the torsion part. This means that

if we choose a basis for H2(X;Z)/Torsion, we can represent QX by a matrix. For

the applications in this chapter, we will usually use the matrix representation of the

intersection form. Now we are ready to state Donaldson's theorem.

Theorem 3.4. If X is a smooth, closed 4-manifold with the intersection form QX

de�nite, then QX is diagonalizable over Z.

Before using this theorem to understand something about the sliceness of a

knot, we will need the following lemma which will not be proved.

Lemma 3.5. Let K ⊂ S3 be a smoothly slice knot, and D be its smooth disk. Then

the double branched cover of D4 branched over D denoted with Σ2(D) is a rational
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homology ball, i.e.H∗(Σ2(D);Q) = H∗(D
4;Q).

Now we will proceed with some computations using the theory explained so

far.

3.3.1 Some computations

A link in S3 is called a 2-bridge link if it has a projection with two local maxima. We

will use two notations for these knots, K(p, q) or equivalently L(a1, a2, . . . , an) where

ai ∈ Z for i = 1, 2, 3, . . . , n. In Figure 3.4, you can see the diagrams of 2-bridge knots

depending on n being odd or even. The numbers ai's denote the number of crossings.

Figure 3.4: 2-bridge knots in general

The relation between these two di�erent notations, namelyK(p, q) and L(a1, a2, . . . , an),

comes from the fact that if p and q are coprime integers such that 0 < q < p then we
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can write p/q as a continued fraction;

p

q
= a1 +

1

a2 +
1

. . . +
1

an

where ai < 0 for i = 1, 2, 3, . . . , n.

It is also known that if p is even, then K(p, q) is a two-component link. If p is odd,

then it is a knot. Another fact we will use is that for the 2-bridge knots, K(p, p− q)

is isotopic to the mirror image of K(p, q).

Now let us draw W6 and try to understand which 2-bridge knot it is isotopic to.

Figure 3.5: Isotoping W6 to K(25,23)

With a small manipulation, one can see that W6 looks pretty similar to

K(25, 2), but it is not exactly the same. We need to take its mirror. This means
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W6 is isotopic to K(25, 23).

Now we will use that fact that 2-fold branched cover of S3 branched over a 2-bridge

knot K(p, q) is the lens space L(p, q). Here is how we can see this fact. First of all, let

K(p, q) be a 2-bridge knot in S3. We can cut the knot into two pieces by an S2 which

is represented by a plane in Figure 3.6, leaving two unknotted arcs in the upper part

and all the twists a1, a2, . . . , an remaining in the lower part. Recall from Example 3.3

that the double branched cover of S2 branched over four points is a torus. It can be

seen that if we utilize the same spinning argument in Example 3.3 for a solid torus,

we obtain a D3 branched over two arcs. Therefore, the double branched cover of D3

branched over two arcs is a solid torus. When we cut the knot K(p, q) into these

pieces, we also cut S3 into two pieces and both pieces are D3's. Call the upper one

D3
+ and the lower one D3

−.

Figure 3.6: K(p, q) divided into two pieces
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Figure 3.7: Untwisting the lower part of K(p, q)

Now as shown in Figure 3.7, we can untwist the lower part of the knot K(p, q)

until we obtain two unknotted arcs. In order to do this, we can start with an and

introduce an-many twists in the opposite direction. This process will untwist an.

Then, we are left with an−1, . . . , a1. We can repeat the same procedure for an−1 and it

will be untwisted as well. Continuing in this way, eventually we obtain two unknotted

arcs in the lower part. Hence, we have two D3's and both of them are branched

over two unknotted arcs. So the double branched covers are solid tori for each D3.

Therefore, when we glue these two D3's back, we also glue the corresponding double

branched covers which are solid tori. While gluing the solid tori, the information

about how to glue them comes from the coded information we obtained during the

untwisting process and it is coded in the double branched cover of S2 branched over
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these four points, i.e. from the boundary of the double branched cover of D3
− and

using the information coming from the continued fraction of p/q where the ai's from

the untwisting procedure appear. Hence, we obtain the lens space L(p, q) as the

double branched cover of S3 branched over the knot K(p, q). For further information

related to the branched covers, the reader can refer to [22].

Following [13], if a lens space L(p, q) smoothly bounds a rational homology ball

W (p, q), it is possible to form a smooth negative de�nite 4-manifold X(p, q) by taking

the union of −W (p, q) with a canonical 4-dimensional plumbing P (p, q) bounded by

L(p, q). Since X(p, q) is negative de�nite, we can use Donaldson's theorem [6] to

conclude that the intersection lattice QX(p,q) is isomorphic to the standard diagonal

intersection lattice Dn, where n = b2(X(p, q)). This means that there is an embed-

ding QP (p,q) ↪→ Dn, and since −L(p, q) = L(p, p − q) smoothly bounds the rational

homology ball −W (p, q), there exists an embedding QP (p,p−q) ↪→ Dn
′
where n

′
is the

rank of QP (p,p−q).

Now let us do the necessary computations for the intersection form. We hadK(25, 23),

so the double branched cover is L(25, 23). The lens space L(p, q) is obtained perform-

ing −p
q
surgery on the unknot in S3 in general, and in our case we have −25

23
surgery.

By writing −25
23

as a continued fraction of integers, we can think of this 3-manifold

as the boundary of a 4-dimensional 2-handlebody. We represent it with the standard

Kirby diagram used for 2-handles, using an operation called slam-dunk. Here is the

picture for L(p, q) and a description for slam-dunk operation.
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Figure 3.8: Slam-dunk operation

Figure 3.9: Lens space L(p, q)

Here is another example of a slam-dunk operation and the resulting 3-manifold;

Figure 3.10: Using slam-dunk operation to get RP3

For more detailed information, the reader can refer to [9] and also [19].

Now by computing the continued fraction, we will obtain the plumbing graph and

52



C
E

U
eT

D
C

ol
le

ct
io

n

then work on the intersection form. For L(25, 23):

−25

23
= −2 +

1

−2 +
1

. . . − 2 +
1

−3

At the end, we obtain 11 −2's and one −3. The plumbing graph will look like;

Figure 3.11: Plumbing graph corresponding L(25,23)

We would like to get a contradiction. Assume that W6 is smoothly slice, then

there exists a rational homology ballW (25, 23) such that the intersection lattice of this

rational homology ball, call it QP (25,23), can be embedded into the standard diagonal

lattice D12. We choose generators for H2(D
12;Z). Assume they are e1, e2, ..., e12 such

that for every i, j we have;

eiej = −δij

This embedding gives rise to a subset S = {u1, u2, ..., u12} ⊂ D12 such that it

satis�es the following conditions;

� ui · uj = −2 if i = j = 1, 2, ..., 11 and ui · uj = −3 if i = j = 12.
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� ui · uj = 1 if | i− j |= 1 for i, j ∈ {1, 2, ..., 12}.

� ui · uj = 0 if | i− j |> 1 for i, j ∈ {1, 2, ..., 12}.

Let φ : QP (25,23) ↪→ D12 be the embedding map such that for each i = 1, . . . 12,

ui 7→
∑12

j=1 xj · ej where each xj ∈ Z. We can see that this implies u2i will be mapped

to (
∑12

j=1 xj · ej)2 for each j = 1, . . . , 12. Now let us start with seeing where u1 can be

mapped. The map φ tells us that u1 will mapped to a linear combination of xj · ej's,

and we also know that u1 ·u1 = u21 = −2. Hence u21 will be mapped to (
∑12

j=1 xj · ej)2.

This gives the relation;

(
12∑
j=1

xj · ej)2 = x21 · e21 + · · ·+ x212 · e212 = −x21 − · · · − x212 = −2

So we need to have x21 + · · ·+x212 = 2. Recall that all xj's are integers. Therefore, this

is only possible if xk = ±1 and xl = ±1 for some k, l ∈ {1, 2, . . . , 12} and all other

coe�cients are 0. So u1 = ±ek ± el for some k, l ∈ {1, 2, . . . , 12}. We can choose

k = 1 and l = 2. Also we can choose the signs such that they satisfy the relations

described above, so let u1 = e1 − e2.

Similar reasoning tells us that u2 = ±ek ± el for some k, l ∈ {1, 2, . . . , 12}. We see

that u2 is connected to u1 by an edge and it is also connected to u3 by another edge.

This implies that u2 · u1 = 1 and u2 · u3 = 1. Moreover, u2 · ui = 0 for i = 4, . . . , 12.

Again these conditions force one of k or l to be equal to 2 and the other one can

chosen to be 3. Following the previous convention, let u2 = e2 − e3.

If we continue in this way, we will see that up to renumbering, this is the only choice:

u1 = e1 − e2, u2 = e2 − e3, . . . , u11 = e11 − e12

Now we also have u12 =
∑12

i=1 xiei where xi ∈ Z. Now we will try to solve the
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equations for u12.

First of all, for any i = 1, 2, ..., 10 we have u12 · ui = 0. Moreover, u11 · u12 = 1.

Finally if we consider −3 = u212 = u12 · u12 = (
∑12

i=1 xiei)
2 = x21e

2
1 + · · · + x212e

2
12 =

−x21− · · · − x212 = −
∑12

i=1 x
2
i , we obtain

∑12
i=1 x

2
i = 3. Recall that by the de�nition of

the generators we know that ei · ej = −1 if i = j and ei · ej = 0 if i 6= j. If we check

the equations more closely, we get equalities about xi's:

From the �rst set of equations,

u12 · u1 = u12 · (e1 − e2) = −x1 + x2 = 0. Hence x1 = x2. If we proceed in a similar

fashion;

u12 · u2 = u12 · (e2 − e3) = −x2 + x3 = 0, which again implies x2 = x3. Then x3 = x4,

x4 = x5 and so on.

What we obtain at the end is x1 = x2 = x3 = · · · = x11, so all the coe�cients except

for the last one must be equal.

Also we had u12 · u11 = 1. This gives us u11 · (e11 − e12) = −x11 + x12 = 1.

Now just write x12−1 = x11 = x10 = · · · = x1 in
∑12

i=1 x
2
i = 3. The equation becomes;

(x12 − 1)2 + (x12 − 1)2 + · · ·+ (x12 − 1)2 + x212 = 3

We are looking for integer solutions of this equation. If |x12 − 1| ≥ 1, then it is

obvious that there are no solutions satisfying the equation. In the other case where

|x12 − 1| = 1, the equation will be 11 + x212 = 3 which has no integer solutions as

well. So this leaves the case x12 − 1 = 0. This implies that x12 = 1, and if we

implement this value in the equation above, we have x212 = 1 whereas we should have

obtained x212 = 3. Therefore, we can conclude that there are no integer solutions for
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this equation. This gives us a contradiction.

The contradiction we obtained immediately implies that the intersection lat-

tice QP (25,23) cannot be embedded into the standard diagonal intersection lattice D12.

Therefore, Donaldson's theorem tells us that we cannot form this smooth 4-manifold

X(25, 23) and L(25, 23) does not bound a smooth rational homology ball. Hence, us-

ing the Lemma 3.5 we can conclude that the knot K(25, 23) is not smoothly slice. We

have already discussed that K(25, 23) is isotopic to the twist knot W6. This means

that W6 is algebraically slice, but not smoothly slice.

This gives us what we have been looking for. The �rst result about this was ob-

tained in [3]. They de�ned an invariant called Casson-Gordon Invariant which gives

a slightly di�erent result. Using the cyclic n-fold branched covers and linking forms

they showed that this invariant should remain bounded as n goes to in�nity for a

particular family of knots. In fact, they used the same family of knots, namely the

twist knots. They proved that Wk is not slice if and only if k 6= 0, 2 which are the

unknot and Stevedore's knot.

So far, using Donaldson's theorem, we have been able to show that there are knots

which are algebraically slice, but not smoothly slice. In order to do so, we have bor-

rowed many concepts from other branches of topology and combined them together.

In the following chapter, we will move on to analyze the �rst homomorphism between

the topological and the smooth concordance group.
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CHAPTER 4

Grid Homology, Topological Concordance vs. Smooth Concordance

4.1 Grids

We will use grid representation of knots and utilize the homology arising from this

structure. My work will closely follow [20]. The invariant τ which is extracted from

the grid homology bounds the smooth slice genus from below. Constructing a knot

K with trivial Alexander polynomial, but τ 6= 0 will be what we need for a knot

which is topologically slice, but not smoothly. Therefore, the main aim is to exhibit

this construction in order to prove that the �rst homomorphism we de�ned between

smooth concordance and topological concordance group, φ1, has nontrivial kernel.

We will start with basic de�nitions and preliminaries of the subject.

Recall the de�nition of the signature of a knot K denoted as σ(K). The signature

is quite useful in many cases and it can be computed using some tools from linear

algebra. The problem is that, for our purposes it will not be su�cient. We have the

following lower bound;

Theorem 4.1 ([18]). Let K ⊂ S3 then |σ(K)| ≤ 2gs(K).

It implies that smoothly slice knots have signature equal to zero, but we have

the same bound for topological sliceness as well; i.e. |σ(K)| ≤ 2gtop(K). Therefore,

the signature itself would not be su�cient to distinguish topological and smooth

category all the time. Consider the knot W6 from the Chapter 3. It has a Seifert
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matrix,

SW6 =

(
−1 1
0 6

)
If we symmetrize it, we obtain

SW6 + STW6
=

(
−2 1
1 12

)

It is not di�cult to see that σ(W6) = 0, since one of the eigenvalues is positive and

the other one is negative. As a result, it does not tell us anything about sliceness.

For the rest of the chapter, we will see that this invariant τ provides a better bound

for slice genus.

Grid diagrams serve as another way to represent a knotK in S3. Historically speaking,

this method was �rst intoduced by Brunn in the late 19th century. Later, due to

Cromwell's theorem which will be mentioned in the chapter, the connection between

grid representations and knot types became more clear.

De�nition 4.2. A planar grid diagram G is an n × n square on a plane with n X

and n O markings satisfying the following rules;

� Each row has a single small square marked with an X and a single square with

an O marking,

� Each column has a single small square marked with an X and a single square

with an O marking,

� No small square has both X and O markings at the same time.

The number n is called the grid index of G. We will denote the set of O

markings with O and X markings with X.
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To present a knot or a link in S3 by a grid diagram, we do the following; given the

grid G with the markings, draw oriented line segments connecting the X markings to

the O markings in each column. Then do the same for each row. The orientation is

vertically X → O and horizontally O → X. The main rule is that the vertical line

segments always go over the horizontal ones. Here is an example of a grid diagram;

Figure 4.1: A grid diagram for two unknots in S3

Lemma 4.3. Every oriented link or knot in S3 can be represented by a grid diagram.

Proof. Given a knot K, to obtain a grid diagram, �rst we can draw our knot by

piecewise linear, horizontal and vertical line segments. After that, we need to modify

it to turn it into a grid diagram. There are two problems that might occur. The �rst

one is, we can have two vertical or horizontal linear line segments corresponding to

the same column or row, but we can perturb one of the line segments a little bit,

so one of the line segments will correspond to another column or row. The second

problem is that the rule "vertical goes over the horizontal" might be violated. Then
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we can modify this crossing as shown in the �gure below;

Figure 4.2: Fixing the violation of the rule "vertical goes over horizontal"

Therefore, given any knot K ⊂ S3, we can obtain a grid diagram representing

K.

In the �gures below, we exhibit the procedure of obtaining a grid diagram for

Stevedore's knot which is isotopic to the twist knot W2.

Figure 4.3: Drawing W2 with piecewise linear line segments
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Figure 4.4: Constructing a grid diagram for W2

Clearly, it is possible to construct di�erent grid diagrams for the same knot.

Consider the simplest example, namely the unknot;

Figure 4.5: Two di�erent grids representing the unknot

Hence, this brings the question that can we de�ne a kind of equivalence relation

for the same knot with di�erent grid diagrams or how can we relate these diagrams,

knowing that they actually represent the same knot? There are two di�erent types
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of grid moves which can be best described by pictures;

i) Commutation:

Figure 4.6: Nested interval Figure 4.7: Separate intervals

Figure 4.8: Intervals touching at one

point

Commutation operation allows us to change two consecutive columns, if it sat-

is�es certain conditions we describe here; �rst of all, we can see that there are

intervals in each column between theX and the O marking, and we allow commu-

tations, if one of the intervals is nested in the other (Figure 4.6), if two intervals

do not intersect at all (Figure 4.7) and if one of the intervals begins where the

other one ends (Figure 4.8). In the �gures above, these three cases can be seen.

If two intervals cross each other, the commutation is not allowed. It should be

noted that same commutation moves are allowed for rows. Without distinction,
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we will call both row commutation and column commutation just commutation.

ii) Stabilization: This is a grid move which changes the size of the grid. We can

de�ne a stabilization at an X-marking or at an O-marking. For each type of

marking, there are four di�erent type of moves. In total, we have eight di�erent

moves. Also to decrease the grid size, we can destabilize the grid by performing

the inverse move. Considering the notation; as an example XNW denotes the

northwest stabilization at an X-marking. A similar notation will be used for

other types of stabilizations depending on the marking and the direction. Here we

can see the 4 di�erent stabilizations at an X-marking. Note that it is essentially

the same for an O-marking.

Figure 4.9: Stabilization at an X-marking
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Theorem 4.4. (Cromwell) Let G1 and G2 be two grid diagrams representing isotopic

links, then there is a �nite sequence of commutations, stabilizations and destabiliza-

tions transforming G1 into G2.

This theorem tells us that a grid diagram of a knot or a link is unique up to grid

moves. The following lemma describes the relation between the two types of grid

moves.

Lemma 4.5. Any stabilization move can be obtained from a �nite sequence of one

XSW stabilization move and some commutation moves.

Proof. Except for XSW stabilization itself which requires no commutation moves, we

will explain how each stabilization can be obtained.

i) XNW : Looking at the �gure below, �rst we perform an XSW stabilization.

Then commuting the two rows, we obtain XNW .

Figure 4.10: XSW and commutations giving XNW

ii) XNE : After performing an XSW stabilization, we commute two rows again
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as shown in the �gure below, then commute the two consecutive columns.

Figure 4.11: XSW and commutations giving XNE

iii) XSE : Starting with an XSW stabilization, we commute the two consecutive

columns.

Figure 4.12: XSW and commutations giving XSE

iv) ONW : As shown in the �gure, stabilize the X-marking in the column
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labeled C1. Then, commute the newly created column next to C1 until it is adjacent

to the column C2. One more commutation will result in an ONW stabilization.

Figure 4.13: XSW and commutations giving ONW

v) ONE : We begin with the same stabilization XSW , the we keep commuting

the newly created column next to C1 until it is adjacent to C2. This gives an ONE

stabilization.

Figure 4.14: XSW and commutations giving ONE
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vi) OSW : After XSW stabilization, the commutations applied are shown in

the �gure below.

Figure 4.15: XSW and commutations giving OSW

vii) OSE : After the stabilization XSW , �rst we commute two rows R1 and R2,

then again column commutations shown in the �gure give the result.

Figure 4.16: XSW and commutations giving OSE
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Therefore, we have seen that all types of stabilization moves can be obtained

by starting with an XSW stabilization and then performing some commutations.

We have de�ned the planar grid diagram, in addition, it is also possible to

think of grid diagrams on a torus. We need to identify the edges of the rectangle,

same as constructing the torus from a rectangle by quotienting it. The grid will lie on

the surface of the torus. This toroidal identi�cation of a grid diagram will be useful

in certain cases.

Figure 4.17: Unknot on the toroidal grid

De�nition 4.6. A grid state on a toroidal grid diagram G is a 1-1 correspondance

between the horizontal and vertical circles. In other words, a grid state is an n-tuple

x = (x1, x1, . . . , xn) in the torus, such that each horizontal and vertical circle contains

exactly one element of x. The set of grid states on G is denoted by S(G).
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Figure 4.18: An example of a grid state

Notice that on the 5th column and 4th row we have two dots from the grid

state. This is because they are the same on the torus after the identi�cation of the

edges. From now on, we will omit the dots on the top and the right edge.

We will de�ne two di�erent versions of the grid chain complex with their boundary

maps. In order to describe the boundary map for both versions, we need to de�ne

the rectangles on a grid diagram.

Let x,y ∈ S(G) be two grid states such that they di�er by exactly 2 points on the

diagram. This will give us a rectangle with two points of x and two points of y as

vertices. The rectangle r also inherits an orientation from the torus. Convention is

that the horizontal edges of r are oriented from x to y and the vertical ones from y

to x. In this case, we say that r is a rectangle from x to y. Here is an example of a

rectangle;
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Figure 4.19: An example of a rectangle

If we look at Figure 4.19, two grid states are denoted with black dots and little

empty rectangles, call them x and y respectively. In two separate pictures, we can

see the rectangles from x to y and the rectangles from y to x. We will denote the set

of rectangles from x to y as Rect(x,y). We will de�ne the boundary map in a way

that it counts certain rectangles and gives a map from GC−(G) to itself. Denote also

Rect0(x,y) = {r ∈ Rect(x,y) : Int(r) ∩ x = Int(r) ∩ y = ∅}. These will be called

empty rectangles.

De�nition 4.7 (Fully Blocked Grid Chain Complex). Assume that we are given a

grid diagram G. De�ne the fully blocked grid chain complex G̃C(G) to be the complex

whose underlying vector space structure is generated by all the grid states, S(G).

The boundary map ∂̃ : G̃C(G)→ G̃C(G) is de�ned as;

∂̃(x) =
∑

y∈S(G)

#{r ∈ Rect0(x,y) | r ∩ X = r ∩O = ∅} · y

We can see that the boundary map counts the empty rectangles from x to y which
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do not contain any X and O markings and # denotes counting modulo 2.

De�nition 4.8 (Unblocked Grid Chain Complex). Assume that we are given a grid

diagram G. Enumerate the O-markings in G as {O1, O2, . . . , On} and consider the

polynomial ring R = F[U1, U2, . . . , Un], where each Ui corresponds to the enumerated

O-marking and F = Z2. De�ne the unblocked grid chain complex GC−(G) to be the

free module over R generated by all the grid states, S(G).

Now the boundary map ∂ : GC−(G)→ GC−(G) is de�ned as follows;

∂(x) =
∑

y∈S(G)

∑
r∈Rect0(x,y)

U
O1(r)
1 · UO2(r)

2 . . . UOn(r)
n · y

where the empty rectangle r does not contain any X-markings either, i.e. r ∩ X = ∅,

and Oi(r) is 1 if Oi ∈ r and 0 otherwise. We can see that the fully blocked grid chain

complex has a simpler structure, but it provides less information compared to the

unblocked theory. The following lemma tells us both of these structures are indeed

chain complexes.

Lemma 4.9 ([20], Lemma 4.6.7). The boundary maps de�ned in the fully blocked

grid chain complex ∂̃ : G̃C(G) → G̃C(G) and in the unblocked grid chain complex

∂ : GC−(G)→ GC−(G) satisfy ∂̃2 = 0 and ∂2 = 0.

Proof. We will prove the lemma only for the fully blocked theory. To prove this, we

will count rectangles. Assume that we are given a rectangle r1 ∈ Rect0(x,y) and

another rectangle r2 ∈ Rect0(y, z) where x,y, z are grid states in G. Recall that the

boundary map ∂̃ counts modulo 2, therefore for a given pair of rectangles (r1, r2), if we

can show that there is another pair of rectangles (r
′
1, r

′
2) such that r

′
1 ∈ Rect0(x,y

′
)

and r
′
2 ∈ Rect0(y

′
, z), we will be done. This is equivalent to showing that there are
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two ways of going from x to z using two separate pairs of rectangles. Notice that in

the �gures below, the grid states x,y, z and y
′
are represented by black dots, empty

triangles, empty rectangles and empty dots respectively. There are three separate

cases we need to consider.

1) The �rst case is the one where all the vertices of two rectangles r1 and r2

are distinct. In this case, we have four moving coordinates, which means moving four

coordinates, we obtain another grid state y
′
that provides another pair of rectangles

going from x to z. We can see how it works in the �gure below:

Figure 4.20: Two di�erent pair of rectangles from x to z

2) In the second case, we have three moving coordinates, so we will move three

coordinates of y, equivalently move three empty triangles in the �gure below, and

obtain the new grid state y
′
providing another pair of rectangles. Similary, we can

see how to go from x to z using two di�erent pair of rectangles in the �gure below:
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Figure 4.21: Two di�erent pair of rectangles from x to z

Notice that it does not matter how two rectangles are positioned. In other

cases where the smaller rectangle at the top is under the big rectangle or on the right

or left side, we can see that the same argument works.

3) In the last case, we would like to consider two moving coordinates. But this means

z = x, since we de�ned rectangles on a grid state in a way that two grid states di�er

only at two coordinates, and moving two coordinates of y twice will bring us back to

the initial picture. In this case, to go from x to y and then go back to x, we have

to go through the vertical or horizontal annulus shown in the picture below. This

annulus should have width or height 1, otherwise we can see that one of the rectangles

r1 or r2 will contain a coordinate of x or y. We also know that this annulus (vertical

or horizontal) will contain an X and an O marking. Recall that the boundary map

counts empty rectangles which do not contain any type of markings. Therefore, the

boundary map will be equal to 0. See Figure 4.22 for a pictorial description:
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Figure 4.22: The annuli containing an X and an O marking

In the �rst two cases ∂̃2 = 0, since we are counting modulo 2 and the rectangles

we count come in pairs and in the third case, because one of the rectangles we count

will contain a marking, the boundary map will vanish. Therefore, we can conclude

that ∂̃2 = 0. Even though we will not present the proof in the unblocked theory, the

proof is quite similar.

De�nition 4.10. The grid homology is de�ned to be GH−(G) = Ker∂/Im∂ as an

R-module where R = F[U1, U2, . . . , Un] and F = Z2. Moreover, multiplication by Ui

is chain homotopic to multiplication by Uj for any i, j ∈ {1, 2, . . . , n}.

Before de�ning the gradings, let us consider the simplest example, the unknot

represented by a 2× 2 grid, and compute the grid homology.

Example 4.2. Here is a 2× 2 grid for the unknot denoted as Gunknot.
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Figure 4.23: A 2× 2 grid diagram for the unknot

Since the size of the grid is 2, we have 2! = 2 grid states shown on Figure

4.23. We have also enumerated the O-markings. Our chain complex GC−(Gunknot)

is generated over F[U1, U2] by the grid states x and y. Now we need to compute the

boundaries. First, consider x.

Figure 4.24: Rectangles contributing to the boundary of x

If we call the rectangle in the left r1 in Figure 4.24 and the one in the right

r2, then both r1 and r2 are in Rect0(x,y) and r1 ∩ X = r2 ∩ X = ∅. Therefore,

∂(x) = U1y + U2y. For the boundary of y,
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Figure 4.25: Rectangles contributing to the boundary of y

the two shaded rectangles in Figure 4.25 will contribute. For both of these

rectangles, we can see that intersection with X-markings is not empty. Hence ∂(y) =

0. So Ker(∂) = {p(U1, U2) · y} where p(U1, U2) denotes a polynomial in U1 and U2

with coe�cients from F = Z2. Moreover, Im(∂) = {(U1 + U2) · p(U1, U2) · y}. We

can see that multiplication by U1 is chain homotopic to multiplication by U2. Let

U1 : GC−(Gunknot)→ GC−(Gunknot) be the map U1 7→ U1 ·x and U2 : GC−(Gunknot)→

GC−(Gunknot) be the map U2 7→ U2 · x. To show that they are chain homotopic, we

need to �nd a homomorphism of the module H : GC−(Gunknot)→ GC−(Gunknot) such

that U1 +U2 = ∂ ·H+H ·∂. We have two grid states, so let H(x) = 0 and H(y) = x.

Now we can check for x and y if the map H satis�es the equation given above;

∂·H(x)+H(∂(x)) = H(U1·y+U2·y) = U1·H(y)+U2·H(y) = U1·x+U2·x = (U1+U2)·x.

So for x we have the equality. Now let us check for y;

∂ ·H(y) +H(∂(y)) = ∂(x) = U1 · y + U2 · y = (U1 + U2) · y

Therefore multiplication by U1 is chain homotopic to multiplication by U2. This sug-

gests that they induce the same map on the homology. So we can conclude that the
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homology GH−(Gunknot) = Ker(∂)/Im(∂) =< p(U1, U2)·y > / < (U1+U2)·p(U1, U2)·

y >∼= F[U ] generated by the cycle y.

Grid homology will be really useful, because from this combinatorial structure,

there are two gradings one can obtain, namely the Alexander and Maslov gradings.

We will de�ne these two gradings and their relation to the homology.

Suppose that P,Q ⊂ R2 are �nite sets in the plane. De�ne

I(P,Q) = # of N.E. (northeast) pointing intervals from P to Q

= |{{p1, p2}, {q1, q2} | p1 < q1, p2 < q2}|

Let J(P,Q) = 1
2
(I(P,Q) + I(Q,P )) for symmetrizing the sum.

De�nition 4.11. The Maslov grading is de�ned to be;

MO(x) = J(x,x)− 2J(x,O) + J(O,O) + 1

and MO(x) ∈ Z.

De�nition 4.12. The Alexander grading is;

A(x) =
1

2
(MO(x)−MX(x))− (

n− 1

2
)

and A(x) ∈ 1
2
Z.

The following lemma gives an important property of the Alexander grading.

Lemma 4.13. Given a grid diagram G for a knot K and a grid state x ∈ S(G), the

Alexander grading A(x) is an integer.

We also have the following description of the Alexander and Maslov grading.

77



C
E

U
eT

D
C

ol
le

ct
io

n

De�nition 4.14. Let GC−(G) be the grid chain complex generated over F[U1, U2, . . . , Un]

where F = Z2. Then the Alexander and the Maslov grading have the following rela-

tions;

M(Uk1
1 . . . Ukn

n · x) = M(x)− 2k1 − · · · − 2kn

A(Uk1
1 . . . Ukn

n · x) = M(x)− k1 − · · · − kn

where x ∈ S(G) and ki's are all non-negative integers.

This actually tells us that multiplication by any Ui drops the Maslov grading

by 2 and the Alexander grading by 1.

Now let us compute the Alexander and the Maslov grading for Gunknot in Figure 4.23.

First, we will compute it for the grid state x:

I(x,x) = 1, I(x,O) = 3, I(O,x) = 1, I(O,O) = 1. Symmetrizing these we obtain

J(x,x) = 1, J(x,O) = 2, J(O,O) = 1. Therefore, the Maslov grading MO(x) = −1.

Similarly, we compute that I(x,X) = 2, I(X,x) = 0, I(X,X) = 0. Again symmetriz-

ing these we will get J(x,X) = 1, J(X,X) = 0. Hence MX(x) = 0. Implementing

these values in the formula of the Alexander grading, we see that A(x) = −1.

For the other grid state y, similar computations show that MO(y) = 0 and MX(y) =

−1. Therefore A(y) = 0.

Now let GC−d (G, s) denote the vector space over F = Z2 generated by monomials

Uk1
1 , U

k2
2 . . . , Ukn

n · x with Maslov grading d and Alexander grading s. The following

theorem reveals the properties of this bigraded structure;

Theorem 4.15. The construction GC−(G, ∂) has the structure;
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� It is bigraded as a vector space;

GC−(G) =
⊕
d,s∈Z

GC−d (G, s)

� It is a chain complex, i.e. ∂2 = 0.

� The boundary map decreases the Maslov grading by one, and it preserves the

Alexander grading;

∂ : GC−d (G, s)→ GC−d−1(G, s)

� The complex comes with an endomorphism U which decreases Maslov grading

by two and Alexander grading by one;

U : GC−d (G, s)→ GC−d−2(G, s− 1)

The proof is a little long and technical, so we will not be presenting it here.

Basically, we should understand that this structure gives a bigraded chain complex

over F[U ] and the endomorphism is given by multiplication by any Ui. Homology

arising from this bigraded chain complex inherits the same module structure.

In the following section, we will only outline the proof that grid homology is invariant

under the stabilization move. In the proof of invariance under the commutation

move, a similar reasoning that we will use in the next section is utilized. Given a grid

diagram G, if we perform a commutation move and obtain another grid diagram G ′ ,

then we can de�ne two maps P : GC−(G)→ GC−(G ′) and P ′ : GC−(G)→ GC−(G ′)

which count certain geometric regions on the grid called "pentagons". With a similar

geometric interpretation used in the proof of ∂2 = 0, it can be shown that both maps
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are chain maps. On the other hand, these two maps P and P ′ are homotopy inverses

of each other. The homotopy map is provided by two maps H : GC−(G)→ GC−(G)

and H ′ : GC−(G ′) → GC−(G ′) where the maps count certain geometric regions on

the grid called "hexagons". From these maps, the isomorphism on the homology is

obtained. The details of invariance under the commutation move can be found in

[20].

4.3 Invariance of the Grid Homology; stabilization case

We will begin with stating a theorem which is crucial.

Theorem 4.16. If G1 and G2 are two di�erent grid diagrams representing isotopic

knots, then GH−(G1) ∼= GH−(G2) as bigraded F[U ]-modules.

The theorem above states that the grid homology is an invariant of the knot.

For that reason, the grid homology is invariant under the moves we have de�ned;

stabilization and commutation. We will describe how homology is a�ected under

the stabilization move. First, we shall discuss the proof for the fully blocked grid

homology G̃H(G), and then we will describe what might go wrong in the unblocked

grid homology GH−(G), and how we can �x it.

Now we have the following proposition;

Proposition 4.17. Let G ′ be a stabilization of G. Then, there is an isomorphism of

bigraded vector spaces;

G̃Hd(G
′
, s) ∼= G̃Hd(G, s)⊕ G̃Hd+1(G, s+ 1)

We will need some preparation to prove this statement. First of all, assume

that the stabilization is of XSW type, which means we apply a south-west stabilization
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at an X-marking. Recall the de�nition of the di�erent types of stabilization in Figure

4.9. Just for notational purposes, we will enumerate some of the markings. Call the

newly created O-marking O1, and two splitted X-markings X1 and X2. Also call the

O-marking which is in the row under the newly created O1, as O2. Finally, consider

the intersection of the two new lines appearing in G ′ and call the intersection point

c. Here, you can see how two grids di�er.

Figure 4.26: How two grids di�er after stabilization

Now we are going to use a standard construction in homological algebra called

the mapping cone construction. Usually, if we are given two chain complexes C1 and

C2 with boundary maps ∂C1 and ∂C2 respectively, and a chain map between the chain

complexes f : C1 → C2, i.e. ∂C2f = f∂C1 , we can form the mapping cone Cone(f)

from these two complexes. It will be a chain complex of the direct sums C1 ⊕ C2,

where the new boundary map can be written in a matrix notation and acts in the
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following way:

∂Cone(f)(c1, c2) =

(
∂C1 0
f −∂C2

)
·
(
c1
c2

)
= (∂C1c1, f(c1)− ∂C2c2)

where (c1, c2)
T ∈ C1 ⊕ C2. We can also see that ∂2Cone(f)(c1, c2) = 0;

∂2Cone(f) =

(
∂C1 0
f −∂C2

)
·
(
∂C1 0
f −∂C2

)
=

(
∂2C1

0
f∂C1 − ∂C2f ∂2C2

)
=

(
0 0
0 0

)

since we know that ∂2Ci
= 0 for i = 1, 2. Also, f is a chain map, hence by de�nition

f∂C1 − ∂C2f = 0. Here C2 is a subcomplex, since if we pick a cycle c2 from the

complex C2 corresponding to the element (0, c2) ∈ (0 ⊕ C2) ≤ (C1 ⊕ C2) and apply

the boundary map, we see that it remains in C2:

∂Cone(f)(0, c2) =

(
∂C1 0
f −∂C2

)
·
(

0
c2

)
= (0,−∂C2c2)

We can decompose G̃C(G ′) as a mapping cone structure. Consider the grid states

S(G ′), split it as I(G ′)∪N(G ′) where I(G ′) denotes the set of grid states which contains

c as one of the grid state points, i.e. if x ∈ I(G ′), then c ∈ x. Then, it splits as a

vector space; G̃C(G ′) ∼= Ĩ⊕ Ñ and these components denote the spans corresponding

to the grid states. Notice that Ñ is a subcomplex of the mapping cone, since for

any rectangle r ∈ Rect(x,y) with x ∈ Ñ and y ∈ Ĩ, we know that this rectangle

contains one of X1 or X2. In Figure 4.27 and 4.28, we show the di�erent cases for this,

where the black dot represents the grid state x ∈ Ñ and the small empty rectangle

represents y ∈ Ĩ. The shaded and marked rectangles are all in Rect(x,y).

82



C
E

U
eT

D
C

ol
le

ct
io

n

Figure 4.27: Rectangles containing X1 or X2

Figure 4.28: Other cases of rectangles containing X1 or X2

In this picture, we have ∂̃II : Ĩ → Ĩ counting the rectangles from grid states

of I(G ′) to itself, and similarly we have ∂̃NN : Ñ → Ñ counting the rectangles from

grid states of N(G ′) to itself . We can represent the mapping cone with a matrix,

because we have the map ∂̃NI : Ĩ → Ñ which counts the rectangles r ∈ Rect0(x,y)

where x ∈ I(G ′) and y ∈ N(G ′). Moreover, notice that ∂̃IN which is the top right

entry of the matrix below is 0, since any rectangle r ∈ Rect0(x,y) with x ∈ N(G ′)
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and y ∈ I(G ′) must contain one of X1 or X2. Therefore;

∂̃Cone(∂̃NI ) =

(
∂̃II 0

∂̃NI ∂̃NN

)

Here we consider the Cone(∂̃NI ) = G̃C(G ′). Now what we would like to prove is

actually;

G̃H(G ′) ∼= G̃H(G)⊕ G̃H(G)

with some grading shift. So we have three claims;

� The homology of the complex (Ĩ , ∂̃II ) is isomorphic to G̃H(G) (with some grading

shift).

� The homology of the complex (Ñ , ∂̃NN ) is isomorphic to G̃H(G).

� The map induced by ∂̃IN is zero in the homology.

First of all, realize that there is a 1-1 correspondence between S(G) and Ĩ(G ′) by

matching x↔ x ∪ {c}. In the �gure below, you can see how we can match two grid

states.

Figure 4.29: Matching a grid state of G by adding {c}
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We can relate the gradings of two grid states, which will also provide the

necessary grading shift. Hence, we have the following lemma;

Lemma 4.18. If x ∈ S(G) and x
′

= x ∪ {c} is the corresponding element in Ĩ(G ′)

then we have the following relations;

M(x
′
) = M(x)− 1

A(x
′
) = A(x)− 1

We will brie�y explain the reasoning of this grading change. First, assume

that we stabilized at the top, right-most corner. When we add this new coordinate

{c}, then it increases some of the components we de�ned previously, such as I(x,x),

I(x,O), I(O,x) and �nally I(O,O). It is not di�cult to see that if the initial grid G

we have is an n× n grid, then I(x,x), I(O,x) and I(O,O) will increase by n, while

I(x,O) increases by n+ 1. In Figure 4.30 below, we can see the pictorial explanation

of how I(x,x) increases by n. The black dots represent the grid state x ∈ S(G).

Figure 4.30: After adding {c}, the shift for each coordinate of x
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Therefore, if we say I(x,x) = k, I(x,O) = l, I(O,x) = m and �nally

I(O,O) = r, then it follows that I(x
′
,x
′
) = k + n, I(x

′
,O′) = l + n + 1, I(O′ ,x′) =

m+n and �nally I(O′ ,O′) = r+n, where O′ denotes the set of O-markings after the

stabilization. Then,

M(x
′
)−M(x) =k + n− 2(

m+ l + 2n+ 1

2
) + r + n+ 1− (k − 2(

m+ l

2
) + r + 1)

=k − (m+ l) + r − k + (m+ l)− r − 1 = −1

Similar computations show that A(x
′
) = A(x) − 1. As the next step, we should

understand how this map a�ects the chain complexes. Here is the lemma;

Lemma 4.19. Let ẽ : Ĩ → G̃C(G) be the map induced by the correspondence x↔ x∪

{c}, then ẽ induces an isomorphism between chain complexes (Ĩ , ∂̃II ) and G̃Cd+1(G, s+

1) for all (d, s) pairs where d and s denote the corresponding Maslov and Alexander

gradings of x in G.

The map ẽ is a bijection of grid states, therefore it induces an isomorphism

between vector spaces Ĩ and G̃C(G). Our boundary map counts empty rectangles,

and empty rectangles disjoint from X∪O in G correspond to empty rectangles disjoint

from X′ ∪O′ in G ′ . This shows that ẽ is an isomorphism of the chain complexes, and

in the previous lemma, we already con�rmed the grading change. Now we will give

the de�nitions of two maps which count certain rectangles, and will help us relate the

homologies of two complexes;

De�nition 4.20. De�ne H̃I
X2

: Ñ → Ĩ for x ∈ Ñ(G ′) as follows;

H̃I
X2

(x) =
∑

y∈I(G′ )

#{r ∈ Rect0(x,y) | Int(r) ∩O = ∅ and Int(r) ∩ X = X2} · y
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Similarly, the other map is de�ned as, H̃O1 : Ĩ → Ñ for x ∈ Ĩ(G ′);

H̃O1(x) =
∑

y∈N(G′ )

#{r ∈ Rect0(x,y) | Int(r) ∩ X = ∅ and Int(r) ∩O = O1} · y

Lemma 4.21. The map H̃I
X2

drops the Maslov and the Alexander gradings by one,

and the map H̃O1 increases both gradings by one. Furthermore, these maps are chain

maps and they induce isomorphims on the homology.

The fact that these are chain maps can be proved using the same technique of

the proof that ∂2 = 0 (Recall the proof of Lemma 4.9). We will concentrate on the

claim that;

H̃I
X2
◦ H̃O1 = IdĨ

To understand what this composition map does, we can look at it on the grid. To

begin with, if x ∈ Ĩ(G ′) is a generator, the composition map counts the rectangles r1

from x to y which contains the O1 marking and another rectangle r2 touching the

�rst one and also containing the X2 marking, moreover ending in a state in Ĩ(G ′). If

we look at the grid in Figure 4.31, there is a unique choice doing this job. This is

unique, because considering the other choices of rectangles, we can see that some of

them will just contain O1 and not X2 or the other way around, or they will contain

some other markings di�erent from O1 or X2.
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Figure 4.31: The rectangles r1 and r2

Therefore, we can conclude that H̃I
X2
◦ H̃O1(x) = x.

Next claim is that, the map H̃O1 ◦ H̃I
X2

is chain homotopic to the identity map. So

consider the map H̃O1,X2 : Ñ → Ñ de�ned for x ∈ Ñ(G ′);

H̃O1,X2(x) =
∑

y∈N(G′ )

#{r ∈ Rect0(x,y) | Int(r) ∩ X = X2 and Int(r) ∩O = O1} · y

To understand what this map does, we can follow a similar reasoning. Consider this;

H̃O1 ◦ H̃I
X2

+ H̃O1,X2 ◦ ∂̃NN + ∂̃NN ◦ H̃O1,X2 = IdÑ .

Left-hand side of the equation counts the number of composition of rectangles starting

and ending at the states in Ñ(G) which can be given as the composition of two

rectangles, say r1 and r2 such that (r1 ∪ r2) ∩ (X ∪O) = {X2, O1}. For most of the

composition of rectangles like this, we know that they can be decomposed as two such

rectangles in two ways. For exceptional cases, we have the annuli containing X2 and
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O1 and these identify the IdÑ . Putting all these together, we conclude that H̃I
X2

and

H̃O1 are chain homotopy equivalences.

The last claim before moving to the homological interpretation is that the chain map

∂̃NI : (Ĩ , ∂̃II )→ (Ñ , ∂̃NN ) induces the trivial map on homology. Seeing that H̃I
X2
◦∂̃NI = 0

will su�ce. For this composition map H̃I
X2
◦ ∂̃NI , the only rectangles that count will

be the horizontal, height-1 annulus containing O2 and X2, but we consider rectangles

which do not cross any O-markings. Therefore, the composition vanishes, and we

have already seen that H̃I
X2

induces an isomorphism on the homology.

Proof of Proposition 4.17. After this sequence of lemmas and explanations, we can

consider the long exact sequence coming from this mapping cone and pass to the

homologies. First of all, assume that we have the stabilization type XSW . We know

that Ñ is a subcomplex of G̃C(G ′) with quotient Ĩ. We have the following short exact

sequence;

0 −→ Ñ −→ G̃C(G ′) −→ Ĩ −→ 0

The connecting homomorphism is induced by ∂̃NI and we have seen that this map

induces the zero map on the homology. Therefore, the long exact sequence reduces

to;

0 −→ H(Ñ) −→ G̃H(G ′) −→ H(Ĩ) −→ 0

Now if we replace the homologies above with our computations from Lemma 4.21, we

obtain the result;

0 −→ G̃H(G) −→ G̃H(G ′) −→ G̃H(G) −→ 0

where the G̃H(G) in the chain coming after G̃H(G ′) is the homology with the grading
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shift. By Lemma 4.5 and invariance of the grid homology under the commutation

move, the proof is complete.

Now we will brie�y explain how this whole construction can be modi�ed in

such a way that it works in the unblocked theory as well. The main problem that

arises is that we will be working over di�erent polynomial rings before and after

the stabilization, in this case, technically we cannot expect to have an isomorphism

after the stabilization. Following the previous notation, GC−(G ′) is de�ned over

F[U1, U2, · · · , Un] whereas GC−(G) is de�ned over F[U2, · · · , Un]. To equalize the

situation, we �rst promote our polynomial ring by adding an extra generator and

then collapse it. This means that given GC−(G), we consider GC−(G)[U1]. So far

it works out perfectly, but the problem will occur when we consider the homology

of this new complex. It will be bigger than the homology of GC−(G). To solve this

problem, we divide it by U1 − U2 which means considering the map;

U1 − U2 : GC−(G)[U1]→ GC−(G)[U1]

de�ned to be the multiplication by U1−U2 ∈ F[U1, U2, · · · , Un] and take its mapping

cone. After this modi�cation, we follow the previous construction and relate two

mapping cones.

4.4 τ and Slice Genus

To summarize what we have seen so far, given a knot K ⊂ S3, we represent it by a

grid diagram G. Then using the grid states and rectangles, we de�ned the boundary

map on the complex generated by all grid states. We have denoted it by GC−(G)

which is an F[U1, . . . , Un]-module equipped with Maslov and Alexander grading. After
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that, from the boundary map ∂ : GC−(G) → GC−(G) we extracted the homology

associated to the knot K. From now on, we will denote the grid homology of K by

GH−(K) to emphasize the knot.

Now let us look at the structure of GH−(K) closer. It is a �nitely generated F[U ]-

module, and we know from algebra that F[U ] is a principal ideal domain. Hence, a

�nitely generated module over F[U ] can be written as a sum of cyclic modules. As a

result, the cyclic modules will be of the form F[U ]�< f(U) >. Moreover, the existence

of Maslov grading forces f(U) to be a monomial, i.e. f(U) = Un. Hence;

GH−(K) = F[U ](d1,a1) ⊕ · · · ⊕ F[U ](dm,am) ⊕ F[U ]�Un1
(d
′
1,a
′
1)
⊕ . . .F[U ]�Unk

(d
′
k,a
′
k)

where di and d
′
i denote the Maslov grading for the corresponding generator, and ai

and a
′
i denote the Alexander grading. We can say more if we have a knot K:

Proposition 4.22 ( [20], Proposition 7.3.4). Given a knot K ⊂ S3 we have;

GH−(K) = F[U ](d1,a1) ⊕ F[U ]�Un1
(d
′
1,a
′
1)
⊕ · · · ⊕ F[U ]�Unk

(d
′
k,a
′
k)

De�nition 4.23. De�ne τ(K) = −a1 where τ(K) is the negative of the maximal

Alexander grading of the elements in GH−(K) which is not U-torsion.

The following theorem will provide the lower bound for slice genus;

Theorem 4.24. For a knot K ⊂ S3, we have |τ(K)| ≤ gs(K).

Now we can consider the example of the 0-framed, negative, Whitehead double

of left-handed trefoil.

To obtain the Whitehead double of a given knot K, we do the following;

we consider a push-o� of K and orient it with the opposite orientation of K. Call
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this push-o� knot K
′
. Then the framing will be computed from the linking number

lk(K,K
′
). After this, we also introduce a clasp which can be + or − (See Figure

3.1). The resulting knot is called the Whitehead double of K and will be denoted

as W±
k (K) where k denotes the framing and ± denotes the chosen clasp. For our

example, we will have W−
0 (LHT ). In the �gure below, you can see how we construct

this knot.

Figure 4.32: Taking the push-o� of K with opposite orientation

We need to make sure that the framing is 0, so we will compute the linking

number lk(K,K
′
) as shown in Figure 4.33:

Figure 4.33: Signs coming from the crossings
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Finally, we will introduce 6 crossings with minus signs to make lk(K,K
′
) = 0

and then add the minus clasp. We obtain W−
0 (LHT ):

Figure 4.34: W−
0 (LHT )

Now we need to show that the 0-framed Whitehead double of a knot (with

positive or negative clasp) has trivial Alexander polynomial. To prove this, we need

the skein relation.

De�nition 4.25. Let K+, K− and K0 be three oriented knots with projections which

are the same except for one crossing. How they di�er from each other at this excep-

tional crossing is shown in the Figure 4.35. Then we have the following relation of

Alexander polynomials;

∆K+(t)−∆K−(t) = (t1/2 − t−1/2)∆K0(t).

Note that in this de�nition ∆K(t) = |t−1/2S − t1/2ST | ∈ Z[t−1/2, t1/2] where S

is a Seifert matrix for K.
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Figure 4.35: The crossings where K+, K− and K0 di�er

Now to see that the Alexander polynomial is trivial for W−
0 (K), it su�ces to

use the skein rule at the clasp. Considering the crossing changes given in Figure 4.35

at a positive clasp, we have the following picture.

Figure 4.36: Skein rule to determine the Alexander polynomial

Notice that if we consider the top crossing in the clasp and assume that this is

the crossing they di�er, K− will be just the unknot and we know that ∆unkot(t) = 1.

Similarly, K0 will have no crossings, so we have the oriented resolution. In this case,

K0 has a Seifert surface which is an annulus and there is only one generator in the

homology of the Seifert surface. So the Seifert matrix is a 1 × 1 matrix. When we

take the push-o� of this curve which represents the generator and compute the linking
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number, it is not di�cult to see that it equals to 0 because it is the framing. Therefore

∆K0 = 0. Implementing these in the Skein rule;

∆K+(t)−∆K−(t) = (t1/2 − t−1/2)∆K0(t) = ∆K+(t)− 1 = (t1/2 − t−1/2) · 0

Therefore, ∆K+(t) = 1 which shows that the 0-framed, Whitehead double of a knot

has trivial Alexander polynomial. Here we have done the computation for the +

clasp. Similarly, it can be shown that the Alexander polynomial is trivial for 0-

framed, negative Whitehead double of any knot K.

Now we know that ∆W−0 (LHT )(t) = 1. By Freedman's theorem [8], we can conclude

thatW−
0 (LHT ) is topologically slice. We will proceed to computing τ forW−

0 (LHT ).

In Figure 4.37, we see a grid diagram for W−
0 (LHT ) and a grid state represented by

the black dots.

Figure 4.37: Grid diagram of W−
0 (LHT )
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Let us denote this speci�c grid state in Figure 4.37 by xSW where the bottom

left corner of each X-marking is marked with a black dot. First of all, we have

I(xSW ,xSW ) = 36, I(xSW ,O) = 41, I(O,xSW ) = 29 and �nally I(O,O) = 35.

Symmetrizing these, we obtain J(xSW ,xSW ) = 36, J(xSW ,O) = 35, J(O,O) = 35.

Hence;

MO(xSW ) = 36− 2 · 35 + 35 + 1 = 2.

Continuing the computation, we obtain I(xSW ,X) = 49, I(X,xSW ) = 36 and �nally

I(X,X) = 36. After symmetrizing, the results are J(xSW ,X) = 85
2
, J(X,X) = 36.

Hence;

MX(xSW ) = 36− 2 · 85

2
+ 36 + 1 = −12.

Recall the de�nition of the Alexander grading and implement these values in the

formula.

A(xSW ) =
1

2
(MO(xSW )−MX(xSW ))− (

n− 1

2
) =

1

2
(2 + 12)− 13− 1

2
= 1

For xSW , it can be shown that this element is non-torsion, and it gives the maximum

Alexander grading. We will not argue for the non-torsion part, but recall from Chap-

ter 3 that we have constructed a Seifert surface for the twist knots and computed

the 2 × 2 Seifert matrix, and a twist knot is the Whitehead double of the unkot.

As a result, our knot also has a genus 1 Seifert surface. Moreover, we have the in-

equality gs(K) ≤ g(K) where g(K) denotes the Seifert genus. This inequality can

be seen from pushing the interior of a Seifert surface of a given knot K inside the

interior of D4. This suggests that we have the following inequality for a given knot

K; |τ(K)| ≤ gs(K) ≤ g(K). In our case g(W−
0 (LHT )) = 1. Therefore, τ cannot be
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smaller than -1, equivalently there cannot be another grid state y with A(y) > 1. It

follows that xSW gives the maximum Alexander grading and τ(W−
0 (LHT )) = −1. We

have already seen that W−
0 (LHT ) is topologically slice by Freedman's theorem [8].

Now by Theorem 4.24, |τ(W−
0 (LHT ))| ≤ gs(W

−
0 (LHT )). Since τ(W−

0 (LHT )) = −1,

we can conclude that gs(W
−
0 (LHT )) 6= 0. This immediately implies that W−

0 (LHT )

is not smoothly slice.

To sum up, we have utilized the grid homology construction to obtain a lower

bound for gs(K). Combining the τ invariant we extracted from the grid homology

with Freedman's theorem [8] which states that any knot in S3 with trivial Alexander

polynomial is topologically slice, we have exhibited the example W−
0 (LHT ) which is

topologically slice, but not smoothly slice. Therefore, the map φ1 : C → Ctop has

non-trivial kernel.
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