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Abstract

About 40 years ago A. Ádám described the structure of the digraphs with every vertex
being in at most two cycles. He provided constructive theorem for it and raised the problem:
How to describe the digraphs with every edge at most in two cycles? Later Zelinka and
Győri proved that Necklace is the only directed graph with the property that every edge
is contained in exactly 2 directed cycles. Győri also provided both constructive and direct
structure theorems of more general problem with every edge being in at most 2 directed
cycles. He also described that if we know solution for every edge being in at most k cycles
then we can easily characterize digraphs with every vertex in at most k + 1 cycles. In the
present note, we give a characterization of directed graphs with the property that every edge
is contained in exactly 3 directed cycles. We will also provide interesting examples for the
digraphs with every edge in k of cycles for some higher k. This is a joint paper with my
coursemate Abhishek Methuku and supervisor Ervin Győri.
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Chapter 1

Introduction

1.1 Basic definitions

Definition 1. A directed graph (Digraph) is a pair D = (V,E) where V = V (D) is a set of
vertices and E = E(D) is a set of ordered pairs (directed edges) of elements of V .

Definition 2. A set P =
n⋃

i=1
(x1, y1) is called a walk in D if xi, yi ∈ E(D) for all i and

yi = xi+1 for 1 ≤ i ≤ n− 1.

Definition 3. A set P =
n⋃

i=1
(x1, y1) is called a path in D if xi = yj if and only if i− j = 1.

Definition 4. A set C =
n⋃

i=1
(x1, y1) is called a directed cycle in D if xi = yj if and only if

i− j = 1 or j − 1 = n− 1.

Definition 5. A digraph D is called strongly connected if for every x, y ∈ V (D) there is a
path from x to y and there is a path from y to x.

Definition 6. A vertex is called a cut-vertex of a connected digraph if there are v, x, y ∈ V (D)
such that every path that contains x and y, also contains v. (In other words, after deleting
v graph becomes not connected).

1.2 Statements of theorems

Theorem 7 (A. Ádám [2], [4] ). The members of the digraphs with every vertex in at most
2 cycles is family of digraphs produced by means of the following construction:

Construction 0.

step 1.
Let T be an undirected tree with at least one edge. For each vertex v ∈ V (T ) we denote
with ev1, e

v
2, ..., e

v
d(v) the edges incident to v (obviously, every edge gets two notations).
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step 2.
Let us form a digraph D1 in the following way: the vertices of D1 correspond one-to-
one with edges of T ; if the vertex w ∈ V (D1) corresponds to the edge epp = eQq ∈ E(T )

then edges go from w to the vertices corresponding to epp+1 and eQq+1 and only to these
vertices (in case p = d(P ) ep1 plays the role of epp+1, similarly in case of q = d(Q)).(D1

may contain loops)

step 3.
Choose a subset V ′ of the vertex-set V (D1) arbitrarily. For any vertex v ∈ V ′ perform
the following procedure:

Replace v with two vertices v′ and v”.

if an edge was entering to v then let it enter to v′.

if an edge was going out of v then let it go out from v”.

finally add a new edge leading from v′ to v” to the graph.

Let D2 denote the produced graph (it may contain loops).

step 4.
Instead of any edge e of D2 we take a directed path of arbitrary length (Directions of
the path and the edge are the same). If e was a loop then instead of it we take a cycle
of arbitrary length > 1.

Ádám raised a problem how to describe digraphs with every edge at most in 2 cycles,
which was solved by Győri. Before stating that theorem let’s discuss slightly different class
of digraphs. Main question of our paper is following.

Question 8. Let k ≥ 1 be an integer. Which directed graphs satisfy the property that every
edge is contained in exactly k directed cycles?

First, let us make two simple observations which will allow us to assume that the directed
graphs under study are strongly connected and have no cut vertices.

Let D be a directed graph such that every edge of D is in exactly k directed cycles. If D
is disconnected, then each connected component of D satisfies the property that every edge
is in exactly k cycles which are contained inside the component. Therefore, each component
satisfies our desired property. So we can assume that D is connected. That is, for any two
vertices u, v ∈ V (D), there is a directed path from u to v. Since every edge of this path is
contained in a cycle, it follows that there is also a directed path from v to u. Thus D is in
fact, strongly connected.

If D = D1 ∪ D2 such that V (D1) ∩ V (D2) = {v} then every cycle of D is completely
contained in either D1 or D2. This means that D1 and D2 also satisfy our desired property
and so we can assume that D has no such cut vertices.

We will need a definition before we can state our results.

4
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Definition 9. A Necklace is a system of directed cycles C = {Ci}mi=1 (m > 1) such that
V (Ci)∩V (Ci+1) = {ri} for every 1 ≤ i ≤ m−1, V (Cm)∩V (C1) = {rm} and V (Ci)∩V (Cj) =
∅ when |i− j|6= 0, 1 (mod ).

A necklace-path between vertices u and v is as a system of directed cycles C = {Ci}mi=1

such that u ∈ C1, v ∈ Cm and Ci ∩ Ci+1 = {ri} (r1 6= u, rm−1 6= v) for every 1 ≤ i ≤ m− 1
and Ci ∩ Cj = ∅ when |i− j|> 1.

We will refer to the vertices ri and u, v as key-vertices.

Now, if k = 1, Question 8 can be easily answered as the only directed graph with this
property is a directed cycle. For k = 2, Zelinka [3] Győri [1] showed that up to isomorphism,
Necklace is the only directed graph with this property.

Theorem 10 (B.Zelinka [3]). The following two sentences are equivalent:

1. D is a strongly connected digraph without cut vertices.

2. D is a necklace.

Later Győri [1] generalized the problem (answered the question raised by Ádám) with
every edge being in at most two cycles.

Theorem 11 (Győri [1]). Let ε2 be a class of strongly connected digraphs with no cut vertex,
Then ε2 is a union of the set of graphs constructed by the following two constructions.

Construction 1. Take k > 1 vertex-disjoint cycles C1, C2, ..., Ck and chose 2k distinct
vertices xiyi such that xi, yi ∈ V (Ci) for i = 1, 2, ..., k. Then unite vertex pairs (yi, xi+1)
( i = 1, 2, ..., k − 1) and the pair (yk, x1). (note that this is nothing but construction of
necklace)

Construction 2. At every step of construction of a digraph D we define a certain subset
of the edge-set E(D) and denote it with ED.

Step 1.
Take a cycle C, Let’s Ec = E(C) and C be considered as an additional path.

step 2.
Take a digraph D constructed by means of Construction 2 and consider a directed
path P in D such that E(P ) ⊂ ED and for every additional path P0, E(P0) ∩ (ED \
E(P )) 6= ∅. Let x and y denote the initial and the terminal vertex of the path P ,
respectively. Then add directed path R to the digraph D which leads from the vertex
y to x and for which V (R) ∩ V (D) = x, y, E(R) ∩ E(D) = ∅. Let’s D′ = D ∪R, then
let ED′ = ED ∪ E(R) \ E(P ), and R be an additional path.

step 3.
Let D1, D2, ..., Dk be vertex-disjoint digraphs constructed by means of Construction
2. For every i = 1, 2, ..., k choose a directed path Pi in Di such that E(Pi) ⊆ EDi

and
for every additional path Ri in Di, E(Ri)∩ (EDi \E(Pi)) 6= ∅ (as in step2). Let xi and
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yi denote the initial and the terminal vertex of the path Pi for every i = 1, 2, ..., k. Then
unite vertex pairs (yi, xi+1) ( i = 1, 2, ..., k−1) and add a directed path P leading from
yk to x1 to the arising graph D such that V (P )∩V (D) = yk, x1 and E(P )∩E(D) = ∅.
let D′ be the obtained graph, then let ED′ = E(P ) ∪ (

k⋃
i=1

EDi
) \ (

k⋃
i=1

E(Pi)). and let P

be additional path.

Let’s now consider different construction which tells us more about the structure.

Figure 1.1: A digraph constructed by Construction 3.

Construction 3. Consider an undirected 2-connected (cut-vertex free) planar graph
such that the unbounded face is adjacent to every bounded face and the degree of every
vertex x which doesn’t lie on boundary of the unbounded face is even. Direct the edges so
that boundary of every unbounded face is a cycle (Degree condition gives opportunity to do
it). (see figure 1.2)

Theorem 12 (Győri [1]). Construction 2. is equivalent of the Construction 3..

The main result of the paper is characterisation of the graphs with every edge in exactly
3 cycles. The following is the main theorem of this paper.

Theorem 13. If D is finite, connected digraph with no cut-vertices where every edge is
contained in exactly 3 directed cycles then D is a graph consisting of three disjoint necklace-
paths between two vertices. 1.2

6
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A

B

Figure 1.2: Answer of the main theorem

It is interesting to note that, while for k = 2 and k = 3 we have only one type of directed
graphs, with the property that every edge is in exactly k directed cycles, the situation is quite
different for k = 4. It can be easily checked that the directed graph consisting of 4 disjoint
necklace-paths between two vertices satisfies the desired property for k = 4. But there exists
another different graph with this property as well, which is shown in the following figure.
Later we will explain the example in a more detailed way and construct new examples using
it.

Figure 1.3: Example for k = 4

7
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Chapter 2

Strongly connected digraphs with
every edge in 3 cycles

2.1 Definitions, lemmas

To prove the main theorem, we need some definitions and lemmas. Suppose that D such
that every edge is contained in exactly 3 directed cycles.

Definition 14. Let C be a directed cycle in our graph D = (V,E). We call a directed path in
D, a Path-chord (P-chord, for short), of C if it connects two different vertices P,Q ∈ V (C)
and there are no other vertices of C on this path except P and Q. We denote a path chord

from P to Q by
−→
PQ.

A segment of C created by a P-chord
−→
PQ is defined as a directed cycle which consists of

the P-chord
−→
PQ and the arc QP of C (the subpath of C from Q to P ). Typically, we refer

to such a directed cycle as a segment.

Lemma 15. If v is a vertex of the directed graph G, then din(v) = dout(v).

Proof. Let C1, C2, . . . , Cm be the set of cycles going through v. If there are k1 ingoing edges
at v, then since each edge is in exactly 3 cycles, there are 3k1 cycles going through v. If
there are k2 outgoing edges at v, by the same argument, this implies that there are 3k2 cycles
going through v. Therefore, 3k1 = 3k2, and so k1 = k2, as desired.

Lemma 16. If there is an ingoing (outgoing resp.) path-chord PI into a vertex V of the
cycle C, then there is at least one outgoing (ingoing resp.) path-chord PO from V .

Proof. Let e1 and e2 be the two edges of the cycle C with a common point V . Let’s say
e1 is in a segment created by PI . By contradiction let’s assume that there is no outgoing
pathchord from V which means that every cycle which contains e2, also contains e1 but then
e1 is in a segment which doesn’t contain e2 which means e1 is in more cycles than e2, a
contradiction.

8
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Lemma 17. If
−→
PQ and

−→
QR are P-chords of a cycle C, then R must belong to the directed

arc P̄Q of C.

Proof. Assume by contradiction that R is an inner point of the directed arc Q̄P . The edges

of the arc R̄P are contained in segments created by P-chords
−→
PQ and

−→
QR and C itself.

So they are contained in three cycles already. Also, they are contained in the fourth cycle

created by the subpath of the union of path-chords
−→
PQ and

−→
QR and the directed arc R̄P , a

contradiction.

Lemma 18. If the end vertices of two P-chords are different then they cannot have a common
vertex.

A B

CD

I I

A
B

CD

Figure 2.1: Intersecting P-chords

Proof. Let the end vertices of these two P-chords be D,C,B and A in this order on the
directed cycle C. Suppose by contradiction that I is one of the common vertices of the two
P-chords. Without loss of generality, we can consider only two cases for the orientation of
the two P-chords with respect to I:

Case 1. IA and IB are outgoing paths and CI and DI are ingoing paths.

Directed paths IA, IB, CI and DI have no common vertices with C except for A,B,C,D
as they are parts of P-chords. This means that we can use the walks DI ∪ IA, CI ∪ IA,
DI ∪ IB to obtain 3 P-chords DA,CA and DB. Now consider any edge of C that belongs
to the directed arc ĀD. This edge is in 3 segments formed by the P-chords DA,CA, DB
and it is also in C, a contradiction.

Case 2. IA and IC are outgoing paths and BI and DI are ingoing paths.

9
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U D
I

B

A C

Figure 2.2: Intersecting P-chords

Similarly to Case 1, we again have P-chords DA,DC and BA creating 3 segments such
that any edge of the arc ĀD lies in all of the them which implies that this edge is in 4 cycles,
a contradiction.

Lemma 19. If there is a path chord U from vertex A to vertex B and there is a path chord
D from vertex B to vertex C and there are no other path chords from A to B or from B
to C contained in U ∪ D, then there is a vertex I such that U ∪ D is a union of three
components, necklace-path between I and B and paths AI and IC such that intersection of
every two components is the vertex I. 2.2

Remark 20. Note that if A 6= C, then in the statement of the above lemma, we don’t need
the condition that there are no other path chords from A to B or from B to C (except U and
D) contained in U ∪D, since it follows from the fact that there is a path-chord from A to C
(unless U ∩ D is just B) and edges on the arcs BA and CB are already in three cycles.

Proof of Lemma 19. Let the vertices on U from A to B be A1, A2, A3 . . . Ar (in this order)
where A1 = A and Ar = B. Let the intersection vertices of D with U as we travel from
B to C be Ai1 , Ai2 . . . Ais in this order. Now notice that if ij < ij+1, and if U and D do
not coincide between Aij and Aij+1

, we have a new path from A to B, a contradiction. So
assume that U and D coincide between Aij and Aij+1

. Let the longest common subpath PC

of U and D containing Aij and Aij+1
be from Aip to Aiq (ip < iq). Note that the edges in PC

10
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are already in segments created by U and D and so it is contained in two cycles. The path
from Aip−1 to Aip (notice ip−1 > ip ) in D and the path from Aip to Aiq in U form a cycle
which contains this common path PC between Aij and Aij+1

.
If Aiq+1 exists (If A and C are the same, it surely exists), then the path from Aiq+1 to

Aiq (notice iq+1 < iq ) on U and the path from Aiq to Aiq+1 on D create a fourth cycle which
contains PC , a contradiction.

If Aiq+1 does not exist (note that this implies that A and C are different), then the
subpath of U from A to Aip and the subpath of D from Aip to C are disjoint. Hence they
create a path chord from A to C which clearly contains PC . That is, we found a fourth cycle
for the edges in PC , a contradiction.

This means that the first intersection vertex on U is the last intersection on D. So if we
call this intersection vertex, I then the lemma follows.

If A = C, then we have the following corollary of Lemma 19.

Corollary 21. If there is a path U from vertex A to vertex B and there is a path D from
vertex B to vertex A and there are no other paths from A to B or from B to A contained in
U ∪ D, then U ∪ D is a necklace-path between A and B.

Lemma 22. Let k ≥ 1 be an integer. If we have a subgraph Gk and a necklace-path Nk with
endvertices Sk and Tk such that they satisfy conditons:

1. Nk \ {Sk, Tk} and Gk \ {Sk, Tk} belong to different components of G \ {Sk, Tk}.

2. Every edge of Nk is contained in exactly two cycles of the subgraph Gk+1 := Gk ∪Nk.

3. Every path between Sk and Tk is contained in Gk ∪Nk. (Using the first property these
paths are contained either in Gk or in Nk)

then, there exists a necklace-path Nk+1 with its end vertices Sk+1 and Tk+1 in Nk such that
Nk+1 and Gk+1 satisfies the same conditions as above.

Proof of lemma 22. Let the path from Tk to Sk be U and the path from Sk to Tk be D.
Since each edge of U must be in another cycle, there is a system of cycles C = {Ci} covering
the walk U . By property 1 of the Lemma, it’s clear that, every path between Tk and Sk

contained in C ∪ Nk is either U or D.

Claim 1. For any two points A and B on U where A is closer to Tk, there is no path from
A to B which isn’t contained in U (which also means that this path doesn’t contain every
edge of U between A and B).

Proof of Claim. If there is such a path, then the subpath of the union of paths from Tk to
A in U , this path and the path from B to Sk is different from U , a contradiction.

Let the intersection of a Ci ∈ C with U be called the base of Ci. Clearly each base is a
connected path because otherwise there will be two points A and B again as in the previous
paragraph, leading to a contradiction. Similarly, the following claim is true.

11
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I

R

P
Q

Figure 2.3: Figure shows edges which are already in 3 cycles

Claim 2. If the bases of two cycles are disjoint, then cycles are disjoint.

Proof of Claim. If they intersect, it clearly contradicts Claim 1.

Claim 3. No cycle Ci ∈ C contains two or more key vertices of Nk.

Proof. Assume by contradiction that Ci contains key-vertices Ri and Ri+1. Then, there will
be path from Ri+1 to Ri which isn’t contained in D, creating a path from Sk to Rk different
from D. a contradiction.

Claim 4. For every cycle Ci ∈ C, there is a cycle Cj such that Ci ∩ Cj contains a vertex V
which is not in U .

Proof. Assume by contradiction that there is no such Cj. By Claim 3 one of the end-vertices
V of base of Ci is not a key vertex. Then clearly there is a subpath of

⋃
Ci∈C Ci from Sk to

Tk which contains V , and so is different from D, a contradiction.

By the above chaim, it is clear that there is a cycle CK ∈ Ci ∪ Ci+1 which contains
the bases of both cycles Ci and Ci+1. But then the edges in the bases of these cycles are
contained in four cycles, unless CK = N j

k where Nk is defined by the system of cycles {N j
k}.

By symmetry, there is a cycle system for the path D and clearly Ci and Ci+1 are members
of it. Therefore, their bases in D are two paths having only one common vertex V ′. Now if
we look at the cycle N j

k , the directed arc of the cycle Ci from V ′ to V and the directed arc of
Ci+1 from V to V ′ are path chords of N j

k . Let union of these two path-chords be Nk+1. By

12
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Sk+1 Tk+1

N j
k

Figure 2.4: New necklace path

Corollary 21, Nk+1 is a necklace-path between V and V ′ (there can be no other path chord
between V and V ′ as they would create a fourth cycle for some edges in N j

k ).
Let V := Sk+1 and V ′ := Tk+1. We claim that Nk+1 and Gk+1 satisfy all three properties

of our Lemma.
Since all the edges of the cycle N j

k are already in 3 cycles in the graph Gk+1∪Nk+1, every
pathchord of this cycle is contained in the graph Gk+1∪Nk+1. The same is true for any path
between Sk+1 and Tk+1 because if there is a path which isn’t contained in Gk+1∪Nk+1, there
will also be a path-chord which is not contained in Gk+1 ∪ Nk+1 as every path between two
points of a cycle is the union of the pathchords of this cycle. Therfore, the third property of
the lemma holds for k + 1 also.

We claim that Nk+1\{Sk+1, Tk+1} and Gk+1\{Sk+1, Tk+1} belong to different components
of G \ {Sk+1, Tk+1}. First we show that Nk+1 \ {Sk+1, Tk+1} and Nk \ {Sk+1, Tk+1} belong to
different components of G \ {Sk+1, Tk+1}. Suppose by contradiction that there are vertices
v1 ∈ Nk \ {Sk+1, Tk+1} and v2 ∈ Nk+1 \ {Sk+1, Tk+1} such that either v1 = v2 or there is a
path between them in G \ {Sk+1, Tk+1} which has no common vertex with Nk ∪Nk+1 except
v1 and v2. In the second case, w.l.o.g we may assume that this path is from v1 to v2. It
is easy to see that from v2 to v1 there is a path completely contained in Nk ∪ Nk+1 since
Nk ∪ Nk+1 is strongly connected. This path contains either the vertex Sk+1 or Tk+1 and so
it must contain an edge e of N j

k . Since these two paths do not intersect anywhere except v1
and v2, we have a fourth cycle for e in N j

k , a contradiction. Now, it is easy to see that Nk+1

and Gk are in different components (otherwise the first property of our lemma fails for k).
Therefore, the first property of our lemma holds for k + 1.

13
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It is easy to check that each edge e of Nk+1 is contained only in two cycles. One of them
is a segment of N j

k created by a path-chord containing e and another is the cycle of the cycle
system defining Nk+1. Therefore, the second property of our Lemma holds for k + 1.

Lemma 23. If
−→
PR and

−→
RQ are two P-chords with P 6= Q 6= R, then they cannot have a

common vertex other than R.

Proof. By Lemma 17, Q is not in the directed arc RP . So we assume that Q is in the

directed arc PR for the rest of the proof. Assume by contradiction that the P-chords
−→
PR

and
−→
RQ have a common vertex and let I be the closest such vertex to P (i.e., there are no

common vertices on the directed path PI).
Clearly, there is a P-chord from P to Q because there is a walk PIQ. Every edge in the

directed arc RP is contained in the segments created by PR, PIQ and is also on the cycle C.
So these edges cannot be on any other cycle. Similarly, the same is true for edges on QR.
This clearly implies that there is no path chord starting or ending in the inner points of QR
and RP .

By Lemma 19, it follows that between I and R there is a necklace-path N1 and PI and
IQ don’t have any other common vertex except I. Since edges on the arc QRP of the cycle
C are already in 3 cycles, any other path chord should start and end on the PQ arc of C.

It is easy to see that direction of these path chords must be opposite to the direction of
the arc PQ of C. Therefore, it follows from Lemma 16 that there are vertices Qi 1 ≤ i ≤ m
where Q1 = Q and Qm = P such that there is a path chord from Qi to Qi+1 for each
1 ≤ i < m.

Notice that if the path chord QiQi+1 has a common vertex with the path chord RQ
different from Q, then we would have a path chord from R to Qi+1, a contradiction. Similarly,
QiQi+1 doesn’t have a common vertex with the path chord PR other than P .

Let’s consider the cycle C ′ consisting of directed arc QRP of the cycle C and paths PI
and IQ. Now it’s easy to see that between P and Q, there is a necklace-path, say N and
between I and R, there is a necklace-path N1. It is easy to see that all the edges of C ′ are
in 3 cycles already. So C ′ can’t have any pathcords which are not contained in N ∪N1.

Let G1 := C ′ ∪N . We claim that {I, R} is a vertex cut of G and that vertices of N1 and
G1 \ {I, R} are in different components of G \ {I, R}. Assume by contradiction that {I, R}
is not a vertex cut of G. Then, if there exists a path between U ∈ C \ {I, R} and V ∈ N1,
we will find a path-chord between U and R or between U and I, a contradiction. So there
should be a path between N1 and N disjoint from C ′ or they have a common vertex. In
both cases, since necklace-paths are strongly connected, there is a path-chord between I and
Q or R and Q, contradiction.

By the above arguments and the fact that every pathchord of C ′ is either in N1 or in
N , the three conditions of Lemma 22 can be easily checked for k = 1. (That is, G1 and
N1 satisfy the properties of Lemma 22). By induction on k, and using the fact that Lemma
22 holds, we have infinitely many such Nk and Gk, and since Nk+1 is edge-disjoint (even
vertex-disjoint) from Gk, we will need infinitely many edges in G, a contradiction.
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So, by Lemma 18 and Lemma 23, it follows that two any two P-chords
−→
AB and

−−→
CD don’t

intersect unless B = D or A = C, or A = D and B = C.

Lemma 24. Every edge on the cycle C is in exactly two segments.

Proof. Suppose by contradition that there exists an edge on the cycle C which belongs to
a cycle Cu which is neither a segment nor C. Let AB be a longest arc which contains this
edge and is in cycle Cu. Since Cu isn’t a segment (Cu \AB)∩C 6= ∅. So we can take closest
point M and farthest point N from B on (Cu \ AB) ∩ C. It’s easy to see that there exist

p-chords
−−→
BM and

−−→
NA (note that M and N can be the same) and that the segments created

by them cointain the arc AB of the cycle C, a contradiction.

Lemma 25. If there are exactly two ingoing path chords at a vertex, then there are exactly
two outgoing path chords (notice that we can’t have three ingoing path chords at a vertex).

Proof. Let’s assume by contradiction that there are two ingoing and one outgoing patchords
at V . Then it is easy to see that one of the two edges incident on V in C is in exactly two
segments and the other one in only 1. a contradiction of lemma 24.

Lemma 26. The set of all path-chords is a cycle or it can be partitioned into two components
such that each component is a cycle not crossing itself or a necklace-path.

Proof. Notice that by Lemma 17 if a cycle consisting only of p-chords doesn’t cross itself,
then every edge of the cycle C is contained in exactly one of the segments created by these
p-chords. If a cycle crosses itself, every edge of the cycle C is exactly in a fixed number
(more than one) of segments and in our case, this number cannot be more than 2. Consider
a path-chord A1A2. By Lemma 16, since A1A2 is an ingoing path-chord at A2, there is an
outgoing path-chord at A2, say A2A3. Continuing this way, it is easy to see that we will
eventually reach a point Ai such that Ai = Aj for some j < i. Notice that by lemma18 and
lemma 23 C1 =

⋃i−1
r=j ArAr+1 is a cycle or a necklace-path (here we also used Lemma 19).

If C1 crosses itself then every edge of C will be covered by two segments so we can’t have
any other p-chord. If C1 doesn’t cross itself, segments created by the set of p-chords not
contained in C1 cover every edge of C once. So from the remaining p-chords we can chose
one and proceed with the same procedure as above (here we used Lemma 25) to create a
C2 which is either a cycle not crossing itself or a necklace-path. Since every edge of C is
contained in exactly two s egments created by p-chords of C1 and C2 there can’t be any
other p-chord which means that C1 and C2 partition the set of all p-chords, as desired.

Now we are ready to prove our main theorem.

2.2 Proof of Theorem 13

We consider two cases.
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Case 1. If we have two crossing p-chords:

Let
−−−→
A1B1 and

−−−→
A2B2 be two crossing P-chords s.t. A2 is on the directed arc B1A1 and

B2 on A1B1. We know that there are cycles or necklace-paths C1 and C2 (C1 might be

ths same as C2), consisting only of path chords (by Lemma 26) containing
−−−→
A1B1 and

−−−→
A2B2

respectively. We claim that C1 and C2 are disjoint because if they are not, there is a path P
between A2 and B1 consisting only of p-chords. Since edges on the arc B1A2 are already in
two segments, there is no ingoing or outgoing p-chord at any vertex inside the arc, so P is
disjoint from the arc B1A2. This means we found a fourth cycle P ∪ B1A2 for edges of the
arc B1A2, a contradiction.

Let C1 be the union of the path-chords
−−−−→
AiAi+1 for 0 ≤ i ≤ k where the addition in the

subscript is modulo k and let C2 be the union of the path chords BjBj+1 for 0 ≤ j ≤ l where
the addition in the subscript is modulo l. We claim that for every i, there is at most one
vertex of C2 on the directed arc Ai+1Ai. Suppose by contradiction that there are vertices
Bj, Bj+1, . . . , Bj+m on the directed arc Ai+1Ai where m > 0. Now let’s consider the cycle by
replacing the walk in C2 between Bj and Bj+m with the walk BjAiAi+1Bj+m. It’s clear that
this cycle is a fourth cycle for the edges of the arc BjAi, a contradiction.

Bj

Bj+1

Bj+m

Ai

Ai+1

By symmetry, we can also conclude that for every j, there is at most one vertex of C1

on the directed arc Bj+1Bj. Thus the vertices of C1 and C2 alternate on the cycle C and so
k = l. W.l.o.g assume that Bj is on the directed arc Aj+1Aj. If k ≥ 2, then replace the walk

between A0 and A3 in the cycle C1 by the walk consisting of
−−−→
A0A1, directed arc A1B0,

−−−→
B0B1,−−−→

B1B2, directed arc B2A2,
−−−→
A2A3 and we’ll get a fourth cycle for the edges in the directed arc

A1B0, a contradiction. Therefore, k = 1. That is, both C1 and C2 must be necklace-paths.

16



C
E

U
eT

D
C

ol
le

ct
io

n

Let G1 = C ∪ C2 and N1 = C1 in the Lemma 22. As we have already shown for exactly
similar case in proof of Lemma 23, all 3 conditions of Lemma 22 hold for k = 1, giving us a
contradiction.

Case 2. If there are no crossing p-chords:

Then by lemma 26, there are C1 and C2 such that each of them is a cycle or a necklace-

path. Let C1 be the union of the path chords
−−−−→
AiAi+1 for 0 ≤ i ≤ k where the addition in

the subscript is modulo k and let C2 be the union of the path chords BjBj+1 for 0 ≤ j ≤ l
where the addition in the subscript is modulo l. Since we know that there are no crossing
P-chords, it is easy to see that we have only two cases:

Case 2a. If one of the two cycles is completely contained in a segment created by one of
path-chords of the other cycle

Assume w.l.o.g that C2, is completely contained in a segment created by one of path-
chords of C1, say AiAi+1. If C2 is completely contained in the segment AiAi+1, let Bj be the
closest point of {Bj | 0 ≤ j ≤ l} to Ai on the cycle C and let Bm be the closest point from
Ai+1 to {Bj | 0 ≤ j ≤ l} on the cycle C.

IfBj = Ai andBm = Ai+1, then replace the edges of C1 fromAi toAi+1 by
−−−−→
AiBj+1,

−−−−−−→
Bj+1Bj+2,−−−−−−→

Bm−1Ai+1 to create a cycle, say C ′1 and let us replace the edges of the C2 from Bj to Bm by
−−−−→
AiAi+1, creating a new cycle say C ′2. Clearly, C ′1 and C ′2 are disjoint and we are in Case 2b,
as V (C) ∩ V (C ′2) ⊂ V (C) ∩ V (C ′1).

So we may assume w.l.o.g that Bj 6= Ai. Now, the edges in the directed arc BjAi are

in a fourth cycle created by the directed arc BjAi, path chord
−−−−→
AiAi+1, directed arc Ai+1Bm

(this may just be a single vertex if Ai+1 = Bm) and the path chord
−−−→
BmBj, a contradiction.

Case 2b. {Bj | 0 ≤ j ≤ l} ⊂ {Ai | 0 ≤ i ≤ k}

First let’s show that G is contained in C ∪C1∪C2 (i.e., there are no more edges in G) by
showing that every edge in C ∪C1∪C2 is in at least 3 cycles. It is easy to see that each edge
of the cycle C is in two segments, which means it is in 3 cycles. If an edge e is in C1 and C2,
then it is obvious that it is in at least three cycles (namely C1, C2 and some segment of C).
Now, let’s say e ∈ Ci and is not in Cj (where {i, j} = {1, 2}). We know that Ci and Cj have
at least two common vertices. Therefore there exist two vertices I1 and I2 on Ci, such that
e belongs to the directed arc I1I2 of the cycle Ci and there are no vertices of Cj on this arc.
Then the path in Cj from I2 to I1 and this directed arc I1I2 of Ci create a cycle. Clearly e
is in this cycle and it is easy to see that this cycle is different from Ci and so e is in 3 cycles.
So every edge is in at least three cycle. We proved that if G is our desired answer, then it
contains C ∪ C1 ∪ C2 and since every edge in C ∪ C1 ∪ C2 is already in 3 cycles there can’t
be any other edges in G (Using the fact that G has no cut vertices).

We claim that l = 1. Suppose by contradiction that l ≥ 2. Then, between B0 and B1

there are two different (edge-disjoint) paths P1 and P2 contained in C1 and C2 respectively.
Similarly between B1 and B2 there are two different paths Q1 and Q2 contained in C1 and
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C2 respectively. This implies that between B0 and B2 there are four different paths. It is
easy to see that all these four paths are disjoint (except vertices B0 and B2) from the path
B2B0 in C2. This means, that the edges in the path B2B0 are contained in four cycles, a
contradiction. Therefore, l = 1 and C2 consists of only two pathchords between B0 and B1.

Assume that C1 and C intersect in vertices other than B0 and B1 and w.l.o.g we can
assume that they intersect on the directed arc B1B0. Let A0 be first intersection of C1 with
C after B0. Every inner vertex on the directed arc A0B0 of C has degree 2 as C ∩ C2 is
only {B0, B1}. Now, if there is an inner vertex u on the directed arc B0A0 of C1 with degree
more than 2 (i.e., degree at least 4 by Lemma 15), it means there is another ingoing edge
e at u and this edge must belong to C2 (since C1 and C do not have a common point with
any inner point of the directed arc B0A0). Clearly u must be either on the path-chord B0B1

or B1B0. In the first case, then there is a path-chord from B0 to A0 containing e. Since this
path-chord contains A, it is not in C2 and since it contains e, it is not in C1, and we found a
path-chord which is neither in C1 nor C2, a contradiction. Similarly, in the second case, we
can find a new path-chord from B1 to A0 containing u, a contradiction. Therefore, no such
u exists and so every inner vertex on the directed arc B0A0 of the cycle C1 has degree 2.

Now consider the cycle C ′ formed by the union of the directed arc B0A0 of the cycle C1

and the directed arc A0B0 of the cycle C. Every vertex of C ′ has degree 2 except B0 and
A0. If C ′ was the chosen as the starting cycle instead of C, then all the path chords of C ′

can be partitioned into C ′1 and C ′2 such that G = C ′ ∪ C ′1 ∪ C ′2 where C ′2 is a necklace-path
and C ′1 is either a cycle or a necklace-path. But since, all the vertices of C ′ have degree 2
except B0 and A0, C

′
1 can only be a necklace-path (between B0 and A0, of course).

Let C ′i := Ui ∪ Di for each i = 1, 2 where Ui is a path from B0 to A0 and Di is a path
from B0 to A0. In C ′1 ∪ C ′2, it is easy to see that there are exactly two paths from B0 to A0

and exactly two paths from A0 to B0. We claim that there exist two vertices Au and Bu

such that between B0 and Bu, and between Au and A0 the paths U1 and U2 are identical
and they are vertex disjoint between Bu and Au (Au might be the same as A0 and Bu might
be the same as B0). Otherwise, there exists a common vertex x such that U1 and U2 are
not identical between B0 and x and they are not identical between x and A0 giving us four
different paths from B0 to A0, a contradiction. For the same reason, there exist two vertices
Ad and Bd such that between B0 and Bd, and between Ad and A0 the paths D1 and D2 are
identical and they are vertex disjoint between Bd and Ad (Ad might be the same as A0 and
Bd might be the same as B0).

We claim that Bu = Bd and Au = Ad. By Corollary 21, U1 ∪ U2 is edge-disjoint from
D1 ∪ D2. Without loss of generality, it’s enough to show that Bu = Bd. If Bu = Bd = B0,
then we are done. So w.l.o.g, let’s say Bu 6= B0. Since the number of ingoing edges is less
than the number of outgoing edges at Bu in U1 ∪ U2 , by Lemma 15, there should be some
edges from D1 ∪ D2 incident on Bu (because there can’t be any more edges incident on Bu

from U1 ∪ U2 or C ′). The only way this can happen is if Bu is a vertex in D1 ∪ D2 which
has more ingoing edges than outgoing edges but such a vertex can only be Bd. So Bu = Bd.
Moreoever, it is easy to see that the sub-graph which consists of sub-paths of U1,U2,D1,D2

between B0 and Bu is a necklace path as it is a sub-graph of C ′1 (and C ′2). Similarly, the
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sub-graph between Au and A0 is a necklace path.
Let’s call the subpath of Di and Ui between Au = Ad and Bu = Bd be Ds

i and U s
i

respectively for each i = 1, 2. If e is an edge in U s
i , it is easy to see that the cycle consisting

of Ui from B0 to A0 and the directed arc of the cycle C ′ from A0 to B0 contains e. Therefore,
e is in at most two cycles which are completely contained in Ds

i ∪U s
i . But it is easy to see that

e is in two cycles which are contained in U s
i ∪Ds

1 and U s
i ∪Ds

2 respectively. Therefore, each e is
contained in exactly two cycles and so by Theorem 10, Ds

1∪U s
1 ∪Ds

2∪U s
2 is isomorphic to two

disjoint necklace-paths between Au = Ad and Bu = Bd which implies that G is isomorphic
to three disjoint necklace-paths between Au = Ad and Bu = Bd, as desired.
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Chapter 3

Concluding Remarks

3.1 Infinite example

Ci−1

Ci

Ci+1

ui

vi

vi+1ui+1

Figure 3.1: Infinite example

It is worth noticing that finiteness of the digraph is necessary condition. If we allow
the graph to be infinite than we have a different solution for the problem. Below we will
construct this example.

Let’s D be a digraph consisting of directed cycles ci i ∈ Z such that V (ci) ∩ V (ci+1) =
vi + 1, ui + 1 and V (ci) ∩ V (cj) = ∅ when |i − j|> 1. Then it’s easy to see that every edge
is in exactly 3 cycles. Let’s consider the edges a directed arc uivi of ci (notice that −→uivi is
a path-chord in a cycle ci−1) then 3 cycles containing them are: a segment of ci−1 created
by the path-chord −→uivi, a cycle ci itself, and the segment of the cycle ci created by either a
path-chord −−−−−→ui+1vi+1 or by −−−−−→vi+1ui+1. Notice that it is possible to constract similar example
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with necklaces instead of the cycles.

3.2 special example for k = 4

It is quite obvious that for any k > 1, if we take a digraph consisting of k disjoint necklace
paths between two vertices then this graph will satisfy the condition that every edge is
in exactly k cycles. It is interesting to note that, while for k = 2 and k = 3 we have
only this type of directed graphs the situation is quite different for k = 4. Apart from
the directed graph consisting of 4 disjoint necklace-paths between two vertices there exists
another different graph with this property as well. Bellow we will construct such directed
graph D.

Let’s take a directed cycle C with six different Ai i = 0, 1, 2, 3, 4, 5 vertices on it such
that Ai+1 is on a directed arc Ai+2Ai (addition in the subscript is modulo 6). Let D be a

digraph wich consists of a directed cycle C and the directed edges
−−−−→
AiAi+2 be in E(D). Then

we claim that every edge in D is exactly in 4 directed cycles. Let’s first consider edges of
the directed arc A1A0. It is obvious that they are in two segments created by directed path-

chords A0A2 and A5A1, one cycle c and a cycle consisting of path-chords (edges)
−−−→
A0A2,

−−−→
A2A4

,
−−−→
A3A5,

−−−→
A5A1 directed arcs A1A0 and A4A3. So similarly we can say that all the directed

edges of a cycle c are in 4 cycles. Now let’s consider edges of a path-chord
−−−→
A0A2. The 4

cycles containing them are: a segment created by
−−−→
A0A2, a cycle consisting of the path-chords−−−→

A0A2

−−−→
A2A4

−−−→
A4A0, a cycle consisting of

−−−→
A0A2,

−−−→
A2A4 ,

−−−→
A3A5,

−−−→
A5A1 directed arcs A1A0 and

A4A3, and a cycle consisting of
−−−→
A1A3,

−−−→
A3A5 ,

−−−→
A4A0,

−−−→
A0A2 directed arcs A2A1 and A5A4. So

similarly we can conclude that every edge of all of the path-chords are in 4 cycles.

A0 A2

A5 A3

A1

A4

Figure 3.2: Example for k = 4
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3.3 Constructing different examples for bigger k

Take two digraphs D1 and D2 constructed in a similar way as in the previous section (see
figure 3.2). Let’s say Ai ∈ D1 i = 0, 1, 2, 3, 4, 5 and Bi ∈ D2 i = 0, 1, 2, 3, 4, 5 are the similar
vertices (figure 3.2) on the main cycle of digraphs. Let’s unite vertices A0 and B0, and also
A3 and B3 and call the produced digraph D. (so D=D1 ∩D2 where A0 = B0 and A3 = B3).

Claim 5. Every edge of the digraph D is contained exactly in 12 cycles.

Proof. let’s at first consider D1 only and let’s count all the possible paths from vertex A0 to
A3. These paths are:

1. A path consisting of
−−−→
A0A2,

−−−→
A2A4 and directed arc A4A3.

2. A path consisting of
−−−→
A0A2, directed arc A2A1 and

−−−→
A1A3.

3. A path consisting of a directed arc A0A5,
−−−→
A5A1 and

−−−→
A1A3

4. A directed arc A0A3

Let’s observe that edges of path-chords
−−−→
A0A2,

−−−→
A1A3 and directed arcs A0A5 and A4A3 are

in 2 different paths from A0 to A3. Notice that they are not in any path from A3 to A0.

Also edges of path-chords
−−−→
A2A4,

−−−→
A5A1 and directed arcs A2A1 and A5A4 are exactly in one

path from A0 to A3. It’s easy to see that by symmetry they will be exactly in one path from
A3 to A0 too. And edges of all remaining parts of the D1 are in 0 paths from A0 to A3 and
symmetry suggests that they are in exactly 2 paths from A3 to A0. So overall every edge of
D1 is exactly in two paths between A0 to A3.

Now let’s consider cycles of D which aren’t contained in either in D1 or D2. It is easy to
see that these cycles consist of one path between A0 = B0 and A3 = B3 in D1 and one path
(opposite direction) between A0 = B0 and A3 = B3 in D2. So each path between A0 = B0

and A3 = B3 is in 4 this kind of cycles, and since each edge of D1(and similarly pf D2) is
in 2 paths between A0 = B0 and A3 = B3 we can conclude that every edge is in 2 ∗ 4 = 8
different cycles of D which aren’t cycles of D1 or D2. So overall every edge of D will be in
exactly 12(8+4 internal cycles of D1 or D2) directed cycles.

Corollary 27. Let’s say we have n different Di digraphs constructed in a similar way as in
5. And let’s say vertices Aj

i ∈ Dj i = 0, 1, 2, 3, 4, 5 (1 ≤ j ≤ n). Let construct a graph D
from Di 1 ≤ j ≤ n by uniting pair of vertices Aj

3 A
j+1
0 for 1 ≤ j ≤ n − 1 and the pair An

3

A1
0. Then every edge of D is exactly 4n−1 ∗ 2 + 4 edges. Pfroof is same as proof of claim 5.

3.4 Open problems

The first open problem that naturally arises from the previous example is that for k = 4 if
these two graphs (4 necklace paths and the example above) are the only answers.
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Also it is interesting to find algorithms to construct different general solutions for higher
k.

Also problem solved by E. Győri[1] suggests that there might be a nice constructive
solution for every edge being in at most 3 cycles.
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