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Abstract

We will study the problem of determining the maximum size of a family of subsets of [n] =
{1, 2, . . . , n} not containing a given poset P as a (weak) subposet, denoted La(n, P ). This
problem is a generalization of the well-known Sperner’s theorem. In 1945, Erdős obtained
the exact value of La(n, P ) when P is a path poset, generalizing Sperner’s theorem. A more
formal study of this problem was initiated by Katona and Tarján in 1983. Since then there
have been numerous papers in this area and many open questions. One of the open questions
was to obtain a good general bound on La(n, P ) for an arbitrary poset P . Open questions
concerning the exact (or at least asymptotic) value of La(n, P ) for some specific posets P
are also of great interest. The most famous poset of which, is the Diamond. In this thesis,
we answer some of these open questions. We obtain a general bound on La(n, P ) which is
best possible upto a constant factor, improving the previous bounds due to Burcsi and Nagy
and later Chen and Li. We also obtain the exact value of La(n, P ) for an infinite class of
posets and introduce a new method for doing so.

The thesis consists of 3 chapters: In the first chapter we survey results about forbidden
subposets and prove some well-known theorems.

In the second chapter we show La(n, P ) ≤ 1
2k−1

(
|P |+ (3k − 5)2k−2(h(P )− 1)− 1

) (
n
bn/2c

)
for any fixed integer k ≥ 2, improving the best known upper bound. By choosing k appro-

priately, we obtain that La(n, P ) = O
(
h(P ) log2

(
|P |
h(P )

+ 2
)) (

n
bn/2c

)
as a corollary, which

we show is best possible for general P . We also give a different proof of this corollary by
using bounds for generalized diamonds. We also show that the Lubell function of a family
of subsets of [n] not containing P as an induced subposet is O(nc) for every c > 1

2
. This is

joint work with Dániel Grósz and Casey Tompkins.
In the third chapter, we introduce a method of decomposing the family of intervals along

a cyclic permutation into chains to determine the exact size of the largest family of subsets of
[n] not containing one or more given posets as a subposet. De Bonis, Katona and Swanepoel
determined the size of the largest butterfly-free family. We strengthen this result by showing
that, for certain posets containing the butterfly poset as a subposet, the same bound holds.
We also obtain the corresponding LYM-type inequalities. This is joint work with Casey
Tompkins.



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 1

Introduction

Definition 1. Let P be a finite poset, and F be a family of subsets of [n]. We say that P is
contained in F as a weak subposet if and only if there is an injection α : P → F satisfying
x1 <p x2 ⇒ α(x1) ⊂ α(x2) for all x1, x2 ∈ P . F is called P -free if P is not contained in F
as a weak subposet. We define the corresponding extremal function as

La(n, P ) := max{|F| | F is P -free}.

We say that P is an induced subposet of Q if there exists an injection α : P → F satisfying
x1 <p x2 ⇐⇒ α(x1) ⊂ α(x2) for all x1, x2 ∈ P . F is called induced P -free if P is not
contained in F as an induced subposet. We define the corresponding extremal function as

La#(n, P ) := max{|F| | F is induced P -free}.

In this thesis, we mostly study the first extremal function. If we wish to forbid a pair
of posets P and Q, we simply write La(n, P,Q) and La#(n, P,Q) respectively. We denote
the number of elements of a poset P by |P |. The linearly ordered poset on k elements,
a1 < a2 < . . . < ak, is called a chain of length k, and is denoted by Pk. Using our notation
Sperner’s theorem can be stated as follows.

Theorem 1 (Sperner [27]).

La(n, P2) =

(
n

bn/2c

)
.

Proof. Let A be a P2-free family. Consider a maximal chain,

C = {∅, {x1}, {x1, x2}, {x1, x2, x3}, {x1, x2, x3, x4}, . . . , [n]}

formed by adding sequentially the elements x1, x2, . . . , xn in this order. Let us double count
the number of pairs (A, C) where A ∈ A and A ∈ C. For a fixed A ∈ A, the number of
maximal chains containing A is |A| ! (n− |A|)!. So,

|{(A, C) | A ∈ A and A ∈ C}| =
∑
A∈A

|A| ! (n− |A|)! (1.1)

2
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On the other hand, a fixed maximal chain C has at most 1 set from A for otherwise we will
have P2 as a subposet of A, contradiction. Clearly there are n! maximal chains. So,

|{(A, C) | A ∈ A and A ∈ C}| ≤ n! (1.2)

Combining (1.1) and (1.2) proves our theorem.

Erdős extended Sperner’s theorem to Pk-free families for all k ≥ 2.

Theorem 2 (Erdős [9]). La(n, Pk) is equal to the sum of the k−1 largest binomial coefficients
of order n. This implies

La(n, Pk) ≤ (k − 1)

(
n

bn/2c

)
.

Proof. The same proof of Theorem 1 applies. The only difference is that the right-hand side
of (1.2) would now be (k − 1)n! because a fixed maximal chain can contain at most (k − 1)
sets from a Pk-free family.

Notice that, since any poset P is a weak subposet of a chain of length |P |, Theorem 2
implies

Corollary 1.

La(n, P ) ≤ (|P |−1)

(
n

bn/2c

)
= O

((
n

bn/2c

))
.

For a variety of posets, P , the value of La(n, P ) has been determined asymptotically.
The first forbidden poset result was due to Katona and Tarján [16] in 1983. They considered
the V poset defined on {x, y, z} with relations x ≤ y, z. They proved(

1 +
1

n
+ o

(
1

n

))(
n⌊
n
2

⌋) ≤ La(n, V ) ≤
(

1 +
2

n

)(
n⌊
n
2

⌋).
This result was later generalized by De Bonis and Katona [7] who obtained bounds for

the r-fork poset, Vr defined by the relations x ≤ y1, y2, . . . , yr. Other posets for which the
asymptotic value of La(n, P ) has been determined include crowns O2k (cycle of length 2k
on two levels) except for k ∈ {3, 5} [19], the N poset [10] and recently the complete 3 level
poset Kr,s,t [26] among others.

Fewer exact results are known. Already, in their paper introducing the La function,
Katona and Tarjan [16] proved that La(n, V,Λ) = La#(n, V,Λ) = 2

( n−1
bn−1

2 c
)
, where V and

Λ are the 2-fork and 2-brush, respectively. Define the butterfly poset, B, by 4 elements
a, b, c, d with a, b ≤ c, d. Of central importance to the thesis is a theorem of De Bonis,
Katona and Swanepoel [8] showing that La(n,B) = Σ(n, 2). More recently, several other
exact results have been obtained. Burcsi and Nagy [4] obtained the exact bound for multiple
posets and introduced a method of creating further posets whose La function could be
calculated exactly. Griggs, Li and Lu [11] determined exact results for the k-diamond, Dk

(w ≤ x1, x2, . . . , xk ≤ z), for an infinite set of values of k. They also obtained exact results

3
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for harp posets, H(l1, l2, . . . , lk), defined by k chains of length li between two fixed elements,
in the case when the li are all distinct.

One of the first general results is due to Bukh who determined the asymptotic value of
La(n, P ) for all posets whose Hasse diagram is a tree. Let h(P ) denote the height (maximum
length of a chain) of P .

Theorem 3 (Bukh [3]). If T is a finite poset whose Hasse diagram is a tree of height
h(T ) ≥ 2, then

La(n, T ) = (h(T )− 1)

(
n

bn/2c

)
(1 +O(1/n)) . (1.3)

Using a general structure called double chain instead of chains for double counting, Burcsi
and Nagy obtained a similar but weaker version of this theorem for general posets thereby
improving Corollary 1. Since some of their proof ideas are useful later on, we give their proof
below. Before we state and prove their theorem we introduce the notion of a double chain.

Definition 2 (Double chain). Let ∅ = A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = [n] be a max-
imal chain (so |Ai| = i). The double chain associated to this chain is given by D =
{A0, A1, . . . , An,M1,M2, . . . ,Mn−1}, where Mi = Ai−1 ∪ {Ai+1 \ Ai}.

Theorem 4 (Burcsi, Nagy [4]). For any poset P , when n is sufficiently large, we have

La(n, P ) ≤
(
|P |+ h(P )

2
− 1

)(
n

bn/2c

)
. (1.4)

Proof. Let A be a P -free family. First let us observe that since there are n! maximal chains
in total, there are a total of n! double chains associated to these maximal chains. Let us
double count the number of pairs (A,D) such that A ∈ A and A ∈ D. It can be easily seen
that for a fixed A ∈ A, the number of double chains containing A is 2 |A| ! (n− |A|)!. So,

|{(A,D) | A ∈ A and A ∈ D}| =
∑
A∈A

2 |A| ! (n− |A|)! (1.5)

Now let us fix a double chain D. We claim that there are at most |P |+h(P )−2 sets of our
P -free familyA inD. Suppose by contradiction thatA∩D is of size at least |P |+h(P )−1. We
will show that then D contains P as a subposet. For convenience, let us define the notion of
an infinite double chain. An infinite double chain D∞ is an infinite poset on elements Li,Mi,
i ∈ Z with relations Li ⊂ Lj, Li ⊂ Mj and Mj ⊂ Li for all i < j. Clearly any poset formed
by the sets in A∩D is a subposet of D∞. So it suffices to show that any family H ⊂ D∞ of
size at least |P | + h(P ) − 1 contains P as a subposet. To this end, first let us arrange the
elements of D∞ in the following order: . . . , L−1,M−1, L0,M0, L1,M1, . . .. This fixes an order
on the elements of H as well. Now let us first decompose P into antichains A1,A2, . . . ,Ah(P )

where the elements in Ai are bigger than or unrelated to elements in Aj for any i > j and
then map the antichains A1,A2, . . . ,Ah(P ) into H one after another, in this order, in h(P )
steps as follows. First we map A1 to the first |A1| elements of H (according to the order we

4
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just defined on H). Notice that all remaining elements of H, except at most one element, are
greater in D∞ than the |A1| elements that we just mapped to. Now we map A2 into the first
|A2| of these elements. Proceeding this way, it is easy to see that at each step we left at most
one element unmapped in H. So after h(P )−1 steps, we have left at most h(P )−1 elements

unmapped so that we have at least |P | + h(P ) − 1 −
(∑h(P )−1

i=1 |Ai|+ h(P )− 1
)

=
∣∣Ah(P )

∣∣
elements still remaining in H into which Ah(P ) can be mapped. This shows that P is a
subposet of the poset defined by elements of H, as desired. Since there are n! double chains,
we have

|{(A,D) | A ∈ A and A ∈ D}| ≤ (|P |+ h(P )− 2)n! (1.6)

Now we combine (1.5) and (1.6) to complete the proof.

This result was improved by Chen and Li [5]. The idea of their proof was to generalize
the double chain to a more complicated structure.

Theorem 5 (Chen, Li [5]). For any poset P , when n is sufficiently large, the inequality

La(n, P ) ≤ 1

m+ 1

(
|P |+ 1

2
(m2 + 3m− 2)(h(P )− 1)− 1

)(
n

bn/2c

)
(1.7)

holds for any fixed m ≥ 1.

Putting m =
⌈√

|P |
h(P )

⌉
in the above formula, they obtained

La(n, P ) = O(|P |1/2 h(P )1/2)

(
n

bn/2c

)
. (1.8)

5
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Chapter 2

A general bound on the largest family
of subsets avoiding a subposet

In this chapter, we improve Theorem 5, by showing that

Theorem 6 (Grósz, Methuku, Tompkins [14]). For any poset P , when n is sufficiently large,
the inequality

La(n, P ) ≤ 1

2k−1
(
|P |+ (3k − 5)2k−2(h(P )− 1)− 1

)( n⌊
n
2

⌋)
holds for any fixed k ≥ 2.

Notice that putting k = 2, we get Theorem 4 and Theorem 5 for m = 1. Putting k = 3,
we get Theorem 5 for m = 3. For k > 3, our result strictly improves Theorem 5.

By choosing k appropriately in our theorem, we obtain the following improvement of
(1.8):

Corollary 2. For every poset P and sufficiently large n,

La(n, P ) = O
(
h(P ) log2

(
|P |
h(P )

+ 2

))(
n⌊
n
2

⌋).
The following proposition shows that this bound cannot be improved for general P .

Proposition 1 (Grósz, Methuku, Tompkins [14]). For P = Ka,a,...,a, we have

La(n, P ) ≥ ((h(P )− 2) log2 a)

(
n⌊
n
2

⌋) =

(
(h(P )− 2) log2

(
|P |
h(P )

))(
n⌊
n
2

⌋).
It is interesting to note that much less is known about the induced version. The only

known general bound on La#(n, P ) has a much weaker constant than for the non-induced
problem due to its dependence on the constant term of the higher dimensional variant of the
Marcus-Tardos theorem [22, 17].

6
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Theorem 7 (Methuku, Pálvölgyi [23]). For every poset P , there is a constant C such that
the size of any family of subsets of [n] that does not contain an induced copy of P is at most
C
(

n

bn2 c
)
.

Define the Lubell function of a family of subsets of [n] as ln(A) =
∑

A∈A
1

( n
|A|)

. The Lubell

function is the sum of the proportion of sets selected of each size; clearly ln(A) ≥ |A|
( n
bn2 c)

.

Define λ#n (P ) as the maximum value of ln(A) over all induced P -free families A ⊂ 2[n].

While La#(n,P )

( n
bn2 c)

is known to have a constant bound for every P , it is not currently known if

λ#n (P ) also has a constant bound for every P . We prove the following result about λ#n (P ).

Theorem 8 (Grósz, Methuku, Tompkins [14]). For every poset P and every c > 1
2
,

λ#n (P ) = O(nc).

This chapter is organized as follows: In the first section we define our more general chain
structure called an interval chain and give a proof of Theorem 6 and Corollary 2 using it.
In the second section we give another proof of Corollary 2, with a better constant, using an
embedding of arbitrary posets into a product of generalized diamonds. We also give a proof
of Proposition 1. In the last section we use the interval chain technique to prove Theorem 8.

2.1 Interval chains and the proof of Theorem 6

We begin by proving some lemmas which allow us to extend Lubell’s argument to more
general structures. Let π ∈ Sn be a permutation and A ⊂ [n] be a set, then Aπ denotes
the set {π(a) : a ∈ A}. Moreover, for a collection of sets H ⊂ 2[n] we define Hπ to be the
collection {Aπ : A ∈ H}.

Lemma 1. Let H ⊂ 2[n] be a collection of sets and A ⊂ [n] be any set. Let Ni = Ni(H) be
the number of sets in H of cardinality i. The number of permutations π such that A ∈ Hπ

is N|A| |A| ! (n− |A|)!.

Proof. Let S1, . . . , SN|A| be the collection of sets inH of size |A|. The number of permutations
π such that Si is mapped to A is |A| ! (n − |A|)!, since we can map the elements of Si to A
arbitrarily and the elements of [n] \ Si to [n] \ A arbitrarily. Moreover, no permutation π
maps two sets, Si, Sj, to A, for then Sπi = Sπj , that is {π(s) : s ∈ Si} = {π(s) : s ∈ Sj}
and so Si = Sj, a contradiction. Since there are N|A| sets in H of size |A|, and we have
shown that the set of permutations mapping each of them to A is disjoint. It follows that
the number of permutations π such that A ∈ Hπ is N|A| |A| ! (n− |A|)!.

For a collection H ⊂ 2[n] and a poset, P , let α(H, P ) denote the size of the largest
subcollection of H containing no P . Observe that α(H, P ) = α(Hπ, P ) for all π ∈ Sn since
containment relations are unchanged by permutations of [n].

7
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Lemma 2. Let A be a P -free family in 2[n] and H be a fixed collection. We have∑
A∈A

N|A|(
n
|A|

) ≤ α(H, P ).

In particular, if all of the Ni are equal to the same number N , we have∑
A∈A

1(
n
|A|

) ≤ α(H, P )

N
.

Proof. We will double count pairs (A, π) where A ∈ Hπ. First fix a set A, then Lemma 1
shows there are N|A| |A| ! (n− |A|)! permutations for which A ∈ Hπ. Now fix a permutation
π ∈ Sn. By the definition of α(H, P ) we have |A ∩ Hπ| ≤ α(H, P ). Since there are n!
permutations, it follows that the number of pairs (A, π) is at most α(H, P )n!. Thus, we
have ∑

A∈A

N|A| |A| ! (n− |A|)!≤ α(H, P )n! ,

and rearranging yields the result.

We introduce a structure H ⊂ 2[n] which we call a k-interval chain. Define the interval
[A,B] to be the set {C : A ⊆ C ⊆ B}. Fix a maximal chain C = {A0 = ∅, A1, . . . , An−1, An =
[n]} where Ai ⊂ Ai+1 for 0 ≤ i ≤ n− 1. From C we define the k-interval chain Ck as

Ck =
n−k⋃
i=0

[Ai, Ai+k].

See Figure 2.1 for an example of an interval chain. We begin by deriving some properties
of interval chains. In the rest of the paper we shall work with the k-interval chain C0k defined
by Ai = [i]; other k-interval chains are related to it by permutation. It is easy to see that the
indicator vectors of the sets in C0k consist of an initial segment of 1’s, then k arbitrary bits,
followed by 0’s. We call the number of 1’s in a 0–1 vector the weight of the vector (which is
the size of the corresponding set).

We will now prove a sequence of lemmas that we use to bound the number of sets in a
P -free subfamily of a k-interval chain. We call two sets related if one of them contains the
other. The idea, following Burcsi, Nagy [4] and Chen, Li [5], is to partition P into h(P )
antichains and embed the antichains into a given subcollection of C0k , one by one, in such a
way that every set in one antichain is related to every set in the next antichain. To this end,
we ignore those sets in C0k which may be unrelated to some previously embedded set. The
key lemma, Lemma 4, gives an upper bound to how many sets we must ignore.

For convenience, from now on we identify sets and their indicator vectors.

Lemma 3. For k ≤ m ≤ n− k, the number of sets of size m in a k-interval chain is 2k−1.
The number of such sets which have at least j 0’s before the last 1 is

∑k−1
h=j

(
k−1
h

)
.

8
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Figure 2.1: 3-interval chain

Proof. We give a bijection ϕ between 0–1 vectors of length k − 1 and sets of size m in
C0k . Let u be a 0–1 vector of length k − 1, and let w be the weight of u. Let ϕ(u) =
m−w−1︷ ︸︸ ︷

111 . . . 1

k−1︷︸︸︷
u 1

n−m−k+w+1︷ ︸︸ ︷
0000000 . . . 0. A set of size m in C0k is assigned to u if and only if in its

indicator vector the last k− 1 bits leading up to (but not including) the last 1 coincide with
u. We show ϕ is injective and surjective. If ϕ(u) = ϕ(v), then both u and v consist of the
k−1 bits preceding the final 1 so u = v, and it follows ϕ is injective. Now, take an arbitrary
weight m vector, w, corresponding to a set in C0k . Find the last 1 occurring in w and let u
be the vector of length k − 1 immediately preceding it (such a vector exists since m ≥ k).
Then ϕ(u) = w, and we have that ϕ is surjective.

There are 2k−1 vectors u of length k − 1. Among such vectors,
∑k−1

h=j

(
k−1
h

)
of them have

at least j 0’s, and precisely these vectors are the ones mapped to vectors with at least j
0’s before the last 1. The condition k ≤ m ≤ n − k guarantees that both m − w − 1 and
m+ k − w + 1 are between 0 and n.

Lemma 4. For 3k − 3 ≤ m ≤ n − k + 1, the number of sets in a k-interval chain which
have size at most m − 1, and which are unrelated to some other set in the k-interval chain
of size at least m, is (3k − 5)2k−2.

Proof. We will show that the sets in the k-interval chain C0k , which are unrelated to at least
one set of size m or greater in C0k are: all indicator vectors in C0k of weight between m−1 and
m−(k−2) inclusive; plus, among indicator vectors with weight m−i with k−1 ≤ i ≤ 2k−3,

9
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those which have at least i− k + 2 0’s before the last 1. Let’s denote the collection of these
vectors by S. Then, by Lemma 3, we can calculate the number |S| of such vectors:

(k − 2)2k−1 +
2k−3∑
i=k−1

k−1∑
h=i−k+2

(
k − 1

h

)
= (k − 2)2k−1 +

k−1∑
j=1

k−1∑
h=j

(
k − 1

h

)
=

= (k − 2)2k−1 +
k−1∑
h=1

h

(
k − 1

h

)
= (k − 2)2k−1 + (k − 1)2k−2 = (3k − 5)2k−2.

First we show that if v ∈ S, there is a vector of weight m in C0k which is unrelated to
it. Let m − i be the weight of v. We need to change at least one 1 to 0 (i.e., remove some
elements), and change i more 0’s to 1’s than we just removed (that is, add i more elements
than we just removed).

Assume that the last 1 in v is at index l, so the first l − k elements in v are 1’s. Also
assume that there are j 0’s in v with an index less than l. We can change vl, the lth entry of
v, from 1 to 0, and change the first i+ 1 0’s in v to 1’s because i+ 1 ≤ j + k− 1. We obtain
either a vector with at least l− k + 2 initial 1’s, and 0’s from an index ≤ l; or a vector with
l − 1 initial 1’s, and 0’s from an index ≤ l + k − 1 (see the figure below). Either way the
difference between the index of the last 1 and the first 0 is at most k − 1, so the obtained
vector is in C0k .

initial segment︷ ︸︸ ︷
111111111

≤k−1︷ ︸︸ ︷
00010 1

k−1︷ ︸︸ ︷
00000 000

↓︷ ︸︸ ︷
111111111

≤k−1︷ ︸︸ ︷
11010 0

k−1︷ ︸︸ ︷
00000 000

or

initial segment︷ ︸︸ ︷
111111111

≤k−1︷ ︸︸ ︷
00010 1

k−1︷ ︸︸ ︷
00000 000

↓︷ ︸︸ ︷
111111111

≤k−1︷ ︸︸ ︷
11111 0

k−1︷ ︸︸ ︷
11000 000

Conversely, we prove that if v (which is of weight at most m− i, i ≥ 1) is not in S, then
it is related to all vectors of weight at least m in C0k . Assume by contradiction that it is
unrelated to a vector q in C0k , of weight at least m.

Consider the transformation of v into q by changing some 1’s to 0’s and some 0’s to 1’s.
Let l′ be the index of the first 1 that we change to 0. Then l′ ≤ l (in the transformation
given above, it was l, the index of the last 1). We can only change those bits from 0’s to 1’s
which are before l′ (at most j), or those which are between l′ + 1 and l′ + k − 1 (at most
k− 1); this is because the new vector will have a 0 at index l′ and so it cannot have 1’s after
index l′ + k − 1 if it is in C0k . So if i + 1 > j + k − 1, there are not enough 0’s which could
be changed to 1’s, so we cannot obtain a vector of weight m or greater, which is in C0k and
is unrelated to it.

Observation 1. The sets in C0k which are related to every set of size at least m + 1 in C0k ,
but unrelated to at least one set of size m in C0k are those which have size m − i with
k − 2 ≤ i ≤ 2k − 3, and in whose indicator vector the number of 0’s before the last 1 is
exactly i−k+2. The only way we can obtain an indicator vector of weight m corresponding
to such a set in C0k is by removing the last 1, and changing all 0’s before the last 1, plus the

10
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next k − 1 after it, to 1’s. Thus, there is only one set of size m in C0k which is unrelated to

these sets: the one with an indicator vector

m−k+1︷ ︸︸ ︷
111 . . . 1 0

k−1︷ ︸︸ ︷
11 . . . 1

n−m−1︷ ︸︸ ︷
000 . . . 0.

Lemma 5. For any poset P of size |P | and height h, we have

α(Ck, P ) ≤ |P |+ (h− 1)(3k − 5)2k−2 − 1.

Proof. We show that if H ⊆ C0k with |H| ≥ |P |+ (h− 1)(3k − 5)2k−2, then H contains P as
a subposet. We may notice that a k-interval chain on [n] is a subposet of the levels 3k− 3 to
n′−k+1 of a k-interval chain on the larger base set [n′] where (n′−k+1)−(3k−3) = n (i.e.,
n′ = n+4k−4), with the injection 2[n] 3 A 7→ {1, 2, . . . , 3k−3}∪{a+3k−3 : a ∈ A} ∈ 2[n′].
So we can assume that the elements of P are embedded from levels 3k − 3 to n − k + 1 of
the interval chain.

We define an order on H: bigger sets come first; within sets of a given size m, the order

is arbitrary, except if the set with the indicator vector

m−k+1︷ ︸︸ ︷
111 . . . 1 0

k−1︷ ︸︸ ︷
11 . . . 1

n−m−1︷ ︸︸ ︷
000 . . . 0 is present

in H, it must come last among the sets of size m.
Mirsky’s theorem [25] states that the height of any poset equals the minimum number of

antichains into which it can be partitioned. We decompose P into antichains A1,A2, . . .Ah,
where the elements in Ai are bigger than or unrelated to elements in Aj for any i > j and
then map the antichains Ah,Ah−1, . . . ,A1 into H one after another, in this order, in h steps
as follows. First, we map the elements of Ah to the first |Ah| sets of H in the order just
described. The family of these elements of H is denoted Hh. We then remove all sets in H
which are not proper subsets of every set in Hh. The family of these removed sets is denoted
Ih; in other words, Ih is the family of sets in H which are not properly contained in at least
one set of Hh. (Notice that Hh ⊆ Ih.) Now we map Ah−1 to the first |Ah−1| sets of H \ Ih,
denoted Hh−1. We proceed similarly: we denote the family of the sets in H which are not
properly contained in every set of Hh ∪ . . . ∪ Hi with Ii, and map Ai−1 to the collection of
first |Ai−1| sets of H\ Ii, denoted Hi−1. By this process, each set in Hi contains all the sets
in Hj for i > j.

We have to show that the process finishes before H is exhausted, that is,∣∣∣∣∣
h⋃
i=1

Hi ∪
h⋃
i=2

Ii

∣∣∣∣∣ ≤ |P |+ (h− 1)(3k − 5)2k−2. (2.1)

For this purpose, we show that for each i ∈ {h, h − 1, . . . , 2}, the number of new sets that
are removed at this step, besides Hi: |Ii \ (Hi ∪ Ii+1)| is at most (3k − 5)2k−2 (where we

consider Ih+1 = ∅). Since
∣∣∣⋃h

i=1Hi

∣∣∣ = |P | and there are h(P ) − 1 steps in which sets are

removed, we will have our desired inequality (2.1). Let A be the last set in Hi in the order
we defined on H, and m = |A|. Every set which comes before A is either in Hi or Ii+1. If

A =

m−k+1︷ ︸︸ ︷
111 . . . 1 0

k−1︷ ︸︸ ︷
11 . . . 1

n−m−1︷ ︸︸ ︷
000 . . . 0, then Ii \ (Hi ∪ Ii+1) is a subcollection of all sets in C0k whose

11
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size is smaller than m, but which are unrelated to at least one set in C0k of size m or more.

By Lemma 4, the number of such sets is (3k − 5)2k−2. If A 6=
m−k+1︷ ︸︸ ︷

111 . . . 1 0

k−1︷ ︸︸ ︷
11 . . . 1

n−m−1︷ ︸︸ ︷
000 . . . 0,

then, by Observation 1, the sets in C0k whose size is smaller than m, and which are unrelated
to A or some other set in H which is smaller than A in our order, are also unrelated to some
set in C0k of size m+ 1 or more. Thus the sets in Ii \ (Hi ∪ Ii+1) are some sets in C0k of size
m and some sets whose size is smaller than m but unrelated to at least one set in C0k of size
m+ 1 or more. Again, the number of such sets is at most (3k − 5)2k−2.

Now we are ready to prove our main result, Theorem 6.

Proof of Theorem 6. Let A be a P -free family over [n]. Let N|A| denote the number of sets
of size |A| from the k-Interval chain.

2k−1 |A| =
∑
A∈A

|A|<k or |A|>n−k

2k−1 +
∑
A∈A

k≤|A|≤n−k

2k−1

≤
∑
A∈A

|A|<k or |A|>n−k

N|A|
(

n

bn2 c
)(

n
|A|

) +
∑
A∈A

k≤|A|≤n−k

2k−1 ·
(

n

bn2 c
)(

n
|A|

) ≤ α(Ck, P )

(
n⌊
n
2

⌋).
If |A| < k or |A| > n − k, we have 2k−1 ≤

( n
bn2 c)

( n
|A|)

when n is sufficiently large and so the

first inequality holds. If k ≤ |A| ≤ n − k, by Lemma 3, we have 2k−1 = N|A| and so the
second inequality holds due to Lemma 2. Now we use Lemma 5 to upper bound α(Ck, P ),
from which the theorem follows.

We now obtain Corollary 2 using the above theorem.

First proof of Corollary 2. Let A be a P -free family, and let h be the height of P . Define

k =
⌈
log2

(
|P |
h

)⌉
= log2

(
|P |
h

)
+ x = log2

(
|P |y
h

)
. Let us substitute this k into Theorem 6

(where 0 ≤ x < 1 and 1 ≤ y < 2). If k ≥ 2, we get

|A|(
n

bn2 c
) ≤ 1

2k−1
(
|P |+ (h− 1)(3k − 5)2k−2 − 1

)( n⌊
n
2

⌋) <
3 · 2k−2kh+ |P |

2k−1
=

=

3
4
y |P |

(
log2

(
|P |
h

)
+ x
)

+ |P |
y|P |
2h

<
3

2
log2

(
|P |
h

)
h+ 3.5h.

If k ≤ 1, we have |P | ≤ 2h. Double counting with just the chain gives a bound of |P |
(

n

bn2 c
)

(see Erdős [9]), so the corollary still holds. So we have,

La(n, P ) <

(
3

2
log2

(
|P |
h

)
h+ 3.5h

)(
n⌊
n
2

⌋).
12
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2.2 A different proof of Corollary 2 using generalized

diamonds

We begin by recalling some results from the papers of Griggs and Li [12] and Griggs, Li and
Lu [11].

Definition 3 (Product of posets). If a poset P has a unique maximal element and a poset
Q has a unique minimal element, then their product P ⊗Q is defined as the poset formed by
identifying the maximal element of P with the minimal element of Q.

Lemma 6 (Griggs, Li [12]). La(n, P ⊗Q) ≤ La(n, P ) + La(n,Q).

Proof. Let F be a maximal P ⊗Q-free family. Define F1 = {S ∈ F | F ∩ [S, [n]] contains Q}
and let F2 = F \ F1.

We claim that F1 is P -free. Suppose not. Then there is a set M1 ∈ F1 which represents
the maximal element of P , and, by definition, F ∩ [M1, [n]] contains Q. Also notice that,
since M1 represents the maximal element of P , there are no elements in [M1, [n]]\{M1} that
are part of the representation of P . This implies that F contains P ⊗Q, a contradiction. It
is easy to see that F2 is Q-free, for otherwise, the element M2, that represents the minimal
element of Q satisfies: F ∩ [M2, [n]] contains Q, contradicting the definition of F2. So we
have |F| = La(n, P ⊗Q) = |F1|+ |F2| ≤ La(n, P ) + La(n,Q), as desired.

We shall write h in place of h(P ) for convenience. Let Dk be the poset on k+ 2 elements
with relations b < c1, c2, . . . , ck < d. Let Ka1,...,ah be the complete h-level poset where the
sizes of levels are a1, a2, . . . , ah: the poset in which every element is smaller than every
element on every higher level.

By using a partition method on chains, Griggs, Li and Lu proved

Theorem 9 (Griggs, Li, Lu [11]). Let k ≥ 2. Then,

La(n,Dk) ≤ (log2(k + 2) + 2)

(
n⌊
n
2

⌋).
By Mirsky’s decomposition [25], P can be viewed as a union of h antichains: Ai, 1 ≤ i ≤

h. Let |Ai| = ai. Then, it is easy to see that the following lemma holds.

Lemma 7. P is a subposet of Ka1,...,ah, which in turn, is a subposet of
Da1 ⊗Da2 ⊗ . . .⊗Dh−1 ⊗Dah.

Now we are ready to prove Corollary 2 with better constants.

Second proof of Corollary 2. By Lemma 7, we have

La(n, P ) ≤ La(n,Ka1,...,ah) ≤ La(n,Da1 ⊗Da2 ⊗ . . .⊗Dah−1
⊗Dah).

13



C
E

U
eT

D
C

ol
le

ct
io

n

By Lemma 6 and Theorem 9, we have

La(n,Da1 ⊗Da2 ⊗ . . .⊗Dah−1
⊗Dah) ≤

h∑
i=1

(log2(ai + 2) + 2)

(
n⌊
n
2

⌋).
Bounding the sum on the right-hand side, by Jensen’s inequality we have

h∑
i=1

(log2(ai + 2) + 2) ≤ h · log2

(
|P |
h

+ 2

)
+ 2h.

This implies our desired result

La(n, P ) ≤
(
h · log2

(
|P |
h

+ 2

)
+ 2h

)(
n⌊
n
2

⌋).
Finally, we will prove Proposition 1, a matching lower bound for Corollary 2.

Proof of Proposition 1. We show that the height of any poset corresponding to a family of
sets which realizes Ka,a,...,a is at least (h− 2) log2 a+ 1. This implies that if A is the middle
(h− 2) log2 a levels of 2[n], it does not contain P as a subposet.

Let us denote the levels of P = Ka,a,...,a by P1,P2, . . . ,Ph, and let H be a set family into
which P is embedded. For every 1 ≤ i ≤ h−1, let Ui be the union of the sets corresponding to
the elements of Pi by the embedding. Then, the structure of P implies that every element of
Pi+1 is mapped to sets containing Ui. If |Ui+1 \ Ui| = k, there are 2k sets in total containing
Ui and contained in Ui+1. Thus, we have |Ui+1|−|Ui| ≥ log2 a (this idea comes from Theorem
2.5 in [11]). So |Uh−1| − |U1| ≥ (h− 2) log2 a. P1 is mapped to sets of size at most |U1|, and
Ph is mapped to sets of size at least |Uh−1|, so the set family spans at least (h− 2) log2 a+ 1
levels.

2.3 Proof of Theorem 8

In this section we will give an upper bound on the size of the Lubell function of an induced
P -free family. Lemma 2 holds for induced posets as well by an identical proof. Let 0 ≤ a ≤
b ≤ n. Let H ⊂ 2[n] be a collection of sets which has the same number of sets, N , for each
cardinality i for a ≤ i ≤ b. Define α#(H, P ) to be the size of the largest subcollection of H
containing no induced P .

Lemma 8. Let A be an induced P -free family in 2[n], in which the cardinality of every set
is between a and b. We have

ln(A) ≤ α#(H, P )

N
.

In particular, if Ck is an interval chain as defined in the Section 2.1, and k ≤ a and b ≤ n−k
hold, we have

ln(A) ≤ α#({A ∈ Ck : a ≤ |A| ≤ b}, P )

2k−1
.

14



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. The proof of Lemma 2 applies, observing that a ≤ |A| ≤ b.

We prove the following statement, which is slightly stronger than Theorem 8.

Lemma 9. Let P be a poset and let c > 1
2
. Let n be a natural number, and let 0 ≤ a ≤ b ≤ n.

If A is an induced P -free family in which the cardinality of every set is between a and b,

ln(A) = O ((b− a)c) .

The following claim will be used recursively and is key to the proof of our lemma.

Claim 1. If Lemma 9 holds for a given c = c′ > 1
2
, then it also holds for c = 2c′

2c′+1
.

Proof of Claim. Letm = b−a+1, and let k = m
2

2c′+1 . LetH = {A ∈ Ck : a+k ≤ |A| ≤ b−k}.
By definition Ck =

⋃n−k
i=0 [Ai, Ai+k] (where A0 ⊂ A1 ⊂ . . . ⊂ An is an arbitrary maximal

chain), and the levels a+k to b−k intersect m−k of the intervals [Ai, Ai+k]. By substituting
k in the place of n in Theorem 7, there is a constant C such that |A ∩ [Ai, Ai+k]| ≤ C

(
k

b k2c
)

for every i. Thus α#(H, P ) ≤ (m− k)C
(

k

b k2c
)
< Cm

(
k

b k2c
)
. By Lemma 8,

ln({A ∈ Ck : a+k ≤ |A| ≤ b−k}) ≤ Cm

(
k

b k2c
)

2k−1
≤ 2
√

2√
π
C
m√
k

=
2
√

2√
π
C

m√
m

2
2c′+1

=
2
√

2√
π
Cm

2c′
2c′+1 .

(2.2)
By our assumption, using Lemma 9 with substituting a+ k − 1 in the place of b, we have

ln({A ∈ Ck : a ≤ |A| ≤ b− k − 1}) = O
(
kc
′
)

= O
(
m

2c′
2c′+1

)
. (2.3)

Similarly, by substituting b− k + 1 in the place of a, we have

ln({A ∈ Ck : b− k + 1 ≤ |A| ≤ b}) = O
(
m

2c′
2c′+1

)
. (2.4)

Adding up the inequalities (2.2), (2.3) and (2.4), we get

ln({A ∈ Ck : a ≤ |A| ≤ b}) =
2
√

2√
π
Cm

2c′
2c′+1 + 2O

(
m

2c′
2c′+1

)
= O

(
(b− a)

2c′
2c′+1

)
.

Proof of Lemma 9. The lemma is trivial for c = 1. Substituting c = 1 in the proof of the
claim directly gives a proof for c = 2

3
. Then, applying the claim recursively proves the

statement for a sequence of exponents c = ci = 2i

2i+1−1 . Indeed,

2ci
2ci + 1

=
2 2i

2i+1−1

2 2i

2i+1−1 + 1
=

2i+1

2i+2 − 1
= ci+1.

The limit of the sequence is 1
2
, so it eventually becomes smaller than any c > 1

2
, proving our

lemma.
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Chapter 3

A method of decomposition of the
cycle for forbidding subposets

Recall that the butterfly poset B, is defined by 4 elements a, b, c, d with a, b ≤ c, d. Our first
new result is a strengthening of the following theorem about the Butterfly poset.

Theorem 10 (De Bonis, Katona and Swanepoel [8]). Let n ≥ 3. Then, we have

La(n,B) = Σ(n, 2).

We introduce a poset S which contains the butterfly as a strict subposet and prove that,
nonetheless, the same bound holds. This poset, which we call the “skew”-butterfly, is defined
by 5 elements, a, b, c, d, e, with a, b ≤ c, d and b ≤ e ≤ d (see Figure 3).

a

c
e

d

b

Figure 3.1: The skew-butterfly poset

Theorem 11 (Methuku, Tompkins [24]). Let n ≥ 3, then we have

La(n, S) = Σ(n, 2).

A construction matching this bound is given by taking two consecutive middle levels
of 2[n]. With this result (and all of the others) we also get the corresponding LYM-type
inequality if we assume ∅ and [n] are not in the family.
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Theorem 12 (Methuku, Tompkins [24]). Let n ≥ 3 and A ⊂ 2[n] be a collection of sets not
containing S as a subposet, and assume that ∅, [n] /∈ A, then∑

A∈A

1(
n
|A|

) ≤ 2.

For the proof of Theorem 12, we consider the set of intervals along a cyclic permutation
(following Katona [15]). We partition these intervals into chains and consider the interactions
of consecutive chains in the partition. The method and the proof of this result are given in
Subsection 2.

We now mention some notable properties of S. It is one of the two posets whose Hasse
diagram is a 5-cycle. The other is the harp, H(4, 3), and La(n,H(4, 3)) was determined
exactly in the paper of Griggs, Li and Lu [11](the 4-cycles are B and D2). The skew-butterfly
is contained in the X (a, b ≤ c ≤ d, e), a tree of height 3, like B, and so its asymptotics are
determined by Bukh’s theorem. The exact value of La(n, S) cannot be determined by the
double chain method of Burcsi and Nagy [4] because one can find 5 sets on a double chain
with no copy of S. Finally, if we subdivide any of the edges ac, ad or bc in the Hasse diagram
of S, we get a poset for which there is a construction of size larger than Σ(n, 2).

Next, we consider a generalization of De Bonis, Katona and Swanepoel’s theorem in a
different direction. If instead of forbidding B, we forbid the pair of posets Y and Y ′ where
Y is the poset on 4 elements w, x, y, z with w ≤ x ≤ y, z and Y ′ is the same poset but with
all relations reversed, then La(n, Y, Y ′) = La(n,B) = Σ(n, 2). This result is already implicit
in the proof of De Bonis, Katona and Swanepoel. We extend the result by considering the
posets Yk and Y ′k defined by k+ 2 elements x1, x2, . . . , xk, y, z with x1 ≤ x2 ≤ . . . ≤ xk ≤ y, z
and its reverse (so Y = Y2 and V = Y1). We prove

Theorem 13 (Methuku, Tompkins [24]). Let k ≥ 2 and n ≥ k + 1, then

La(n, Yk, Y
′
k) = Σ(n, k).

A construction matching this bound is given by taking k consecutive middle levels of 2[n].
We also have the LYM-type inequality:

Theorem 14 (Methuku, Tompkins [24]). Let k ≥ 2 and n ≥ k + 1. Assume that A ⊂ 2[n]

contains neither Yk nor Y ′k as a subposet, and ∅, [n] /∈ A, then∑
A∈A

1(
n
|A|

) ≤ k.

We note that, again, the double chain method does not work for these pairs because one
can have 2k+1 sets on a double chain with no Yk and no Y ′k by taking them consecutively on
the secondary chain. We also note that, for this particular result, we can find another proof
using the chain partitioning method of Griggs, Li and Lu [11] in addition to the approach
described in this chapter.

Finally, we consider the more difficult induced case. We prove
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Theorem 15 (Methuku, Tompkins [24]). For n ≥ 3, we have

La#(n, Y, Y ′) = Σ(2, n).

We also have the LYM-type inequality:

Theorem 16 (Methuku, Tompkins [24]). Assume that A ⊂ 2[n] contains neither Y nor Y ′

as an induced subposet, and ∅, [n] /∈ A, then∑
A∈A

1(
n
|A|

) ≤ 2.

To prove Theorem 15 and Theorem 16, we introduce a second chain partitioning argument
along the cycle. These partitions may be thought of as the analogue of orthogonal symmetric
chain partitions for the cycle.

This chapter is organized as follows. In the first section we introduce the first chain
decomposition and determine La(n, S). In the second section we use the same decomposition
to find La(n, Yk, Y

′
k) for all k ≥ 2. In the last section we introduce the second decomposition

and show that La#(n, Y, Y ′) = Σ(n, 2).

3.1 Forbidding S and the first cycle decomposition

A cyclic permutation, σ, is a cyclic ordering x1, x2, . . . , xn, x1 of the elements of [n]. We refer
to the sets {xi, xi+1, . . . , xi+t}, with addition taken modulo n, as intervals along the cyclic
permutation. For our purpose we will not consider ∅ or [n] to be intervals. The following
lemma is the essential ingredient of the proof of Theorem 12:

Lemma 10. If A is a collection of intervals along a cyclic permutation σ of [n] which does
not contain S as a subposet, then

|A| ≤ 2n.

To prove Lemma 10 we will work with a decomposition of the intervals along σ into
maximal chains. Set Ci = {{xi}, {xi, xi−1}, {xi, xi−1, xi+1}, . . . , {xi, xi−1, . . . , xi+n/2−1}} when
n is even, and set Ci = {{xi}, {xi, xi−1}, {xi, xi−1, xi+1}, . . . , {xi, xi−1, . . . , xi−(n−1)/2}} when
n is odd, where 1 ≤ i ≤ n (See Figure 3.2). Observe that the set of chains {Ci}ni=1 forms a
partition of the intervals along σ. We will refer to this partition as the chain decomposition
of σ. Additionally, chains corresponding to consecutive elements of σ are called consecutive
chains.

If A does not contain S as a subposet, and C is a chain from the chain decomposition of σ,
then it is easy to see that |A ∩ C| ≤ 4. We will classify the chains in the chain decomposition
by their intersection pattern with A. If |A ∩ C| = k, then we say C is of type k. When
k = 3 we distinguish 3 cases (See Figure 3.3 for an example of each case). If C contains
exactly 3 elements of A, not all occurring consecutively on C, then we say C is type 3S (S
for separated). If C has exactly 3 elements of A occurring consecutively with two sets of odd
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Figure 3.2: The chain decomposition is marked with bold lines on the poset of intervals
along σ. The dashed lines indicate how the chains wrap around.

size, then C is type 3R (facing right). If C has exactly 3 elements of A occurring consecutively
with two sets of even size, then C is type 3L (facing left).

We will now prove a sequence of lemmas showing which types of chains can occur con-
secutively in the chain decomposition of σ. These lemmas will let us disregard the exact
intersection pattern of A with the chains and allow us to work instead with the sequence of
chain types.

Lemma 11. Let Ci and Ci+1 be two consecutive chains in the chain decomposition of a cyclic
permutation. If Ci is of type 4, 3R or 3S, then |A ∩ Ci+1| ≤ 1.

Proof. First, note that if Ci is of type 4, then we can remove a set from A ∩ Ci to make it
type 3S. Hence, we may assume that Ci is of type 3S or 3R.

In order to reduce case analysis, we will now argue that we only need to consider certain
configurations of sets from A in Ci ∪ Ci+1. Consider the Hasse diagram of Ci ∪ Ci+1 as a
graph (See Figure 3.4). Call the vertices corresponding to sets in A occupied and the rest
unoccupied. If either the top or bottom vertex in the chain is occupied, then we extend
Ci ∪ Ci+1 in both directions maintaining the same relations between adjacent levels. Then,
every occupied vertex either has degree 2 or degree 4. We will see that it is sufficient to
consider the case when only degree 2 vertices are occupied. Indeed, if instead of taking
a degree 4 vertex, we take an adjacent unoccupied degree 2 vertex, then no additional
containments are introduced. If Ci is of type 3R or 3S, then every occupied vertex of degree
4 can be replaced by a distinct adjacent unoccupied vertex of degree 2 (This cannot be done
if Ci is type 3L). Thus, we may assume that all of the occupied vertices in Ci from the the
Hasse diagram of Ci ∪ Ci+1 have degree 2.

Let the sets in A∩Ci be L,M and N with L ⊂M ⊂ N . Assume, by contradiction, that
there are two sets A,B ∈ A ∩ Ci+1 with A ⊂ B. We may assume that A and B correspond
to degree 2 vertices in Ci ∩ Ci+1. We will distinguish three cases by comparing the sizes of
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3R 3L 3S

Figure 3.3: An example of chains of types 3R, 3L and 3S are drawn. The elements of A ∩ C
are highlighted for each type.

A and B with the size of M . If |A| < |M | < |B|, then L,M,N,A,B forms a skew-butterfly
with L,A ⊂ N,B and L ⊂ M ⊂ N . If |M | < |A| < |B|, then L,M,N,A,B forms a skew-
butterfly with L,M ⊂ N,B and L ⊂ A ⊂ B. The case |A| < |B| < |M | is symmetric. It
follows that there can be at most one set in A ∩ Ci+1.

Lemma 12. Let Ci, Ci+1 and Ci+2 be three consecutive chains in the chain decomposition of
a cyclic permutation. If Ci is of type 4, 3R or 3S and |A ∩ Ci+1| = 1, then Ci+2 is of type
0, 1, 2 or 3R.

Proof. By contradiction, suppose Ci is type 4, 3R or 3S, |A ∩ Ci+1| = 1 and Ci+2 is type 3L, 3S

or 4. If Ci or Ci+2 is of type 4, then we may disregard one set to make it type 3S. By similar
reasoning as used in Lemma 11, we may assume all occupied vertices on the Hasse diagram
of Ci ∪ Ci+1 ∪ Ci+2 from Ci and Ci+2 have degree 2. Let L,M,N be the three sets in A∩Ci in
increasing order, and let A,B,C be the three sets in A ∩ Ci+2 in increasing order. Without
loss of generality, we may assume |M | > |B|. This, in turn, implies that |M | = |B| + 1
for otherwise L,M,N,A,B would be a skew-butterfly with L,A ⊂ M,N and A ⊂ B ⊂ N .
We will consider the possible locations of the set S ∈ A ∩ Ci+1 on Ci+1. If |S| ≤ |B|, then
N,S,A,B,C is a skew-butterfly with A, S ⊂ N,C and A ⊂ B ⊂ C. If |S| > |B|, then
L,M,N, S,A is a skew-butterfly with L,A ⊂ N,S and L ⊂ M ⊂ N . Thus, in either case
we have a contradiction.

By symmetry, we also have the following corollaries of Lemmas 11 and 12:

Corollary 3. Let Ci and Ci+1 be two consecutive chains in the chain decomposition of a
cyclic permutation. If Ci+1 is of type 4, 3L or 3S, then |A ∩ Ci| ≤ 1.
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Figure 3.4: Hasse diagrams of Ci ∪ Ci+1 and Ci ∪ Ci+1 ∪ Ci+2 are drawn.

Corollary 4. Let Ci, Ci+1 and Ci+2 be three consecutive chains in the chain decomposition
of a cyclic permutation. If Ci+2 is of type 4, 3L or 3S and |A ∩ Ci+1| = 1, then Ci is of type
0, 1, 2 or 3L.

We now have sufficient information about which consecutive chain types are allowed to
prove Lemma 10:

Proof of Lemma 10. We must show that the average intersection of A with chains from the
decomposition is at most 2. To this end, we will form groups of chains such that the number
of sets from A in each group is at most twice the size of that group.

First, consider chains of type 4. If there is a sequence of chains alternating between type
4 and type 0 spanning every chain in the chain decomposition, then it is easy to see that the
average is at most 2. Otherwise, take each maximal group of consecutive chains alternating
between type 0 and type 4, beginning and ending with a type 4 chain. Call such a group
a 4-0-4 pattern (it may just consist of a single chain of type 4). If the group has length `,
then there are 2` + 2 sets contributed from A. We will add additional chains to this group
to decrease the average to 2. By Lemma 11, if the chain following the type 4 chain on either
side is not type 0, then it must be type 1. In this case, we add the type 1 chain to the group.
Otherwise, we have a type 0 chain followed by a chain of type 0,1,2 or 3. If it is type 3,
we add both the type 0 and type 3 chain to our group. Otherwise, we just add the type 0
chain. In any case, if we have added k more chains to our group (on both sides of the 4-0-4
pattern), then we have added a total of at most 2k − 2 more sets from A. Thus, in total,
the group now consists of k + ` chains having at most 2k + 2` sets from A, as desired.

Now, consider any remaining type 3 chain. Lemma 11 and Corollary 3 ensure that it has
a type 1 or type 0 chain on at least one side (right or left). By Lemma 12 and Corollary 4
and by the previous grouping of the chains of type 4, we know that this chain was not used
by any group consisting of chains of type 4. Thus, every type 3 chain may be grouped with
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its adjacent type 1 or 0 chain. All remaining chains in the decomposition have at most 2
sets from A and so we may group them all together.

We now derive the LYM-type inequality, Theorem 12, from Lemma 10.

Proof. We will double count pairs (A, σ) where A ∈ A and σ is a cyclic permutation of [n].
Let f(A, σ) be the indicator function for A ∈ A and A being an interval along σ. For each
A ∈ A, there are |A| ! (n − |A|)! cyclic permutations containing A as an interval. It follows
that ∑

A∈A

∑
σ

f(A, σ) =
∑
A∈A

|A| ! (n− |A|)! .

On the other hand, Lemma 10 implies∑
σ

∑
A∈A

f(A, σ) ≤
∑
σ

2n = 2n! .

Dividing through by n! gives ∑
A∈A

1(
n
|A|

) ≤ 2,

as desired.

Finally, we deduce Theorem 11 from Theorem 12.

Proof. If A contains neither [n] nor ∅, then the result follows easily from Theorem 11. If A
contains [n], but there is an n− 1 element set A not contained in A, then replacing [n] with
A in A introduces no new relations and so yields another family of the same size without
a skew-butterfly. Thus, in this case, Theorem 11 again yields the result. If A contains [n]
and the entire n − 1st level, let A′ = {A ∈ A : |A| ≤ n − 2}. Then, A′ is an antichain, for
otherwise we would have a skew-butterfly. Thus, |A′| ≤

(
n
bn/2c

)
by Sperner’s Theorem and so

|A| ≤
(

n
bn/2c

)
+n+1. For n ≥ 5 this implies |A| ≤

(
n
bn/2c

)
+
(

n
bn/2c+1

)
. An analogous argument

works for the case when ∅ ∈ A. If n = 4 we give another argument (We are still assuming
A contains all n− 1 element sets). If A′ is a full level, then A contains a skew-butterfly. If
A′ is not a full level, then the equality case of Sperner’s theorem implies |A′| ≤

(
n
bn/2c

)
− 1,

and so |A| ≤ n +
(

n
bn/2c

)
which yields the required bound when n = 4. The case n = 3 is

easily checked by hand.

We end this subsection by mentioning the relation between this approach and the double
chain method. It is not hard to see that a double chain has the exact same poset structure
as two consecutive chains in the chain decomposition described above. Namely, the degree
2 vertices from the Hasse diagram of consecutive chains correspond to the sets from the
secondary chain of a double chain. It follows that any forbidden subposet result that can
be determined exactly with the double chain method can also be determined exactly using
a decomposition of a cyclic permutation, and, thus, chain decompositions of the cycle may
be viewed as a generalization of the double chain method.
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3.2 Forbidding Yk and Y ′k
We will use the same decomposition of the cycle as in Subsection 3.1. The new bound we
must prove is

Lemma 13. If A is a collection of intervals along a cyclic permutation σ of [n] which does
not contain Yk or Y ′k as a subposet, then

|A| ≤ kn.

As before, we will consider groups of consecutive chains. Each chain, C, with k + 1 sets
in C ∩ A is characterized by whether the second largest element in A ∩ C faces left or faces
right (has even or odd cardinality, respectively). We say that a chain with k+ 1 elements of
A is of type k + 1R if the second largest element faces right and k + 1L if it faces left.

Lemma 14. Let Ci and Ci+1 be consecutive chains in the decomposition. If Ci is of type
k + 1R, then |A ∩ Ci+1| ≤ k − 1, and |A ∩ Ci+1| = k − 1 implies that the largest element of
A ∩ Ci+1 is the same size as the second largest element of A ∩ Ci.

Proof. Let A be the second smallest set in A ∩ Ci and B be the second largest. Let Y be
the set of size |B| in Ci+1, and if A is degree 2 (left), then let X be the set of size |A| − 1
in Ci+1. If A is degree 4, then let X be the set of size |A| in Ci+1. In either case, let R be
the collection of those sets in Ci+1 (not necessarily in A) having sizes strictly between |X|
and |Y | (See Figure 3.5). Every set in Ci+1 ∩A must lie in R∪ {X} ∪ {Y } for otherwise we
would have a Yk or Y ′k . Now, |A ∩ R| ≤ k − 2 for otherwise we would have a k + 2 chain
(actually, |A ∩ R| ≤ k − 3 in the case A is degree 4). If we take k − 1 sets from R ∪ {X},
then we have a Y ′k and so we can take at most k− 2 sets total from R∪{X}. It follows that
|A ∩ Ci+1| ≤ k − 1 with equality only if Y ∈ A.

By a symmetric argument we have

Corollary 5. Let Ci and Ci+1 be consecutive chains in the decomposition. If Ci+1 is of type
k+ 1L, then |A ∩ Ci| ≤ k− 1, and |A ∩ Ci| = k− 1 implies that the largest element of A∩Ci
is the same size as the second largest element of A ∩ Ci+1.

Lemma 15. There are no 3 consecutive chains Ci, Ci+1, Ci+2 such that Ci is type k+ 1R, Ci+1

is type k − 1 and Ci+1 is type k + 1L.

Proof. Since Ci is type k+ 1R and Ci+2 is type k+ 1L, the respective second largest elements
of A∩ Ci and A∩ Ci+2 must be of different sizes. It follows from Lemma 14 and Corollary 5
that we can have at most k − 2 sets in A ∩ Ci+1.

We now have what we need to prove Lemma 13.
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B

A

Y

X

R

Figure 3.5: The sets A, B, X and Y are shown, and the collection R is marked in the case
A is degree 2.

Proof of Lemma 13. Every group of 3 consecutive chains of type k+ 1R, ≤ k−2 and k+ 1L,
respectively, may be grouped together yielding a total of at most 3k sets on 3 chains. All
remaining chains of type k + 1R may be paired with a chain of at most k − 1 sets from A
following it, and all remaining chains of type k + 1L may be paired with a chain of at most
k − 1 sets preceding it. It follows that A consists of at most kn intervals along the cyclic
permutation σ.

Theorem 14 follows directly from Lemma 13 as before. It remains to use Theorem 14 to
deduce Theorem 13.

Proof of Theorem 13. Let A ⊂ 2[n] be a Yk and Y ′k-free family. If neither of ∅ and [n]
are in A, then the result is immediate from Theorem 14. If ∅ and [n] are in A, then
A \ {∅, [n]} is k-chain free and so has size at most Σ(n, k − 1) by Erdős’s theorem. Since
2 + Σ(n, k − 1) ≤ Σ(n, k) for n ≥ k + 1 and k ≥ 2, we are done. Finally, suppose that
∅ ∈ A and [n] 6∈ A. If there is a singleton set {x} 6∈ A, then we may replace ∅ with {x}
and we are back in the first case. Hence, we may assume that A contains every singleton
set (

(
[n]
1

)
⊂ A). Let A′ = A \ {{∅} ∪

(
[n]
1

)
}. Now, A′ is k-chain free, so again by Erdős’s

theorem, |A′| ≤ Σ(n, k − 1). It follows that |A| ≤ 1 + n + Σ(n, k − 1). If A′ contains k − 1
full levels, then we have a copy of Y ′k , so we may assume we do not. However, then we may
apply the equality case of Erdős’s theorem to obtain that |A| ≤ n + Σ(n, k − 1). Finally,
since n ≥ k + 1 implies that the kth largest level has size at least n, we have |A| ≤ Σ(n, k),
as desired.
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3.3 Forbidding induced Y and Y ′ and second cycle de-

composition

As in the proof of Theorem 11, we will need to prove a lemma which bounds the largest
intersection of an induced Y ,Y ′-free family with the set of intervals along a cyclic permuta-
tion.

Lemma 16. If A is a collection of intervals along a cyclic permutation σ of [n] which does
not contain Y or Y ′ as an induced subposet, then

|A| ≤ 2n.

Proof. We will consider a different way of partitioning the chains along σ from the one in the
proofs of the previous theorems. Let σ be the ordering x1, x2, . . . , xn, x1. Group the intervals
along σ into chains Ci = {{xi}, {xi, xi+1}, {xi, xi+1, xi+2}, . . . , {xi, xi+1, . . . , xi+n−1}} where
1 ≤ i ≤ n. Observe that {Ci}ni=1 is a partition of the intervals along σ.

We now consider a second way of partitioning the intervals by setting
C ′i = {{xi}, {xi, xi−1}, {xi, xi−1, xi−2}, . . . , {xi, xi−1, . . . , xi−n+1}} for 1 ≤ i ≤ n. Observe that
{C ′i}ni=1 is again a partition (See Figure 3.6).

Figure 3.6: Orthogonal chain decompositions {Ci}ni=1 (above) and {C ′i}ni=1 (below) of the
cycle are highlighted with bold lines. Dashed lines indicate how the chains wrap around.
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Now, the two partitions we have defined have the property that if A and B are in Ci for
some i, then at most one of A and B are in any C ′j. Moreover, since each A is contained in
exactly one chain in each partition, it follows that each A is contained in exactly 2 chains in
the union of the two partitions. Thus, we have∑

C∈{Ci}ni=1∪{C′i}ni=1

|A ∩ C| = 2 |A| .

On the other hand, if a chain C ∈ {Ci}ni=1 intersects A in k > 2 sets A1, A2, . . . , Ak with
A1 ⊂ A2 ⊂ . . . ⊂ Ak, then there are k − 2 chains in C ′ ∈ {C ′i}ni=1 such that |A ∩ C ′| = 1,
namely those chains in {C ′i}ni=1 containing A2, A3, . . . , Ak−2 or Ak−1, as an intersection of
greater than one would yield an induced Y or Y ′. Similarly, if a chain C ′ ∈ {C ′i}ni=1 intersects
A in k > 2 sets, then there are k − 2 chains from {Ci}ni=1 which intersect A in exactly one
set. Here, we are using an additional property of the decomposition that if A ∈ C ∩ C ′, then
no set larger than A in C is comparable to a set larger than A in C ′, and, similarly, no set
smaller than A in C is comparable to a set smaller than A in C ′. We have shown that there
is a total of 2k − 2 incidences of A with these k − 1 chains. It follows that the number of
pairs (A, C) where A ∈ A, C ∈ {Ci}ni=1 ∪ {C ′i}ni=1 and A ∈ C is at most twice the number of
chains. Thus, ∑

C∈{Ci}ni=1∪{C′i}ni=1

|A ∩ C| ≤ 2 |{Ci}ni=1 ∪ {C ′i}ni=1| = 4n.

Dividing through by 2 yields the desired inequality.

Lemma 16 implies the LYM-type inequality, Theorem 16, exactly as in the previous
proofs. It remains to derive the bound on La#(n, Y, Y ′) using Theorem 16.

Proof of Theorem 15. If A contains neither ∅ nor [n], then we are done by Theorem 16. If
∅ and [n] are in A, then A \ {∅, [n]} is induced V and Λ free. It follows from Katona and
Tarjan [16] that

La#(n, Y, Y ′) ≤ 2 + La#(n, V,Λ) = 2 + 2

(
n− 1⌊
n−1
2

⌋) ≤ Σ(n, 2).

Now, assume without loss of generality that ∅ 6∈ A but [n] ∈ A, and let A′ = A \ {[n]}.
Since A′ is induced Y and Y ′-free, it satisfies the hypothesis of Theorem 16. Assume, by
contradiction, that |A′| = Σ(n, 2). It follows that equality holds in Theorem 16. If n is odd,
then we have that A′ =

(
[n]
bn/2c

)
∪
(

[n]
dn/2e

)
which implies A induces a Y ′, contradiction. If n is

even, then
(
[n]
n/2

)
⊂ A′ and

(
n

n/2+1

)
sets from

(
[n]

n/2−1

)
∪
(

[n]
n/2+1

)
are in A. Since A contains no

Y ′, it follows that A′ ∩
(

[n]
n/2+1

)
= ∅. Thus, we must have A′ =

(
[n]

n/2−1

)
∪
(
[n]
n/2

)
, but then A

still contains an induced Y ′, contradiction.
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Chapter 4

Open problems and remarks

First, we mention an open problem that naturally arises from Theorem 6.

Question 1. Are there any posets P for which equality holds in the following inequality when
k ≥ 3?

La(n, P ) ≤ 1

2k−1
(
|P |+ (3k − 5)2k−2(h(P )− 1)− 1

)( n⌊
n
2

⌋).
For k = 2, it is known [4] that there are infinitely many posets for which equality holds.

The most investigated poset for which even the asymptotic value of La(n, P ) has yet
to be determined is the diamond D2 (for example, [1, 11]). This poset is defined by four
elements {a, b, c, d} with the relations a ≤ b, c ≤ d. The best known upper bound is due to
Kramer, Martin and Young [18] who proved a bound of (2.25 + o(1))

(
n

bn2 c
)
, the best possible

bound using the Lubell function. It is conjectured that La(n,D2) is asymptotic to 2
(

n

bn2 c
)
.

It was shown by Czabarka, Dutle, Johnston and Székely [6] that there are, in fact, many
families of size larger than Σ(n, 2) so the asymptotic aspect of the conjecture is required.
Better bounds were obtained in the case when the family is restricted to 3 levels including
a bound of 2.208

(
n

bn2 c
)

by Axenovich, Manske and Martin [21], 2.1547
(

n

bn2 c
)
by Manske and

Shen [21] and 2.15121
(

n

bn2 c
)

by Balogh, Hu, Lidický and Liu [2]. In the induced version of

the D2-free problem an upper bound of 2.58
(

n

bn2 c
)

is known [20].

Besides the diamond, there are still many posets for which the asymptotic value of
La(n, P ) is not known. Some examples include the crown poset O2t defined by the rela-
tions x1 < y1 > x2 < y2 . . . xt < yt > x1, the harp poset H(l1, . . . , lk) consisting of paths
Pl1 , . . . , Plk with their top elements identified and their bottom elements identified where
k ≥ 1 and l1 ≥ . . . ≥ lk ≥ 3, generalized diamond poset Dk := H(3, . . . , 3) (i.e., each li = 3
for 1 ≤ i ≤ k). For any poset P , Griggs and Lu [13] proposed the following conjecture:

Conjecture 1 (Griggs, Lu [13]). The limit π(P ) := limn→∞
La(n,P )

( n
bn2 c)

exists and is an integer.

We now list some well-known posets for which π(P ) hasn’t been determined yet. Please
note that we only list the best known bound to our knowledge and not the previous bounds
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and also, only the cases which haven’t been settled yet. Since we do not know if π(P ) exists,
to save space we just write a ≤ π(P ) ≤ b instead of

a ≤ lim inf
n→∞

La(n, P )(
n

bn2 c
) ≤ lim sup

n→∞

La(n, P )(
n

bn2 c
) ≤ b.

Poset P π(P )
Crowns O6 and O10 1 ≤ π ≤ 1 + 1√

2

Diamond D2 2 ≤ π ≤ 2.25
Diamond (if the family is restricted to middle 3 levels) 2 ≤ π ≤ 2.15121
Induced Diamond
(i.e., with relations a < b < d and a < c < d but b and c must be unrelated)

2 ≤ π ≤ 2.58

Generalized Diamonds Dk with k ∈ [2m −
(
m
m
2

)
, 2m − 2]

where m := dlog2(k + 2)e
m ≤ π < m+ 1

Harp H(l1, . . . , lk) where the path lengths li are not all distinct Open
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