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Abstract

In this dissertation I summarize my work in the field of linkedness and path-
pairability of graphs with primary focus on the inheritance of the mentioned prop-
erties in the Cartesian product of graphs. We obtain a general additive inheritance
bound for linkedness. We determine the exact linkedness number of hypercubes,
as well as affine and projective grids of arbitrary dimensions. Similar inheritance
of the path-pairability property is investigated. We show that unlike in the case
of linkedness, a multiplicative lower bound can be achieved for the inharitance of
path-pairability. Further results regarding maximum degree and maximum diameter
conditions of path-pairable graphs are presented. In all these topics I have 3 papers
published, accepted, or submitted in various mathematical journals.
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1. Introduction

In this dissertation we investigate linkedness and path-pairability properties of
graphs. The concept of linkedness naturally arose with and is strongly connected
to the study of communicational networks. In this area I have the following 3 pub-
lished, accepted or submitted papers: [20], [21], and [22]. The paper [22] is already
published, [20] is accepted for publications, [21] is submitted and these 3 papers are
not contained in any PhD dissertation different from the present thesis.

The classical formulation of linkedness type problems is the following: we represent
a communicational network by an undirected graph without loops or multiple edges.
Users of the network corresponding to certain vertices wish to communicate with
each other. In order to guarantee secure and undisturbed communication we have to
establish individual channels for each of the communicating parties. We may require
various different properties of the channels to be assigned to the pairs, creating
countless variants of the base problem and raising several interesting questions. In
this dissertation, we focus on two main variants, the vertex-disjoint and the edge-
disjoint path problems.

Definition 1. An undirected graph G is k-linked if, for every ordered set of 2k

vertices S = (s1, . . . , sk) and T = (t1, . . . , tk), there exist internally vertex-disjoint
paths P1, . . . , Pk such that each Pi is an siti-path.

Definition 2. An undirected graph G is weakly-k-linked if, for every ordered set
of 2k vertices S = (s1, . . . , sk) and T = (t1, . . . , tk), there exist edge-disjoint paths
P1, . . . , Pk such that each Pi is an siti-path.
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We always assume for obvious reasons that si and ti do not share the same vertex
of the graph.

Both concepts are natural strengthenings of well known connectivity-related prop-
erties (see Corollary 7). The main field of study in the past few decades has been
the connection between connectivity and linkedness properties of graphs. While it
follows easily that linkedness requires sufficiently high connectivity, it was not clear
if high enough connectivity can force a graph to be k-linked for arbitrary values of
k. The question was answered in 1974 by Larman and Mani [17]. They proved the
existence of a function f(k) : Z → Z with the property that every f(k)-connected
graph is k-linked. The same result was proved independently by Jung [11] and both
proofs are based on an earlier theorem of Mader [19].

Theorem 1 (Larman, Mani [17], Jung [11]). If an undirected graph G is 2(3k
2 ) con-

nected, then it is k-linked.

The above theorem provides an exponential upper bound on f(k) in terms of k.
Since then, several techniques concerning dense subgraphs and minors have been
invented, and utilized with success to push down the upper bound. The first polyno-
mial bound (O(n

√
log n)) was proved by Robertson and Seymour [27]. Bollobás and

Thomasen [1] gave the first linear upper bound (22k). To date, the best known re-
sult (10k) is due to Thomas and Wollen [32]. Note that, since calculating linkedness
of a graph is known to be an NP-complete problem (Karp, [12]), while calculat-
ing connectivity is clearly in P , one can hardly assume an if-and-only-if connection
between linkedness and connectivity. Recent results [14] give evidence that further
parameters (such as girth) play important roles in shaping that relation.

Meanwhile, important progress was made in the study of weakly linked graphs and
their relation to edge-connectivity. Tutte’s famous result on the existence of edge-
disjoint spanning trees showed that 2k-edge-connected graphs are weakly k-linked.
Huck gave an almost sharp upper bound proving that (k+ 2)-edge-connected graphs
are weakly k-linked. As weakly-k-linked graphs are necessarily k-edge-connected, the
gap between the lower and upper bounds is almost completely closed. See a more
detailed description in Chapter 3.

Another variant of linkedness called path-pairability was introduced by Csaba, Fau-
dree, Gyárfás and Lehel [3]. The motivation is to establish edge-disjoint channels in
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a network given any pairing of its vertices. In other words, path-pairability is a vari-
ant of weak-linkedness where every vertex of the communicational network is a user,
initiating a conversation with a given partner (conference calls involving more than
two participants are not studied in this dissertation). Unlike the case of linkedness or
weak-linkedness, path-pairability is not closely related to vertex or edge-connectivity.
Connections with other graphs parameters such as maximum degree or diameter have
been partially studied, leaving still plenty of room for further research.

This dissertation primarily focuses on the study of linkedness and path-pairability
in the Cartesian products of graphs. Graph products have been extensively studied
in the last century from various points of views, raising an abundance of intriquing
problems. In graph theory, a central question concerning product graphs is the in-
heritance of the different graph parameters. The main results presented in the disser-
tation investigate the inheritance of linkendess and path-pairability in the Cartesian
product of graphs.

We discuss the above mentioned topics in the following order.

• Section 1 will be an introduction.
• Section 2 will establish notation and terminology. It will also present well
known connectivity-related results for later utilization.
• Section 3 will survey the development of research in the field of linkedness
and highlight its important milestones. Related concepts such as orderedness
or generalized linkedness will be parts of that discussion.
• Section 4 will give a detailed introduction to path-pairability. Substantial
results of the dissertation on diameter bounds of path-pairable graphs are
presented.
• Section 5 will introduce the Cartesian product of graphs and give insight to
its basic structural properties. The section will present the main results of
the dissertation, concerning inheritance of linkedness and path-pairability in
the Cartesian product of graphs.
• Section 6 will discuss additional questions and remarks.

2. Notation, terminology, and folklore results

We set notation and terminology and recall some straightforward corollaries of
Menger’s Theorems about certain connectivity properties of graphs. The vertex and
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edge sets of an undirected graph G are denoted by V (G) and E(G). As usual, d(x)

denotes the degree of the vertex x ∈ V (G) and Γ(x) (or ΓG(x)) denotes the set of
neighbours of x. For a subset H ⊂ V (G), the size of H is denoted by |H|, while
d(H) denotes the number of edges between H and its complement G\H (sometimes
denoted by G − H). We also use the notation v(G) = |V (G)| and e(G) = |E(G)|.
We use δ(G),∆(G) and d(G) (also δ,∆ and d, unless misleading) for the minimum
degree, maximum degree and average degree of a graph G, respectively. Paths and
cycles of n vertices are denoted by Pn and Cn. An xy path is a path joining x to y,
while an x1, x2, . . . , xn path is the concatenation of appropriate xixi+1 paths. The
diameter of a graph G is denoted by d(G). This notation might be at first glance
confusing for the reader. Note that d(G) in the previous translation (number of
edges between V (G) and ∅) makes no sense. Subgraphs of a given graph G are not
investigated in this dissertation, hence d(H) for H ⊂ G is unambiguous. Further
notation related to the Cartesian product of graphs will be introduced in a later
chapter.

We recall the definitions of the most common connectivity concepts and some well
known results concerning them.

Definition 3. A simple undirected graph G is k-connected (or k-vertex-connected),
if the removal of any vertex set of size at most k−1 does not result in a disconnected
graph or a graph of a single vertex. By definition, k-connected graphs consist of at
least k + 1 vertices and have minimum degree δ ≥ k.

Definition 4. A simple undirected graph G is k-edge-connected, if the removal of any
edge set of size at most k − 1 does not result in a disconnected graph. By definition,
k-edge-connected graphs have minimum degree δ ≥ k.

Theorem 2 (Menger). Let G = (V,E) be a simple undirected graph and A,B ⊂ V .

(1) The minimum number of vertices separating A from B in G is equal to the
maximum number of vertex-disjoint AB paths in G.

(2) The minimum number of edges separating A from B in G is equal to the
maximum number of edge-disjoint AB paths in G.

Corollary 5. Let G = (V,E) be a simple undirected graph.

(1) If G is k-connected, then for every pair of vertices x, y ∈ V (G), there exist
P1, . . . , Pk internally disjoint xy paths joining the two vertices.
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(2) If G is k-edge-connected, then for every pair of vertices x, y ∈ V (G), there
exist P1, . . . , Pk edge-disjoint xy paths joining the two vertices.

Corollary 6. Let G = (V,E) be a simple undirected graph.

(1) If G is k-connected, then for every {x1, . . . , xk, y} ∈ V (G), there exist P1, . . . , Pk
internally disjoint xiy paths joining y and the xi’s.

(2) If G is k-edge-connected, then for every {x1, . . . , xk, y} ∈ V (G), there exist
P1, . . . , Pk edge-disjoint xiy paths joining y and the xi’s.

Corollary 7. Let G = (V,E) be a simple undirected graph.

(1) If G is k-connected, then for every {x1, . . . , xk} ∈ V (G) and {y1, . . . , yk} ∈
V (G), there exist P1, . . . , Pk internally disjoint xiyπ(i) paths, joining every xi
to yπ(i) for some permutation π ∈ Sk.

(2) If G is k-connected, then for every {x1, . . . , xk} ∈ V (G) and {y1, . . . , yk} ∈
V (G), there exist P1, . . . , Pk edge-disjoint xiyπ(i) paths, joining every xi to
yπ(i) for some permutation π ∈ Sk.

We recall two further properties of k-connected graphs for later utilization.

Proposition 8. Let G = (V,E) be a simple undirected graph. If G is k-connected,
then for every {x1, . . . , xk} ∈ V (G), there exist a cycle C containing all the xi’s.

Proposition 9. Let G = (V,E) be a simple undirected graph. If G is k-connected,
then for every {x, y1, . . . , yk−1, z} ∈ V (G), there exist a path P from x to z containing
(in some order) all the y′is.

3. Linkedness

One can easily construct k-linked graphs with arbitrary value of k. We are pri-
marily interested in edge-minimal examples. Not surprisingly, the question of k-
linkedness eventually boils down to and shows strong connection with connectivity.

We start with a technical remark. Linkedness of graphs is often defined by the
following alternative way:

Definition 10. An undirected graph G is k-linked if for every ordered set of 2k

pairwise disjoint vertices S = (s1, . . . , sk) and T = (t1, . . . , tk), there exist vertex-
disjoint paths P1, . . . , Pk, such that each Pi is an siti-path.
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While this new definition might seem a weakening of the original concept, it can
be proved easily that the two definitions are equivalent and describe the same graph
property. We prove the equivalence and will use Definition 10 throughout this dis-
sertation (unless stated otherwise).

Proposition 11. Definition 1 and Definition 10 are equivalent.

Proof. There is only one direction of the equivalence to prove, namely that Definition
10 implies Definition 1. Let us assume that G is k-linked in the weaker sense, and
let S = (s1, . . . , sk) and T = (t1, . . . , tk) denote terminals placed on the vertices of
G, such that the number of x, y terminals sharing the underlying vertex is exactly
c. We prove by induction on c that G is k-linked in the stronger sense, if the graph
has minimum degree δ ≥ 2k − 1. Our statement is straighforward for c = 0. Now
let us assume that c ≥ 1, and let x be a vertex consisting of at least 2 terminals.
As ΓG(x) ≥ 2k − 1 and (G − x) contains at most 2k − 2 terminals, there exist a
vertex y ∈ ΓG(x) that contains no terminal. Let us relocate one of the terminals at
x to y. The number of terminals sharing a common vertex in the new arrangement
is definitely smaller than c, thus by induction hypothesis, the pairs can be joined by
disjoint paths. Easy to see that none of these paths use edge xy, hence our path
system can be extended by that edge. This new system is a solution to the original
assignment of the terminals. �

It remains to show that δ(G) ≥ 2k − 1 holds for a k-linked graph G. We, in fact,
prove that k-linked graphs are (2k − 1)-connected.

3.1. Linkedness and connectivity. Easy to see that k-linked graphs are (2k −
1)-connected. Indeed, in a less than (2k − 1)-connected graph G, place terminals
s1, t1, . . . , sk−1, tk−1 in a vertex cut D of size at most 2k−2. That makes it impossible
to join another pair of terminals sk and tk, if they are located in different components
ofG−D. It is also fairly easy to construct k-linked graphs that are (2k−1)-connected,
but not 2k-connected: the complete bipartite graph K2k−1,N is a possible example
for N ≥ 2k− 1. The main question of the last decades in the study of linkedness has
been the exact relation in the converse direction. It was conjectured that sufficiently
high connectivity implies linkedness. Observe first that in the special case, when
the graph G contains a subgraph H isomorphic to K2k, 2k-connectivity is indeed
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sufficient to imply k-linkedness. Corollary 5 provides a useful tool to find for every
terminal u a Puu′ path with endpoint u′ in H, such that none of these paths share
a vertex. The joining of the (ui, vi) pairs of terminals can be finished by using the
u′iv
′
i edges of H. A similar technique can be utilized in the presence of a subgraph

isomorphic to K3k − 2k · K2 by building uu′ paths the same way. Choose any 2k

of the 3k vertices, stop the paths once they enter the subgraph at any vertex, and
finish the linking via paths of length at most 2.

Unfortunately, the presence of large cliques cannot be guaranteed by means of
sufficiently high connectivity. The situation, however, changes drastically, once we
switch our focus from clicques to large complete topological subgraphs. As already
mentioned in the introduction, Mader was the first to prove results in that direction.

Theorem 3 (Mader [19]). If G is 2(3k
2 )-connected, then it contains a K3k topological

subgraph.

The graph G is said to contain the graph H as a topological subgraph or subdivision,
if H can be obtained from some subgraph of G, by contracting paths to edges. One of
the most known result involving topological subgraphs is Kuratowski’s theorem that
gives a characterization of planar graphs. The theorem says that a graph is planar,
if and only if it does not contain K5 or K3,3 as topological subgraphs. Larman and
Mani (also, independently Jung) [11]) used Theorem 3 to prove that sufficiently high
connectivity forces a graph to be k-linked.

Theorem 4 (Larman, Mani [17], Jung [11]). If G is 2k-connected and contains K3k

as a topological subgraph, then G is k-linked.

Corollary 12. If G is 2(3k
2 )-connected, then G is k-linked.

The main idea of the proof of Theorem 4 is based on the previously mentioned path
building technique. We build for every terminal u a Puu′ path ending at vertex u′ in
the topological subgraph. Appropriate choice of the paths guarantees that every one
of them enters the topological subraphs at a path between two vertices. Moreover,
the paths can be positioned in a way, such that the above presented joining can be
achieved, just as in our earlier examples, where a subgraph K3k−2k ·K2 was present.
For the exact details of the proof we refer the reader to [17].



C
E

U
eT

D
C

ol
le

ct
io

n

8

Theorem 4 verifies the existence of a function f : Z+ → Z+, such that every f(k)-
connected graph is k-linked. In fact, it follows from the theorem that f(k) ≤ 2(3k

2 ).
An important idea that led to the improvement of the upper bound on f(k), was
changing our focus from topological subgraphs to large minors. The undirected
graph G is said to contain the graph H as a minor, if H can be obtained from some
subgraph of G, by contracting connected subgraphs to vertices. Note that, if G
contains H as a subdivision, it also contains H as a minor. The converse implication
is not necessarily true. For example, the Petersen graph contains the graph K5 as
a minor, but it cannot contain a subdivision of K5 as it has no vertex of degree 5
or more. Kuratowski’s theorem and non-planarity of the Petersen graph are often
misinterpreted by mixing up minors with subdivisions (observe that the Petersen
graph is not planar as it contains a subdivision of K3,3).

Thomason [33] placed upper bounds on the the average degree of a graph, such
that it guarantees the existence of a complete minor of a given size. Applying their
results, Robertson and Seymour [27] bettered the bound of Jung, Larman and Mani.

Theorem 5 (Robertson and Seymour, [27]). f(k) ≤ c · k
√
logk.

Two years later, Bollobás and Thomasen gave the first linear upper bound on
f(k). Their proof is based on the existence of sufficiently dense, but not necessarily
complete minors.

Theorem 6 (Bollobás, Thomasen [1]). If G is 22k-connected then it is k-linked.

The upper bound was improved several times in the last decade by Kawarabayashi,
Kostochka, and Yu [13] and by Thomas and Wollen [32].

Theorem 7 (Kawarabayashi, Kostochka, Yu [13]). f(k) ≤ 16k.

Theorem 8 (Thomas, Wollen [32]). f(k) ≤ 10k.

To date, this is best known upper bound for f(k) in the general case.
Although in this dissertation we study finite graphs exclusively, we mention an

intriquing result of Mader [18], which disproves the above discussed upper bounds
for infinite graphs. Mader gave examples of infinite graphs with arbitrarily high
(finite) connectivity, such that the mentioned graphs are not even 2-linked. On the
other hand, Thomassen [34] proved that every uncountable 2k-connected graph is
k-linked.
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3.2. Special graph classes.

3.2.1. Graphs with large girth. If girth conditions are placed on the graph, stronger
relation can be proved between linkedness and connectivity. In 1991, Mader [19]
proved the following theorem.

Theorem 9 (Mader [19]). Every 2k-connected graph with sufficiently large girth
is k-linked. Furthermore, the condition on the connectivity is sharp. There exist
(2k − 1)-connected graphs with arbitrarily large girth that are not k-linked.

In 2004, Kawarabayashi [14] gave an exact upper bound on the girth sufficient to
imply k-linkedness for 2k-connected graphs.

Theorem 10 (Kawarabayashi [14]). Every 2k-connected graph with girth at least 11
is k-linked, if k is not 4 or 5. If k is 4 or 5, girth 19 suffices.

While Kawarabayashi’s result may strengthen our belief that the ratio between
linkedness and connectivity is roughly 1

2
for most graphs, we mention that there exist

"almost" 3k-connected graphs that are not k-linked. Consider the graph G described
as follows: take the complete graph on 3k − 1 vertices and delete a matching of size
k, that is, G = K3k−1− k ·K2. It can be easily verified that G is (3k− 2)-connected.
Choose the k pairs of terminals in accordance with the deleted edges. As none of the
terminals can be joined to its pair by a direct edge, every joining path must consist
of at least three vertices, that is, the union of the presumed paths contains at least
3k vertices, which is clearly not possible.

A very fastidious reader might consider our previous contruction simply too small
as our impossibility argument is based on the lack of space in the graph. It is indeed
special in the sense that the targeted linkedness is comparable with the size of the
graph, that is, link(G) = O(v(G)). For a more general example, take the complete
3t-partite graph of equal class sizes of 2a, a, t ∈ Z+. Our graph is clearly (3t− 1)a-
connected. Observe that it is at most 1

3
· (3t · 2a)-linked, as paths joining terminals

that belong to the same class must include an external vertex (thus every joining
path contains at least 3 vertices). The linkedness-connectivity ratio of the examined
graph is

1
3
·(3t·2a)

(3t−1)·2a = 1
3− 1

t

that tends to 1
3
as t→∞.

This observation supports our belief that the linkedness-connectivity ratio behaves
differently in case of small girth, where the best known general result is Theorem 8.
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Apparently, the 1
2
linkedness-connectivity ratio holds for certain graphs with small

girth as well. Complete graphs, as well as complete bipartite graphs are illustrative
examples of that kind. In Section 5, we prove that affine and projective grids of
any dimension but 3 share this property. It would be interesting to see, what other
conditions can guarantee similar ratio in the small girth case.

3.2.2. 2-Linked and 3-Linked Graphs. For specified (small) values of k, even stronger
connections have been explored. An early result of Jung [11] eliminates the gap
presented in the previous section for k = 2.

Theorem 11 (Jung [11]). If G is 6-connected, then it is 2-linked.

In order to show that Jung’s result is sharp, consider a family of 5-connected
planar graphs with at least one non-triangular face (see Figure 3.2.2). Obviously,
planar graphs with a face contaning 4 or more vertices cannot be 2-linked. Indeed,
placing (u, v) and (u′, v′) pairs of terminals on a nontriangular face (we may assume
without loss of generality that this particular face is the outer face of the graph) in
the cyclic order uu′vv′, any P and P ′ paths joining the terminals will share a vertex.
For non-planar graphs, milder conditions are sufficient.

Theorem 12 (Jung [11]). If G is a 4-connected non-planar graph, then G is 2-linked.

The classification of 2-linked graphs was completed in 1980 by Seymour [29],
Shiloach [30] and Thomassen [34]. The full description of 3-connected but not 4-
connected, 2-linked graphs, however, requires a rather lenghty and technical discus-
sion that might be less interesting for the reader, hence we omit the details. Several
result regarding 3-linked graphs were proved recently by Chen, Gould, Kawarabayashi,
Pfender, and Wei and also by Thomas and Wollen. We list a few of these results.

Theorem 13 (Chen, Gould, Kawarabayashi, Pfender, Wei [2]). Every 6-connected
graph with δ(G) ≥ 18 is 3-linked.

Theorem 14 (Thomas, Wollen [32]). Every 6-connected graph on n vertices with
5n− 14 edges is 3-linked.

3.2.3. Planar graphs. It is a well known result that planar graphs are at most 5-
connected, hence a planar graph cannot be more than 3-linked. In fact, it can be
proved easily that no planar graph is 3-linked.
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Proposition 13. A planar graph G cannot be 3-linked.

Proof. Assume on the contrary that there exists a 3-linked planar graph G. Cer-
tainly, G is 5-connected and triangulated. Consider an arbitrary embedding to the
plane with outer face ABC. Label the third vertices of the unique inner triangles,
corresponding to edges AB, BC and CA, by C ′, A′ and B′, respectively (see Fig-
ure 3.2.3). Obviously, A′, B′, C ′ are pairwise different vertices. Choosing the pairing
AA′, BB′ and CC ′, the paths should join opposite vertices of a hexagon AB′CA′BC ′.
This is clearly not possible, hence the graph is not 3-linked. �

We have already mentioned another elementary observation, that is, if G is planar
and at least 2-linked, then it is triangulated (if G is planar and has a non-triangle face
then it cannot be 2-linked). We omit the full description of 2-linked planar graphs
for the same reason we did not fully describe 2-linked graphs in general, but close
up the discussion of 2-linked planar graphs with a relevant theorem of Goddard.

Theorem 15 (Goddard [7]). If G is a 4-connected, triangulated planar graph, then
it is 2-linked.

Note that Goddard’s original theorem states even more, namely that 4-connected,
triangulated planar graphs are 4-ordered, thus they are 2-linked. We discuss ordered-
ness of graphs and their relationship to linkedness in a later chapter.

3.3. Related graph properties and generalizations.

3.3.1. Weak-linkedness. In several applications, one does not need to establish in-
ternally vertex disjoint communication channels. Vertices of a network, representing
communication towers may receive and transmit several different data streams simul-
taneously and without data collision, as long as separate edges are allocated for the
transmissions. In this model, we require a network to assign an individual channel
for each of the communicating parties, such that the paths carrying the messages
share no edges of the graph.

Definition 14. An undirected graph G is weakly-k-linked if, for every ordered set
of 2k vertices S = (s1, . . . , sk) and T = (t1, . . . , tk), there exist edge-disjoint paths
P1, . . . , Pk, such that each Pi is an siti-path.
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We wish to highlight that the two sets S and T may contain vertices multiple
times. In the extrem case x1 = · · · = xk and y1 = · · · = yk, we are requested to find
k edge-disjoint paths between two vertices. It means that weakly k-linked graphs are
k-edge-connected. This necessary lower bound is sharp, as one can easily construct
k-edge-connected but not (k+ 1)-edge-connected, weakly-k-linked graphs. Just as in
the case of linkedness, implication in the converse direction has been of great interest.
Thomassen [34] conjectured that k-edge-connectivity implies weakly-k-linkedness for
odd k. Note that if k is even, the previous bound is clearly insufficient: consider first
k = 2 and G = C4. Placing two pairs of terminals on opposite sides of the cycle,
the pairs clearly cannot be linked without the repeated use of and edge. For k ≥ 2,
replace the edges of C4 by k

2
parallel edges and label the vertices by A,B,C,D, in a

cyclic order. Easy to see that, if we place k − 1 pairs of terminals on A and C, the
paths joining the pairs will necessarily use either all the edges incident to B or D.
Choosing these vertices as the kth pair of terminals completes our counterexample.1

The famous theorem of Tutte, concerning the existence of k-edge disjoint spanning
trees implies that 2k-edge-connected graphs are weakly-k-linked.

Theorem 16 (Tutte). An undirected graph G contains k edge-disjoint spanning trees,

if and only if, for every partition F = {V1, . . . , Vt} of the vertex set,
t∑
i=1

d(Vi)
2
≥ k(t−1)

holds.

Corollary 15. If G is 2k-edge-connected, then G is weakly k-linked.

Proof. Given a partition F = {V1, . . . , Vt} of V (G), every set has degree 2k or more,

else the graph would not be 2k-edge-connected. That means
t∑
i=1

d(Vi)
2
≥

t∑
i=1

2k
2
≥

k(t − 1), hence G contains k edge-disjoint spanning trees. We can use each tree to
join a given pair of terminals that guarantees disjointness. �

The upper bound was bettered for certain values of k by Hirata [31] in 1984, and
by Okamura [25] in 1990.

1As throughout this dissertation we concern ourselves with simple undirected graphs without
multiple edges, it might be seemly to present a counterexample of that ilk at this current problem
as well. It can be done fairly easily. Replace the four bunches of k parallel edges by for copies of
Kk+1, and join A,B,C, and D to k

2 different vertices in each copy that replaced a bunch of parallel
edges incident to that very vertex. We leave the verification of the example to the reader.
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Theorem 17 (Hirata [31]). Every (2k + 1)-edge-connected graph is weakly-(k + 2)-
linked for k ≥ 2.

Theorem 18 (Okamura [25]). For k ≥ 2, every 4k-edge-connected graph is weakly-
3k-linked, and every (4k + 2)-edge-connected graph is weakly (3k + 2)-linked.

One year later, the theorem of Huck closed the gap almost completely between
the necessary and sufficient conditions. The theorem leaves an uncertainity factor of
a constant ±1, regarding the exact connection between weak-linkedness and edge-
connectivity. To date, this is the best known general result.

Theorem 19 (Huck [9]). If k is odd and G is (k+1)-edge-connected, then G is weakly
k-linked. If k is even and G is (k + 2)-edge-connected, then G is weakly k-linked.

While one might think that the above constant error term could be eliminated
with a reasonable effort invested, we wish to state that this kind of gap-closings are
often cumbersome tasks. To illustrate our point, we recall the history of another
problem of similar fashion. Haggkvist and Thomassen showed with an elegant and
quick proof that, in a (k+ 1)-edge-connected graph, for every path-forest2 of at most
k edges, there exists a cycle containing the forest. Note that, in order to satisfy such
a property, a graph certainly has to be at least k-edge-connected, but it was not
clear if it has to be (k + 1)-edge-connected, thus the lower and upper bounds failed
to collide by an error term of 1. Several years later, Kawarabayashi proved that
k-edge-connectivity is sufficient to guarantee that above property in most graphs.
That particular proof is about 140 pages long and is much more complicated than
the one that yielded the presented weaker bound.

3.3.2. Orderedness. We discuss a natural strengthening of Proposition 8 that claims
the existence of cycles in a k-connected graph, containing a chosen set of vertices.
Our motivation is the same as in case of linkedness. We would like to gain control of
the (cyclic) order, in which the cycle encounters the vertices. We define the following
concept:

Definition 16. The graph G is k-ordered for k ≥ 3 if, for every choice of k cyclically
ordered vertices x1, . . . , xk, there exists a cycle containing the vertices in the given
cyclic order.

2A path-forest is a forest, in which every connected component is a path.
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Observe that k-ordered graphs are necessarily (k−1)-connected, othervise two ap-
propriately chosen, consecutive terminals x and y of the cyclic order can be separated
by the other terminals. Indeed, fill up a cut of size at most k−3 with terminals, such
that non of them is next to x or y in the cyclic order. This rather straightforward
lower bound is sharp in the sense that there exist (k−1)-connected, k-ordered graphs
for arbitrary values of k (see [23]). However, (k − 1)-connectivity is not sufficient
to imply k-orderedness. Just as in the case of linkedness, the question regarding an
upper bound on the connectivity that forces a graph G to be k-ordered, naturally
arose. Instead of studying further that direct connection, we examine the relation
between linkedness and orderedness. That will eventually imply lower and upper
bounds in terms of connectivity and orderedness (see Theorem 20).

Proposition 17. If G is k-linked, then it is k-ordered. If G is 2k-ordered, then it is
k-linked.

Proof. Suppose that G is linked (here we use Definition 1 !), and we are given a cyclic
order of a k-tuple of vertices (x1, . . . , xk). Choose another k-tuple y1, . . . , yk, such
that yi = xi+1 modulo k. Since G is linked, it contains k disjoint paths P1, . . . , Pk,
such that Pi joins xi and yi. Easy to see that

⋃k
i=1 Pi is a cycle that contains

(x1, . . . , xk) in the given cyclic order.
Now suppose that G is 2k-ordered, and that we are given two ordered k-tuples of

(pairwise disjoint) vertices (x1, . . . , xk) and (y1, . . . , yk). Consider the cyclic order of
the 2k-tuple (x1, y1, . . . , xk, yk), and the cycle containing them in this given cyclic
order. The appropriate segments of the cirle between vertices xi and yi provide the
required paths. �

It is believed that for most graphs the ratio between linkedness and orderedness
is 1

2
.This assumption is not true in general. Firs of all, we mention that, while 6-

connected graphs have been long known to be 2-linked, it is still an open question if
they are 4-ordered.

Conjecture 18. If G is 6-connected, then it is 4-ordered.
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Secondly, let us define G as the union of two copies of the complete graph Kn

joined by a perfect matching. 3

Proposition 19. The Cartesian product of the complete graphs K2m and K2 is m-
linked and is at most d4

3
me-ordered, for m ≥ 4.

Proof. Them-linkedness of the Cartesian product of Km and K2 is stated and proved
in a later chapter, in Lemma 28. Assume now that our graph is 2t-ordered and place
2t terminals (x1, . . . , x2t) to the ends of t edges of our perfect matching, such that
xi and xi+1 lie on different edges and are contained by different complete subgraphs.
Easy to see that any path between xi and xi+1 contains at least two internal vertices.
It means that the non-labeled vertices can provide at most 4m−2t

2
= 2m − t paths

joining the labeled ones, that is, 2t ≤ 2m− t and so 2t ≥ 4
3
m. �

Based on [4], we summarize the best known bounds regarding orderedness and
connectivity.

Theorem 20. For k ≥ 3, if a graph G is

(1) k-ordered ⇒ (k − 1)-connected, but k-ordered 6⇒ k-connected,
(2) k-linked ⇒ k-ordered, but k-linked 6⇒ (k + 1)-ordered,
(3) k-ordered ⇒ bk

2
c-linked, but k-ordered 6⇒ (bk

2
c+ 1)-linked,

(4) 10k-connected ⇒ k-ordered, but (2k − 4)-connected 6⇒ k-ordered.

3.3.3. Generalized linkedness. A common generalization of many of the discussed
concepts is (l1, . . . , lt)-linkedness. A graph G is (l1, . . . , lt)-linked if, for any pairwise
disjoint sets of vertices L1, . . . , Lt of sizes l1, . . . , lt, there exist t disjoint connected
subgraphs G1, . . . , Gt of G, such that Li ⊂ V (Gi), i = 1, . . . , t. Easy to see that
l1 = · · · = lt−1 = 1, lt ≥ 2 defines t-connected graphs on at least (lt + t− 1) vertices,
while (l1, . . . , lt)-linkedness for l1 = · · · = lt = 2 is an equivalent definition of t-linked
graphs.

The (l1, . . . , lt)-linked graphs are certainly min(li) + 1 connected, and
t∑
i=1

li-linked

graphs are (l1, . . . , lt)-linked, hence high enough connectivity implies the generalized

3The graph obtained this way is also called the Cartesian Product of the complete graphs Km

and K2. Product graphs, especially Cartesian product of graphs will be discussed in more details
in a later chapter.
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linkedness as well. The exact bounds, just in case of classical linkedness, are far from
being sharp. We present a handful of known results by Chen, Gould, Kawarabayashi,
Pfender, Wei [2] and by Mori [24].

Theorem 21 (Chen Gould, Kawarabayashi, Pfender, Wei [2]). Every 7-connected
graph containing K9 as a minor is (2, 5)-linked.

Theorem 22 (Mori [24]). Let G be a planar graph with at least six vertices. Then
G is (3, 3)-linked, if and only if G is maximal and 4-connected.

4. Path-pairability

The concept of k-path-pairability was introduced by Csaba, Faudree, Lehel and
Gyárfás in the early ’90-s. This concept is a natural weakening of weak-linkedness,
by prohibiting the subsequent assignment of vertices as terminals. In other words, a
path-pairable communicational network does not allow participants to initiate more
than one call at a time.

Definition 20. Given a fixed integer k, a graph G on at least 2k vertices is k-
path-pairable if, for any pair of disjoint sets of vertices X = {x1, . . . , xk} and Y =

{y1, . . . , yk} of G, there exist k edge-disjoint paths P1, P2, . . . , Pk, such that Pi is a
path from xi to yi, 1 ≤ i ≤ k. The path-parability number of a graph G is the largest
positive integer k, for which G is k-path-pairable, and it is denoted by pp(G). A
k-path-pairable graph on 2k vertices is simply called path-pairable.

Obviously, weakly-k-linked graphs are k-path-pairable, thus one can easily give
plenty of examples for k-path-pairable graphs. It is much more intriguing that graphs
that are not highly weakly-linked can have large path-pairability. In fact, while
weakly k-linked graphs are known to be k-edge-connected, one can easily construct
k-path-pairable graphs for arbitrary k that are not even 2-edge-connected. The most
illustrative examples are the star graphs with an even number of vertices that are
path-pairable and are clearly not even 2-edge-connected. Note also that, while the
graph K2k is the only k-linked or weakly-k-linked graph on 2k vertices, it has many
path-pairable subgraphs (even beside the induced star-graphs) with reasonably fewer
edges.

Small examples of path-pairable graphs can be easily constructed. The three
dimensional cube Q3 and the Petersen graph P are both path-pairable. The graph
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shown in Figure 4 is known to be the only path-pairable graph with maximal degree
3 on 12 or more vertices. There are also additional straightforward candidates for
infinite path-pairable families as well. It can be proved easily that the n-partite graph

Ka1,...,an (
n∑
i=1

ai is even) is path-pairable with the exception of the case n = a1 = 2.

We would like to describe k-path-pairable graphs and gain a deeper understanding
of the necessary and sufficient graph conditions that yield k-path-pairablity. Just
as in the case of linkedness, the question is still open and we are far away from a
full description. In the next section, we list a few necessary and sufficient conditions
without the wish of being exhaustive.

4.1. Necessary and sufficient conditions. Although k-path-pairable graphs may
not be highly edge-connected, they do have to possess a structure that is similar to
k-edge-connected graphs. As every subset S of at most k vertices may potentially
host |S| teminals belonging to different pairs, the condition d(S) ≥ |S| is necessary
in order to channel the |S| edge-disjoint paths between S and V (G)−S. We call the
discussed condition the cut-condition.

Definition 21 (Cut-condition). A graph G satisfies the k-cut-condition if, for every
S ⊂ V (G) and |S| ≤ k, d(S) ≥ |S| holds. A graph G on 2n vertices satisfies the
cut-condition if, for every S ⊂ V (G) and |S| ≤ n, d(S) ≥ |S| holds.

Satisfying the k-cut-condition is necessary, but not sufficient for a graph G to be
k-path-pairable. Consider the disjoint union of the star graph K1,k and the complete
graph KN on N ≥ 2k vertices. Join each but the central vertex of degree one to
an arbitrary vertex of KN by an edge, such that different vertices of K1,k are joined
to different vertices of KN . The graph G obtained this way is clearly not k-path-
pairable. To prove this, place k + 1 terminals in different vertices of K1,k, and place
the pair of the terminal of the central vertex in KN . Any path joining that very
pair severs another terminal by devouring both edges of a degree two vertex. On the
other hand, any S ⊂ V (G) subset that contains a vertex of KN certainly satisfies
the cut-condition. For S ⊂ K1,k, verification of the cut condition is also rather
straightforward. There is an edge of the matching between Kn and any chosen non-
central vertex. The terminal vertex, if chosen, has at least one neighbor that is not
in S, hence d(S) ≥ |S|.
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Appropriate fine-tuning of the construction provides examples of graphs that are
not path-pairable (here we speak of the parameter-free variant of path-pairability),
while they satisfy the cut-condition. Take the disjoint union of K1,k and Kk−1, and
join the two graphs by a matching of size k− 1 that avoids the central vertex of the
star graph. Join the remaining unique vertex of degree one to any vertex of Kn−1.
Just as before, the arrangement of degree-two vertices, joined to the center of the
star, prohibit the channeling of k edge-disjoint paths. We claim that our graph G

satisfies the cut-condition for k ≥ 6. Assume on the contrary that S ⊂ V (G) of size
at most k violates the condition. We proceed by a case-by-case analysis.

Case 1: If Kk−1 ⊂ S, S must contain an additional vertex, that is, |S| = k.
Easy to see that adding neither the center, nor any leaf of the star graph to
the vertex set of Kk−1 violates the condition.

Case 2: If |S ∩ Kk−1| = k − 2, then d(S) ≥ k − 2, due to the edges leaving
S within Kk−1. Also, at least k − 4 of them have a neighbor in K1,k not
belonging to S. It yields d(S) ≥ (k− 2) + (k− 4) ≥ k, thus S cannot violate
the cut-condition.

Case 3: If 1 ≤ |S ∩ Kk−1| ≤ k − 3, then d(S) ≥ 2k − 6 ≥ k, which follows
easily, by considering the edges leaving S within Kk−1.

Case 4: If S ⊂ K1,k, S must contain the center of the star, else it obviously
holds the condition. Observe that each non-central vertex of K1,k has an edge
leaving S toward Kk−1, and so does at least one edge of the star. It completes
the proof.

There are not many, but only obvious known sufficient conditions that guarantee
k-path-pairability. Theorem 19 states that (k+2)-edge-connected graphs are weakly-
k-linked, hence they are k-path-pairable as well. It would be especially interesting
to find properties that imply k-path-pairability but do not imply k-linkedness. For
example, it is not known, if the upper bound on edge-connectivity forcing k-path-
pairability could be improved. In general, sufficient conditions for k-path-pairability
and path-pairability are subjects to further investigation.

4.2. Maximum degree. We have already concluded that neither high connectivity,
nor high edge density is a necessary condition for path-pairability. Now we investigate
similar questions regarding the maximum degree in a graphs.
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For the fixed parameter variant was studied by Faudree, Gyárfás, and Lehel [5],
who gave examples of k-path-pairable graphs for arbitrary values of k, with a constant
maximum degree ∆ = 3.

Theorem 23 (Faudree, Gyárfás, Lehel [5]). There exists a k-path-pairable graph G
with ∆(G) = 3 for every k ∈ Z.

Note that the example given in [5] has exponential size in terms of k. It means that,
although the construction gives rise of graphs with arbitrarily high path-pairability,
path-pairable graphs cannot be obtained by this method.

We start with the elementary observation that the star graphs are the only path-
pairable tress, thus every path-pairable graph on n vertices that is not a star has at
least n vertices. Faudree, Gyárfás, and Lehel [6] improved that rather obvious lower
bound and proved the following result:

Theorem 24 (Faudree, Gyárfás, Lehel [6]). If G is a path-pairable graph of order n,
and ∆(G) ≤ n− 2, then e(G) ≥ 3

2
n− log2 n− c for some constant c.

The results presented in [6] suggest that decreasing the maximum degree in a
path-pairable graph necessarily involves a higher edge density. We would like to see,
how small the maximum degree of a (parameter-free) path-pairable graph can be,
i.e. if similar theorem to Theorem 23 can be proved. Note that eliminating the
large maximum degree in a network, even at the expense of higher edge density, is a
reasonable goal from practical perspectives as well. Vertices of high degree might be
heavily used and often overburdened with data transmission tasks, and are therefore
prone to malfunction. It is a natural desire to design networks that balance the
transmission tasks equally. That motivates the study of path-pairable graphs with
small maximum degree.

The problem of finding the minimum of ∆(G) revealed an essential difference
between fixed parameter path-pairability and the much stronger parameter-free path-
pairability. In latter case, the maximum degree ∆(G) does have to increase together
with the size of a path-pairable graph G, as proved by the same authors [6] as above.

Theorem 25 (Faudree, Gyárfás, Lehel [6]). If G is a path-pairable graph on n ver-
tices with maximum degree ∆ then n ≤ 2∆∆.
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The proof of the theorem in [6] is based on the natural idea that joining n
2
pairs of

vertices in a graph on n vertices requires lots of edges. This is especially true, if we
manage to choose the pairs, such that they lie far away from each other. We briefly
summarize that technique of choosing. Let us construct an auxiliary graph H with
vertex set V (H) = V (G), such that x, y ∈ V (H) are joined by an edge, if d(x, y) > t.
We claim that δ(H) ≥ n

2
, thus, by the theorem of Dirac, it contains a Hamiltonian

cycle. Indeed, the number of vertices at distance at most blog∆
n
2
c from x ∈ V (H) is

less than n
2
. The Hamiltonian cycle of H naturally provides a pairing of the vertices

of G, such that the vertices of each pair lie at distance t+1 or more apart. In order to
realize the edge-disjoint linking of the given pairing in G, one needs at least blog∆

n
2
c

edges for each path, that is, n
2
· blog∆

n
2
c edges in total. The number of edges in G is

at most ∆·n
2
. The equailty obtained this way proves the required bound on n.

The theorem gives an approximate lower bound of log(n)
log log(n)

on ∆(G). By contrast,
to date the best known constructions have maximum degree O(

√
n) and are due to

Kubicka, Kubicki and Lehel [15] and to Mészáros [21]. It is conjectured that the
d-dimensional hypercube Qd is path-pairable for odd values of d. We discuss this
conjecture, as well as the mentioned constructions in details in the next chapter. It is
also believed that the maximal degree in Q2k+1 is optimal, and that Faudree’s result
on the lower bound can (and yet has to) be improved.

We highlight another intriguing open problem that investigates the connection
between maximum degree ∆ and the relative path-pairability parameter, that is,
path-pairability in terms of the graph size. We are especially interested in the fol-
lowing question:

Question 22. If Gn is a family of k(n)-path-pairable graphs on n vertices, with a
universal constant maximum degree ∆, how large can k(n) possibly be?

Theorem 23 implies that log2(n) ≤ k(n) holds for infinitely many examples, while
it can be concluded from the proof of Theorem 25 that k(n) ≤ c · n

log2(n)
, where c is

an absolute constant. To date, these are the best known bounds, leaving plenty of
room for improvements.

4.3. Diameter. Our sketched proof of Theorem 25 still has the following small tech-
nical incompletion: how do we know that there are vertices at distance blog∆

n
2
c from

each other? We prove a very short and straightforward lemma to remove that flaw.
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Lemma 23. If G is a connected graph on n vertices, with diameter d and maximal
degree ∆, then ∆d+1 ≥ n.

Proof. Take an arbitrary pair of vertices x, y ∈ V (G), such that d(x, y) = d. As G is
connected, a BFS-tree T with root x contains every vertex of G. The tree has depth
d, hence it contains at most 1 + ∆ + (∆− 1)2 + ...+ (∆− 1)d ≤ ∆d+1 vertices. �

Lemma 23 immediately gives a general lower bound of d
√
n on ∆ that holds for

any graph. Although the given bound is never sharp, it naturally raises the fol-
lowing question: how large (in terms of n) can be the diameter of a path-pairable
graph? Observe that, while it is fairly easy to come up with k-path-pairable graphs of
arbitrarily large diameter (high connectivity implies k-linkedness that implies k-path-
pairability), the so far presented path-pairable graphs all have a bounded diameter
(the highest presented path-pairable diameter is 3). It is therefore very natural to
ask, if

(1) there exist path-pairable graphs with arbitrary large diameter, and
(2) in terms of n, how large can be the diameter of a path-pairable graph?

We answer both questions and state the first main theorem of the dissertation.

Theorem 26. If G is a path-pairable graph on n vertices with diameter d, then
d ≤ 6

√
2 ·
√
n holds.

Proof. Assume that G is a paith pairable graph on n vertices with diameter d ≥ 20.
Let x, y ∈ V (G), such that d(x, y) = d. Define Si = {z ∈ V (G) : d(x, z) = i} for

i = 0, 1, 2, . . . , d and Ui =
i⋃

j=0

Sj. Set the notation si = |Si| and ui = |Ui|. Note that

there is no edge between any Si and Sj (i < j) classes unless they are consecutive,
that is, j = i + 1. Also, observe that adding edges between consecutive classes
changes neither the diameter nor the path-pairability property of the graph. Thus,
we may assume without loss of generality that vertices belonging to consecutive Si
sets are joined by an edge. If Sd contains vertices in addition to y, move them to
Sd−1 by joining them to every vertex of Sd−2 as well as to y, in case they were not
adjacent. Note again that, while our operation may change the distribution of the
vertices among the Si classes, our newly obtained graph G′ has the same diameter
as G and is also path-pairable. In addition, z ∈ Si if and only if d(y, z) = d − i,



C
E

U
eT

D
C

ol
le

ct
io

n

22

0 ≤ i ≤ d. We introduce the notation S ′i for Sd−i and divide our sets into three parts
creating left, middle, and right segments A,B, and C, as follows:

A =
d d
3
e⋃

i=0

Si B =
b 2d

3
c−1⋃

i=d d
3
e+1

Si C =
d⋃

i=b 2d
3
c
Si

Our main goal is to give a lower estimate on the size of B. We first prove the following
lemmas:

Lemma 24. s2k + s2k+1 ≥ k, as long as u2k+1 ≤ n
2
.

Proof. We prove our statement by induction on k. Apparently, s0 + s1 ≥ 0 and
s2 + s3 ≥ 1. Observe that the number of edges between S2k+2 and S2k+3 is at

least u2k+1 =
2k+1∑
i=0

si. Indeed, placing u2k+1 terminals in U2k+2 and their pairs in

V (G) − U2k+2, there must be space for at least u2k+1 edge-disjoint paths passing
from S2k+2 to S2k+3. By induction hypothesis, u2k+1 ≥ 1

2
k(k + 1) holds, while the

number of edges between the two classes is at most s2k+2s2k+3 ≤
( s2k+2+s2k+3

2

)2. It
yields 1

2
k(k + 1) ≤

( s2k+2+s2k+3

2

)2, that is, s2k+2 + s2k+3 ≥
√

2k(k + 1) ≥ k + 1 if
k ≥ 1. �

Lemma 25. |A|, |C| ≥ min
(
n
2
, d

2

100

)
.

Proof. Assume |A| < n
2
. Using Lemma 24, we know that |A| = ud d

3
e = s0+· · ·+sd d

3
e ≥

0 + 1 + · · · +
⌊ d d

3
e

2

⌋
≥ d2

100
. By exchanging the role of x and y the same reasoning

shows that |A′| ≥ d2

100
if |A′| < n

2
, where A′ =

d d
3
e⋃

i=0

S ′i. As dd
3
e + b2d

3
c = d, one can

easily see that C = A′, which completes the proof. �

If dd
3
e < t < b2

3
dc, the number of edges between St and St+1 is at leastmin

(
n
2
, d

2

100

)
.

As seen before, placing min
(
n
2
, d

2

100

)
terminals in A and their pairs in C the set St has

to be able to bridge min
(
n
2
, d

2

100

)
disjoint paths to St+1. The number of crossing edges

between these two sets is at most st ·st+1. It means st+st+1

2
≥ √stst+1 ≥ min

(√
n√
2
, d

10

)
.

If d ≥ 16, then b2
3
dc − dd

3
e − 2 ≥ d

3
− 10

3
≥ 2 and B contains at least two different Si

sets. That gives us the requested lower bound on |B|:

(1) |B| ≥
b 2
3
dc−2∑

t=d d
3
e+1

st + st+1

2
≥
(d

3
− 10

3

)
min

(√n√
2
,
d

10

)
≥ d

6
min

(√n√
2
,
d

10

)
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As |B| ≤ n, our equation proves that d ≤ 6
√

2
√
n. �

We show that our bound is optimal up to a constant factor, and present an infinite
family of path-pairable graphs {Gn}, such thatGn has n vertices and diameterO(

√
n)

for infinitely many values of n. Let n = (2m) · (4m + 3) and define G as an equally
blown up graph of the cycle C2m of size n. That is, V (G) = {xi,j : 0 ≤ i ≤ 2m−1, 0 ≤
j ≤ 4m+ 2} and xi,j and xi′,j′ are connected if i− i′ = 1 or i− i′ = −1 (modulo 2m).
We use the notation Si = {xi,j ∈ V (G) : 0 ≤ j ≤ 4m+ 2} and refer to the set as the
ith class of G. Easy to see that G has diameter m > 1

4

√
n (in fact, d(G) ≈ 1

2
√

2

√
n).

We mention that G also has maximum degree O(
√
n), the same order of magnitude

as in [15], which is the best known result for path-pairable graphs with small degree.

Theorem 27. The graph Gn defined above is path-pairable.

Proof. Set an arbitrary pairing of the vertices of G. We accomplish the joining of
the pairs in two phases. During the first phase, for each pair of terminals, we define
a path that starts at one of the terminals and ends at some vertex in the class of
its pair. If the ending vertex happens to be the actual pair of the terminal, we
set this path as the joining path for the given pair, otherwise we continue with the
second phase. If two terminals initially belong to the same class, then the pair simply
skips the first phase of the joining. Direct our cycle C2m and the blown-up graph
G counterclockwise and label each pair x, y such that there exists a directed x → y

path of length at most m. We start building the above mentioned path for pair (x, y)

at vertex x. Fix m edge-disjoint matchingsM i
1, . . . ,M

i
m of size 4m+3 between every

consecutive classes Si and Si+1. For a pair of terminals (x, y) lying in classes Si and
Si+d (modulo 2m) at distance d (1 ≤ d ≤ m), choose the edge of M i

1 being adjacent
to x and label the other vertex adjacent to it by p1(x). In step j for 2 ≤ j ≤ d

take the edge of M i+j−1
j being adjacent to pj−1(x) and label its other end by pj(x).

Apparently, y and pd(x) belong to the same class. Phase one ends by assigning an
Pxy : x− p1(x)− · · · − pd(x) path to each (x, y) pair of terminals.

Observe that paths P and P ′ assigned to and starting at terminals x and x′ of
the same class do not contain a common vertex as they are given edges of the same
matchings in every step. Now assume that edge e = (xi,j, xi+1,k) has been utilized
by two paths P1 and P2. It means that e ∈M i

t for some 1 ≤ t ≤ m and that P1 and
P2 must have started in the same class. However, in order to share an edge they also
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have to share a vertex which contradicts our previous observation. It proves that
phase one terminates without edge-collision.

In phase two we finish the joining. For the terminal y initially paired with x

and for the endpoint pd(x) of path Pxy (both vertices lying in Si for some i) con-
sider the yet unused edges of the bipartite subgraph Hi spanned by Si and Si+1.
As dHi

(y), dHi
(pd(x)) ≥ 3m + 3, there exists at least 2m + 3 different vertices

z1, z2, . . . , z2m+3 ∈ Si+1 such that (x, zk), (y, zk) ∈ E(Hi), k = 1, 2, . . . , 2m + 3. Ob-
serve that any vertex in Si is an endpoint of at most m + 1 paths defined in phase
one, hence out of the 2m + 3 listed candidates at most 2m + 2 could have been
assigned to another pair (y′, pd′(x

′)). It means x and y can be joined by the path
x− p1(x)− · · · − pd(x)− zi − y with an appropriate choice of zi from the above list.
That completes the proof. �

Wemention that, by replacing the n
2
upper bound by a fixed parameter k in Lemma

24 and 25, a more general form of Theorem 26 can be proved.

Theorem 28. If G is a k-path-pairable graph on n vertices with diameter d then
d ≤ 6 · n√

k
.

The presented bound is sharp up to a constant factor: take an arbitrary long path
PN and consider its blown-up P̂N , where we substitute each vertex by a click Kt

4

and each edge by an appropriate complete bipartite graph. The presented graph has
n = t ·N vertices and diameter N = n

t
. It can be proved also fairly easily that it is

k = t2-path-pairable.

Proposition 26. The blown-up graph P̂N described above is t2-path-pairable for N ≥
t.

Proof. Given a distribution of t2 pairs of vertices, we can carry out pairing by starting
at one end of the path and greedily joining terminals to vertices of the consecutive
class and finishing the joining of terminals within the classes. We label our classes
by C1, . . . , CN , starting at the left end of the path. For a terminal u, we will assign
several u′, u′′, . . . pseudopairs in the consecutive classes until we finally pair one with
the appropriate v pair. We start by pairing terminals that lie in the same class by

4Note that in the most common definition of blown-up graphs substitution of the vertices is done
by independent sets (just as we did previously) rather than cliques.
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direct edges of the cliques. From now on we may assume that, for every pair (u, v),
one of the terminals is closer to the left end of the path, hence it will be encountered
earlier in our left-to-right sweeping algorithm than its pair. Being at class Ci, the
consecutive class Ci+1 contains at most t terminals. If some of them have appropriate
pseudopair in Ci, they can be joined by direct edges (here we are massively using
that path-pairability prohibits repeated terminal assignment of a vertex). Then, the
remaining terminals of Ci can be assigned a new pseudopair in Ci+1, maintaining
the condition that a vertex x ∈ Ci+1 hosts at most t terminals and pseudopairs
that have not been paired. Having visited at most t2 terminals, this condition can
be easily maintained using Hall’s Theorem concerning matchings. Having reached
t2 + a terminals, we must have encountered at least a pairs, that is, the number of
still unmatched terminals is at most t2 − a, thus our above reasoning works just as
well as before.

�

5. The Cartesian product of graphs and parameter inheritance

Products of graphs were first defined in 1912 by Whitehead and Russell [28]. They
were repeatedly rediscovered later, notably by Sabidussi [8] in 1960. Several different
types of graph products (such as Cartesian product, strong product, lexicographical
and zig-zag products) have been introduced and investigated in the last century;
for a comprehensive survey on the evolution of graph products we refer the reader
to [10]. In this dissertation we study Cartesian products of graphs. Occasional
references of "product of graphs" is always meant to be translated in this chapter as
Cartesian product of graphs (in Chapter 6, further graph products will be discussed
briefly). The Cartesian product of graphs G and H is the graph G�H with vertices
V (G�H) = V (G) × V (H), and (x, u)(y, v) is an edge if x = y and uv ∈ E(H) or
xy ∈ E(G) and u = v. The definition can be translated less formally as follows.
The Cartesian product of graphs G and H is the graph defined on the Descartes
product of the vertex sets, such that every row of the product consists of a copy of
G and every column is a copy of H with the order of vertices fixed for both G and
H (see Figure 4 for a small illustrative example). The product of graphs G1, . . . , Gt

for t ≥ 3 is defined recursively (observe that the Cartesian product is an associative
operation). The graphs G1, . . . , Gt are called factors of G1� . . .�Gt.
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Grid graphs are probably the most illustrative examples of product graphs ob-
tained by the Cartesian product. One can easily to see that taking the Cartesian
product of two paths Pa and Pb yields a two-dimensional grid graph of size a × b.
Higher dimensional grids can be obtained by taking the product of several paths
Pa1 , . . . , Pad of appropriate lengths. In particular, multiplying a single edge e = xy

with itself results in the d-dimensional hypercube Qd. The symbol � for the multi-
plication in fact resembles the cycle C4, also known as Q2 as the Cartesian product
of two edges. Note that the product graph Pa1� . . .�Pad is sometimes referred to
as a d dimensional affine grid, while the product of d cycles Ca1� . . .�Cad is often
called a d dimensional projective grid.

Both affine and projective grids have interesting recursive structures; the Cartesian
product of m-dimensional and n-dimensional grids is an (m + n)-dimensional one.
That convenient property gives rise to many recursive or inductive proof techniques
in the study of grid graphs. As a very straightforward textbook example, one can
easily prove inductively that affine grids are two-colorable. If the affine grid G is one
dimensional, there is nothing to prove. In the remaining case G = G0�G1 where
G0, G1 are smaller dimensional grids, both of which have proper 0 − 1 colorings by
induction hypothesis. We color (x, y) ∈ V (G) with the color x ∈ V (G0) plus the
color of y ∈ G1 in the above colorings modulo 2. One can easily verify that we have
defined a proper two-coloring of G; we leave the verification to the reader.

Observe that our proof above also works in much more general settings as we have
used very little of the grid’s structural properties. We have in fact proved that the
Cartesian product of two arbitrary two-colorable graphs (not necessarily grids) is two
colorable. This is already a rather simple result in the very popular and intriguing
field of research often referred to as parameter inheritance.

Apparently, parameter inheritance offers countless exciting and challenging prob-
lems. For any graph parameter P it is meaningful to ask if there exist any connection
and correlation between G�H and its factors G and H having P . For example, one
might ask if bipartition property of graphs is inherited from components to the Carte-
sian product. It turns out that the Cartesian product is a bipartite graph if and only
if every component is bipartite. One direction follows simple by iteratively applying
our previous proof for two-colorability (recall, a graph is two-colorable if and only
if it is bipartite). For the converse direction, one can easily verify by simple parity
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argument that if G�H contains an odd cycle, then the union of vertical or horizontal
edges used in the odd cycle contain an odd cycle in G or H.

We mainly concern ourself with numeric parameters, that is, parameters that
assign for every graph a numeric (typically non-negative integer) value. We can
reformulate our previous example the following way: non-empty bipartite graphs are
known to be the only graphs with chromatic number 2, hence we have just proved
that if χ(G) = χ(H) = 2, then χ(G�H) = 2. Now let us say that we would like to
extend our result for larger chromatic numbers and would like to express χ(G�H) in
terms of χ(G) and χ(H). Certainly, χ(G�H) ≥ χ(G), χ(H) by simple monotonity
argument (G�H has subgraphs isomorpic to G and H) and it is an easy exercise
to show that in fact χ(G�H) = max

(
χ(G), χ(H)

)
. We list a few more elementary

correspondences for later utilization.

v(G�H) = v(G) · v(H)

e(G�H) = v(G) · e(H) + v(H) · e(G)

dG�H

(
(x, y)

)
= dG(x) + dH(y)

δ(G�H) = δ(G) + δ(H)

∆(G�H) = ∆(G) + ∆(H)

d(G�H) = d(G) + d(H)

d(G�H) = d(G) + d(H)

Apparently, some parameters yield very loose connection or no connection at all
between the product graph and its components. For example, one can easily see
that the product of two nonempty graphs contains at least one copy of C4 and so
product graphs never have large girth, regardless of the girths of their components.
A minimal edge-cover of a complete graph Kn contains a single vertex while the
product graph Kn�Km can be only edge-covered by at least min(n,m) vertices. In
other cases, parameters can be calculated fairly easily as the corresponding objects
only occur within layers of the product. As an example, let c3 denotes the number
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of triangles in the graphs, then obviously c3(G�H) = v(G)c3(H) +v(H)c3(G) holds.
It is also easy to see that ω(G�H) = max(ω(G), ω(H).

The central subject of this dissertation to examine inheritance of linkedness, weak-
linkedness, and path-pairability in the Cartesian product of graphs. None of the
mentioned parameters turns out to be a simple function of the appropriate parame-
ters in the factor graphs. Our primary goal is to obtain sharp lower (and if possible,
upper) bounds on the parameter of product.

As we have seen, linkedness and weak linkedness are stronly connected to connec-
tivity and edge-connectivity. Before turning to the study of inheritance of linkedness
we present some of the relevant results about the latter properties in the Cartesian
product for later utilization.

Theorem 29 (Spacapan [36]). κ(G�H) = min
(
δ(G) + δ(H), κ(G) · |V (H)|, κ(H) ·

|V (G)|
)
.

Theorem 30 (Xu,Yang [38]). Let G1 and G2 be λ1 and λ2 edge-connected graphs,
respectively. Then λ(G1�G2) = min(δ1 + δ2, λ1 · v2, λ2 · v1).

Corollary 27. κ(G�H) ≥ κ(G) + κ(H) and λ(G�H) ≥ λ(G) + λ(H).

We close up our introductory section of product graphs with the definition of pa-
rameter monotonicity. We call a parameter P monotone with respect to the Cartesian
product if P(G�H) ≥ max

(
P(G),P(H)

)
for every G and H. We have seen that the

chromatic number χ is a monotone parameter and so are all the so far listed param-
eters with the exception of girth. We have also showed in Chapter 3, Proposition 19
that orderedness is not a monotone parameter either. As special cases of our main
theorems, we will prove in the next chapter that linkedness, weak-linkedness, and
path-pairability are all monotone parameters.

5.1. Main results.

5.1.1. Linkedness. We study inheritance of linkedness in the Cartesian product and
state the second main theorem of the present dissertation. By Theorem 8 and Corol-
lary 27 it follows immediately that the product G�H of an a-linked and a b-linked
graphs is at least ba+b

10
c-linked. We improve that result and give a sharp lower bound

on the linkedness of the Cartesian product of general graphs.
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Theorem 31. If G is an a-linked graph with |V (G)| ≥ 8a and H is a b-linked graph
with |V (H)| ≥ 8b then G�H is (a+ b− 1)-linked.

Observe first that although G�H is at least (2a − 1) + (2b − 1) = 2(a + b −
1)-connected, the presented result cannot be simply derived from Kawarabayashi’s
Theorem (Theorem 10) as product graphs generally have girth of at most 4. Note
also that the presented bound is sharp: take the complete graphs KN and add a
vertex x by joining it to 2k − 1 different vertices of KN (we assume N ≥ 2k − 1).
The constructed graph G is (2k− 1)-connected and k-linked, while G�G is (4k− 2)-
connected, hence it is at most (2k − 1)-linked.

We first settle the case when a or b is equal to 1. Note that being 1-linked is
equivalent to connectivity.

Lemma 28. Let the graph G be k-linked and let the graph H be connected. Then
G�H is k-linked as well.

Proof. LetM denote the set of 2k (arbitrarily chosen and paired) terminals in G�H.
Take a G-layer Gx (x ∈ H) with terminals u1, . . . , ut (1 ≤ t ≤ 2k). If t = 2k, use
the condition that Gx is k-linked and find the necessary paths within the layer.
Otherwise, let D = {u1, . . . , ut}, S = M −D and let T consist of 2k− t non-terminal
vertices in Gx.

We use Lemma 7 for the graph G�H which is (2k− 1)-connected as G is k-linked
and H is connected. Using Lemma 7 one can find 2k − t paths P1, . . . , P2k−t from S

to T in G�H−D. For each Pi path let pi denote its terminal endpoint in S and let p′i
denote the first vertex of Pi in Gx (the vertex where Pi first "enters" Gx). Truncate
P to a pi − p′i path. Using the condition that Gx is k-linked, one can find k paths
Q1, . . . , Qk that join the 2k vertices of the set D ∪ {p′i : 1 ≤ i ≤ 2k − t}, with the
obvious matching (p′i is paired with the original pair of pi). Note that the truncation
is performed in order to get the above Pi and Qi paths disjoint. Also, observe that
the path system Q1, . . . , Qk extended by paths P1, . . . , P2k−t at the p′i vertices is an
appropriate path system for the initial matching. That completes the proof. �

From now on, we may assume a ≥ b ≥ 2. We prove a more general form of
Theorem 31:
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Theorem 32. If G is an a-linked graph with |V (G)| ≥ 8a and H is a (2b − 1)-
connected graph with a ≥ b, then G�H is (a+ b− 1)-linked.

Proof of Theorem 32. Our main goal in the proof is to carry out one of the following
tasks:

i) Join one terminal to its pair within a layer and proceed by induction in an
appropriate subgraph.

ii) For every pair (x, y) find paths Px, Py with other endvertices x′ and y′, such
that x′ and y′ share the same horizontal layer. Following that we will find a
path Q joining x′ and y′ and join x and y by the concatenation PxQPy.

For the latter task observe that, as the total number of terminals is 2a+ 2b− 2 and
a ≥ b, two approriate G-layers will be sufficient to contain and join all the x′-s and
y′-s. The bottleneck of the idea is that all the Px, Py paths have to be disjoint. We
also want to make sure that these paths enter only one of the above distinguished
horizontal layers containing the x′-s and y′-s. We will use Lemma 7 to guarantee
such conditions. We call a G-layer crowded if it contains more than 2a−1 terminals.
Observe that crowded G-layers necessarily contain at least one pair of matching
terminals.

If there exists a crowded G-layer Gx (x ∈ H) in G�H, take a pair u1, v1 ∈ Gx.
As |ΓH(x)| ≥ 2b− 1, there exists y ∈ ΓH(x) such that Gy contains no terminal. The
appropriate neighbours of u1 and v1 in Gy can be joined by a path within Gy. We
can join u1 and v1 by extending that path on both ends by the vertical edges from u1

and from v1 to Gy. For every remaining terminal u of Gx we find a vertical neighbour
not belonging to Gy as follows (note that case i) and case ii) do not exclude each
other).

i) Link u to its pair if they are adjacent by a vertical edge.
ii) If the terminal u has a vertical neighbour u′ that is neither a terminal nor

has it been previously assigned as a vertical neighbour to another terminal
in Gx, choose u′.

iii) If neither of the previous cases applies, then Hu contains all terminals lying
outside of Gx and its pair v lies in Gx. Switch (u1, v1) to (u, v) and start the
procedure again with joining u and v. The second round terminates without
encountering the same problem.
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Define a new pairing of the remaining a+b−2 pairs of terminals by substituting every
u by u′. Observe that G and H − x− y are a-linked and (b− 1)-linked and have at
least 8a and 8b− 2 vertices, respectively. By inductional hypothesis, G�(H − x− y)

is (a + b − 2)-linked and so there exist a + b − 2 paths joining the newly defined
a+ b− 2 pairs. The extension of these paths by the appropriate uu′ edges results in
a path system that joins the original pairing.

Assume now that G�H contains no crowded G-layer. For a terminal u our first
goal is to find a path with horizontal edges to a vertex u′ ∈ Gu such that Hu′ is
devoid of terminals and endvertices of previously routed paths of the same kind. We
carry out this task in several rounds, defining a u′ vertex and a corresponding u− u′

path for every u terminal of a given G-layer within a round. As long as the number of
terminals on layers being or having been processed does not exceed 2a− 1, Lemma
7 provides an easy way for the assignment. We will frequently use the following
truncation operation during our proof. Assume we are given a path P of horizontal
edges with a terminal end u and a non-terminal endvertex û, whose Hû layer does
not contain terminals or vertices of previously defined paths. Starting with u, we
read the vertices of P in precedence order until we find the first vertex u′ that has
the same properties as û. We stop and truncate P to an uu′ path. Observe that the
main importance of the truncation operation is gaining control of the length of the
joining paths that is not automatically guaranteed by Menger’s theorem. The above
truncation of the paths makes sure that we can find at every step an appropriate
canditate for the role of û.

Consider all G-layers G1, . . . , Gn containing 0 < s1 ≤ · · · ≤ sn < 2a terminals.

Choose 1 ≤ t ≤ n such that
t−1∑
i=1

si ≤ 2a − 1 and
t∑
i=1

si > 2a − 1. We design our

algorithm as follows:

i) In round 1, choose a set of s1 vertices in G1 whose corresponding H-layers
do not contain any terminal. Use Menger’s theorem to find s1 disjoint paths
between the terminals of G1 and the newly chosen set. Truncate these paths
and define the setD1 as the set of the non-terminal endpoints of the truncated
paths.

ii) In round i for 2 ≤ i ≤ t − 1, let T denote the set of terminals in Gi and let
Di be the projection of Di−1 to Gi. Choose a set S of si vertices in Gi whose
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corresponding H-layers do not contain any terminal or vertex of Di. Easy to

see that |Di| =
i∑

j=1

sj ≤ 2a− 1, hence the conditions of Lemma 7 hold. Take

si paths joining (in some order) S and T . Truncate the paths and update Di

by adding the set of the paths’s non-terminal endpoints.
iii) In the remaining n − t + 1 rounds (t ≤ i ≤ n), choose a set of si vertices in

Gi whose corresponding H-layers do not contain any terminal. Use Menger’s
Theorem to find si disjoint paths joining (in some order) the terminals and
the newly chosen vertices.

We refer to the previous phase as a global horizontal shift. Observe that each
terminal u was given a non-terminal vertex u′ ∈ Gu and an uu′ path Puu′ of horizontal
edges, such that:

A) Puu′ does not intersect with other paths defined in the phase.
B) Hu′ consist of at most n− t + 1 vertices belonging to other paths defined in

the phase (at most one at each layer during the last n− t+ 1 steps).

Note that the condition V (G) ≥ 8a guarantees that every step of the horizontal
shift can be carried out without running out of space; we have at most 4a terminals
in the graph, each of which requires at most one new H layer during that phase. Our
next goal is to carry out a global vertical shift. We take two G-layers that contain
neither terminals nor vertices belonging to paths of the previous phase and call them
Gα and Gβ. For each u′ of the previous phase we define a vertex u′′ and a u′ − u′′

path in Hu′ such that:

i) u′′ ∈ Gα or u′′ ∈ Gβ,
ii) if (u, v) are a pair, then u′′ and v′′ belong to the same G-layer,
iii) Gα and Gβ both have at most a pairs of (u′′, v′′) vertices,
iv) the path Pu′u′′ does not intersect other paths of the recent or the previous

phase (with the exception of Puu′). In addition, if u′′ ∈ Gα, then Pu′u′′ ∩Gβ =

∅, if u′′ ∈ Gβ, then Pu′u′′ ∩Gα = ∅.
Clearly, Gα and Gβ will provide room for the final step of joining the terminals. As

both layers are a-linked, all (u′′, v′′) pairs can be joined by disjoint paths. Our initial
pair (u, v) will be joined by an uu′u′′v′′v′v path. It remains to show that the Pu′u′′ can
be found with the above conditions. Distribute the (u, v) terminal pairs among Gα

and Gβ an arbitrary balanced way (the layers receive ba+b−1
2
c and da+b−1

2
e terminal
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pairs). For given u′ an u′′ vertices we may assume without loss of generality that
u′′ ∈ Gα. The underlying Hu′-layer is (2b−1)-connected. It contains at most n−t+1

vertices of horizontal paths and the projection of u′ to Gβ. If n − t + 2 ≤ 2b − 2,
we can find a Pu′u′′ path that contains none of the listed vertices. In that case
we have constructed all of the requested Pu′u′′ paths, thus finished the proof. If
n − t + 2 > 2b − 2, then s1 = · · · = sn = 1 or s1 = · · · = sn−1 = 1, sn = 2. These
rather simple cases can be handled by very simple case-by-case analysis. Choose an
empty H layer for every pair of terminals. As each G-layer is (2a−1)-connected, and
there are a+ b−1 pairs of terminals, we can set a path between a terminal u and the
assigned u′ endpoint within Gu without entering the other assigned H-layers. We
join (u, v) by an uu′v′v path. We leave the detailed analysis to the reader.

There are a few more cases to consider. If there is only one G-layer that is devoid
of terminals, label it Gα and choose an arbitrary Gβ layer with at most a terminals.
As the average terminal load of a G layer is 2a+2b−2

8b−1
, such layer can be easily found. In

that case, Gβ skips phase one and we proceed to phase two, saving all the horizontal
edges for the final joining.

If there is no available G-layer, we need a more elaborate work to proceed. Let Gx

denote a G-layer with the fewest number of terminals. By simple averaging, one can
easily show (just as we did above) that Gx contains at most a terminals. We, in fact,
prove that x has a neighbour y ∈ ΓH(x) such that Gy contains at most a terminals.
Recall that H is (2b − 1)-connected, hence |ΓH(x)| ≥ 2b − 1. Assuming that every
G-layer corresponding to a neighbour of x consists of at least a+ 1 terminals would
yield at least (2b− 1)(a + 1) > (2a + 2b− 2) terminals in total that is not possible.
Let y ∈ ΓH(x) be chosen as described above. We distinguish two cases:

(1) If Gx and Gy do not share a pair of terminals, that is, every pair has terminals
in at most one of them, simply label Gα = Gx, Gβ = Gy and use the shifting
techniques without applying horizontal shift on these two layers. The two
layers will collect all the terminals and perform the final joining.

(2) If there is a pair of terminals (u, v) such that u ∈ Gx and v ∈ Gy, we
use an inductional step and reduce the problem to a smaller graph. Apply
horizontal shift on the terminals of Gx and Gy such that every terminal t gets
a pseudopair, u′ and v′ share an H layer and no other pair of pseudopairs
share their H layers. Recall that x and y are adjacent and so are u′ and v′.
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Join the pseudopairs and so u and v by the union of the three paths. For
a remaining pseudopair t′ (that is neither equal to u′ nor to v′), choose an
arbitrary vertical edge with other endpoint t′′ such that t′′ 6∈ V (Gx)∪V (Gy).
Apply induction on G and H − x − y just as in the main proof. Note that
the base of our induction is the case b = 1 which is covered in Lemma 28.

�

We believe that the statement of Theorem 31 is true even without the indicated size
conditions. Remember that we only assume the condition to guarantee enough room
for the shifting techniques. Nevertheless, in the case when link(G)

v(G)
> 1

8
not only the

shifting techniques fail to work but one has to deal with an aboundance of terminals
congested on the layers. Linking of the terminals in that case is likely to lead a rather
lenghty and tedious case-by-case analysis involving ad hoc solutions which we do not
find particularly interesting and do not investigate in this dissertation.

One may wonder how the constant term (−1) comes into the picture in the bound
of Theorem 31. That link(G�H) ≥ link(G) + link(H) does not hold in general is
especially interesting in light of Corollary 27 (i.e. κ(G�H) ≥ κ(G) + κ(H) and
λ(G�H) ≥ λ(G) + λ(H)). We have already verified that the sharpness of this
rather unexpected bound is due to a natural connectivity constraint: there exist
graphs G and H with link(G) = a, κ(G) = 2a− 1,link(H) = b, κ(H) = 2b− 1, and
κ(G�H) = 2(a+b−1). As (a+b)-linked graphs are

(
2(a+b)−1)

)
-connected, G�H

is at most (a+ b−1)-linked. That observation does explain our presented bound but
it naturally raises additional questions. Let G be an a-linked, 2a-connected graph
and let H be a b-linked, 2b-conneced graph. What can we say about link(G�H)?
The product graph G�H is 2(a+ b)-connected, hence the above reasoning no longer
prohibits it to be (a+ b)-linked. In fact, with appropriate re-tuning of the "double-
shifting" technique one can prove that link(G�H) is (a+ b)-linked under the above
conditions (including the size constraints of Theorem 31). Based on the same shifting
technique we present the following possible extension of Theorem 31:

Theorem 33. If G is an a-linked, k-connected graph and H is a h-connected graph
(h ≤ k, G and H are sufficiently large), then G�H is a

2a+1
(k + h)-linked.
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Proof. Let us denote L := a
2a+1

(k+ h). If there exists a crowded G-layer (containing
at least k + 1 terminals), find a matching pair of terminals (which exists by pigeon-
hole principal), join them, empty the layer as before, and proceed by induction.
Otherwise, global shift horizontally, allocate t := dL

a
e empty G-layers Gα1 , . . . , Gαt ,

distribute the terminal pairs among them via vertical paths and reduce the problem
to linking within horizontal layers. We do not elaborate on the proof but encourage
the reader to copy the proof of Theorem 31 for unveiling the actual steps of the
linking. �

Theorem 33 illustrates that the linkedness number of the Cartesian product of an
a-linked and a b-linked graph may be reasonable greater than a + b − 1. As the
matter of fact, high linkedness of the product graph avails no lower bound on the
linkedness of its components. The theorem of Bollobás and Thomason [1] together
with the result of Spacapan [36] show that large minimum degree is sufficient to imply
high linkedness while the component graphs are connected, but might not even be
2-connected. In other words, there exist a function fδ such that δ(G)+ δ(H) ≥ fδ(k)

implies G�H is k-linked. Using the improved bound presented in [32] we know that
fδ(k) ≤ 10k. Even better bounds might be obtained on fδ by further investigation
of the problem that we do not discuss here.

5.1.2. Path-pairability. Before actually turning to the investigation of path-pairability
of product graphs, we make a quick detour to weak-linkedness. It is reasonable to be-
lieve that the shifting technique in the proof of Theorem 31 can be simply reshaped by
using the appropriate edge-variant of Menger’s Theorem and their discussed corol-
laries. This assumption turns out to be misleading. The main reason our earlier
proof cannot be simply reworded is an essential difference between the connection of
linkedness and connectivity and the connection of their edge disjoint variants. While
k-linked graphs are necessarily (2k−1)-connected, there exist weakly-k-linked graphs
that are not even (k+ 1)-edge-connected. The difference in the implied connectivity
lower bounds restrains the use of Lemma 7 and only enables us to obtain a weaker
result that we do not present. Nevertheless, almost sharp results for the inheritance
of weak-linkedness can be easily derived from Huck’s Theorem (Theorem 19).

Corollary 29. If G is a weakly-a-linked graph and H is a weakly-b-linked graph,
then G�H is weakly-2 · ba+b−1

2
c-linked.
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Now recall that k-path-pairability does not imply edge-connectivity that grows
with k, hence inheritance in that case cannot be handled by simple utilization of
Theorem 19. We invent new horizontal and vertical shifts to cope with the prob-
lem. Our new approach is heavily based on the assumption that terminals placed in
the graphs do not share a vertex, thus our method is exclusively shaped for path-
pairability.

Recall that the universal lower bounds we obtained for the inheritance of linkedness
and weak-linkedness in the Cartesian product were linear in terms of the appropriate
parameters of the factors, regardless of their sizes. Our current goal is to conclude
that such correspondence does not hold for path-pairability. We in fact prove that,
given sufficient space (but no other parameter constraint), the Cartesian product of
an a-path-pairable graph and a b-path-pairable graph is O(a · b) path-pairable. First
of all we verify that, just as linkedness and weak-linkedness, path-pairability is a
monotone parameter.

Lemma 30. If G is a k-path-pairable graph and H is a connected graph, then G�H
is k-path-pairable.

Proof. We prove the statement by induction on |V (H)|. The case |V (H)| = 1 is
straightforward. Let T be a spanning tree of H, let x ∈ V (T ) be a leaf containing at
most k terminals, and let y ∈ ΓT (x) be chosen arbitrarily. As G is k-path-pairable,
the terminals of the layer Gx can be shifted to vertical layers whose intersections
with Gy do not contain terminals (recall that |V (G)| ≥ 2k). The terminals then
can be moved to Gy and the joining can be finished in G�(H − x) by the induction
hypothesis. If at any point all terminals are contained by a simple G-layer, we can
directly use path-pairability of the layer to finish the joining. �

From now on, we may assume without loss of generality that G and H are at
least 2-path-pairable graphs. We state and prove two different theorems regarding
inheritance of path-pairability. The first theorem is of the same ilk as Theorem
31 and Corollary 29, while the second one is meant to demonstrate the difference
between the inheritance of path-pairability and linkedness.

Theorem 34. If G is an a-path-pairable graph with |V (G)| ≥ 8a and H is a b-path-
pairable graph with |V (H)| ≥ 8b, then G�H is (a+ b)-path-pairable.
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Proof. We may assume that 2 ≤ b ≤ a. Let M denote the set of 2(a+ b) (arbitrarily
chosen and paired) terminals in G�H. We first prove the theorem in the "base"
case when no G-layer contains terminals belonging to a + 1 or more pairs. The
assumption in fact implies that no layer contains more than 2a terminals. We mimic
the horizontal and vertical shifts presented in the proof of Theorem 31. Take a
G-layer Gx (x ∈ H) with t ≤ 2a terminals u1, . . . , ut. Observe that if t = a + s

where 1 ≤ s ≤ a, then Gx contains at least s pairs of terminals. For a terminal u
of Gx that has no pair in Gx, we choose a pseudopair u′ ∈ Gx, such that different
terminals get different pseudopairs and Hu′ will contain no other terminal but it
will contain the pseudopair of v, the terminal pair of u. Since |V (G)| ≥ 8a, we
can freely assign vertical layers for the pseudopairs of each pair of terminals. The
initial terminals occupy at most 2(a+b) ≤ 4a vertical layers, thus we have at least 4a

additional empty layers to allocate while we only need a+b. In the first phase, we pair
terminals on every G-layer with its pair or pseudopair. Having done this, pairing
of the pseudopairs can be finished using vertical edges of the connected H-layers
containing them.

Observe immediately that our presented technique wastes a lots of potential in
pairing the pseudopairs. Using that every H-layer is b-path-pairable, 2a+2b

2b
≤ a

additional empty H-layers are sufficient to finish the pairing, hence the lower bounds
on the graph sizes in the theorem can be improved to |V (G)| ≥ 5a and |V (H)| ≥ 5b

in the discussed case.
Now we turn to the examination of the general case. As 4(a + 1) > 2(a + b) at

most 3 G-layers contain (a + 1) or more types of terminals. Our goal is to reduce
our problem to the base case by redistributing the terminals among the G-layers.
We achieve this goal by assigning a pseudopair for each terminal within its original
H-layer. Observe that, as the solution of the base case contains a horizontal shift,
the combination of the initial redistribution and the solution of the base case will use
no vertical edge more than once. For the redistribution of the terminals, we follow a
case-by-case analysis.

(1) Assume first that Gx is the only G-layer that contains u1, . . . , ua+t terminals
belonging to different pairs, where 1 ≤ t ≤ b. Some of these terminals
may have their pair on the same horizontal layer, we will take that into
consideration. Clearly, there are at most (a+ 2b− t) terminals outside of Gx.
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We claim that one of the G-layers in the graph G�(H − x) contains at most
a− t terminals, else G�(H − x) would contain at least (8b− 1)(a− t+ 1) >

a + 2b − t terminals, clearly contradicting our previous observation. Take a
G-layer Gy with the above property. We want to choose t of the terminals in
Gx (if their pair is in Gx as well, then we choose both of them) and assign
them pseudopairs in Gy, together with vertical paths joining the terminals to
their pseudopairs. Note that we cannot assign a pseudopair to a vertex that
already contains a terminal. The terminals initially placed in Gy prohibit
the assignment of pseudopairs for at most a − t of the terminals (singleton
or paired) of Gx, that is, at least (a + t) − (a − t) = 2t of the terminals
u1, . . . , ua+t can get pseudopairs in Gy, while we only needed t. If any of the
chosen t terminals has an initial pair in Gx, we move that terminal along as
well (this in no longer prohibited due to our choice of the terminals). Note
also that the total number of types of terminals and pseudopairs in Gy is
at most (a − t) + t = a after the redistributing step, as prescribed in the
base case. We can now apply the solution of the base case on a new set of
terminals, where pseudopairs take the place of their initial terminals.

(2) If two G-layers contain at least a+ 1 types of terminals, the remaining termi-
nals occupy at most 2b− 2 G-layers, that is, there exists at least 6b G-layers
that are free of terminals. We define for a terminal u a pseudopair u′ in Hu,
such that
(a) Gu′ contains no terminal and contains at most a pseudopairs at the end

of the procedure,
(b) uu′ pairs are joined within Hu = Hu′ by edge-disjoint horizontal paths.
Indeed, to satisfy the first condition, observe that we have at most 2a + 2b

terminals that we distribute among 6b empty layers without any additional
constraint (remember, here a terminal and its pair do not have to get pseu-
dopairs assigned to the same G-layer), thus a balanced distribution can be
chosen with at most d2a

3b
e ≤ a terminals on a G-layer. The second condition

can be guaranteed by 2-path-pairability, as every H is at least 2-path-pairable
(b ≥ 2) and we assign at most 2 pseudopairs within an H-layer.

(3) The case with three overloaded layers (G1, G2, G3) works similarly to the
previous one. Observe first that in the examined case 3(a+1) ≤ 2a+2b, hence
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b ≥ a+3
2
≥ 2, 5. By pigeon-hole principal, we have at least 6a+ 3b+ 2 empty

G-layers at our disposal, each of them expected to receive 2a+2b
6a+3b+2

< 2 ≤ a

pseudopairs on average. Since b ≥ 3 that completes our proof.

�

We have proved above a linear inheritance of path-pairability. For certain graphs
it gives the right order of magnitude of inheritance (see Proposition 47). We now
show how the presented lower bound changes dramatically once the product graph
offers sufficient space for more joining paths. We in fact prove that, as long as both
G and H have size O((ab)α) for α ∈ [1

2
, 1], they can pair terminals of equal order of

magnitude.

Theorem 35. If G is an a-path-pairable graph and H is a b-path-pairable graph and
v(G), v(H) ≥ 4S, S < (a+1)(b+1)

2
, then G�H is S-path-pairable.

Corollary 31. If G is an a-path-pairable graph and H is a b-path-pairable graph and
v(G), v(H) ≥ 4 · (a+1)·(b+1)

2
− 1, then G�H is ( (a+1)·(b+1)

2
− 1)-path-pairable.

Proof of Theorem 35. We use the same techniques as in the proof of Theorem 34.
We may assume 2 ≤ b ≤ a. If no G-layer contains more than a different types of
terminals, we can join the pairs that share a G-layer and assign pseudopairs to the
terminals having their pairs on a different layer. The pseudopairs can be chosen
such that pseudopairs of a pair of terminals are located on the same H-layer and
their H-layer contains no terminal or pseudopair of another terminal. We only need
v(G) ≥ 3S to provide sufficient space that certainly holds. Since every H-layer is
connected, pairing of the pseudopairs can be carried out within the H-layers.

If Gx1 , . . . , Gxt-layers contain more than a-types of terminals, observe first that
t ≤ b, else G�H would consist of at least (a + 1)(b + 1) terminals, contradicting
S < (a+1)(b+1)

2
. It means that in every vertical layer that contains a terminal u,

we can assign a pseudopair u′ and - using that H is b-path-pairable and so is every
vertical layer in G�H- define edge disjoint uu′ paths for every u. We can distribute
the pseudopairs among the initially empty horizontal layers such that none of them
contains more than a pseudopairs, using that v(H) ≥ 4S ≥ 2S + 2S

a
(the number

of horizontal layers necessary to carry out our assignment above). Joining of the
pseudopairs can be carried out as described in the above base case. �
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We show that Corollary 31 is sharp up to a constant factor. That is, the order
of magnitude in the inheritance of path-pairability cannot be expanded more than
indicated in Theorem 35 by simply providing an abudance of space in the product
graph. To prove our claim, we first make the following observation: if G0 ⊂ G and
H0 ⊂ H subsets violate the cut-condition, that is, e(G0) < |G0| and e(H0) < |H0|,
the product set G0�H0 does not necessarily have the same condition. In order to
generate violating product sets, stronger assumptions are needed:

Proposition 32. Let G and H be graphs and G0 ⊂ G, H0 ⊂ H, such that 2 ·e(G0) <

|G0| and 2 · e(H0) < |H0|. Then e(G0�H0) < |G0�H0|, that is, G0�H0 violates the
cut condition.

Proof. Cearly |G0�H0| = |G0| · |H0|, while e(G0�H0) = |G0| · e(H0) + |H0| · e(G0) >
|G0|·|H0|

2
+ |G0|·|H0|

2
= |G0| · |H0|. �

Now consider the blown-up path P̂N described in Chapter 4. Let G, H be copies of
P̂N with class sizes a, b and diameters greater than 4a2 + 1 and 4b2 + 1, respectively.
Recall that G and H are a2 and b2 path-pairable graphs (see Proposition 26)

Moreover, let G0 ⊂ G and H0 ⊂ H be formed by 2a2 + 1 and 2b2 + 1 consecutive
classes, starting at the left end of the blown-up paths. The sets G0 and H0 satisfy
the conditions of Proposition 32, thus G�H is not (2a2 + 1) · (2b2 + 1)-path-pairable,
regardless of the initial sizes of G and H. That justifies our claim.

5.2. Results for grid graphs. We study linkedness properties of the n-dimensional
affine and projective grids, that is, the Cartesian product of n paths and n cycles.
In particular, we determine the linkedness number of the n-dimensional hypercube.
Similar questions regarding weak-linkedness and path-pairability of the above fami-
lies will be investigated as well.

5.2.1. Linkedness. We have proved in Theorem 31 that if G is a sufficiently large k-
linked graph and H is a sufficiently large 2-linked graph, then G�H is (k+1)-linked.
We now revisit the proof of Theorem 31 and show that even weaker conditions on H
are sufficient to make G�H (k+1)-linked. Our Lemma 33 below is the key ingredient
in the examination of the linkedness of grid graphs.

Lemma 33. If G is a k-linked graph with k ≥ 2, |G| ≥ max(9, 4k) and H is a
2-connected graph, then G�H is (k + 1)-linked.
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Corollary 34. If G is a k-linked graph with k ≥ 2, |G| ≥ max(9, 4k), then G�Cm
is (k + 1)-linked, where Cm denotes the cycle of length m.

Proof. Assume we are given the pairing of 2k + 2 terminals in G�H. We use the
technique of the proof of Theorem 31 and follow a case-by-case analysis.

(1) If there exist a G-layer Gi with 3 ≤ si ≤ k elements, then no G-layer is
crowded (no G-layer contains 2k or more terminals). Choose Gα = Gi and
apply the horizontal and vertical shift techniques on the remaining 2k + 2−
si ≤ 2k − 1 terminals. Observe that one can use Lemma 9 in every G-layer
during the horizontal shift. In the vertical phase the H-layer is 2-connected
and the path joining u′ and u′′ only has one vertex to avoid (corresponding
to Gα or Gβ).

(2) If there exist G-layers Gi and Gj such that si = 1, sj = 2 or si = sj = 2,
choose Gα = Gi and Gα = Gj. Solution for the previous case works here as
well.

(3) If s1 = · · · = s2k+2 = 1, use the separate technique presented for small cases
at the end of proof of Theorem 31. Fix an empty H-layer for every pair, place
pseudopairs on the layers, join the terminals with their pseudopairs, then join
the corresponding pseudopairs. Note that every G-layer is (2k−1)-connected
and it joins at most one terminal to its pseudopair such that the path avoids
k additional vertices. As 2k − 1 > k, such pairing can be carried out.

(4) If s1 = · · · = sn−1 = 1, k+ 1 ≤ sn ≤ 2k− 1, choose {Gα, Gβ} = {G1, G2} and
apply the shifting technique. Lemma 9 handles every G-layer just as in Case
1.

(5) If s1 = s2 = 1, s3 = 2k, join a pair u1, v1 within G2 using Lemma 9 and
shift the remaining terminals vertically. If a terminal u2 has no available
neighbour, then v2 ∈ G2 and we can switch pair (u1, v1) to (u2, v2) and repeat
the argument, just as in the crowded layer case of the proof of Theorem 31.

(6) If s1 = 2, s2 = 2k, similar technique works as in Case 5.
(7) If sn ≥ 2k + 1, we have all terminals (or all but one) on the same Gx-layer

for some x ∈ H. Let y, z ∈ ΓH(x). We can distribute the pairs of terminals
between Gy and Gz by using appropriate vertical xy and xz edges and join u′,
v′ endpoints within the horizontal layer. If sn = 2k+ 1, the missing terminal
can be routed to the appropriate layer. We leave the details to the reader.
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(8) If s1 = s2 = k+1, we may assume none of the layers contain a pair, otherwise
we can proceed by matching one-one pair within the layers, allocating new
terminal vertex u′ instead of the original terminal u on the layer, shifting and
using induction as previously. Let G1 = Gx, G2 = Gy for some x, y ∈ H and
let z ∈ ΓH(x)−{y} (as H is 2-connected, such z must exist). Shift terminals
horizontally within Gx if necessary in order to get for every terminal u a
uu′ path with endpoint u′, such that Hu′ contains neither a terminal nor a
vertex belonging to the shifting paths (in case there was no shift necessary,
let u′ = u). We pick a single terminal u ∈ Gx and take a path uu′u′′ where
u′′ denotes the projection of u′ to Gy. We connect u′′ with the pair of u in Gy

using Lemma 9. For the remaining 2k pairs, we set a vertical paths for each
terminal in Gx and Gy to Gz. For a terminal w ∈ Gx there is no obstacle in
Hw to find a path to its projection to Gz. If w ∈ Gy, we use the fact that H
is 2-connected and that it contains at most one vertex of Gx we might have
used previously. Having set the vertical paths, we join the projections in Gz.

�

Having proved our central lemma, we first inspect the d-dimensional hypercube
Qd. As Qd is d-connected, the linkedness number of Qd is at most dd

2
e. Equality

holds for d = 1 and 2. Q3 is not 2-linked as being a planar graph with a non-triangle
face. Q4 is 2-linked, which statement can be proved by a rather short and easy case-
by-case analysis. We prove that the above presented obvious upper bound is sharp
for higher dimensions.

Proposition 35. Let Qd denote the n-dimensional hypercube. Then link(Qd) = dd
2
e

if d 6= 3.

Proof of Theorem 35. We use inductional reasoning in our proof. We first settle the
smallest missing case.

Lemma 36. The five dimensional hypercube Q5 is 3-linked (but not 4-linked).

Proof of Lemma 36. We distinguish two cases:

(1) Assume there exist terminals x1, y1 satisfying d(x1, y1) ≤ 4 where d(x, y)

denotes the distance of the vertices x and y. In other words, our current
assumption is that x1 and y1 are not "opposite" vertices of Q5. Because of
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symmetries of the graph Q5, we may assume without loss of generality that
x1 = (0, 0, 0, 0, 0) and y1 = (v, 0), v ∈ Q4. Also, let us denote Q5 = Q0

4 ∪Q1
4,

the decomposition of Q5 into affine hyperplanes being isomorphic to Q4 (with
respect to the last coordinate). Certainly, x1, y1 ∈ Q0

4 and we may assume
that Q0

4−x2−y2−x3−y3 is connected (otherwise switch to pair (x2, y2)). Join
x1 to y1 in Q4 by any path of length 4 encountering no other terminal. We
want to join the remaining two pairs in Q1

4. If a terminal u ∈ {x2, y2, x3, y3}
lies in Q0

4, we define a crossing path that ends at u′ ∈ Q1
4. If the projection of

u to Q1
4 is not a terminal vertex (or if it happens to be the pair of u), we take

that very edge as the required path. In every other case there is a v ∈ ΓQ0
4
(u)

such that the projection of v to Q1
4 is available, yielding an appropriate path

of length 2.
(2) If d(x1, y1) = d(x2, y2) = d(x3, y3) = 5, there exist - up to isomorphism -

5 possible arrangements of the terminals. We leave the easy case-by-case
analysis to the reader.

�

As Qd = Qd−2�C4 , Corollary 34 applies (for d ≥ 4) and so the proof is complete.
�

Proposition 35 can be immediately generalized to d-dimensional affine grids with
a minimal effort invested.

Proposition 37. Let G = Pm1� . . .�Pmd
. Then

i) link(G) = 1 if d = 3, m1 = m2 = 2 and
ii) link(G) = dd

2
e if d 6= 3, mi ≥ 2 or d = 3, m3 ≥ m2 ≥ 3.

Proof. The first statement is obvious as G is a non-triangulated planar graph. For
d 6= 3, let Qd be an induced subgraph of G containing terminals x1, . . . , xp, p ≥ 1.
As G − x2 − · · · − xp is (d − p)-connected, the set of remaining terminals can be
routed to Qd and the joining can be performed. The case d = 3, m3 ≥ m2 ≥ 2 can
be solved by the previous idea using the fact that P2�P3�P3 is 2-linked. �

We use Lemma 34 for the investigation of linkedness in projective grids and prove
that the obvious upper bound of linkedness is sharp in this case as well.

Lemma 38. For cycles of length m and n (m,n ≥ 3) link(Cm�Cn) = 2.
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Proof. It can be shown by a simple but rather lengthy case-by-case analysis that
C3�C3, C3�C4 and C4�C4 are 2-linked. If max(m,n) ≥ 5, one of the cycles can be
shortened by substituting an empty layer with vertical / horizontal edges joining its
neighbours and proceed by induction. �

Proposition 39. For cycles of lengthm1, . . . ,md (mi ≥ 3, d ≥ 2) link(Cm1� . . .�Cmd
) =

d.

Proof. It follows directly from Lemma 34 and Lemma 38. �

5.2.2. Weak linkedness. We turn to the examination of weak-linkedness of the above
families. It follows from Theorem 19 that d − 2 ≤ wlink(Pm1� . . .�Pmd

) ≤ d and
2d− 2 ≤ Cm1� . . .�Cmd

≤ 2d. We first prove the following lemma:

Lemma 40. If G is weakly-k-linked and |V (G)| ≥ 2k for k ≥ 2, then G�K2 is
weakly-(k + 1)-linked.

Proof. Assume that an assignment of 2(k + 1) terminals is given in G�K2. Let G0

and G1 denote the two G-layers in the product graph. Our general approach is a
divide-and-conquer technique, in which we form two sets of the pairs and pair them
within the two G-layers. We proceed by a case-by-case analysis.

(1) If G0 contains all the terminals, pick any arbitrary (u, v) pair, assign u′, v′

pseudopairs in G1, such that uu′ and vv′ are vertical edges. Join u′ to v′ in G1,
as well as join all the remaining pairs in G0, using that it is weakly-k-linked.
Similar reasoning works if all the terminals are contained in G1.

(2) If G0 contains at most k types of terminals and has at least one (u, v) pair
among them, join all pairs within G0. For the remaining terminals of G0,
assign pseudopairs belonging to different vertices. If all the terminals happen
to lie on different vertices, there is nothing to be done. Our goal is to have
all the yet unpaired terminals of G0 on different vertices, so that they can
be channeled to G1. As G0 contains at most k-types of terminals and has at
least 2k vertices, the weakly-k-linkedness takes care of that sorting. Pairing
of the remaining terminals can be carried out within G1.

(3) If G0 contains at most k types of terminals but has no pair among them, take
a u terminal in G0 and channel its pair to G0, using the appropriate vertical
edge. Now G0 has at most k+1 terminals and at least 2k−1 ≥ k+1 vertices
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with yet unused vertical edges, thus the solution of the previous case can be
applied.

(4) In the remaining case, both G-layers contain exactly one terminal of each
pair. We choose k + 1 appropriate vertical edges between the two G-layers
and channel k-terminals in one direction and a single terminal in the other. As
a result, we will be able to join k pairs within one G-layer and the remaining
one in the other. To do this, take arbitrary terminal u ∈ G0 and channel
it to G1, using the unique uu′ vertical edge. Take a terminal v ∈ G1, such
that it is not the pair of u, neither is it placed on the other end of the uu′

edge. As k + 1 ≥ 3, there must be such a terminal. Using that G1 is weakly-
k-linked, join the channeled image of u to its pair within G1. Also, join all
the remaining terminals of G1 but v, that is, k − 1 additional terminals, to
pseudopairs. The pseudopairs shall be placed on pairwise different vertices,
none of which corresponds to the vertex of v. As we have 2k − 2 choices for
these k−1 vertices, such assignment can be carried out. The rest of the proof
is rather obvious: we channel all the yet unpaired terminals to G0 and finish
the pairing.

�

Corollary 41. The d-dimensional hypercube Qd is weakly-d-linked if d ≥ 3.

Proof. Our previous lemma takes care of the main part of a potential inductional
proof. Note that Q2 is not weakly-2-linked. It can be showed by a rather lenghty
and cumbersome case-by-case analysis that Q3 is weakly-3-linked. We leave the
verification of the statement to the reader. �

Weak-linkedness of high-dimensional affine grids can be derived easily from our
corollary.

Proposition 42. The d dimensional affine grid G = Pm1� . . .�Pmd
is weakly-d-

linked, if d ≥ 3.

Proof. We use induction on d + V (G). Corollary 41 handles starting cases of the
induction. Let mi ≥ 3 for some 1 ≤ i ≤ d and x ∈ Pmi

, such that x is an endpoint of
the path, and the (d− 1)-dimensional layer G′ = Pm1� . . . {x} . . .�Pmd

contains at
most d terminals. As G′ is (d−1)-edge-connected, the terminals can all be sorted into
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different vertices of G′ (one terminal stays put, the others get a set of pseudopairs
assigned and we apply Lemma 9) and they can be channeled to G − G′ via edges
corresponding to Pi. Pairing of the vertices then can be finished within G−G′. �

It can be also easily proved that a two dimensional affine grid Pa�Pb is weakly-2-
linked if both a, b ≥ 3. We leave the verification of this problem to the reader.

We believe that a similar result holds for high dimensional projective grids as well.
Our case-by-case analysis of the problem, however, has led too many subcases and
we could not analyse it in its full depth. We state the expected result as a conjecture.

Conjecture 43. The d dimensional projective grid Cm1� . . .�Cmd
is weakly-2d-

linked.

5.2.3. Path-pairability. Path-pairability of hypercubes is one of the central conjec-
tures in the study of the topic. The one-dimensional hypercube is path-pairable
and the two-dimensional is not. It can be showed by a lengthy case-by-case analysis
that Q3 is path-pairable. It is conjectured that the same parity-pattern holds for
higher dimesions as well. We do know that hypercubes of even dimension are not
path-pairable.

Proposition 44 ([6]). Qn is not path-pairable for n even.

Proof. Choose the pairing of the vertices u, v ∈ Fn2 such that u+ v = (1, 1, . . . , 1, 1).
This is certainly a pairing and the distance between the vertices in any of the 2n−1

pairs is exactly n. Assuming that edge-disjoint paths can be established between the
pairs, they require n ·2n−1 edges, that is, the total number of edges in the hypercube.
Exactly one path starts at each vertex x ∈ Fn2 while every other path entering x at
some edge leaves it using another one. It means the paths together cover an odd
number of edges joined to x, contradicting our previous observation. �

The problem concerning path-pairability of the odd-dimensional hypercubes for
n ≥ 5 is open. Note that if the conjecture is true, it will provide an infinite family
of path-pairable graphs, such that the product of any two of them (Q2a+1�Q2b+1 =

Q2(a+b+1)) is not path-pairable. It will also give examples of path-pairable graphs of
maximum degree ∆ = O(log2(n)).

Conjecture 45 ([3]). The (2k+ 1)-dimensional hypercube Q2k+1 is path-pairable for
all k ∈ N.
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Path-pairability of high dimensional large grids is also an unearthed area in the
research of path-pairability. We mention a few elementary observations for the pro-
jective case (the affine case can be dealt with similarly). As we have seen, path-
pairability may rise high in the presence of sufficient space. High dimensional huge
grids are just the perfect candidates for this purpose. It follows from the multi-
plicative inheritance described in Corollary 31 that sufficciently large d-dimensional
projective grids are O(2d)-path-pairable. We show that it is also upper bounded by a
function of d, regardless of the grid’s size, by presenting a setH ⊂ V (Cm1� . . .�Cmd

)

that violates the cut-condition.

Proposition 46. The d-dimensional projective grid G = Cm1� . . .�Cmd
is less than

(2d)d−1 · (2d+ 1)-path-pairable if mi ≥ (2d+ 1).

Proof. The statement is obvious if |G| < (2d)d−1 · (2d + 1). Consider now the d-
dimensional subgrid G0 = P2d� . . .�P2d�P2d+1. Easy to see that G0 violates the cut-
condition as V (G0) = (2d)d−1 ·(2d+1) > 2·((d−1)(2d)d−2(2d+1)+(2d)d−1) = d(G0).
It shows that G is less than (2d)d−1 · (2d+ 1)-path-pairable. �

In summary, we have proved that c1 · 2d ≤ pp(Cm1� . . .�Cmd
) ≤ (2d)d−1 · (2d+ 1)

for suffciently large d-dimensional grid. Needless to say, the presented gap has yet
to be narrowed or even closed in order to gain a complete understanding on path-
pairability of grids.

5.3. Path-pairable products. We have omitted the investigation of inheritance of
linkedness for the case when the graph’s linkedness number gets real close to its actual
size. Our decision is a biased one but it is motivated by the fact that extremely high
linkedness requires extremely high connectivity and edge density, thus our product
graph will be much like the product of complete graphs with a handful of missing
edges. As explained before, examination of linkedness is cumbersome even for the
product of complete graphs, hence we do not investigate the extremal cases.

At path-pairability, however, we are facing an entirely different situation. We
have seen that, in order to achieve high path-pairability, neither high connectivity
nor high edge density is required. We also know that for fixed values of k, being
k-linked, weakly-k-linked, and k-path-pairable are properties that are automatically
inherited from graphs possessing them to their products with other graphs. Ob-
serve, on the other hand, that path-pairability is not inherited automatically, that
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is, the path-pairability of G does not imply path-pairability of G�H . As an exam-
ple, the diameter bound of Theorem 26 shows that if G�H is path-pairable, then
diam(G), diam(H) ≤ 6

√
2 ·
√
v(G) · v(H). If diam(H) > 2

√
6
√
v(G) · v(H), say,

H = P3·v(G), G�H cannot be path-pairable.
Even if both G and H are path-pairable, path-pairability of G�H cannot be

guaranteed. We present an illustrative counterexample taking the product of star
graphs.

Proposition 47. The Cartesian product K1,b�K1,d is at most d b+d
2
e-path-pairable.

Proof. The product graph has a unique vertex za+b of degree a + b. Let C and R

denote the sets of vertices of degree two in an arbitrary column and an arbitrary row
not containing za+b. Let x be an additional vertex of degree two and let y denote
the intersection C ∩R. We place terminals in C ∪R∪ {x} such that x and y form a
pair and the unique vertices of degree a+ 1 and b+ 1 in the union (denoted by za+1

and zb+1) form another. Observe that paths that join the above two pairs both use
either the edge between za+1 and za+b or between zb+1 and za+b, hence the pairing
cannot be achieved. �

We do not know if path-pairability of the components is necessary to create a
path-pairable product. We believe it is not. Overall, our understanding of path-
pairable products is very limited. Our current goal is to extend this knowledge by
introducing new path-pairable product graphs.

Kubicka, Kubicki, and Lehel [15] investigated path-pairability of two dimensional
complete grid graphs and proved that the Cartesian product Ka�Kb of the complete
graphs Ka and Kb is path-pairable. For a = b the construction gives examples
of path-pairable graphs with maximum degree ∆ = 2a − 2 ≈ 2

√
n. We improve

the upper bound on ∆(G) to
√
n for sufficiently large balanced complete bipartite

graphs. To date, this is the best known upper bound on the possible minimum of
the maximal degree of a path-pairable graph.

Theorem 36. The product graph Km,m�Km,m is path-pairable for even values of m
if m ≥ 104.

Proof. Let us denote the two classes of the bipartite graph Km,m by A1 and A2.
We introduce further notation for certain sets of the vertices in the product graph
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G = Km,m�Km,m as follows: A11 = A1�A1, A12 = A1�A2, A21 = A2�A1, and
A22 = A2�A2. We will refer to these sets as classes of G. We also set a cyclic order
of the four classes clockwise. References next class and previous class are translated
in accordance with that given cyclic order. We label the m2 elements of each class
by an (u, v) pair where u = 1, . . . ,m and v = 1, . . . ,m.

Given a pairing of the vertices, we carry out the joining of the terminals in three
phases named: swarming, line-up, and final match. For a pair of terminals of G
we first ship them to the same class (swarming), then send them forward to the
same row/column of the next class (line-up). Finally, we join the paths by their
newly established ends with a single vertex of the next class (final match). Note that
during the phases terminals of different pairs might temporarily share vertices but
will eventually get sorted to their partners at the end of the final match phase.
Swarming In this phase, we ship one terminal of each pair to the class of its

partner. If a pair lies with both vertices within a class, they simply skip the swarming
phase. A terminal (u, v), belonging to class A11 and heading to A12, shall follow
the path (u, v) → (u + 1, v), where (u + 1, v) denotes the appropriate vertex of
A12 and addition is calculated modulo m. Similarly, we ship (u, v) to A21 via the
path (u, v) → (u, v + 1). Should (u, v) be shipped to A22, we allocate it the path
(u, v)→ (u+ 1, v)→ (u+ 1, v+ 2) where (u+ 1, v) belongs to A12 and (u+ 1, v+ 2)

belongs to A22. Terminals belonging to other classes will be shipped by the same
rules, increasing the appropriate coordinate by 1 at the first step, and increasing the
other one by 2 in the second step, if applicable. Getting shipped via paths of length
two is always carried out clockwise.

One can easily verify, that the above arrangment of paths assures that, ifm ≥ 5, no
edge is being utilized twice during the swarming phase. We now choose the terminal
to be shipped for each pair, such that at the end of the swarming phase, every class
hosts exactly m2

2
pairs. Starting with an arbitrary selection, we can assume without

loss of generality, that A11 hosts the most pairs, and that at least one terminal
x ∈ A11 received its pair y from a class hosting less than m2

2
pairs. Shipping x to the

class of y instead balances the distribution of the pairs. Repetition of the previous
step leads to an equal distribution.

We define G′ with V (G′) = V (G), and a new edge set E(G′) by deleting those
edges from E(G) we have used in the swarming phase. Observe, that by the given
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shipping method, every vertex of G hosts at most 5 terminals and uses at most 8 of
its edges, that is, the minimal degree of G′ is at least m− 8. We continue the path
building in G′.
Line-up We ship each pair of terminals to the next class, such that terminals

shipped by a horizontal edge shall share the same column of the new class, while
vertically shipped terminals will arrive in the same row. For every pair, there are at
least m − 16 available columns/rows in the next class. Our intention is to pair up
the pairs with the rows/columns, such that every one of them will contain m

2
pairs.

We recall a straigthforward corollary of Hall’s Matching Theorem.

Lemma 48. A balanced bipartite graph G = (A,B,E) on n+ n vertices with mini-
mum degree at least n

2
contains a perfect matching.

We define the following bipartite graph G = (A,B,E) as follows: represent each
pair of terminals hosted in A11 by a vertex in A, while each column of A12 is rep-
resented by m

2
independent vertices in B. Certainly, |A| = |B| = m2

2
. We connect

two vertices of A and B by an edge, if both terminals of the corresponding pair have
horizontal edges to the corresponding column of A12. Easy to see, that the graph
has minimum degree at least m2

2
− 16m, hence, by Lemma 48, it contains a perfect

matching for m ≥ 64.
Observe, that if two pairs of terminals sharing a vertex of a class C are distributed

to the same vertical layer of the next class C ′, at least one of the terminals will not
be able to get shipped there. We need to guarantee a matching between the pairs
and the layers of C ′ without such a collision. Recall, that each vertex of C hosts
at most 5 terminals, hence each pair of terminals has at most 8 additional pairs to
collide with. Consider a perfect matching for which the number of above collisions
is minimal. Let (x, y) and (x′, y′) be colliding pairs of terminals being sent to layer
L of C ′. We may assume x and x′ share the same vertex of C. We want to find a
pair (u, v) sent to a layer L′ 6= L of E such that

i) (x, y) can be sent from C to L′ (instead of L) during the line-up without
causing further collision,

ii) (u, v) can be sent from C to L (instead of L′) during the line-up without
causing further collision.
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The pair (x, y) can be initially sent to m− 16 layers of C ′, at most 8 of which might
contain terminals that initially shared vertex with (x, y) in C. In order to avoid
further collisions we exclude these layers, leaving us at least m − 24 choices of L′.
We also want to exclude layers that alreay received terminals from the vertex of x or
y, yielding at most 8 additional excluded layers, that is, at least m− 32 choices of L′

and so (m− 32) · m
2
choices for (u, v). We want to choose (u, v) such that it initially

had not shared vertex in C with any terminal currently hosted in L and that u and
v still can be moved (having withdrawn from L′) from C to L (the corresponding
edges have not been used yet). For the first constraint, recall that L contains m

2
pairs,

every one of which shares vertex with at most 8 additional terminals. It means there
exist at most 4m additional terminals that initially cannot be sent to L, because the
appropriate edges had already been used during the first phase. Now assume that
the appropriate edge that is supposed to channel u or v to L has already been used.
It can either occur if another terminal was sent from that particular vertex of C to
L during the line-up or if the edges were used during the swarming phase. The first
conditions means that (u, v) collides with the other pair of terminals that was sent
to L, hence (u, v) is one of the above listed 4m pairs. In the remaining case, the
missing edge is one of those at most 8 · n

2
= 4m edges the whole layer L used up

during the swarming. The mentioned edges have at most 4m endpoints in C and at
most 5 · 4m = 20m pairs of terminals correspoding to them. Overall, it means that
if (m − 32) · m

2
> 24m (that is, m > 56) , one can find an appropriate (u, v). By

swapping the positions of (u, v) and (x, y), we reduce the number of collisions that
contradicts our assumption.

We repeat the same procedure for the remaining three classes. It can be easily
verified that no edge is used more than once. We define G′′ by deleting the used
edges from G′. We proceed in G′′ to the final match.
Final match For a row/column filled with m

2
pairs of terminals, we assign every

pair a vertex of the appropriate row/column of the next class that is adjacent to both
terminals (see Figure 5.3). Note that during the first two phases, each vertex has
used at most 13 of its edges. We use Lemma 48 to find the appropriate assignment.
Let A form the set, in which every pair of terminals of a certain row/column is
represented by a vertex. The set B is formed by any m

2
vertices of the appropriate

column/row of the next class. We connect vertices by edges, if both terminals of the
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pair are adjacent to the appropriate vertex in the next class. Our bipartite graph
has two classes of size m

2
and minimum degree m

2
− 26. If m ≥ 104, the required

matching is provided by Lemma 48. That completes the proof. �

Corollary 49. There exists a path-pairable graph G on n vertices with ∆(G) =
√
n

for infinitely many values of n.

6. Additional remarks and open questions

We have examined linkedness and path-pairability properties of the Cartesian-
product of undirected graphs. In the final chapter we present open problems in
a few closely related topics. These short summaries are not meant to analyze the
presented questions in depth equal to our work in the previous chapters but are
intended to attract the reader’s attention to potential directions of further research.

6.1. Path-pairable planar graphs. There are countless additional parameters
whose cross-examination with the path-pairability property might be of interest.
We take a brief tour in the study of k-path-pairable and especially path-pairable
planar graphs. Recall first that both linkedness and weak-linkedness numbers of
planar graphs are upperly limited due to simple connectivity conditions. We proved
in Proposition 13 that planar graphs cannot be 3-linked. Similarly, it can be proved
that planar graphs are at most weakly-5-linked. We also know that path-pairability
is not limited by any means of connectivity, hence theoretically planar graphs with
arbitrarily high path-pairability number may exist. We are, in fact, interested in the
most spectacular species of this family and look for infinite sets of path-pairable pla-
nar graphs. Observe that we have already come across such a family as star graphs
{K1,2n−1}n∈N are both path-pairable and planar (and so is every planar graph on
n vertices that contains a vertex of degree n − 1). While small examples of path-
pairable planar graphs can be constructed rather easily (see Figure 6.1), it is not
straightforward if there exist other edge-minimal infinite families.

We hereby present such a family. Observe first that the complete bipartite graph
K2,2m−2 only fails to be path-pairable for those pairing of the vertices where the two
high degree vertices (let us call them P and Q) form a pair. Let us assume m ≥ 6

and construct a graph G from K2,2m−2 as follows: join the 2m−2 degree two vertices
to each other such that they form a path P2m−2 and denote their endpoints by P ′
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and Q′. Remove PP ′ and QQ′ edges and join P and Q by a new edge. Easy to see
that G is planar and has maximum degree ∆(G) = 2m−2 = n−2, hence it does not
contain a subgraph isomorphic to K1,n−1. LetM be a given pairing of V (G). The
vertices P, P ′, Q′, Q are contained in at most 4 pairs. For a pair (u, v) containing
none of the above vertices, we set a path of length two via P or Q, such that both
of them are utilized for at least one such (u, v) pair (n ≥ 12 assures there at at least
two pairs of that ilk). Also, if any of the above four vertices has a pair outside that
four-touple, there is either a unique edge that joins them or a unique path of length
2 via P or Q (that is the case when we pair P ′ or Q′ with a non-labelled vertex).
We set these joining paths as well and examine the remaining (at most 4) pairs in a
case-by-case analysis:

(1) If P and Q form a pair but P ′ and Q′ do not, use the direct edge PQ for
joining them.

(2) If P ′ and Q′ form a pair but P and Q do not, use path P ′QPQ′ to join P ′

and Q′.
(3) If both (P,Q) and (P ′, Q′) are paired, use P ′QPQ′ to join P ′ and Q′ as before.

Let S, T ∈ P2m−2 such that PS and QT are unused edges. Let PST denote
the unique path joining S and T in P2m−2. The path PSPSTTQ joins P and
Q.

(4) If P and Q′ form a pair, they can simply joined by a direct edge. The same
hold for the pairing of P ′ and Q.

(5) If P and P ′ are paired but Q and Q′ do not form a pair, use the path P ′QP
to join P and P ′. The same method works in case of the pairing of Q and Q′.

(6) If both PP ′ and QQ′ form pairs, use paths P ′QP and Q′PSPSTTQ where
S, T and PST are defined as previously. That completes the case-by-case
analysis and thus the proof.

The above example is only intended to enrich our list of path-pairable planar
graphs and strengthen our belief in their diversity. The above graphs are not extremal
in any reasonable sense. They are not even edge-minimal as one can easily prove
that the presented techniques work with a path of length of ≈ m within the larger
class of K2,2m−2. As long as maximum degree is concerned, our family yields an
especially minor improvement. On the other hand, the solution technique of Theorem
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25 yields a reasonably stronger lower bound on the maximum degree of the path-
pairable planar graphs. As a planar graph on n vertices consists of at most 3n − 6

edges, every pairing of the vertices of a path-pairable planar graph must contain a
pair at distance 5 or less. It implies that one can find a vertex whose constant (6)
neighbourhood consists at least half of the vertices of the graph, thus ∆ ≥ c · 6

√
n.

Even better lower bound can be obtained by the so called "separator theorem" proved
by Lipton and Tarjan [26]. It claims that the vertex set of every planar graph G can
be partitioned into three classes V (G) = A ∪ B ∪ C such that |A|, |B| ≤ 2

3
|V (G)|,

|C| ≤ 2
√

2|V (G)| and there are no edges between A and B. It clearly follows from
the theorem that if G is a sufficiently large path-pairable planar graph on n vertices,
then ∆(G) ≥ c · n for a constant c. This improved bound already meets in order of
magnitude with the maximum degree of the studied path-pairable graphs. However,
the presented classes all fail to raise an infinite planar graph family, thus the problem
regarding the existence of arbitrary large path-pairable planar graphs with maximum
degree ∆(G) ≈

√
|V (G)| is still open.

We also make a quick comment on the diameter of the path-pairable planar graphs.
To date, there is no known path-pairable planar graph of diameter at least 4. Using
the edge bound of planar graphs, one can appropriately modify the proof of Theorem
26 and show that the diameter of a path-pairable planar graph is upperly bounded
by c · log n, where n denotes the number of vertices and c is a constant. Whether or
not the presented bounds can be realized by actual path-pairable planar graphs, or
even less, whether an infinite family of path-pairable planar graphs with unbounded
diameter can be found, are still open questions that require additional research.

6.2. Linkedness and path-pairability of directed graphs. Linkedness, weak-
linkedness, and path-pairability of directed graphs can be defined as follows:

Definition 50. A directed graph D = (V,A) is k-linked if, for every ordered set of
vertices X = (x1, . . . , xk) and Y = (y1, . . . , yk) there exist internally-vertex-disjoint
directed paths P1, . . . , Pk such that each Pi is a directed xiyi-path starting in xi and
ending in yi.

Definition 51. A directed graph D = (V,A) is weakly-k-linked if, for every ordered
set of vertices X = (x1, . . . , xk) and Y = (y1, . . . , yk) there exist edge-disjoint directed



C
E

U
eT

D
C

ol
le

ct
io

n

55

paths P1, . . . , Pk such that each Pi is a directed xiyi-path starting in xi and ending in
yi.

Definition 52. A directed graph D = (V,A) is k-path-pairable if, for every ordered
set of 2k pairwise different vertices X = (x1, . . . , xk) and Y = (y1, . . . , yk) there exist
edge-disjoint directed paths P1, . . . , Pk such that each Pi is a directed xiyi-path starting
in xi and ending in yi. A directed graph is path-pairable if it is k-path-pairable on 2k

vertices for some k.

While in the undirected case the complete graph on n vertices is clearly bn
2
c-

linked, the existence of k-linked directed graphs for arbitrary k is not imminent (we
do not allow the existence of directed edges ~uv and ~vu at the same time). We give a
construction of k-linked directed graphs as follows: let G be the complete 3-partite
graph with vertex set V (G) = A ∪ B ∪ C where |A| = |B| = |C| = 3k. We orient
all edges A→ B → C → A, that is, set A has incoming edges from C and outgoing
edges to B, while edges between B and C are oriented from B to C. We claim that,
with that orientation, ~G is k-linked. Indeed, easy to see that, regardless of the choice
of the terminal vertices x1, . . . , xk and y1, . . . , yk, each of the three sets will contain
at least k non-terminal vertices zA1 , . . . , zAk , zB1 , . . . , zBk and zC1 , . . . , zCk . The subgraph
induced by {xi, yi, zAi , zBi , zCi } contains a directed path from xi to yi and so linking
can be completed.

Just as we learned in case of undirected graphs, directed k-linkedness implies
strong (2k − 1)-connectivity. While one would expect implication in the converse
direction (an f(k) function similar to the one in Section 2.1.), surprisingly enough,
such connection does not exist in the directed case. Thomassen [35] gave an example
of strongly k-connected directed graphs for arbitrary value of k that are not even
2-linked.

Theorem 37 (Thomassen [35]). There exist strongly k-connected directed graphs
which are not 2-linked for every k ∈ Z+.

Sufficient conditions for a directed graph D to be k-linked have been widely inves-
tigated. We refer the reader to [16] for a detailed survey.

Weak-linkedness of directed graphs has been analyzed to its extent. The folklore
theorem of Edmonds gives a full characterization of weakly-k-connected directed
graphs.
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Theorem 38 (Edmonds). If D = (V,A) is rooted k-edge-connected with respect of
root r, then there exists k edge-disjoint directed spanning tree with root r.

Corollary 53. D = (V,A) is weakly k-linked if and only if it is k-edge-connected.

As k-path-pairability follows from k-linkedness, we only investigate the existence
of path-pairable directed graphs. We call an undirected graph G = (V,E) path-
pairably-orientable if appropriate orientation of the edges in E results in a path-
pairable directed graph

−→
G = (V,

−→
E ).

Proposition 54. The graph K2m −m ·K2 is path-pairably-orientable for m ≥ 3.

Proof. We order the vertices such that the edges of the deleted perfect matching
form the main diagonals. We orient the remaining edges of the graph clockwise.
Assume we are given a pairing of the vertices. For m = 3, there are four different
constructions up to isomorphism. Figure 6.2 provides a possible realization of the
linking for each of the cases (we leave the verification of the remaining cases to the
reader).

We proceed by induction on m. Observe that by deleting two vertices that form
a diagonal in the clockwise oriented K2(m+1) − (m + 1) · K2, we obtain a smaller
graph which is isomorphic to K2m − m · K2. More than that, diameters remain
diameters after the deletion and so the remaining graph is directed path-pairable
by the inductional hypothesis. We denote the deleted vertices by x and y. Given a
pairing of the vertices of K2(m+1) − (m + 1) · K2, assume first that x and y form a
pair. We may assume that the required path has to start at x and end at y. Linking
can be carried out by simply choosing an arbitrary vertex z of the arc # »xy. Linking of
the remaing pairs goes by induction. Assume now that x and y have different pairs
in the pairing. Let u and v be arbitrary vertices of the arcs # »xy and # »yx, respectively.
For every possible choice of u and v we define the cycle uxvyu with the appropriate
orientation. Easy to see that, regardless of the position of x′s and y′s pairs, both of
them can be linked to x and y using an appropriate one of the given four-cycles. As
we only used edges belonging to x or y, linking of the remaining pairs can be carried
out by induction. �
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Cartesian product of directed graphs can be defined the same way we constructed
Cartesian product of undirected graphs with the additional rule of keeping the orig-
inal direction of every edge. The Cartesian product of graphs ~G and ~H is the graph
~G� ~H with vertices V (~G� ~H) = V (~G) × V ( ~H), and ~(x, u)(y, v) is a directed edge if
x = y and ~uv ∈ E( ~H) or ~xy ∈ E(~G) and u = v. Parameter inheritance of linkedness
and path-pairability properties (as well as many further graph properties) are bound
to offer several intriguing and challenging questions. Inheritance of linkedness is es-
pecially exciting as, unlike the undirected case, inheritance of strong connectivity
yields no lower bound on directed linkedness (see Theorem 37).

6.3. Other graph products. There are several interesting additional variants of
graph products (see Figure 6.3). We list a few of the most studied ones and briefly
summarize some of the known results regarding inheritance of connectivity and
linkedness in the listed products. Weak-linkedness can (as usual) approached through
edge-connectivity, using Theorem 19. We do not discuss these problem, neither do
we investigate path-pairability of the given products.

6.3.1. Tensor product. The tensor product of graphs G and H is the graph G × H
with vertices V (G�H) = V (G) × V (H) and (x, u)(y, v) is an edge in G × H if
xy ∈ E(G) and xy ∈ E(H).

Observe that the tensor product of connected graphs is not necessarily connected.
For example, the tensor product Pa × Pb consists of exactly two components. The
observation holds for factors with higher connectivity as well. Define the graph G on
the vertex set V (G) = {1, 2, . . . , 2m} for m ∈ Z+ and join i, j ∈ V (G) by an edge if
i− j is odd. Easy to see that G = Km,m, hence it is m-connected. Also, our labelling
of the vertices clearly shows that (x, u) and (y, v) are connected in G×H if and only
if x + y + u + v is even. That splits the vertex set V (G×H) into two connectivity
classeswith respect to the parity of the sum of the coordinates. It shows that neither
connectivity nor linkedness is inherited automatically in case of the tensor product.
Nevertheless, it would be interesting to know what other conditions are needed to
obtain results that are similar to Theorem 31.

6.3.2. Strong product. The strong product of graphs G and H is the graph G � H

with vertices V (G � H) = V (G) × V (H) and (x, u)(y, v) is an edge if x = y and
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uv ∈ E(H) or xy ∈ E(G) and u = v or uv ∈ E(H) and xy ∈ E(G). In other word,
the edge-set of G�H is the union of the edge sets of G�H and G×H.

Though most of the edges of G � H are inherited from G × H, connectivity of
the strong-product is guaranteed by the frame provided by G�H. Inheritance of
connectivity for strong products has been investigated by Špacapan [37].

Theorem 39 (Špacapan, [37]). If G,H are connected graphs, then κ(G � H) ≥
min

(
κ(G)(1 + δ(H)), κ(H)(1 + δ(G))

)
.

Together with Theorem 8, the current theorem implies that link(G�H) ≥ (2
5
−ε) ·

link(G) · link(H) for every ε > 0 if link(G) and link(H) are large enough. Also, it can
be shown easily that link(G�H) ≤ 2 · link(G) · link(H); a vertex joined by k edges to
k different vertices of a complete graph Kn (n ≥ k + 1) is a possible example where
the inequality is sharp. The deeper understanding of the inheritance of linkedness in
strong products requires further research.

6.3.3. Lexicographical product. The lexicographical product of graphs G and H is the
graph G ◦ H with vertices V (G ◦ H) = V (G) × V (H) and (x, u)(y, v) is an edge
if uv ∈ E(H) or xy ∈ E(G) and u = v. Lexicographical product is particularly
interesting being the first (and only) non-commutative graph product of our list,
that is, G ◦H 6= H ◦G in general.

The theorem of Yang and Xu [39] provides the appropriate connectivity inheritance
result.

Theorem 40 (Yang, Xu [39]). If G,H are connected graphs, then κ(G ◦ H) =

κ(G) · v(H).

Just as in the case of the strong product, there is still plenty of room for further
exploration in this particular variant as well.
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Figure 1. Example for a 5-connected, not 2-linked graph.

Figure 2. Planar graphs are not 3-linked.

Figure 3. Path-pairable graph of order 12
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Figure 4. Cartesian product of a claw and a triangle

Figure 5. Line-up and final match phases.

Figure 6. Small path-pairable planar graphs can be easily constructed.
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Figure 7. Linking via edge-disjoint directed cycles.

Figure 8. Four kinds of products of K2 and P2
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