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“. .. why are asymptotic theorems so much simpler than finite approximations?
Infinity does not correspond to the popular image. It is a quiding light, a star that
draws us to finite ways of thinking. God knows why.” — Stanistaw Ulam
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Abstract

In the present dissertation, we summarize our systematic in-
vestigation of asymptotic expansions of special functions. We
shall first give a detailed account of the general theory of the
resurgence properties of special functions given by certain in-
tegral representations. This general theory is then employed to
obtain a number of properties of the asymptotic expansions of
various special functions, including explicit and realistic error
bounds, asymptotics for the late coefficients and exponentially
improved asymptotic expansions.
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PROLOGUE

It was already observed by mathematicians of the 18th century that certain di-
vergent series may be used for approximating functions that in some sense
can be regarded as the “sum” of these series. Some early examples of such
series are Abraham De Moivre’s and James Stirling’s expansions for the loga-
rithm of the factorial [4, pp. 482-483] or the approximation of the harmonic
numbers by Leonhard Euler [121, pp. 38-39]. Usually, the error committed
by truncating these series at any term is of the order of the first term omit-
ted. Adrien-Marie Legendre [52] and Thomas J. Stieltjes [105] called such series
“semi-convergent”. In 1886, J. Henri Poincaré [101] published the definition
of an asymptotic power series, according to which Y ;> ;a,/z" is said to be the
asymptotic power series of a function f (z) if

. N N n
lim 2 (f<2> _§_> =0
for all non-negative integers N in an appropriate sector of the complex z-plane.
It is easy to see that if a function possesses an asymptotic power series expan-
sion, then the coefficients of this series are uniquely determined; nevertheless,
the series does not, in general, determine the function itself. In most cases, the
asymptotic form of a function is a linear combination of asymptotic power series
with some functions as coefficients. Such a development is called the asymptotic
expansion of the function.

Poincaré’s definition of an asymptotic power series implies the property of
the error term we have already mentioned: the error committed by truncating
an asymptotic power series at any term is of the order of the first term omitted.
Consequently, the error decreases algebraically to zero as the variable tends to
infinity. Nearly four decades before Poincaré, Sir George G. Stokes [107, 108]
investigated the function

e 1 e 3
A = — — —zt | dt.
@)= 5 Le—éfi =P (3 : )
Now known as Airy’s function, it was introduced by George B. Airy [3] to de-

scribe certain physical phenomena. Stokes showed that Airy’s function has
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a so-called “factorially divergent” asymptotic power series, meaning that the
terms initially get smaller but then increase factorially (the ratio of consecutive
coefficients is proportional to their index). More importantly, he showed that if
this series is truncated not at a fixed order N but at its numerically smallest term
(whose index depends on z), the error term becomes exponentially small, which
is far beyond the algebraically small error guaranteed by Poincaré’s definition.
Such truncation of an asymptotic power series is now called an optimal trunca-
tion, and the resulting approximation is called a superasymptotic approximation.
Another important observation of Stokes was that the asymptotic expansion of
a function can be different in different sectors of the complex plane, and the
change between these forms is apparently discontinuous. The boundaries of
these (Stokes) sectors are called Stokes lines, and the discontinuous change in
the form of the asymptotic expansion is called Stokes phenomenon.

Stieltjes [105] also investigated asymptotic power series truncated at their
numerically smallest term. He demonstrated through several examples that if
the coefficients of an asymptotic power series of real variable are alternate in
sign, then the error after optimal truncation is approximately half of the first
omitted term. In 1937, John R. Airey [2] defined the “converging factor” of
an asymptotic power series to be the ratio of the remainder and the first omit-
ted term. He showed, using formal methods, that if an alternating asymptotic
power series is truncated at or near its numerically least term, the converging
factor can be expanded into a new asymptotic power series in inverse powers
of the truncation index. According to the work of Stieltjes, the leading order
of these re-expansions is 1/2. Using his theory, Airey was able to compute, in
particular, the Bessel and allied functions to very high accuracy. In 1952, Jeffrey
C. P. Miller [66] made similar investigations of functions defined by differential
equations and gave recurrence formulae for the computation of the coefficients
in the asymptotic power series of their converging factors.

In a series of papers [29-34] and in a research monograph published in
1973 [35], the theoretical physicist Robert B. Dingle incorporated earlier and
new, original ideas into a comprehensive theory which had a substantial im-
pact on later developments in modern asymptotics. Dingle’s intuition was that
asymptotic expansions are exact coded representations of functions, and the
main task of asymptotics is to decode them. Dingle made the important obser-
vation that, although the early terms of an asymptotic power series can rapidly
get extremely complicated, the high-order (late) coefficients of a wide class of
asymptotic power series diverge in a universal and simple way. More precisely,
the approximate form of the late coefficients is always a “factorial divided by a
power”.! An application of Emile Borel’s summation method for the approxi-

'Such a behaviour of the late coefficients in some special cases had been already known
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mation of the late coefficients then enabled him to transform the divergent tail
of an asymptotic power series into a new series in terms of certain integrals
that he called “basic terminants”. The resulting series, Dingle’s “interpretation”
of the asymptotic power series, can yield extremely accurate approximations
assuming optimal truncation, far beyond the accuracy of Stokes’ superasymp-
totics. Though very innovative, Dingle’s results relied on formal rather than
rigorous methods, which was perhaps the main reason that his ideas had been
largely unappreciated for a long time.

In 1988, exploiting Dingle’s late coefficient approximations, Sir Michael V.
Berry [5,6] provided a new interpretation of the Stokes phenomenon. He found
that, assuming optimal truncation, the transition between two different asymp-
totic expansions in adjacent Stokes sectors is effected smoothly and not discon-
tinuously as in previous explanations of the Stokes phenomenon; moreover,
the form of this transition is universal for all factorially divergent asymptotic
power series. Nevertheless, his analysis was based on Dingle’s formal theory,
whence it was not rigorously justified. Motivated by Berry’s breakthrough in
the subject, Frank W. J. Olver [90, 92] re-expanded the remainder term in the
asymptotic expansion of the confluent hypergeometric function in terms of new
functions he called terminant functions, indicating their close relation to Dingle’s
basic terminants. Olver’s new powerful expansion was valid in a much larger
region than the original asymptotic expansion of the confluent hypergeometric
function, covering three different Stokes sectors. Assuming optimal truncation,
Olver gave complete asymptotic expansions for the terminant functions whose
leading order behaviours near a Stokes line were in agreement with Berry’s
universal smoothing law, thereby providing a rigorous mathematical basis for
Berry’s results. Later in 1994, Olver and Adri B. Olde Daalhuis [85] generalized
these new exponentially improved asymptotic expansions to solutions of second-
order linear differential equations and justified Dingle’s late term approxima-
tions for this case (see also [93] and [94]).

In 1990, Berry and Christopher J. Howls [7] considered the asymptotic be-
haviour of certain solutions of the one-dimensional Helmholtz equation. Based
on a “resurgence formula” of Dingle that relates late terms to early terms, they
found that the remainder of the asymptotic expansion can be repeatedly re-
expanded using optimal truncation at each stage, leading to ultimately accu-
rate approximations, termed hyperasymptotics. These re-expansions were given
in terms of certain multiple integrals which are now called hyperterminants,
the generalizations of Olver’s terminant functions. The derivation of their re-

by the time of Dingle. E. Meissel [64] proved that the coefficients in the asymptotic power
series of the Bessel function J, (v) behave in this way. Another example is G. N. Watson’'s [116]
approximation for the high-order coefficients in the asymptotic expansion of the incomplete
gamma function I’ (z, z).
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sults were, however, completely formal based on Dingle’s non-rigorous resur-
gence formula and the Borel summation method. In 1995, in the important
papers [84, 86], Olde Daalhuis and Olver developed a mathematically rigor-
ous hyperasymptotic theory for the asymptotic solutions of second-order lin-
ear differential equations, a vast extension of their previous results on expo-
nentially improved asymptotic expansions. With a clever choice of a series of
truncations, different from the optimal truncation, they showed that each step
of the re-expansion process reduces the order of the error term by the same
exponentially-small factor, while at the same time increases the region of valid-
ity. In some special cases, their theory also justifies the similar results of Berry
and Howls.

In 1991, in their groundbreaking paper [8], Berry and Howls studied the
asymptotic expansions of integrals of the form

—zf() ¢ () dt,
| e s

where f (t) has several first-order saddle points in the complex t-plane, i.e.,
points * such that f' (#*) = 0 but f” (+*) # 0, and the path of integration ¢
passes through one of these points. Asymptotic expansions for such integrals
can be constructed by the method of steepest descents, originally introduced by P.
Debye [25] in 1909 to study the large-v behaviour of the Bessel function J, (vz).
Berry and Howls reformulated the method of steepest descents by showing that
the remainder term in the asymptotic power series of such integrals can be writ-
ten explicitly in terms of closely related integrals or sometimes in terms of the
original integral itself. This surprising property of the remainder term of an
asymptotic power series is called resurgence. It has to be mentioned that this
resurgence property of integrals with saddles, in some special cases, was al-
ready discovered by Dingle [35, pp. 480, 482 and 484] under the name “disper-
sion relation”. The main difference between Debye’s method and the reformu-
lation by Berry and Howls is that the former one uses only the local properties
of f (t) at the saddle point through which the path ¢ passes, whereas in the
latter one, global properties of the integrand play role. It is these global prop-
erties that make the resurgence formula of Berry and Howls so powerful. This
resurgence formula can be used to provide a rigorous proof of Dingle’s approx-
imations for the late coefficients, implying that the asymptotic expansions of
integrals with saddles always diverge factorially. It also incorporates the Stokes
phenomenon of the asymptotic power series in a simple way and shows the
change in the form when a Stokes line is crossed. The original aim of Berry and
Howls in developing the resurgence formula was to extend their hyperasymp-
totic theory to integrals with saddles. The integrals appearing in the remainder
can themselves be expanded into truncated asymptotic expansions with explicit
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remainder terms, and the repetition of this process leads to the hyperasymptotic
expansion of the original integral. William G. C. Boyd [13] demonstrated how
the theory of Berry and Howls can be used to provide computable bounds for
asymptotic expansions arising from an application of the method of steepest de-
scents. The resurgence formula was later extended by Howls to integrals with
tinite endpoints [45] and to multidimensional integrals [46] (see also [27]).

It is not possible to review here all the developments that have taken place
in the past few decades in the field of asymptotics. Instead, we refer the reader
to the expository papers by Berry and Howls [9], John P. Boyd [11] and the
references therein.

During my early investigations in the field of asymptotic analysis, I gradu-
ally came to realize that, using the exciting new tools developed in the past few
decades, a much deeper understanding could be obtained of the well-known
asymptotic expansions of special functions. Apart from a few examples, this
had not been attempted for many of the important special functions in mathe-
matics. This observation led me to begin a systematic investigation of asymp-
totic expansions of special functions; the present dissertation is a summary of
my pertaining research thus far.” The theory of Berry and Howls and the work
of Boyd [12-16] form the basis of these studies, which were further influenced
by the ideas of Cornelis S. Meijer [60-62].

Our investigation for a given function consists of the following four main
steps:

(i) Starting with a suitable integral representation of the function, we derive
its asymptotic expansion, but in an exact form: we truncate it after a fi-
nite number of terms and give its remainder term as an explicit integral
expression. The truncated asymptotic expansion and the integral expres-
sion for the remainder together form the exact resurgence relation for the
function. We also address the problem of computing the coefficients of the
asymptotic expansion.

(ii) Based on the resurgence relation and by utilizing further properties of the
function and its integral representation, we provide explicit, numerically
computable bounds for the remainder term. The regions of validity of
these bounds cover the whole domain where the original asymptotic ex-
pansion holds true.

(iii) We derive efficient approximations for the late coefficients of the asymp-
totic expansion with precise bounds on their error terms, thereby justifying
many of the formal results of Dingle.

2To restrict the dissertation to readable proportions, some of our related results are omitted,
such as those on the incomplete gamma function [77,78].
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(iv) Using the resurgence relation, we obtain an exponentially improved asymp-
totic expansion for our function, which is similar to those found by Olver
and Olde Daalhuis but is supplied with an explicit, numerically comput-
able bound for its remainder term.

The real difficulty in asymptotics is not in writing down the asymptotic ex-
pansion but in deriving explicit, computable bounds on its remainder term (step
(ii)) which are indispensable for numerical applications. In this connection, Jo-
hannes G. van der Corput [35, p. 405] [114, pp. 3—4] remarks: “It is often very
difficult to find such an upper bound, or the upper bound obtained may be
so weak that it is quite useless|. ..] In complicated problems it is advisable to
restrict oneself first to pure asymptotic expansions without trying to find a nu-
merical upper bound for the absolute value of the error term]...]”. Differential
equation methods were developed by Olver [95] to obtain asymptotic expan-
sions with explicit error bounds of varying degrees of complexity. The func-
tions studied usually contain additional parameters besides their arguments.
When the large-argument asymptotics is considered, Olver’s error bounds, up
to a factor of 2, are as sharp as one can reasonably expect. However, if we are
interested in asymptotic expansions where both the argument and one or more
of the parameters are large, these error bounds can become quite cumbersome.
An advantage of using resurgence relations, is that we are able to obtain explicit
and sharp bounds even in those cases where Olver’s methods yield complicated
expressions or do not apply at all. It has to be emphasized that we provide esti-
mates not only for the remainders of the asymptotic expansions of the functions
but also for the remainders of their exponentially improved asymptotic expan-
sions (step (iv)), thereby giving a powerful numerical tool for their computation.

Our program of systematically investigating asymptotic expansions of spe-
cial functions is far from being complete; there is still a large variety of functions
that has to be considered. Besides the classical asymptotic expansions studied
in the present dissertation, other, more complex topics should be treated in the
near future such as transitional region expansions, uniform asymptotic expan-
sions, asymptotics of difference equations.

Department of Mathematics and its Applications Gerg6 Nemes
Central European University
Budapest, Hungary

July 11, 2015
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CHAPTER 1

GENERAL THEORY

The aim of this chapter is to present a detailed account of the resurgence prop-
erties of integrals of the form

/ e/Mg (t)dt and / e Mg (1) dt, (1.1)
2X)(0)

where z is a (large) complex variable, 0 = argz, f (t) and g (t) are complex
functions satisfying certain analyticity requirements. The contours of integra-
tion 2(X) (9) and €(X) (9) are paths of steepest descent in the complex t-plane.
The path 22(X) (§) emanates from a finite point X and ends at infinity, whereas
the path (%) () is a doubly infinite contour passing through X. In the latter
case, X is required to be a saddle point of f (t), i.e., f'(X) = 0. (The reader
who is not familiar with the method of steepest descents is referred to the re-
cent book of Paris [98] for a detailed introduction to the subject.) The material
covered in this chapter forms the basis of our investigations on the asymptotic
expansions of special functions, discussed in later parts of this work.

The chapter consists of four main sections. In the first two sections, we de-
rive explicit representations for the remainder terms of the asymptotic expan-
sions of the integrals (1.1). In these representations, closely related integrals
make their appearance explaining the term “resurgence”. Our presentation is
based on the papers by Berry and Howls [8], Boyd [13], and Howls [45], but
in many aspects it is more detailed and rigorous. In addition, we also treat the
case of second-order saddle points which was not considered by these authors
and is not discussed anywhere else in the literature. Extensions to higher-order
saddles are also possible, but because of their rare occurrence in direct appli-
cations, we do not consider these cases. Section 1.3 is devoted to the asymp-
totic analysis of the high-order (late) coefficients appearing in the asymptotic

1
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2 Chapter 1. General theory

expansions of the integrals (1.1). Its results provide a secure basis for the formal
investigations of Dingle [35, Ch. VII] which he originally based on a theorem
of Darboux [21]. Some of the questions we address in this section were also
considered by Boyd [15]. In Section 1.4, we discuss the Stokes phenomenon, the
continuation rules for the resurgence formulae and the re-expansion of the re-
mainder terms in the asymptotic expansions of the integrals (1.1). Repeated re-
expansions would lead to the hyperasymptotic theory of Berry and Howls [8],
but we shall consider only the first stage of this process (the exponential im-
provement).

1.1 The resurgence properties of integrals with
finite endpoints

This section is about the resurgence properties of integrals with finite endpoints.
We distinguish three different cases, according to the local behaviour of the
phase function (the function f () in (1.1)) at the finite endpoint of the contour
of integration.

1.1.1 Linear dependence at the endpoint

In this subsection, we study the resurgence properties of integrals of the type
€@ = [ e g, 12
@)= [ e 0 12

where 22(°) (9) is the steepest descent path emanating from a finite endpoint
e and passing to infinity down the valley of Re[—el® (f (t) — f (e))]. The func-
tions f () and g (t) are assumed to be analytic in a domain A(¢) which will be
specified below. We suppose further that f’ () # 0, |f (t)| — +o0 in A(®), and
f (t) has first-order saddle points in the complex t-plane at t = +(P) labelled by
p € N.! We denote by ©(P) () the steepest descent path through the saddle (7).

The domain A(®) is defined as follows. Consider all the steepest descent
paths for different values of 6, which emerge from the endpoint e. In general
these paths can end either at infinity or at a singularity of f (t). We assume that
all of them end at infinity. Since there are no branch points of f (¢) along these
paths, any point in the ¢-plane either cannot be reached by any path of steepest

In general, f () can have higher-order saddle points as well. This assumption is made for
the sake of simplicity and because it almost always holds in applications. All the subsequent
arguments can be modified in a straightforward way for the case of higher-order saddles.
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descent issuing from ¢, or else by only one. A continuity argument shows that
the set of all the points which can be reached by a steepest descent path from e
forms the closure of a domain in the t-plane. It is this domain which we denote
by A,

It is convenient to consider instead of the integral (1.2), its slowly varying
part, defined by

T() (2) % 2 [ (2) = 2 /W(g) e 2FO=F@©)g (1) dt. (1.3)

First, we make the transformation

s=z(f(t) £ (e)). (1.4

Since f’ (e) # 0, according to the Taylor formula, we have
s/z=f(e) (t—e) + O(|t — ef?)

when t is close to ¢, showing the linear dependence at the endpoint e. The right-
hand side of (1.4) is a monotonic function of t, unless perhaps when 2 ()
passes through a saddle point of f (t). As @ varies, the contour 2(°) () varies
smoothly until it encounters a saddle point t") when 6 = —0,, with

oo & arg(F(t™M) — £ (¢)).

Such saddle points are called adjacent to the endpoint e. From now on, we shall
assume that the steepest descent path 2(¢) () in (1.2) does not passes through
any of the saddle points of f (), and that 6 is restricted to an interval

- Ugml < 0 < _Uemz, (1.5)

where (") and t("2) are adjacent to e. We shall suppose that f (t) and g (t)
grow sufficiently rapidly at infinity so that the integral (1.2) converges for all
values of 0 in the interval (1.5). We remark that since 2() (8) = 2 (6 4 271),
we have

0 < Oemy — Oemy, < 271,

and Oem, — Oem, = 27T occurs, for example, when there is only one saddle point
that is adjacent to e.

With these assumptions, as t travels along 2(¢) (8), s increases monotoni-
cally from 0 to +oo. Therefore, corresponding to each positive value of s, there
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is a value of t, say t (s/z), satisfying (1.4) with t (s/z) € 2() (#). In terms of s,
we have

(o [T sy A [T s 8 (E(s/2))
T()(z)—z/O e °g(f) gds—/o e mds. (1.6)

Since there is no saddle point of f () on the contour 2 (), the quantity
g (t(s/z))/f'(t (s/z)) is an analytic function of ¢ in a neighbourhood of 22(¢) (6),
and by the residue theorem?

(/) oo gy 1 O

fr(t(s/2))  t=tis/z) f(5) = f(e) —s/z  2mi %t(s/z)ﬂ f(8) = fe)—s/z
Substituting this expression into (1.6) gives us an alternative representation of
the integral T(®) (z),

ey [T s ] 8 (t)
T() (2) —/0 e ﬁﬁ(e)(e)f(t)—f(e)—s/zdtds’

where the infinite contour I'®) (8) encircles the path 2(¢) (§) in the positive
direction within A(®) (see Figure 1.1(a)). This integral will exist provided that
g (t) /f (t) decays sufficiently rapidly at infinity in A(¢). Otherwise, we can de-
fine I'®) () as a finite loop contour surrounding ¢ (s/z) and consider the limit
5 1

: s 1 g(t)
ngoo 0 ¢ 2mi fr(e)((g) f(t)—f(e)— s/zdtds'

Now, we employ the well-known expression for non-negative integer N

1

l-x = 1-—-

,x A1, (1.7)

X

to expand the denominator in powers of s/z (f (t) — f (e)) and find that

¥ ! - s 1 (t) e
D@ =) 5| e g ©
(@) = ,;0 z" Jo € o ﬁ(z)((;) (F (1) — (&))" dtds + Ry (z), (1.8)

@y L [T N g (1) dt s
Ry )_27TizN/0 ¢ 7{“(6)(9) (f () = fF ()N —s/z(f (1) —f(e))d '
(1.9)

21f P () and Q (t) are analytic in a neighbourhood of to with P (t5) = 0 and P’ (ty) # 0, then
Q(to) /P" (o) = ResQ (1) /P (8).
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m1 (g(l’flz)

ml

(6)( ms

a

Figure 1.1. (a) The contour T'\®) () surrounding the path 2'¢) (). (b) Three
saddle points (") adjacent to the endpoint e together with the corresponding
adjacent contours €™, forming the boundary of the domain A(©),

Again, a limiting process is used in (1.9) if necessary. Throughout this work, if
not stated otherwise, empty sums are taken to be zero. The path I'(®) (§) in the
sum can be shrunk into a small circle around ¢, and we arrive at

N-—1 ,(e)

TO) (z) = ;0 ”Z— +RY (2), (1.10)
with
() _ L(n+1) g(t) q
an 2Ti f%e_'_) (f (t) . f (e))l’l+l t (111)

d” t—e i
- [m (g o (r-7w) )] -

If we neglect the remainder term Rg\c}) (z) in (1.10) and formally extend the sum
to infinity, the result becomes the well-known asymptotic expansion of an inte-
gral with linear endpoint (cf. [35, eq. (12), p. 114] or [98, eq. (1.2.21), p. 14]). A
representation equivalent to (1.11) was derived by Dingle [35, eq. (9), p. 113].
The expression (1.12) is a special case of Perron’s formula for the coefficients in
steepest descent expansions (see, for instance, [70]).

In the next step, we deform I'®) (9) in (1.9) to the boundary of the domain
A®). But before we do so, we wish to take a closer look at this boundary. We
claim that it is the union (U, €™ (—0.y) of steepest descent paths through the
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adjacent saddles t(") (see Figure 1.1(b)). The paths € (") (—g,,) are called the
adjacent contours. We assume that each adjacent contour contains only one sad-
dle point. To prove our claim, we first choose 6 = €’ to be an angle such that

() (9") does not pass through any of the saddle points of f (t). As we vary 6,
the path 2(¢) (9) varies smoothly until it encounters an adjacent saddle point

t(m) when @ = —0,,,.2 Let us define %@ (—0em) via
lim 2© (=g £0) = P (—em) . (1.13)
6—0+

We note that 9383) (—Oem) # @f) (—0em). To see that this discontinuity must
occur, we can argue as follows. If the path #(¢) (§) were change continu-
ously across the adjacent saddle t(") then, for a suitable § > 0, the contours
D) (—Opm + ) and €™ (—0py, + 6) would intersect each other giving two dif-
ferent paths of steepest descent from the point of intersection. But if § > 0 is
chosen suitably, then this point of intersection is not a saddle point of f (¢), and
hence it can not be the endpoint of two different steepest descent contours. If

te 29 (—0em), then IJm[e=1% (£ (t) — f (e))] = 0 and therefore

Jmle ™% (f () — f(0))]
= Jm[e % (f (t) — f (€))] = Imle " (f(+™) — f (¢))] = 0.

In other words, any point on ) (—0em) lies on either a steepest ascent or
a steepest descent path issuing from the saddle point t0"), Since the quan-
tity Pe[e ™% (f () — f (e))] is monotonically increasing along the segment of

) (—0em) joining the points e and t("), this segment must be part of a steepest

ascent path running into t"™). Afterwards, ) (—0em) turns sharply through
a right angle at t") and continues its descent to infinity down the valley of
Re[—e % (f (t) — f(t0M))]. All these observations on A (—0em) are cer-
tainly true for the contour g%(f) (—0em) as well. Along the segment which joins
e and tm, 21 (—0em) and @J(f) (—0em) must coincide, but because they are
not identical, at t") they will split and continue along the two opposite steep-
est descent directions from t(") (cf. Figure 1.2). Taking into account that any

3A discontinuity in the change of the path 2(¢) () may also occur when, for a critical value
6* of 6, the contour 2(¢) (6*) splits into two parts: a path linking e to infinity and a doubly infi-
nite contour. This situation happens, for example, in the resurgence analysis of the generalized
Bessel function [122]. Our assumption that |f (t)| — +oco in A(®) excludes this case, because
e (f (t) — f (e)) must have a finite limit as t — oo along the part of #() (§*) which emerges
from e.
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Figure 1.2. The discontinuous change of the steepest descent path 2'¢) ()
from e as the adjacent saddle t™) is passed (6 > 0).

point of the complex t-plane can be reached by at most one steepest descent
path from e, it follows that €™ (—o,,,) indeed contributes to the boundary of
the domain A(®), We rotate @ further and visit the adjacent saddles one-by-one
until 8 = 0’ 4 277, in which case 2(¢) () returns to its original state. This argu-
ment works only if the set of saddle points that are adjacent to e is non-empty
and finite, which we shall assume to be the case. Since %) () passes to infin-
ity, it changes continuously whenever 6 # —oe;; and any point in the complex
t-plane can be reached by at most one such path, there are no further points on
the boundary of A(®) other than those situated on an adjacent contour.
By expanding I'(®) (9) to the boundary of A(®), we obtain

(0 (y _ 1 TN
Ry (Z)_ZnizN/o siVe™S

) dt
X -1 %’”/ 8 ds,
;( ) e (f (1) — f ()Nt 1 —s/z(f(t) = f(e))
(1.14)
where ¢(") = ¢(") (—g,,) and the summation is over each of the adjacent

contours. The exponents 7., are the orientation anomalies; they take the value
0 if the sense of the deformed I'®) () and the chosen orientation of the rele-
vant €™ (—a,,,) are identical, 1 otherwise. This expansion process is justified
provided that (i) f (t) and g (t) are analytic in the domain A(), (ii) the quantity
g (t) /fNT1(t) decays sufficiently rapidly at infinity in A(®), and (iii) there are
no zeros of the denominator 1 —s/z (f () — f (e)) within the region R through
which the loop I'®) (8) is deformed. The first condition simply repeats one of
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the assumptions from the very beginning of our analysis. To meet the second
condition, we require that g (t) /fNT1(¢) = o(|t| ') as t — oo in A®). The
third condition is satisfied according to the following argument. The zeros of
the denominator are those points of the t-plane for which el (f (t) — f (e)) is
real and positive, in particular the points of the path #() (). Furthermore, no
components of the set defined by the equation arg[e’® (f (t) — f (e))] = 0 other
than 2(°) () can lie within A(®), otherwise f (t) would have branch points
along those components. By observing that #(¢) (9) is different for different
values of 6 mod 27, we see that the locus of the zeros of the denominator 1 —
s/z (f (t) — f (e)) inside Al is precisely the contour Z2(°) (), which is wholly
contained within I'(¢) () and so these zeros are external to R.

At this point, it is convenient to introduce the so-called singulants Fe,, (orig-
inally defined by Dingle [35, p. 147]) via

def

Fem = f(t (m)) —f(e), argFem = Oem.

Before we proceed to the last step of our analysis, we wish to consider the con-
vergence of the double integrals in (1.14) further. It is convenient to make the
change of variable from t to v by

f(t) — £ (e) = ve'n, (1.15)

where v > | F.u|. Note that e % (f (+) — f (e)) is a monotonic function of ¢
on each half of the contour (") (—g,,,) before and after the saddle point +("),
Hence, corresponding to each value of v, there are two values of ¢, say f+ (v),
that satisfy (1.15). The convergence of the double integrals in (1.14) will be as-
sured provided that the real double integrals

g (t+ (0)) ‘ douds

/*‘”/*Z SvNe“S f' (ks (0))

exist. (The assumption (1.5) implies that the factor [1 —s/z (f (t) — f (e))] ! in
(1.14) is bounded above by a constant.) These real double integrals will exist if

and only if the single integrals
g (t= (v)) ‘dv (1.16)

oo q
/lfeml oNFL]f7 (ts (0))

exist. From now on, we suppose that the integrals in (1.16) exist for each of the
adjacent contours.

Along each of the contours € (") (—g,,) in (1.14), we perform the change of
variable from s and t to u and t by

s=e % (f () = f(e) u=|Fomlute % (f (t) = f(t"))u (1.17)
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to find

_1\Yem +o00 N o—|Fem|u
Rl(\{;) (z) = 27T112N L g(N}r)l)tfem / 1u—eu/zei‘76m
m € 0 (1.18)

—e e (£(t)—f(t0")))u
X [g(m) e g (t)dtdu.

The change of variable (1.17) is justified because the infinite double integrals in
(1.14) are absolutely convergent, which is justified because of the requirement
that the integrals (1.16) exist. By analogy with (1.3), we define

1

T (w) d:efwz/ e*w(f(t)*f(t(m))g () dt (1.19)
¢ (m) (argw)

with arg(w%) & %arg w. This is the slowly varying part of an integral over a
doubly infinite contour through a first-order saddle point. With this notation,
(1.18) becomes

RY (2) 70" (ue en)du.  (1.20)

2 )7em /+oo MN—%e*|J:gm|u
2mzN N+2 Tem J0O 1 — u/zei%m

This result provides an exact form for the remainder in the asymptotic expan-
sion of an integral with linear endpoint, expressed as a sum involving integrals
through the adjacent saddles. Equations (1.10) and (1.20) together yield the ex-
act resurgence formula for T®) (z).

1.1.2 Quadratic dependence at the endpoint

We consider the resurgence properties of integrals of the form
12 @) = [ e g (nat 1.21
@)= [ 80 (1.21)

where 2 () is one of the two paths of steepest descent emerging from the
first-order saddle pomt t() of f(t) and passing to infinity down the valley of
Re[—el? (f (t) — f(t¥)))] (the other path can be expressed as #*) (6 + 277)). The
functions f (t) and g (t) are assumed to be analytic in a domain A%), whose
closure is the set of all the points that can be reached by a steepest descent
path emanating from t(). We suppose further that |f (t)| — +oo in A®), and
f () has several other first-order saddle points in the complex t-plane at t =
t(P) indexed by p € IN. As in the linear endpoint case, (P) () denotes the
steepest descent path through the saddle ¢*), in particular #¥) (9) = () (9) U
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2K) (9 + 271). The notation “k/2” is used for consistency with later sections on
integrals having doubly infinite steepest paths.

It is again convenient to consider instead of the integral (1.21), its slowly
varying part, given by

T(k/z) (Z) d:ef 2z%ezf(t<k))l(k/2) (Z) = 22% / e_z(f(t)_f(t(k)))g (t) dt. (122)
28 ()

The square root is defined to be positive on the positive real line and is defined

by analytic continuation elsewhere. Similarly to the linear endpoint case, the

path #(*) (9) may pass through other saddle points t") when 6 = —o,, with

O = arg(f (™) — f(21)).

We call such saddle points adjacent to tX). We shall assume that the steepest
descent path 2() () in (1.21) does not encounter any of the saddle points of
f (t) other than t(), and that 6 is restricted to an interval

= Okmy < 0 < —Okmy, (1.23)

where t(™) and (") are adjacent to t¥). We shall suppose that f () and g (¢)
grow sufficiently rapidly at infinity so that the integral (1.21) converges for all
values of 6 in the interval (1.23). We note that since 2%) (9) = 2%) (9 + 47),
we have
0 < Okmy — Okmy < 47T,

and 0y, — Ok, = 471 arises, for example, when there is only one saddle point
that is adjacent to (%),

The next step is to give a parametrization of the integrand in (1.22) along

25 () similar to that of (1.4) in the linear endpoint case. Since t() is a first-
order saddle point of f (t), according to the Taylor formula, we have

1
F(0) = f(0) = S ((O) (¢ = 19)2 + O]t = 19F)
when t is close to t). This locally quadratic behaviour at the endpoint ¢*)
suggests that instead of a linear transformation (like in (1.4)), one may use the
quadratic parametrization

s =z(f (1) — F(t1)). (1.24)

The advantage of this parametrization is that the inverse mapping is, at least lo-
cally, a single-valued analytic function of s (cf. [69, eq. (3.23), p. 49]). The right-
hand side of (1.24) is real and positive if either t € 2K (9) ort € 2% (0 4 271),
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the other steepest descent path from ¢ (). Furthermore, if the path ) (9 4 271)
does not pass through any of the saddle points of f (t) other than t(X), then (1.24)
gives a one-to-one correspondence between the real s-axis and the steepest de-
scent path %) (). To parametrize 2% (), we choose the positive reals and
thus

T("/Z)(z)zzz%/+oo s ols_z/+oo ~225 g(H(s/z 8(ts/22) 4
0 23 fl(t(s/22))

where t = #(s/z2) is the unique solution of the equation (1.24) with #(s/ z1) €
2 (9). Since there are no saddle points of f () on the contour ) (9) other
than %), the quantity

NI—=

25 8(t(s/28) _ 20f(1(s/2) = fEONE s

2} f(t(s/24)) f'(t(s/22))

is an analytic function of ¢ in a neighbourhood of 22(*) (9).* (For the analyticity

of the factor (f (t) — f (t(k)))% in A", consider the paragraph after equation
(1.26) below.) Therefore, by the residue theorem

N‘,_. N\»—\

2(f(t<8/22))_1f(t(k)))28(t(s/z%)) = Res git) I 1
f'(t(s/z2)) t=t(s/z2) (f(t) = f(t®))2 —s/22
1 g (t
2 %t(s/zéﬂ—) (f () = F(HR))2 —s/z2 ar
Consequently, we have
k12) (py — [ e L g(t)
@) /0 i T e) (F (1) — F(H0))2 — s /22 pids, 1.25)

where I'®) (9) is an infinite loop contour which encloses ) (§) in the anti-

clockwise sense within A%), This integral will exist provided that g (t) /f 2 (1)
decreases in magnitude sufficiently rapidly at infinity in AK). Otherwise, we

can define I'®) (§) as a finite loop contour encircling t(s/ z2) and consider the
limit s
lim e ! g ()

s—+ooJo — wJTWe) (£ () — f(40))E —s/23

dtds. (1.26)

4The apparent singularity at t = () is removable.
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The factor (f (t) — f (t(k)))% in (1.25) is defined in the domain A*) as follows.
First, we observe that f (t) — f(t(*)) has a double zero at t = () and is non-zero
elsewhere in A (because any point in AWK different from ), can be reached
from t(X) by a path of descent). Second, Z¥) () is a periodic function of 8 with

1

(least) period 471. Hence, we may define the square root so that (f (t) — f(t*)))z
is a single-valued analytic function of ¢ in A(K). The correct choice of the branch
of (f (t) — f(tW) )% is determined by the requirement that s is real and positive
on 2K (9), which can be fulfilled by setting arg[(f () —1f(t(k)))%] = —§ for
t € 2% (9). With any other definition of (f (t) — f(t()))2, the representation

(1.25) would be invalid.
Now, we apply the expression (1.7) to expand the denominator in (1.25) in

powers of s/ [z(f (t) — f(t(k)))]%. One thus finds

N-1 —+o00
T(k/2) (z) = 2 iﬂ s”efszl, " g (t)k o dids + Rg\l,(/z) (z)
n—0 22 J0 TITO) (f(t) — f(tR)) 2
with
(k/2) oy _ 1 /*‘” N, -2
R z) = sVe
Vo) iz Jo

(1.27)

g(t) dt ds.

’ ]g"(”(@) (F(t) = F(E0) T 1= s/ [2(f(t) — F(t0))]

NI—

Again, a limiting process is used in (1.27) if necessary. The contour I (k) (0) in
the sum can be shrunk into a small loop around t(¥), and we arrive at

N-1 ,(k/2) k)2
T2 () = Y ”—%+R<N ) (2), (1.28)
n=0 %

where the coefficients are given by

2 _ L) NO)

Y o] f”(tmﬂ (1) —f(t(k)))”?ldt (1.29)
_ T |4 (102 \'F
_F(nil) [@ (g(t) (f(t)——f(t(k))> )] _(k)- (1.30)

If we omit the remainder term Rg\];/ 2) (z) in (1.28) and formally extend the sum to

infinity, the result becomes the well-known asymptotic expansion of an integral
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with quadratic endpoint (cf. [35, eq. (20), p. 119] or [98, eq. (1.2.18), p. 13]).
A representation equivalent to (1.29) was obtained by Copson [20, p. 69] and
Dingle [35, eq. (19), p. 119]. The expression (1.30) is again a special case of
Perron’s formula [70].

By analogy with the linear endpoint case, we now deform I'®) (§) in (1.27)
by expanding it to the boundary of the domain A). Note that in identifying the
boundary of the corresponding domain A(®) in the linear endpoint case, we did
not use any specific properties of the finite endpoint of the steepest descent path.
Therefore, without any further considerations, the boundary is again the union
U & (m) (—0xm ) of adjacent contours (at least in the case that the set of adjacent
saddle points is non-empty and finite). We suppose that each of these contours
contains only one saddle point. The expansion process is possible provided
that (i) f (t) and g (t) have no singularities in the domain A%, (ii) the quantity
e(t)/f = (t) decays sufficiently rapidly at infinity in A%), and (iii) there are no
zeros of the denominator 1 —s/[z(f(¢) — f (t(k)))]% within the region through
which the loop I'® () is deformed. The first condition is fulfilled because of
our assumption that f (t) and g (t) are analytic in A%). To meet the second
condition, we require that g () /f¥ (t) = o(|t| ") as t — coin AK). The third
condition is satisfied by an argument akin to that in the linear endpoint case.
With these assumptions, we can write

1 +oo
R;\l]c/z) (z) = —= / sNe*
miz2 J0

dt
X —1)7km 40 ds,
RO (F() = F(E0)) 2 1= s/ [2(£(1) = (1))
(1.31)
where ¢(") = €(") (—¢,,) and the summation is over each of the adjacent

contours. The orientation anomalies 7y, are defined as above and take the value
0if the deformed I'®) () and the chosen orientation of the relevant €(") (—oy,,)
have the same orientation, and 1 otherwise.

Following the linear case, we define the singulants by

Fiom Z (Y — £(+0)), arg Fiop = Oiom

and shall make a change of variable in (1.31) to bring the expression for Rg\]]c/ ) (z)

into its final form. But before we do so, we make simple requirements to ensure
the absolute convergence of the double integrals in (1.31). For convenience, we
introduce the change of variable in (1.31) from ¢ to v by

f(t) = f(£0) = pelim, (1.32)
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with v > | Fi|. Note that e % (f (t) — f(t%))) is a monotonic function of
on both halves of the contour €™ (—gy,,) before and after the saddle point
¢(m)  Thus, corresponding to each value of v, there are two values of t, say
+ (v), that satisfy (1.32). The convergence of the double integrals in (1.31) will

be guaranteed provided that the real single integrals
g (t= (v)) ' dv (1.33)

teo ]
/fkm| o' |f (£ (0))

exist (cf. equation (1.16)). Hereafter, we assume that the integrals in (1.33) exist
for each of the adjacent contours.

Along each of the contours & (m) (—0ky) in (1.31), we make the change of
variable from s and t to u and t by

2 = i (F (1) = F(E9))u = | Fol e+ ( (1) = ) (1:34)

to find

R Z —1)Ym preo 4y e Pl
N 2 I 1N+(T 0 104 ) 3
miz2 G elt2 Tkm 1 — (u/zei%n)2 (1.35)

X [g(m) ee W (fO-FE" g (1) ddu.

The change of variable (1.34) is justified because the infinite double integrals in
(1.31) are absolutely convergent, which is justified because of the requirement
that the integrals (1.33) exist. With the notation (1.19), the representation (1.35)
becomes

RV )= — 5

Zmz 2 oel2 2 Ten

'7km +oo u%—le—lfkmw
/0

T (ue=%m)du.  (1.36)
1— (u/zei%n)z ( )

This result provides an exact form for the remainder in the asymptotic expan-
sion of an integral with quadratic endpoint, expressed as a sum involving inte-
grals over doubly infinite contours passing through the adjacent saddles. Equa-
tions (1.28) and (1.36) together give the exact resurgence formula for T/2) (z).

1.1.3 Cubic dependence at the endpoint
In this last subsection, we study the resurgence properties of integrals of the
type
(k/3) (1) — / —zf(t)
I (2) 200 e g (t)dt, (1.37)
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where 25 () is now one of the three paths of steepest descent issuing from the
second-order saddle pomt t() of f () and passing to infinity down the valley of
Re[—el?(f (t) — £(t*)))] (the other two paths may be expressed as 22(*) (6 + 277)
and W(k) (0 +47)). The assumptions on f (¢) and g (f) are the same as in the
quadratic case, except we suppose here that all the saddles of f (¢) are of sec-
ond order. The domain A% is defined analogously as for the case of quadratic
endpoint. We denote by %) () one of the three doubly infinite steepest de-
scent paths through the saddle t(P) labelled by p € IN. The notation “k/3" is
again used for consistency with later sections on integrals having doubly infi-
nite steepest paths.
Instead of the integral (1.37), we consider its slowly varying part, given by

T*/3) (2) & 3532 (1) [(K/3) () = 323 /y(k)(e) e 2FO=FtNe (1) dr.  (1.38)

The cube root is defined to be positive on the positive real line and is defined
by analytic continuation elsewhere. The notation of adjacency is identical to
the quadratic case, except that 6 here needs to change by 67 before 2 ()
returns to its original state. We restrict 6 to an interval of the form (1.23) and
shall assume that f (t) and g (¢) grow sufficiently rapidly at infinity so that the
integral (1.37) converges for all values of 6 in that interval.

The local behaviour of f (t) at the saddle point t*) is given by

F(5) = FER) = L7 (1) (¢ — 102 4 O(|t — 19},

which suggests the cubic parametrization

s =z(f () — f(tW)) (1.39)

of the integrand in (1.38) along () (9). The advantage of this parametrization
is that the inverse mapping is, at least locally, single-valued. The right-hand
side of (1.39) is real and positive if ¢t lies on any of the three steepest descent
paths from t(*). Therefore, we may parametrize the steepest descent paths by

the linesargs = 0, args = 2; and args = 3 via (1.39), as long as these contours

do not encounter saddles of f (t) different from t¥). However, the association
is not purely a matter of choice; it has to preserve the cyclic order of the lines
in the s-plane and the phases of the steepest path mod 67 in the t-plane. To
parametrize #*) (), we choose the positive real line and hence

+o0 +oo
T (2 =32} [Teg () s =3 [ e Mds, (1.40)
0

25 f(H(s/2%))

W=

i
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where t = t(s/ z%) is the unique solution of the equation (1.39) with ¢(s/ z%) €
2K (9). Since the contour 2% (§) does not pass through any of the saddle
points of f (t) other than %), the quantity

3% g(t(s/20)) _ 3(f(4(s/2)) = (DT
25 fI(t(s/2%)) f(t(s/2%)

is an analytic function of ¢ in a neighbourhood of #2(*) (8). (For the analyticity of

the factor (f () — f (t(k)))% in A, consider the paragraph after equation (1.42)
below.) Whence, according to the residue theorem

B(F(4(/29)) = F9DI 1) Res
Py S R O
1

N
N—
N—
oQ SN
- |
¥
~
N
Q=

- ) - -dt.
27 j{t(s/zs)ﬂ (f(t)— f(t0))3 —s/z3

Substituting this expression into (1.40) leads to an alternative representation for
the integral T(*/3) (z) in the form

k3) oy [T 8 3 g (t)
T2 (z) /O e mef}m(e) (f(t)—f(t<k>))%_s/zédtds’ (1.41)

where the infinite contour I'®) () encircles the path () (9) in the positive
direction within A(K), This integral will exist provided that g (t) / f 3 (t) decays
sufficiently rapidly at infinity in AK). Otherwise, we can take I'®) () to be a
finite loop contour surrounding ¢(s/ z%) and consider the limit

S
lim [ e 2 7{ g (1) . _dtds. (1.42)
S—+00.J0 27ti Jr 0 (6) (F(t) — F(t0))3 — s /23

The function f(t) — f(t()) has a triple zero at t = t(¥) and is non-zero elsewhere
in A, Also, the least period of 2(*) (8) is 677, and therefore we can define the

cube root so that (f(t) — f(tk)) )% in (1.41) is a single-valued analytic function of

t in A%). The correct choice of the branch of (f (t) — f (t(k)))% is determined by
the requirement that s is real and positive on 22 (§), which can be satisfied by
setting arg[(f (t) — f(t(k)))%] = —%fort € 2" (9). With this definition of the
cube root, s has angle Z* on 2K) (0 +271) and has angle 47" on 2K (9 + 47),
the other two steepest descent paths from (¥,
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Next, we use the expression (1.7) to expand the denominator in (1.41) in

powers of s/ [z(f (t) — f(t(k)))]%, giving us

=R 271 JT00) (7 (1) — (1))

with the remainder

—+00
R (2= 2 [ ve
27miz3s /0
g(t) dt
N ds.

g 7{r<k><9> (F () = F(¢0)) 57 1=/ [2(f (1) = £(¢0))]

Again, a limiting process is used in (1.43) if necessary. The contour I'®) () in

(1.43)

Q=

the sum is shrunk to a small closed contour encircling the saddle point ¢), and
we arrive at )
k/ 3) — (k/ 3) 1.44
; (2), (144)
where the coefficients are given by
(e
o3 _ L(57) f ARy (1.45)
2705 (f (1) = f(10))5

rs)
I'(n+1)

dr (t — ()3 +
den (g(t) (f(t) —f(ﬂk))) )] (k)' (1.46)

If we neglect the remainder term Rg\],(/ 3) (z) in (1.44) and formally extend the sum
to infinity, the result becomes the known asymptotic expansion of an integral
with cubic endpoint (cf. [35, eq. (29), p. 125]). A representation equivalent to
(1.45) was derived by Copson [20, p. 69] and Dingle [35, eq. (28), p. 125], while
the expression (1.46) is again a special case of Perron’s formula [70].

The contour I'®) () in (1.43) is now deformed by expanding it onto the
boundary of AK). We assume that the set of saddle points which are adja-
cent to t) is non-empty and finite. Under this assumption, the boundary of
A®) can be written as a union |J,, ") (—0y,y, ), where €™ (—0y,,) is one of the
three doubly infinite steepest descent paths through the adjacent saddle ("),
It is supposed that each of these contours contains only one saddle point The
third steepest descent path from (") is always external to the domain A% (for
otherwise there were two different paths of steepest descent emanating from
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regular points). The expansion process is legitimate as long as (i) f (t) and g (t)
have no singularities in A%, (ii) the quantity g (t) / f N (t) decreases in magni-
tude sufficiently rapidly at infinity in the domain A%), and (iii) the denominator
1—s/[z(f(t) - f (t(k)))]% has no zeros in the region through which the contour
') () is deformed. The first condition is satisfied because of the assumption
that f (t) and g (t) are analytic in A®). To meet the second condition, we require
that g () /f¥ (t) = o(|t|™") as t = oo in AK). The third condition is fulfilled
by an argument similar to that in the linear endpoint case. With these provisos,
we have

+00
RYD (@)= 2 [T
27miz3 /0

dt

g (1)
X Y (1) Ve ds,
z Jen (F () = F(t0D) 5 1 =5/ [2(f (1) = F(£9))]
(1.47)
where ¢(") = ¢(") (—0,,) and the summation is over each of the adjacent

contours. The orientation anomalies 7y, are defined analogously to the linear
and quadratic endpoint cases.

Following the linear and quadratic cases, we now impose simple conditions
to guarantee the absolute convergence of the double integrals in (1.47). We de-
tine the singulants F4,, analogously to the case of quadratic endpoint and intro-
duce the change of integration variable from f to v by

£ (1) = fF(t0)) = vel%n, (1.48)

where v > | Fjy|. Since e % (£ (t) — £(t))) is a monotonic function of ¢ on
each half of the contour (") (—0y,,) before and after the saddle point t("), cor-
responding to each value of v, there are two values of ¢, say ¢+ (v), that satisfy
(1.48). The convergence of the double integrals in (1.47) will be ensured pro-
vided that the real single integrals

8 (t+ (v)) 'dv (1.49)

+oo
/lfkml v |f(t(0))

exist (cf. equations (1.16) and (1.33)). Henceforth, we assume that the integrals
in (1.49) exist for each of the adjacent contours.

On each of the contours (™ (—=0kp) in (1.47), we perform the change of
variable from s and ¢ to u and ¢ via

= e (£ (1) — F(19)) = | P+ &£ (£) = ()
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to obtain
N-2
REA) () = 1 Z(—l)”’“ /+°° us e Fimlt
N N N1 1
2mizs Tmoet 3 T SO (y /zel%m )3 (1.50)

X Aﬂ(m) ee I (fO-FE" g (1) ddu.

This change of variable is permitted because the infinite double integrals in
(1.47) are absolutely convergent, which is a consequence of the requirement that
the integrals (1.49) exist. By analogy with (1.38), we define

TEM/3) () & 3 / e (O-Ft") g () dt (1.51)
¢(m) (argw)

with arg(w%) o %arg w. This is the slowly varying part of an integral over a
doubly infinite contour through a second-order saddle point. With this nota-
tion, (1.50) becomes

k/3
Rg\]/)(z): gz
m

This is an exact form of the remainder in the asymptotic expansion of an integral
with cubic endpoint, expressed as a sum involving integrals through the adja-
cent saddles. Equations (1.44) and (1.52) together provide the exact resurgence
relation for T*/3) (z).

(~1)Tn [ u il Finl
0

~TCm/3) (ye~i%n)du. (1.52)
1 — (u/zei%m)3

N
eléo—km

1.2 The resurgence properties of integrals with
saddles

In this section, we investigate the resurgence properties of integrals over doubly
infinite contours passing through saddles of the phase function. We consider
the cases of first- and second-order saddle points separately.

1.2.1 Quadratic dependence at the saddle point

We study the resurgence properties of integrals of the form
18 (5) = / ~2f(t) o (1) dt 1
@)= [ s a (159

where %) (6) is the doubly infinite path of steepest descent passing through
the first-order saddle point t*) of f (t) along the two valleys of %e[—e! (f (t) —
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F(t®))]. The functions f (t) and g () are assumed to be analytic in a domain
A®), whose closure is the set of all the points that can be reached by a path of
steepest descent which emanates from tX). We suppose further that |f (t)| —
400 in A, and f (t) has several other first-order saddle points in the complex
t-plane situated at t = t(P) and indexed by p € N.

For convenience, we define and consider the slowly varying part of the in-
tegral (1.53),

1

T® (2) def 3 e2f(t9) (k) (z) = 22 Aﬂ(@(e) e—Z(f(t)—f(f(k>))g (t)dt, (1.54)

where the square root is defined to be positive on the positive real line and is
defined by analytic continuation elsewhere (cf. equation (1.19)). After a phase
change of 27, the orientation of %) (§) reverses, and I¥) (z) changes sign.
Thus, the integral (%) (z) is double-valued and the function T (z) is single-
valued. With the notation of Subsection 1.1.2, the contour of integration can
be written as ) () = 2% (9) U 2K (0 + 271). We choose the orientation of
these paths so that both 22 (9) and 2 (9 + 277) lead away from (), and the
orientation of ¥%) (6) is the same as that of 22(%) (§). With this convention and
the definition (1.22), we may write

) (7) = 23 / —2(f(H)-F(t®)) A / (B —f(EWY)
L T EOL 2 o pram® gl

I\

(T(k/z) (z) + T(k/2) (Ze27ﬁ>).

N~

(1.55)

Observe that the sets of adjacent saddles are identical for the integrals T(*/2) (z)
and T¥/2) (ze?™). We assume that neither 2*) (9) nor 22 (9 + 277) encounter
any of the saddle points of f (t) different from t(¥), and that 6 is restricted to an
interval

— Okmy < 0 < —0Okymy,s (1.56)

where t™) and t("2) are adjacent to t¥). We suppose that f () and g (t) increase
in magnitude sufficiently rapidly at infinity so that the integral (1.53) converges
for all values of 6 in the interval (1.56). Since the orientation of €(¥) () reverses
after a phase change of 271, we have

0 < Oy — Okm, < 271,

and 0y, — Ok, = 27T occurs, for example, when there is only one saddle point
that is adjacent to ().
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The resurgence relation for T (z) can be written down directly from the
known results for T(K/2) (z). We use (1.28) with 2N in place of N to expand the
functions T(*/?) (z) and T/2) (ze?™) in (1.55), which, after some simplification,
yields

N=1 (k) ®
™™ (z)= Y} o TRV (@), (1.57)
n=0

where the coefficients aEP are given by

() _ /o) _ T(nt3) / g (1) 4
LU

I =0 = 27

_ L(ntz) [d> (112 \"E
= i +21) [dtzn (g (t) (W) t:t(k). (1.58)

The ratio of the two gamma functions in front of the second expression may be

simplified to v/7127%" /T (n + 1). The remainder term Rg\],() (z) is given in terms
of the remainders of the expansions for T*/2) (z) and T¥/?) (ze?™) as

1 7Tl
RY (2) = 5 (R (2) + R (ze2)).

The final result follows by employing the representation (1.36) for the right-
hand side and combining the terms corresponding to the same adjacent saddles.
This step is justified provided that (i) the set of saddle points which are adjacent
to t*) is non-empty and finite, (ii) each of the adjacent contours contains only
one saddle point, (iii) g (f) /fNJF% () = o(|t| ") as t — oo in AK), and (iv) the
integrals in (1.33), with 2N in place of N, exist for each of the adjacent contours.
Under these conditions, we have

T (ue~%n)du,  (1.59)

R(k) (Z) B 1 Z (_1)7km /+oo MN_le_|‘ka|”
N - 2mizN & elNOw Jo o 1 — u/zei%mn

which is the required representation of the remainder, expressed as a sum in-
volving integrals through the adjacent saddles. Equations (1.57) and (1.59) to-
gether yield the exact resurgence formula for T) (z).

1.2.2 Cubic dependence at the saddle point

Here we consider the resurgence properties of integrals of the type

128/3) (3) — [g(k)(e) e g (1) dt, (1.60)
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where (%) (8) is one of the three doubly inﬁnite paths of steepest descent pass-
ing through the second order saddle point t¥) of f (t) along the two valleys of
Re[—el?(f (t) — f(tW)))]. The functions f (t) and g (t) are supposed to be an-
alytic in a domain A¥), whose closure is the set of all the points that can be
reached by a path of steepest descent issuing from t(*). Furthermore, we as-
sume that |f (t)| — +o0in A®), and f (¢) has several other second-order saddle
points in the complex t-plane at t = +(P) labelled by p € IN.
Instead of the integral (1.60), we consider its slowly varying part, given by

TK/3) () & 32 (1) [(2K/3) (1) — 23 ﬂgm(e) e g (rydt,  (161)

where the cube root is defined to be positive when 6 = 0, and it is defined
elsewhere by analytic continuation (cf. equation (1.51)). With the notation of
Subsection 1.1.3, the contour of integration can be written as either €% (§) =
2K (9) U 2H) (6+27r) ¢® (0) = 20 (9)u 2K (0 +4m) or €0 (8) =
28 (9 +271) U 2K (9 + 471), depending on the choice of the doubly infinite
steepest descent path in (1.60). We consider only the first case, the other two can
be treated in a similar manner. The orientations of the contours are chosen so
that both 2K (9) and 2" (6 + 277) lead away from (), and the orientation of
%%) (9) is the same as that of 22(%) (9). With this convention and the definition
(1.38), we can write

(2K/3) () — 3 / —2(f()—f(t®)) ot / —z(f(H)—f(1®))
T2 (z) = 25 200 g (H)dt—z3 120 g (t)dt

_ %(T(k/?)) (z) — o FiT(k/3) (Zezm))'
(1.62)

We assume that the integration contours 2% (§) and #®*) (6 + 27r) do not en-
counter any of the saddle points of f (t) other than t(), and that 6 is restricted
to an interval of the form (1.56). Furthermore, we suppose that f () and g (t)
increase in magnitude sufficiently rapidly at infinity so that the integral (1.60)
converges for all values of 6 in that interval.

We now apply (1.44) to expand the integrals T*/3) (z) and T*/3) (ze?™) in
(1.62), which, after some simplification, gives

N-1 (k/3)
T (7) = 2 Ze 5 i“(n(”3+1)>aiz +RY (2),  (163)

with the remainder

REYY (2) = 3 (RY (2) — e FIRYY (2™, 164)
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The resurgence relation for T(%/3) (z) follows by applying the representation
(1.52) for the right-hand side of (1.64) and combining the terms which corre-
spond to the same adjacent saddles. This step is justified provided that (i) the set
of saddle points that are adjacent to +(*) is non-empty and finite, (ii) each of the
adjacent contours contains only one saddle point, (iii) g (¢) / f =n (1) =o(|t]™)
as t — oo in A, and (iv) the integrals in (1.49) exist for each of the adjacent
contours. With these assumptions, we find

1\ Vkm 400
R/ () = 1 N ( .i) / Y1 o | P
67Tiz3 W e'3%m JO
_27T(N+1)i
X ( 1 _ e 3 1 )T(Zm/?»)(ueiakm)du’
1—(u/ze%n)3  1—(u/zel%mn)3 o= Fi

(1.65)

bearing in mind that the sets of adjacent saddles are identical for the functions
Tk/3) (z) and T/3) (ze?™). Equations (1.63) and (1.65) together form the exact
resurgence relation for T(%/3) (z).

1.3 Asymptotic expansions for the late coefficients

The aim of this section is to investigate the asymptotic behaviour of the coeffi-
cients asf), aglk/ ?) and a,gk/ 3 introduced in Section 1.1. Tt is well known that the
early coefficients are determined by the local properties of the integrand at the
tinite endpoint of the integration contour. However, as we shall see very soon,
the form of the coefficients when n gets large is dictated by the global proper-
ties of the integrand, more precisely by the behaviour of the integrand at all the
adjacent saddle points.

There has been a recent interest in finding explicit formulae for these coef-
ticients (see [56], [70], [119] and [120]). In general, the form of the early coeffi-
cients gets extremely complicated rapidly (see, e.g., [98, eq. (1.2.15), pp. 11-12]).
Conversely, the asymptotics of the late coefficients admits a surprisingly sim-

(e)

ple and universal form and hence provides an efficient way of computing a;,”,
aﬁlk/ ?) and aglk/ 3 for large n. Furthermore, if the set of saddle points of the phase
function is finite, these asymptotic approximations for the late coefficients can
be used to determine, in a purely algebraic manner, which saddles are adjacent
to the endpoint and which are not. For a detailed discussion of this method,

together with examples, the reader is referred to the paper of Howls [46].
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1.3.1 Asymptotic evaluation of the coefficients aﬁle)

Throughout this subsection, we suppose that all the conditions under which
formula (1.20) holds true are satisfied. Suppose we put N + 1 in place of N
in (1.10), and consider the difference between the two right-hand sides. Using
(1.20), one immediately infers that

2 _ 1 Z (—1)7em
" 2711 ei(n-i‘%)(fem

m

+o00 i
/ ul’l—%e—‘]‘—em‘”’r(m) (ue_la’?m)du, (166)
0

where we have written 7 in place of N. This is a third representation for the
coefficients agf), different from (1.11) or (1.12). Now, under appropriate condi-
tions, the functions T(") (ue~'%n) can be expanded into truncated asymptotic

power series in inverse powers of u with remainders

T(m) (ue_igem) — Nmz_l a}(,m) eirUe;n + R(m) (ue_iaem) (1 67)
— 7 N, .
r=0

(cf. equation (1.57)). Substituting these expansions into (1.66) and integrating
term-by-term gives us

1
7’Z+7 —0

@ _ 1 v (D" (RS 1 (0)
a, _Zﬂi; S 2 ay ' Fo I | n r—i—z + AN, (n) |, (1.68)
em

with the remainder terms
1 +oo .
AY (0) = | Fop|"*2 /0 u'=2e el R (yeicen) duy.

To ensure the convergence of these integrals, we require N,, < n. Formula
(1.68) relates the late coefficients of the asymptotic power series of an integral
with linear endpoint to the early coefficients of the asymptotic power series of
integrals over doubly infinite contours passing through the adjacent saddles.
Expansions of type (1.68) are called inverse factorial series in the literature. Nu-
merically, their character is similar to the character of asymptotic power series,
because the consecutive gamma functions decrease asymptotically by a factor
n. In most applications, it is possible to establish explicit bounds for the remain-
ders Ag\e]’l (n). With these bounds in hand, we can use (1.68) for the numerical
computation of the coefficients a,(f) for large n.

If there is a value of m, say m, for which |F,;| is less than | F,| for all the
other adjacent saddles, then at leading order
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(111) 1
© . (_qyren %0 L(1+3)
o D T o
‘Ferﬁ
as n — +00.° This reveals the characteristic “factorial divided by a power”

growth of the late coefficients of the asymptotic expansion of an integral with
linear endpoint discovered originally by Dingle using the Darboux theorem.
Dingle called F,; the “chief singulant”. In addition, he gave a complete expan-
sion which might also be derived from (1.68); one has to take the contribution
only from the adjacent saddle which corresponds to the chief singulant, neglect
the remainder term and formally extend the sum over r to infinity (see [35, eq.
(13), p. 145]).

Dingle also suggested another way of deriving approximations for the late
coefficients by using the method of steepest descents itself. In the remaining
part of this subsection, we provide a rigorous treatment of this approach. We
begin by deforming the small loop around e in (1.11) out to the boundary of A()
and hence obtain

(e) r (1’1 + 1) Yem g (t)
ay = —F5 —1 dt
2711 ; ( ) /%(m) (f (t) o f (e))nJrl
CT(n41)  (—1)7 1) () ()
T 2m ; Frirl [M e g (t)dt, (1.69)

where we have taken & (t) = log(f (t) — f (¢)). We would like to apply the
method of steepest descents for the integrals in (1.69). The saddle points of & ()
occur at the zeros of f’ (t) that is, they coincide with the saddle points of f (¢).

Since
B (#) = h(E™) = Tog (1 £ ;f(t(m))> ,

for each value of m in (1.69), the quantity  (t) — h(t!™) is real and positive for
values of t on each half of the contour €(") (—0,,) before and after the saddle
point t"). Thus, the adjacent contours are paths of steepest descent for the
integrands in (1.69). Furthermore, each of these contours contains exactly one
saddle point of /1 (t). Therefore, we can apply the method of steepest descents
directly to the integrals in (1.69) to obtain the complete asymptotic expansion

em 00 (m)
(e) 1 I'(n+1) « (—1)7 by
a,’ ~ E E 1.70
27i (n—|—1)% m Jennj—l r= O(n+1) ( )

SHere we assume that “0 7& 0, or equivalently that g(+(™)) # 0.
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as n — +o0. The leading coefficients are as follows

1
27t Fem \ 2
b(()m) _ ( f”em) g,
1
b(m) B 271 Form\ 2 9f//3g + Fom (Sf///Zg N 3f//f////g . 12f//f///g/ + 12f//2g//)
1 - f/l 24f//3 ’

where the various derivatives of f (¢) and g (t) are evaluated at the adjacent
saddle points t("). The expressions for the higher coefficients are successively
more complicated. The correct branch of the square root in forming these coeffi-
cients is specified as follows. As we remarked above, the quantity / (t) — h(t(™))
in (1.69) is real. Moreover, as n — -+oo the value of the integral in (1.69) be-
comes gradually dominated by the local behaviour of the integrand at the sad-
dle point ™). Hence, the correct branch of the square root must be chosen so

that arg((fem)%) — arg(f” 2 (t™M)) equals the angle which the tangential direc-
tion vector at t = (") forms with the positive real axis, taking into consideration
the direction in which the contour €™ (—0,,,) is traversed. Our result (1.70) is
in agreement with that of Dingle [35, exer. 11, pp. 153-154], provided that only
the contribution from the saddle corresponding to the chief singulant (which
is supposed to be unique) is taken into account. Alternatively, (1.70) can be
derived directly from (1.68) by introducing the large-n expansions

F(n—r—l-%)N 1 , (2r+1) (2r +3)
I'(n+1) (n—l—l)rJr% 8(n+1)
+(2r+1)(2r+3)(2r+25)(67’+5)+___>
384 (n+1)

and rearranging the inner sums in descending powers of 1 4 1. This alternative

approach also provides us with expressions for the coefficients bﬁm) involving

the singulant F,,;, and the coefficients aﬁm).

Although the expansion (1.70) might initially appear to be simpler in form,
using the inverse factorial series for approximating late coefficients is a more
natural choice, due to their having explicit remainders and the direct relation
of their terms to the coefficients of the asymptotic power series of integrals

through the adjacent saddles.

1.3.2 Asymptotic evaluation of the coefficients al’?

Throughout this subsection, we assume that all the conditions under which the
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representation (1.36) holds are satisfied. Similarly to the formula (1.66) for a,(f),

. . k/2
we can express the coefficients a,(1 /) as

k2) _ 1 (=)
e

n
P el 2 0km

too i
/ uf_le_‘]:km‘uT(m) (ue—l‘fkm)du, (1.71)
0

by making use of (1.36). This is a third representation for the coefficients aglk/ 2),

different from (1.29) or (1.30). Now, under suitable conditions, the integrals
T(m) (ue™1%n) can be expanded into truncated asymptotic power series in de-
scending powers of u with remainder terms,

(m) =0k — et ﬁ ir Oy (m) —i0)y,
TV (ue )=) e + Ry (ue ). (1.72)
r=0

We substitute these expansions into (1.71) and integrate term-by-term to obtain
the inverse factorial expansion

(k/2) _ 1 (_1)7}% Nou 1 (m) —r E_ (k/2)
o _Zni; Fi r;)”r J:kmf(z r>+ANm (n) ], (173)

with the remainders
400
0

A (1) = | Fnl? [ e PR (w7

To insure the convergence of these integrals, we require 2N,, < n. Formula
(1.73) links the late coefficients of the asymptotic power series of an integral
with quadratic endpoint to the early coefficients of the asymptotic power series
of integrals over doubly infinite contours passing through the adjacent saddles.

With suitable bounds on the remainders A%’;ﬂi 2) (n), the result (1.73) provides an

effective way of calculating numerically the coefficients a,(qk/ 2 for large values of
n. Equation (1.73) is the full and rigorous form of Dingle’s formal expansion for
the late coefficients in the asymptotic power series of integrals with quadratic
endpoints (see [35, eq. (12), p. 145]).

If there is a value m of m, for which |Fj;;| is less than | Fy,,| for all the other
adjacent saddles, then at leading order
%" I'(3)

(k/2) ~ (—1) ki
fn SRR 7
m

asn — +o0, implying that the late coefficients in quadratic endpoint expansions
also behave like a “factorial divided by a power”.
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Boyd [15] also addressed the problem of finding asymptotic approximations
for the coefficients a,gk/ 2)
is, he studied the coefficients a,(qk) in the asymptotic power series of an integral
through a first-order saddle point (cf. equation (1.57)). In what follows, we de-
rive complete expansions in inverse powers of 1 4 1 (for n not necessarily even)
of which Boyd’s approximations are special cases. The derivation is analogous
to that of (1.70). We start by expanding the small loop around ) in (1.29) to

the boundary of the domain A¥) and thus obtain

aglk/2) _ F(nT—H> Z(_l)’ykm/ g(t) dt

2 A (f (1) — F(1H0))"
L") ¢ (=17 — L () —h(tM))
- 2w ; Fo [gwe ’ g (t)dt, (1.74)
m

. He considered the particular case when 7 is even, that

where we have denoted / (t) = log(f (t) — f(tX))). We observe that the saddle
points of /i (t) coincide with the saddles of f (), and that the adjacent contours
€M) (—0y,y,) are paths of steepest descent for the integrands in (1.74). Since
each adjacent contour contains exactly one saddle point of / (t), we can apply
the method of steepest descents directly to the integrals in (1.74) to obtain the
asymptotic expansion

(1.75)

w2 1 T("F) Z(—l)”m 52
' m (

as n — +oo. The initial two coefficients are given by

1
27T Fiem \ 2
”((’m):( 7 ) 8

b(m) B 27 Fn 1 9f"3g+ Fim (5f///2g o 3f//f////g - 12f//f///g/ 4 12f//2g//)
1 - f/l 24f//3 ’

where f (t), g(t) and their derivatives are evaluated at the adjacent saddle
points t(™). The correct branch of the square root in these expressions is spec-
ified analogously as for the expansion (1.70). In particular, the leading order

approximation for a,gk) = ag;/ ?) is then found to be

w . Tn+3) y

(27 (n + %))% m ffmf”%(t(m)) (2”)

(=) g(t) T (n) 1) gt )
2 ; Fp 3 (8m)
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as n — oo, in agreement with the results obtained by Boyd (cf. [15, egs. (13)
and (17)]). Another way of deriving (1.75) is by substituting into (1.73) asymp-
totic expansions for the gamma function ratios I' (4 —r) /I'(“4}) in inverse

powers of nn 4 1.

1.3.3 Asymptotic evaluation of the coefficients al’?
Throughout this subsection, we suppose that all the conditions under which
formula (1.52) holds are satisfied. We proceed as before and express the coeffi-

cients a,(qk/ %) in terms of integrals through the adjacent saddles as

(ks3) 1
e

m

(_1)'Ykm

T
e!3%m

+oo i
/ u%71e7|fkm|uv1—v(2m/3) (ue*w'km)du, (176)
0

by making use of the formula (1.52). This is a third representation for the co-
efficients a,gk/ 3), different from (1.45) or (1.46). Following the previous subsec-
tions, we substitute into (1.76) truncated asymptotic power series expansions
for the functions T(2"/3) (ue~'%n). Changing the orientation of the contours
& (m) (—0kn) (and hence the values of the orientation anomalies 7,,) if neces-
sary, we may assume without loss of generality that each of these expansions

has the form

Npu—1 (m/3)
TE/3) (i) = g 5 S, (ﬂ(r+1)> a &30
35— 3 ' (1.77)
+ Ry (ue ),

(cf. equation (1.63)) with an appropriate branch of (f (¢) — f (t(’”)))% in the ex-

pression defining the coefficients a,"/~. Substitution of the expansions (1.77)
into (1.76) and term-by-term integration yields

. Ykm Nmfl nlr .
A9 _ L~ () ( =t - (3+1>lsin(7r(r—|—1))

Tl o\ &
km -

(1.78)

xaﬁm/s)]:fmf (n ; r) + A%{f) (n)>,
with the remainder terms

5 4o ; )
Ag\]](/3) (7’[) — % / u?flef‘}—km‘”Rl(\?m/?)) (ue*w'km)du.
m 0 m



CEU eTD Collection

30 Chapter 1. General theory

To guarantee the convergence of these integrals, we require N, < n. Formula
(1.78) relates the late coefficients of the asymptotic power series of an integral
with cubic endpoint to the early coefficients of the asymptotic power series of
integrals through the adjacent saddles. For in the case that computable bounds
(k/3) (n), the result (1.78) provides an effi-
cient way of calculating numerlcally the coefficients ay"? for large values of n.
Equation (1.78) is the complete and rigorous form of Dingle’s formal expansion
for the late coefficients in the asymptotic power series of integrals with cubic
endpoints (see [35, eq. (20), p. 147]).

If there is a value m of m, for which | F;| is less than | Fy,,| for all the other
adjacent saddle points, then at leading order

are available for the remainders A

m/3) _m
ll(k/3) -~ (_1)71(771 a(()m )e 3 F(%)
2\/§7T ‘Fk%ﬁz

n

as n — -+oo, revealing that the late coefficients in cubic endpoint expansions
also have the “factorial divided by a power” form.

For the sake of completeness, we also discuss the corresponding asymptotic
expansion in descending powers of n + 1. The derivation is akin to those of
(1.70) and (1.75). We begin by deforming the small loop around ) in (1.45)
over the adjacent contours and hence obtain

2k73) _ r(=) Z(_l)vkm/ g (t) d

27 ) (f (£) — f(ER))"S
L) - (=)™ — L (h(£)—h(tm))
- 2 ; F5 [g(m)e i g (t)dt, (1.79)
km

where we have taken 1 (t) = log(f (t) — f(t©))). We note that the set of saddle
points of /i (t) is identical to the set of saddles of f (t), and that the adjacent
contours € (") (—gy,,) are paths of steepest descent for the integrands in (1.79).
Since each adjacent contour passes through only one saddle point of & (t), we
can apply the method of steepest descents directly to the integrals in (1.79). By
changing the orientation of the contours € (") (—ay,,) if necessary, the complete
asymptotic expansion can be written as

i )T & (r41). 1y (m/3)
o&3) 3 Z Y e (3+1)lsin(7r(r+1)>3 b, (1.80)

3 (n+1%m k"’: = 3 (n+1)

Q=

when n — +oc0. The leading coefficients are given as follows
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1
m/3) _ (1 6Fkm  \* (m)
bO =TI (3) (f/”(t(m))) g(t )/

3 (2N [ 6Fim \ P 6" (EM)g (M) — (1)) g((m)
bl =T (5) (f”/(t(m))) 6f///(t(m)) ’

with a suitable branch of the cube roots. An alternative way of deriving the
result (1.80) is by substituting into (1.78) asymptotic expansions for the gamma
function ratios I (“5%) /I'(“41) in negative powers of n + 1.

1.4 Exponentially improved asymptotic expansions

The main emphasis of this section is on the Stokes phenomenon and the expo-
nentially improved asymptotic expansions. In Subsection 1.4.1, we discuss how
the resurgence formulae can be continued analytically across the Stokes lines. In
Subsection 1.4.2, the concept of the terminant function is introduced, which will
be utilized in Subsections 1.4.3-1.4.5 to derive exponentially improved asymp-
totic expansions for the functions T() (z), T/2) (z) and T*/3) (z) (the corre-
sponding results for T(Y) (z) and T(2/3) (z) may be derived using the connection
of these functions with T(*/2) (z) and T¥/3) (z), respectively).

1.4.1 Stokes phenomenon and continuation rules

Consider the integral T(¢) (z) defined in (1.3), with § = arg z being restricted to
an interval

- Ugml < 9 < _O—sz, (181)

where t("™) and t("2) are adjacent to e. Suppose that f (t) and g (t) grow rapidly
enough at infinity for the integral (1.3) to converge for all values of 6 in the
interval (1.81). As we vary 6 in the range (1.81), the steepest descent contour
2(¢) () varies in a continuous manner, and (1.3) defines an analytic function of
the complex variable z. When 6 passes through the value —0o,, (m = my or my)
however, the path 22(°) () hits the adjacent saddle t™) and jumps, resulting
in a discontinuity of T(¢) (z). Nevertheless, the function defined by T (z) in
the sector (1.81) can still be continued analytically beyond the ray 6 = —oey; by
adding to the original integral (1.3) a further contribution, which is exponen-
tially small in magnitude compared to T®) (z). To understand the origin of this
contribution, consider the discontinuous change of 22(¢) (6) as 6 passes through
—0em, illustrated schematically in Figure 1.3. For simplicity, we assume that 0
increases through —o5y,, that is m = my. The case of m = m; can be treated in



CEU eTD Collection

32 Chapter 1. General theory

Figure 1.3. An example of a Stokes phenomenon (5 > 0). (a) The steepest de-
scent path from e before it encounters the adjacent saddle t("™2). (b) The steepest
descent path from e connects to the adjacent saddle t\"2). (c) The discontinu-
ous change of the steepest descent path from e gives rise to a discontinuity of
the function T'®) (z). (d) The steepest descent path from e has passed through
the adjacent saddle t"2). The analytic continuation of T\®) (z) now includes
the integral along the adjacent contour € ("2),

a similar way. It is seen from Figure 1.3 (b) and (c) that if 0 = —0y,,, then the
following equality holds

/ o e 2O~ g (1)dt =
Uemz)

FO-F@) o (£)df + (—1)Tem / ~2(F()—£() 4 (1) dt
/ SO+ ) e 40

—z /@( e—z(f(t)—f(e)) ¢ (£)dt + (—1)7"2 Zhe~Fom2T(m) (5

P (~emy)

where the contours gzj(: ) (—0em,) are those defined in (1.13). It is now clear that
if we wish to continue our function analytically through the line 6 = —05y,,, the
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quantity
(_1)'761112 Z%e*}—emzzT(mZ) (Z) (182)

has to be added to the integral T(¢) (z) when 6 > —0,,,. This result is in agree-
ment with the observation made by Dingle based on his formal theory of ter-
minants [35, eq. (7), p. 454]. Now, T("2) (z) = O (1) for large z (cf. equation
(1.57)) and PRe (Fem,z) > 01if 6 is close to —0ep,, implying that (1.82) is indeed
exponentially small compared to T(®) (z). With the above argument, the func-
tion remains analytic until 6 reaches another critical value. At this point, the
contour 2 (8) (or €2 ()) runs into an adjacent saddle and changes dis-
continuously again; therefore the introduction of an additional term is required
in order to keep our function continuous (and analytic).

Let us now consider how the introduction of (1.82) affects the asymptotic
expansion of the function. In the sector (1.81), we have the asymptotic power
series

T (z) ~ Y (1.83)

(e)

as z — oo. This can be verified by estimating the remainder term Ry’ (z) in
(1.10), or by a direct application of the method of steepest descents to the inte-
gral (1.3). Suppose now that —0ep, < 0 < —0ep;, where t(m3) g adjacent to e
(or to t("2)). Furthermore, assume that the integrals T(¢) (z) and T("2) (z) exist
and are analytic in this sector. The asymptotic expansion of the integral T(¢) (z)
in this sector is still given by (1.83). However, the (analytic) function that was
originally defined by (1.3) is now expressed as the sum of T(°) (z) and (1.82),
and therefore it has the asymptotic expansion

T© (2) + (=1)"m zze Fem?T(m) (2 ~

o (¢) oo (1m2) (1.84)
a em ..Fem ar
v Y (T ate T )

as z — oo in the sector —0ey, < 60 < —0em,. Thus, the introduction of the
quantity (1.82) results in a discontinuous change in the form of the asymptotic
expansion of the function across the ray 6 = —0,,,. The sudden appearance of
the second (exponentially small) expansion in (1.84) is an example of the Stokes
phenomenon (see, e.g., [98, Sec. 1.7.1]). The line 0 = —0ey,,, that gives rise to this
extra contribution, is a Stokes line. Hence, in a sense the Stokes phenomenon
is a consequence of the presence of adjacent saddles, as is the divergence of the
asymptotic expansions in (1.83) and (1.84) (for the latter, see [13]). Now, let é be
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a small fixed positive real number and consider the sector

— Gemy < 8 < —Oemy + 5 — 6. (1.85)
For such values of 6, Re (Fen,z) = |Fem,z|sind > 0, and consequently the sec-
ond expansion in (1.84) is exponentially small compared to any of the terms in
the first one for large z. Even if —0ey, < —0em, + % — J, the additional expan-
sions arising from further Stokes phenomena do not contribute asymptotically
in the sector (1.85). A similar analysis of the case m = m; then shows that
the analytic continuation of T®) (z) through the rays 8 = —0ey,, —0em, has the
asymptotic power series given on the right-hand side of (1.83) as z — oo in the
larger sector

T T
—Oem, _§+5< 0 < —Uemz—i-z—é.

We would like to emphasize, however, that in the sector —oep, < 6 <
min (— ey, —0em, + 5 — J) for example, the asymptotic expansion (1.84) is nu-
merically a better approximation to the function than the asymptotic power
series (1.83). On the line § = —0o,y, + 5, the two asymptotic expansions in
(1.84) become comparable in magnitude to each other, which means that it is an
anti-Stokes line. We remark that in some references, the notions of Stokes and
anti-Stokes lines are interchanged.

We shall now show that the resurgence formula, which we discussed in Sub-
section 1.1.1, automatically incorporates the Stokes phenomenon. The resur-
gence relation given by (1.10) and (1.20) was proved under the condition that 6
is restricted to an interval of the form (1.81). This is the largest possible do-
main of validity, because the denominators of the integrands corresponding
tom = mq; and m = my have zeros at u = ze'%m and u = zei‘fe’”z, respec-
tively. Consider the problem of analytic continuation of T(®) (z) into the sector

—Oem, < 0 < —0ems, where $(m3) jg adjacent to e (or to t(mZ)). It is evident from
(1.10), that we can restrict ourselves to the investigation of RZ(\? (z). Each term
in (1.20) is analytic when 6 = —0,;;,, except that corresponding to m = mj. As
6 increases beyond —0,y,,, the pole at u = ze'%"™ arising from the denominator
is entrapped: consequently, the analytic continuation of Rgf}) (z) to the sector
—Oemy < 0 < —0em, is still given by the formula in (1.20), but with the term

(=)

ZN—_lzN—%ef}}mZzT(mz) (z) = (—=1)7em 23 e~ Femy 2T (m2) (2)

added to the right-hand side. This is precisely the extra contribution (1.82) that
we have found earlier by examining the discontinuous change of the steepest
descent path 2(¢) (). Note that this extra contribution is independent of the
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truncation index N of the asymptotic power series, a known aspect of the Stokes
phenomenon.

It can be shown in an analogous manner that the resurgence formulae for
integrals with quadratic and cubic endpoints also incorporate the Stokes phe-
nomenon. First, we remove the roots in the denominators of the integrands in
(1.36) and (1.52) by the rationalizations

1

1 1 1 1 uz
B i T - 1.86
1—- (u/ZeiUkm)% 1 —u/zel%n - 23 el30km 1 — u/zel%m (1.86)

and
1 B 1 L1 us L1 2

1-— (M/Zeiakm)% B 1- M/Zeiakm Z% ei%gkm 1—- M/Zeigkm Z% ei%akm 1— I/I/ZeiUkW /
(1.87)

respectively. A Stokes phenomenon occurs when 2% (§) encounters an ad-
jacent saddle +("), which introduces an exponentially small contribution. This
extra contribution may be written in both cases as a sum of residues which arise
from the poles at u = zel%. They are found to be

+ (—1)"m 2e=Fim2 T (2) and 4 (—1)"m 3e=TnzT(21/3) (7) (1.88)

in the cases of integrals with quadratic and cubic endpoints, respectively (cf. [35,
egs. (13) and (18), pp. 455-456]). The upper or lower signs are taken in (1.88)
according as 0 increases or decreases through —oe;,.

1.4.2 The terminant function

The idea of re-expanding the remainder of a truncated asymptotic expansion
into another asymptotic expansion, in order to improve its numerical efficacy,
dates back to the 1886 paper of Stieltjes [105]. In Stieltjes” work, the object of
re-expansion was not the remainder but the so-called converging factor, which
is the ratio of the remainder and the first omitted term. The converging factors
of many of the known asymptotic expansions were later studied extensively by
Airey [2] in 1937 and by Miller [66] in 1952. Numerical computations confirmed
the soundness of their results, nevertheless, the methods used by these authors
were entirely formal and non-rigorous. In his 1974 book [95, pp. 522-536],
Olver revisited the problem and proved rigorous results for the converging fac-
tors of the asymptotic expansions of the exponential integral and the confluent
hypergeometric function. Olver’s ideas were widely extended later by Olde
Daalhuis [82,83] in the early 1990’s. The general disadvantage of these type of
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re-expansions is that they are valid only in relatively small sectors of the com-
plex plane.

A different theory of converging factors was developed by Dingle in a se-
ries of papers [29-34] written in the 1950’s, and in a research monograph pub-
lished in 1973 [35]. Dingle showed that the converging factors of a wide class of
asymptotic expansions can be expressed in terms of certain functions he called
“basic terminants” and demonstrated the power of his method through vari-
ous examples. Nonetheless, Dingle’s investigations were based on interpretive,
rather than rigorous, methods.

In the late 1980’s, based on the ideas of Dingle, Berry [5,6] gave an interesting
formal argument which shows that, assuming optimal truncation, the transition
between the two different asymptotic expansions in adjacent Stokes sectors is
effected smoothly and not discontinuously as in previous explanations of the
Stokes phenomenon. Berry’s work was put in a rigorous mathematical frame-
work by Olver [90,92], Boyd [12], Jones [49], Berry and Howls [8] and Paris [97]
using integral methods, and by Olver and Olde Daalhuis [85] using differential
equation methods.

In this work, we follow the approach of [8] and establish re-expansions of the
remainder terms of (optimally) truncated asymptotic expansions of integrals of
the form (1.1). The truncation error of these re-expansions is then found to be ex-
ponentially small in comparison with the original asymptotic expansion, hence
the term “exponential improvement”. These exponentially improved asymp-
totic expansions, in contrast with those given by Olde Daalhuis [82,83], are not
expressed in terms of elementary functions, on the other hand they are valid in
large sectors of the complex plane.

Following Olver [90], we define the terminant function T}, (w), for Re (p) >
0, by

T dof eTipypl—Pe—w [ +oo pp—lg—t
A /o Wt
when |¢| < 71, and elsewhere by analytic continuation (here and subsequently,
we write ¢ = argw). This function will be the building block of our expo-
nentially improved asymptotic expansions. The terminant function is directly
related to the incomplete gamma function via (cf. [96, eq. 8.6.4, p. 177])

dt (1.89)

Ty (w) = wf(l —p,w).

27ti
Dingle’s original terminants A, (w), IT, (w) may be expressed as

27rie” 1P
T, ()

M (@)= =F 00
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and

11 (w) — ﬂwiﬂ‘l (e(w—F%)iT (we%i) . e—(w—l—%)iT (we—gi))

p T ( p+ 1) p+1 p+1 ’
although we shall not use this notation in our work. Dingle also gave alterna-
tive re-expansions in terms of “reduced” and “compound” derivatives of these
terminants [35, egs. (10) and (12), p. 433], which have not been investigated yet
and might be the subjects of future research.

Various properties of the terminant function can be deduced from those of
the incomplete gamma function. For the derivation of exponentially improved
asymptotic expansions, the asymptotic behaviour of T, (w) when w is large and
p ~ |w| has to be known. In the important paper [93, egs. (2.9) and (2.11)],
Olver gave the following uniform estimates, valid when w is large and |p — |w]]
is bounded:°

e PO(e ¥y if |g| <,
T = 1.90
p (@) { O (1) if 7<|p| <3m—34, (1.90)

with an arbitrary small positive §. Concerning the smooth interpretation of the
Stokes phenomenon, the following more precise asymptotic formulae can be

used: 1 ol (o)
1 1 1 2 e 21wic?
T, (w) = 5t Eerf (c((p) (E |w])2> +0 <—> (1.91)

provided —7t 46 < ¢ < 37 — 6, and

| 1 ~Ywl@(=9)
1y )=+ Jert (e () ) +0 ()

|w]?
provided —37 4+ < ¢ < 7m — 4. Here erf denotes the error function [96, eq.
7.2.1, p. 160], and the quantity ¢ (¢) is defined implicitly by the equation
23 (@) =1+i(p—m) —ele—)

and corresponds to the branch of c (¢) which has the following Taylor series
expansion in the neighborhood of ¢ = 7:

c(9) = (p=m)+ 2 (9= 7P =5 (9= = g (g4 (199)

The asymptotic approximations (1.91) and (1.92) are, in fact, the leading terms of
two asymptotic expansions due to Olver [90,91]. Slightly different asymptotic
expansions were given by Boyd [12].

®In the paper [93], Olver uses the alternative notation F, (w) = ie 7P T, (w) for the termi-
nant function.
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1.4.3 Exponentially improved expansion for T (z)

Consider the integral T(¢) (z) given in (1.3), with § = arg z being restricted to an
interval

- Ueml < 9 < _Uemz, (1.94)

where t(") and t("2) are adjacent to e. Suppose that f (t) and g (t) grow suffi-
ciently rapidly at infinity so that the integral (1.3) converges for all values of 0
in the interval (1.94). In order to make the presentation simpler, we also assume
that there are no further saddles adjacent to e other than ¢("1) and t("2) and that
| Femy| = |Fem,|.” By (1.10) and (1.20) we have, under appropriate conditions,
that

L g
T (z) = ) 2 +RV (2), (195)
n=0
with
1 (_1)7@7411 400 uN—%e—‘]:gmlW »
R(e) — / _ T ml) 10em d
N ( ) 27rizN ei(N—i—%)(reml 0 1—u/ze“’em1 (ue 1) u

T(m2) (ue*wf’”z )du

LG e e
27TiZN ei(N‘i’%)Uemz 0 1— u/zeio'emz

for all non-zero values of z in the sector (1.94) and with a sufficiently large N. We
now proceed by replacing the factors T("1) (ue™"%m ) and T(") (ue %) in the
integrands by their truncated asymptotic expansions (1.67). This is reasonable
because the integrands are dominated by their behaviour near u = N/ | Fep, | =
N/ |Fem,|, whose value will be chosen later to be ~ |z| with z being large. We
thus find that

1 (_1)’)/67711 N’”lil +oo uN—T—%e—lfeml‘u

Z aﬁml)elr@ml / — du
—0 0 1 _ u/ze ety

RY (2)

- 27TIZN ei(N“v‘%)%m

Niny—1 1
1 (=17 7% a(mz)eirve;n2/+oo ulN=""z¢ |f‘-”"2|”du (1.96)
271izN Gi(N+3)0em, ! 0 1— 1/ zei%m

r=0
TR, Ny (2

7Tt appears that this is the most common case in applications. If | Fop, | # |Fem, |, the expo-
nentially improved expansion becomes more elaborate; an example of this case is provided by
the Hankel and Bessel functions of large order and argument discussed in Section 3.1.



CEU eTD Collection

1.4. Exponentially improved asymptotic expansions 39

with

1 _
1 (=1)m /+°°uN—ze Femi )
01— u/zelf%m ~Nm

i N—1 = |Femy |u
1 (_1) emy /+oo u 2e | em2| R(mz) (uefia"mZ)du
27izN Gi(N+3)oemy Jo 1 — u/zel%m Niny

(6) _ —i0em
Rlemez (Z) - 2mizN ei(N-l—%)aeml (ue 1)du
(1.97)

for —oem, < 0 < —0em,. To ensure the convergence of the integrals in (1.97), we
require Ny, Ny, < N. Because 0 < 0, — Oem, < 27 and therefore

|arg(]-"emlze_m)| =0+ 0o, — | <7

and .
| arg(Fem,ze™)| = |0 + Oem, + 71| < 7,

the definition (1.89) can be used to express the integrals in (1.96) in terms of
terminant functions as follows:

+00 uN*T*%e*U:eml lu ZeiUeml +o0 tN*V*%e—t
/0 1 —u/zel%m du=- N-r—3 Jo F ze—”i+tdt
u/ze |~7:em1| 2 emy
_ . i(N—=r+3)em; JN—14+1 —Fom. 2 —i
= —2me( 2) ez 2e Tem N_H%(}—elee )
and
/+oo uN—r—%e—\]:gmz\u Zeiang +oo tN—r—%e—t
y du = — .
ic, 1 7Tl
0 1—u/ze%m |~Fem2|N =3 J0 Fempze™ + t
_ o i(N=14+3)oemy N—r4+1  — Fom,z i
= 27(1e( 2) emy z 2 Tem TN_H% (femzze )
Thus from (1.95) and (1.96)
() N1 gl 11 _F Ny 1 g m) ,
e _ n _ 1) Yem 5 A= z “r —ri
T (@)= ¥ Wy (cayen e T Y I (Fyze )
n=0 r=0
Niny =1 () . (1.98)

+ (_1)%m2 Z%e_]:emzz Z : r TN—H—% (}—emzzem)
r=0

Z
+RY (2)
leleZ '

This is the full and rigorous form of Dingle’s formal re-expansion of the re-
mainder term of an asymptotic power series of an integral with linear endpoint
(see [35, egs. (3) and (6), pp. 452-453]).
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We now derive from (1.98) the exponentially improved asymptotic expan-
sion for T(®) (z) by choosing N suitably as a function of z. For large values of
z, the way to obtain the best approximation from the asymptotic power series
(1.83) is by truncating it just before its numerically least term. Using the asymp-

totic behaviour of the coefficients aﬁl (see Subsection 1.3.1), it is seen that the in-
dex of this least term is n ~ | Fem,| |2| = |Fem,| |2|- Therefore, N ~ | Fem,| |z| =
| Fem,| |z| seems to be a natural choice in (1.98). In the case of most applica-

tions, it can be shown that there exist posmve constants Cy,, and Cy,, such

(m )(ue_wf'“1)| < Cn,, |u[” Nm and |R mzz)(ue_wfmz)‘ < Cn,, [u|” ‘s hold
my

for any u with argu lying in a small neighbourhood of the origin. Assuming

that this holds, it is not hard to prove that, with the above special choice of N,

we have
*|-7'-em1|‘z| e_|]:em2‘|z‘
R D=0y [S— )10y [E— (1.99)
Ny Nimy ( ) " |Z|Nm1_% "2 |Z|Nm2_%

as z — oo in the closed sector —oe;,, < 6 < —Ueng, provided that Ny, and Ny,
are fixed or small in comparison with N = O (|z|). From (1.99) and Olver’s
estimation (1.90), we infer that R;SL N, (2) has the order of magnitude of the
first omitted terms of the second ancl1 thii‘d series in (1.98). The expression (1.98),
with the specific choice of N =~ |Fom,| |2| = |Fems,| ||, is the exponentially im-
proved asymptotic expansion for T (z).

We close this subsection by discussing briefly the smooth transition of the
Stokes discontinuities discovered originally by Berry. We shall show that if the
asymptotic power series (1.83) is truncated near its numerically least term, the
tirst few terms of the second asymptotic expansion in (1.84) are “switched on” in
arapid and smooth way as 0 increases through —05,, (the discussion of the case
when 6 decreases though —o,, is similar). To this end, we make the following
assumptions: N = |Fopm, | 2| = |Fem,| 2| (i-e., the asymptotic power series (1.83)
is truncated near its numerically least term), § < 0¢p; — O, < 271 — 4 (i.e., the
adjacent saddles are bounded away from each other) and —0c,y, —6 < 0 <
—0Oem, + 0 with some small positive ¢ (i.e., z varies in a small neighbourhood
of the Stokes line). We may use analytic continuation to extend the functions
on right-hand side of the equality (1.98) to the sector —0oep, < 0 < —0pp, + 6.
In most applications, even when —oep, < 0 < —0,y, + J, the remainder term

Rz(\?) N, (z) has the order of magnitude of the first omitted terms of the second
mq =Ny

(€)

8For 6 = —Oemy s —0emy, We define R Nou, Ny (z) using analytic continuation.
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and third series in (1.98). Assuming that this holds, we may write

N-1 _(e) (m1)

TO(z)~ ¥ ”ZLH (1)t e FmE Y arzr
r=0

T

N-r+% (]_—emlze—ni)

(1.100)

agmz)

Tn_ril (Femyze™),

1
4 (—=1)Yem2 z7e~ Femy? =
T

=0
where ) ,_j means that the sum is restricted to the first few terms of the series.
Because 6 < 0oy — Oemy < 27T — 6, —Opm, — 6 < 0 < —0em, + 6 and therefore
|arg(Femyze ™) = |0 + Oom, — 7T| < 70
and '
m— 06 < arg(Femyze™) = |0 + Oom, + 1| < T+,

the formulae (1.90), (1.91) and (1.93) may be applied to express the asymptotic
behaviour of the terminant functions:

Ty_piy (Fomze ™) = efmZ0(e”FomlF) (L101)

and
miy o Ly Lo ! : 1.102
TN—r+% (}—emzze ) ~ B + Eer ((Uemz +9) <§ ‘}—em2| |Z|> ); (1.102)

provided that |z| is large and r is small in comparison with N ~ |Fop, | |z| =
| Fem, | |z|. Hence, from (1.100), (1.101) and (1.102), we may assert that

N-1 ()
T (2) ~ o
n=0 z"
() . . . (1.103)
1 a 2
+ (—=1)7em 72~ Femy? Z rZ—r (E + 5 erf ((Uemz +6) (E | Fems | |Z|) 2)) :
r=0

The effect of the error function in (1.103) is to “switch on” the first few terms of
the second asymptotic expansion in (1.84): the values of the error function are
—1for 0 < —0,m, up to an exponentially small error, are almost 1 for 6 > —op,,
and change rapidly but smoothly near 6 = —05,.

1.4.4 Exponentially improved expansion for T*/?) (z)

Consider the integral T*/2) (z) given in (1.22), with § = arg z being restricted
to an interval of the form

= Okmy < 0 < —Okmy, (1.104)
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where t(™) and t("2) are adjacent to tX). Assume that f (t) and g (t) grow
rapidly enough at infinity for the integral (1.22) to converge for all values of
g in the interval (1.104). To make the presentation simpler, we also assume that
there are no further saddles adjacent to t() other than +("1) and (") and that

‘}_km’ = , 0 < Oy — Okmy, < 27t By (1.28) we have, under suitable
conditions, that )
N-1 (k/
T#2 (2) = ¥ 2 + RE? (2), (1.105)
n=0 %2

where, by (1.36) and (1.86),

N_

R(k/z) (Z) _ 1 (—1)’Ykm1 /+oo uz .
N 27Tiz? 0 1—u/ze%m
“kalh’l

) (ue_ia"ml)du

N
eljakml

T(m) (ue_i‘f"ml)du

1 (_1)’Ykm1 /+oo N—
0

+
NI Ni
2miz 2 el 2 Tkmy 1— u/ze%m
7|kaz|u

N
0 1—u/ze%m
‘-ka2|u

m2) (uefwk’"z )du
N N,
27Tiz2 ol 2 Tkmy

1 (_1)’Ykm2 /+oo L
0

+
. N+1 N+1
2miz 2 el 2 Tkm 1— u/ze'%m

T(m2) (ue_i‘f"’”Z)du

for all non-zero values of z in the sector (1.104) and with a sufficiently large N.
Following the steps in Subsection 1.4.3, we replace the factors T("1) (e %)

and T("2) (we ™) in the integrands by their truncated asymptotic expansions
(1.72), and hence find that

Ny, —1 N _ .. 1 _
1 (_1)71{1111 my (ml) 0 /—i—OO uz r 1e ‘]:km1|u
a e 1
0

N N r i0]
> el 2 Tkmy —0 1-— M/Ze rmy

Rg]{/z) (z) = du

27Tiz

Ny, —1 N-1_p | Fi, |1
1 —1)Vemy . to0 g Ty e IV
(1) Y o™i, / du
0

+ .
. N+1 N+1 r
2miz 2 'z Ty r:o 1—u/ze%m

N_,. 1 —
N 1 ’Ykmz mi . (m2) e""fkmz /+oo u2""1le |fkm2‘u . (1.106)
. N 4 i
27'(127 el 2 %kmy 0 1—u/ze'%m

N -1 N-d o | Fi 1
1 — 1) Vkmy "2 . to0 gy T —re Vkmy
n (1) Z 2\2) o7 Fm, / du
0

. N+1 :N+1 r i
2miz 2 el 2 Ty T 1 — u/ze'%m

k/2
+R{2N,, (@)

N2 < Okmy, — Okm, < 477, the exponentially improved expansion becomes more elaborate;
an example of this case is provided by the the incomplete gamma function I'(z, z) discussed in
the paper [77] of the present author.
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with

N1 _|F
R(k/Z) (Z) _ 1 ( 1)7km1 +OO u 2 le | kml ‘u R(Tnl)(u —i(Tkml d
Nony N =N —— Ry ' (ue )du
(e 27Tiz 2 0 1 —u/ze'%m 1
_‘-kalh’l

e v Ukml

1 (_1)’)’km1 /+oo u¥e
0

+ -
. N+1 :N+1 0
27iz 2 el 2 Ty 1—u/ze'%m
7|]:km2|u

N
1 (_1)7kmz/+oou2—1e
. N N i
2miz2 el2%m SO 1 —u/ze'%m
N1 Fe u
1 (_1)7ka /—|—oou 7 e \ km2| (m2)
0

—io;
+ = ——— Ry (ue” k) du
. +1  :N+1 N,
2miz 2 @' 2 km 1—u/ze%m

Rg\’]t:) (ue_igk’”l )du

(1.107)

R<m2)(ue_i‘7"’“2)du

+ Nin,

for —0y, < 0 < —0py,. To insure the convergence of the integrals in (1.107),
we make the requirement 2N, ,2N;;, < N. The integrals in (1.106) can be ex-
pressed in terms of terminant functions by making use of the assumption that
0 < Oty — Okm, < 271. Thus from (1.105) and (1.106), we obtain

1 a(k/z) Ny, —1 a(ml)
T(k/Z) (z) = n 4 (_1)7km1 2e—.7:kmlz Z p :
n=0 z2 r=0 Z
X e—Zn(%—r)iT%—r (Fiom, ze™7™) = T@*r (Fiemy ze™™)
2
Ny =1 (my)
(o2 Tt 3
r=
Ty (Finse™) + Tt (Fimsze™
X
2
+ RN, (2)-

(1.108)

This is the complete and rigorous form of Dingle’s formal re-expansion of the
remainder term of an asymptotic power series of an integral with quadratic
endpoint (cf. [35, egs. (10) and (12), p. 454]).

To deduce from (1.108) the exponentially improved asymptotic expansion
of T¥/2)(z), we may argue as in the previous subsection. From the asymptotic
properties of the coefficients a,(qk/ 2) (see Subsection 1.3.2), we infer that the op-
timal choice for N is N ~ 2 ]fkm1| |z| =2 }fkmz‘ |z|. Assume that there exist
positive constants Cy,, and Cy,,, such that ‘R(ml)(ue*wkw)’ < Cn,, lu|~Nm and

IRy (1m2) (ue 0y ) | <Cn,, L™ Nmz hold for any u with arg u lying in a small neigh-
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bourhood of the origin (this is the case for most applications). Then it is not hard
to prove that, with the above special choice of N, we have

= Fiemy ||| —| Fiem, |||
(k/Z) o e 1 e 2
Rle,Nm2 (z) = Ole< |z|N_m1 ) + ONm2 (W) (1.109)

as z — oo in the closed sector —0y,,, < 6 < —0yy,, as long as Ny, and N, are
fixed or small compared to N = O (|z]). From (1.109) and Olver’s estimation

(1.90), we see that RE\]](/ Z)N - (z) has the order of magnitude of the first omitted

terms of the second and third series in (1.108). The expression (1.108), with the
specific choice of N &~ 2 | Fi, | 12| = 2 | Fiem, | |, is the exponentially improved
asymptotic expansion for T*/?) (z).

The smooth transition of the Stokes discontinuities may be discussed analo-
gously to the case of T(®) (z), the details are left to the reader.

1.4.5 Exponentially improved expansion for T*/3) (z)

Consider the integral T**/3) (z) given in (1.38), with 8 = arg z being restricted to
an interval of the form (1.104) where (1) and t("2) are adjacent to t(*). Suppose
that f (¢) and g (t) grow sufficiently rapidly at infinity so that the integral (1.38)
converges for all values of 6 in the interval (1.104). For simplicity, we also as-
sume that there are no further saddles adjacent to t) other than +("1) and t("2)
and that ‘}—km’ = — Okm, < 271. By (1.28) we have, under
suitable conditions, that

1 )

T(k/3) Z o — =RV (z) (1.110)
n=0 Z3
where, by (1.52) and (1.87),
1\ Ykm o0 1 N1 —|Fim, [u )
Rg\];/3) (Z) _ 1 . ( 3]) 1 / us e .Ul T(2m1/3) (ueilakml)du
2miz3 el3%m JO 1 —u/ze'%m

M71e_|]:kml ‘l/l

N1 0 1—u/ze%m
—1e7|fkml‘u

T(2m1/3) (ue_ia"ml)du

1 (_1)’Ykm1 /+oo u%
0 1— u/ze\%m

Yk N1 = Fim, lu
1 ( 1) My /+00 us e 1y T(2m2/3) (uefi(?'kmz)du
iz el3%m Jo 1 —u/ze%m

T(ZWI1 /3) (ue_iak;nl ) du
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1 (=1)%m e =1 o= [Ty [ (
+ N / 1
+1  N+1
2miz 3 el 3 %kmy JO 1 — u/ze'%m
1 (=1)%m [t 1y A2 =1 o= [ Fmy [ (
+ N / 1
7 N2
2miz 3 el 3 kmy JO 1 —u/ze'%m

for all non-zero values of z in the sector (1.104) an

T(2m2/3) (ye™1%m ) du

T (2m2/3) (ue_ia"mz )du

d with a sufficiently large

N. Following the steps in Subsections 1.4.3 and 1.4.4, we replace the factors
T(2m/3) (e %) and T(2™/3) (ye™"%m) in the integrands by their truncated

asymptotic expansions (1.77), and thus find that

Ny, —1
1 (=1)"m "L aern. o (w(r+1 ir
Ry’ (z) = ( : ) Y e 3 'sin rir+1) a\"™/3) i3
N N il 3
3mz3 e'3%m 2
—+o00 u%*’le_‘]_—kmlh’l
X / — du
0 1 — u/ze'%m
1 1) Vem Ny —1 1 1
(— 1 _n+h, 7T(7’+ ) (m1/3) 10k
+ N+l N+l e 5 ‘sm| ————— ’ e 1
3tz 3 '3 Tm D) 3

N—r+1 _1e,‘_;z:km1 |u

+00u 3
x/ = du
0 1—u/ze"*m

+ N+2 e °

sN+2
3z 3 e 3 Ykm T

1 (1) N _”(”Uisin(M)

3

N7r+2—1e_‘]:km1 |u

+°°u 3
></ = du
0 1—u/ze"m

+ Ze 3 'sin

N N
37wz3 e'3%m T

+0<) uiN?) _1e “‘ kl’I12|u
X /

Nm -1
1 (=1)Tm "2t (ﬂ (r+ 1_)) aﬁmz/g)eigakmz

3

du

1— u/ze'%m

(@) aﬁmZ/g)eié‘Tk'ﬂz

N 1 o= [ Flmy 1

+00u 3
x/ = du
0 1—u/ze" m

1 (=)W Mt e,
+ NA  Nil, e ° 'sin
3tz73 el 3 Y%my Ty
(k/3)
+ RlelNWI2 (Z) 4

with

(1.111)
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1\ Ykmy oo 1 X1 Fhmy 1 ,
RU/3) (2) = 1 (-1 1/ us ‘e 1R 1/3)( e %) du
0

Ny N, = N N ; N,
2 2miz3  el3%m 1—u/ze%m "m
Nl — [ Fps |1
1 (—1)7’“”1 oo 3y Mt =1~ [Fiomy | (2m1/3) (. —ioin
+ . N+1 :N+1 io, Ny (ue 1)d_1/l
27Tiz 3 el 3 Thmy JO 1—u/ze *m 1

N+2

- (=1)7km /*‘X’ us le

. N+2 N+2 i
2miz 3 '3 Temy JO 1—u/ze%m

1 (=1)"m /+°° ug_le_‘fkmsz(zmz/s)
0

+

. N N i N,
2miz3  @l3%kmy 1—u/ze%m M
N+l 9 — [ Fims |1
1 (—1)7kma oo 75 —le [Fion,| (2my/3) 10k
+ N+1 io; RN (ue )du
2miz" 3 g3 kmy JO 1—u/ze""m "2
N+2 9 — | Fim |1
1 (=1)Tm preo "5 lg | Fm | (2m13/3) 0,
+ N+2 :N+2 io; RNm (ue 2)du
27Tiz 3 el 3 Tkmy JO 1—u/ze *m 2

(1.112)

for —0jy, < 0 < —0jy,. To ensure the convergence of the integrals in (1.112),
we require Ny, Ny, < N. We can express the integrals in (1.111) in terms of
terminant functions by using the assumption that 0 < oy, — 0, < 271. Thus
from (1.110) and (1.111), we obtain

(k/3) NS gy
T z) = =
-5
+ 1) a . N—r;:
+(-1) e Z e 3 lsin 3 s
T F —7Ti _T T F —7ri —%”iT F —7ri
wer (T, 7€ ) +e7 5 Ty (Fom ze™™) + €75 Tiga (Fimy 267 7)
X
3
+1)\ a
1 'Ykm2+1 3 ]:kmz 3 7T (7" r .
+(-1) e Z e Isin 3 -
T¥ (kaZZem) + TN73r+1 (]:kmzze ) + TN73r+2 (]:kmzze”i)
X
3
k/3
le Nm2 (z).
(1.113)

This is the full and rigorous form of Dingle’s formal re-expansion of the re-
mainder term of an asymptotic power series of an integral with cubic endpoint
(see [35, egs. (16) and (17), p. 456]).
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To deduce from (1.113) the exponentially improved asymptotic expansion of
T(k/3) (z), we may argue as in the previous subsections. From the asymptotic
behaviour of the coefficients a;k/ 3) (see Subsection 1.3.3), we infer that the op-
timal choice for N is N ~ 3|Fy,| |z| = 3|Fim,||z|- Suppose that there exist

positive constants Cy,, and Cy,,, such that

2m1/3) 1, —i0jy ~Nw, /3 2m/3) (. —igjy ~Nn, /3
RGN e %5m0)| < Cag 0/ ant R ()] < o ]!
hold for any u with argu lying in a small neighbourhood of the origin (this is
the case for most applications). Then it is not hard to show that, with the above
special choice of N, we have

| Flomy |12 | Fioms, |21
k/3 e 1 e 2
R&ml,)z% (z) = On,, H—le +On,, | |M (1.114)
z| 3 z| 73

as z — o0 in the closed sector —0y,,, < 6 < —0y,,,, as long as Ny, and Ny, are
fixed or small in comparison with N = O (|z|). From (1.114) and Olver’s result

(1.90), we infer that Rg\% 3/)1\]m2 (z) has the order of magnitude of the first omitted

terms of the second and third series in (1.113). The expression (1.113), with the
specific choice of N =~ 3|Fy,, | |z| = 3|Fgm,||z|, is the exponentially improved
asymptotic expansion for T*/3) (z).

The smooth transition of the Stokes discontinuities can be discussed analo-
gously to the case of T(®) (z), we leave the details to the reader.
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CHAPTER 2

ASYMPTOTIC EXPANSIONS
FOR LARGE ARGUMENT

In this chapter, we shall consider applications to various special functions of the
theory developed in Chapter 1. We derive the exact forms of the well-known
large-argument asymptotic expansions of these functions; more precisely, in-
stead of giving the classical formal asymptotic expansion of such a function,
we provide its truncated asymptotic expansion and an explicit resurgence-type
formula for its remainder term. The resurgence formulae are then exploited in
several different ways: they are utilized to provide error bounds, asymptotic
expansions for the high-order coefficients and exponentially improved asymp-
totic expansions complete with error bounds. Most of the functions considered
here contain an additional parameter which is fixed or small compared to the
argument. Asymptotic expansions where both the argument and the parameter
are large will be studied in the next chapter.

The chapter consists of four main sections. In Section 2.1, the large-argument
asymptotic expansions of the Hankel functions, the Bessel functions, the modi-
tied Bessel functions and those of their derivatives are treated. In Sections
2.2 and 2.3, similar results are given for the closely related Anger—Weber-type,
Struve and modified Struve functions, and their derivatives. Finally, Section 2.4
deals with the classical asymptotic expansions of the gamma function and its
reciprocal.

2.1 Hankel, Bessel and modified Bessel functions

The large-z asymptotic expansions of the Hankel functions HY (z) and H? (2),
the Bessel functions ], (z) and Y, (z), and the modified Bessel functions K, (z)

49
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and I, (z) have a long and rich history. The earliest known attempt to obtain
an asymptotic expansion is that of Poisson [102] in 1823 where the special case
of Jo (x) with x being positive was considered. He derived a complete asymp-
totic expansion based on the differential equation satisfied by Jy (x), but gave
no investigation of the remainder term. A similar (formal) analysis of J; (x) is
due to Hansen [43, pp. 119-123] from 1843. The asymptotic expansion of J,, (x)
for arbitrary integer order was first given by Jacobi [48] in 1849. A rigorous
treatment of Poisson’s expansion was provided by Lipschitz [54] in 1859 with
the aid of contour integration; here Jacobi’s result was also studied briefly. The
general asymptotic expansions of J, (z) and Y, (z), with a fixed complex v and
large complex z, were obtained (rigorously) by Hankel [42] in his memoir writ-
ten in 1868. He also gave the corresponding expansions of the Hankel functions
ngl) (z) and H&Z) (z). The asymptotic expansion of the modified Bessel func-
tion K, (z) was established by Kummer [51] in 1837; this result was reproduced,
with the addition of the corresponding formula for I, (z), by Kirchhoff [50] in
1854. For a more detailed historical account, the reader is referred to Watson’s
monumental treatise on the theory of Bessel functions [117, pp. 194-196].
In modern notation, Hankel’s expansions may be written

1
2\? i S
HY (z) ~ (E) @ Y i “Ziv), 2.1)
n=0

as z — oo in the sector —m+ 6 < 0 <271 — J;

HY (z)~(2) ‘“"Z ””” 9, (22)

asz — oo in the sector -2+ 6 <0 < 7w — §;

Ju (z) ~ (%)

and

[ee]

(cosw Y (- azn 021 (V) —sinw )_ (=1)" %) (2.3)

m=0

N|—

N—

i@~ (2) (3w £ 0 s £ 2nt), e

Y v4

as z — oo in the sector |#] < 7 — ¢, with ¢ being an arbitrary small positive
constant, 0 = argzand w = z — 7211/ — % (see, e.g., [96, Sec. 10.17]). The square
root in these expansions is defined to be positive on the positive real line and
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is defined by analytic continuation elsewhere. The coefficients a, (v) are poly-
nomials in 12 of degree 1; their explicit form will be given in Subsection 2.1.1
below. The results established by Poisson, Hansen and Jacobi are all special
cases of the asymptotic expansion (2.3). If 2v equals an odd integer, then the
right-hand sides of (2.1)—(2.4) terminate and represent the corresponding func-
tion exactly.

The analogous expansions for the modified Bessel functions are

1 00
TN o an (V)
K, (2) ( 22) e ,;o—z” ) (2.5)
as z — oo in the sector |6| < 3% —§;and
I (z) : Z ~1) ””” ):l:l v Z . (26)
(27‘(2 7 n=0 (27‘[2 m=0

as z — oo in the sectors —% +0< 460 < 7” — J, with 4 being an arbitrary small
positive constant (see, for instance, [96, Sec. 10.40]). The square root in these
expansions is defined to be positive when = 0, and it is defined elsewhere by
analytic continuation. The original result of Kirchhoff omits the second com-
ponent of the asymptotic expansion (2.6), which is permitted if we restrict z to
the smaller sector [8] < T — 4. (In this sector, the second component is expo-
nentially small compared to any of the terms in the first component for large z
and is therefore negligible.) The expansion (2.5) terminates and is exact when
2v equals an odd integer.

Itis important to note that these asymptotic expansions are not uniform with
respect to v; we have to require 1> = o(|z|) in order to satisfy Poincaré’s def-
inition. There exist other types of large-z expansions which are valid under
the weaker condition v = o(|z]|) (see, for instance, [10] or [44]); however these
expansions do not lend themselves to treatment with our methods.

This section is organized as follows. In Subsection 2.1.1, we obtain resur-
gence formulae for the Hankel, Bessel and modified Bessel functions, and their
derivatives, for large argument. Error bounds for the asymptotic expansions of
these functions are established in Subsection 2.1.2. Subsection 2.1.3 deals with
the asymptotic behaviour of the corresponding late coefficients. Finally, in Sub-
section 2.1.4, we derive exponentially improved asymptotic expansions for the
above mentioned functions.

2.1.1 The resurgence formulae

In this subsection, we investigate the resurgence properties of the Hankel, Bessel
and modified Bessel functions, and that of their derivatives, for large argument.
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Perhaps the most convenient way is to start with the study of the modified
Bessel function K, (z), as the analogous results for the other functions can be
deduced in a simple way through their various relations with K, (z).

For our purposes, the most appropriate integral representation of K, (z) is

1 e
Ky(z) =5 [ e=eohietiat, (2.7)

which is valid for |#| < 7 and every complex v [96, eq. 10.32.9, p. 252]. The
function cosh t has infinitely many first-order saddle points in the complex ¢-
plane situated at t = +¥) = rrik with k € Z. The path of steepest descent () (0)
through +(®) = 0 coincides with the real axis, and its orientation is chosen so that
it runs from left to right. Hence we may write

Ky (z) = —TO (2), (2.8)

2z2
where T(") (z) is given in (1.54) with the specific choices of f (t) = cosht and
g (t) = e'!. The problem is therefore one of quadratic dependence at the sad-
dle point, which we discussed in Subsection 1.2.1. To determine the domain
A corresponding to this problem, the adjacent saddles and contours have to
be identified. When 6 = 47, the path (%) (§) connects to the saddle points
t1) = 7i and t(-1) = —71i, and these are therefore adjacent to tY) = 0. The
corresponding adjacent contours ¢(!) (—7r) and €~ (77) are horizontal lines
parallel to the real axis (see Figure 2.1); this in turn shows that there cannot be
further saddles adjacent to +(©) other than 1) and #(=1). The domain A(® is
formed by the set of all points between the adjacent contours.

By analytic continuation, the representation (2.8) is valid in a wider range
than (2.7), namely in |#| < 7. Following the analysis in Subsection 1.2.1, we

expand T(¥) (z) into a truncated asymptotic power series with remainder,

The conditions posed in Subsection 1.2.1 hold good for the domain A(?) and the
functions f (t) = cosht and ¢ () = e"!; closer attention is needed only in the
case of the requirement that g (¢) /fN+% (t) = o(|t| ') as t — coin A, Ttis
readily verified that this requirement is satisfied precisely when |Re (v)| < N +
%. The orientations of the adjacent contours are chosen to be identical to that

of €% (0), consequently the orientation anomalies are 79; = 1 and yy_; = 0,
respectively. The relevant singulant pair is given by

Fo+1 = cosh (£7i) —cosh0 = -2, arg For1 = 0py1 = E7T.
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¢ (—n) #1)
~—>
(iii)
+(0) (ii)
(i)
—>
¢ D(r) ¢

Figure 2.1. The steepest descent contour € ©) (0) associated with the modified
Bessel function of large argument through the saddle point 0 = 0 when (i)
0 =0, (i) 0 = —F and (iii) 0 = —3L. The paths €V (—7t) and €=V (7)
are the adjacent contours for t(0). The domain A°) comprises all points be-
tween €V (=) and €=V ().

We thus find that for |[§| < 7, N > 0 and |Re(v)| < N + 1, the remainder
Rg\?) (z) may be written

N 0 ,N—1,-2u
(0) _ (=Y teut e 1 —m
Ry’ (z) =- 27TiZN/0 1+u/z T (e ™) du 9
N (_1)N /+oo uN—le—Zu T(—l) (u m)du ( . )
27izN Jo 14+u/z © '

It is possible to arrive at a simpler result, by observing that we can express the
functions T (ue=™) and T~V (ue™) in terms of T(¥) (1). Indeed, by shifting
the contour ¢! (—7) downwards by 7i, we establish that

NN

. . pritoo ,
T(l) (ue—m) _ u%e_ i /m eu(cosht—cosh(m))evtdt
7Ti—00

_ _ienivu% /+oo efu(coshtfl)evtdt _ _ienivT(O) (u) )
Likewise, one can show that T(-1) (ue™) = ie ™ T (1). Therefore, the rep-
resentation (2.9) simplifies to

N cos (rtv) 1 /+°° ulN=le™ o)
0

N — (u) du (2.10)

RY (z) = (-1)
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for all non-zero values of z in the sector |#| < 7, provided that N > 0 and
Re (V)] < N+ 1.

We may now connect the above results with the asymptotic expansion (2.5)
of K, (z) by writing

T\ 2 NZ1 an (V
K, (z) = (Z> e ? (Z ZSZ ) +RM (z,v)), (2.11)

n=0

with the notation a, (v) = (271)_% a\?) and R%Q (z,v) = (271)_% Rg\?) (z). For-

mulae (2.8) and (2.10) then imply

R v = (1Y (%)

7T

N—=

too , N—% —u
cos (rv) 1 / i[(y (u) du (2.12)
0

T zN 14+u/z

under the same conditions which were required for (2.10) to hold. Equations
(2.11) and (2.12) together yield the exact resurgence formula for K, (z). We re-
mark that the special cases of (2.12) when —% <v < % and when N = 0 were
also given by Boyd [12] ar}d Erdélyi et al. [39, ent. (39), p. 230], respectively.

Taking a, (v) = (27r) "2 aSZO) and (1.58) into account, we obtain the following
representation for the coefficients a, (v):

1
1 dan y 1 #2 n+s
- S — . 2.13
W) = 1) |ae | © (2cosht—1> (2.13)

t=0

The expansion of the higher derivatives using Leibniz’s formula confirms that
a, (v) is indeed a polynomial in v? of degree n.! Although (2.13) expresses the
coefficients a, (v) in a closed form, it does not provide an efficient method to
compute them. A more useful expression can be obtained as follows. Since
ay (v) = z”(R,gK) (z,v) — Rfl{?l (z,v)), we immediately infer from (2.12) that

—+o00
@ / u"2e K, (u)du, (2.14)
0

)
)
—~
<
SN—
[l
—~
|
—_
N—
2
VR
[S)
~~
N|—

as long as |Re (v)| < n+ 3. The right-hand side can be evaluated explicitly
using the known expression for the Mellin transform of e *K,, (u) (see, e.g., [38,

2 n+3d . . . . . .
5 m) 2 is an even function of ¢, its even derivatives vanish at t = 0. Alterna-

tively, we can appeal to the symmetry relation K, (z) = K_, (z) and the uniqueness theorem on
the coefficients of asymptotic power series.

1Since (1
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ent. (28), p. 331]), giving
peos(m) F(n+3+v)IF(n+1—v)

an (v) = (=)' = ey (2.15)
(W2 1) (W2 -3 (42— (2n - 1))
— ST D) . (2.16)

The condition |Re (v)| < n + 3 may now be removed by appealing to analytic
continuation. This is the representation that was originally given by Hankel.

To obtain the analogous result for the asymptotic expansion (2.6) of the
modified Bessel function I, (z), we may proceed as follows. We start with the
functional relation

I, (z) = :F%Kv (zeT™) £ %eivaV ()

(see, for instance, [96, eq. 10.34.3, p. 253]) and substitute by means of (2.11) to
arrive at

€ N a(v) (K)Zqzmv)
IV() (27_[2)% (r;)( 1) N +RN (e ’ )

. /M (2.17)
£iet ™ ( Y ) Ry <z,v>) .
(27z)2 \m=0 *

Assuming that 0 < £60 < 71, N,M > 0 and |Re (v)| < min (N+ %,M—l— %),
equations (2.17) and (2.12) then yield the exact resurgence formula for I, (z).

We may derive the corresponding expressions for the z-derivatives by sub-
stituting the results (2.11) and (2.17) into the right-hand sides of the functional
relations —2K], (z) = K1 (z) + Ky4+1 (z) and 2I}, (z) = I,—1 (z) + L41 (2) (for
these, see [96, eq. 10.29.1, p. 251]). Upon matching our notation with that
of [96, Sec. 10.40], we find

1 N-1p (, ,
K (z) = — (%) et ( y b”z—fq) + R (z,v)> (2.18)
and
()= —= <NZ1 (-1 2 R (ze*"%w)

-z M-1 ,
v S (Z b (V) | REK) (z,v)> ,

(2.19)

m
m=0 z
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where 2b, (v) = a,(v—1) + ay (v+1) and 2R (z,v) = RF) (z,v — 1) +
Rl(\lf) (z,v+1). The complete resurgence formulae can now be written down
by employing (2.12). For this, the following assumptions are made: in (2.18),
we suppose that [0] < 7, N > 1and |%e (v)| < N — 1; whereas in (2.19), we
suppose that 0 < £60 < 77, N,M > 1 and |Re (v)| < min (N — 1, M — 1). With

these provisos, we have

RE G = (-0 (2)

s

Nj—

cos(mv) 1 [+ yN-ze 1
—_— —— K d 2.2

S K w20
(and the same for M). We can derive explicit representations for the coefficients
b, (v) by substituting into 2b, (v) = a, (v —1) + a, (v+ 1) those various ex-
pressions for the a, (v)’s which we have already given earlier. In particular, we
find that by (v) = 1 and

1
1 dz2n y 1 #2 n+y
bu (v) = 2T (n+1) [dtz’1 (e cosht (ECOSht — 1)
t=0

= (-1)" (%) j w /OJFOO u"2e K] (1) du (2.21)

_qmracos () T(n—3+v)T(n— 3 —v) (4> +4n® — 1)

= (—1) - 22T (1 1 1) (2.22)
(402 —1%) (4?2 — 32) - - - (42 — (2n — 3)?)) (0% + 4n® — 1)

8T (n+1)

for n > 1. For the formula (2.21) to hold, the restriction |Re (v)| < n — 3 is

necessary.
Let us now turn our attention to the resurgence properties of the Hankel

functions Hsl) (z) and Hsz) (z). These functions are directly related to the modified
Bessel function K, (z) through the connection formulae

(W) 2 % 7 &
Hy’ (z) = —e 2 'Ky (ze™2"), ) <0<m (2.23)
and 5
H,SZ) (z) = —Ee%ivKV (ze%i), —n1<6< g (2.24)

(see, e.g., [96, eq. 10.27.8, p. 251]). We substitute (2.12) into the right-hand sides
and match the notation with those of (2.1) and (2.2) in order to obtain

b |
Hl(/l) (z) = (i) ol (Z inﬂnZS/) +R§\I[<) (Ze—’;l/v)> (2.25)

n=0




CEU eTD Collection

2.1. Hankel, Bessel and modified Bessel functions 57

and

;. (N -
H? (z) = (%) e v (5 (—i)" a';# + Rl(\f) (ze21,v)> : (2.26)
We now impose the following conditions: in (2.25), we assume that —7 < 6 <
3, N > 0and |Re (v)| < N + 3; while in (2.26), we assume that —37 < 0 < Z,
N > 0and [Re (v)] < N+ 1. Under these conditions, the expression (2.12)
is applicable, and so the resurgence formulae follow at once. Note that here
we used implicitly an analytic continuation in the variable z; the connection
relations (2.23) and (2.24) imply the expansions (2.25) and (2.26) only in more
restricted domains.

The resurgence relations for the z-derivatives can be most readily obtained
by substituting (2.25) and (2.26) into the right-hand sides of the connection for-

mulae 2H" (z) = HY, (z) — H\), (2) and 2H?" (z) = H?, (z) - H?, (2)
(cf. [96, eq. 10.6.1, p. 222]). Considering the notation of [96, Sec. 10.17], we can

write

1 N—1 , .
HY (z) =i (i> el ( y i”b’;# + R (ze—zl,u)> (2.27)

7tz n=0

3 N-1
HY' (z) = —i (i) Ceiw (}: (—i)" b”ZS/) + R (zegi,v)) . (228)
n=0
We now make the following assumptions: in (2.27), we suppose that —7 <
0 < 3, N > 1and [Re(v)] < N — }; whereas in (2.28), we suppose that
—3 <9 <%, N>1land |Re(v)| < N— 1 With these requirements, formula
(2.20) applies and together with (2.27) and (2.28) yields the exact resurgence
relations for Hisl)/ (z) and H?' (z).

From the expressions (2.25) and (2.26) for the Hankel functions, we can ob-
tain the corresponding resurgence formulae for the Bessel functions J, (z) and

Yy (z). By substituting into the functional relation 2], (z) = Hy) (z) + H? (2)
and employing Euler’s formula e = cos w +1sin w, we readily establish that

: NZ1 Ay (V
o= (2) (w (2 (-1 2 4Ry <z,v>)

. N-1 g1 (v
—sinw (Z (—1) %fl) —Rg\)lﬂ (z,v))) :

(2.29)
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The remainder terms Rg\)] (z,v) and Rg\)] 11 (z,v) can be expressed by the single

formula

R(LI) (z,v) = (—1)L/2 (3)

7T

Nj—

1 too 4L—3 —t
cos(mv) 1 / R ko (dt, (230)
moozmJo 1+ (t/z)

provided that |§] < Z,L > 0and |Re (v)| < L + 3. (Note that the last condition
is equivalent to the requirement |Re (v)| < 2N + 3 for (2.29).) It is possible
to arrive at a slightly more general result in which the truncation indices of
the series in (2.29) can be different. For this purpose, let M be a non-negative
integer such that M > N. We expand the denominator in the integrand of (2.30)
by means of (1.7) and use (2.14) and (2.30) to deduce

M-1 i (v
— Rijiy (z,v) = Z;V (=" —22221(1 ) RSy (z0). (2.31)
m=

Note that the use of the formulae (2.14) and (2.30) is permitted because
9te (V)| < 2N+ 3 < 2m+ 1 < 2M + 3. Combining equality (2.31) with (2.29)
yields

' (cosw (Z\]Z_f (-1)" HZZZEIV) + Rg\), (z,v))

n=0

) M-1 o Aom v
—sinw < Y (1) %ﬁl) —Rg&ﬂ (z,v)))

m=0

?1

—~

N

N—

I
VRS

sl
N N
N————
N|—

(2.32)

(cf. equation (2.3)). The case M < N can be handled similarly; we replace n
and N by m and M in (2.29) and expand the remainder Rg\)/[ (z,v) into a sum
of Rg\)j (z,v) and N — M other terms. In summary, if [#] < 7, N,M > 0 and
|Re (v)| < min (2N + 3,2M + 3), equations (2.32) and (2.30) together consti-
tute an exact resurgence formula for J, (z).

In a similar way, starting with the connection formula 2iY, (z) = HY (z) —
HP (z), the analogous expression for the Bessel function Y, (z) is found to be

: N=1 oy (V
Y, (z) = (i) <sinw (Z (—1)" 22251 ) +Rg\)] (z,v))

7tz
M-1 R
+eosw ( Y (et R <z,v>>)

(2.33)
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(cf. equation (2.4)). Under the assumptions |f] < 5, N,M > 0 and |9Re (v)| <
min (2N + %, 2M + %), equations (2.33) and (2.30) yield the required resurgence
formula for Y, (z).

We close this subsection by discussing the corresponding resurgence rela-
tions for the z-derivatives J; (z) and Y] (z). The simplest way to derive these
relations is by substituting the expressions (2.32) and (2 33) into the connection
formulae 2] (z) = Jy—1(2) = Ju+1 (2) and 2Y] (z) = Y1 (2) — Yo41 (2) (cf. [96,
eq. 10.6.1, p. 222]). Carrying out the necessary calculations and matching our
notation with that of [96, Sec. 10.17], we find

3 N-1 /
I, (z) = — (%) <sinw (Z (—1)" bZ;zZSl v) —{—RU)( ))

' _— (2.34)
+ cosw ( 20 (—-1)" T;Tlﬂ Rg\/fﬂ (z, v)))
and
3 N-1
Y/ (z) = <%) <cosw <Z (-1)" bZ;( ) + R (2, v)>
=0 . (2.35)
— m b m !
—sinw ( Zo (-1) %ﬂ(p - R%V}H (z,v)>> ,

where ZR(]/) (z,v) = R(]) (z,v—1)+ R(]) (z,v+1). The complete resurgence

s

formulae now follow by applymg (2. 30) To this end, assume that 0| < 7,

L > 1and |Re (v)| < L — . With these conditions, the remainder R(] ) (z,v) has
the following integral representatlon

R(LI’) (z,v) = (—1) /2 <3)

7T

NI—=

40 L—f ft
cos(m/)lL/ t KL ()
TozxJo 14 (t/z)

The corresponding requirements for the expressions (2.34) and (2.35) are |0| <
Z,N>1,M>0and [Re (v)| < min (2N — 3,2M + 1).

2.1.2 Error bounds

In this subsection, we derive computable bounds for the remainders R( ) (z,v),
R;f,() (z,v), Rg\],) (z,v) and R( ) (z,v). Unless otherwise stated, we assume that
N > 0 and |Re(v)| < N+ 1 when dealing with RZ(\I]Q (z,v) and RI(\P (z,v),
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and N > 1 and |Re (v)| < N —  are assumed in the cases of Rgd) (z,v) and

Rg/) (z,v). We would like to emphasize that the requirement [Re (v)| < N + 3
(respectively, |Re (v)| < N — %) is not a serious restriction. Indeed, the index
of the numerically least term of the asymptotic expansion (2.5), for example, is
n = 2 |z|. Therefore, it is reasonable to choose the optimal N =~ 2 |z|, whereas
the condition v> = 0(|z|) has to be fulfilled in order to obtain proper approxi-

mations from (2.11).

Bounds for Rg\l,() (z,v) differing from those we shall derive here were given
by Olver using differential equation methods (see [95, exer. 13.2, p. 269] or [96,
Subsec. 10.40(iii)]). Boyd [12] obtained bounds for RZ(\I]Q (z,v) when |0] < 7
and —% <v < % starting with the integral representation (2.12). A thorough
analysis of Rg\],) (z,v) was given in a series of papers by Meijer [60] (see also

Doring’s paper [36]). Further results concerning the estimation of Rg\f) (z,v)
and RZ(\P (z,v) can be found in Watson’s book [117, Ch. VII].

Throughout this work, we shall frequently use the following inequality in
constructing error bounds:
1 < |csc | %f 7 < |amod 27| < 7, (2.36)
|1+ rel4| 1 if |amod2m| <%,

where r > 0. The proof is elementary and is left to the reader.

(Kf)irst, we consider the estimation of the remainder terms Rl(\lf) (z,v) and
Ry 7 (z,v). We begin by replacing in (2.12) the function K, (u) by its integral
representation (2.7) and performing the change of variable from u and ¢ to s and
t via s = u cosh t. We therefore find

+o00
K0 G =Y () S [ e

/+°° e~ wrre’ cosh V=7 ¢t
X
o 145/ (zcosht)

N|—

(2.37)
dtds.

We will need the analogous formula for the coefficients ay (v) in deriving our
error bounds, which can be most readily obtained by substituting (2.37) into the

relation ay (v) = zN(RZ(\I]Q (z,v) — Rg\ﬁl (z,v)). Thus we have

o (v) = (-1 (2)

N—

cos (7tv +oo 1 +oo 1
L/ SN_Ze_S/ e whie’f cosh N2 tdtds.
0

27T
(2.38)



CEU eTD Collection

2.1. Hankel, Bessel and modified Bessel functions 61

Now, from (2.37), one immediately establishes the inequality

1
2\ 2 |cos (rtv)| 1 too
R (21| < / N-},-s
Ry (zv)] < <7r) 2t 2N Jo 5 °€

1
X /+°° e whieReV)t cosh N2 ¢

dtds.
—o0 |1+5s/ (zcosht)| ’

We estimate 1/ |1 + s/ (zcosht)| using (2.36) and then compare the result with
(2.38) in order to obtain the error bound?

(2.39)

‘qu (z 1/)} - lcos (rtv)|  |an (Re (v))| ) |esc8| if T < |0] <,
7 _ |C

os (mRe (v))| 2N 1 if 0] < 7.

If 2%¢ (v) is an odd integer, then the limiting value has to be taken in this bound.
The existence of the limit can be seen from the representation (2.16) of the co-
efficients ay (9Re (v)) by taking into account the assumption |Re (v)| < N + 3.
The bound (2.39) in the case that v is real was also given by Watson [117, p. 219].
Likewise, one can show that

(2.40)

(K)
R <
Ry (zv)] < jcos (mRe (V)| |2V 1 if o] <%

|cos (rtv)|  |bn (Re (v))] {|csc o] if 7 <[0] <,
Again, if 293¢ (v) is an odd integer, the limiting value is taken in this estimate.

Consider now the special case when z is positive and v is real. With these
assumptions, we have 0 < 1/ (1 +s/ (zcosht)) < 11in (2.37) and together with
(2.38), the mean value theorem of integration shows that

Rg\l,() (z,v) = aI\;ZE]V) On (z,v), (2.41)

where 0 < @Oy (z,v) < 1 is an appropriate number that depends on z, v and
N. In other words, the remainder term Rg\lf) (z,v) does not exceed the first ne-
glected term in absolute value and has the same sign provided that z > 0 and
—N —1 <v < N+ 1. This is a well-known property of R%Q (z,v) (see, for in-
stance, [96, Subsec. 10.40(ii)] or [117, p. 207]). We can prove in a similar manner

that ;
R (z,v) = ! ISV)EN (z,v), (2.42)

2We note that this bound could have been established directly from (2.12). The alternative
representation (2.37) is essential only for the derivation of the estimate (2.43) below. A similar
remark applies throughout this work when considering error bounds.
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where 0 < By (z,v) < 11is a suitable number which depends on z, v and N.

In the case that v is real (or Jm (v) is relatively small) and z lies in the
right half-plane, the estimates (2.39) and (2.40) are as sharp as it is reasonable
to expect. However, although acceptable in much of the second and fourth
quadrants, the bounds (2.39) and (2.40) become inappropriate near the Stokes
lines § = +m. We now show how alternatlve estimates can be established
that are suitable for the sectors 7 < |0| < =t (which include the Stokes lines

0= j:7t) We may use (2.11) and (2.20) to defme the remainder terms R( ) (z,v)
and R( ) (z,v) in the sectors 7w < |0] < =£. We choose, for all 6 in the range

7T

7 < |6| < 3 any angle ¢ = ¢ (0) wh1ch has the following properties: 7 <
0—¢| < m,and 0 < ¢ < ZF when ¥ < 0 < 3T while —Z < ¢ < 0 when

—3 < § < —Z. Consider the estimation of R( ) (z,v). We deform the contour
of mtegratmn of the s-integral in (2.37) by rotatmg it through the angle ¢. One

therefore finds, using analytic continuation, that

2\Zcos(mv) 1 [+ 1
Rg\lf) (Z,l/) = (—1)N (;) %Z—N/O SN 2e

Nl—

dtds

/+°° e~ i’ cosh N2 ¢t
X
—o 145/ (zcosht)

. 1 ,

N[{2\2cos(mtv) 1 [ € N*2 oo N_l —ue?

= (_1) = — / U Ze cos¢
T 2t zN \ cosg 0

uel?

—+o00 e " cosh fcos¢p th COSh N— 2 t
/_oo 14 ue'?/ (zcosh tcose)

dtdu,

for 7 < |0 —¢| < m. In passing to the second equality, we have made the
change of integration variable from s to u by u = se '?cosg. Employing the
inequality (2.36) and then taking into consideration the expression (2.38), we
obtain the error bound

cse (6 — @) |cos(mv)| |an (Re(v))]

. (243)
cosNt1g [cos (mRe (v))] 2N

RE (zv)] <

provided that 7 < [0 — ¢| < 1. We would like to Choose (p to minimize the
right-hand 31de of (2.43). Conveniently, for any Z < |8] < 3 there is only one
such choice for ¢, as can be seen from the following lemma of Meijer [60, pp.
953-954].

Lemma 2.1.1. Let x be a fixed positive real number, and let 0 be a fixed angle such that
Z < |0| < 3%. Consider the problem of minimizing the quantity |csc (6 — ¢)| / cos* ¢
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in @ with respect to the following conditions: 5 < |0 — ¢| < m,and 0 < ¢ < T when
7 <8< 37” while —75 < ¢ < 0 when —37” < 8 < —7%. Under these conditions, the
minimization problem has a unique solution ¢* that satisfies the implicit equation

(x +1)cos (0 —2¢*) = (x — 1) cosb,
and has the property that 0 < ¢* < —Z +0if 7 <0 <7, —mw+60 < ¢* < 7
ifr <0< 0<o" <Z40if-m<0<—ZFand-% < ¢* <nm+0if
—37”<6§—7T.

Combining inequality (2.43) and Lemma 2.1.1 (when x = N + %), we obtain

the desired error bounds for the sectors Z < |8 < 3Z. Note that the ranges

of validity of the bounds (2.39) and (2.43) together cover that of the asymptotic
expansion (2.5) for K, (z). One may likewise show that for the remainder term

Rg\f/) (z,v),

csc (0 — ¢*)|  [cos (v)|  |bn (Re (v))]
osN+%g0* |cos (1tRe (V)| |2V

RY (zv)]

IN

(2.44)

if T < |0 < 3F, where ¢* is the minimizing value given by Lemma 2.1.1 with
the specific choice of Y = N + 3.

We may simplify these bounds if 0 is close to the Stokes lines as follows.
When 6 = 7, the minimizing value ¢* provided by Lemma 2.1.1 (when x =
N + %) can be written explicitly as

1
¢* = arccot ((N +1)?).
With this specific value of ¢* we may assert that for 7 + ¢* <0 < 7,

2N+3 1
% _ ¥ i 2
csc (0 1g0)§csc(7'[ 14)):(2N—|—3> (N+1> < Je(N¥1)2
cosNt2 g~ cosN*ta g 2N +1 2

On the other hand, if N > 1, we have
ve(N+1)>+/2e > csch

1
for T < 0 < Z+¢* < Z+arccot ((3)2). Combining these inequalities with
the error bounds (2.39) and (2.43), we can infer that

(K |cos (rtv)|  |an (PRe (v))|
IRy (zv)| < Ve |COS R N (2.45)

1
3Note that the sequence (%%ﬁ) (N +3)2(N+a)~ tis monotonically increasing if and

only if 2 > 1, in which case it has limit \/e.
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as long as % < 0 < mand N > 1. An application of the Schwarz reflection
principle shows that this bound is also valid when —7r < 0 < —7. The es-
timate (2.45) is stronger and more general than the analogous bound derived
by Boyd [12, eq. (14)]. In the case that v is real or Jm (v) is relatively small in
magnitude, the bound (2.45) is also sharper than that arising from differential
equation methods. One may similarly show that

[cos (rv)|  [ba (Re (v))]
|cos (Re (v))| 2N

|R§\I,</) (zv)] < Ve(N+1) / (2.46)
provided 7 < |8] < 7. The estimates (2.45) and (2.46) may be used in conjunc-
tion with our earlier results (2.39) and (2.40), respectively.

The appearance of the factor /e (N + 1) in these bounds may give the im-
pression that these estimates are unrealistic for large N, but this is not the case.
Suppose, for simplicity, that v is real. By applying Stirling’s formula to the
representation (2.16) of the coefficients ay (v), it can readily be shown that in-

equality (2.45) implies
N
(K) _ N —-N
] =0 () <)

for large N. When the asymptotic expansion (2.5) is truncated near its numeri-
cally least term, i.e., when N ~ 2 |z|, the above estimate is reduced to

RZ(\I,Q (z,v) = Oy (e 2.

This is exactly the magnitude of the exponentially small contribution that
appears in the asymptotic expansion of K, (z) as the Stokes lines § = =£m
are crossed (cf. Proposition 2.1.3 below). Therefore the presence of the factor
ve (N + 1) is entirely reasonable and our bounds are realistic near the Stokes
lines.

The estimation of the remainder terms Rz(\P (z,v) and R% ) (z,v) can be done

in essentially the same way as the estimations of RE\I,Q (z,v)and R%(/) (z,v) above,
and therefore we omit the details. In this way, we may first obtain the analogues
of the bounds (2.39) and (2.40),

RO (2, )| < cos (mv)|  lan (e (v))] {|csc(29)| if T<10]<Z,

SR [ 1 i < g

and

|R§\p (z V)| - lcos (mrv)|  |bny (Re (v))] | |esc(20)] if T < [0] < 5,
7 _ |C

os (mRe (v))|  |z|V 1 if 6] <7,
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respectively. If 293¢ (v) is an odd integer, then the limiting values are taken in
these bounds.
For the special case when z is positive and v is real, one finds

RY (z,v) = (~1)N/ “NZ#@N (zv), Ry (zv) = (-1)M/2 bNZ—S’)EN (z,v).
Here 0 < Oy (z,v) < 1and 0 < Ey (z,v) < 1 are appropriate numbers that de-
pend onz, vand N (cf. equations (2.41) and (2.42)). In particular, the remainders
are of the same sign as, and numerically less than, the first terms neglected. In
the case of R%) (z,v), this is a well-known result (see, e.g., [96, Subsec. 10.17(iii)]
or [117, p. 209]).

Let us now consider estimates which are suitable for the sectors § < |0 < 7.
For 7 < |0| < m, the remainder terms Rz(\P (z,v) and R% ) (z,v) may be defined
via (2.32) and (2.34). We find in a manner analogous to the derivation of (2.43)
(and (2.44)) the error bounds

0 csc (2(6— 9%))| _|cos (7v)|_ Jan (3he (v))

Ry Gl < = T Teos (e Gl @47
and

% esc (2(6— 9%))| _Jcos (7v)| b (SRe (v)

Ry Gl s = T, sty - %

The angle ¢* is chosen so as to minimize |csc (2 (8 — ¢))| / cos™ +2 ¢ as a func-
tion of ¢. The following lemma of Meijer [60, p. 956] guarantees the existence
and uniqueness of such a minimizer.

Lemma 2.1.2. Let x be a fixed positive real number, and let 0 be a fixed angle such
that & < |0| < 7. Consider the problem of minimizing |csc (2 (6 — ¢))| / cosX ¢ in
@ with respect to the following conditions: 7t < [0 — ¢| < 5, and 0 < ¢ < T when
T <0 < mwhile -5 < ¢ < 0when —m < 0 < —7F. Under these conditions, the
minimization problem has a unique solution ¢ that satisfies the implicit equation

(x +2)cos (20 —3¢*) = (x — 2) cos (26 — ¢*),

and has the property that0 < ¢* < = 4+0if T <0< Z, - F+0 < ¢* < —F +01if
<0< —ZT40<o"<FifT<O0<mF+0<¢*<0if—-F<0<-F
Z4+0<9* <Z+0if-L <0< -Fand-F<g¢*<Z+0if-m<o<—3L

We remark that a bound equivalent to (2.47) was proved by Meijer [60].
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The two simple estimates below are appropriate near the Stokes lines 6 =
+7 and can be obtained from (2.47) and (2.48) using an argument akin to the
derivation of (2.45) (and (2.46)):

() 1 ey lcos(mv)|  [an (Re (v))]
Ry (v <3 e(N+2)]cos(7r9fie(V))| : |2V (249

and
) 1 cos (v)| [by (9Re (v)]
Ry ()] < o Ve N A DI el o

where 7 < [0| < T and N > 3. The bound (2.49) is sharper and more general
than the analogous estimate given by Doring [36, eq. (3.9a)].

2.1.3 Asymptotics for the late coefficients

In this subsection, we investigate the asymptotic nature of the coefficients a,, (v)
and b, (v) as n — 4o00. One may assume that 2v is not an odd integer because
if n > |v| + 3, the coefficients are identically zero for such values of v. We
begin by considering the a,, (v)’s. We replace the function K, (1) in (2.14) by the
truncated asymptotic expansion

1 M-—1
K, (1) = (%) e u (ﬂ;o ””;# +RM (u,v)) , (2.50)

where M > 0, and from (2.39),

[cos (7v)|  |am (Re (v))]
os (Re (v))] uM

IR (u,0)] < < (2.51)

provided |Re (v)| < M + % Thus, from (2.14), (2.50) and (2.51), and provided
n>1,

cos (rrv) [(M=!
ay (v) = (=1)" i ( Zo 2"a,, (V)T (n—m) + Ay (n,v)) (2.52)

where

|cos (7tv)|
os (Re (v))|

|Ap (n,v)| < e 2M gy (Re (V)| T (n — M), (2.53)

aslong as 0 < M < n — 1. For given large n, the least value of the bound (2.53)
occurs when M ~ 7. With this choice of M, the ratio of the error bound to the
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values of n, v and M n=>50,v=3M=25
exact numerical value of |a, (v)| 0.20488074252501086011023333780421908 x 10%8
approximation (2.52) to |a, (v)|  0.20488074252501083534003404895337929 x 10%8

error 0.2477019928885083979 x 1032
error bound using (2.53) 0.4920071790575388977 x 1032
values of n, v and M n=>50,v=5+2i, M=25

exact numerical value of |a, (v)| 0.69731314532572255187775111528322010 x 10°
approximation (2.52) to |a, (v)|  0.69731314532569616255785977526585925 x 10

error 0.2638931989134001736085 x 107
error bound using (2.53) 0.6728131140705554142647 x 1037
values of n, v and M n=100,v=5 M =50

exact numerical value of |a, (v)| 0.30018326827069040035947697306058238 x 10'2°
approximation (2.52) to |a, (v)|  0.30018326827069040035947697306060677 x 1012

error —0.2439 x 10%
error bound using (2.53) 0.4856 x 10%
values of n, v and M n=100,v=7+9i, M =50

exact numerical value of |a, (v)| 0.16109496541647929934482793732357802 x 10138
approximation (2.52) to |a, (v)|  0.16109496541647929934682226004959138 x 1038
error —0.199432272601336 x 10118
error bound using (2.53) 0.7119489063948507 x 10'1°

Table 2.1. Approximations for |a, (v)| with various n and v, using (2.52).

leading term in (2.52) is Ov(n_%2’”). This is the best accuracy we can achieve
using the truncated version of the expansion (2.52). Numerical examples illus-
trating the efficacy of (2.52), truncated optimally, are given in Table 2.1.

One may likewise show that for the coefficients b, (v),

1 cos (rrv) [(M=!
by (v) = (=1)"" ~on ( Zo 2"by, (V) I (n —m) + By (n,v)>
where
|cos (7tv)|

By (n,v)| < < 2Mbpg (Re (V)| T (n — M), (2.54)

os (1tRe (v))]
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provided that n > 2,1 < M < n—1and |Re(v)| < M — 1. One readily
establishes that the least value of the bound (2.54) occurs when M ~ 7.

An alternative set of approximations might be derived using the representa-
tions (2.15) and (2.22) in conjunction with the known asymptotic expansion of
the gamma function I' (w + a) with large w and fixed a (see, e.g., [112, Sec. 6.4]).
This approach, however, does not provide bounds for the error terms.

2.1.4 Exponentially improved asymptotic expansions

In this subsection, we give exponentially improved asymptotic expansions for
the Hankel, Bessel and modified Bessel functions as well as for their deriva-
tives. Re-expansions for the remainder terms of the asymptotic expansions of
the Bessel functions ]y (z) and Y (z) were first derived by Stieltjes [105]. Follow-
ing his ideas, Watson [117, pp. 213-214] gave an analogous re-expansion of the
remainder term Rg\f) (z,0). Although both Stieltjes and Watson assumed that z
is positive, their results can be proved to hold in the sector || < 7 — § with
an arbitrary fixed small positive 6. More general expansions were established
later, using formal methods, by Airey [2] and Dingle [32] [35, pp. 441 and 450].
Their work was placed on rigorous mathematical foundations by Olver [90]
and Boyd [12], who derived an exponentially improved asymptotic expansion
for the modified Bessel function K, (z) valid when Z < |0] < 3.

Here, we shall re-consider the result of Olver and Boyd. We derive a re-
expansion for the remainder term qu (z,v) with the largest possible domain
of validity and with explicit error bound. Analogous re-expansions for the re-

mainders R;f,(/) (z,v), RI\],) (z,v) and Rg\],l) (z,v) are also provided.

Proposition 2.1.3. Let M be an arbitrary fixed non-negative integer, and let v be a fixed
complex number. Suppose that 0] < 57” — 0 with an arbitrary fixed small positive J,
|z| is large and N = 2 |z| 4 p with p being bounded. Then

M=1
R (z,v) = 2ie* cos (nv) Y (=1)" ang/) IN-m (22) + Rl(\fg\/l (zv),  (255)
m=0
/ M-1 /
R () = —2iecon () T (1) P T 0 02) R (), @56
m=0

where

/ e—2|Z|
Ry (2.0), Ry g (2,0) = Opup (W (2.57)
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for |0] < 7, and

/ 2Re(z)
Rg\lffg\/l (Z/V) ’ R%ﬁ]\)/[ (Z/U) = OM,V,p,5 <‘3|ZT> (2.58)

for m < |0] < 2F —6.

Watson’s and Airey’s expansions may be deduced from Proposition 2.1.3 by
inserting into (2.55) the known asymptotic expansions of the terminant func-
tions Tn_n, (22) (see, e.g., [91] or [99, p. 261]).

Proposition 2.1.3 in conjunction with (2.11), (2.17)—(2.19) and (2.25)—(2.28)
yields the exponentially improved asymptotic expansions for the Hankel and
modified Bessel functions and their derivatives. In particular, formula (2.55)
together with (2.11) embraces the three asymptotic expansions (2.5) and

Ky (z) ~ (%)7 e " (i i S/) + 2ie* cos (7tv) 20(—1)’“ ﬂn;_ij))

n=0 N

which holds when z — oo in the sectors 7 +¢ < £60 < 5—” — 0 (see, e.g., [89]);
furthermore, they give the smooth transition across the Stokes lines 0 = £7r.
The main results of this subsection are the explicit bounds on R&,%VI (z,v)
and Rg\, 1\)/1 (z,v) presented in Theorem 2.1.4 below. Note that in these results, N
does not necessarily depend on z. (Evidently, R ;\12\4 (z,v) and Rg\, 1\)/1 (z,v) can be
defined for arbitrary positive integer N via (2.55) and (2.56), respect1vely) We
remark that the special case of the estimate (2.59) when —1 < v < 1 was also

proved by Boyd [12].

Theorem 2.1.4. Let N and M be arbitrary fixed non-negative integers such that M <
N, and let v be a fixed complex number. Then we have

|cos (tv)|  |ap (Re (v))

‘RNM (z,v)| < 2|e* cos (rv ‘]c e ()] 2 | | Tn-m (22)]
2.59
+|Cos(m/)| |cos (rtv)|  |ap (Re (v))| I (N — M) (2.59)
T |cos (tRe (v))| ON-M |z|N
provided that |0| < 7t and |Re (v)| < M + 3, and
[cos ()| b (Re (v))]
|RNM(Z 1/)‘ < Z‘eZZ cos TV ‘|COS(7'[9%2 (1/))’ ‘Z‘M |TN—M (ZZ)‘
(2.60)

Jeos ()| |eos (mv)|  |bu (e (v))| ' (N — M)
T |cos (tRe (v))| ON-M |z|N
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for|0] < 7, |Re (v)| < M — L and M > 1. If 2Re (v) is an odd integer, then limiting
values are taken in these bounds

When v is real or Jm (v) is small, the first terms on the right-hand sides of
the inequalities (2.59) and (2.60) are of the same order of magnitude as the first
neglected terms in the expansions (2.55) and (2.56), respectively. It can be shown
that for large N — M, the second terms are comparable with, or less than, the
corresponding first terms (except near the zeros of Ty_p(2z)). The proof is
identical to that given by Boyd [12] for the case of R&I,(%VI (z,v) with =} <v < 3,
and it is therefore not pursued here. /

The analogous results for RZ(\P (z,v) and R% ) (z,v) can be deduced immedi-
ately from Proposition 2.1.3 using the connection formulae

2R, (2v) = R (e, v) + Ry (ze~#1v),
2iRYY., (z,v) = RN (ze%,v) — RYY) (ze~51,v), (2.61)

ZRI(\P (z,v) = Rg\],) (z,v—1) +R§\P (z,v+1),
and they are as follows.

Proposition 2.1.5. Let M be an arbitrary fixed non-negative integer, and let v be a fixed
complex number. Suppose that |0| < 271 — & with an arbitrary fixed small positive J,
|z| is large and N = |z| + p with p being bounded. Then

(/) 2i = ot (V) i

Ry (z,v) =i cos (rv) ) i" o [N (2ze?")

m=0
_ M-1 -
+ie 22 cos () ¥ (—i)" @#Tmm (2ze=31) + R s (2,0),
m=0

. M-1 ~

Rg\)]H (z,v) =e**cos (mv) ) imamz—rS/)TzN_m (2ze2")
m=0

o0 Ny am (V) %1y gV
—e *Pcos (mv) Y (i) i Ton-—m(2ze” 2') + Ry 4 01 (2, V),
m=0

() )y mbm
Ry (z,v) = —ie*cos (mv) Y i TZN m(2ze2 )

=0
—ie %2 cos ( Mil ( )T 2ze 21 ()
oN-m (2267 2") + Ry (2,v)
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and
() ! bm (v)
RN (z,v) = 22 cos (71v) Z i T m(Zze2 )
M 1
. b - /
+e Hcos (mv) Y (—i)" %TZN—m (2ze™2) +R£§\,)+1,M (z,v),
m=0
where
) ) () () 2k
RoN M (z,v) ' RoNi1m (z,v), Ronm (V) ' Rona,m (z,v) = Omu,p | Z|M

for 0] < Z,and

/ / :Fij( )
R eo) Ry 1g o) R () RO () = Ot (W)

for T < £6 <2 — 4.

Explicit bounds for the error terms Rgl\)] v (Zv), Rg\)] im (ZV), Rg\l/) M (z,v)
and REN) 1m (z,v) may be derived using Theorem 2.1.4 together with the in-
equalities

K s K _ i
2R 110 (2 )], 2R (20)] <[RS g (2637, 0) |+ [ R (20 E )]
and
2|Rg\f)+1,M (z,v)], QN)M (z,v)| < |R§I§?M(ze%i,v)] + |R§I;],)M(ze_%i,y) ,

which can be established readily from the connection formulae (2.61).

Proof of Proposition 2.1.3 and Theorem 2.1.4. We only prove the statements
for R( ) (z,v) and R%,;VI (z,v); the remainders R( ) (z,v) and RE\”\)/I (z,v) can be
handled similarly. Let N and M be arbitrary flxed non-negative integers such
that M < N. Suppose that [Re (v)| < M + 5 and |6| < 7. We begin by replac-
ing the function K, () in (2.12) by its truncated asymptotic expansion (2.50)
and using the definition of the terminant function, in order to obtain

M-1

R (2,0) = 2ie% cos () & (~1)" 20T 22) 4 R (20), 262)
m=0
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with
oo 1, N=1,-2u
() (70) = _1NML/+ UM ) () g
Ry (zv) = (—1) © NJy 1rujz Xm (u,v)du 06
N €Os (7TV) gy TN T (k)

= e /() WRM (T’T,V) dr.

In passing to the second equality, we have taken z = rel’ and have made the

change of integration variable from u to T by u = rt. The remainder R( ) (rt,v)
is given by the integral formula (2.12), which can be re-expressed in the form

1
(K) M E 2 co 1 /+oo tM—f —t
R, (rt,v) = (-1) < ) p- v 5 i/r K, (t)dt

7T T)
1
2\2cos(mv) T—1 [+ M-t
M (= K, (t)dt.
HE (7)) oM Arrenasgm<?
Noting that
0< 1 L <1 (2.64)

14+t/r" (T4+rt/t)(1+t/r)
for positive r, T and ¢, substitution into (2.63) yields the upper bound

R (2,0 < L8 (] _leos ()| Jau (Re (v)| /+°°de
N,M \#s = 7T |C05(7‘[9’Le(1/))| \Z‘M 0 1+ zoi0
cos ()| _eos ()|l (Re ()] 1+ - acr e =1
T |cos (TRe (v))] 1z|M e

In arriving at this inequality, we have made use of the representation (2.14) of
the coefficients ay (v) and the fact that [Ky ()| < Kg(y) (t) for any ¢ > 0. Since

| (t—1) /(7 +e%)| <1 for positive T, after simplification we find that

|cos (tv)|  |ap (Re (v))

}Rl(\ll?\/l (Z,V)‘ < Z‘GZZCOS (rtv "COS (e (v))] \Z\M | | Tn-m (22)| s
leos ()| _Jeos ()] [an (e ()| T (N = pa) *)
Y o ) [

By continuity, this bound holds in the closed sector |§| < 7.* This proves the
inequality (2.59).

4The continuity of R%\?;\A (z,v) along the rays f = £7 can be seen from (2.62).
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From now on, we suppose that |z| is large and that N = 2 |z| + p with p being
bounded. Using this assumption and Olver’s estimate (1.90), the first term on

the right-hand side of the inequality (2.65) is Opy,,(|2] M o —2[2] ) By employing

Stirling’s formula, the second term is found to be Oy, p(|z| e 21). This
establishes the estimate (2.57) for Rg\]}/f (z V).
Consider now the sector 71 < § < 2% — §. For such values of 6, R;VBVI (z,v)

can be defined via (2.62). When z enters this sector, the pole of the integrand in
(2.63) crosses the integration path. According to the residue theorem, we obtain

R (t,v) dt

K cos(mmv) 1 [+oe $N-1g—2t
R ) = (V=i T

mooZN 1+t/z
+ 2ie?** cos (V) RE\IZ) (ze~7,v)
= RI(\I,?VI (ze~2™,v) + 2ie** cos (7v) Rg\f) (ze~ 7, v)

for Tt < 6 < 37. Now, by analytic continuation,

Rz(\lfg\/r (z,v) = Rl(\lfgw (ze~2™,v) + 2ie** cos (7v) RE\IZ) (ze™™,v)
holds for any complex z, in particular for those lying in the sector 7 < 6 < 57” -
6. The asymptotic expansion (2.5) implies that Rg\i) (ze=™,v) = Ops(lz) ™M)
asz — o0 in m < 0 < 2 — 4. From (2.57), we infer that RE\IEM (ze= 21, v) =
OMVP(|Z| e 217l) for large z in the sector 7 < 6§ < 3% — §. This shows that
the estimate (2.58) holds for Rg\, 3\4 (z,v)whenm <6 < 5” — 0. The proof for the
conjugate sector —3F + 6 < 6 < —7r is completely analogous

Finally, consider the case when 0 < M < |Re (v)| — 3. We choose an integer
M’ such that |Re (v)| < M’ + 3. Then for any complex number z, we have

R (z,v) = 2ie* cos (7v) Mil (=)™ O (V )T (2z) + RM (z,v)
N,M \4 = o N—m N,M! \%s .

The summands on the right-hand side can be estimated by Olver’s result (1.90).

To estimate Rz(\f) (z,v), we can use (2. 57) and (2.58), which have been already

proved in the case that [Re (v)| < M’ + 1. We thus establish

©) M -1 e—2lzl e—2lz| e—2l7|
RN M Z Omu,p +Omup | Zar | = Omue | —m

as z — oo in the sector |0| < 7, and

M -1 2Me(2) 2Me(2) e2Ne(2)
NM (zv) Z Omv,p.6 ( >+OM’IV'PI‘5 <W> = Omupo (z—M>
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as z — oo in the sectors 77 < |0 §57”—(5. ]

Alternatively, Proposition 2.1.3 can be proved by using the connection
K, (z) = m2e * (2z)" U(v+3,2v+1,22)

of Ky (z) and the confluent hypergeometric function, as well as the known ex-
ponentially improved expansion for U (4,4 — b + 1, z) (see, e.g., [92]). The state-
ment for Rg\lf ) (z,v) may then be proved by employing the functional relation
Ky—_1(z) + Ky+1(z) = —2Kj, (z). This approach, however, does not provide us
with any explicit bounds on the error terms Rg\l,?w (z,v) and Rg\lfl 1\)/1 (z,v).

2.2 Anger, Weber and Anger—Weber functions

In this section, we investigate the large-z asymptotic expansions of the Anger
function J, (z), the Weber function E, (z) and the associated Anger-Weber func-
tion A, (z), and that of their derivatives (for definitions and basic properties,
see, e.g., [96, Sec. 11.10]). The asymptotic expansions of the functions J, (z) and
E, (z) were stated without proof in 1879 by Weber [118] and in the subsequent
year by Lommel [55]. They were proved as special cases of much more general
formulae by Nielsen [80, p. 228] in 1904 (see also [117, Sec. 10.14]).

In modern notation, the asymptotic expansions may be written

Ju(z) ~ Jv(z) + M (i FZZ(:) —g i GZZ—}SP) , (2.66)

7tZ

n=0 m=0
1+cos(mv) & Fi(v) v(l—cos(mv)) & G (V)
~ =Y, — — 2.67
E, (z) v (z) s ng) 721 122 m;O Z2m (2.67)
e v) G ()
1 & F (v v & Gy (v

as z — oo in the sector |0| < 71 — 4, where ¢ denotes an arbitrary small positive
constant and 0 = argz (see, for instance, [96, Subsec. 11.11(i)]). The coefficients
F, (v) and G, (v) are polynomials in v? of degree n; their explicit forms will be
given in Subsection 2.2.1 below.

We would like to emphasize that, just as in the case of the Bessel functions,
these asymptotic expansions are not uniform with respect to v; we have to re-
quire v = 0(|z|) in order to satisfy Poincaré’s definition.

The structure of this section is similar to that of Section 2.1. In Subsection
2.2.1, we derive resurgence formulae for the Anger, Weber and Anger-Weber
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functions, and their derivatives, for large argument. We give computable error
bounds for the asymptotic expansions of these functions in Subsection 2.2.2. In
Subsection 2.2.3, the asymptotic nature of the corresponding late coefficients
is considered. Finally, in Subsection 2.2.4, we obtain exponentially improved
asymptotic expansions for the above mentioned functions.

2.2.1 The resurgence formulae

In this subsection, we investigate the resurgence properties of the Anger, Weber
and Anger-Weber functions, and their derivatives, for large argument. We will
begin with the study of the Anger-Weber function A, (z), and will obtain the
corresponding results for the other functions using their functional relations
with A, (z). The Anger-Weber function A, (z) may be defined by the integral

ef 1 e —zsin —
Av(z) % /O e Zsinhteviqy (2.69)
which converges when |6| < 7 and for every complex v [96, eq. 11.10.4, p. 295].
The function sinh ¢ has infinitely many first-order saddle points in the complex
t-plane located at t = tf) = (k4 1)i with k € Z. The path of steepest descent
2(°) (0) issuing from the origin coincides with the positive real axis, and its
orientation is chosen so that it leads away from 0. Hence we may write
1
A, (z) = —T0
V(@)= —TO (),

where T(%) (z) is given in (1.3) with the specific choices of f (t) = sinht and
¢ (t) = e, The problem is therefore one of linear dependence at the endpoint,
which we considered in Subsection 1.1.1. To identify the domain A(®) corre-
sponding to this problem, we have to determine the adjacent saddles and con-
tours. When 6 = —Z, the path 2(°) () connects to the saddle point +*) = Zj,

whereas when 6 = 7, it connects to the saddle point t=D = —7i. These are
7T

therefore adjacent to 0. The corresponding adjacent contours %(©) (—%) and
%=1 (Z) are horizontal lines parallel to the real axis (see Figure 2.2); this in
turn shows that there cannot be further saddles adjacent to the origin other
than +(?) and +(~1). The domain A(°) is formed by the set of all points between
the adjacent contours.

Following the analysis in Subsection 1.1.1, we expand T (z) into a trun-
cated asymptotic power series with remainder,
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(© ¢ (-3)
~—>
(iif)
(i
0
()
(iv)
N v)
\ >
t(=1) ¢V (%)

Figure 2.2. The steepest descent contour 22\°) (8) associated with the Anger—
Weber function of large argument emanating from the origin when (i) § = 0,
(ii) 0 = — %, (iii) = —2&, (iv) 0 = T and (v) 0 = Z*. The paths €©) (- %)
and ¢~V (5) are the ad]acent contours for 0. The domazn A comprises all
points between €0 (—2) and =V (Z).

The conditions posed in Subsection 1.1.1 hold true for the domain A(°) and the
functions f (t) = sinht, g (t) = e~V%; only the requirement that g (¢) / fN*! (t) =
o(|t|™') as t — oo in Al%) needs closer attention. It is readily verified that this
requirement is fulfilled precisely when |9ie (v)| < N + 1. The orientations of
the adjacent contours are chosen to be identical to that of 209 (0), therefore
the orientation anomalies are 7,0 = 1 and 7,_1 = 0, respectively. The relevant
singulant pair is given by

Foo = sinh (5i) —sinh0 =i, arg Fo0 = 0p0 = 5 and

Fo—1 = sinh (—Fi) —sinh0 = —i, arg Fo_1 = 0p_1 = — 5.
We thus find that
_aNLTi e  N-L —u )
RY (2= LT (172 40 (15

2ezN Jo 1+iu/z
. N (2.70)
iNe 1l ptoo gy N—ge7HU -

T (ue?t)d

27rzN /0 1—iu/z (ae ) %

with |0] < 7, N > 0 and |Re (v)| < N + 1. A representation simpler than (2.70)
is available. To derive it, we note that the functions T(©) (ue™ %i) and T-1) (ae%i)
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can be written in terms of the modified Bessel function K, (). Indeed, by shift-
ing the contour ¢(*) (—Z) downwards by Zi, we deduce that

(0) —Zi 1 -7 giteo —uef%i(sinht—sinh(li)) —vt
T (ue™2") = uze 4 e 21))e~vidt
%i—oo
—+o00
_ms o _ma, 1 _ _ _mi w1
— e ilp 21vu2eu/ e ucoshl‘e vtdtzze 1l 21vu2euKV (u),
—0Q0

using the integral formula (2.7) and the symmetry relation K_,(u) = K, (u).
Similarly, one can show that T(~1) (ue2?) = 2etie?ivye!K, (1). Thus, the rep-
resentation (2.70) can be simplified to

AN Ty N
0 —i) e 2 too oy
RZ(\J) (z) = (=9) /0 Ky (u)du

izN 1+iu/z "
‘N, Ziv 40 N
iNe2 u
—— K d
mzN /0 1—iu/z v (i) du

for all z in the sector |8 < 7,aslongas N > 0and |Re (v)| < N+ 1.

We may now connect the above results with the asymptotic expansion (2.68)
of the Anger-Weber function A, (z). We write 2N in place of N and match the
notation with that of (2.68) in order to obtain

A, (z)= = (Z\il FZZ(:) +R§\?) (z,v)) S (Z\]Z_f GZZ(:) +ﬁ§\?) (z,v)) , (2.71)

2
n=0 iz n=0

where F, (v) = ag;) and G, (v) = —azn) 1/v. The remainder terms are related to
Rg\)] (z) via Ry ) (z,v) = (V/2)RN " (z,v) = Rgg\), (z) and can be expressed as

(A) B N 2 v\ 1 e y2N
Ry’ (z,v) = (-1) %cos< ) _/o m]@ (u)du (2.72)

and

RA) (v N 2 (T L/*“’ u
Ry (z,v) = (—1) — sm< > > 2N 1+(M/Z)2KV (u)du, (2.73)

provided |Re (v)| < 2N + 1 and |9Re (v)| < 2N + 2, respectively. We have just
proved (2.73) under the condition |Re (v)| < 2N + 1, but analytic continuation in
v shows that it is actually valid in the slightly larger domain |[9Re (v)| < 2N + 2.°

5For this, note that if u — 0+, then K, (1) = O(u~1%¢W)) for v # 0 and K, (1) = O (logu)
for v = 0 (cf. [96, egs. 10.30.2 and 10.30.3, p. 252]).
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We can arrive at a more general result than (2.71), as we did for the Bessel
function J, (z). We find

Ay (2) = — <N21 F’;Q(: ) R® (z,v)) - (le GZZI(:) +R® (z,v)) (2.74)

2
Tz \ n=0 TZ7 \ m=0

in a manner similar to the derivation of (2.32), using formulae (2.75) and (2.76)
below. If |§| < Z, N,M > 0 and |Re (v)| < min(2N + 1,2M + 2), equations
(2.74), (2.72), and (2.73) with M in place of N together yield the desired resur-
gence formula for the function A, (z).

Taking F, (v) = ag?, Gn (v) = —ag’,l) .1/v and (1.12) into consideration, we
obtain the following explicit formulae for the coefficients:

d2n o ¢ 2n+1
Fa(v) = arn | © (sinht)
t=0
1 | g2n+l o f 2n+2
Gn (v) = v [dtzn“ (e (sinht) t—O.

Expanding the higher derivatives by Leibniz’s formula shows that F, (v) and
Gy (v) are indeed polynomials in v? of degree n. However, these expressions

are not very effective for the practical computation of F, (v) and G, (v). We
can obtain more useful expressions as follows. Since F, (v) = z2”(R,SA) (z,v) —
ng)l (z,v)) and G, (v) = 22"(1’%2‘*) (z,v) — ﬁf:fl (z,v)), we immediately deduce
from (2.72) and (2.73) that

and

n 2 v Foo
E,(v) =(-1) —cos <7> /0 u?"K, (u) du (2.75)
for |Re (v)| < 2n+1, and
Go (1) = (~1)" =sin (%) /+°° 2K, (1) du (2.76)
8 v 2/ Jo ! '

for |Re (v)| < 2n + 2. The right-hand sides can be evaluated explicitly using the
known formula for the Mellin transform of the modified Bessel function K, (u)
(see, e.g., [38, ent. (26), p. 331]), giving

Fy (v) = (—1)”%@5 (%)r(n+%+%)r(n+%—g) 2.77)

= (1 —1)(1? =3 (v = (2n —1)?) (2.78)
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and
, 22y v v
Gu (v) = (=1)" ——sin (7> r(n+1+§) r(n+1—§) (2.79)
= (12 -22) (12 —4%) .- (V2 = (2n)?). (2.80)

The restrictions on v may now be dropped by appealing to analytic continua-
tion. These are the representations that were originally given by Weber.

We may derive the corresponding expression for the z-derivative by sub-
stituting (2.74) into the right-hand side of the functional relation 2A/, (z) =
A,11(z) — Ay_1(z) (this can be proved straightforwardly from the definition
(2.69)). One thus finds

ALE) = (NE S (z,v>)

=1 s (2.81)
_ L < i (2m +1) Fy (v) + R’(A/) (Z,U)) )

2 2m M
izt \ = z

with the notation ZI/R;?/) (z,v) = Rg\?) (z,v+1)— Rg\?) (z,v—1), 2§](\1/?/) (z,v) =

(v+1) Ez(\?) (z,v+1)—(v—1) ﬁ](\?) (z,v —1). When identifying the coefficients,
we have made use of the relations 2(2m+1)F, (v) = (v+1)Gu(v+1) —
(v—1)Gy (v—1)and 4nvG, 1 (v) = F, (v + 1) — E, (v — 1), which can be ver-
ified directly from (2.77) and (2.79). The complete resurgence formula can now
be written down by applying (2.72) and (2.73). For this, we make the following
assumptions: |§] < 7, N > 1, M > 0 and |%Re (v)| < min(2N,2M +1). With
these provisos, the remainders can be written

(A (2, 0) = (—1)N 2 sin (¥ L/+°°—”2N K, (u)d 2.82
Ry " (zv) = (=1 m/5m< 2>ZZN 0 1+ (u/2)? v (1) du (2.82)
and
R(A') _mM 2 e (T L / e e @
Ry ' (z,v) = (-1) ﬂcos( > ) )y 11 (w/a)? v (u)du.  (2.83)
From (2.82) and (2.83) we immediately infer that
2 AN
_(_q\ntl [ 2n+1 1/
Fo) = ()" cos (5 )/0 WK (i) du (2.84)
for |Re (v)| < 2n+1,and
2 vy [T
_ (_1\n+l . [ 2n+2 1/
Gr () = ()" s sm<2>/0 W22K (W)du (2.85)
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for |Re (V)| < 2n+2.

Let us now consider the resurgence properties of the Anger function J, (z)
and the Weber function E, (z). These functions are related to the Anger—Weber
function A, (z) through the connection formulae J,, (z) = J, (z) +sin (7tv) A, (z)
and E, (z) = =Y, (z) —cos (rtv) Ay (z) — A_, (z) (see, e.g., [96, egs. 11.10.15 and
11.10.16, p. 296]). We substitute (2.74) into the right-hand sides and match the
notation with those of (2.66) and (2.67) in order to obtain

in N-1 M-1
o) = )+ S (R ) G

iz n=0 m=0

(2.86)
+ Rz(\?) (z,v) — gﬁl(\?) (z,v))
and
N-1
B, (2) = ¥, (z) - e () ( i)y R <z,v>>
n=0
(2.87)

2 2m
iz 0 Z

In arriving at these expressions, we have made use of the fact that the coeffi-
cients F, (v), Gi (v) and the remainders RE\?) (z,v), ﬁg\?) (z,v) are all even func-
tionsof v. If |§| < 7, N,M > 0 and |Re (v)| < min(2N + 1,2M + 2), equations
(2.86), (2.87), (2.72), and (2.73) with M in place of N together give the exact
resurgence formulae for J, (z) and E, (z).

We finish this subsection by discussing the corresponding resurgence rela-
tions for the z-derivatives J), (z) and E| (z). The simplest way to derive these
relations is by substituting the expressions (2.86) and (2.87) into the connec-
tion formulae 2J), (z) = J,—1(z) —Jy+1(2z) and 2E} (z) = E,_1(z) — E, 41 (2)
(cf. [96, egs. 11.10.34 and 11.10.35, p. 297]). We thus establish

/ _
Jv (Z) - ]1/ (Z) + Tz = ~2n = Z2m

sin (7v) (V Nzl 2nG,1 (v) 1 le (2m +1) E, (v)

(2.88)
/ 1 ~(A’
+1/R1(\?) (z,v) — ZR;{?) (z,v))



CEU eTD Collection

2.2. Anger, Weber and Anger—Weber functions 81

and

E,(z) = Y, (2) + - (1 = cos (mv)) (N_l 2nGu-1(v)

ez Y i Ry <z,v>>

M_lnzl (289)
N 1+ cos (7v) ( 3 (2m +1) Fy, (v) n Kg\f?l) (z,v)) ,

2 2m
Tz 0 Z

Under the assumptions |f] < 5, N > 1, M > 0 and |Re (v)| < min(2N,2M+1),
equations (2.82) and (2.83) apply and, together with (2.88) and (2.89), yield the
required resurgence formulae for J, (z) and E}, (z).

By neglecting the remainder terms in (2.81), (2.88) and (2.89) and formally
extending the sums to infinity, we obtain asymptotic expansions for the func-
tions A/, (z), J), (z) and E], (z). Alternatively, one can deduce these expansions
directly from (2.66), (2.67) and (2.68) by term-wise differentiation. This latter
approach in turn shows that these asymptotic expansions are valid in the sector
0] < 7T — 6, with ¢ being an arbitrary small positive constant.

2.2.2 Error bounds

This subsection is devoted to obtaining computable bounds for the remainders
Rz(\?) (z,v), Rg\?) (z,v), Rg\?) (z,v) and Rg\?) (z,v). Throughout it, unless oth-
erwise stated, we assume the following: that N > 0 and [Re (v)| < 2N +1
when considering Rg\?) (z,v) and ﬁz(\?) (z,v);that N > 0 and |[Re (v)| < 2N +2
when considering ﬁz(\?) (z,v); that N > 1 and |Re (v)| < 2N when considering
Rg\?) (z,v). We should emphasize that, just as in the case of the Bessel func-
tions, the above restrictions on |9ie (v)| are not serious. Indeed, the indices of
the numerically smallest terms of the two asymptotic power series in (2.68),

for example, are n,m = 3 |z|. Therefore, it is reasonable to choose the optimal
N,M = } |z|, whereas the condition v = o(|z|) has to be fulfilled in order to
obtain useful approximations from (2.74).

Watson [117, Sec. 10.14] gave bounds, based on (2.69), for the remainders of
the asymptotic expansions of J, (z) and E, (z), when z is positive and v is real.
A detailed analysis of Rg\‘?) (z,v) and ﬁg\‘;’) (z,v) for complex z and v, including
estimates, was provided by Meijer [60].

The procedure of obtaining error bounds is essentially the same as in the case
of the Bessel and modified Bessel functions discussed in Subsection 2.1.2, and
therefore we omit the details. The following estimates are valid in the right half-
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plane and are useful when z is bounded away from the Stokes lines § = +7:

(A) |cos (G7)| [En (e (v))] [lesc(20)] if T <[6] <5,
RW (z,v)| < 2.90
R G S g ()| o S A
(A) [%Re (v)] Jsin (5)]
R z,v)| <
LS T i ()
' (2.91)
L 1Gn (Re )| [lesc(20)] if F <16 < 3,
|22V 1 if 0] < 7%,
R®) (z,0)] < [%Re (v)| |sin ()]
N -y ‘sin(nmze(v)ﬂ 2.92)
L 12NGyy (e ()] [lesc(20)] i § < 6] < 5, '
2|2 1 if 0] <7%
and
~(A) [cos ()|
R Z V)| < —— = —
NS o 2
' (2.93)
" (2N +1) Fy (Re (v))| ) |esc(20)] if T < [0 < 7,
22N 1 if |0] <Z.

If Re (v) is an odd integer, then the limiting values have to be taken in (2.90)
and (2.93). The existence of these limits can be seen from expression (2.78) for
the coefficients Fy (PRe (v)) by taking into account the assumption |Re (v)| <
2N + 1. Similarly, if 9e (v) is an even integer, the limiting values are taken
in (2.91) and (2.92). If Re (v) # 0O, the existence of these limits follows from
(2.80) and the restrictions on |Re (v)|; otherwise we use the well-known fact
limy, osinw/w = 1.
For the special case when z is positive and v is real, one finds that

F ~ G ~
Rz(\?) (z,v) = Zzgj)G)N (z,v), Rg\?) (z,v) = IZ\IZI(\,V)G)N (z,v),
/ ONGy_1 (V) (A ON +1) Ey (v) =
R (z,v) = O W (2,0), R (z0) = NEDIN Wz (o).

Here 0 < Oy (z,v),0u (z,v),En (z,v),Zy (z,v) < 1 are suitable numbers that
depend on z, v and N. In particular, the remainder terms do not exceed the cor-
responding first neglected terms in absolute value, and they have the same sign
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provided that z > 0 and that |v| satisfies the restrictions given at the beginning
of this subsection. This property of Rz(\?) (z,v) and ﬁg\‘?) (z,v) was also proved
by Watson [117, p. 315] using methods different from ours.

The estimates (2.90)-(2.93) become singular as 6 approaches £7 and are
therefore not suitable near the Stokes lines § = +7. We now give alternative
bounds that are appropriate for the sectors ¥ < |0| < 7 (which include the
Stokes lines § = £7). We may use (2.74) and (2.81) to define the remainder
terms in the sectors 7 < |6| < 7. The bounds are as follows

() _ lesc(2(0—¢"))| |cos (F)] |En (%e(v))]
’RN (Z; V)| — cos2N+1 (P* |COS (7‘[9{22(1/))‘ |Z|2N 7 (294)
[esc (2(6 — ¢™))| [Re (v)| [sin ()] |Gn (Re (v))]
< .
’R 'V)| —  cos?NHZ g lv| |sin n%ze(v))‘ ’Z’2N ’ (2.95)

R (209 < 56 2O -0 Re ()] _[sn(F)|_[NGuA@Re D] 5 6

= 0g2N+1 o+ v |sin nmze( )H |Z|2N
and

S(A) [esc (2(0 — ¢™))| |cos (5)| |(2N+1) Fy (e (v))|

R z,v)| < (2.97)
‘ N ( ){ cos2N+2 QD** ‘COS (7'(9%2(1/)) | ‘Z‘ZN

for 7 < |0| < . Here ¢* and ¢** are the minimizing values given by Lemma
2.1.2 with the specific choices of x = 2N +1and x = 2N + 2, respectively. Note
that the ranges of validity of the bounds (2.90)—(2.93) and (2.94)—(2.97) together
cover that of the asymptotic expansions of the Anger, Weber and Anger—Weber
functions and their derivatives. We remark that bounds equivalent to (2.94) and
(2.95) were proved by Meijer [60].

The following simple estimates are suitable near the Stokes lines § = +£7%
and can be obtained from (2.94)—(2.97) using an argument similar to that given
in Subsection 2.1.2:

7

5) [cos (%) | |F (e (v)|

(A) 1
R z, V)| <5 2N + 32
| N ( )l 2 ( }COS <7r9%2( ))| |Z|2N

[Re (v)] \sin(’é")l G (Re (v))]
VI Jsin (22| 2PN
|

(A) <1/ |9fie v)| [sin(5)] [2NGn-1 (e (v))]
}RN (Z <3 2N+ | | rri)‘ie(v)

[sin (%) | I

RYY (zv)| < 3y/e 2N +3)
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and

[cos (%) [(2N +1) Fy (%e (v)))]

os (B Y

Ry (zv)] < 3yfe 2N +7)

where 7 < || < 7 and N > 1. These bounds might be used in conjunction
with with our earlier results (2.90)—(2.93).

2.2.3 Asymptotics for the late coefficients

In this subsection, we consider the asymptotic behaviour of the coefficients
F, (v) and G, (v) for large n. One may assume that 2v is not an odd integer
when considering F, (v) and that it is not a non-zero even integer when dealing
with G, (v), because otherwise, these coefficients are identically zero for such
values of v if n is sufficiently large. We substitute into the right-hand sides of
(2.75) and (2.76) the truncated asymptotic expansion (2.50) of K, (#) and use the
error bound (2.51) to arrive at following expansions. Firstly,

EF,(v)=(-1)" (%) %cos (%) <Mz—1am (v)T (2n—m+%) +AM(n,v)) (2.98)

where

|cos (7tv)|
os (Re (v

A (1,0)] < Sl (Re )| T (2n—M+%), (2.99)

provided n > 0,0 < M < 2n+  and |Re (v)| < M + 3. Secondly,

Gy (v) = (=1)" (E)é lsin <%> <:Z:::am (v)T <2n —m+ g) + Bum (n,v))

) v
(2.100)
where
|cos (7tv)| 3
|Bm (n,v)| < cos (%% (1))] lays (Re (v))| T (Zn - M+ §> , (2.101)

aslongasn > 0,0 < M < 2n+ 3 and |Re (v)] < M+ 1. For given large n,
the least values of the bounds (2.99) and (2.101) occur when M ~ %”. With this
choice of M, the ratios of the error bounds to the leading terms in (2.98) and
(2.100) are O, (n’%9_”). This is the best accuracy available from truncating the
expansions (2.98) and (2.100).
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values of n, v and M

exact numerical value of |F, (V)]
approximation (2.98) to |E, (v)|
error

error bound using (2.99)
approximation (2.102) to |F, (v)|
error

error bound using (2.103)

n=20,v=2,M=27
0.10753759651550311126362302989411847 x 10*8
0.10753759651550311126436817593883359 x 10%8
—0.74514604471512 x 10?7

0.150004254243613 x 102
0.10753759651550311126335593901006385 x 10*8
0.26709088405462 x 10%”

0.51832048187004 x 10?7

values of n, v and M

exact numerical value of |F,; (v)|
approximation (2.98) to |F, (v)]
error

error bound using (2.99)
approximation (2.102) to |F, (v)|
error

error bound using (2.103)

n=20,v=4+44i, M =27
0.27351869444288624491826250578549711 x 10°Y
0.27351869444288641362495417331163060 x 10%°
—0.16870669166752613350 x 103
0.89989353365282590234 x 103
0.27351869444288619110422177885737773 x 10%Y
0.5381404072692811938 x 103+
0.32156531428449840421 x 10%°

values of n, vand M

exact numerical value of |F, (V)]
approximation (2.98) to |E, (v)|
error

error bound using (2.99)
approximation (2.102) to |F, (v)]
error

error bound using (2.103)

n=30,v=4,M =40
0.97537883219564525333191584258450035 x 108!
0.97537883219564525333191584258258989 x 108!
0.191045 x 10°2

0.377882 x 10°2
0.97537883219564525333191584258518855 x 1081
—0.68821 x 10°!

0.132873 x 10°2

values of n, v and M

exact numerical value of |F, (v)|
approximation (2.98) to |E, (v)|
error

error bound using (2.99)
approximation (2.102) to |F, (v)|
error

error bound using (2.103)

n=230,v=6+23i, M =40
0.59485355287298605088656685883863293 x 1083
0.59485355287298605088656685174774289 x 10%3
0.709089004 x 10%7

0.2154510868 x 10°8
0.59485355287298605088656686134168941 x 1083
—0.250305648 x 10°7

0.777022224 % 10°7

Table 2.2. Approximations for |, (v)| with various n and v, using (2.98) and (2.102).
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A different set of approximations can be derived starting from the integral
formulae (2.84) and (2.85). In this way, we obtain the following expansions.
Firstly,

F,(v) = 2(;1_)1 (%) ’ cos <%> (A/IZj by (v) T <2n —m+ %) +Cum (n,v))
" (2.102)
where

|cos (7tv)|
os (tRe (v))

Cur (nv)] < 1 b (9e (V)| T (Zn—M-i-g), (2.103)

provided thatn > 0,1 < M < 2n + 3 and |Re (v)| < M — 3. Secondly,

Gy (v) = % (%) : sin (%) <]:Z:: b (v)T (211 —m+ g) + Dm (n,v)>
where

|cos (7tv)|
os (mRe (v

5
IDa (m,0)] < 557w (9% ()| T <2n—M+§>, (2.104)

provided that n > 0,1 < M < 2n+ 3 and |Re (v)] < M — 3. One readily
establishes that the least values of the bounds (2.103) and (2.104) occur when
M =~ %”. Numerical examples illustrating the efficacy of (2.98) and (2.102), trun-
cated optimally, are given in Table 2.2.

2.24 Exponentially improved asymptotic expansions

The aim of this subsection is to give exponentially improved asymptotic ex-
pansions for the Anger, Weber and Anger-Weber functions as well as for their
derivatives. In the case of the Anger and Weber functions, expansions some-
what similar to ours were derived, using non-rigorous methods, by Dingle [33].
The proof of our results in Proposition 2.2.1 below is essentially the same as
that of Proposition 2.1.3 on the analogous expansion for the modified Bessel
function, and therefore the proof is omitted.

Proposition 2.2.1. Let M be an arbitrary fixed non-negative integer, and let v be a fixed
complex number. Suppose that |6| < 27t — & with an arbitrary fixed small positive 6,
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|z| is large and N = 3 |z| + p with p being bounded. Then

1 7. s M-—1 -
RZ(\?) (z,v) = (2m)2 e#'e™ cos <%> Y, i an;(_vl) TzN—m+% (ze2")
m=0 Z 2

M-1
1 _n. v am Am (V) e
+(2m)2e 4'e “ cos (7> P (—i) | Lon-m+l (ze™2%)
+ RZ(\?])VI (z,v),
M-1
KR%&) (z,v) = (27{)% e 4'e“sin <7V> L (_Vl) TN 3 (ze%l)
m=0 zw 2
Lo M-1 .
+ (27r)2 e4'e ¥ sin (% (—i)" i (_1/1) TZN—m+% (ze™2)
m=0 z" 2
+ R;VM (z,v),
/ i M=1 b b
ng\?) (z,v) = — (271)? eTle sin (%) i" mm(_Vl) ToN—mt (ze2")
m=0 zw 2
M-1
1 . [TV by (V) s
_ > 1,—1z e _s\m Tm 1
(2m)ze 4le sm( 5 ) mzo( i) ] TZN_mJF%(ze 21)
+ RZ(\?]/\L (z,v)
and
1~A 1 M=1 b s
—Rg\?) (z,v) = (271’)% e 1le% cos <ﬂ im (_1/1) Tyn_my i (z€71)
2 =0 ZM=3 2
) M-1 b .
+ (27()% ei'e " cos (% (—i)" ,,;(_1/1) ToN-m+3 (ze™21)
m=0 zw 2
+ R ),
where
~ / ~( A/ —|z|
A A A A e
Rg\”)VI (z,v) ,Rg\”)w (z,v) ,Rg\”& (z,v) ,Rg\”& (z,v) = Omuyp <’ ’M2>
z
for 0] < Z,and
A ~(A A/ S(A eFIm()
Rg\”)w (z,v) ,Rg\”)w (z,v) ,Rg\”\)/l (z,v) 'Rg\f,Z\ZI (z,v) = OMups <| =
z
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Proposition 2.2.1 together with (2.74), (2.81) and (2.86)—(2.89) gives the ex-
ponentially improved asymptotic expansions for the Anger, Weber and Anger—
Weber functions and their derivatives.

In their paper [47], Howls and Olde Daalhuis investigated the hyperasymp-
totic properties of solutions of inhomogeneous linear differential equations with
a singularity of rank one. The results in Proposition 2.2.1 can be regarded as
special cases of their theory. However, our approach provides not only or-
der estimates, b1/1t also explicit, r}umerlcally computable bounds for RZ(\, 1)\/1 (z,v),
ﬁ%ﬁl)\d (z,v), Rg\?]&[ (z,v) and Rg\, 1\21 (z,v) which are given in the following theo-
rem. Note that in this theorem, N may not necessarily depend on z.

Theorem 2.2.2. Let N and M be arbitrary fixed non-negative integers such that M <
2N, and let v be a fixed complex number. Then we have

R, (zv)] < (

el cos(m/) |cos (V)| [am (Re (V))|‘ (ze%i)]
cos (Re (v))| |M_% AN-M+1

|z

et focon (1) ottt vy %)
2 2 cos (T cos (rtv)|  |am (Re (v ))|F(2N M+ ;)
- (7() ( )‘ |cos (1tRe (V)| |z|*N ’

iz o (TV\|_cos (V)| [am (Re (v))] %
e~ sin <_)‘|cos(7ti)‘ie(1/))| M |M_1 ‘TzN—M+%(Zez )’

R, (z,v)] < (27)? .

+ (@)} e sin (75) !co’:(();i(g()‘))lmﬁ(?;l Mt (e )
2\?| . /v lcos (v)|  |am (Re (v))| T (2N — M + 3)
+<E> st (_> cos (Re (v))] 2N

provided that || < % and |Re (v)| < M+ %, and

R (2, )] < (27)2 ¢!

ol lcos (7tv)| by (Re (v))] Zj
e' sm< > cos (e (v))] M’Z’M% | 2N—M+%(ZGZ )

# o sin ()| o e ) |bM|z(ﬁtfe—(§/ P T ey e )
2 %Sin L cos (7tv)|  |bm (Re (v))| T (2N — M + 1)
* (n) (7) cos (7%Re (1)) 22V /
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7y leos ()] Jbu (e (1))

e' cos( )|cos(7ri)%e( D] M|Z|M_% ‘TZN—M-F%(ZG )
o ()| L e (1)
|cos (1tRe (v))|

R} (zv)| < 2r)2e

+(2m)t Je || Ton-m+3 (ze e )|

(%)
+ _
T
for[0] < Z, |Re (v)| < M — Jand M > 1. If 2Re (v) is an odd integer, then limiting
values are taken in these bounds

| z

Nj—=

cos ()] [cos (v)|  [bm (R e(v))\F(ZN—M+§)
|cos (TRe (v))| |z|2N+1

The proof of Theorem 2.2.2 is essentially the same as the proof of Theorem
2.1.4 and is therefore omitted.

2.3 Struve function and modified Struve function

This section concerns the large-z asymptotic expansions of the Struve function
H, (z), the modified Struve function L, (z) and their derivatives (for definitions
and basic properties, see, e.g., [96, Secs. 11.2 and 11.4]). The asymptotic expan-
sion of H, (z) was given in 1887 by Rayleigh [109] for the case v = 0 and in
1882 by Struve [111] for the case v = 1. The result for arbitrary values of v was
proved by Walker [115, pp. 394-395] in 1904 (see also [117, Sec. 10.42]).

In modern notation, the asymptotic expansions may be written

v=1 oo n4 L
H, (z) ~ Y, (2) +% (%z) 1120 T f( _:;2%2)% (2.105)

as z — oo in the sector |0| < 7T — J, and

v—=1 oo n+1 1
Ly (2) ~ Iy (2) + =K, (2) + — (12) y LV T 2) ) 405
g T2 e+ h-n) ()"
as z — oo in the sectors —% + 6 < +6 < 3I — §, with § being an arbitrary
small positive constant and 0 = argz (see, for instance, [35, pp. 375-376] and
[96, Subsec. 11.6(i)]). For non-integer v, z¥ means e” logz where log z is defined
to be real when 6 = 0, and it is defined elsewhere by analytic continuation.
The asymptotic expansion (2.106) is usually stated without the term involving
Ky (z), which is permitted if we restrict z to the smaller sector |0] < 7 — 4. The
expansions (2.105) and (2.106) terminate and are exact when 2v equals an odd
integer.
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An interesting fact about the expansion (2.106), which was claimed by Dingle
[35, pp. 389-391] and was proved by the present author [74], is that this expan-
sion also has an asymptotic property when v is large, |argv| < 7 —d and z/v is
an arbitrary fixed positive number.

This section is organized as follows. In Subsection 2.3.1, we prove resur-
gence formulae for the Struve and modified Struve functions, and their deriva-
tives, for large argument. In Subsection 2.3.2, we derive error bounds for the
asymptotic expansions of these functions. Subsection 2.3.3 deals with the asymp-
totic behaviour of the corresponding late coefficients. Finally, in Subsection
2.3.4, we derive exponentially improved asymptotic expansions for the above
mentioned functions.

2.3.1 The resurgence formulae

In this subsection, we study the resurgence properties of the Struve and modified
Struve functions, and their derivatives, for large argument. We will begin with
the study of the Struve function H, (z), and shall obtain the corresponding re-
sults for the other functions using their functional relations with H, (z). We
start with the integral representation

2 1 Yot —zU 2\v—13
H(2)=Y,(2)+ [z / e (1412 "bdu,  (2.107)
AT+ N2 b
which is appropriate for |6] < 7 and every complex v (see, e.g., [96, eq. 11.5.2,
p- 292]). The change of integration variable u = sinht transforms (2.107) to a
form more suitable for our purposes:

2 1\" [t —zsinht 2v
H,(z) =Y, (z) + ——— (—z) / e cosh”” tdt, (2.108)
A+ \2/ b

again valid for |6| < 7 and every complex v (cf. [58, egs. (7) and (5), pp. 78
and 80]). We can simplify the derivation by observing that the saddle point
structure of the integrand in (2.108) is identical to that of (2.69). In particular,
the problem is one of linear dependence at the endpoint, and the domain A(®)
corresponding to this problem is the same as that in the case of the Anger-Weber
function A, (z) (cf. Figure 2.2). Let us write

oy eV (AN e
Hv(z)_yv()+néf(v+%)(2> 10) (2),

where T(°) (z) is given in (1.3) with the specific choices of f (t) = sinht and
g (t) = cosh® t. Following the analysis in Subsection 1.1.1, we expand T (z)
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into a truncated asymptotic power series with remainder,

N-1 aEIO) ©
TV (z) =} SRy (2)
n=0

The conditions posed in Subsection 1.1.1 hold good for the domain A(®) and
the functions f (t) = sinht and g (t) = cosh? t; only the requirement that
g(t) /fNTL(t) = o(|t| ') as t — oo in Al®) needs closer attention. It is not
difficult to show that this requirement is satisfied precisely when e (v) < MfL.

We thus find that

N LT e  N-L o —u .
RY (z) = L& | e 1O (e ¥ du
0

N .
iVe a4l ptoo yN—oe™ ¥ e
T (4e2i)d
27rzN /0 1—iu/z (ue ) t

provided [0] < Z, N > 0and %Re(v) < M. We may simplify the repre-
sentation (2.109), as we did in the case of A, (z). We shall show that both
T (ue=2") and T~V (ue?') can be expressed in terms of the modified Bessel
function K, (1). To this end, assume temporarily that %e (v) > —31. Under this
assumption, K, (1) admits the following integral representation originally due
to Hobson:

71'% 1 Yot —ucosht s 1.2V
Ky (u) = —) ~u /0 e sinh”” tdt, (2.110)

for Re (u) > 0 (see, e.g., [35, eq. (33), p. 64] or [96, eq. 10.32.8, p. 252]). Consider
the function T(%) (ue~21). First, we divide the integration contour #(*) (—%) in
the t-plane into two parts at the saddle point ¢(). Second, we make the change
of integration variable from t to s by s = —t in the integral along the contour
which lies in the left half-plane. Thus we have

7
s 51400 T i s
41‘/ e le 2 (sinht smh(zl))COSth tdt

7T+

=
=
—
=
(D‘
NN
N
I
=
N|—
(D‘

1—

N

'u

I
[¢)
=N
N|—

oo
—
71"‘00 . T,
eu/ e e 2 smhtCOShZV tdt
-
71

i 1
+e 41u2e”/

T
—5i

.
— 71—'-00 _ %1 .
ele 2 sinhs (o h2V ods.
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Now, we shift the path of integration downwards by 7i in the first integral and
upwards by 7i in the second integral. Hence, using (2.110), we obtain

. . oo
T (ue=2') = 2e %' cos (v) uzel / e " eosht sinh? tdt
0
n-2V+1F v + l
= e_?# cos (mv) u=VF2e K, ().
2

Likewise, one can prove that

2V+1F(V + %)

- cos (7rv) u ™V T2e K, ().
2

T(_l) (ue%i> = e%i

Therefore, the representation (2.109) simplifies to

2T (v + 1 N i N—v
RO (z) = 210 *2) oo =) / K, (w)du
2 iz Jo  1+iu/z (2.111)
2VT (v + %) iN e N-v '
— K du.
+ T cos (7tv) nzN/o T z (u)du

The restriction Re (v) > —1 is now removed by analytic continuation in v.
We may now connect the above results with the asymptotic expansion (2.105)
of Hy (z) by writing

11\ (NS ran2ngll) (H)
H, (z) =Y, (z —l——(—z) n__ 4 RV (z,v) ], (2.112)
R (gmw%)(%zf” v

with the notation Rl(\I,{) (z,v) = N%Rg;\)] (z) /T (v+ 3). Thus, from (2.111),

RYY (z,v) = (-1)

2" lcos (mv) 1 gt y?N-v
N n( )ZZN/O K (w)du  (2113)

provided that || < Z, N > 0 and Re (v) < N + 3. When deriving (2.112), we
used implicitly the fact that a,(f) vanishes for odd n. To prove this, first note that,

by (1.12), 1
(o) _ | d" 2 t "'
ap = [dt” (cosh t(sinht) t_o.

Because the quantity under the differentiation sign is an even function of t and
therefore its odd-order derivatives at t = 0 are zero, the claim follows. It re-
mains to show that the coefficients in (2.112) are equal to those in (2.105). Since
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n%ag;) /T(v+1)=z% (R (z,v) = RM) (z,1)), we infer from (2.113) that

n+1
1
nzz—Znaé?/I) 2v72n+1 oS (7-“/) +00
= 2n ()" / w?" VK, (1) du 2.114

for Re (v) < n+ 5. We can evaluate the integral on the right-hand side using the
known formula for the Mellin transform of the modified Bessel function K, (u)
(see, e.g., [38, ent. (26), p. 331]), giving

1y_2n (0) T 1
F(V+§) 7T 2 2 I'(y+§_n>

The restriction Re (v) < n + % may now be removed by analytic continuation.
This is the desired form of the coefficients. Substitution into (2.112) yields

v=1/N-1 n+ L
H, (z) =Y, (z)+% (%z) (n;) o f%( —2)22%2)2” +R (z,v)) . (2.115)

Equations (2.115) and (2.113) together then give the exact resurgence formula
for the Struve function H, (z). We remark that the special case of (2.113) when
N = 0 was also given by Erdélyi et al. [39, ent. (41), p. 230].

To obtain the corresponding result for the asymptotic expansion (2.106) of
the modified Struve function L, (z), we may proceed as follows. We start with
the functional relation

L, (Z) =1, (Z) + %eiﬂ'iva (Z) + ie:ﬁ:%iv (HI/ (Zeq:%i) —Y, (Ze:F%i)),

which is valid for —7 < 40 < 71 (cf. [96, egs. 11.2.2,11.2.5 and 11.2.6, p. 288]),
and substitute by means of (2.115) to arrive at

L,(z) =1,(z) + %ei’va (2)
o1 (1)(NZ ()" (3) ()> |

m\2 v+ l-n) (2 Y

Assuming that 0 < 0 < 77, N > 0 and Re (v) < N + 3, equations (2.116) and
(2.113) then yield the desired resurgence formula for L, (z).

We may derive the corresponding expressions for the z-derivatives by sub-
stituting the results (2.115) and (2.116) into the right-hand sides of the functional
relations

H, 1 (2) + Hyoq (2) = 2H (2) — m (%z)
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and

-t (LY
L, (Z)+Lv—|—1 (Z) _ZLV (Z) H%F(V‘F%) (2 )

(for these, see [96, eqs. 11.4.24 and 11.4.26, p. 292]). One thus finds

() =Y (2 l 12 vz N_lr(n—i_%)(%_%_ ) (H )Zl/>
HY () = Y/ (2)+ () (;0 s ) I

771
1 /1 \" 2Nzt (-1 ”+1r + DB -1 —n N (2.118)

2
T Y

where ZRgI/) (z,v) = Rz(\?) (z,v—1) — (2/2)°R N421 (z,v+1). The complete
resurgence formulae can now be written down by applying (2.113). For this, the
following assumptions are made: in (2.117), we suppose that 6] < 7, N > 0

and Re (v) < N+ %; whereas in (2.118), we assume that 0 < +60 < 7, N > 0
and Re (v) < N + 1. With these provisos, we have

RY (z,v) = (~1)

N 2Vcos (mtv) 1 /+°° y2N+1-v ! () du

Neglecting the remainder terms in (2.117) and (2.118) and formally extending
the sums to infinity, we obtain asymptotic expansions for the functions H), (z)
and L), (z). Alternatively, we can derive these expansions directly from (2.105)
and (2.106) by term-wise differentiation. This latter approach in turn shows that
these asymptotic expansions are valid in the sectors |6] < m —dand —F +6 <

+6 < 3T — 5, respectively, where ¢ is an arbitrary small positive number.

2.3.2 Error bounds

In this subsection, we provide computable bounds for the remainders R( ) (z,v)
and R( ) (z,v). Unless otherwise stated, we suppose that N > 0 and E)%e( ) <
N + . The index of the numerlcally least term of the asymptotic expansion
(2.105), for example, is n ~  |z|. Thus, the restriction on e (v) (when it is
positive) involves little loss of generality, unless |z| < 29e¢ (v), but in that case
different approximations are appropriate anyway (cf. [117, Sec. 10.43]).
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To our knowledge, the only known result concerning the estimation of the
remainder RZ(\I]{) (z,v) is that of Watson [117, Sec. 10.42]. Here, we shall derive
bounds which are simpler than the ones given by Watson.

The procedure of deriving error estimates is akin to those discussed in Sub-
section 2.1.2 for the Bessel and modified Bessel functions and therefore, we omit
the details. The following bounds are valid in the right half-plane and are ap-
propriate when z does not lie close to the Stokes lines § = £7:

‘R(H) ’ |COS(7T1/)|
h ~ Jeos (e (1)
I(N+1) {|csc o) it T<lo<z @1
TRe () +1-N)|G 1) | 1 if 6] <7
and
|R(H | |COS (7‘[1/)‘
h = Jeos (7%e (1)
(2.120)

1 .

MN+§\P—Q—M esc(20)] if § <ol < %,
F(®Re()+3-N)|[(F)™ | 1 if <

If 29 (v) is an odd integer, the limiting values are taken in these bounds. The

existence of these limits is guaranteed by the zeros of the reciprocal gamma

function at the non-positive integers.
In the special case when z is positive and v is real, one can show that

r'(N+1)

(H) _

R Z,V) = On (z,v

VT e
" () T(N+l)(z ~3 —N)

Ry (zv) = 212 2 En(z,v),

F(v+i-N)(32)™
with some suitable numbers 0 < Oy (z,v),EnN (z,v) < 1 that depend on z, v
and N. Said differently, the remainder terms do not exceed the corresponding
tirst neglected terms in absolute value and have the same sign provided that
z>0and v < N + 1. This property of R( ) (z,v) was also proved in a different
way by Watson [117, p. 333].

Let us now consider estimates which are appropriate for the secto/rs 7 <
8] < m. When 7 < |0| < 7, the remainder terms R(H)( v) and R( )(z V)
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may be defined via (2.115) and (2.117). The bounds are as follows

eIm(v)¢* lcsc (2(60 — ¢*))|  |cos (v)|

IREY (z,v)] <

= Cos2NTT—De(v) g+ |cos (7tRe (v))]

; (2.121)
F(N + Q)
2N’
[I(Re (v) +3 = N)| (3 ]2])
and
() - ™9™ |esc (2(0 — ¢**))|  |cos (V)|
‘RN (va)‘ = cos2N+2—Re(v )4’** |cos(7‘(9fie ()|
(2.122)
r'(N

. +1)%
T (9Re ( >+%—N>!(%|z|>“

for £ < |8] < 7, where ¢* and ¢** are the minimizing values provided by

Lemma 2.1.2 with the specific choices of x = 2N +1—Re (v) and y = 2N +2 —

PRe (v), respectively. (It seems that, in general, we cannot minimize the quantity
)9 |csc (2 (8 — @))| cos 2N=1+9e(V) a5 a function of ¢ in simple terms.)
We can simplify these bounds if 6 is close to the Stokes lines § = +7 using

an argument similar to that given in Subsection 2.1.2:

Jm(v)e*
- e 5 |cos (7tv)|
IR (z,v)] < \/e (2N + 3 — Re (v)) |cos (e (v))] 9193
. (N +1) (242)
T (Re (v) + 1= N)| (3 =)™
with ¢* = +arccot((2N + 2 — Re (V))%) and § <£(0—¢%) < 7,and
/ m(v)
) <eJ— 7 |cos (7tv)|
RN (20| < Sy yfe (N 4§ = e (v) [ St s
e (2.124)
T(N+3)%5" 3 —N|
Iree) +3- M) )™

with ¢** = Zarccot((2N + 3 — Re (v))%) and § < £(0 —¢*) < 7. These
bounds might be used in conjunction with with our earlier results (2.119) and
(2.120).
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2.3.3 Asymptotics for the late coefficients

In this subsection, we consider the asymptotic behaviour of the coefficients
I'(n+3%)/I'(v+ 3 —n) of the asymptotic expansion (2.105) for large n. One
may assume that 2v is not an odd integer, because otherwise, these coefficients
are identically zero for such values of v if n is sufficiently large. We substitute
into the right-hand side of (2.114) the truncated asymptotic expansion (2.50) of
K, (1) and use the error bound (2.51) to arrive at following expansion:

F(n+, ’ 1
F(V(J’i % i)n) =(-1) 2;:’51/_2712 <m¥ A ( (2n—m—1/+§) + Apm (n,v))
(2.125)
where
1
Ay (n,v)] < |C()‘:‘(’;g:ev()v|))| lam (Se (V)| T (Zn — M —Re (v) + 5) . (2.126)

providedn > 0,0 < M < 2n—%Re (v) + 3 and |Re (v)| < M + 1. For given large
n, the least value of the bound (2.126) occurs when M =~ %”. With this choice of
M, the ratio of the error bound to the leading term in (2.125) is O, (n_% (1) 7").
This is the best accuracy we can achieve using the truncated version of the ex-
pansion (2.125). Numerical examples illustrating the efficacy of (2.125), trun-
cated optimally, are given in Table 2.3.

2.3.4 Exponentially improved asymptotic expansions

The purpose of this subsection is to give exponentially improved asymptotic
expansions for the Struve and modified Struve functions and their derivatives.
In the case of the Struve and modified Struve functions, expansions somewhat
similar to ours were derived, using non-rigorous methods, by Dingle [33] [35,
pp- 444-446]. The proof of our results in Proposition 2.3.1 below is essen-
tially the same as that of Proposition 2.1.3 on the analogous expansion for the
modified Bessel function, and therefore we omit the proof.

Proposition 2.3.1. Let M be an arbitrary fixed non-negative integer, and let v be a fixed
complex number. Suppose that |0| < 27t — & with an arbitrary fixed small positive J,
|z| is large and N = 3 |z| 4 p with p being bounded. Then

1

Y H) 1w i ML a4 (V) n
(—z) Ry (z,v) = (2m)2ie“e™ cos (mv) Y "= Toy_,,_,41(ze2")
2 =0 mej 2
M-1 _
— (27r)% ie '“e™ cos (1tv) (—i)" a”:n(_? ToN—m—v+1 (ze gl) + Rg\?g/l (z,v)
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values of n, v and M
exact numerical value of ‘ T
F(v—&-i —n)
o r'(n+3)
approximation (2.125) to ‘ T
error

error bound using (2.126)

r(n+})

n=20,v=-2M=27
0.41004693538638711649831707548500315 x 1038
0.41004693538638711649867195782459930 x 1038

—0.35488233959615 x 1017
0.66764488947654 x 1017

values of n, v and M
exact numerical value of ‘ T
[(v+y-n)
o I(nt3)
approximation (2.125) to 7
error

error bound using (2.126)

r'(n+3%)

n=20,v=4+4i M =27
0.78075498349526202667042265408467387 x 103

0.78075498349530874415993588182914557 x 10%°
—0.4671748951322774447170 x 10?2
0.48903700456267642929297 x 1023

values of n, v and M
. r(n+3)
exact numerical value of ‘ e

+ % 771)
approximation (2.125) to ‘F(Vf

error

error bound using (2.126)

n=230,v=4M =40
0.12083274051499957030461894739579006 x 10

0.12083274051499957030461894737307791 x 10°8
0.2271215 x 10%
0.50344031 x 10%°

values of n, v and M

exact numerical value of ‘ T

F(v—&-j —n)

o r'(n+3)
approximation (2.125) to ‘ 7

error
error bound using (2.126)

r(n+})

n=230,v=—-6+43i, M =40
0.51867397900066680521091679927133678 x 107

0.51867397900066680521091679928034071 x 107

—0.900393 x 10%”
0.4732029 x 1048

1
Table 2.3. Approximations for ‘%‘ with various n and v, using (2.125).
T

v
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and
1 v—1 / M-1 b T
(—z) Rz(\?) (z,v) = — (27'()2 e“e™ cos (rv) Y i" (1/1) Ton—mysd (2€77)
2 =0 ZM=3 2
1 M=1 b 1% s /
— (27)2 e e cos (mv) Y (—i)" Z"; (_; Ty (e ) + REY (2,0)
m=0

for T < £6 <2 — 4.

Proposition 2.3.1 together with (2.115) and (2.116)—(2.118) yields the expo-
nentially improved asymptotic expansions for the Struve function, the modified
Struve function and their derivatives.

Proposition 2.3.1 might also be deduced as a special case of the hyperasymp-
totic theory of inhomogeneous linear differential equations with a singularity of
rank one [47] (indeed, the authors of the paper [47] consider the hyperasymp-
totic properties of H, (z)). However, our approach provides not only order es-
tlmates but also explicit, numerically computable bounds for Rg\, 1)\/1 (z,v) and

g\, v1 (z,v) which are given in the following theorem. Note that in this theo-

rem, N may not necessarily depend on z.

Theorem 2.3.2. Let N and M be arbitrary fixed non-negative integers, and let v be a
fixed complex number. Assume further that M < 2N — Re (v) + % Then we have

[RNA <z,v>\ <
|cos (mtv)|  |am (%e( )

| m
< iw  7Tiv 1
< (2m)? |e cos ( ||c (AR o5 Ton-m- 1/—1—2( ze?')|
1w v cos (mtv)|  |am (Re (v))| _ 1
+ (271)2 [e "™ cos (v ‘|Cos(7t9{e ol |Z M_i 1 Tyn V+2 ze 2|

2 : cos (mtv |cos (7v)|  lam (Re (v))[ T (2N — M — Re (V)+%)
+(7-() [cos (7rv)] |cos (TRe (V)| 2
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provided that |0| < Z and |Re (v)| < M + 1, and

RGY) <z,v>» <

< (27m)2 |e1“’ Y cos (7T |‘

|cos (7tv)| ]bM(i)‘{e( |‘T2NM (ze )‘
1/+2

- cos (mRe (v))| |z M-
+ (27.[)% ‘e—iweniv cos (7v } |CO|SC(()75TE()§V()V|))| |bA/I|Z(;»):;—(;)>| ‘TZN—M—V-F% (ze %1)‘
2\ 2 lcos (v)|  |bar (Re (V)| T (2N — M — 9Re (v) + 3)
+ (_) |cos (7v)| |cos (9Re (v))] |Z|2N :

for|0] < Z,|Re (v)| < M— Land M > 1. If 2Re (v) is an odd integer, then limiting
values are taken in these bounds

The proof of Theorem 2.3.2 is essentially the same as that of Theorem 2.1.4
and so, we omit it.

2.4 Gamma function and its reciprocal

The asymptotic expansion of log I (z) is one of the oldest results in the history
of asymptotic analysis. It was discovered in 1730 by De Moivre and indepen-
dently, in a slightly different form, by Stirling (for a detailed historical account,
see [4, Subsec. 24.4]). The corresponding asymptotic expansion for I (z) is due
to Laplace [24, pp. 88-109] from 1812. Since the 20th century, these expansions
have become standard textbook examples to illustrate various techniques, such
as Watson’s lemma, the method of Laplace or the method of steepest descents.

In this section, we shall study Laplace’s asymptotic expansion for I (z) to-
gether with the analogous result for the reciprocal gamma function. These
asymptotic expansions can be written, in modern notation, as

[(z)~ @)tz be 2 Y (~1)" 7” (2.127)
n=0
and
1 1l e
e ~ (271) 1z #He 277 (2.128)

as z — oo in the sector |0 < 7 — J, with J being an arbitrary small positive con-
stantand 0 = arg z (see, e.g., [112, eq. 6.2.31, p. 71]). The square root in these ex-
pansions is defined to be positive when z is positive, and it is defined elsewhere
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by analytic continuation. The coefficients 7, are rational numbers and are tra-
ditionally called the Stirling coefficients. Some expressions for these numbers
will be given in Subsection 2.4.1 below. It is worth noting that both expansions
involve the same coefficients. The simplest explanation of this interesting phe-
nomenon is that the corresponding asymptotic expansion for log I' (z) contains
only negative odd powers of z (for alternative arguments, the reader is referred
to [20, pp. 70-72] and [23]).

It is convenient to introduce and use throughout this work the concept of
the scaled gamma function:

1" (Z) — T ( )1
(271)2 2" 727

(2.129)

for || < 7 and by analytic continuation elsewhere. Note that, by (2.127),
I'*(z) ~ v = 1 for large z with |6] < 7.

The structure of this section is as follows. In Subsection 2.4.1, we obtain
resurgence formulae for the gamma function and its reciprocal. Error bounds
for the asymptotic expansions of these functions are established in Subsection
2.4.2. Subsection 2.4.3 deals with the asymptotic behaviour of the Stirling coef-
ticients. Finally, in Subsection 2.4.4, we derive exponentially improved asymp-
totic expansions for the gamma and reciprocal gamma functions.

2.4.1 The resurgence formulae

In this subsection, we investigate the resurgence properties of the gamma func-
tion and its reciprocal. We will begin with the study of the gamma function,
and shall obtain the corresponding result for the reciprocal using its functional
relation with I' (z). The resurgence properties of I" (z) were first studied in the
important paper [14] by Boyd; our derivation here is based on his paper, but in
many aspects it is more detailed. We start with Euler’s integral representation

which is valid for (8] < T (see, e.g., [96, eq. 5.2.1, p. 136]). Suppose for a
moment that z > 0. The change of integration variable u = ze' transforms
Euler’s integral to a form more appropriate for our purposes:

e e—z(et—t—l)dt.

This representation is again valid for [#| < 7, by analytic continuation. The
function e’ — t — 1 has infinitely many first-order saddle points in the complex
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t-plane situated at t = t) = 27rik with k € Z. The path of steepest descent
%(9) (0) through the saddle point t*) = 0 coincides with the real axis, and its
orientation is chosen so that it runs from right to left. Thus we may write

[(z)=—z""2e2T¥ (), (2.130)

where T() (z) is given in (1.54) with the specific choices of f (t) = e/ —t —1
and g (f) = 1. The problem is therefore one of quadratic dependence at the
saddle point, which we discussed in Subsection 1.2.1. To determine the do-
main A(®) corresponding to this problem, the adjacent saddles and contours
have to be identified. When 8 = Z, the path (%) (8) connects to the saddle
points t(l), t(z), t(3), ..., whereas when 6 = —%, it connects to the saddle points
=1, +(=2) +(=3), ... The corresponding adjacent contours are

¢V (3) = lim ¢V (5 -6) and 17 (-5) = lim ¢V (-5 +0) (13D)
(see Figure 2.3). The domain A is formed by the set of all points between the
adjacent contours.

It would seem that the method described in Subsection 1.2.1 cannot be used,
as the requirements posed there are violated in two different ways. First, there
are infinitely many saddle points that are adjacent to t(*), and second, the adja-
cent contours contain more than one saddle point. Nevertheless, in this specific
example, the analysis can still be carried out, due to the following argument.
The assumption that there are only finitely many saddles which are adjacent
to t(Y) was made in order to guarantee that the steepest descent path () ()
goes through only finitely many discontinuous changes before it returns to its
original state. (This latter property of €(°) () was needed in order to prove that
the boundary of Al is the union of the adjacent contours.) This requirement is
satisfied in our case due to the fact that ©(¥) () changes discontinuously only
when 6 = +£7Z mod 27r. We required that the adjacent contour €™ (—ay,,) con-
tains exactly one saddle (namely (™)) to be able to identify the integral over it
in terms of T(") (ue~'%m). However, in our case the integrals over the adjacent
contours (2.131) can also be identified, as T(!) (ue?') and T(~1) (ue~2'), because
¢ (9) and €~V (#) change continuously for |§] < Z.

Following the analysis in Subsection 1.2.1, we expand T(% (z) into a trun-
cated asymptotic power series with remainder,

N—1 _(0)
TO (z)= ¥ 2 4 RO (5).

n
n=0 =
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(vii)

Figure 2.3. The steepest descent contour €\°) () associated with the gamma
function through the saddle point t©) = 0 when (i) 6 = 0, (i) 6 = 5, (iii)

0= 3L (v)0 =25 (0)0 = —ZF, (vi) 0 = —3F and (vii) § = —121.
The paths ¢ (%) and CKJ(F_U (—Z) are the adjacent contours for 0. The

domain A©) comprises all points between ¢ (%) and %ifl) (%)

The conditions posed in Subsection 1.2.1 hold true for the domain A and the
functions f (t) = e —t — 1 and g (t) = 1, provided that N > 1. We choose the
orientation of the adjacent contours so that ¢ (%) is traversed in the positive
direction and ‘5}:1) (—7%) is traversed in the negative direction with respect
to the domain A(®). Consequently the orientation anomalies are yp; = 0 and

Yo—1 = 1. The relevant singulant pair is given by
FOil - e:|:27'[i + 2mi—1— eO +0+1= :F27T1, arg]-"oﬂ = 0p+1 = :F%

We thus find that for |§] < 7 and N > 1, the remainder Rg\?) (z) can be written

- iN /+oo uN—le—Znu 1)
2mizN Jo 1—iu/z
(—i)N +oo  N—1o—27u
_27rizN/o 14+iu/z

Rg\(])) () (ue2t)du

(2.132)

T(-1) (ue*%i)du.
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It is possible to arrive at a simpler result, by noting that the integrals T(!) (ue%i)
and T(-1) (ue’%i) are equal to the integrals T(°) (ue%i) and T (ue’%i), respec-

tively. Indeed, the contour ¢ (%) is congruent to ¢\ (%) but is shifted up-

wards in the complex plane by 27ri, whence

— ylef / ) et =t=1) g4 — T(0) (”e%i)‘
€

Likewise, one can show that T(~1) (ue_%i) = 1(0) (ue_%i). Therefore, the repre-
sentation (2.132) simplifies to

N 400 ., N—1,—27mu
0 1 u e T
RY (2) = —— /0 e ©) (ue i) du
(—i)N +oo 3 N—1g—27u ) n. (2.133)
—Zi
_27'(izN/o Triaye 1 (uem2)du

for all non-zero values of z in the sector |0| < 7, provided that N > 1.
We may now connect the above results with the asymptotic expansion (2.127)
of I' (z) by writing

323 —z = n Tn
I(z) = (2m)22* e n;)(—n —r TRy (z) (2.134)
. : B n+1 ~1 (0 _ -3 p(0)
with the notation 7, = (—1)"" (271) 2a,’ and Ry (z) = — (2m) 2 Ry’ (2).

Formulae (2.129), (2.130) and (2.133) then imply

iN 1 +o00 uN—le—Znu
~ 2mizN /0 1—iu/z
(_i)N 1 ptoo yN-1g—2mu
2rti zN /0 1+iu/z
under the same conditions which were required for (2.133) to hold. Equations
(2.134) and (2.135) together give the exact resurgence formula for I" (z). This is
the result that was originally given by Boyd.
Taking 7, = (—1)"™ (27()7% 2\ and (1.58) into account, we obtain the fol-
lowing representation for the Stirling coefficients:

(-1)" a1 e\
dezn \2et —t—1 ’
t=0

Ry (z) r*(uet)du

(2.135)

r* (ue_%i) du

T T (n + 1)
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where the square root has its principal value. This is a well-known expression
for the coefficients <y, (see, for instance, [17] or [22]). Apparently, there is no
known simple explicit representation for the y,,’s (the Mellin transform method,
used in previous subsections, does not work in this case). The author [70] found
the following formula involving the Stirling numbers of the second kind:

2n (—1)" 2"+ (30 4 3) k (=1 S (2n+k+1,j)

’)’n:Z 1

=0 2 (2n+2k+1)r(2n—k+1)Jgf(2n+k+j+1)F(k—j+1)'

For another expressions, including recurrence relations, the reader is referred to
the papers [70] and [75].

To obtain the analogous result for the asymptotic expansion (2.128) of the
reciprocal gamma function, we may proceed as follows. First, we derive an
integral representation for Ry (z) which is appropriate in the sector 7 < 6 < 3.
For such values of 6, Ry (z) can be defined via (2.134). When z enters the sector
7<0< 37”, the pole of the integrand in the first integral in (2.135) crosses the
integration path. According to the residue theorem, we obtain

iN 1 +00 uN—le—27ru
27ti zN /0 1—iu/z
(_i)N 1 +oo  N—1o—2mu

21t zZN /0 1+iu/z
for 7 < 6 < 3. Now, from the reflection formula I' (z) I' (1 — z) = 7t/ sin (nz),
we may assert that

Ry (z) = e¥™T* (2) + r*(uet)du

(2.136)

r* (ue*%i)du

1 —27tiz\ % i
T (2) @ = (1 —e mZ)T (ze”) (2.137)
holds for any z, using analytic continuation. Combining (2.134), (2.136) and
(2.137), we obtain

e tee [T 1 4 Ry (2) (2.138)
F(Z) N ‘ n=0 zt : |
with
AN N—-1_,-2mu
- —i)7 1 [*t®°u e 7i
Rute)= G |, s T e
0 (2.139)

N oo N—1,—271u
iv o1 u e _ s
/ —————TI'"(ue"2")du,
0

2mizN 1—iu/z
provided that [0| < 7 and N > 1. Equations (2.138) and (2.139) together yield
the desired resurgence formula for the reciprocal gamma function. We remark
that the special case of (2.139) when N = 1 was also established by Boyd [14, eq.
(4.2)].
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2.4.2 Error bounds

In this subsection, we derive computable bounds for the remainders Ry (z)
and Ry (z). We assume that N > 1 unless otherwise stated. The problem of
deriving error bounds for the asymptotic expansion of log I' (z) has attracted
many authors over the past 130 years. Some important bounds are those given
by Stieltjes [106], by Lindelof [53, pp. 93-97] and later by F. W. Schéfke and
A. Sattler [104] (see also [41]). Surprising though, in the case of I (z), it was
not until the end of the 20th century that realistic error bounds were given.
Olver [87,88] derived bounds for Ry (z), but the application of his results re-
quires the computation of extreme values of certain implicitly defined func-
tions. To our knowledge, the only explicit and realistic bound for Ry (z) that
exists in the literature is that of Boyd [14] [96, eq. 5.11.11, p. 141]. We shall
derive here alternative estimates which are sharper than those given by Boyd.

We begin by re-expressing the integral representation (2.135) of the remain-
der term Ry (z) in a form more suitable for our purposes. By the Schwarz reflec-
tion principle I'* (ue~2') = I'* (ue2) holds for u > 0, and therefore I'* (ue*2') =
Rel* (ue2!) +iJmI* (ue2?) for u > 0. Substituting this identity into (2.135)
yields the alternative representations

(_1)N+1 +oo  2N—2,—271u .
RZN—l (Z) - W/ —zfﬁef* (uefl)du
= o 1+ (w/z) 2.140
(_1)N +00 4)2N~15-27tu . (2.140)
—ZN/ —Z’Jmf* (uefl)du
tz 0 1+ (u/z)
and
(_1)N +00 1) 2N—15—27tu .
Ron (z) = 5N / —ZJmF* (uefl)du
tz 0 14 (u/z)
N N (2.141)
(-1) /+OO” e mtmr*< gi)d
+ ¢ ue u.

Similarly to the previous subsections on error bounds, one might try to substi-
tute by means of the formulae

1 1

s uz2 o i Py uz - o by

%ef*(uezl) =—— /(o)e ue2'(et—t 1)dx+ - /(o)e ue2 (el —t 1)dy
212 JE 212 JE

and

1 1
m; uz Li, ¢ uz Ty
Jml ™ (ue?2') = — / e He2 (e —t-1)q, / e e (e—t=1)qy (2142

( ) 27‘[% 70 27'[% ¢V Y ( )
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with t = x + iy and make the change of integration variable from u and t to s
and t vias = ue?'(e! — t — 1). Proceeding in this way, however, one faces two
difficulties: x is not monotonic along the contour &\ (5) and furthermore,
the two integrals in (2.142) have opposite signs. Due to these difficulties, it is
not clear how simple error bounds could be obtained with this approach. It is
even less clear how one would derive error bounds which are expressed via the
tirst few neglected terms of the asymptotic expansion (2.127). Nevertheless, it
is possible to deduce such bounds via an alternative method in the case that

8] < 7. First of all we will need the following lemma.

Lemma 2.4.1. For any u > 0, the quantities Rel* (ue2') and —JmI™* (ue?!) are
non-negative.

Proof. The proof is based on the following integral representation of I'* (z) due

to Stieltjes:
+00 ¢
I'*(z) =exp (/0 (er—l—(z))zdt)

for |0] < 7 with 2Q (t) = t — |t| — (t — [t])? (see, e.g., [103, pp. 56-58]). By
substituting z = ueZ! with u > 0, we find

. . +oo
f)‘ieF* (uejl) — |F* (uejl) | COS (A ﬁ@ (t) dt)
and s U] Foo 2tu
—TJmF* (Mejl) = {F* (Mejl) ’ sin (/0 mQ (t) dt> .

We show that the argument of the trigonometric functions is non-negative and
is at most 7 for any u > 0. This implies the statement of the lemma. The non-
negativity follows from the non-negativity of Q (). On the other hand,

L 2tu u 1 1
— 0O (t)dt = —=log |1+ — | + = arccotu
/0 (t2+u2)2Q() 2 g( u2> 2

- 1
and since Q (t) < g,

too Dt teo 2y 1 1
[T qmars [T L ln
1 (2 +u?) 1 (2 +4+u2)°8 Su”+1

Thus, for any u > 0,

Foo 2tu u 1 1 1 u
_ f)dt < ——1 1+ — — t -
/0 (t2+u2)2Q() - ZOg( —i—u2>+2arccou+8u2+1
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Then it is elementary to verify that the function on the right-hand side of this
inequality is at most 7. ]

We will also need formulae for the coefficients 7y which are analogous to
(2.140) and (2.141) when deriving our error bounds. These can be most readily
obtained by substituting the representations (2.140) and (2.141) into the relation

= (-1)NzN (Ry (z) — Rn+1 (2)). Thus we have

(DN [T Nl o W T
ToN-1 = / u e M Rel™ (ue2')du (2.143)
0
and
o R N ST
Tan = [N e g (ued) du, (2.144)
0

Now, from (2.140), (2.141) and Lemma 2.4.1, one immediately establishes the
inequalities

1 ~+00 uZN—Ze—Znu ( n_)
Roy_1(2)] < _ / “(ued)du
mlzPN o 1+ (u/z)?
1 400 4,2N—1,—27u -
m)z|™N Jo 1+ (u/z)7
and
1 too ) 2N=1—2mu -
|IRon (2)] < — —/ —————JmI™* (ue2")du
|z|*N Jo |1+(u/z)2| ()
1 oo 12N o—2mu .
+ / Rel™ (ue?")du.
T |Z|2N+1 0 |1 + (H/Z)2| ( )

We estimate 1/[1 4 (1/z)?| using (2.36) and then compare the results with
(2.143) and (2.144) in order to obtain the required error bound

rn| [l ) lese(20)] i T <[6] < 7,
R < 2.145
| N(Z)| = (|Z|N + |Z|N+1 1 if |9| < % ( )

The estimate (2.145) is sharper than the analogous bound given by Boyd [14, eq.
(3.11)]. Likewise, one can show that

: il (vl [lese(20)] i F <o < 5,
R < 2.14
Rvel = (e )L™ e e
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Consider now the special case when z is positive. Under this circumstance,

we have 0 < 1/(1+ (u/2)?) < 1in (2.140) and (2.141). Thus, together with
(2.143) and (2.144), the mean value theorem of integration shows that

Ry (2) = ()Y Jon () + )V THEy ().

Here 0 < Oy (z),EN (z) < 1 are suitable numbers which depend on z and N.
In particular,

Roo (2)] < 2L TN g Ry (2) < max< 7] 'Zgg;l'). (2.147)
When arriving at these inequalities, we used that |yon_1] = (=1)" 72n_1 and

l7an] = (—1)N ™ 25 hold, which is a direct consequence of (2.143), (2.144) and
Lemma 2.4.1. One can prove in a similar manner that

3 TN ~ IN+1x
Ry (z) = JyOn (2) + g En (2),

where 0 < @y (z),Ey (z) < 1are appropriate numbers which depend on z and
N. In particular,

[Ron1 (2)] < max(lzzzll\\]’j|, |Z§ﬁ|> and |Row (2)] < 'Zgg' + C@j}'. (2.148)
By examining the sign patterns of the coefficients of the asymptotic expansions
(2.127) and (2.128), it can be verified that the estimates (2.147) and (2.148) are
the best one can hope for.

Our bounds (2.145) and (2.146) are unrealistic near the Stokes lines § = £7
due to the presence of the factor |csc (20)]|. We now show how alternative es-
timates can be established that are suitable for the sectors 0 < |6| < 7t (which
include the Stokes lines § = £7) and N > 2. We may use (2.134) and (2.138)
to define the remainder terms Ry (z) and Ry (z) in the sectors Z < [0] < 7. To
proceed further, we need the following lemma.

Lemma 2.4.2. Forany s > 0and 0 < ¢ < 7, we have

i(Z+¢) 1
(2 < (2.149)
cos ¢ 1—e 27

Proof. Assume thats > 0and 0 < ¢ < 7. An application of the connection
formula (2.137) and the relation I'* (z) = I'* (Z) shows that
r sei(%_(P) -1
cos @

7

' (se1(§+fp)) ‘ 1
cos ¢ - (1 —2e=27 cos (27ts tan @) + e—47s)2
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- <sei(§+<p)) - <Sei(§—¢))
cos ¢ cos ¢

Letz = x +iy such thatx > 0and y # 0 (i.e,, |0] < 7). We show that 1/ |I'* (z)|
is bounded in the right half-plane. Indeed, if z does not lie close to the origin,
this is a consequence of the asymptotics I'* (z) ~ 1. To see the boundedness
near the origin, we note that

whence .

1
<

< T (2.150)

1

1 L —Zly|+yarctan(¥)—x | _jx+1
27t)2e 2 iy y z R —
(27) 4 e

T(z+1)]

< (2m)7e ¥ |22

1 (27{)% 75t
@l | e

1
I'(z+1)|

and that the reciprocal gamma function is an entire function. Since 1/I'* (z) is
holomorphic in the sector |#| < 7, continuous on its boundary and

(et 7 = e <,
by the Phragmén-Lindel6f principle (see, for instance, [113, p. 177]),
1

—— <1

[ (2)]

T

holds for any z in the sector |§| < 7. Employing this inequality with z =
sel(Z2=¢) / cos ¢ in (2.150) gives (2.149). n

Now we choose, for all 6 in the range 0 < |#| < 7 any angle ¢ = ¢ () which
has the following properties: 0 < |6 — ¢| < 7,and 0 < ¢ < 7 when0 <8 < 7
while —7 < ¢ < 0 when —7 < 6 < 0. Consider the estimation of Ry (z).
Suppose, temporarily, that 0 < 6 < 7. We deform the contour of integration
of the first integral in (2.135) by rotating it through the angle ¢. One therefore
finds, using analytic continuation, that

iN 1 1 ooel? uN—le—27ru
27izN /0 1—iu/z
(—i)N 1 oo yN-1g—2mu
/0 1+iu/z
sel®

iV 1 el? N oo gN-1o7275g F* sel(it9) 4

T 2mizN (@) /o 1 —isel?/ (z cos ¢) ( cos @ ) ’
(—i)N 1 oo yN-1lg—2mu

27 z_N/o 14iu/z

r* (ue%i) du

r* (ue_%i) du

r* (ue*%i) du
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for 0 < 0 — ¢ < 7. In passing to the second equality, we have made the change
of integration variable from u to s by s = ue ¥ cos ¢. By employing the in-
equality (2.36), we obtain the bound
_ +00 i(5+9)
|RN (Z)l < ‘SeC(GN QD)‘L 1N/ SNfle—Zns F*(Se 2 ) d

cos™ ¢ 27 |z|N Jo cos ¢

1 1+ N 2 —
—|———/ u™ e I (uem 2Y) |du.
27T |Z|N 0 | ( ) ‘

S

To estimate the first integral, we apply Lemma 2.4.2, and to estimate the second
integral, we use

(2.151)

T (ue™3)| = <

The resulting integrals can then be evaluated explicitly in terms of the Riemann
zeta function (cf. [96, eq. 25.5.1, p. 604]), and we thus establish

IRy (2)] < (%{;H + 1) % (2.152)

for0 <0 — ¢ < 7 and N > 2. Itis seen, by appealing to the Schwarz reflection
principle, that this bound also holds in the conjugate sector —5 < 6 — ¢ < 0
(but now with ¢ a negative acute angle). We would like to choose ¢ so that the
right-hand side of (2.152) is minimized. Since [sec (8 — ¢)| = |csc (0 + 5 — ¢)],
the minimizing value ¢* exists and is unique; it is given by Lemma 2.1.1 of
Meijer’s with 6 &= 7 in place of § and with y = N. Taking (2.152) with ¢ = ¢*,
we obtain the desired error bounds for the sectors 0 < [6] < 7r. Note that
the ranges of validity of the bounds (2.145) and (2.152) together cover that of
the asymptotic expansion (2.127) for I (z). One may likewise show that for the

remainder term Ry (z), we have

~ sec (0 — @* N)I' (N

if0 < || < mand N > 2.

We would like to ensure that our error bounds (2.152) and (2.153) are realis-
tic, i.e., that they do not seriously overestimate the actual error. By appealing to
Subsection 2.4.3 on late coefficients, we can see that for large N, the right-hand
sides of (2.152) (with ¢ = ¢*) and (2.153) are asymptotically

(00 ) bl g ] (feclO o) ) NI

2 cosN p* ||V 2 cosN ¢* T |z|N
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for N odd and even, respectively. Therefore, if z is bounded away from the
negative real axis (i.e., |@*| is not very close to 7) and N is large, the estimates
(2.152) and (2.153) are indeed realistic.

The bounds (2.152) and (2.153) can be simplified if 6 is close to the Stokes
lines, in just the same way as described in Subsection 2.1.2 for the case of the
modified Bessel function. One readily finds that

¢(N)T(N)

RN (2)],

Ry () < (Ve(N+1)+1)

for £ < |0] < Zand N > 2. If N > 3, the bound (2.154) for Ry (z) is sharper
than the analogous estimate given by Boyd [14, eq. (3.14)]. The bounds (2.154)
may be used in conjunction with our earlier results (2.145) and (2.146).

2.4.3 Asymptotics for the late coefficients

In this subsection, we study the asymptotic nature of the Stirling coefficients 7y,
as n — +oo. Their leading order behaviour was investigated by Watson [116]
using the method of Darboux, and by Diekmann [28] using the method of steep-
est descents. Murnaghan and Wrench [68, pp. 55-56] gave higher approxima-
tions by employing Darboux’s method. Complete asymptotic expansions were
derived by Dingle [35, eq. (18), p. 159], though his results were obtained by
methods that were formal and interpretive, rather than rigorous. His expan-
sions may be written, in our notation, as

Yon_1 ~ % i (=)™ (27'()2'" Yo (2n—2m — 1) (2n —2m)  (2.155)
(27T) " m=0
and
~ (_1)n2 . _q\m 2m _ _ _
Yan A s 2 (1" @m)™ yapal (2n —2m — 1) { (2n —2m).  (2.156)
(27T) m=0

Dingle’s results were put in a rigorous mathematical framework by Boyd [14],
who gave two different pairs of expansions for the Stirling coefficients, com-
plete with error bounds. Boyd observed that, although his expansions are very
similar to (2.155) and (2.156), Dingle’s series, assuming optimal truncation, are
numerically more efficient.

Here, we shall re-derive Boyd’s asymptotic expansions with sharper error
bounds. We also give a new pair of (formal) expansions and use it to provide a
possible explanation for the remarkable accuracy of Dingle’s series (2.155) and
(2.156).
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We begin by replacing the functions 9eI'* (ue2!) and JmI™* (ue2?) in (2.143)
and (2.144) by their truncated asymptotic power series

M-l
Rel*(ued) = Y (=1)" Bt 4 ReRoy (uet?) (2.157)
m=0
and
= Tom+1 7
Jml* (ue?t) =Y (=" uzzil + ImRopr41 (ue?), (2.158)
m=0

with M > 1, and from (2.154),
¢(@2M) I (2M)

PeRays (ue?)| < (\Je(2M + 1) +1) P (2.159)
and
~ bid C2M+1)T 2M+1)
[ImRopa 1 (ue?)| < ((Je@M+3) +1) T (2.160)
Thus from (2.143), (2.144) and (2.157)—(2.160), and provided n > 2,
( n 2 M— 1
Yon—1= 2 2 oD (20 —2m—1)+ Ay (2n—1) | (2.161)
m:O
and
(_ n M- 1
Yo = o 2 il (2n—2m—1)+Am(2n) |, (2.162)
m=0
where

) ¢ QM%; CM) - an—om—1)  (2163)

Ay (2n— 1) < ( e2M+1) +1
and

7 (2M+1)T (2M+1)
(27)?

Aw 2m)] < ((Je(2M+3) +1) [(2n—-2M-1), (2.164)

as long as1 < M < n — 1. For given large 1, the least values of the bounds
(2.163) and (2.164) occur when M ~ Z. With this choice of M, the ratios of
the error bounds to the leading terms in (2.161) and (2.162) are O (4™ ") and

S]]
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O (n4™"), respectively. This is the best accuracy we can achieve using the trun-
cated versions of the expansions (2.161) and (2.162).

A different set of approximations can be derived starting from the truncated
asymptotic expansions®

i 1 M1 ~ i
Rel™* (Me21) = m ( ZO (_1)711 ZZLZ + mQRZM(M621)> ’ (2165)
m=
and
JmIl (1/[82 ) = m Z (—1) L2 + JmR2M+1 (ue2 ) , (2166)
m=0

with M > 1, and from (2.154),

{(2M) T (2M)

- . .
9ReRon (ue¥)] < (y/e(2M+1) +1) P (2.167)
and
~ D 7 3 C2M+1)Tr 2M+1)
amRanger (we¥)| < (\fe(2M +3) +1) AP T @169)
Whence from (2.143), (2.144) and (2.165)—(2.168), and provided n > 3,
-1 7’12 M-1
Yon-1= ( )Zn Yo (=" 2)*" Yol (20 —2m —1)
(27T) m=0
(2.169)
X {(2n—2m—1)+By (271—1))
and
_1)71 2 M1 m 2m
Yon = — | Y. (=1)" 270)" yopal (2n —2m —1)
(27T) m=0
(2.170)

xC(Zn—Zm—1)+BM(2n)>,

®These results follow from the functional relation (2.137) and the expansion (2.138) of the
reciprocal gamma function.
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where
By (21— 1) < (y/e(@M+ 1) +1) . QM;F EWr (an—2m 1) (2.171)
X {(2n—2M —1)
and
; {(2M+1)T (2M+1) o
B (2m)] < (\fe(2M+3) +1) o FEn=2M-1)

x{(2n—2M-1),

as long as 1 < M < n — 2. One readily establishes that for large 7, the least
values of the bounds (2.171) and (2.172) occur when M ~ 7. With this choice
of M, the ratios of the error bounds to the leading terms in (2.169) and (2.170)
are O (47") and O (n4™"), respectively. This is the best accuracy available from
truncating the expansions (2.169) and (2.170).

The expansions (2.161), (2.162), (2.169) and (2.170) agree with those derived
by Boyd; however, the error bounds we have provided are sharper.

In what follows, we shall derive a pair of enhanced approximations for the
Stirling coefficients. By taking into consideration the exponentially small contri-
butions arising from the Stokes phenomenon, Paris and Wood [100, eq. (3.4)] de-
rived an improved asymptotic expansion for the scaled gamma function along
the positive imaginary axis:

as u — +oo. Consequently, we have

Nel™ (ue?') ~ i (—1)m J2m (2.173)

(1— e72nu)% m=0 u2m
and
n‘ 1 e
gl (uedt) ~ ———— Y (-1)" De (2.174)

(1 _ e727tu)% m=0
as u — -oo. Substitution of these asymptotic expansions into the formulae
(2.143) and (2.144) for the Stirling coefficients followed by term-wise integration
yields

((;); 2 io (—1)" (270)*" g (201 —2m — 1) & (20 —2m)  (2.175)

Yon—-1 =~
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and
N(_l)nz - _q\m 2m - - o
Yon R = Y (=1)" )" ol (2n —2m —1) ¢ (2n —2m). (2.176)
(27'[) m=0

Here, the function ¢ (7) is given by the Dirichlet series

2 r—1 +oo r—=2,—2mu © 2m—2\ 1
O e Y G
r(r—1)Jo (1 —e—2mu)2 a4 W\m—1)m"
_1+1+91 +51+1751+
a 2r 83" 44" 12857 ’

provided r > % The expansions (2.175) and (2.176) are formal only. One can
prove their validity rigorously by constructing error bounds for the asymptotic
expansions (2.173) and (2.174), but we do not pursue the details here. For large
u, (2.173) and (2.174) are better approximation to 93¢ (ue?!) and JmI™* (ue?')
than either (2.157) and (2.158) or than (2.165) and (2.166). It is to be expected
therefore that, assuming optimal truncation, (2.175) and (2.176) are numerically
superior to (2.161) and (2.162) or to (2.169) and (2.170). Numerical computations
confirm that this is indeed the case; some examples are presented in Tables 2.4
and 2.5. The fact that {(r) — ¢ (r) = O (377) for r large positive provides a
possible explanation for the remarkable efficiency of Dingle’s series (2.155) and
(2.156).

values of n and M n=>51,M=26
exact numerical value of |y2, 1] 0.718920823005286472090671337669485196245 x 1077
Dingle’s approximation (2.155) to |72, 1| 0.718920823005286472090671337669485196372 x 1077
error —0.127 x 104
approximation (2.161) to |y2,_1] 0.718920823005286472090671337669343420137 x 1077
error 0.141776108 x 10%
error bound using (2.163) 0.305630743 x 10%
approximation (2.169) to |y2,_1| 0.718920823005286472090671337669626972607 x 1077
error —0.141776362 x 10%
error bound using (2.171) 0.305630743 x 10%
approximation (2.175) to |y2,,_1] 0.718920823005286472090671337669485196372 x 1077
error —0.127 x 104

Table 2.4. Approximations for |y101]|, using (2.155), (2.161), (2.169) and (2.175).
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values of n and M n =50, M =25
exact numerical value of |2, 0.238939789661593595677447537129753012 x 1074
Dingle’s approximation (2.156) to |2,|  0.238939789661593595677447537129753175 x 1074
error —0.163 x 104
approximation (2.162) to |y2y| 0.238939789661593595677447537129564608 x 1074
error 0.188403 x 10%
error bound using (2.164) 0.37321123 x 10%
approximation (2.170) to |y2y| 0.238939789661593595677447537129941741 x 1074
error —0.188729 x 10%
error bound using (2.172) 0.37321123 x 10%
approximation (2.176) to |y2y| 0.238939789661593595677447537129753175 x 1074
error —0.163 x 104

Table 2.5. Approximations for |y109|, using (2.156), (2.162), (2.170) and (2.176).

2.4.4 Exponentially improved asymptotic expansions

In this subsection, we derive exponentially improved asymptotic expansions for
the gamma function and its reciprocal. The problem of improving the numerical
performance of (2.127) by re-expanding its remainder term, was first considered
by Dingle [35, pp. 461-462], using formal methods. He divided the asymptotic
power series in (2.127) into two parts according to the parity of the summation
index n and considered the two remainders of these series separately. An al-
ternative re-expansion, for the remainder Ry (z) of the whole expansion, was
given by Boyd [14, eq. (3.25)], though he gave no investigation of the error term
of this re-expansion.

Here, we shall re-derive the result of Boyd with the largest possible domain
of validity and with an explicit error bound. The analogous re-expansion of the
remainder Ry (z) is also provided.

Proposition 2.4.3. Let M be an arbitrary fixed non-negative integer. Suppose that
0| < 7t — 6 with an arbitrary fixed small positive §, |z| is large and N = 27t |z| + p
with p being bounded. Then

. M-1 0% s
Ry (z) =€ Y (-1)" Z—ZTN,m (271ze2")
m=0 (2.177)
M-1

_ 27z Yy (—n)" Ym TN-m (ane_%i) + Rnm (2),

m
m=0 Z
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where
e—27|Z|
Rn,m (z) = Omyp (—’Z’ i > (2.178)

for 0| < Z,and

e (2.179)

eF2mIm(z)
Rn,m (z) = Omps

for T < £6 < 6.

We remark that Boyd mistakenly gave the sign of the factor e 2% in (2.177)
as positive. The corresponding result for Ry (z) is very similar, however, its
range of validity is twice as large as that of the expansion for Ry (z).

Proposition 2.4.4. Let M be an arbitrary fixed non-negative integer. Suppose that
0| < 27t — 6 with an arbitrary fixed small positive 6, |z| is large and N = 27t |z| + p
with p being bounded. Then

_ =Y i
Ry (z) = —e?™ Z Z_ZJTN—W (271ze?")
= " (2.180)
m=0 z
where
B o271z
Roup (2) = On, A i (2.181)

for |0] < T, and

" eF2mIm(z)
RN,M (Z) = OM,p,(S ’ZT

for T < £6 < 2w — 4.

Propositions 2.4.3 and 2.4.4 in conjunction with (2.134) and (2.138) give the
exponentially improved asymptotic expansions for the gamma function and
its reciprocal. In particular, formula (2.180) together with (2.138) embraces the
three asymptotic expansions (2.128) and

1 -1 a4l  Tn Loz v In
——— ~ (2m) T2z F2e7 ety
e R

which holds when z — co in the sectors § < £6 < 27 —J (see, e.g., [75]);
furthermore, they give the smooth transition across the Stokes lines § = £ 7.
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In the following theorem, we give explicit bounds on the error terms Ry, v(z)
and Ry i (z). Note that in these results, N may not necessarily depend on z.
(The functions Ry u (z) and Ry a1 (z) can be defined for arbitrary positive inte-
ger N via (2.177) and (2.180), respectively.)

Theorem 2.4.5. Let N and M be arbitrary fixed positive integers such that 2 < M <
N. Then we have

R (2)], LM (M)

(27T)M+1|Z|M
M) I' (M
(e D) S0
M) (M)I(N—M)
(27T)N+2|Z‘N

‘ezmz TN—M (27’[26%1)‘

(z)|§( e(M+%)+1>

|e727'[iz TN—M (27’[267%1)’

+(e(M+1)+2)

provided that |6| < 7.

Proof of Proposition 2.4.3 and Theorem 2.4.5. We only prove Proposition 2.4.3
and the explicit bound for Ry u (z). Proposition 2.4.4 and the explicit bound
for Ry um (z) can be deduced in an analogous manner. Let N and M be arbitrary
fixed positive integers such that 2 < M < N. Suppose that |6| < 7. We begin
by replacing the functions I'* (ue® 7 1) in (2.135) by their truncated asymptotic

expans1ons
M-1

P (et F) = Y ()" 2 Ry ()
m=0
and using the definition of the terminant function, in order to find
- M-1 v
Ry (z) =¥ Y (=1)" ZmTN n(2mze?t)
m=0 e (2.182)
_ e—27'(iz Z (_1)711 Zm TN m(27TZ€ 2 ) + RN,M (Z),
m=0
with
iN 1 +oc0 uN—le—Znu -
R = —— —R 2hd
M (2) = oo on /o gz Rm(uer)du
AN N—1,—27u
_ 1 4o -
| 1), —/ LRM(ue_fl)du
2 zZN Jo 1+iu/z (2.183)
iN AN +oo N—-1g-27r7 . )
= _—e ' — R 2hd
2mi® /o [ “ire—w Rm(rre?)d

B (_i)Ne—iGN /+oo TNfleme’T
0

27mi 1+ ite~i0 Ry (rre”2)dr.
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In passing to the second equality, we have taken z = rel® and have made the
change of integration variable from u to T by u = r7. Let us consider the esti-
mation of the integral in (2.183) which involves Ry (rte?'). Suppose, for a mo-

ment, that —7r < arg T < 0. Under this assumption, the remainder R, (rregi)
is given by the integral representation (2.135), which can be re-expressed in the
form
— 1 1 ~+o00 tM—le—ZTL’t .
Ry (rre?i) = / * (te¥i)ds
m(rre) =5 oMo 1—t/r (te?)
1 7—1 400 tM—le—27rt
27i (”)M o (1—rt/t)y(1—t/r)
too tM—1g-271t
7-[1 T’T M 1 + t/r
(_1)M T—1 $M—1, 27t
27 (rr)M Jo (1—|—1’T/t) (14+t/r)

r*(te?t)dt

T (te"2Y)dt

r*(te~2%)dt.

Let ¢ and ¢’ be arbitrary acute angles. First, we rotate the path of integra-
tion by ¢ in the first integral and by ¢’ in the second integral, after which we
perform the change of integration variable from f to s via s = te™¢ cos ¢ and
s = te”1? cos ¢, respectively. Hence, using analytic continuation in 7, we ob-
tain

< w101 el? b M1 fsellErey |
2 e
m(rre®’) 27 (pr)M (cowp) /0 1—sel?/ (rcos @) ( cos @ ) °

-
sel?

1 1—1/ ¢ \M (+e M1, osg
+ : / —
27ti (rr)M (COS (p’> 0 1—rtcos¢’/ (sei?)

1 sel(3+¢)
X — ds
1—se? / (rcos ¢') ( cos ¢’ )
400 tM 1 —27tt Y
rTM/ Tt/ ———T*(te"2")dt
(_1)M T—1 tM 1 —27tt
27 (rr)M Jo (1—i—rr/t) (14+t/r)

ni

r*(te~2%)dt

for any T > 0. Noting that

1 1 1
1+t/r" (L+rt/t)(1+t/r) < b |1 —sel?/ (rcos ¢)|

0< < cscg



CEU eTD Collection

2.4. Gamma function and its reciprocal 121

and
1

|1 —rtcos ¢’/ (sel?')| |1 —sel?’/ (rcos ¢')|
for positive r, T, t and s, we establish the upper bound

< csc? ¢f

N +o00 ~N—1,-27rt

1 s T e s

—e 1GN/ —.RM(TTezl)dT <
0

27Ti 1—ite 10
el(7+9) 1 +oo ~N—M—1,-27r7T
< CSCI:\/I(P L M/ M 1 —ers r* ( )dS— T : e ' dt
cosM ¢ 277 |z cos ¢ 2n 1—ite 0
csc? ¢’ 1 M1 g—27s| el(Z7+¢") 4
cosM ¢/ E’ M / “cosgl )|
z| ¢’
-1
/ N-M-1,-2mr7 | T |dr
27r T+ ie'
1 +o00 TNfoleme'T
— tM=Te=27tH P (¢ dt— / _——d
+27’(‘ZM/ |7 (te” )‘ 27t | Jo 1—ite® <
1 [t T—1
L PM—1,=27tt | 7 (4 dt—/ N-M-1_-2mrt i
ol I (re By [ Nz T

Further simplification of this bound is possible by using the inequalities (2.149)
and (2.151) for the scaled gamma function, the definition of the terminant func-

tion and that |(t — 1) /(T +ie'?)| < 1 for any positive T. We thus find
N 400 ~N—1,-27rT

1 N / T e R 3\ qr| <
27 0o 1—ite m(rre)dr

cscp L\ LM)T (M)
< (e 1) Gt gl

ZﬂiZTN_M (27Tzegi) |

csc? o M)T (M)T' (N -M
+(WM(€0’H) - )(27£)N)+2 |(.z|N :

The quantities csc ¢/ cos™™ ¢ and csc? ¢’/ cos™ ¢, as functions of ¢ and ¢,
reach their minimum at ¢ = arccot (M2) and ¢’ = arccot ((M/2)?), respec-
tively. With these specific choices of ¢ and ¢’, we have

csc ¢ :(M+1) Mb < e(M+ 1)

cosM ¢ M
and y
csc?¢’ 1 (M+2\72 e
— == | —— M+2) < -(M+1).
cosM ¢/ 2( M) ( +)_2( 1)
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Consequently,

iN _iON +o00 TN 1e—2nrr R d
—e —9 M (rTe 2 ) T
27T 0 1—ite!

<V M+ > M+1(|];/’I | Zsz — (27‘(ze%i)| (2.184)

(M) (M) I'(N — M)
(27‘[)N+2|Z|N ’

+(§(M+1)+1)

One can prove in a similar way that

AN +o00 ~N—1,-27rt

—1 ; T e ;

— QeleN/ —GRM (T’Teigl)dﬂf <
2711 0 1+ite™?

M) I' (M - s
< < e(M+1) +1>W‘e_2”“TNM(2nze_21)| (2.185)

C(M)T (M)T (N = M)

e
HEWHD ) S e

Thus, from (2.183), (2.184) and (2.185), we obtain the error bound

o €12 (/e +12) o e o)
+< e(M—l—%)—l—l)%‘ e (27Tze*%i)‘ (2.186)
C(M)T (M) (N — M)
+ (e (M+1)+2) 2OV

By continuity, this bound holds in the closed sector |8| < 7. This proves Theo-
rem 2.4.5 for Ry (2).

From now on, we suppose that |z| is large and that N = 277 |z| 4+ p with p
being bounded. Using this assumption and Olver’s estimate (1.90), the first two
terms on the right-hand side of the inequality (2.186) are Oy, (| z|Me2mll),
An application of Stlrhng s formula shows that the third term satisfies the order
estimate Oy, (|z|~ M-} g=21 121, This establishes the bound (2.178).

Consider now the sector 7 < 6 < 71 — J. For such values of 6, Ry, (z) can
be defined via (2.182). When z enters this sector, the pole of the integrand in
the first integral in (2.183) crosses the integration path. According to the residue
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theorem, we obtain

RM (ue%i) du

, N | [ty N-1g-27u
R (2) = ™Ry (2) + 5y [ e
0

2711 zN 1—iu/z
(—i)N 1 reo yN-le2mu
— - -~ R
27 zN/o T+iu/z ™M
— ezmzRM (Z) —+ ﬁN,M (ze’m)

(ue‘gi)du

for 7 <0 < 37” Now, by analytic continuation,

RN,M (Z) = e2mZRM (Z) —+ EN,M (ze_m)

holds for an complex z, in particular for those lying in the sector 7 < 6 <
7t — 6. The asymptotic expansion (2.127) implies that Ry (z) = OMIPI(S(]ZFM )
asz — ooin Z < 0 < st — 4. From (2.181), we infer that Ry (ze™™) =
(’)M,p(|z|_M e~ 27} for large z in the sector Z < 6 < 7 — 4. This shows that the
estimate (2.179) holds true when 7 < 6 < 71 — 4. The proof for the conjugate
sector —71 + 6 < 6 < —7 is completely analogous.

Finally, it remains to prove the estimates (2.178) and (2.179) when M = 0 or
1. Clearly, for any complex number z, we have

Ry (z) = e Ty (ZHZG%i) — e 20 Ty (ane*%i)

— esz%TN_l (27‘[28%1) -+ e*ZNiZ%TN_l (2nze*%i) + Ry (2)
and
_ 2omiz 1 Zj —2miz 11 —7i
RN 1 (Z) = —e ~ Tn_q (27‘(262 ) +e ~ Tn_1 (27TZ€ 2 ) + Rnp (Z) .
The terms involving the terminant functions can be estimated by Olver’s result

(1.90). To estimate Ry (z,v), we can use (2.178) and (2.179), which we have
already proved. We thus establish

P e—2mlz| e 27z e
RN,O (Z) = Op(e ) + Op T + Op ? = (’)p(e )

|z

and

e—2mlz| e 27| e 27l
=00 () o () <o (T
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as z — oo in the sector |6| < 7, and

eF2mIm(z) >

Ruo (2) = Ops(e77") + O ( ]

eF2mIm(z)

+ Op,5 ( |2

|z

and
eF2mIm(z) eF2mIm(z) eF2mIm(z)
Ry (z) = Ops T + Op,s T = Ops T

as z — o0 in the sectors 7 < 6 < 71 — 4. []
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CHAPTER 3

ASYMPTOTIC EXPANSIONS
FOR LARGE PARAMETER

In the preceding chapter, the theory developed in Chapter 1 was applied for
asymptotic expansions of various special functions with large argument. Many
of those functions contained an additional parameter which was assumed to be
fixed or small compared to the argument. In this chapter, we treat asymptotic
expansions where both the argument and the additional parameter (the order
of the function) are large.

We start by considering Debye’s classical asymptotic expansions for the
Hankel and Bessel functions, and their derivatives, for large order and argu-
ment in Section 3.1. In Section 3.2, similar results are given for these functions
when their order and argument are equal. Section 3.3 deals with several asymp-
totic expansions of Anger—Weber-type functions and their derivatives, for large
order and argument. Finally, Section 2.4 deals with the asymptotic expansions
of the Anger—Weber function of equally large order and argument.

3.1 Hankel and Bessel functions of large order
and argument

We discussed in Section 2.1 asymptotic expansions for the Hankel functions
HY (z) and H? (z) and the Bessel functions ], (z) and Y, (z) which hold when
z — o and v? = 0(|z|). In this section, we consider the case when v — oo
and z/v > 1 is fixed, i.e.,, both the order and the argument are large. For
this purpose, it is convenient to study the functions HY (vsecp), H? (vsecp),
Jv (vsecB) and Y, (vsec ) with B an arbitrary (fixed) acute angle. Approxima-

125
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tions for J, (vsecB) and Y, (vsec B) were first given, using formal methods, by
Lorenz [57] in 1890 and subsequently by Meissel [65] in 1892. Later in 1910,
Rayleigh [110] applied the principle of stationary phase to derive a rigorous
asymptotic approximation for J, (v sec §). Debye [25] introduced the method of
steepest descents in 1909 to tackle the problem of obtaining complete asymp-
totic expansions for the Hankel and Bessel functions of large order and argu-
ment. For a more detailed historical account, the reader is referred to Watson’s
book [117, Ch. VIII].
In modern notation, Debye’s expansions may be written

it - .
HY (vsecp) ~ — ) (- I—CO'B), (3.1)
(3mvtan B)? n=0 v
asv — ocointhesector —m+6 <60 <21 —
e 16 ® U, (icot
HP (vsecB) ~ Yy — ( o ﬁ), (3.2)

N|—

(37tv tan B)? n=0

as v — ocoin the sector -2+ 6 <0 < 71— J;

Ju (vsecB) ~ (L)Z (cosg Z Uy, 1cotﬁ)

rtv tan B
. (3.3)
—ising ) uzm—;érfllﬁ—clo,[ﬁ)>
m=0
and
2 NI & Ui
Y, (vsec) ~ (m/tanﬁ) (sm@}é}%ﬂotﬁ) »

Usp11 1COt
+icos¢ Z mT/ZmH ﬁ)),

as v — oo in the sector |8| < 7t — J, where J denotes an arbitrary small positive
constant, § = argv and § = (tanp — B)v — T (see, e.g., [96, Subsec. 10.19(ii)]
and [121, pp. 98-100]). The square root in these expansions is defined to be pos-
itive on the positive real line and is defined by analytic continuation elsewhere.
The coefficients U, (x) are polynomials in x of degree 31; some expressions for
them will be given in Subsection 3.1.1 below.

It is important to note that the requirement =1 = o(|v|3 ) is necessary in
order to satisfy Poincaré’s definition. And so, these asymptotic expansions fail
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to hold as B — 0+, i.e.,, when the argument approaches the order. The case
when the order and argument are equal will be discussed in the next section.
There exist other types of asymptotic expansions which are uniformly valid for
all B > 0 (see, for instance, [96, Sec. 10.20]); however these expansions involve
non-elementary functions and therefore our methods are not suitable for their
investigation.

This section is organized as follows. In Subsection 3.1.1, we obtain resur-
gence formulae for the Hankel and Bessel functions, and their derivatives, for
large order and argument. Error bounds for the asymptotic expansions of these
functions are established in Subsection 3.1.2. Subsection 3.1.3 deals with the
asymptotic behaviour of the corresponding late coefficients. Finally, in Sub-
section 3.1.4, we derive exponentially improved asymptotic expansions for the
above mentioned functions.

3.1.1 The resurgence formulae

In this subsection, we investigate the resurgence properties of the Hankel and
Bessel functions, and their derivatives, for large order and argument. It is
enough to study the functions Y (vsecB) and Y (vsecpB), as the analo-
gous results for the other functions can be deduced in a simple way through
their relations with Hy" (vsec B) and HY (vsecB).

We begin by considering the function H§1) (vsec B). Our starting point is the
Schléfli-Sommerfeld integral representation

1 7Ti+00 .

Hsl) (Z) — _/ ezsmht—vtdt’ (3.5)
745

which is valid for |argz| < 7 and every complex v [96, eq. 10.9.18, p. 224]. Let

B be a fixed acute angle, and substitute z = v sec  to obtain

H1(/1) (1/ sec ,B) — % /n1+oo efv(tfsecﬁsinht)dt’ (3.6)
where |6 < 7 (here and subsequently, we write § = argv). The function t —
sec Bsinht has infinitely many first-order saddle points in the complex t-plane
situated at t"%) = (—1)"ip + 2mik with ¥ = 0,1 and k € Z.! We choose the
orientation of the steepest descent path ¢(%0) (0) through t(00) = ig so that it
runs from left to right (cf. Figure 3.1). It is readily verified that the contour of

IThe notation in this subsection (t("%), €("k) (9), T("k) (z), etc.) is a natural modification of
the one-parameter notation (t*), (%) (8), T() (z), etc.) used in Chapter 1.
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integration in (3.6) can be deformed into (%% (0), and hence we may write

i(¢+%)
HI(,l) (vsecB) = S
TtV

M= R

700 (1), (3.7)

where T(%9 (v) is given in (1.54) with the specific choices of f (t) = t—sec fsinh
and g (t) = 1. The problem is therefore one of quadratic dependence at the sad-
dle point, which we discussed in Subsection 1.2.1. To determine the domain
A00) corresponding to this problem, we have to identify the adjacent saddles
and contours. When 6 = —Z or § = 2, the path (%) () connects to the sad-
dle points t(l) = —if + 27 and (1Y) = —ip, and these are therefore adjacent
to +(°0) = iB. Because the horizontal lines through the points 3i and —Zi are
asymptotes of the corresponding adjacent contours ¢(I') (—Z) and (10 (31),
respectively (see Figure 3.1), there cannot be further saddles adjacent to +(0)
other than (') and +(1?). The domain A(®9) is formed by the set of all points
between these adjacent contours.

By analytic continuation, the representation (3.7) is valid in a wider range
than (3.6), namely in —Z < 6 < 3. Following the analysis in Subsection 1.2.1,
we expand T(%0) (v) into a truncated asymptotic power series with remainder,

N-1 ,(0,0)

7(0,0) (v) = Z a’;/n + Rg\(])ro) (v).
n=0

It is not difficult to verify that the conditions posed in Subsection 1.2.1 hold good
for the domain A(®9) and the functions f (t) = t — sec Bsinh t and g (t) = 1 with
any N > 0. We choose the orientation of the adjacent contours so that they are
traversed in the negative sense with respect to the domain A%?). Thus, the
orientation anomalies are 7yp 11 = 1 and 91,0 = 1. The relevant singulant pair
is given by
Foo11 = —ip + 27 — sec Bsinh (—ip + 27ti) — i + sec B sinh (iB)
=2i (tan,B — ‘B + 7T) , arg ./—"0’01/1 = 0’0,01’1 = %

and

Foo10 = —if —sec Bsinh (—if) —if + sec Bsinh (if) = 2i (tan B — B),
arg Fo,01,0 = 00010 = — 2t

We thus find that for —Z < 6 < 3% and N > 0, the remainder term RZ(\(])’O) (v)
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Figure 3.1. The steepest descent contour €\%%) () associated with the Hankel
function of large order and argument through the saddle point t(°0) = iB when
()0 =0, (ii) 0 = Z and (iii) 0 = 7I. The paths €\V) (= %) and 10 (3F)
are the adjacent contours for tO0). The domain A%0) comprises all points
between €M) (—Z) and ¢(10) (3F).

may be written

AN oo N-1g—2(tanp—p+n) -
i) / wee ,an o (1D (ue™2")du
0 1+iu/v (3.8)
(—I)N /+oo uN—le—Z(tan‘B—‘B)u (1,0) s
_ T 2 ) du.
27N Jo T+iu/v () du
A representation simpler than (3.8) is available. To derive it, we note that the
integrals T(11) (ue~#1) and T(19) (ue 1) are both equal to T10) (ue~71). Indeed,
the contour ¢I'1) (—7) is congruent to €10 (—Z) but is shifted upwards in
the complex plane by 27ti, whence

T(l’l)(ue_%i) —u i/ . 1)e—ue_gi(t—sec,Bsinht—i(tanﬁ—ﬁ+27z))dt
¢,

=
Z5
=
—~
<
~—
|
|
—~
|

e

N|—
i

e

N—
iy

—u i[g(l/o) e—uefgi(t—secﬁsinht—i(tan ﬁ—ﬁ))dt _ T(l,()) (ue—%i) .
(Observe that (10 (—Z) and €10 (31) are congruent, but have opposite ori-

entations.) The other equality T(1) (ye71) = T(L9) (4e~71) holds because this
function is single-valued. Therefore, the representation (3.8) simplifies to

0,0)

Rg\, (v) = (1+e )T (ye=2Y)du (3.9)

(—i)N /+oo uN—1ag—2(tan p—p)u
0

" 2mivN 1+iu/v
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for all non-zero values of v in the sector —Z < 6 < 3 with N > 0.
We may now connect the above results w1th the asymptotic expansion (3.1)

of the Hankel function H," (vsecB) by writing

HY <vsecﬁ):e—i§(Nf(—1) M 7w 5)) (3.10)

(37v tan B) =0

Nj—=

with the notation Uy, (icot B) = (—1)" e i (27t cot )~ L 2™ and R ( ,B) =

T _1
e 4" (2rrcotB) 2 Rl(\?’o) (v). To obtain a simple expression for the remamder
term RNH (v, B), we first note that

T(I,O) (uef%i) _ u%eZi/ efuefgi(tfsecﬁsinht+iﬁ+secﬁsinh(fi,8))dt

¢ (1,0)
o, (tanﬁ—ﬁ)u/ —ue_%i(t—secﬁsinht)
e t'ule <,g(1,0>e dt (3.11)

—nie_%iu%e(ta“ﬁ_ﬁ)”H@)u (ue™ 2 sec B)

_ 1

— mie” Tiy2eltanf- 5)”H( )(ue%isecﬁ).

In passing to the third equality, we have used the known Schléfli-Sommerfeld
integral representation for Hl(,z) (z) [96, eq. 10.9.18, p. 224], while in passing to

the fourth equality, we have used the functional relation Héz) (ze7™) = —-H (_13 (2)
(see, for instance, [96, eqs. 10.4.6 and 10.11.5, pp. 222 and 226]). The desired ex-

pression for the remainder term R;VH) (v, B) now follows from (3.9), (3.11) and
R (v,p) = e~ (2 cot p) "2 ROV (v):

(—)N 1 preoyN-3e-(tanp-pu
2 (27t cot B)? N Jo L+iu/v (3.12)

x (14 2)iH ) (uet' sec B)du

(v, B) =

for -7 <0 < 3” and N > 0. Equations (3.10) and (3.12) together give the exact
resurgence formula for H, 7 (vsecp).

Taking U, (icot B) = (—1)"e %! (27 cot )~ ’ a,(f’ ) and (1.58) into account,
we obtain the following representation for the coefficients U, (icot j):

U (icot ) = (—icotp)" | d* (1 t2 "
cotp 2T (n+1) | d?" \2icotB (t —sinht) + cosht —1

t=0

Although this formula expresses the coefficients U, (icotf) in a closed form,
it is clearly not very effective for their practical computation. A more useful
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expression for the polynomials U, (x), in the form of a recurrence, follows from
a method based on differential equations:

pe
Uy (x) = 320 =)y (1) 5 [ (52 = DU (1) d
for n > 1 with Uy (x) = 1 (see, e.g., [95, eq. (7.10), p. 376] or [96, eq. 10.41.9, p.
256]). The reader may find further representations in the paper [73].
To obtain the analogous result for the asymptotic expansion (3.2) of the
second Hankel function H, 2) (vsecB), we start with the functional relation
Héz) (vsecB) =—H W (ve™ sec B) and substitute by means of (3.10) to arrive at

VeT[l

H? (vsecB) = e—i¢ (1\721 U, (icot B) L Rg\]H) (ve”i,ﬁ)> . (313)

(%m/ tan f) 2 \ 0 v

Assuming that —=% < 6 < 7 and N > 0, equations (3.13) and (3.12) then yield
the required resurgence formula for Hy 1) (vsecp).

Let us now turn our attention to the resurgence properties of the derivatives
HY (vsecB) and H?' (vsec B).? From (3.5), we infer that

7100

HY (vsecp) = % / T gmvlt=secsinht) ginh pit (3.14)
with [0| < 7. Observe that the saddle point structure of the integrand in (3.14)
is identical to that of (3.6). In particular, the problem is one of quadratic depen-
dence at the saddle point, and the domain A(%?) corresponding to this problem
is the same as that in the case of H, m (vsecB). Since the derivation is com-
pletely analogous to that of the resurgence formula for Hvl) (vsecB), we omit
the details and provide only the final results. With the notation of [96, Subsec.
10.19(ii)], we have

B <usec/s>_1(—sm<2ﬁ>) ¢ (Ni(—l) BB R v, ﬁ)) @15

e =0 1%
and
: 3 N-1 1 ! .
HY' (vsec ) = —i (Smn#) ? it ( y w +R{E (uem,ﬁ)> . (3.16)
n=0

2By these derivatives, we mean [Hﬁl)/ (2)]2=v sec p and [ngz)/ (2)]2=v sec p, Tespectively.
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The remainder term R%,H/) (v, B) has the integral representation
(H') (_i)N 1 +oo uN*%e—(tanﬁ—ﬁ)u
2 (7sin (2B))2 Y 70 !

x (14 e_zm‘)H.(l)/(ue%i sec B)du,

1u

provided =% < 6 < 3 and N > 1.
The coefficients V;, (icot f) may be expressed in the form

Vi (icotB) = %

d2 (] 2 .
| qen (cosht—icotfsinht) <§icot,8(t—sinht)+cosht—1> '
t=0

It is known that V}, (x) is a polynomial in x of degree 37, and that these polyno-
mials can be represented in terms of the polynomials U, (x) since

Va () = Un () — x(1— )y ()~ 21— 2y (x),
forn > 1and Vp(x) = 1 (see, for instance, [95, exer. 7.2, p. 378] or [96, eq.
10.41.9, p. 256]).

From the expressions (3.10) and (3.13) for the Hankel functions, we can ob-
tain the corresponding resurgence formulae for the Bessel functions J, (v sec )
and Yy (vsecB). To this end, we substitute (3.10) and (3.13) into the functional
relation 2], (vsecf) = Y (vsecp) + H? (vsec B) and employ Euler’s formula
et = cos ¢ £isin¢, to establish that

Ju (vsecB) = ( 2 >2 (COSC <Nilw+13g\), (v,ﬁ))

v tan =0

N-1 ,
—isin¢ < )3 uzn?zleﬁow) +iRW ., (mﬁ))) :

(3.17)

n=0
The remainder terms Rg\), (v,B) and Rg\)] 1 (v, B) can be expressed by the single
formula
(_1)LL/2J 1 +oouL—%ef(tanﬁf,B)u
2(2rcotp)? Vi o 14 (u/v)? (3.18)
x (14 e_zm‘)iHi(:) (ue?'secg)du,

RV (v, 8) =
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provided that |#| < 7 and L > 0. It is possible to arrive at a slightly more gen-
eral result in which the truncation indices of the series in (3.17) can be different.
In order to do so, we will need a formula for the coefficients U, (i cot §) which
is analogous to (3.12). This can be obtained by substituting the representation
(3.12) into the relation Uy (icotp) = (—1)N1/N(RZ(\?) (v, B) — Rgﬁzl (v,B)) and

replacing N by n. Thus we have

n —+o00
Uy, (icotB) = 1—/ "2 (tanp—pu
)

2 (27 cot B)? (3.19)

x (1+ e_zm‘)iHi(:) (ue?'sec f)du.

Now, let M be an arbitrary non-negative integer such that M > N. We expand
the denominator in the integrand of (3.18) by means of (1.7) and use (3.18) and
(3.19) to deduce

) M= m+1 (icot .
le\)fH (v.p)= ), . T,én(qﬂ P) +1Rg\21+1 (v, B).

m=N

Combining this equality with (3.17) yields

: N=1 ico
]V(vsecﬁ):( 2 ) (cosé(Z M—FRZN(V 5))

rtv tan B =0

M-1 :
—ising ( Z Uzm;;nglflo’fﬁ) + iRg\)/Hl (V/,B)>)

m=0

(3.20)

(cf. equation (3.3)). The case M < N can be handled similarly; we replace n
and N by m and M in (3.17) and expand the remainder Rg\),l (v, B) into a sum
of RéN (v,B) and N — M other terms. In summary, if |§| < 7 and N,M > 0,
equations (3.20) and (3.18) together constitute an exact resurgence formula for
the Bessel function ], (vsec B).

In a similar manner, starting with the connection formula 2iY; (vsecp) =

H, (M (vsecB) — (2) (vsecp), the analogous expression for the Bessel function
Y, (vsecp) is found to be

3 N-1 i
Y, (vsecp) = ( 2 > (sing (Z M—{—RzN (v, ﬁ))

rtv tan =

. M= U041 (icot )
+icos ¢ ( ) 2 J;HSH p) +1Rg\)4+1 (1/,/3)>>

(3.21)

m=0
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(cf. equation (3.4)). Under the assumptions |#| < 7 and N, M > 0, equations
(3.21) and (3.18) yield the required resurgence formula for Y, (v secp).

We close this subsection by discussing the corresponding resurgence rela-
tions for the derivatives ], (vsecB) and Y, (vsecB). Perhaps the most conve-
nient way to derive these relations is by inserting the expressions (3.15) and

(3.16) into the functional equations 2], (vsec f) = ngl)/ (vsecf) + Hsz)/ (vsecB)

and 2iY] (vsecB) = HY (vsecp) — H?' (vsecB). Hence, using the technique
which led from (3.17) to (3.20), we obtain

sin } N=lvy, (ico )
Jovsecp) = (2228 (—sing(z P2 l0th) () <v,ﬁ>)

v =0

M1y, (icotB) / 02
—icos¢ ( ZO 2’”; P iR (mﬁ)))
and
. 3 N-1 : ,
Y, (vsecB) = (—Smn(sﬁ)) <COSC ( )3 Von c0LP) (chn()tﬁ) - Rgv) (v, ))
An=0 (3.23)
—ising ( ) Vsz}ifftﬁ DiRi >)>

(cf. [96, eq. 10.19.7, p. 231]). The remainder terms Rg\? (v, B) and Rg\//}H (v, B)
can be expressed by the single formula

1 -1 |L/2] 1 -&-oouLf%e—(tan/S—ﬁ)u
O e

2 (rrsin (28))2 V" 1+ (u/v)?
x (1+ e_zm‘)H.(l)/ (ue?'sec f)du

1u

where |6] < 7 and L > 1. The corresponding requirements for the expressions
(3.22) and (3.23) are |[§| < 7, N > 1and M > 0.

3.1.2 Error bounds

In thls subsectlon we derive computable bounds for the remainders R (1/ B),
(1/ B), R (v B) and R ( ,B). Unless otherw1se stated, we assume that

N > 0 when deahng with R (1/ B) and R ( v,B), and N > 1is assumed in
the cases of Rg\, ) (v,B) and Rg\,) (v, B).
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To our knowledge, the only existing results in the literature concerning the
estimation of these remainders are those of Meijer [62]. Some of the bounds
we shall derive here coincide with the ones obtained by Meijer; however, our
proofs are slightly simpler.

Flrst we consider the estimation of the remainder terms R (1/ B) and

(1/ B). For convenience, we denote f (t) = t — sec Bsinht. We begin by
replacmg in (3.12) the function H, 1) (ue 2 sec B) by its integral representation

(1), Fi _ i/ —uedi(t)
H;,’ (ue?'secB) f00( e dt

771 Jo(0,0 %)

(cf. equation (3.6)) and performing the change of variable from u and f to s and
t vias = uif (t) (here, and subsequently, i stands for eZ'). We therefore find

NI—

Hy o (DY 1 e g 1 (if (1)~
(vF) z(motﬁ)w/o o ﬂAf<°/°>(§)1+S/(Vf(t)) (524)
x (14 770 )e PP dtds.

Since for any t € %0 (%), it holds that 0 < i(f (t) — f (—if)) = if (t) —
(tanp — B) < if (t), the new variable s is indeed positive on the adjacent con-
tour 70 (Z).

At this stage, we cannot derive simple bounds for R(H) (v, B) directly from
(3.24), as t is not real on the path & (0.0) ( ) Therefore a further transformation
of (3.24) is necessary. For any t € ¢(00) (%), we have, denoting t = x + iy, that

if (t) =Re (if (1)) = Re (i (x+iy —sec Bsinh (x +1iy))) = sec fcoshxsiny —y.

In particular,

fx+iy) = f(—x+1iy). (3.25)

Denote by %(O’O) (%) and %(0’0) (%) the parts of the steepest descent contour
(00 (%) Wthh lie in the left and in the right half-plane, respectively. Using

(3.25) and the fact that ¢ (%) (%) is symmetric with respect to the imaginary
axis (see Figure 3.1), we deduce
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GF ()N oty ~(anpp)
Ly (g)1+s/(vf())(1+ 0)e =

i I _N_% TiF tan
= /g (%) 1(—{5(;( (—’;/fy():)g_'_ly)) (1 +e —2 x+1y))e (tan p— ﬁ)lf (x+iy) d(x +1]/)

(if (x +iy))
+/°0 g ) 1+s/ (vf(x+iy

N—

N-3

)

v (—x-+iy)
0) (7 1+s/ (vf (—x +1iy))

)

)(1+e 27T f(X+1y))e (tan B— ﬁ)lf (x+iy) d(x+1y)

(1+e 27w e F P d (x — iy)
2

+/ (if (x+iy)) ™"
0,0) z 1—|—S/ vf(x+1y

2

)(1+e 2y x+l/>)e (tan b)) Id (x +iy)

(1f( )) 75 =271 —(tanB—B)
-2/, 1+e 70)e 70 dx.
@ (5) T4/ GF ) )
(3.26)
We thus find that the result (3.24) may be written as
_N-1
) (v, B) = =Y / z / ’
2 (27t cot B)2 VN "(g)1 +S/ 1/f( ) (3.27)

X (1+e nﬁ)e_(tanﬁ_ﬁ)mdxds.

This is the form of Rg\,H) (v, B) on which it is the most advantageous to base
the derivation of our error bounds. A formula for the coefficients Uy (icot f)
analogous to (3.27) will be needed when deriving our error bounds; it can be ob-

tained by inserting (3.27) into the relation Uy (icot B) = (=N N (Rz(\lfq) (v, B) —

Rl(\i)l (v, B)). Hence we have
iV too 1 2 _N_1
Uy (icotf) = —— sN72e7 2 (if (1)) ’
2 (27 cot B)? /0 7T l@“’”)(?) (3.28)

x (1+ e_znﬁ)e_(mnﬁ_ﬁ)ﬁdxds.
Now, from (3.27), one immediately establishes the inequality

(k) ! ! oy

R (v,8)] < =
Ry () z(zncotmﬂv\N/ / |1+S/<Vf<>>|
<1+e 27r ) (tanﬁ 5)1? )dxds.

I\)\'—‘

t
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In arriving at this inequality, one uses the positivity of if () and the monotonic-

ity of x on the contour ‘52(0’0) (). We estimate 1/[1+s/ (vf (t)) | via (2.36) and
then compare the result with (3.28) in order to obtain the error bound

R (v, B)] < (3.29)

|UN(1cot5)\ secf| if —Z<60<0or <6<,
|‘ 1 if 0<6<

Let us now turn our attention to the estimation of the remainder R (1/ B).
In this case, one finds that the expressions corresponding to (3.27) and (3.28) are

AN . -N-1
Ry ) — (—i) 1 NI (if (1)) "2
NS LL O ) s 07 )
) X (1+e %)) ~(tanf=b) g7y smhxcosydyds (3.30)
BC L e T 10
2 (7rsin (28))2 VN /0 )™ (5)1+s/ (vf (1))
x(1+e 27y )) ~(@nb=F)5 cosh x sin ydads
and
iV +oo 1 2 N1
v t N—5,—s % t N-3
icotp) == | et FENCIC)
x(1+e 2nlf(f)) (@B~ ginh x cos ydyds
lN +oo N1 _52 _N-1
— T 2 — 00 t 2
unwmymzA Tt ”%ékaﬁfo)

x (1 +e72nifﬁ)e7(tanﬁ P)F0 cosh x sin ydxds,

for any N > 1. From these expressions and the inequality (2.36), we establish

RG" (v,p)] < (3.31)

|V (icotB)| [|secO| if —F<0<0or m<6<?3,
|V 1 ifo<6<n,

making use of the additional facts that on the contour %2(0’0) (%) the quantity
if (t) is positive, x is monotonic and y increases monotonically from f to 7.

In the special case when 6§ = 7, we have 0 < 1/ (1+5s/ (vf(t))) < 1lin
(3.27) and together with (3.28), the mean value theorem of integration shows

that
N Uy (icotB)
vN

(v, B) = (—1)N On (v, B), (3.32)
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where 0 < Oy (v, ) < 1is an appropriate number that depends on v, f and N.
We can prove in a similar manner that

RY (v,B) = (~1)N WEN (v, B), (3.33)

where 0 < Ey (v, ) < 1is a suitable number which depends on v, f and N.

In the case that v lies in the closed upper half-plane, the estimates (3.29) and
(3.31) are as sharp as one can reasonably expect. However, although acceptable
in much of the sectors —7 < 6 < 0and ™ < 0 < 37”, the bounds (3.29) and

(3.31) become inappropriate near the Stokes lines 0 = —7 and 0 = 37” We
now give alternative estimates that are suitable for the sectors —77 < 6 < 0 and
m < 6 < 27 (which include the Stokes lines § = —7 and 6 = 37”). We may

use (3.10) and (3.15) to define the remainder terms in the sectors 37” <0 <2m
and —T < 6 < —%. These alternative bounds can be derived based on the
representations (3.27) and (3.30). Their derivation is similar to that of (2.43)
discussed in Subsection 2.1.2, and the details are therefore omitted. The final

results are as follows:

(H) |sec (0 — @*)| |[Un (icot B)|
R , < 3.34
IR (v, B)] sV ] g o (3.34)
and * i
RE ()] < PO @ v et P) 39

cosNt2 g+ N

for —m < 0 < 0and 7w < 6 < 27, where ¢* is the minimizing value given by
Lemma 2.1.1 with 6 — ¥ in place of § and with y = N + 3. Note that the ranges
of validity of the bounds (3.29), (3.31), (3.34) and (3.35) together cover that of
the asymptotic expansions of the functions H{ (vsec B) and Hél)/ (vsecB). We
remark that the bounds (3.34) and (3.35) are equivalent to those proved by
Meijer [62].

The following simple estimates are suitable near the Stokes lines 6 = —7
and 0 = 37”, and they can be obtained from (3.34) and (3.35) using an argument
similar to that given in Subsection 2.1.2:

R (v,p)] < mw
14

and

RE) (1,p)] < JerN Ty AlicotB)]

™
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provided that —Z < 0 < Oor w < 6 < 3f and N > 1. These bounds may be
used in con]unctlon with our earlier results (3 29) and (3. 31) respectively.

The estimation of the remainder terms R (1/ B) and R( ) (v, B) cank be done
in essentially the same way as the estlmatlons of Ry H) (1/ B) and R ( ,B)

above, and therefore we omit the proofs. In this way, we may first obtam the
analogues of the bounds (3.29) and (3.31),

RO (1, )| < Uy (o) {|csc(29)y if T<10]<7%,

v|N 1 if |9| <7
and
) Vi (icot )| [lesc(20)] if T <] < 5,
R B)| < ———————
| N (V ,B)l — |1/|N 1 if |9| < E,
respectively.

For the special case when v is positive, one finds that

RO (v, p) = (—y2 N (otB) g ) gy

UN

and Va( 5
4 N/2|+1. N icot
Ry (v, B) = (~)WNAHN ISR Ey (v, ).

Here 0 < Oy (v,8) < 1and 0 < Ey (v, B) < 1 are appropriate numbers that
depend on v, g and N (cf. equations (3.32) and (3.33)).

Let us now consider estimates which are suitable for the sectors 7 < |0] < 7.
For 7 < |8| < m, the remainder terms R (1/ B) and R( (v, B) may be defined
via (3.20) and (3.22). The bounds are as follows

RO (4, )| < 15€2(0 = ¢")| [Uy (icotp)| 3.36
| N (V ,3)| = COSN+% qo* |1/|N ( )
and
RY) (1, )| < lese 20— 97)| [V (icot )| (3.37)
NP = N+ P |V|N

for 7 < |8] < m, where ¢* is the minimizing value given by Lemma 2.1.2 with
the specific choice of x = N + % We remark that the estimates (3.36) and (3.37)
are both equivalent to those given by Meijer [62].

The two simple bounds below are appropriate near the Stokes lines § = £7
and can be obtained from (3.36) and (3.37) using an argument akin to those
given in Subsection 2.1.2:

RY (v,8)] < %mw
1%
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and

1 1 V;
\R%)( ‘ E\/W’ N 1C0t,3)|

vl

where 7 < |0] < T and N > 3.

3.1.3 Asymptotics for the late coefficients

In this subsection, we investigate the asymptotic behaviour of the coefficients
U, (icot B) and V;, (icot B) as n — +o0. A formal expansion for U, (icot ) was
given by Dingle [35, eq. (54), p. 170]; his result may be written, in our notation,
as

Uy (Ge0tp) = 3 o 7 L (2ian - ﬁ))mumacotﬁ)r(n—(:;)

We shall derive here the full and rigorous form of Dingle’s expansion by trun-
cating it after a finite number of terms and constructing its error bound. The
corresponding result for the coefficients V}, (icot ) will also be provided.

We begin by considering the U, (icot B)’s. First, we split the integral repre-
sentation (3.19) into two parts as follows:

i +oo 1 (1) s
Uy, (icotp) = —1/ u'~2e” QAP ) (e Tt sec B)du
2 (2 cotp)?
+ Ll /+Oo u”*%e*(ta“lS*ﬁ*z”)”iHi(j) (ue2'sec B)du
2 (27 cotp)?

(3.39)

Then we express the function iHi(; ) (ue%i sec B) as a truncated asymptotic ex-
pansion

an M-1
iH.(l)(ue%isecﬁ) —e b (Z w (e2 ﬁ))f (3.40)

" (37tu tan B)

Nl—

m=0

for any M > 0, where we have, by (3.29),

IRy (ue?i, B)| < W (3.41)

We substitute (3.40) into (3.39) (with M’ > 0in place of M in the second integral)
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and use the estimate (3.41), to establish

Un(icotp) = 5 i (tan p— B))"

M—1
X < Y (2i(tanB—PB))" Uy (icot B) I' (n —m) + Apm (n,ﬁ))

m=0
(=1)"
27 (2i (tanB — B+ m))"

M1
X < Z_:O (2i (tanB— B+ 7)) " Uy (icot B) I' (n —m) + Byy (n,ﬁ))
- (3.42)

where

|Ant (n,B)] < (2 (tan p — )™ |Uns (icot )| T (n — M) (3.43)
and

Byy (n,B)] < (2 (tanp— B+ )™ Uy (icot )| T (n— M), (3.44)

provided thatn > 1,0 < M, M’ < n — 1. When n is large and for fixed M,
M/, the contribution from the second series in (3.42) is exponentially small com-
pared to the one from the first series. If we neglect this second component and
formally extend the first sum to infinity, formula (3.42) reproduces Dingle’s ex-
pansion (3.38).

If n is large and B is bounded away from zero, the least values of the bounds
(3.43) and (3.44) occur when M ~ 4§ and M’ ~ m With these choices
of M and M/, the ratios of the error bounds to the corresponding leading terms
in (3.42) are Op (n_%Z’”) and

on((ramgZ557) (1 amsstn) )

respectively. Numerical examples illustrating the efficacy of Dingle’s expansion
(3.38) and our (3.42), both truncated optimally, are given in Table 3.1. It is seen
from the computations that near 8 = 7, the contribution from the second series
in (3.42) becomes essential. Indeed, it can be shown that for large n and for
B satisfying tan 8 — B > 7, the order of the main term in the second series
is comparable with the last retained term in the first series, assuming optimal
truncation.
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values of n, B, M and M’

exact numerical value of |U, (icotB)|
Dingle’s approximation (3.38) to |U}, (icot f)]
error

approximation (3.42) to |U, (icot B)|

error

error bound using (3.43) and (3.44)

n=>50,p=2%M=25M =1
0.259229989939060508478741207692 x 10111
0.259229989939060521496039329899 x 10111
—0.13017298122207 x 10%°
0.259229989939060521496039329899 x 10111
—0.13017298122207 x 10%°
0.26037447360811 x 10%°

values of n, B, M and M’

exact numerical value of |Uj, (icot f)|
Dingle’s approximation (3.38) to |U}, (icot f)]
error

approximation (3.42) to |U, (icotB)|

error

error bound using (3.43) and (3.44)

n=>50,p=5 M=25M =20
0.225223901290126273370812162195 x 10°
0.225223900059708959962876639653 x 10°
0.1230417313407935522542 x 102
0.225223901290126284664000934035 x 10°
—0.11293188771840 x 1010
0.22591245013109 x 10710

values of n, B, M and M’

exact numerical value of |Uj, (icot f)|
Dingle’s approximation (3.38) to |U}, (icotp)]
error

approximation (3.42) to |U, (icot B)|

error

error bound using (3.43) and (3.44)

n=75p=%M=37,M =11
0.297450692857018527862002612809 x 107
0.297450692857018527862002983265 x 107
—0.370456 x 1073
0.297450692857018527862002983265 x 107
—0.370456 x 1073
0.731204 x 1073

values of n, B, M and M’

exact numerical value of |Uj, (icot f)|
Dingle’s approximation (3.38) to |Uj, (icot )|
error

approximation (3.42) to |U, (icotB)|

error

error bound using (3.43) and (3.44)

n="75p="%"% M=37,M =31
0.164100247602030019388982625583 x 1017
0.164100247599006703787878129388 x 1017
0.3023315601104496195 x 10°
0.164100247602030019388982829783 x 1017
—0.204200 x 1077
0.403058 x 10~7

Table 3.1. Approximations for |Uy, (icot )| with various n and B, using

(3.38) and (3.42).
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One may likewise show that for the coefficients V;, (icot ),

| - (_1)n+1
V, (icotB) = 27 (2i (tan B — B))"

M-1
X ( Y (2i(tanB—PB))" Vi (icot B) I' (n — m) +Cum (n,ﬁ))

m=0
(_1>n+1
27t (2i(tan B — B+ )"

M -1
X( Y (21 (tan = p-+0))" Vi (icot) T (1= 1) + Dy ("’ﬁ)>

where

o (n, B)] < (2 (tan p— )™ [Vag (icot )| T (n — M) (3.45)
and

Dy (1,B)] < (2 (tan p— p+ m)™ |[Vay (icot )| T (n — M), (3.46)

aslongasn > 2and 1 < M,M" < n—1. One readily establishes that the
n

least values of the bounds (3.45) and (3.46) occur again when M =~ 7 and

M ~ Wanﬁ—ﬁ)’ provided that 7 is large and f is not too close to the origin.

3.1.4 Exponentially improved asymptotic expansions

In this subsection, we give exponentially improved asymptotic expansions for
the Hankel and Bessel functions, and their derivatives, for large order and argu-
ment. In the case of Bessel functions, expansions similar to ours were derived,
using non-rigorous methods, by Dingle [35, egs. (46)—(49), p. 469]. Dingle con-
sidered the contribution only from the adjacent saddle t?) = —iB and gave a
re-expansion for R%) (v, B) accordingly. We utilize the contributions from both
adjacent saddles when deriving our exponentially improved asymptotic expan-
sions. This allows us to capture all the exponentially small terms arising from
the Stokes phenomena on the rays 6 = —Z and 6 = 2. Since the moduli of the
singulant pair 2i (tan f — ), 2i (tan p — B + 7r) can be quite different in magni-
tude (especially when B is close to 0), an extra re-expansion will be necessary
before we obtain the usual expressions in terms of terminant functions.

Let us first consider this extra re-expansion in the case of the remainder term
RI(\]H) (v, B). We begin by splitting the integral representation (3.12) into two
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parts as follows:
(—i)N 1 +oo uN—%e*(tan.B*.B)”
227 cot p)2 V™ 0 L/
(_i)N 1 /+oo yN—3 o—(tan p—p+27)u
2(27cot )V Jo Lu/y

iHi(;) (ue2'sec B)du

D, B) =

iHi(;) (ue2'sec B)du

+

Next, we expand the denominator of the integrand in the second integral by
means of (1.7) to deduce

M-1 YINE
H) - m Um (icot ) (H)
(v, B) = mgN (—D)" ===+ Rym (v, B), (3.47)
with?
~ m +o00 .
Uy (icotB) = 1—1/ um_%e_(tanﬁ_ﬁJ“Z”)”iHS) (ue2'sec B)du
2(2mcotB)z /0
and
(H) ()N 1 preygNle(lnppu g
Rym(v )= iH;,’ (ue?' sec B)du

' 2(27Tcot/3)%v_N 0 Ltiu/v
M o M_1 _ _

Li/Jr uM-ze—(tanp ﬁ+2”)”iH.(1)(ue72Tisec/3)du

2(2ncotﬁ)%VM 0 L+iu/v " ’

+
(3.48)

for -7 <6< 2 tand M > N > 0. Equation (3.47) gives the required re-expan-

sion of Rg\] ) (v,B) and Rg\”z/j (v, B) is the remainder that we shall express in

terms of terminant functions.
In a similar manner, we write

/ M=1 Vin t /
RY @ B) = X (-1)" # + Ry (v,B), (3.49)
m=N
with
~ " —+oo -
Vi (icotB) = — ! - / um_%e_(t"m’g_ﬁJrzn)”Hi(j)/(ue71 sec B)du
2 (rmrsin(2B))2 70

3Note that the right-hand side is indeed a function of i Cot B as can be seen by writing tan § —
P = teorp t+1arccoth (icot ) and sec p = 1c0t/3<1 — (icot B)? )2
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and
/ —i)N 00y N—}—(tanp—p)u .
H 1 1 touN"2e 1 x
R%\I,AEI(VUB) = (=) 1 N T /v Hi(u)/(ue2lsec B)du

2 (rrsin (28))2 Vo

M +oo —(tan p—B-+2m)u -
) M/ u 2e1+. 7 Hi(j)’(ueflsecﬁ)du
2 (7rsin (2B))?2 2V /v

for -5 T << 3” and M > N > 1. From now on, we assume that M > N > 0

whenever we wrlte Rg\, 1)\/1 (v,B)and M > N > 1 whenever we write Rg\] AZI (v, B).

Now, we are in the position to formulate our re-expansions for the remainder
terms Rg\, ]2/1 (v, B) and R&, AZI (v, B), in Proposmon 3.1.1 below. In this proposi-

tion, the functions RNHM (v, B) and RZ(\IILIAZ (v, B) are extended to a sector larger
than -7 <0 < 3" via (3.47) and (3.49) using analytic continuation.

Proposition 3.1.1. Let K and L be arbitrary fixed non-negative integers, and let B be a
fixed acute angle. Suppose that —27t + 6 < 0 < 371 — § with an arbitrary fixed small
positive 6, |v| is largeand N = 2 (tanp — B) |[v| +p, M =2 (tanp— B+ ) [v| + 0
with p and o being bounded. Then

R (H) (1/ B) =e 2 Z MTN%@ (tan p — ) ve %)

L-1 -

0i¢ o Uy (icotB)
te 21§e 27Tiv E :—
(=0

H
+ Rg\l,]z/I,K,L (v, B),

— Tor_¢(2 (tan B — B + 1) ve ™ 21)

(3.50)

K-11/ (;
/ . Vi t i)
RZ(\?AZ (v,B) = —e %6 Y. wﬂ\]_k (2(tanB — B) ve™2%)
k=0
28 o ~27iv Lil Vi (icotB)
/=0 vt

H/
+ R%\],Z\BI,K,L (v, B),

Iy (2 (tanB — B+ m) ve_%i)

(3.51)

where
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/ —2|¢| —2|¢| g—27|v|
H H e e 2lle
R&I,K/I,K,L (v, B) ngv,z\zr,K,L (v, B) = Ok pp <—| % ) +OLgo <—|L ) (3.52)

V| lv

/ 23m(¢) 23m(&) n27tIm(v)
H e e e
Rg\f,Azr,K,L (v, B) = Ox,pps (—K) +OLgos ( T )

] ]
(3.53)
for =2m+6 <6 < —%and%ﬂ <0 <3m—24.

Proposition 3.1.1 in conjunction with (3.10), (3.13), (3.15), (3.16), (3.47) and
(3.49) yields the exponentially improved asymptotic expansions for the Hankel
functions, and their derivatives, for large order and argument. In particular,
formula (3.50) together with (3.10) and (3.47) embraces the three asymptotic
expansions (3.1) and

HI(/l) (VseC’B) ~ e—lff (i (_1)11 M j:e’Zig i M

(% v tan B) 2 \i20 v k=0 vk

=
Z
=
S
~
—~
NS
=
~

| o218 o —2miv i Uy (icotp) )

7
/=0 4

which holds when v — oo in the sectors —5 +6 < 6 F °F 3” < 32” — 0 (see,
e.g., [73]) furthermore, they give the smooth transmon across the Stokes lines
f=—-7and 0 =

(HI/r)l the followmg theorem, we give explicit bounds on Rg\, 1)\/1 Lx (v,B) and
Ry wirk (v, B). Note that in these results, N and M do not necessarﬂy depend
on v and B. (Evidently, R g\,H])VI L (v,B) and Rg\] 1\21 Lk (v,B) can be defined for

arbitrary positive integers N and M via (3.50) and (3.51), respectively.)

Theorem 3.1.2. Let N, M, K and L be arbitrary fixed non-negative integers such that
N <M,K <N, L < M,and let B be a fixed acute angle. Then we have

‘RgVHKALK (v,B)] < ‘e_ZiC‘WWN_K(Z (tanp — ) Ve_%i)}
|Ux (icot )| T (N — K)
27 (2 (tan B — B))" N |v|Y
Iu i cotp)] @59

- | —2¢ _zm’/\ v | ‘TM_L (2(tanB— B+ ) ve_%i) ‘

|Up (icotB)| (M —L)
277 (2 (tan B — B+ )M~ w|M
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provided that —7 < 6 < 37” and
|Vk (icotB)]

[
Vi (icot )| T (N — K)

Nm
\_/

| Tn—x(2 (tan g — ) ve

27 (2 (tanﬁ - IB)).N_K |V|N (355)
+ \e_Zi‘fe_27ﬁ‘“|—| Vi (|1 Titﬁﬂ |TM_L(2 (tang — B+ m) Ve—%i) |
v

|Vr (icotpB)| ' (M —1L)
277 (2 (tan B — B+ ) )M F jw|M
for =2 <0 <3Fand K,L > 1.

To see that these bounds are sharp, note that the first and third terms on
the right-hand sides of the inequalities (3.54) and (3.55) are the magnitudes of
the first neglected terms in the expansions (3.50) and (3.51), respectively. It can
be shown that for large N — K and M — L, the second and fourth terms are
comparable with, or less than, the corresponding first and third terms (except
near the zeros of the terminant functions). The proof is similar to that given by
Boyd [12] in the case of the modified Bessel function K, (z) and is therefore not
pursued here.

To derive the analogous results for R (1/ B) and R ( ,B), one can pro-

ceed as follows. Starting from 2], (v sec ,B) = Hﬁl) (vsec [3) + ng ) (vsecB) and

2]l (vsecB) = Hﬁl)/ (vsecp) + Hf,z)/ (vsec B), it is not difficult to show that the
following relations hold:

2Ry (v,B) = Ry (ve™, ) + Ré? ),
21Rg\)1+1 (v,B) = Ran/ (ve™, ) — < ),
_ZRZN (v, B) = 21137)(1/e B) +R2N (v, B),
ZIRg\JH (v, B) = 2%)(1/6”1/5) - 2N (1/, )

We substitute (3.47) and (3 49) into these relations to obtain

-1 1
] = 1 G0t k),

M-1 77 .
. Usp11 (1 cot ﬁ)
le\)Hl (v, B) = ZN +2m+1 + Rg\)lH,M (v, B),

! M= 1Vm icot 1
R (vp) = Y 2P L jD 0, p)

m=N
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and

M-1 {7 :
() Vo1 (icot B) '
le\I)Jrl (v, B) = ZN —:,Zm+1 + Rg\i)ﬂ,M (v, B),

where remainder terms are given by

ZR,’().I\)I v B) = 2§)2M (ve™, B) + R,’(ZI;I?ZM (v, B),

H i H
2R£13!+1 MV, B) = RgN?ZM (ve™, B) — RéN?ZM (v, B), (3.56)
ZRéN v B) = 2% )ZM (ve™, B) + Rglfl,%M (v, B),

/ 7_[1 H/
2Rg\l)+1,M (v, B) = gN,)ZM (ve™, B) — RéN,)ZM (v, B) -

Now, a direct application of Proposition 3.1.1 to the right-hand sides yields the
desired re-expansions which are summarized in the following proposition.

Proposition 3.1.3. Let K and L be arbitrary fixed non-negative integers, and let B be
a fixed acute angle. Suppose that |0| < 27t — & with an arbitrary fixed small positive J,
lv| is large and N = (tan — B) [v| +p, M = (tanf — B+ 1) |v| + o with p and o
being bounded. Then

e2ié K1 x U (icotB)

R 0B == T (1)

Ton_ (2 (tan g — B) ve?!)

k=0 vk
e 20 I 1cot o
Z ﬁ Ton—k (2 (tanﬁ — ‘B) ve 21)
e21§eZ7nv L-1 U, (icot .
) ;}(—1)6 #TZM—E(Z (tanp — B+ ) ve?')
e—2i¢e—2miv L=1 1] (i cot .
+ ) el 7 ﬁ)TZM—z(Z(tanﬁ—ﬁ-l—n)ve 2)
(=0 v
+ RY )
2N,M,K,L (v, B),
e2ic K=1 r Ug (icot .
Rg\)fﬂ,M (v, B) = — 5 kZ (-1) #TZN—k(Z (tanp — B)ve?’)
=0
e 26 =1 U (i cot o
- > Z (Vk IB) TZN—k (2 (tan,B — ’B) ve 2 )

k=0
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— Y (-1 e licotp) 7 p) Tom—¢(2 (tanp — p+ ) ve?')
(=0 v
~2i¢e-271iv L=1 1], (i cot .
e e 1CO _r
) B f(ve ﬁ)TzM—é(Z(tanﬁ—ﬁJrﬂ)ve 2')
=0

J
+ Rgl\)lJrl,M,K,L (v, B),

, 2i¢ K—1 : N
Rg\f),M (1/, :B) = ez kE (_1)k WTQN_]( (2 (tan:B — ‘B) vefl)
=0
2 K=1 1/ (4 N
_ ¢ 5 kz Vi (IVCkOt,B) Ton_« (2 (tan,B - ‘B) ve_fl)
=0

2i¢ J2miv L—1 v, (i
e“te ¢ Vy (icot
2 2 (_1) _‘3)
(=0
~2i¢ g—27iv L=1 1/ (; .
e e 7 (icot B) o
- EZO  Tam—(2(tan p— B+ m)ve™ )

+ Rg\l),M,K,L (v, B)

Tom—¢(2 (tan g — B+ 7r) vel')

‘l/g

and

/ e?i¢ 1] Vi (icot Y
Rg\])Jrl,M (V’ :B) = > kZO (_1)k %sz]k(z (tan‘B — ﬁ) ve? )
e 216 K= v (icot B)

2 k;) vk

e2ilg2miv Li (-1)! Vy (icot B)
N 7
2 5 v

e 2iCo—2miv L-1 v (i COtﬁ)

2

+ Ton—k(2 (tan B — B) Ve*%i)

+ Top—¢ (2 (tanﬁ — ,B + 7'[) ve%i)

Tom—¢(2 (tanp — B+ 1) ve*%i)

+
7
(=0 v

(J)
+ Ry, mk L (v, B),
where

Rg\)I,M,K,L (v, B), Rg\)]+1,M,K,L (v, B), Rg\f),M,K,L (v, B), Rg\])+1,M,K,L (v, B) =

e_2|€| e_2‘§|e_2n‘v|
= Ok pp (W +OLpo TE
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for 0| < Z,and

Rg\)l,M,K,L (v, B), Rg\)fﬂ,M,K,L (v.B), Rg\l),M,K,L (v,B),R 2N+1 M,K,L (v,B) =

eF2Im(@) e F2IM(E) F2I(Y)
= Okpp0 BT + OLBos oL

for T < £6 <2 — 4.
Explicit bounds for Rg\),MKL (v,B), R 2Q,+1 mkL (V. B), R 25\])MK . (v,B) and

Rg\]) +1mkL (v, B) may be derived using Theorem 3.1.2 together with the in-

equalities
(J) ()
2|R2N,M,K,L (V/ﬁ) ,2 2N-+1,M,K,L (V15)| <
H ; H
< RéN?2M,K,L (Vemrﬁ)‘ + ’RgN?ZM,K,L (1/,,3)\
and
2|R£§\I),M,K,L (v, B)],2 R MK, (v, B)| <

H i H
< |R§N,)2M,K,L (ve™, B)| + |R§N,)2M,K,L (v, B)|,
which can be established readily from the expressions (3.56).

Proof of Proposition 3.1.1 and Theorem 3.1.2. We only prove the statements
for Rg\, 1 (v, B) and Rg\, 12/1 1 x (v, B); the remainders Rg\] v (v, B) and Rg\] 1\21 Lk, B)
can be handled similarly. Let N, M, K and L be arbitrary fixed non—negatlve in-
tegers such that K < N and L < M. Suppose that —7 < 6 < =F. We begin
by replacing the function iH,, (1) (ue 2'sec B) in (3.48) by its truncated asymptotic
expansion (3.40) (with k and K in place of m and M in the first integral, and with
¢ and L in place of m and M in the second integral) and using the definition of
the terminant function, in order to obtain

K= Uy (icot B)
vk

H)

RE), (v, ) = e~ Ty (2 (tanp — p)ve ¥)

k=0

L-1 .
. . t T
+ e_21‘§e_2711‘/ E MTM—E (2 (tan‘B — [B + 7‘() ye_fl)
(=0 v

+ RZ%?]%/LK,L (V' 13) s
(3.57)
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with

+o0 1y N—=15—2(tan p—p)u T s
R;LM’K,L (v,B) = N . R§< )(ueZI,ﬁ)du
2t v Jo 1+iu/v
(—i)M 1 +o0 4y M—1=2(tan f—p+m)u (H)
21 vM Jy 1+iu/v
(_i)Ne—iBN /+oo N—1g—2(tan p—p)rt
271 0 1+ ite ¢
(—i)M Com [T M~1g—2(tan p—p+m)rt
€ /0 14 ite ¢

R%H) (rre?l, g)dr

R(LH) (rre?l, g)dr.
(3.58)

+27‘[

In passing to the second equality, we have taken v = re'® and have made the
change of integration variable from u to T by u = r7. Let us consider the esti-
mation of the integral in (3.58) which involves R§<H) (r’te%i, /3) The remainder
R§<H) (rTe%i, B) is given by the integral representation (3.12), which can be re-

expressed in the form

R (rredi, p) = (-D" L /+°° (K~} o~ (tan p—p)t
2 (2ot B)2 (rT)" /0 14t/r
x (1 +e—2nt)iHi(t1)<te%iseC B)dt
(—1)K 11 e (Kode-(Enppy
22 cotp)? (17)" /0 (L+rt/t) (1+t/1)

x (1+e 2)iHY (te?i sec B)dt.

_|_

Taking into account the inequalities (2.64), we establish the upper bound

<

R%H) (rre?!, g)dt

(_i)Ne—i()N /—|—oo TN—le—Z(tanﬁ—ﬁ)rT
27 0 1+itei0

< Wlicotp) 1| o le Xonho i,
— |1/|K 27T | Jo 1+ite 10
4 W Qeotp)] L 77 onkortinp-prr | L1 g
|1/|K 27T Jo T — ielg

In arriving at this inequality, we have made use of the representation (3.19) of
the coefficients Uk (icot ) and the fact that iHi(tl) (te%i secf) > 0 forany t > 0
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(see, e.g., [73]). Since | (T — 1) /(T —iel?)| < 1 for positive T, after simplification
we find that
N +o0 ~N—1,-2(tan B—p)rt .
‘Qe_lm/ ¢ . R§<H) (rte?’, B)dt| <
0

27T 1+ite 1

‘ —21(3‘ |uK |1|C0t13 | ’TN—K (2 (tanﬁ _ ﬁ) ve_%i)| (3.59)
Uk (icotB)| I' (N — K)

27 (2 (tan g — B))N K [uN

One can prove in a similar way that

_iM +o0 TM—15—2(tan p—p+m)rt )
1 _ H I
( 27)t 1GM/ 1+ite ¥ R(L )(rrezl,/%) dr

<

< |e-2ite2miv) [Uz (icotB)| <|1<|30t5 [Ty 1 (2 (tan p — B+ ) ve 5)| (3.60
|Up (icotB)| (M —L)

27 (2 (tan p— p+ )M ™

Thus, from (3.58), (3.59) and (3.60), we obtain the error bound

Rimnir (v, B)] < 7]

B
27 (2 (tan p — ﬁ)g i @

+ |e 21§e—27m/‘ |uL

vl*
|Up (icotB)| (M —L)

27 (2 (tan p— B+ 7)) " M

By continuity, this bound holds in the closed sector —Z < 6 < 3. This proves

Theorem 3.1.2 for R%%LK,L (v, B).

From now on, we suppose that |v| is large and that N = 2 |v| (tanf — B) + p,
M = 2|v|(tan — B+ ) + 0 with p and ¢ being bounded. Using these as-
sumptions and Olver’s estimate (1.90), the first and third terms on the right-
hand side of the inequality (3.61) are found to be Ok, (Jv| % e 2¢l) and
OL,ﬁ,U(|V|_L e 2lele2lv]), By employing Stirling’s formula the second and

fourth terms are O ., (|v| ™~ “1¢-2l) and O, po(lv] "t 72 e 2ele=27Y]), respec-
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tively. This establishes the estimate (3.52) for R&, 1)\/1 xr (VB

Consider now the sector 32" < 8 < 37 — 6. For such values of 6, the function
R](\,IQA,K/L (v, B) can be defined via (3.57). When v enters this sector, the poles
of the integrands in (3.58) cross the integration path. According to the residue

theorem, we obtain

_n\N oo ,N—1,-2(tan —p)u '
(H) _(=)7 1 /* u'"le (H),
Ry mxL (v B) = 27 N o T /v Ry (ue?', B)du
M +oo ;;M—1,—2(tan f—B+7)u .
+ ( 1) 1 u e R(LH) (uejllﬁ)du

2 vM o 14+iu/v
i e—ZigR%H) (Vefni,ﬁ) 1 efZigefZTCivR(LH) (Ve—ni’ﬁ>
= R (ve 27 B) e 2R (v, )
_ . _ . H _ .
te 21(§e 2vaé )(ve m’ ;B)

for 3% < § < 7. Now, by analytic continuation, the equality

H H — 271 —2i H —7ti
Rg\l,lz/I,K,L (v,B) = R%\],K/I,K,L (ve 2 /:3) +e 2§R§< )(ve //3)

+ efZitjeonivR(LH) (l/efm, [3)

holds for any complex v, in particular for those lying in the sector 3¢ < 6 <
37t — 8. The asymptotic expans1on (3.1) implies R( )(ve_”i, B) = Oxps(|v| ™ )
and R( ) (ve ™, B) = Orpgs(|v]” L) for large v in 37” < 60 < 3m— 4. From
the est1mate (3.52), we infer that Rg\?])\,IKL (ve2m, B) = Ok g ,o(|v] e 2E)+

OL[;U(M e~2l¢le=27I"l) as v — oo in the sector 2% < § < 377 — 4. This shows
that the estimate (3.53) holds for Rl(\l ]2/1 L (v, B) when M < 9 <3m—0. The
proof for the sector —27 + 6 < 0 < —7 is completely analogous. [

3.2 Hankel and Bessel functions of equal order
and argument

This section concerns the large-v asymptotic expansions of the Hankel func-
tions H,, (W (v), Hﬁz) (v), the Bessel functions J, (v), Y, (v) and their derivatives
of equal order and argument. Using formal methods, a complete asymptotic
expansion for [, (v), v an integer, was given by Cauchy [18,19] in 1854 and later
by Meissel [63,64] in 1891. A rigorous derivation of their result was provided by

Nicholson [79] in 1908, who also considered the corresponding expansion of the
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Bessel function Y, (v). In 1909, Debye [25] introduced the method of steepest
descents and used it to derive the asymptotic expansions of the Hankel func-
tions H,, (| (v), H§2) (v) and the Bessel function J, (v) for large positive real v. In
a subsequent paper [26], he extended these expansions to complex values of v.
We remark that, in fact, Nicholson and Debye dealt with the more general cases
of H{V (v+x), H(z) (v+x), Jy (v+x)and Yy (v + «) when x = o(|v|3), but, for
the sake of simplicity, we restrict ourselves to the special case of xk = 0. We note
that the more general case is investigated in the paper [76] of the present author.
In modern notation, Nicholson’s and Debye’s expansions may be written

" 2n+1
HY (1) ~ — = Z doye 5 sm< 2’;“ > I ), (3.62)
1/ 3

asv — ocointhesector —m+6 <60 <21 —

" 2 1 I" 2n+1
HISZ) ~ 2 dype” 2 sin (T(( nt )> ( S ), (3.63)
1%

asv — oo in the sector 2w +0 <0 < 7 —§;

1 @ _(m(@n+1)\ T(ZH)
3 ngo dyy, sin ( 3 ) = (3.64)
and
Y ~——VY"4d 2 3 /. 3.65
o)~ =g T daasin® () L (.65

as v — oo in the sector |6] < 7 — ¢, with J being an arbitrary small positive
constant and 6 = argv (see, e.g., [121, pp. 100-103]). The cube root in these
expansions is defined to be positive when v is positive, and it is defined else-
where by analytic continuation. The coefficients d», are real numbers; some
expressions for these numbers will be given in Subsection 3.2.1 below.

The structure of this section is as follows. In Subsection 3.2.1, we derive
resurgence formulae for Hankel and Bessel functions, and their derivatives, for
equal order and argument. Error bounds for the asymptotic expansions of these
functions are established in Subsection 3.2.2. Subsection 3.2.3 deals with the
asymptotic behaviour of the corresponding late coefficients. Finally, in Subsec-
tion 3.2.4, we give exponentially improved asymptotic expansions for the above
mentioned functions.
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3.2.1 The resurgence formulae

In this subsection, we study the resurgence properties of the Hankel and Bessel
functions, and their derivatives, for equal order and argument. It is enough to
study the functions Y (v) and Y (v), as the analogous results for the other
functions can be deduced in a simple way through their relations with ngl) (v)
and H" (v).

We begin by considering the function H,El) (v). We substitute z = v into the
Schléfli-Sommerfeld integral representation (3.5) to obtain

TTi+00 .
ng].) (V) — %/ e*V(t*Slnht)dt’ (366)

for |#] < 7. The function t — sinht has infinitely many second-order saddle
points in the complex t-plane situated at t) = 27ik with k € Z. Let 22() (9)
be the steepest descent path emerging from ¢(?) = 0 which coincides with the
negative real axis when 6 = 0. We set the orientation of 2(%) (0) so that it leads
away from the origin. We choose %) (6) to be the steepest descent contour
through t(©) = 0 which is the union 2O (9) U 2O (g + 277), and we set the
orientation of (%) (0) to be the same as that of 20 (0) (see Figure 3.2). It is
readily verified that the contour of integration in (3.66) can be deformed into

%'9) (0), and hence we may write

HY (v) = - T3 (y), (3.67)

1

TTiv3
where T(29/3) (v) is given in (1.61) with the specific choices of f (t) = t — sinh t
and g (t) = 1. The problem is therefore one of cubic dependence at the saddle
point, which we considered in Subsection 1.2.2. To identify the domain A(®)
corresponding to this problem, we have to determine the adjacent saddles and
contours. When 6 = 37, the path 22(%) () connects to the saddle point t1) =
27ti, whereas when 0 = —37", it connects to the saddle point t-D) = 2.
These are therefore adjacent to t(®) = 0. Because the horizontal lines through
the points 32'i and —37i are asymptotes of the corresponding adjacent contours
¢1) (3F) and € (=1 (—3f), respectively (see Figure 3.2), there cannot be other
saddles adjacent to t() besides t1) and t(~1). The domain A(%) is formed by the

set of all points between these adjacent contours.

By analytic continuation, the representation (3.67) is valid in a wider range
than (3.66), namely in —7 < 0 < 37” (note that the contour €% () itself en-
counters the saddle t!) when 6 = — 7). Following the analysis in Subsection
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1.2.2, we expand T(20/3) () into a truncated asymptotic power series with re-
mainder,

2 N-1 m(n+l). 7T (n + 1 a(0/3)
T(2073) (v) = BEH Z e 3 'sin ( ( 3 )) YL% + R%’O/s) (v).
n=0

It can be verified that the conditions posed in Subsection 1.2.2 hold true for the
domain A(%) and the functions f (t) = t — sinht and g (t) = 1 for any N > 0.
We choose the orientation of the adjacent contours so that (1) (3FF) is traversed
in the positive direction and ¢(~1) (—3F) is traversed in the negative direction
with respect to the domain A, Thus, the orientation anomalies are yp; = 0
Yo—1 = 1. The relevant singulant pair is given by
‘/—'-Oj:l = 42711 — sinh (:i:27‘(i) —0+sinh0 = :|:27'L’i, arg ‘F()il = 00+1 — :F37n.

We thus find that for —Z < 6 < 2Z and N > 0, the remainder RZ(\?’O/ 3) (v) can be
written as

‘N +o00
R;\ZI,O/3) (v) = ! _ / u3 —le—2mu
6mTivs /0
1 7271(11\)’1+1)i
X ( - — € - m-) T(Z'l/?’)(ue%ni)du
1—i(u/v)? 1—i(u/v)ie 3! (3.68)
AN oo .
. (_I)N /+ u%flefﬁru
6mTivs /0
1 7271(11\)’1+1)i
X - — € - T(2'_1/3)(ue_37ni)du.
T+i(u/v)? 1+i(u/v)ie 3

We may now connect the above results with the asymptotic expansion (3.62)
of Hsl) (v) by writing

2 NZb o amemn,  (mw(2n+1) T(25H
Hsl) (v) = “3- Z drye” 3 'sin ( ( 3 )) (Mil ) + R;VH) (v), (3.69)
n=0 v
with the notation dy, = —ag)q/fg)/lﬂ(%) and Rg\IH) (1/)0731(7r1/§)_1R§\’]0/3) (v).
When deriving (3.69), we used implicitly the fact that a,(1 ) vanishes for odd n.

To prove this, first note that, by (1.46),

n+1

1 3
o3 _ T("5) |d" [ ¢
T Tm+1) |dm \t—sinht ' (3.70)

JF

t=0
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+(1)
(i)
() i
(ii)
(-1) (_3m
(D ¢V (=F)

Figure 3.2. The steepest descent contour €°) (0) associated with the Hankel
function of equal order and argument through the saddle point t©) = 0
when (i) 6 = 0, (ii) 6 = —=& and (iii) 6 = 75”. The paths V) (32 and
(=1 (=31) are the ad]acent contours for t©). The domain A©) comprises
all points between €V (3%) and €=V (— 32")

Because the quantity under the differentiation sign is an even function of ¢t and
therefore its odd-order derivatives at t = 0 are zero, the claim follows.

It is possible to obtain a representation for the remainder R;VH) (v) which is
simpler than (3.68) by observing that we can express the functions T(>1/3) (ue%i)
and T(2~1/3) (ue’%ni) in terms of Hi(j)(ue%i). Indeed, the contour €V (37")
is congruent to 20 (—Z) U 2O (7%) but is shifted upwards in the complex
plane by 27ti, whence

(N

T(Z 1/3)( —ue2 !(t—sinh t—271i— smh(Zm))dt

||

w\»—-

mm
\

l
2

—ue2 (t smht)dt
(3.71)

N\:i

II
m\»—n
N\:x
\ \
N\:l
"‘\:1
SN—
)

(A)\»—l

(-5)v20 (%)
%H ) 2, (ue™ 3 ) = 7tu3H( ) (ue%i),
using an argument similar to (3.11). One can prove in an analogous manner that

T(2/71/3) (uei%ri) = —ﬂM%Hl(I}) (l/le%i> . (372)

4We specify the orientation of #(0) (7777) so that it leads into the saddle point ¢(?).
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The desired expression for the remainder term Rz(\?) (v) now follows from (3.71),
3.72)and R\ (v) = i(mv3) 1R (v):

_1\N +oo Ly
Rg\]H) (1/) — ( 1) 1 /O uzl\g—ze—Znu

37.[ 1/2Ng+1

1 7'[(21;]+1)i

X ( -+ € - 2H.> Hi(ul) (ue?)du
1+ (u/v)s 14 (u/v)3es’

for -2 < 6 < 32" and N > 0. Equations (3.69) and (3.73) together yield the

(3.73)

2
exact resurgence formula for H, (| (v).
By taking dp, = —az?/ S (#52) and (3.70) into account, we obtain the

following representation for the coefficients dyy,:

2n+1
2n 3 3
d (.t > ] , (3.74)
t=0

1
[ (2n+1)

d2n -

dt?2" \ sinht — ¢

where the cube root assumes its principal value. This is a known expression for
the coefficients dy, (see, for instance, [121, eq. (4.73), p. 102]). It seems that there
is no very simple explicit representation for the d,’s. The author [73] proved
the following formula involving the generalized Bernoulli polynomials:

" 2n 22n+3k3k+11" 42n+1
6_2;1F(2n+1>d2nzz ( 3 )
= 2n+3k+1)I (2n —k+1)
o (=1 By, Ve (=3) |
jIOF(Zn—I—Zk—i—l) (k—j+1)I(j+1)

For the definition and basic properties of the generalized Bernoulli polynomials,
see, e.g., [59, Sec. 2.8], [67, Ch. VI] or [81, pp. 119-162]. The interested reader
may find another expressions, including recurrence relations, for the coefficients
dy, in the paper [73].

To obtain the analogous result for the asymptotic expansion (3.63) of the sec-
ond Hankel function H; 2) (v), we start with the functional relation H, 2) (v) =
gt (ve™) and substitute by means of (3.69) to arrive at

1/7'[1

N-1 (2t ,
- Zd%e g in(”(Z”“)) C5) _rt(pem). 375)

2n+1
3 3

Assuming that —=% < 6 < 7 and N > 0, equations (3.75) and (3.73) then yield
the required resurgence formula for H£ ) (v).
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Let us now turn our attention to the resurgence properties of the derivatives
Hlsl) (v) and H( y (v). From (3.5), we infer that

HY (1) = % / T e vltsinhe) G (3.76)
with |8 < 7. Observe that the saddle point structure of the integrand in (3.76) is
identical to that of (3.66). In particular, the problem is one of cubic dependence
at the saddle point, and the domain A(%) corresponding to this problem is the
same as that in the case of H, (W (v). Since the derivation is very similar to that
of the resurgence formula for the function H, 2 (v), we omit the details and
provide only the final results. We have

H1(,1) Zgzne S sm( (22+2) (2n+2)+R§\JH/) (v) (3.77)
v3
and
N-1 (242 .
HPY (v) = 2 Zane o sin( (ZZH)) (%5 )+R( (ve™), (3.78)
1/ 12

where the remainder term Rg\,H/) (v) is given by the integral formula

N
H (—1) 1 T o1
Rg\] )(V) = 37_[1 2N+2/ u s e 27
voao
1 m(2N+2); (3.79)
3 s
X ( - — € . M_) Hi(ul)/(ue?l)du,
1+ (u/v)3 14 (u/v)3es’

provided =% < 6 < 3 and N > 1.
The coefficients g», may be expressed in the form

1 d2n+1 ) t3 2n3+2
8 = Tan+2) | smh’*(m) - @80
t=0

The reader can find further expressions, including recurrence relations, for the
coefficients g, in the paper [76]; note that in this paper gy, is denoted by
2n+2
673 Dyy41(0).
From the expressions (3.69) and (3.75) for the Hankel functions, we can ob-
tain the corresponding resurgence formulae for the Bessel functions J, (v) and
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Y, (v). To this end, we substitute (3.69) and (3.75) into the functional relations
_ g (2) - _ g _g®

2], (v)=H,’ (v)+Hy” (v) and 2iY, (v) = H,’ (v) — H)”’ (v) and employ the

identities

o8 (27{(2114—1)) Sm(n(Zn—i—l)) _ _lsin<7t(2n—|—1)>’

3 3 2 3

: (271(2n+1)) : (71(2n+1)) . 2<7t(2n+1)) (3.81)
sin{f ——% |sin{ ——% ) =sin" | ————%
3 3 3
for n > 0. Thus we establish that
1 N=1 C x(na1)\ (2l
Jo (v) = 5= Y daysin ( ( : )) (2,,31 ) +RY (v) (3.82)
n=0 v 3

and

Y, (v) = 3 Z do,, sin? < ( 3 )> <2n3+1 ) + RZ(\}/) (v), (3.83)

n=0 v
where 2RY) (v) = R (1) + R{Y (ve) and 2iR( (v) = R{Y (v) — I (ve).
The complete resurgence formulae can now be written down by employing

(3.73). For this, we assume that [§] < 7 and N > 0. With these provisos,
we have

1N +oo gy
RY @y = ED- 1 /0 B2 2

671 1/21\]37+1
m(2N 1), _mlen+)g (3.84)
X( ) 2 on; : ) zn.>Hi(;)(”egi)d”
1+ (u/v)3est 14+ (u/v)3e 3!
and
N
RO Gt D R T e = S
Ry (v) = TR u 3 e

n(ZI;H—l)i . n(ZI;H—l)i 2
X ( € —+ € + > Hi(ul)(ue%i)du.
1+ (u/v)

@IN
@IN

X 14+ (u/v)ie F 14 (u/v)
(3.85)

We end this subsection by discussing the corresponding resurgence relations
for the derivatives J;, (v) and Y] (v). The simplest way to derive these relations
is by substituting the expressions (3.77) and (3.78) into the connection formu-
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lae 2], (v) = HY (v) + H (v) and 2iY] (v) = Y (v) — H?' (v) and using
trigonometric identities akin to those in (3.81). Hence we obtain that

1 N-1 . 7 +2 T 2n+2
]‘/’(V):3_282n51n<7r( 7; )) (ZHCL)_'_R( )( ) (3.86)
— v o3
and
2 N=1 , (2n +2)
Y, (v) = — Z g0 sin? < " ) (2n+2 ) -|—R ( ), (3.87)
3T o 3 v3

with the notation ZR(] J(v) = RZ(\]H/) (v)+R§\,H/)(ve”i) and ZiRgl) (v) = Rg\]H/) (v)—
RZ(\IILI ) (ve™). The complete resurgence formulae can now be written down by
applying (3.79). For this, we assume that |[§] < 7 and N > 1. With these

assumptions, we have

/ _1\N +o00 _
R%) (1/) — ( 1) 1 /0 u%e—%m

ot 52
- 71(21:\31+2)i o 7T(2];]+2) i (1)
/ T
X B — e H; " (ue?")du
1+ (u/v) st 14+ (u/v)3es
and
N
Y’ (—1) 1 T oNn1 )

R%\])( ):6—7-[1/21\2‘)+2 / u 3 e TTu

o (2I;f+2)i o 7T(2I;f+2)i )
X < ——+ s — 2>H$)/(ue7zrl)du.
1+(u/v)3est 14+ (u/v)de 3" 1+ (u/v)3

By neglecting the remainder terms in (3.77), (3.78), (3.86) and (3.87) and by
formally extendmg the sums to infinity, we obtain asymptotic expansions for

the functions H, (L (v),H ( ), I, (v) and Y] (v). These asymptotic expansions
have the same sectors of vahdlty as the corresponding expansions (3.62)—(3.65).

3.2.2 Error bounds

In this subsection, we derive computable bounds for the remainders R( ) (v),
R%,H) (v), R%) (v), Rg) (v), Rg) (v) and R( ) (v). Unless otherwise stated we
assume that N > 0 when dealing with Rg\, ' (v), Rg\],) (v) and Rg) (v),and N > 1

is assumed in the cases of Rg\IH/) (v), Rg\],/) (v) and Rg ) (v).
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To our best knowledge, the only known results concerning the estimation of
the remainders R(] ) (v) and R( ) (v) are those of Gatteschi [40]. Here, we shall
derive bounds Which are 51mpler more general and, presumably, much sharper
than the ones given by Gatteschi.

Besides the usual inequality (2.36), we will use the following inequalities in
constructing the error bounds:

1 - seca| if —F<a<0or m<a<?if, (3.89)
1—}-1’6_1%“927”1“1—{—7’6_1%“‘ - 1 fo<a<m,
2 -4
1—r3e 3" . T
Tz | St k<3 05)
and L
1— rée_l'é“ - lesc (20)| if T < |a] < F, (3.90)
1+re2ix | = 1 if |a] <7,

where r > 0. The proof of (3.89) is elementary while those of (3.88) and (3.90)
are non-trivial and can be found in the paper [73] of the present author.

First, we consider the estimation of the remainders R(H) (v) and R( ) (v).
By simple algebraic manipulation of (3.73), we deduce that
j) gy DN 1 e wMe2meHE )

N (V) ="+ P 7 2n il (ue?)du
32t v s 0 (T4 (u/v)3e3 ) (14 (u/v)3)

N+ oo AN oo, 27N+ g
+ ( l) 2N / nee 2 zi. g e 2 lHl(L:ll) (ue21)du’
327t v 30 (14 (u/v)3e3) (14 (u/v)?)
N oo AN oo 27@N+D); oy
R0 = O [T e T L (et du
3i vise Jo (1+ (u/v)3e3) (1+ (u/v)3)

27(2N+1) .

1 N 1 +00 u%e—Znue 3 i ) Ei
Rl(\?)(v):( 1) 2NH/ T 5 1Hi(:)(ue2 )du,
32t v 3 0 (14 (u/v)3esh) (14 (u/v)3)

(3.91)
according to whether N = 0 mod 3, N = 1 mod 3 or N = 2 mod 3, re-
spectively. Consider the case that N = 2 mod 3. For convenience, we denote
f(t) =t —sinht. We replace in (3.91) the function H, a )(uez ) by its integral
representation

g (uegi) - efue%if(f)dt (3.92)
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(cf. equations (3.66) and (3.67)) and perform the change of integration variable
from 1 and t to s and ¢ via s = uif (t). We thus find

N+1
H 1 1 TR N2 . 2m(N+1),
Rg\])(l/):( 1) 2N+1/ s 3 e’e 3

3271 v 3

N1 ,zn.i

if (t)
o oy e
TIEO(E) (1+ (s/ (vif (£))5e31) (1 + (s/ (vif (1)))3)
(3.93)

Denote by ‘5(0) (%) the part of the steepest descent contour (V) (Z) which lies
in the right half-plane. (The contour ¥ (Z) is congruent to and has the same

orientation as ¢(~1) (-3 1) but is shifted upwards in the complex plane by 271,
cf. Figure 3.2.) An argument similar to (3.26) yields

+1 -

/. (f (0) " 750 a
“O(3) (1+ (s/ (vif (1)))5e5T) (1 + (s/ 1”f £))?) (3.94)
:2/ (1f(f)z e —dx,
a(5) (14 (s/ (vif (1)))5 ) (1+ (s/ (vif (1))

where we have taken x = e (f). We thus find that the result (3.93) may be
written as

N g T N2 o 2m@N+1),
R%,H)(v):( 3%)7[ i s 3 e’e 3
2N+1 D7 S
i if (1)
xz/(o i (1f(t)2 : © s—dxds.
TJG"(5) (1+ (s/ (vif (£))3 eF0) (1 + (s/ (vif (1)))?)
(3.95)

A formula for the coefficients dyn analogous to (3.95) will be needed when de-
riving our error bounds. To avoid complications caused by the zeros of the
sine function, we proceed in a different way than, for example in the case of
Uy (icot B) (cf. equation (3.28)). First, we use dp,, = —a22/3 /T (251 and (1.76),
together with (3.71) and (3.72), to establish

—+o0 T
0

where we have written N in place of n. Next, we replace the function Hi(; ) (ue%i)
by its integral representation (3.92), make the change of integration variable
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from u and f to s and t by s = wuif (t) and use a simplification analogous to
(3.94). Hence we have

r <2N3+ 1) don = (_1)N+1/ —/ % e 270 dxds
0 E

(&) (3.97)

for any N > 0. From (3.95), we infer that

H 1 1 +to0 oN2
‘Rg\l)(v)‘ < - 2N+1 / s 3 e’
b o5 o

)§ dxds.

In arriving at this inequality, one uses the positivity of if (#) and the monotonic-

ity of x on the path %2(0) (5). Now we apply the inequality (3.88) and then
compare the result with (3.97) in order to obtain the error bound

:]
wIN

2 (i
/ (%) 11+ (s/ (vif (¢

RWH)<<£¢1|§£GED_bWW if —Z<60<0orm<6<?3,
N 2N 2 |V|% 1 1f0§9§7z
(3.98)

We can prove in a similar manner that

33 T 2N-+1 2 33 T 2N+3
\R<NH><v>\<( |dan |—M mm—M

2 |V|21\g+1 2 1/’21\I3+3

" secO| if —Z<60<0orm<6<?3,
1 if 0<0<m

(3.99)
when N =0 mod 3, and

3z ['(2N43) {\sec()\ if —Z<0<0orm<0<?3,

R ()] < = |danya| = ——52
Ry ”_3N|MH| WPl 1 ifo<e<n

(3.100)
when N =1 mod 3.

/
Let us now turn our attention to the estimation of the remainder Rg\IH) (v).
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In this case, one finds that the expressions corresponding to (3.95) and (3.97) are

o N+1 + - -
RE (v) = L 1 / wsz’%“e—sez S Rigs

N 357 voE
x = / . (if (t))Z ghio i cosyyds
(2) (14 (s/ (vif (1)))7 e )(1+ (s/ (vif (1)))3)
(_1)N+1 1 O N4l 2neN+2).
‘I‘ s 3 e ‘e 3 e3

1 2N+4

32 v 3 J0

2N+4 _ S
27T.f<

i if(t)
e / (lf (t)z 2 2 COSh X Sin yd.X'dS
'(3) (14 (s/ (vif (£)))3e31) (1 + (s/ (vif ()))?)
(3.101)
when N =2 mod 3, and
2N+2 N —+o00 IN-1 .
r gon = (—1) / e
3 0
X%/(O) . (if(t))_% eiznif% sinh x cos ydyds
- (i“ aN-1 (3.102)
+(—1)N STefs
0
X z/(0) (if (t))izN?’Jrz e 270 cosh x sin ydxds
e (5)

for any N > 1 with y = Jm (¢). From these expressions and the inequality
(3.88), we establish

R ()] < 2 | |3_F(ZN+4) secO| if —F<0<0or m<6<?3,
N =g BN NI 1 ifo<es

(3.103)

making use of the additional facts that on the contour %2(0) (5) the quantity
if (t) is positive, x is monotonic and y decreases monotonically from 7 to 0.
One may likewise show that

‘R W) <2 |3 2 T(25E2) [[sech| if —Z<0<0 or m<6<?3,
= 3n SN L 1 fo<es<n
(3.104)
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when N =0 mod 3, and

2N+2 2N+4

(H) 32 (25 ) 2 32 I(25H)

‘RN (V)‘ ( |82N| INI2 37.[ |82N+2|7 2N 14
¥R v

secf| if —Z<0<0or m<6<?3,
X

1 if 0<60<
(3.105)

when N =1 mod 3, respectively.
In the special case that 6 = 7, the formula (3.95) can be re-expressed in the

form

H 1 1 T Ny
R(N)(V)I—l—.z—zm/ s e
327I1|1/| 3 0

2 (/ (V1F (DD 4 ey~ 25 & 27 s,
%l @ otror YO -

For any s > 0, we have

WIN

— s/ (Vlif () _ 4 (3.106)
— (s/ (Jv]if (1)) |

on the contour (52(0) (%) and so, using (3.97) and the mean value theorem of
integration,

1 2N+1
(H) B 2 27(2N+1). 32 F( )
RN (v) = _ﬁdZNe 3 17 V2N3+1

On (v),

when N = 2 mod 3 and with 0 < ®y (v) < 1 being an appropriate number
that depends on v and N. We find in an analogous manner that

1 ~(2N+1
(H) 2 272 .32 F(T) ~
Ry (V) = —gpdve 55— g O (V)
when N =0 mod 3, and
1 - (2N+3
H 2 2n(2N+3). 32 I .
R& ) (v) = 3—nd2N+2e 3 liT%rg,)®N (v)
v 3

when N = 1 mod 3. Here 0 < Oy (v), Oy (v) < 1 are suitable numbers that
depend on v and N. Similarly, the formula (3.101) can be re-expressed in the
form
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H 1 1 +oo 2N+1
RV )= g | s e
327T|1/| 0
2
1— S/ vli 3 _2N+4  _op
-
(%)
+L /*“’;N;le—s
3%7T|1/|% 0

2 L= (s/ (WIif (D)3 (. (pyy 28
v ez ¥ O

By taking into account the inequality (3.106) and the representation (3.102), the
mean value theorem of integration shows that

—2m S .
e @ cosh x sin ydxds.

57)

/ 2 _
) — 2 LEN (v)

Ry (V)=—3—ngzN+ze a5

N|%‘)H

OJ+(_);

l/

when N = 2 mod 3 and with 0 < Ey (v) < 1 being an appropriate number
that depends on v and N. We find in a similar way that

1 2N+2
12 2 27(2N+2) . 32 F(—) ~
R\ (v) = “g 8eNe T — N (V)
3

when N =0 mod 3, and

1 2N+2
20 2 21(2N+2) . 32 F( )g
Rg\l )(V) = 37_Cg2Ne 5 D) 2N:i2 =N (V)
v 3

when N = 1 mod 3. Here 0 < Ey (v), &y (v) < 1 are suitable numbers that
depend on v and N.

In the case that v lies in the closed upper half-plane, the estimates (3.98)-
(3.100) and (3.103)—(3.105) are as sharp as it is reasonable to expect. However,
although acceptable in much of the sectors —Z < 6§ < 0and 7 < 0 < 3%, the
bounds (3.98)—(3.100) and (3.103)—(3.105) become inappropriate near the Stokes
lines = —Z and 6 = 3. We now provide alternative estimates that are suit-
able for the sectors —7t1 < 6§ < 0and 77 < 6 < 27t (which include the Stokes lines
=—-ZFand0 = 37”). We may use (3.69) and (3.77) to define the remainder terms
R%IH) (v) and R&,H/) (v) in the sectors 2F < § < 2w and —7 < 6 < —Z. These
alternative bounds can be derived based on the inequality (3.88) and the rep-

resentations (3.95) and (3.101) (or on the analogous formulae for the other two
cases). Their derivation is similar to that of (2.43) discussed in Subsection 2.1.2,
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and the details are therefore omitted. One finds that in the sectors —t < 6 < 0
and 7 < 0 < 27, the remainder Rg\fH) (v) can be estimated as follows:

1 = (2N+1
RUD [sec (0 — ¢)| 2 3: I (55-)
‘ N (U)‘ 2N+1 3 | 2N| ) 2N-+1
cos” 3 @* °OT =3
¢ V]
Kk 1 2N+3 (3107)
|S€C(9—g0 )|£|d2N+2|3—2F( 3 )
cos” 3 grr 3T 2 s
when N =0 mod 3,
1 —~(2N+3
H sec (6 — 2 32T
RG ()] < | (Mq) ) 3 |dan+2| 5 (2—2%) (3.108)
cos 3 @** lv| ™3
when N =1 mod 3, and
H sec (0 2 32T
|R§\I ) (v) | > %WS_TC |don 7(T+1) (3.109)
0os 3 @* lv| 3

when N = 2 mod 3. Here ¢* and ¢** are the minimizing values given by
Lemma 2.1.1 with 6 — % in place of 6 and with x = 28 and x = 2553 re-
spectively. Similarly, for -7 < § < O0and 7 < 0 < 27'[ the remamder term
Rg\JH ) (v) satisfies the following bounds:

1 - (2N+2
H [sec (6 — ¢)| 2 32 I'(*55)
|R§\I )(V)| = IN+2 37‘C| N | ?2—E;+2 (3.110)
cos 3 @* lv| 3~
if N=0 mod 3,
" 1 - (2N+2
H' [sec (6 — ¢™)| 2 32 I'(*55)
RE" (v)] < T3n| 2N| ?2—1?1+2
cos 3 @* M
IN44 (3.111)
|sec (6 — ¢**)] 2 3_F( )
2N+4 |82N 2| —2N+4
cos 3 @** lv| "3
if N=1 mod 3, and
%% sec (0 sk 2 33 F(2N+4)
|R§\r )(V)‘ < | (2N+4(P ) |82N 2|7T+4 (3.112)
cos 3 @** lv| 3

if N = 2 mod 3. Here ¢* and ¢** are the minimizing values I§1ven by Lemma
2.1.1 with  — 7 in place of 6 and with x = 2N +2 and x = , respectively.
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Note that the ranges of validity of the bounds (3.98)—(3.100), (3.103)—(3.105) and
(3.107)—(3.112) together cover that of the asymptotic expansions of the functions
J2Ig (v) and HY (v).

The following simple estimates are suitable for the sectors —5 < 6 < 0 and
7 < 6 < 3I (especially near the Stokes lines § = —7 and 0 = —) and they
can be obtamed from (3.107)—(3.112) using an argument similar to that given in
Subsection 2.1.2:

2 % 2N+1
‘R } <%> 36(2N+ )_|d2N| ( 2Ag+1)
v
2 33 2N+3
+31/3e (2N + %)g |d2n+2] ?ﬁ’
+2

/ 2 32F
‘Rg\JH)(VHS% 3e(2N—|— )—|82N| %
v

when N = 0 mod 3 (with the additional condition that N > 3 in the case of

RGY (v)),

5 35T 2N+3
[RY (0)] < 54/3e (2N +3) 5 [dawal 5 %
/ 321-. 2N+2
R ()] < 3y N+ D)2 e #

32 1"(21\?—4)

+14/3e(2N + 4 11)—|g2N+2|—W
when N =1 mod 3, and
1 T 2N+1
RN (v)] < §y/3e (2N +3 )i |dan| 32%1
2 |V|T+
/ 35T 2N+4
R 0] < oo+ ) 2 e 5 T

when N = 2 mod 3. These bounds may be used in conjunction with our earlier
results (3.98)—(3.100) and (3.103)—(3.105), respectively. /

Consider now the estimation of the remainder terms R%) (v) and R%) (v).
A simple algebraic manipulation of (3.84) shows that

)N +00 oyl _ 3 .
RV vy = ED_] / WPz L WV ) oy, 3113)
0

3127 V5 1+ (u/v)> "
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1)V +00 5 -
RO = S [ e I i) e

3127 vs 14 (u/v)
and
N+1 z
- 1 T N 1 3 s
RI(\P (v) = ( 1) N1 T (M/V)ziHi(j) (ue)du,
32271 vos Jo 1+ (u/v)

according to whether N =0 mod 3, N =1 mod 3 or N =2 mod 3, respec-
tively. (The special case N = 0 of (3.113) yields an expression for ], (v) which
corrects a result of Dingle [35, exer. 18, p- 484].) Consider the case that N = 0
mod 3. We replace the function H;, (1) (ue 21) in (3.113) by its integral representa-
tion (3.92), make the change of mtegration variable from u and t to s and t by
s = uif (t) and use a simplification akin to (3.94). Thus we have

1)N+1 1 +oo N_2
RU (v :( s 3 e
N ( ) 3227-( 1/2[\{%1 0

2 L= (s/ (if (D) (4 -2 2y
% E/Cgm)(g) s/ (if (1) (if (t)) e 270 dods.

—S

(3.114)

We first estimate the right-hand side by using the inequality (3.89) in the case
8] < and the inequality (2.36) in the case 77 < |6] < 7. We then compare the
result with (3.97), thereby obtaining the error bound

1 ~(2N+1 )
‘R ()| < L |d 2N|32T( 5) | lesc(20)] if T < 0] < %,
- 37‘[ ]V|% 1 if |0] < I
(3.115)
1 ! ]3_F(2N+5) lesc(20)] if £ < 0] <5,
N+ |25 0 if 0] <Z.
We can prove in a similar manner that
1 - /2N+3
1 3:I(%52) 1 32 I'(352)
}Rz(\P (V)] < | 3= |dan+2] 7% | doN+4] jw
37 |3 |3
(3.116)

" lesc(20)| if §<|0] <7,
1 if [0 <%
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when N =1 mod 3, and

33 T 2N+1 1 321"
IR{) (v)!g( RS M mm—%)
|3 |3

(3.117)

" lesc (20)| if F < 0] < 5,
1 if 0] <%

when N =2 mod 3. /
Let us now consider the estimation of the remainder Rg\], ) (v). In this case,
one finds that the expression corresponding to (3.114) is

' —1)N 1T [ a1
R () = | / S
N ( ) 3227_[ VZI\g+2 0

X E/ (E) 1+ (s/ (vif(t ))));; (f (1) W2 omgEs sinh x cos ydyds

95}

s 1—|—(s/(1/1f(t

[
3227T1/ 32 0

2 [ ey IO )25 270 covimatns

when N = 0 mod 3. From (3.102), (3.118) and the inequality (2.36), we estab-
lish

(3.118)

2

, 33 F(2N+2> 1 33 F(2N+4>
’R%) (v)] < ( 1S2n] Z—ILZ |82N+2|7W
vl 2 vl (3.119)
y {|Csc (20)] if Z<6] <Z,
1 if 0] < .
One may likewise show that
() 2 T(352) flesc(20)] if § < 10] <3,
Ry
| |_37r|g2N’ V”éz { 1 if 0] <Z
(3.120)
L| |3_ (#550) [lesc(20)] if T < 16| < Z,
T 8aN+4 2 |V|2N37+6 0 if |9| <7
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when N =1 mod 3, and

/ 1 3% [ (2N+4 1 32f 2N+6
\R%) (v)] < ( |goN+2| 5 (2—13;4) |g2N+4| 2N*6

vl
" lcsc (20)] if Z< 0] < 7,
1 if 0] <%

(3.121)

when N =2 mod 3, respectively.

In the special case when v is positive, we have 0 < 1/(1+ (s/ (vif()))?) < 1
in (3.114) and together with (3.97), the mean value theorem of integration shows
that

1 35T
R%) (v) = S_dZN 5 (—‘1)@1\1( ) — a=doN+4— 5

1 35 T (25
v o3 3 25

—)®N (v), (3.122)
v

L,\J

when N =0 mod 3 and with 0 < @y (v),Oy (v) < 1 being appropriate num-
bers that depend on v and N. We find in an analogous manner that

(ZTi)@N( v) + iﬂdzN+4 > (z—i)@N( v)

v 3 3 v 3

N\'—‘

1

RY (v) = —g N2

when N =1 mod 3, and

1
1 32T 1 .
R;\]’) (1/) = —ﬁdZNi%@)N( ) + %dZN—i—Z 5 %@N (1/)

when N = 2 mod 3. Here 0 < @y (v) < 1 is a suitable number that depends
on v and N. We note that, since dy, ds > 0, formula (3.122) implies

Jolv) < do—

1.,3:7G) _ IG)

3
for any v > 0. This upper bound was also established by Watson [117, pp.
258-259] using a method different from ours (for a lower bound of similar type,
see [37]). Analogously, when v is positive, we have 0 < 1/(1+ (s/ (vif(t)))?) <
1 in (3.118) and together with (3.102), the mean value theorem of integration
yields

1 - /ON+2 1 - /2N+4
PRI Ve IR TE Ve
Ry (v)—%gm? e En ( )—§82N+27 2N (V)
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when N = 0 mod 3 and with 0 < &y (v),Ex (v) < 1 being appropriate num-
bers that depend on v and N. Similarly, one finds that

1 - (2N+2 1 - (2N+6
/ 1 32 F( ) _ 1 32 F( ) =
R%) (v) = ——3ngzN?ﬁﬁN (v) + 3_ng2N+4?WQN (v)

when N =1 mod 3, and

1 2N-+4 1 2N+6
(J" 1 32 I'(=53 )a 1 32 I'(=53 )5
Ry (V) = 3-gans2 e =N (V) = 382N+ B N (v)

when N = 2 mod 3. Here 0 < Ey (v) < 1 is a suitable number that depends
on v and N. We remark that by a result of Watson’s [117, eq. (2), p. 260]

1 2 1.9
/ 1 32I(5)  3I(3)
]1/ (V) < 37Tg0 2 %

for any v > 0 or, in other words, Ry ) (v) < 0 for positive values of v.

The estimates (3.115)—(3.117) and (3.119)—(3.121) become singular as 6 ap-
proaches +7 and are therefore not suitable near the Stokes lines § = £7. We
now give alternative bounds that are appropriate for the sectors 7 < |0] < 7
(which include the Stokes lines § = 7). We may use (3.82) and (3.86) to define
the remainder terms in the sectors 7 < |8 < 7. These alternative bounds can
be derived based on the representations (3.114) and (3.118) (or on the analogous
formulae for the other two cases). Their derivation is similar to that of (2.43) dis-
cussed in Subsection 2.1.2, and the details are therefore omitted. One finds that
in the sectors 77 < |0| < 7, the remainder Rg) (v) can be estimated as follows:

D) < lesc@O—g | 1, 3T
|R§\1) (V)‘ < 2N+1 37T | Nl 2 I%l
cos 3 @F lv| 3~
o | (245 (3.123)
Jloc@@-gl 1, S T(E)
2N r 3 2N+4| > 2N+5
cos™5 @ lv| 3
when N =0 mod 3,
. 1 (2N+3)
|R§\]I) (V)‘ < | C (N 7))l ’ 2N+2’? 2N13
cos 3 @** lv] 3
. IN45 (3.124)
esc (2(0 — ™)) 1 3_F( 7))
+ 2N+5 | 2N+4| > 2N+5

Cos 3 @F** lv| 3
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when N =1 mod 3, and

* 1 - (2N+1
|R(I)(1/)‘<|CSC(2(9_¢))|i|d |E£F( 3+)
N AL = W . 3 NI
s e vl (3.125)
jesc (2(0 — ¢™))| 1 32 I (357)
+ 2N+3 ’ 2N 2’_ 2N+3
cos 3 @** 3 2 lv|73

*** are the minimizing values given by

ZNES respectively. Similarly,

when N =2 mod 3. Here ¢*, ¢** and ¢
Lemma 2.1.2 with y = 28t x = 2883 and x =

for I < |8] < 7, the remainder R(] ) ( ) satisfies the following bounds:

|csc (2 (0 — ¢7))| 1 32 I (3572)
‘R | 2N+2 |g2N| 5, 2Ni2
cos 3 @F i
IN-44 (3.126)
|esc (2(6 — ¢™))| 1 32 I'(25)
+ 2N+ |82N 2| > 2N+4
cos 3 @** v| 3
if N=0 mod 3,
% 1 ~(2N+42
RU) <|CSC(2(9—<0))|L| |3_2T( )
’ N (U)l — 2N+42 377 2N 2 IN+2
cos 3 @* |U|T
IN+6 (3.127)
esc (2(6 —¢™™))| 1 32 I'(25)
+ INTS 37 182N+l 5 s~
cos 3 @*** lv| ™3
if N=1 mod 3, and
' csc(2(0—¢*))| 1 32 (20t
Ry ()] < | e 3,7 182N+2] 72—1%4
cos qo** lv| 3
(3.128)

|esc (2(0 — ¢™))| 1 32 I (39)
+ W76 37 182N+ 5
COs 3 @*** lv| 3

*** are the minimizing values given by

2N+2 o = 2NEL ang y = 2N6

if N = 2 mod 3. Here ¢*, ¢** and ¢
Lemma 2.1.2 with the specific choices of x =
respectively.

The following simple bounds are useful for the sectors ¥ < |0| < 7 (espe-
cially near the Stokes lines 6 = :l:%) and N > 4, and they can be deduced from
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(3.123)—(3.128) using an argument similar to that given in Subsection 2.1.2:

3; 2N+1
IRV (n)] <L 3e(2N+11) —|dan| (T?)H)
1%
+51/3e (2N+19)—|d2N+4| (—5>
v 3
2N+2

/ 32 F
RY) )] < 3y/3e 2N+ 5) o [san] #
v
33 T 2N+4
+ %\/3 <2N+ 17)— |gon+2] ——( 2N3+4)

vl

}R%) (V)] < §\/3e(2N + 15) ! |d2N+2| 322%
+1,/3e(2N + 19)_ EAY ﬁ%
v
R )] < e+ B foanl 5 |(Tff;)
v
+ %m— |82N+4] 5 ek %
v
when N =1 mod 3, and
IR{) (v)| < L\/3e(2N + %)% |don| 3{%
+51/3e(2N + %)% |don 42| %%
R (v)] < L 3e(2N—|—177)$ 9on12)| 3; ijjs;)
FhBelN+ ) ool : <|N)

when N =2 mod 3.
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We end this subsectlon by considering the estimation of the remainder terms
Rl(\}/) (v) and R( (v). A simple algebraic manipulation of (3.85) gives

(D) T
iH: ’(ue2")du,
1 + (u/v)z iu ( )

_1\N+1 oo o 3
Y) (V)_( 1) 1 / 252 L+ (u/v)

27.[ 1/2NB+1

N

_1\N 400 _ 3 n:
R(NY) (V):( Y1 / u%e—ZnuleH(uez)du

2 A58 1+ (u/v)
and
_1)N+L 4 oo o 1 5 -
RY ) = S [T te U 0 eFau, 3129)
2t y75 Jo 1+ (u/v)?

according to whether N =0 mod 3, N =1 mod 3 or N =2 mod 3, respec-

tively. Consider the case that N = 2 mod 3. We replace the function Hi(i ) (ue%i)
in (3.129) by its integral representation (3.92), make the change of variable from
uand f tosand t by s = uif (f) and use a simplification similar to (3.94). Hence
we have

)N oo oy
R (v = 2] / B
0

2w B

2 e AGTA0)) LN S
/ )17 (o7 (if (0)E F (D)7 e dads.

We first estimate the r1ght-hand side by using the inequality (3.90) and then
compare the result with (3.97), thereby obtaining the error bound

(3.130)

2 3T(ZSL) [lesc(20)] if Z < |8 < Z
R(Y) < —d S\ 3 J 4 27 3.131
Ry ()] < 3r 2Ny |75 1 if 0] <7Z. (3.131)
We can prove in a similar manner that

2N+1 2N+5

{R(Y)(V)‘< id |§F( 3+) 2 | N 4|3F( 3+)

N =\ 37 4 |]/|2N3+1 37.[ ‘V‘ZN;—5
(3.132)

" lesc(20)] if § < |6] < 7,
1 if |0| <7z

when N =0 mod 3, and

RY (v)

r 2 f 4
_?m 3L (% >{\csc<e>\1 <lol <% 513

| 2N+2| W " if Jo] <=
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when N =1 mod 3. /
Let us now consider the estimation of the remainder term Rg ) (v). In this
case, one finds that the expression corresponding to (3.130) is

RZ(\}/) (V) = ( ) 2N-+4 / S%eis
0

27 v 3
_/ 1—(s/ (vif (¢ )))z (if (¢ ))—21\[344 e_znﬁ sinh x cos ydyds
(%) 1+ (s/ (vif (1)) 3.134
(1)N+ 1/+°°2N+1 o
IN+4 s 5e
0

3
2
—/ 1= (s/ (Vlf(t))) 5 (if (¢ ))_ZNT+4 e 2T cosh x sin ydxds
(3) 14 (s/ (vif (1))
when N = 2 mod 3. From (3.102), (3.134) and the inequality (3.90), we estab-
lish
/) 3F(2N+4) lesc (20)| if £ < |0] < &
RV ()| < = i3/ 4 2 (3135
One may likewise show that
2N+2 e T
(Y') 3T (*572) [|esc(20)] if T < 0] <%,
‘RN (1/)‘ = |82N| 4 |V|2N+2 1 if o] < (3.136)
if N=0 mod 3, and
3T 2 3T 2N+6
01 < (Z e 300+ L et 300D
i vl (3.137)

" lesc (20)] if T < |0] < %,
1 if |0 <X

if N =1 mod 3, respectively.

In the special case when v is positive, we have 0 < 1/(1+ (s/ (vif(t)))?) < 1
in (3.130) and together with (3.97), the mean value theorem of integration shows
that

Y 2 3
Rg\,) (v) = _§d2N4V—3 37
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when N =2 mod 3 and with 0 < @y (v),Oy (v) < 1 being appropriate num-
bers that depend on v and N. We find in a similar way that

2N+3 2N+5
0y 2. 3I(55)s 2 3I(T52)«
when N =0 mod 3, and
2N+5
v, _ 2, 3[(*5H) 2 3I(%52) o
Ry’ (v) = _3_7rd2N4 W(@N (v) — 3—nd2N+4;LVzT@N (v)

when N =1 mod 3. Here 0 < Oy (v) < 1is a suitable number that depends on
vand N. Similarly, when v is positive, we have 0 < 1/(1 + (s/(vif(t)))?) < 1
in (3.134) and together with (3.102), the mean value theorem of integration gives

= 2 3I(352) -
Ry " (v) = 3 82N+2 SN (v) + 3N T T N (v),

when N =2 mod 3 and with 0 < Ey (v),Ey (v) < 1 being appropriate num-
bers that depend on v and N. Analogously, one finds that

v/ 2 31“( )H 2 3F(2N+4)2
Ry (v) = 38Ny — N (V) + o8Ny — e an (V)
v 3 v 3
when N =0 mod 3, and
v/ 2 3]"( )H 2 3F(2N+6);
R& ) (v) = 82N4T3+25N (v) + 3782N+41TLﬂN (v)
v 3

when N =1 mod 3. Here 0 < Ey (v) < 1is a suitable number that depends
onvand N.

The bounds (3.131)—(3.133) and (3.135)—(3.137) become singular as 0 tends to
+7 and are therefore not appropriate near the Stokes lines § = £7. We now
prov1de alternative bounds that are suitable for the sectors 7 < || < 7t (which
include the Stokes lines § = 7). We can use (3.83) and (3 87) to define the
remainder terms in the sectors % < |8 < 7. These alternative bounds can be
derived based on the representations (3.130) and (3.134) (or on the analogous
expressions for the other two cases). Their derivation is similar to that of (2.43)
discussed in Subsection 2.1.2, and the details are therefore omitted. It is found
that in the sectors 7 < |6| < 7, the remainder RI(\}() (v) can be estimated as
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follows:
}R(Y) (1/)’ < |CSC(2(9_¢*))|i|d |§F(%)
N — 2N+ 377 4 2N+1
cos 3 @ lv| ™3 (3138
L lesc(2(0— )| 2 3T (*57) '
P 3,7 |d2N-+4] 1 B0
cosS -3 q)*** |V|
when N =0 mod 3,
Y csc 2 31
|R§\1)(V)‘ < csc (2 Z(N il ))|3 |dan+2| 5 (T3+3) (3.139)
cos™ 3 @** |1/| 3
when N =1 mod 3, and
Y csc (2 (0 — ¢*))| 2 3 (2N
Ry (v)] < lesc Z(LH ¢ m—\d [P (3.140)

cos 3 @ 31 4 | Al
when N =2 mod 3. Here ¢*, ¢** and ¢*** are the minimizing values given by
Lemma 2.1.2 with y = 25y = 2883 and y = 28t respectively. Similarly,
for 7 < |8] < 7, the remainder term R( ) (v) satlsﬁes the following bounds:

" 2N-+2
RO ()] < lesc@O—g 2| ST (252) (3141)

2N+2 2N+2
cos 3 @* 3m 4 lv| ™3

if N=0 mod 3,

* ON+2
RY) (1] < L@ -9 2 | |§F( )
N = NFZ 377 82N 4 2N 12
o v (3.142)
Jlosc@O—gyl2 ST
N6 3 82N +4 4 2N+6
cos 3 @ lv| 3
if N=1 mod 3, and
% csc (2 (6 — @™ 2 3 (204
R ()] < 20— o)) o leanal (—S) (3.143)
cos 3 @** |1/| 3

if N = 2 mod 3. Here ¢*, ¢** and ¢*** are the minimizing values given by
Lemma 2.1.2 with the specific choices of y = 22, x = 28t and y = 2t6,
respectively.
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T

The following simple estimates are suitable for the sectors 7 < |0 < 7

2
(especially near the Stokes lines § = 7) and N > 4, and they can be obtained
from (3.138)—(3.143) using an argument akin to that given in Subsection 2.1.2:

2N+1

3
RY )] < /302N + $) 2 [day |——|(|23J
v
3
+%\/3 (2N+19)_|d2N+4| |(|2—N3+5),

when N =0 mod 3,

1%
/ 3F 2N+2
]R(J) (1/)| < % 3e(2N+ 13) |82 |_%
T 2N+3
R ()] < 1y/aelaN + B) 2 |d2N+z|3%,
v 3
/ 3I-v 2N+2
|R§f)(v)\§% 3e(2N+13) g2 F%
31'*(2]\{;'-6)

+% 3e (2N+21)—|g2N+4|4||2—N+6
v

when N =1 mod 3, and

3F 2N+1
RY) ()] < /32N + 5) o [dan 4#
1%

/ 31-' 2N+4
‘Rg)(vﬂ S%\/m_ |Son+42| %
v

when N =2 mod 3.

3.2.3 Asymptotics for the late coefficients

In this subsection, we study the asymptotic nature of the coefficients d, and g2,
as n — +oo0. A leading order approximation for the dy,’s was stated, without
proof, by Meissel [64] and was later proved rigorously by Watson [116, p. 233]
using the method of Darboux. By employing integral methods, Olver [95, eq.
(10.09), p. 315] gave higher approximations for the coefficients d», (see also [95,
exer. 10.2, p. 315]). Formal expansions for both sets of coefficients were derived
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by Dingle [35, egs. (62) and (66), pp. 171-172]; his expansions may be written,
in our notation, as

r (211 * 1) dyy " ————- Z " (2m) 3 dp;, Sin <M>
3 3 (27‘[ 3

T m=0 (3.144)
2m +1 2n —2m
I I
and

r(252) g TV 28 a2 gcin (ren2)

3n(27r)27n m=0
2m + 2 2n —2m
r r i

We shall derive here the rigorous forms of Dingle’s expansions by truncating
them after a finite number of terms and constructing their error bounds.

We begin by considering the d»,’s. We replace the function iH; a )(uezi) in
(3.96) by its truncated asymptotic expansion

(3.145)

- M-1 T 2m—+1 .
IHI(I}) (uejl) — i (_1)m dzm sin (7-[ (Zm -+ 1)) (2 :11 ) + IRE\Z{) (Mejl)
37 m=0 3 u 3
(3.146)
where M > 0, and from (3.98)—(3.100),
3% (Ml 5
\R(Aﬁ”( )| < | dom| — % tas |d2M+2| o ), (3.147)
u u’
%I' 2M+3
Ry (uef)| < |d2M+2| —T;’ig) (3.148)
u
and
. ) 33 T 2M+1
IRy (uell)| < 3 ldaml % (3.149)
u

according to whether M =0 mod 3, M =1 mod 3or M =2 mod 3, respec-
tively. Thus, from (3.96) and (3.146)—(3.149), and provided n > 2,

2n +1 _(=pm2 AE 2 L (m@m1)
(5= (o ¥ e (1E552)

x T (2m3—|—1) r (211;)2711) + Am (n))

(3.150)
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where

A ()] < @m)F ‘d2M| (2M3+ 1>F(2n—32M)

2+ 2M +3 2n —2M —2
+m)™S idZMm—( (222

(3.151)

providedOSMSn—ZandMEO mod 3,

Ay ()] < 2m) 75" |d2M+2|— (2M+3) r (W) (3.152)

3 3
provided1 <M <n—-2and M =1 mod 3,
M+ 1\  (2n—2M
g )] < (27 | S (2451 (20 2M) 3153

provided2 < M <n—1and M =2 mod 3. For given large n, the least values
of the bounds (3.151), (3.152) and (3.153) occur when M ~ %. With this cho1ce
of M, the ratio of the error bound to the leading term in (3. 150) is O (n 24~ 3)
in all three cases. This is the best accuracy available from truncating the expan-
sion (3.150). Numerical examples illustrating the efficacy of (3.150), truncated
optimally, are given in Table 3.2.

One may similarly show that for the coefficients g2,

r (2” - 2) Son = —(_1)’1“23 <Mi(—1)’“ (27)% gy sin (—” (2”; i 2))

3 3\ =
37 (27‘[) m=0 (3-154)
“ T 2m + 2 r 2n —2m + B (n)
3 3
where
2M +2 2n —2M
B ] < ) g S (22 (2152) 3155
provided0 < M <n—1land M =0 mod 3,
2M +2 2n —2M
] < (27 ot 57 (2452 1 (2052
(3.156)

242 2M +-4 2n —2M -2
#4212 242)
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values of n and M n=25M=13
exact numerical value of |I'(252)dy,|  0.365998943362455445695153713414 x 10°
approximation (3.150) to |I'(Z5:)d,,|  0.365999204995926845752354038262 x 10°

error —0.261633471400057200324848 x 10~°
error bound using (3.152) 0.912625604300875369350368 x 10~°
values of n and M n =250, M =25

exact numerical value of |I'(252)dy,|  0.186185539770426140010811239005 x 101
approximation (3.150) to |I' (25t )d,,|  0.186185539771330169764915025615 x 101

error —0.904029754103786610 x 102
error bound using (3.152) 0.2838052121939535246 x 10~!
values of n and M n=7175M=37

exact numerical value of | (2t )dan|  0.670515930675419436921950214548 x 107

approximation (3.150) to | I'(25= ) dy,|  0.670515930675419462694509569704 x 1023

error —0.25772559355156 x 107
error bound using (3.152) 0.78252106282231 x 107
values of n and M n =100, M = 50

exact numerical value of | (25:)d,, | 0.737974366090019540631543787394 x 103
approximation (3.150) to |I' (25 )d,, | 0.737974366090019540631782512745 x 10%
error —0.238725351 x 10'8
error bound using (3.153) 0.713047093 x 1018

Table 3.2. Approximations for |I' (251 d,, | with various n, using (3.150).

provided1 < M <n—2and M =1 mod 3,

1
2M42 2 2M+4) r <2n—2M—2) (3.157)

3
B ()] < (20)" ol 1 (2 :

provided 2 < M < n—2and M = 2 mod 3. One readily establishes that the
least values of the bounds (3.155)—(3.157) occur when M ~ 7.

If we neglect the remainder terms Ay (1) and By (1) in (3.150) and (3.154),
and we formally extend the sums to infinity, formulae (3.150) and (3.154) repro-
duce Dingle’s expansions (3.144) and (3.145).
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3.2.4 Exponentially improved asymptotic expansions

The aim of this subsection is to give exponentially improved asymptotic expan-
sions for the Hankel and Bessel functions, and their derivatives, for equal order
and argument. Re-expansions for the remainder terms of the asymptotic expan-
sions of the functions J, (v), J| (v), Yy (v) and Y, (v) were derived, using formal
methods, by Dingle [35, eqs. (50)—(55), pp. 470-471]. He divided each of the
asymptotic expansions into two parts according to the value of the summation
index n modulo 3 and considered the two remainders of these expansions sepa-
rately. We shall derive here the rigorous forms of Dmgle s formal re-expansions
as well as the corresponding results for H, (| (v) and H, (L (v).

Let us first consider the case of H}" (v) and H, (L (v). It is not possible to

re-expand directly the remainders Rg\IH) (v) and Rg\, ) (v) in terms of terminant
functions because of the presence of cube roots in the denominators of the in-
tegrands in their representations (3.73) and (3.79). To overcome this difficulty,
we follow Dingle’s idea and write both H, (| (v) and H, (1 (v) as a sum of two
truncated asymptotic expansions plus a remainder thereby obtaining represen-
tations different from (3.69) and (3.77). The form of the remainders in these
alternative expressions will be adequate for our purposes. Assuming |6| < 7,

the representation (3.73) for H,, (M (v) = R(()H) (v) can be re-arranged in the form

T 2
1 e 3l 1 +o00 u—ge727'(u ‘ 1 .
Hé)(v): - —1/ — i(u)(ue21)du
32xv3 /0 1+ (u/v)
T 2
e3l 1 +oo u3e727ru _ 1 s
- _5/ — i(u)(uezl)du.

3277v3 J0 1+ (u/v)

Next, we expand the denominators of the integrands by means of (1.7) (with m
and M in place of n and N in the second integral) and make use of the formula
(3.96) to deduce

e 3Nl T(2n+1) o5 Mo r(2m+3)
V2m+%

+R{Y,(v) (3.158)

(cf. [96, eq. 10.19.9, p. 232]). The remainder term RE\IH])\/I (v) can be expressed as

-7 +oo 1,2N—% \—27u .
RED ) = ()N S [T i) (e du
’ i vANt3Jo 1+ (u/v) (3.159)
i 1 +o0 u2M+% —27u . '
+(—pMi e / M€ T HY (ueF)du
3rpy?MtiJo 14 (u/v)t
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for |8] < 5 and N, M > 0. Equation (3.158) gives an expansion of mY (v) which
has the convenient property that its remainder Rg\,HX/I (v) can be expressed in a
simple way using terminant functions.

In a similar manner, we write

e3INZl I(2n+3) e 3N r(2m+ %)

n 2 1
3277 1=0 y2nts 3277 m=0 v

+R{(v) (3.160)

+00 uZN—%e—Znu

(H) . N+1 e%i 1
Rym () = (=1)""" —— N+ 2 Jo

317 1+ (u/v)* "
-5 g o0 4, 2MA+1 —2mu .
+ (M e’ / &Hﬂl)’(uejl)du
33 2M43 S0 14 (u/v)r

for [0 < 7, N > 1and M > 0. From now on, we assume that N,M > 0
whenever we write Rg\, J)\/I (v)and N > 1, M > 0 whenever we write Rg\, ]\3[ (v).
Now we are able to formulate our re-expansions for the remainder terms
N M (v) and Rg\] 1\/)1( ), in Proposition 3.2.1 below. In this proposition, the
functions RZ(\,HR/I (v) and RZ(\,HABI (v) are extended to a sector larger than 0| < T
via (3.158) and (3.160) using analytic continuation.

Proposition 3.2.1. Let K and L be arbitrary fixed non-negative integers. Suppose that
—2m+6 < 0 < 3w — § with an arbitrary fixed small positive 5, |v| is large and
N =mn|v|+p, M = mt|v| + o with p and o being bounded. Then

i, 2 Ko r(2k41) m(2k+1)
R(I_/I) (1/) :—Leznw—n_ Zdzkez (23+1)lsin< 3+ >

ie ¥, 2 N w1\ T3
—_ — ) d 2 2
+ 3% e 3”;(;0 ok SIn 3 kaaH T, zk( tve )
i 2 L1 2m(20+1) 20+1)\ (%L
+ —lezmv3 Y dye” 3 sin ( ( 3 )> (zﬁl Ty 2-s (2rve’)
32 (=0 V3
e, 2 Ll m(20+1)\ I'(%52
o va3 Z d2£ sin ( ( 3 )) (zﬁl )TZM%—‘* (27‘(1/8 21)
32 =0 VA
H)

(3.161)
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+2.

' T(2k +2)\ (22 .
R%\IHAEI (v)= 1€ va Znge E sm( ( 3+ )) (Zkiz )TZN_23;((27we21)
32 V3
ie%i B . m(2k+2)\ I Zkt2 s
_ 32 2miv_“ EngSII’l( ( 3 )) 1(/21(;2 )TzN_Zk(Zﬂve 21)
1 .p L1 27(2042) . 25 +2
- —;ezmv3—n Y e G lsm( )) i oM 2y 22 (27tve??)
32 /=0
je 3t 2 L1 (2¢ +2) L .
+ 3% e—2mv§ ; 8oy s ( i ) f/;z ) IM— 21? 2 (27T1/e_71)
=0

where

e—2mlv e 27|
(V) Ok 0 2K+ 1 + OL,(T 2L+1 | 7
v v

3.162
(H') e727r|1/\ e727r|1/| ( )
Ry mxr (V) = Ok x| T OLo | —am
v v
for 0| < Z,and
H e:|227'[3m(v) e:FZr[Zim(v)
Riikr (V) = Ok pe <HT +OLos o)
% v
3.163
(H') eF2rIm(v) eF2Im(v) ( )
Rymrr (V) =Okps | —z | T Oleo | — 2
T MT |V|T

for 5 < £6 < 27 — 8. Moreover, if K = L, then the estimates (3 162) remain valid in
the larger sector —% < 6 < 3I and (3.163) holds in the range 3= < 0 < 37T — § with
all the lower signs taken

Proposition 3.2.1 together with (3.158) and (3.160) yields the exponentially
improved asymptotic expansions for the Hankel function and its derivative, for
equal order and argument. In particular, if K = L, formula (3.161) together with
(3.158) embraces the three asymptotic expansions (3.62) and

1 2 X amnrn), [ (2n+1)\ T (2
Hé)(V)N—ﬁzdzne 3 1sm( ( 3 )) (Znil)
— v 3

':Fﬂi (F1)(2k+1) . (2k+1)\ I' Zk+l
IR va Zdee Wlsin( 3—|— ) 1(/ 3 )

32
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jet3i (2 (2041)
:F—le3 : _va Z dyre S 32 i sin( 3+ ) ( 3 )
2

which holds when v — oo in the sectors —7 +J < 6 IF < 37” — 6 (see,
e.g., [73]) furthermore, they give the smooth transmon across the Stokes lines
=—-Z7and 0 = 3—
The analogous results for the functions H,, 2) (v) and Hﬁz)/ (v) can be deduced
directly from the functional relations
H? ) =HY (9) and H?' (v) = BV (9)

v
(see, e.g., [96, eq. 10.11.9, p. 226]); we do not pursue the details here.

In the following theorem, we give explicit bounds on the remainder terms
RZ(\,HK/I k1 (v) and Rg\]HAzl k1 (V). Note that in these results, N and M do not
necessarlly depend on v. We assume K,L = 0 mod 3 merely for the sake of

(H) (H')
simplicity: estimations for Ry 3, ¢ ; (v) and Ry, y; x 1 (v) when K or L may not

be divisible by 3 can be obtained s1m1larly

Theorem 3.2.2. Let N, M, K and L be arbitrary fixed non-negative integers such that
K<3N,L<3M+2and K,L =0 mod 3. Then we have

1 , 31 (2Kt
‘Rg\ll?l)\/I,K,L (1/)‘ < 3_%|e27nv| ’ ZKI_(Tsﬂ)‘TN 2K (27T1/e2 )|
1, 5. 32T o
+3—%|e 27111/‘ | 2K|_%}TZN2§<(27(1@ 21)‘
T(ZFHIN - )
371’2 2] (2n )ZN—% MzN%
3.164
1, 5o 2 31 (2L . ( )
+3_%|e | | 2L |7W‘T2M2L§4(2nvez )|
14
1 g 2, 3T B
+3—%|e va‘ | 2L |_%‘TZM—2%4(27W6 21)‘
SO

3_7'(2‘ 21| (Zn)ZM 24 |V|2M+3

provided that |6| < 7, and

I 7
¥ ( ) ’TzN—% (2rve’)|

R - 32 )
| (V)‘ = 377 |82K| |1/|2K3+2

| e27riv |

[68)
N\>—l| —
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1, - 35T o
+ 3—%‘6 va‘ |82K| |(|2K+2) }TZN,%<27TVG 21)‘

2 |r<2f<3+2>r<zw— %)

3772 82K (27_()2]\]_% |V|2N+%

1 ) 3: T 2L+2 7r-
T _l‘ean‘ |82L| _(TEH)‘TZM_Z%Z(ZTW@I){

32 v| 3

1 32T -
+ —Je_z””’\ — |82 —(TH)\TZM_ZLSZ(znve—zI)\

32 |1/ 3

2 [(352)r(2eM - 232

27 |82L] 22

37 (2m)M |V|2M+3

provided that |6| < 7 and K,L > 3. In the case when K = L, these bounds are also
valid in the range 5 < 6 < 3” with ve=" in place of v on the right-hand sides.

We may derive the corresponding results for the functions J, (v), J|, (v), Yy (v)
and Y] (v) by substituting the expressions (3.158) and (3.160) into the right-hand
sides of the functional relations

2], (v) = HY (v) + B (9), 2], (v) = B (v) + B (9)
2iY, (v) = HY (v) - HM (9), 2, (v) = H" (v) - HY (9)

(cf. [96, egs. 10.4.4 and 10.11.9, pp. 222 and 226]). We thus arrive at

= G T T dona g 3R 0,

Y, (v) = —% I:;: den F(f;j;’) - % ]::: d6m+4”;m7Jj%%) + R&% (v)
and

Yy (v) = % i]g;genmj:n—j%%) + % ]:;: g6m+2r(;m7j§%> + RJ?/I (v)

(cf. [96, eq. 10.19.8, p. 232]), where the remainder terms are given by
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2R (v) = R (v) = R\ (9),

ZRg\]I,Z)\/I (v) = R%\]H]\BI (v) + RN,M(ﬁ)/

2iR{ ) (v) = R, (v) + RUD,(9),

.Y H' H") , _
2iRy iy (v) = Rigar (v) = Rigy (7).

Now, a direct application of Proposition 3.2.1 to the right-hand sides yields the
desired re-expansions which are summarized in the following proposition.

(3.165)

Proposition 3.2.3. Let K and L be arbitrary fixed non-negative integers. Suppose that
0| < 27t — 6 with an arbitrary fixed small positive 5, |v| is large and N = 7t |v| + p,
M = 7t |v| + o with p and o being bounded. Then

g (T ),

(]) __ie31 27111/ e
Ry m(v)= 31 37r Zdzke 3 3 e 2N7237k(2m/e2)

. 2k+1
i oy 2 . (T (k+1)\ T(555)
+e m"ﬁ,;d%sm( S Ty (2 ¥
+

322 3 3
2£+1
) (27rve2 )

2f+1 M 2[ 4

je— 51 iy 2 L-1 2m(2041)
+ 31—28 3—7_[ Z dzge 3 'sin
2

3

i —2miv 2€+ 1 F(T T
- — d T 2 2

¢ an Z zesm( 3 g 2 (2rvEe”2Y)

+ R%?M,K,L (v),
(3.166)

NM 322 3 a2
32262“/37-[ Z Qo sin < (ZI;+ 2)) F(jgj) T,y 2 (2mtve2%)
— i?)efziezmv?)zﬂ §g2£e2n<2;+2)151n (T[ (2g+ 2)) Fl(;ZTiz) T2M 20-2 (27‘(1/e2 )
- 3;2e2"w3ﬂ Z go¢SIin (n (2£3+ 2)) Fii?*;) Ty 202 (2mve™21)

(3.167)
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e : (%1
Rg;\/f (v) = 27111/ Z dee 5 sin (7‘((2](3-1— 1)) <2k?+’1 )TZ

7((2k+1)) r(%EH

—2mv d

Z 2k sin ( 3

us] (2¢+1)

+ % 2”“’ Z dzge G sin ( 3+ )

(20+1) g
_2”“’ Z dyy sm< 3+ ) 1(/[3 ) TZM_MTA(Zm/e_TI)

3

N_%k(Zm/e%i)

) T (27ve=21)

241 2N-%
v3

i 5~) T2t (27vet?)

3

+ RZ(\I}VI,K,L (v)
(3.168)

)

s DIV (2rve??)

2rve” 2)

2 (k) T(352)
37 Az a3

je3l . 2 L1 2(2042) . 20+2)\ I' (3452 7
167 2miv £ <+)lsin<7-[( - )) & )TM—%:—;Z(ZNVGZI)

2042 2
Vv 3

) TZM—”T*Z (27‘cve*%i)

+ Rg,]e/l,K,L (v),
(3.169)

where

—27|v| —2n|v
J Y e €
Rg\],)M,K,L (1/) ’Rg\],g\/I,K,L (V) = OK/p < 2I<+1> + OL,(T ( 20+1 ) 7
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y , 2Im(v) F2rIm(v)

] Y et e

Rg\l,l)\/I,K,L (V) ng\l,I\)/LK,L (V) = OK,[MS ( | |2K3+2 ) + OL,U,5 ( | |2L+2 >
v 1%

for T < £6 < 2m 4.

Explicit bounds for R%,)M’K,L (v), RE\]I?\/IKL (v), R%}A,K,L (v) and R§\IY,IJ\)/I,I<,L (v)

can be derived using Theorem 3.2.2 together with the inequalities

Z‘R%,)M,K,L ()|, g%\/IKL (V)| < |RNE,II)VI,K,L (V)‘ + ’RN,M,K,L (17)‘

and

(J") (Y) (H) (H) 5
2Ry M (]2[Ry ke )] < [RG mi W]+ [Rywi (7)),
which can be established readily from the expressions (3.165).

If we neglect the remainder terms in (3.166)—(3.169), and we formally ex-
tend the sums to infinity, formulae (3.166)—(3.169) reproduce Dingle’s original
expansions mentioned at the beginning of this subsection.

Proof of Propos1t10n 3.2.1 and Theorem 3.2.2. We only prove /the statements
for Rg\”{,l (v) and Rg\“{,IK ; (v); the remainders Rg\]HABI (v) and Rg\] ABI L (v) can be
handled similarly. Let N, M, K and L be arbitrary fixed non-negative integers
such that K <3N and L < 3M + 2. Suppose further that K,L = 0 mod 3 and
6| < %. We begin by replacing the function iH;, (1) (uez ) in (3.159) by its trun-
cated asymptotic expansion (3.146) (with k and K in place of m and M in the
first integral, and with £ and L in place of m and M in the second integral) and

using the definition of the terminant function, in order to obtain

i ey, | (7(2k+1)\ (& .
R () =——e 2””’3n Zdee ; 1sm< ( 3 )> (2,;31 )TZNzéc(ZTCVGZI)
32 v 3
ie3t 4, 2 o . (k1) T(3H) s
— — d T 2 71
- ) e e k:ZO ok sin 3 AT 2N_%( nve” 2')
L-1 20+1
i oy 2 2m(2l+1). m(20+1)\ T'(552) .
+ 3—%6 mvﬁ EZO dzge 3 'sin < 3 V%T'H TZM—%T*‘} (27‘[1/e21)
et o 2 (”(25+1)) r(#5)
——e — Y dyysin T. _4 (27Tve ™ 2"
TR e 3 T )
H
+ Rg\l,l)\/I,K,L (V) ’
(3.170)

with
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_ 7 _2 _
Ve 1 e,
3igyNtiJo 14 (u/w)? K
s 2
My €30 1 /+°° u?M+3e ZmiR(H)(ue%i)du
iMoo 14 (u/v)? h

-3 +00 2N7% =27t -
= (-)N S — e_l(ZNJr%)G/ —Tl < 5 iR%H) (rte?')dt
37277: 0 — 1Te

-4 +oo 72N—3% —27rT .
+ (_1)N el—e_1(2N+%)9 / T]__I_—elGIR%H) (T’Tejl)dﬂf
3227 0 1Te™

! ) too ~2M+% ,—27rT .
+ (—)M* ?—61(2M+g)9/ Tl_.—e_igiR(LH) (rre?’)dt
3227 0 ite

Zi ) +00 2M+% —2mrt ..
+ (—1)MH ?—36_1(2]\”2)9/ Tl,—e_igiR(LH) (rre2')dr.
332277 0 +1Te
(3.171)

+(=1)

In passing to the second equality, we have taken v = re® and have made the
change of integration variable from u to T by u = r7. Let us consider the es-
timation of the first integral after the second equality in (3.171) which involves
R§<H) (rte??). The remainder term R%H) (rte?l) is given by the integral represen-
tation (3.73), which can be re-expressed in the form

(S

- 1 1 +oo gy 1—(t .
RUD (rredl) = — / P22t LT i o gy g
377T(rT)T 0 1—(t/1’)
1 —1 T ok 7
TR S E57e 2N (1,1, 1) HYY (1) dt,
327 (VT)T

where the (real) quantity A (r,7,t) satisfies |A (r,7,t)| < 2 (the proof of this
technical claim can be found in [73, Appendix B]). Noting that

0< 1—(t/ r)2
1—(t/r)
for positive r and t, substitution into (3.171) yields the upper bound

e_%i p 1
_1\N —1(2N+3)9/ .
SR v o 1—ite ®

(eSS

<1

+oo 2N—Fo—271rT

iR%H) (rre%i)dr <

T 2K-+1
N M

drt

4oo 2N—2K_1 _2mpr
/ T 3 e
0 1 —iteif
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2K+1
1 L(55=) [+ ON-% 1 -2mrr | T |
+ 2| 2K| 2K+1 T € g | 9T
31 v|73 Jo T+ 1ie

In arriving at this inequality, we have made use of the representation (3.96)
of the coefficients dox and the fact that iH; (1 )(tez ) >0 for any t > 0 (see, for
instance, [73]). Since |(t — 1)/ (T +ie'?)]| § 1 for positive T, after simplification
we establish

-Zi too ~2N—2 27t .
(_1)]\] e 3 e1(2N+§)9/ T 3e ' 1Rg(H) (TT671>dT <
0

3527 1—ite 10
1 : 32T .
< —l!ezml —ld 2K|—(T+1)|T2N_z~3z<(2nvezl)|
32 3
L d (2K3+1) ( )
+3 2| 2K | 2N+l
& (2rr)*N |V| 3

We can estimate the other terms in (3.171) similarly, and we thus find

’Rg\l,li/I,K,L (V)} < g’eznw‘sﬂ | 2K | _ﬁHHZN%K (27T1/e21)’
1, 5. 32T e
+3_%’e 27111/‘ ‘ ZK‘Tﬁ“ﬂZN—%K(ZT[VQ 21)‘
| |F(2K+1)F(2N—2K)
3712 (27_[)2N—— |V|2N+3
1 . 3 F 2L+1 .
+ —%\ezmv\ |daL| T%HEM—ZLS‘* (27tve?t)|
1, .2 3% T(ZLH) L
-I_g‘e 27(11/‘3—7_[|d2L|7M+;1|T2M_2L3_4(27rve 21)|
2 r(3&2)rem-—44)
35 || M3 oM .
37 (27‘[) |1/| +3

(3.172)

By a continuity argument, this bound holds in the closed sector |6] < Z. This

proves Theorem 3.2.2 for RI(\I ]24 kL (V).
From now on, we suppose that |v| is large and that N = 2w |v| +p, M =
27t |v| + o with p and o being bounded. Using these assumptions and Olver’s
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estimate (1.90), the 2flirslt two terms on the right-hand side of the inequality
+
(3.172) are Ok o (|[v|~ "3 e~ 271"l). Similarly, the fourth and fifth terms are found

—2Ltl . . 1. .
to be Opy(|v| 3 e_2”|"|2)K.+1 B}lf employing Stirling’s fzoLl;rlnula, the third and
sixth terms are Ok ,(jv|” 3 2e 27"} and Op(|v|” 3

tively. This establishes the estimate (3.162) for Rg\,H])VIKL (v).

Consider now the sector % <0< 37” For such values of 0, the function
R&H]{AKL (v) can be defined via (3.170). When v enters this sector, the poles of
the integrands in (3.171) cross the integration path. According to the residue

theorem, we have

1
2 e-27v1), respec-

-5 4o ,,2N—2 —27u .
R )= (—)NES | iR (et du
R 0

3277 12N+3 1+ (u/v)?
Zi oo 1 2M+2 —27u .
pepmerel 1 / L iR (uet)du
32rv?Mts o 14 (u/v) (3.173)
+ @R )~ R )
H ~ i - H H
=~ R (ve ) ™ (R () = R (1)
for 7 < 6 < 3Z. Now, by continuity,
H H ~ i ~ H H
Rk (V) = =Ry o (ve ) + =™ (R (v) = R (v))  (3.174)

i 32

is true in the closed sector % <0< 37” (Due to the fact that the function on the
right-hand side of (3.174) is not analytic in v, a larger sector of validity can not
be guaranteed.) It is readily seen that if K = L, the estimate (3.162) remains true
in the above closed sector as well and that (3.164) holds in the range % << 37”
with ve=7 in place of v on the right-hand sides. In the case K # L, first note

that the asymptotic exlpansion (3.62) implies that R%H) (v) = (’)K(|v|_¥) and
R(LH) (v) = (’)L(MJLTJF) asv — oo in F < 6 < 3. From (3.162), we infer
RZ(\,H]{AKL (ve—”i) = (’)K,p(|1/|_2KTH e_2”|v|) + OL,O-(|1/|_% e—ZHM) for large v in
the sector £ < 6 < 3. Therefore the estimate (3.163) holds for RE\IH]%AKL (v)
when 7 < 6 < 37” The proof for the conjugate sector —37” <6< —Tis
completely analogous.

Let us now consider the sector 37” < 0 < 27t — 6. For such values of 6, we

define R;f%,LK,L (v) by (3.170) using analytic continuation. When v enters this
sector, the poles of the integrands in (3.173) cross the integration path. Thus, by




CEU eTD Collection

3.2. Hankel and Bessel functions of equal order and argument 195

the residue theorem, we obtain
N ef%i 1 MZNf%e—Znu
327 V2N+§/O 1+ (u/v)?
Ziq oo 1 2M+3 =271 .
FEM I [ iRy (e
3amv?MtsJo 1+ (u/v)

+ éezﬂiV(R;H) () — R (v))

iR%H) (ue%i) du

H
Rg\l,lz/I,K,L (v)=(-1)

: - , T . 3.175
e—ZmV(e—glR;(H)(Vefm) _ eglRéH)(Veinl)) ( )

e Rl 1) — R 1)

+
N\H| =
(@)

H H _omi H —nq
RZ(\I,]R/I,K,L (v) =— RZ(\I,]z/I,K,L(Ve ) = RZ(V,K/I,K,L(Ue 2)
i i H H
+§¥WW§WG—@)WD (3.176)
+ S%e—ZHiV(e—giR%H)(Ve—ni) . e%iR(LH)(Ve—ni))
2
is true in the closed sector 37” < # < 5. The asymptotic expansion (3.62)

2
implies that R (v) = O 5(Jv]~57), RUD (ve=) = Og(jv]~57), R (1) =

OL(g(\vFM) and R(H)( e ) = OL(M*i) as v — oo in the sector 3 <
6 < 2m— (5 From (3.162), we 1nf$£1that Rg\”)\/IKL(Ve_zm) Rg\]H])VIKL(ve*Mi) =
OKP(|1/|_7 e 2V + O (Jv] 777 e 27T|1’|) for large vin 3 < 0 < 27 — 4.
Thus, the estimate (3.163) holds for RZ(\I 1)\/1 k1 (v) when 3” < 9 < 2t — 4. The
proof of the analogous estimate for the sector —27 + ¢ < 6 < —=f is similar.

Finally, consider the case when =* 3” <f6<3r—dandK = L. If K =1L, (3.176)
can be simplified to

N —
P‘

H H _ 277 H D =) _277i H i
R}V,AQ/K,K (v) = —Rg\],])\,LK/K(ve 2y RN (ve ) e 2riiv R () (1) g =)

for all non-zero values of v in the closed sector 37” <6< 57” The asymp-
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totic expansion (3.62) implies that R(H)( ™) = Ok(|v]~ o5 ) as v — oo in
<9< 5”. From (3.162), we infer Rg\?}wKK(ve_zm) g\”)wKK(ve 27y =
OKpU(|V e ~27vl) for large v in the sector 3 < 9 < 3Z. Therefore, the
estimate (3.163) holds for Rl(\, ]2/1 xx (V) when << A w1th all the lower
signs taken. If 2% < 0 < 371 — §, we proceed as follows. For such values of
6, the function Rg\,l I)VI,K,L (v) can be defined via (3.170). When v enters this sec-
tor, the poles of the integrands in (3.175) cross the integration path. Therefore,
according to the residue theorem, we have

-3 9 +o0 ;,2N—% ,—27u .
R () = (DN Sty [0 Ry (e du
e e v®NtsJo 14 (u/v)

5 oo 1, 2M+2 —27u .
P M S [T SR (e ) du
3am?Mts o 14 (u/v)

4 efznivR%H) (Vefm) . e27'(ivR§<H)<Vef2r(i)

_ R&?&,K,K(Ve_?’m) + e—ZnivR%H)we—m) o ezva;(H) (ve—Zni)

for 57” <0< 77” Now, by analytic continuation, the equality

R§\II_,II)\/I,K,K (1/) _ _R§\II_,II)VLK,K(V€_3M) 4 e—ZnivR%H)(ve—m) 27111/R ( —27ri)

holds for any complex v, in particular for those lying in the sector ¢ < 6 <
37 — 4. The asymptotic expansion (3.62) implies R§< )( ™) = O s(|v] JKTH)
and R(H)( e M) = OK(]vrM) for large v in 2% < 6 < 371 — 6. From (3.162),
we infer Rg\”)MKK(ve’?’m) = Ok (|1/|_71 —27v[) as v — oo in the sector
5" < 6 < 371 — 4. Thus, the estimate (3.163) holds for RZ(\,RAKK (v) when 57” <
9 < 37t — ¢ with all the lower signs taken.

It remains to prove the estimates for Rg\] ]24 k. (v) when K and L may not be

divisible by 3. For this purpose, we choose, for any fixed non-negative integers
Kand L, two integers K’ and L’ such that K < K/, L < L’and K/,L’ =0 mod 3.
Then for any complex number v, we have

H
R%\I,IR/I,K,L (v) =
i 2 K21 arm 2k + 1)\ I'(&EH
_ LleZmV Z e 3-9- Slﬂ(n( + )) (2kil )TzN Zk(2m/e21)
32 3 =K 3 vo3
Jr
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2 =] (m(e+1)\ I3 53
?%1 2mv Z d%e 5 'sin ( 3 ) 2 31 ) TZM——Z@‘L (27‘(1/e71)
2 v 3
LT r_ 20+1
ie” 3! 27'[11/ 2 & 7T(2£—|— 1) F( 3 ) -7
3—2 Z dyy sin 3 e T2M_2¢3,4 (27tve™2%)

T RZ(\I,Zz/I,K’,L’ (v).
(3.177)
The summands on the right-hand side of this equality can be estimated by
Olver’s result (1.90). To estimate Rg\, 1)\/1 KL (v), we can use (3.162) and (3.163),
which have been already proved in the case that K/,L’ = 0 mod 3. We thus
establish

K'-1 —27t|v| L'—1 —27t|v]
H e e
Rg\f,lz/I,K,L (v) = Z Ok < 28] ) + Z ( 2(’3+1>
k=K

vl 3 v
—27t|y| —27t|y|
e e

+ OK//P 2K/ 41 + OU/‘T 2011
] v

e—27r|1/| e—27r|1/|
=Okp | =7 | 1 OLo | — 2
v 3 v| 3

as v — o0 in the sector || < 7, and

K'-1 F2Im(v) L'-1 F27rIm(v)
H (S e
Rimie V) = ¥ Ok, <T3+1> + ). Ouo <T>

k=K V| (=L lv| 3
eF2rIm(v) eF2rIm(v)
+ Ok 2K +1 + O 2L/ +1
v 3 ’1/’ 3
eF2mIm(v) eF2rm(v)
— YKp 2K+1 +OLe 2011
vl vl 2

as v — oo in the sectors 7 < 40 < 271 — 4. In the case that K = L, we apply the
functional equation T, (w) = 1 + e 2P T,(we ™) (see, e.g., [99, eq. (6.2.45), p.
260]) to the terms of the first and third sums in (3.177) and find
H
Rg\ll)\/IKK (v) =

2 K'— 7(2k+1)

7T 3

ie3’ 27Tiv i 7T

= ———e E d e 3 'sin

31 37 2% 3
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e~ 2 K= 2%k +1)\ I'(%H
+1€313 —27’[11/ Z d2k811’l<7r( 3+ )) ( i )T
2

e~ 31 2 K/ 1 m(2k+1) . 2k+1\ I 2+l
1€ 27r11/ Z dee 3+ )1Sin(7t( + ) ( CJ’)F
31 v

3% 3 ZT
. _x 1 k+1
1€ 31 —27Tiv 2 = 7T(2k—|—1) F(23 )
=7 d T 4 (2mtve™ 2!
) e i Z ok sin 3 e s (2mve™2Y)
H
+ RZ(\I,])\/I,K’,K’ (v).
Proceeding in a similar way as above, we find that
e 2m|v| —27t|v| —27t|v|
(H) e . e
RNMKK Z Ok .0 ( 21 > + Ok 0 wn | = Okpe ( 2K+1>
v| 3 v 3 v| 3

as v — o0 in the sector 7 < 0 < 37", and

() B K'-1 o e2mIm(v) o e2mIm(v) 0 e2mIm(v)
RN,M,K,K (1/) - Z k/plo' 2](T+1 + K/,‘D,U 2K +1 - K,p,O' 2K+1
k=K 3

asv—>oointhesect0r37”§9§3n—5. [ |

3.3 Anger, Weber and Anger—Weber functions
of large order and argument

We considered in Section 2.2 asymptotic expansions for the Anger function
Juv (z), the Weber function E, (z) and the Anger—-Weber function A, (z) which
hold when z — o0 and v = 0(]z|). In this section, we discuss the cases when
v — o and z/v > 1 or z/v < —1 is fixed, i.e., both the order and the ar-
gument are large. For this purpose, it is convenient to study the functions
Jiv (vsecB), Exy (vsecB) and Ay, (vsecf) with B an arbitrary (fixed) acute
angle. The asymptotic power series of the functions A+, (vsec ) were first es-
tablished by Watson [116, Sec. 10.15] in 1922.
In modern notation, Watson’s asymptotic power series can be written

1 ad (£ sec 2n+1
A, (vsecpB) ~ E Z v€2+1( ), (3.178)

n=0
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as v — oo in the sector |8] < 7 — ¢, with J being an arbitrary small positive
constant and 6 = argv (cf. [96, eqs. 11.11.8 and 11.11.10, p. 298]). The related
asymptotic expansions for the Anger function J+, (v sec ) and the Weber func-
tion E4, (vsecf) may be obtained by using their relation with A, (vsecf),
and they are as follows:

' o (£ r
Jovvsech) ~ Juv(vsech) sm7(T7T1/) L & sef,fﬁﬂ(z” D g
and
Ex, (vsecB) ~ —Yu, (vsecB) T cos7(T7w) 3 ay (£ secv/izfl (2n+1)
) no:oo an (Fsec B) T (2m 1 1) (3.180)
= EW;O - p2m—+1 ’

as v — oo in the sector |8| < 71 — J. The coefficients a, (x) in these expansions
are rational functions of x; some expressions for them will be given in Subsec-
tion 3.3.1 below. (The reader should not confuse the a, (x)’s with the coefficients
an (v) introduced in Section 2.1.)

We note that the asymptotic expansions of A_, (vsecp), J—y (vsecf) and
E., (vsec B) satisfy Poincaré’s definition only if the requirement ! = o(|v|?)
holds. And so, these asymptotic expansions cease to be true as p — 0+. The
case when B = 0 will be discussed in the next section. There exist other types of
asymptotic expansions which are uniformly valid for all B > 0 (see, for instance,
[95, Ch. 9, Secs. 12 and 13]), but these expansions involve non-elementary func-
tions and therefore our methods are not suitable for their investigation. Sur-
prisingly, however, the asymptotic expansions of A, (vsecp) and J, (vsecf)
remain true if the quantity sec p is replaced by any positive real number. (For
the resurgence properties of A, (vA) with 0 < A < 1, the interested reader is
referred to the paper [72] of the present author.)

This section is organized as follows. In Subsection 3.3.1, we prove resur-
gence formulae for the Anger, Weber and Anger-Weber functions, and their
derivatives, for large order and argument. In Subsection 3.3.2, we derive error
bounds for the asymptotic expansions of these functions. Subsection 3.3.3 deals
with the asymptotic behaviour of the corresponding late coefficients. Finally, in
Subsection 3.3.4, we derive exponentially improved asymptotic expansions for
the above mentioned functions.
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3.3.1 The resurgence formulae

In this subsection, we investigate the resurgence properties of the Anger, We-
ber and Anger—Weber functions, and that of their derivatives, for large order
and argument. A detailed study is needed only in the case of the functions
Ay, (vsecp) and A/L, (vsecB), as the analogous results for the other functions
can be deduced in a simple way through their relations with them.

We begin by considering the function A, (vsecp). Let B be a fixed acute
angle. We substitute z = v sec  into the integral representation (2.69) to obtain

A, (vsecB) = %/OJF e—v(secﬁsinhtth)dt, (3.181)
for [0| < 7. The function sec Bsinht + t has infinitely many first-order saddle
points in the complex t-plane situated at t("%) = (—1)"ig + (2k 4 1) 7ti with
r = 0,1 and k € Z. The path of steepest descent () (0) issuing from the
origin coincides with the positive real axis, and its orientation is chosen so that
it leads away from 0. Hence we may write

1 0
A, (vsecB) = ET( ) (v),
where T() (v) is given in (1.3) with the specific choices of f (t) = sec Bsinh t 4t
and g (t) = 1. The problem is therefore one of linear dependence at the end-
point, which we considered in Subsection 1.1.1. To determine the domain A(©)
corresponding to this problem, we have to identify the adjacent saddles and
contours. When 6 = —Z%, the path 22(°) (6) connects to the saddle point +10) =
—ip + i, whereas when 6 = 7, it connects to the saddle point t0-1) = ip —
mti. These are therefore adjacent to 0. Because the horizontal lines through
the points 7i and —7i are asymptotes of the corresponding adjacent contours
7z (1.0) (—%) and ¢ (0-1) (%), respectively (see Figure 3.3), there cannot be fur-
ther saddles adjacent to 0 other than t(19) and (%=1, The domain A(®) is formed
by the set of all points between these adjacent contours.
Following the analysis in Subsection 1.1.1, we expand T(°) (v) into a trun-
cated asymptotic power series with remainder,

N=1 ,(0) ©
T(0) (v) = Z ;n + Ry (v)
n=0

It is not difficult to verify that the conditions posed in Subsection 1.1.1 hold
good for the domain A(®) and the functions f (t) = sec fsinht + t and g(t) = 1
with any N > 0. We choose the orientation of the adjacent contours so that
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#(1,0)

(i)
0 (ii)
(i)
(iv)
(v)

0-1) (z

00 ¢V (2)

Figure 3.3. The steepest descent contour 2\°) (8) associated with the Anger—
Weber function of large order and arqument emanating from the origin when
()8 =0,(i)0 = -7, (iii) 0 = —%”, (iv) 0 = 7 and (v) 6 = ZT" The paths
¢ 10 (—Z) and ©*~Y) (%) are the adjacent contours for 0. The domain A(°)

comprises all points between €10) (=2 and €O~V (7).

¢10) (7 is traversed in the negative direction and ¢~V (Z) is traversed
in the positive direction with respect to the domain A(®). Consequently the ori-
entation anomalies are 7,19 = 1 and 7,0-1 = 0, respectively. The relevant

singulant pair is given by

Fo10 = sec Bsinh (—ip + i) —if + i — sec fsinh0 — 0 =i (tanf — + 1),

_ =
arg fol,O =0010= 7

and

Fo0,—1 = sec Bsinh (i — i) +ip — 7i — sec fsinh 0 — 0 = —i (tanp — f + 1),

arg Fo0,-1 = 0p0,—1 = _%-
We thus find that
_iWeFi ptoo yN—ja—(tanp—p+m)u .
RO () — _ (F) e / T (o~ 5\ g
v () 2N Jo 1+iu/v (™) du
N, Fi o ,N—1_ —(tanp—pB+
i .e41 /+ uN~"2e (?jmﬁ B ﬂ)uT(O’_l)(uegi)du,
27ivN Jo 1—iu/v

with |6] < Z and N > 0.

(3.182)
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It is possible to arrive at a simpler result, by observing that we can express
the functions T(") (ue~3') and T(®~V) (ue?!) in terms of the Hankel function
Hi(u1 ) (ue?'sec B). Indeed, denoting by (1) (—Z) the contour which is congru-
ent to (10 (—7%) but is shifted downwards in the complex plane by 7i, we
have

T(l,O) (uef%i) _ u%e*%i / efue_%i(secﬁSil’lht+t*S€C,BSil’lh(*iﬁ+7'[i)+i,3*7'(i)dt
¢ (1,0)

¢ (10)
. il tang— (2) 7
—mie” Hiyzeln B (ye~3isec B)

rie™ iy etan p=p)u fj)(ue%isecﬁ),

_ e—Ziu%e(tanﬁ—lB)u/ e—ue_%i(t—secﬁsinht)dt

using an argument similar to (3.11). One can prove in an analogous manner that
7OV (ye?t) = rriediyze(tan p—p)u 1(;) (ue'sec B).

Therefore, the representation (3.182) simplifies to

N e  No—mu -
Rz(\(;) (v) = (=9) /0 ue—iHi(j) (ue2'sec B)du

2uN 1+iu/v
i /Ho MiH(l) (ue?'sec f)du o
2uN Joo 1—iu/v

for all non-zero values of v in the sector |8] < 7 with N > 0.
We may now connect the above results with the asymptotic power series
(3.178) of A, (v sec B) by writing

N-1
Ay (vsecp) =L ¥ (sec f l ﬂz” D r®) (), (3.184)
n=0

7T

with the notation a,, (sec ) = ag;)/F (2n+1) and Rg\?) (v, B) = (v) ! Rg\)] (v).
Hence, from (3.183), we deduce that

N 00 2N ,—7tu

(A) _ (=7 1 /* ueT™ (1) (03 d 3,185
Ry (v, B) = ) A (u/v)zl o (ue?' sec B)du (3.185)
under the same conditions which were required for (3.183) to hold. Equations
(3.184) and (3.185) together provide the exact resurgence formula for A, (vsec ).
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When deriving (3.184), we used implicitly the fact that a,(f) vanishes for odd n.

To prove this, first note that, by (1.12),

1
(0) B d_n t n+
= [dt” (sec Bsinht+ t) o ' (3.186)

Because the quantity under the differentiation sign is an even function of ¢t and
therefore its odd-order derivatives at t = 0 are zero, the claim follows.

Taking a, (secB) = aé‘;) /T (2n+1) and (3.186) into account, we obtain the
following representation for the coefficients a, (sec §):

d2l’l t 2n+1
. 187
dr2n <sec Bsinht + t) o (3.187)

Although this formula expresses the coefficients a, (sec §) in a closed form, it is
not very efficient for their practical computation. A more useful expression for
the rational functions a, (x) was given by the present author, in the form of a
recurrence, using a method based on differential equations:

1
(5 B) = Ty

and a, (X) _ X xagil—l (JC) + a;—l (X)

C1-x2 2n(2n—-1)

ag (x)

:1+x

tor n > 1, see [71]. In this paper, the following formula involving the general-
ized Bernoulli polynomials is also shown:

i (x) = Ly 2T @ntkt]) ( x )" £ (1B, (<))
S T BT Pl \1tx) BTG+
The reader may find further representations in the paper [71].
Consider now the resurgence properties of the derivative A/, (v sec 8).” From
(2.69), we infer that

1 [t -

A (vsecB) = - / g V(secpsinht+t) ginh tdt (3.188)
0

with |0| < Z. Observe that the saddle point structure of the integrand in (3.188)

is identical to that of (3.181). In particular, the problem is one of linear depen-

dence at the saddle point, and the domain A(®) corresponding to this problem

is the same as that in the case of A, (vsec ). Since the derivation is essentially

>By this derivative, we mean [A}, (2)];—y sec -
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the same as that of the resurgence formula for A, (vsec ), we omit the details
and provide only the final result. We have

1 N=l by (secB) T (2n + 1 '
A (vsecp) = — Y n ilné ) LR (1), (3.189)
n=0

where the remainder term Rg\?,) (v, B) is given by the integral formula

N+1 oo 1, 2N+1 -7t
(A" (-1) 1 /+ u e 1),z
R = — H. 2 d 1
N (VB) 7 VTR T (uju)? (ue'secp)du, (3.190)
provided that |6] < 5 and N > 0.
The coefficients b, (sec f) may be expressed in the form

d2n—|—1 ¢ 2n+-2
5 sinh ¢ - .
dg2zn+l sec Bsinht+t o

However, they can be computed in a simpler way using the relation b, (x) =
a), (x). (The reader should not confuse the b, (x)’s with the coefficients b, (v)
introduced in Section 2.1.)

Let us now turn our attention to the resurgence properties of the function
A_, (vsecB). We substitute —v in place of v and vsecp in place of z in the
integral representation (2.69) to obtain

1

b (sech) = Ty

A, (vsecB) = % /O " e~ V(secpsinht=t)qp (3.191)
for |8] < 7. The function sec Bsinht — t has infinitely many first-order saddle
points in the complex t-plane located at t("%) = (—1)"i + 27ik with r = 0,1
and k € Z. The path of steepest descent 22(°) (0) emerging from the origin
coincides with the positive real axis, and its orientation is chosen so that it leads
away from 0. Hence we may write

1
A — Tl
(vsecp) = —TC) (1),
where T() (v) is given in (1.3) with the specific choices of f (t) = sec fsinh t — ¢
and g (t) = 1. The problem is therefore one of linear dependence at the end-
point, which we discussed in Subsection 1.1.1. To identify the domain A(®) cor-
responding to this problem, we have to determine the adjacent saddles and con-

tours. When 8 = —Z, the path #2(°) (9) connects to the saddle point +*0) = iB,
whereas when 6 = 7, it connects to the saddle point t(10) = —ip. These are
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therefore adjacent to 0. Because the horizontal lines through the points 7i and
— 7 are asymptotes of the corresponding adjacent contours % (*0) (—%) and
% (1.0) (%), respectively (see Figure 3.4), there cannot be other saddles adjacent
to 0 besides +(°%) and t(10). The domain A(®) is formed by the set of all points
between these adjacent contours.

Now, we expand T®) (v) into a truncated asymptotic power series with re-

mainder,
) N=1 ,(0) ©
T\ = R :
)= L G R 0)

It can be shown that the conditions posed in Subsection 1.1.1 are satisfied by
the domain A(®) and the functions f (t) = sec Bsinht — t and g(t) = 1 with any
N > 0. We choose the orientation of the adjacent contours so that (%) (—%)is
traversed in the negative sense and ¢(1?) (5) is traversed in the positive sense

with respect to the domain A(®). Consequently the orientation anomalies are
Yo0,0 = 1 and 7,1 90 = 0. The relevant singulant pair is given by

Fo0,0 = sec Bsinh (iB) +if —sec fsinh 0 — 0 =i (tan S + B),
arg Fo0,0 = 00,0 = 75

and
Fo10 = sec Bsinh (—if) —if —sec fsinh0 — 0 = —i(tanp + B),
arg Fo1,0 = 0o1,0 = —75-

We thus find that for |[#| < T and N > 0, the remainder term Rz(\(;) (v) may be
written

N -Ti i, N—} —(tanf+B)u -
R0 = e T T e
27tiv 0 1+iu/v (3.192)
N poo yN—b o (tan P . '
T(LO) A1 .
2mvN/o 1—iu/v (ue®’)du

A representation simpler than (3.192) is available. To derive it, we note that
the functions T(00) (ue_%i) and T(10) (ue%i) can both be written in terms of the

Hankel function Hi(u1 ) (ue?'sec B). Indeed, we have

T00) (ye~31) = u;e—gi/( )e—uegi(secﬁsinht—t—secﬁsinh(iﬁ)—l—iﬁ)dt
(0,0

_ e—%lu%e(tanﬁ—l—ﬁ)u e—ue%i(t—secﬁsinht)dt
¢(0.0)

—Ti L (tan p4-B)u py(1) Zi
mie” Tlyze(@n AL ) (ye3isec B),
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(iii)

Figure 3.4. The steepest descent contour 22\°) (8) associated with the Anger—
Weber function of large order and argument emanating from the origin when
()0 =0, (i) = —Z, (iii) 0 = —2F, (iv) 0 = ¥ and (v) 0 = 2. The paths
¢ 00 (=7 and 10 (%) are the ad]acent contours for 0. The domam AL
comprises all points between €0 (—2) and €10 (7).

using an argument similar to (3.11). Likewise, one can show that
T (ye?t) = nie%iu%e(ta“ﬁ’Lﬁ)”HS) (ue?isecB).
Therefore, the representation (3.192) can be simplified to
N

AN
© (,y = (1) /+°° D (e
Ry (v) = 20N Jo 1+iu/1/1Hi“ (e secp)du (3.193)
o :

iV wN gy
+21/_N/0 mlHiu (HGZISQC‘B>C1M

for all non-zero values of v in the sector |6] < 7 with N > 0.
We may now connect the above results with the asymptotic power series
(3.178) of A_, (vsec B) by writing

N—-1
A, (vsecB) = —4 Z i _secviz - (2n+1) +R™w,p) (3194)

with a, (—secp) = —a2n /F(2n+1) and R ( ,B) = (mtv)~ 1R$\)j (v). For-
mula (3.193) then imply

58 e (DY 1 e N gy g
Ry’ (v, B) = - 1/2N+1/0 1+(u/v)21Hi” (ue?'secf)du  (3.195)
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under the same conditions which were required for (3.193) to hold. Equations
(3.194) and (3.195) together give the exact resurgence formula for A_, (vsec ).
When deducing (3.194), we used implicitly the fact that a,(f) vanishes for odd
n. This may be proved in the same way as the corresponding statement for the
expression (3.184) of A, (vsecp). Taking a, (—secp) = —az(;l)/F (2n+1) and

(1.12) into account, we find

dZn t 2n+1

de2n (—secﬁsinht+t> t—ol
in complete accord with (3.187).

The corresponding result for the derivative A’ , (vsecf) can be obtained
starting from the integral representation

1
an (=sech) = o

1 [t :
A", (vsecp) = — = / e~v(seepsinhi=t) ginh tdt, (3.196)
0

which is valid when |#] < 7. Since the saddle point structure of the integrand
in (3.196) is identical to that of (3.191), the derivation is analogous to that of the
resurgence formula for A_, (vsec B) and so is omitted. The final result is

N-1p (_ Y
A", (vsecB) = % Y. bu ( secv[;)lfz (2n+1) + Rg\?) (v, B), (3.197)

n=0

where the remainder term ﬁﬁ/) (v, B) is given by the integral formula

~(A) ()M 1 /+°° wNL
0

Ry (v p) = T U2N+2 mHiu (ne2'secp)du, (3.198)

provided that |f] < T and N > 0.

Let us now consider the resurgence properties of the Anger function
J+v (vsecB) and the Weber function E., (vsec ). These functions are related
to A1, (vsecp) through the connection formulae

Jiv (vsecB) = J+y (vsec B) £ sin (7tv) ALy (vsec B)
and
Eiy (vsecB) = —Y4, (vsecB) —cos (rtv) Axy (vsec B) — A+, (vsec B)

(cf. [96, egs. 11.10.15 and 11.10.16, p. 296]). We substitute (3.184) and (3.197) into
the right-hand sides and match the notation with those of (3.179) and (3.180) in
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order to obtain

Ju (vsecB) = J, (vsecf)
. sin (7tv) (Nil ay (secB) I (2n+1) N nRg\?) (1/,5)) ’ (3.199)

2n+1
T =0 v

J-v(vsecB) =]_y(vsecp)
n sin (7tv) (I\fil an (—secf) I (2n+1) ~RA) v, [3)) ’ (3.200)

n=0

Ey(vsecﬁ):—Y ( ecf)
n(secB) I (2n+1) (A)
( ; y2n+l + TRy Wzﬁ)) (3.201)

1M’1am(—sec) 2m+1) <A
- L R )

and

E_, (vsecB) = — Y_, (vsecp)
re) (P e LD R0

7T
M=t g, r(2m+1
a (sec53m+(1 m—+1) _RW (1, p).

m=0

If #| < 7 and M,N > 0, equations (3.199)-(3.202), (3.185) and (3.195) to-
gether give the desired resurgence formulae for the functions J1, (vsec ) and

E., (vsecP).

We may derive the corresponding expressions for the derivatives J',, (v sec B)
and E/,, (vsecB), by substituting the results (3.189) and (3.197) into the right-
hand sides of the functional relations

Jiy (vsecp) = Ji, (vsecp) £ sin (7v) ALy, (vsec )

and

B, (vsecB) = =Y., (vsecB) —cos (rv) AL, (vsecB) — AL, (vsecp).



CEU eTD Collection

3.3. Anger, Weber and Anger—Weber functions 209

Thus we have
Ji (vsecB) = J;, (vsecB)
. sin (7v) (Nf by(secp) T (2n+1) o) (V,ﬁ)> / (3.203)

n=0

J., (vsecB)=]", (vsecB)

. N-1 bn o T (2 1 AT 3.204
B sm;m/) < ( secvizﬂ( n+1) —|—7'[R1(\?)(1/,,B)> ’ ( )

n=0

E, (vsecB) = — Y, (vsecB)
cos (mv) (A= by (secB) I (2n+1) (A")
- ( 22 + R (v, B) (3.205)

Mg, (—secB)T (2m+1)  ~a’
J2m+2 - Rg\/I : (v, B)

N|

and
E', (vsecB) =—Y', (vsecp)

cos (7tv) N-d by(—secB)I'(2n+1) S(A)
T4 <1;O 2n2 Ry (v B) (3.206)

Mg, (sec B) T (2m 1) A
- 2m+2 o Rg\/I ) (v, B)-

If |6 < 57 and M, N > 0, equations (3.203)—(3.206) in conjunction with (3.190)
and (3.198) give the required resurgence formulae for the functions J/,,, (v sec )
and E/., (vsecp).

Neglecting the remainder terms in (3.189), (3.197) and (3.203)—(3.206) and
formally extending the sums to infinity, we obtain asymptotic expansions for
the functions A/, (vsecp), J., (vsecB) and E/,, (vsecp). These asymptotic
expansions are valid in the sector |6 < 7 — J, with ¢ being an arbitrary small
positive constant.

3.3.2 Error bounds

This subsection is devoted to obtaining computable bounds for the remainders
Rz(\?) (v, B), Rz(\?) (v, B), RZ(\‘?) (v,B) and Rz(\? (v, B). The procedure of deriving
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these error bounds is essentially the same as in the case of the Hankel and Bessel
functions of large order and argument discussed in Subsection 3.1.2, and there-
fore we omit the details. Some of the results we give here coincide with those
obtained by Meijer [61].

The following estimates are valid in the right half-plane and are useful when
v is bounded away from the Stokes lines 6§ = £ 7:

(A) 1|an (secB)| T (2N +1) ) |esc(20)] if T < |0] < 7,
Ry (v, )] < — VPR h y ?9| L 2w
(A" 1 |by (secB)| T (2N +1) | |esc(20)] if § < |0] < Z,
‘RN (V,ﬁ)\ s |U|2N+2 1 i T9| < 2 (3.208)
~(A 1|an (—secB)|I'(2N +1) | |esc(20)] if T <[0] <7,
R — 3.209
Ry (v, B)] < - [PV 1 if [0 <% ( )
and
~(A) 1[by (—secB)|[I'(2N +1) Jlesc(20)] if T <|68] <7,
Ry (v/B)] < — e . iy "*9‘ <z 27 (3.210)

For the special case when v is positive, one finds that

™) (1, p) = % (secfg 1\1]"+(12N+1) On (v, 5),
oy TP ()
8 5y = ] aN(—sej/ 52]+1(2N+1)@N . 8)
and
R () - L bN (—secl/[zilez(ZN—l— Dz ().

Here 0 < Oy (v,B),0n (v,ﬁ) ,EN (v, B),EN (v,B) < 1 are suitable numbers
that depend on v, f and N. In particular, the remainder terms do not exceed the
corresponding first neglected terms in absolute value, and they have the same
sign provided that v > 0.

The estimates (3.207)—(3.210) become singular as 6 approaches £7 and are
therefore not suitable near the Stokes lines § = +7. We now give alternative
bounds that are appropriate for the sectors 7 < |0 < 7 (which include the
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Stokes lines § = £7). We may use (3.184), (3.189), (3.194) and (3.197) to define
the remainder terms in the sectors 7 < |0| < 7. The bounds are as follows:

lesc(2(0 — ¢*))[ 1 |an (secB)| I (2N +1)

(A)

RN (v B)] < = o p— W , (3.211)
(A") lesc (2(0 —¢™*))| 1 [by (secB)| I (2N +1)

R (vB)| < =i o W , (3.212)

S(A) lcsc (2(0 — ¢*))| 1 |an (—secB)| I (2N +1)

RN (v B)] < = v o mea (3.213)

and
~(A) lesc (2(0 — ¢*))| 1 [by (—secB)| I (2N +1)
IRy (v, B)] < 0N T g M (3.214)

for 7 < |0| < 7, were ¢* and ¢** are the minimizing values given by Lemma
2.1.2 with the specific choices of x = 2N +1and x = 2N + 2, respectively. Note
that the ranges of validity of the bounds (3.207)—(3.210) and (3.211)—(3.214) to-
gether cover that of the asymptotic expansions of the Anger, Weber and Anger—
Weber functions, and their derivatives, for large order and argument. We re-
mark that bounds equivalent to (3.211)—(3.214) were proved by Meijer [61].

The following simple estimates are suitable near the Stokes lines § = +7,
and they can be obtained from (3.211)—(3.214) using an argument similar to that
given in Subsection 2.1.2:

A 1 |ay (sec I' (2N +1
R (v,B)] <} 9(2N+3);|N( 5)2’N+(1 ),

vl

1 |by (secB)|I' (2N +1)

IR (v, )] < Iy/e (2N +1])

T ‘V|2N+2 4
~(A 1]an (—secB)| I (2N +1)
|R§\r ) (v,p)| < %’\/e (2N + %); PN

and
1|bn (—secB)| I (2N +1)
E ‘V|2N+2

R&) (v,B)] < 3yfe (2N +17)

with ¥ < [0] < 7 and N > 1. These bounds might be used in conjunction with
with the earlier results (3.211)—(3.214).
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3.3.3 Asymptotics for the late coefficients

In this subsection, we consider the asymptotic behaviour of the coefficients
an (£ sec B) and b, (£ sec B) for large n. To our best knowledge, the only known
result related the approximation of these coefficients is that of Dingle [35, exer.
11, p. 202]. He gave a formal expansion for the a, (—sec §)’s, which can be
written, in our notation, as

2cot B ) 2 (="
tanf—p)/) (tanp— B> (3.215)

L m . 1
><mZ:;O(1(tanﬁ—/3)) Um(1cot/3)F<2n—m+§).

an (—secB)l (2n+1) ~ <7r(

We shall derive here the rigorous form of Dingle’s expansion by truncating it
after a finite number of terms and constructing its error bound. The correspond-
ing results for the coefficients a, (sec ) and b, (&£ sec B) will also be provided.

We begin by considering the coefficients ay (sec ). First, we substitute
(3.185) into the right-hand side of ay (sec ) I' (2N + 1) = rv?N+1 (Rg\?) (v, B) —
Rg\ﬁzl (v, B)), to establish

+oo -
ay (sec )T (2n+1) = (—1)" / u2e ™H ! (ueTisec f)du,  (3.216)
0

where we have written N in place of n. Next, we replace iHi(j ) (ue?isec ) on
the right-hand side of (3.216) by its truncated asymptotic expansion (3.40) and
use the error bound (3.41) to arrive at

2 cot B )% (—1)"
tanp — B+ ) (tan/%—/%+7r)2”

an (secf) T 2n+1) = <7r(
(3.217)

M-1 1
X < Y (i(tanB—pB+m))" Uy (icotp) T (Zn—m—l—E) +Am (n,,B))

m=0

where
|Ay (n,B)| < (tan B — B+ m)™ |Up (icot )| T <2n - M+ %) ,  (3.218)

provided n > 0and 0 < M < 2n. If n is large and B is bounded away from

zero, the least value of the bound (3.218) occurs when M =~ %. With

this choice of M, the ratio of the error bound to the leading term in (3.217) is

(st s) (rmmpisis) )

N|—
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values of n, f and M n=20,p=% M=2
exact numerical value of |a, (sec B) T (2n +1)| 0.465271945811090834044271687638 x 10%
approximation (3.217) to |a, (sec )T (21 +1)| 0.445959574102882590087019983736 x 10?7

error 0.19312371708208243957251703902 x 10%°
error bound using (3.218) 0.42971766054830106220609465435 x 1026
values of n, f and M n:ZO,,B:%,M:B

exact numerical value of |a, (sec 8) ' (2n +1)| 0.151319595449560481258052890390 x 107
approximation (3.217) to |a, (sec ) ' (2n +1)| 0.151319595449560488113789097564 x 107

error —0.6855736207174 x 1010
error bound using (3.218) 0.13499409317334 x 10~
values of 1, f and M n=40,p=7% M=21

exact numerical value of |a, (sec 8)T'(2n +1)| 0.585927322062805440144383753339 x 107!
approximation (3.217) to |a, (sec )T (2n +1)| 0.585927322063411800229861686075 x 107!

error —0.606360085477932736 x 10°°
error bound using (3.218) 0.1195562394550411549 x 1060
values of n, p and M n:40,/3=51—72T,M:37

exact numerical value of |a, (sec B)T'(2n +1)| 0.323309738894135092265873063184 x 10°8
approximation (3.217) to |a, (sec 8) I (2n + 1)| 0.323309738894135092265874915220 x 10°8
error —0.1852036 x 10%
error bound using (3.218) 0.3658063 x 10%

Table 3.3. Approximations for |a, (secB) I (2n + 1)| with various n and B,
using (3.217).

Whence, the smaller 8 is the larger 7 has to be to get a reasonable approximation
from (3.217). Numerical examples illustrating the efficacy of (3.217), truncated
optimally, are given in Table 3.3.

One may similarly show that for the coefficients b, (sec ),

sin (2p) >% (-1
A

bn(seC,B)T(2n-|—1) - (n(tanﬁ—ﬁ+7r tanﬁ—ﬁ—i—ﬂ)znﬂ

M-1 3
X (Z (i(tanp— B+ m))" Vi (icot,B)F(2n—m+§> + Bum (n,ﬁ))

m=0
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where
IBat (1, B)] < (tan B — B+ )™ |V (icot B)| T (Zn - M+ g) , (3.219)

aslongasn > 0and 1 < M < 2n + 1. One readily establishes that the least
values of the bound (3.219) occurs again when M ~ Wm, provided that
n is large and B is not too close to the origin.

Consider now the coefficients ay (— sec ). We msert (3.195) into the right-
hand side of ay (—secB) I’ 2N +1) = ZNH( (1/ B) — Nle (v,B)) and

replace N by n, to arrive at
o0 -
ap (—secB) L (2n+1) = (—1)" /0 uZ”iHi(;) (ue2' sec B)du. (3.220)

Next, we replace iHi(j ) (ue%i sec B) in (3.220) by its truncated asymptotic expan-
sion (3.40) and use the error bound (3.41) to establish

2cotp 2 (_1)n+1
(= r2n+1) =
an (—secp)I' (2n+1) (n(tanﬁ—ﬁ)> (tan g — B)*" (3.221)

M-1 1
X ( Y (i(tanp—pB))" Uy (icot ) I (Zn —m+ E) +Cum (Yl,,B))
m=0

where
ICat (1, B)| < (tan B — B)M |Uns (icot B)| I <2n - M+ %) p (3.222)

provided n > 0 and 0 < M < 2n. For given large n, the least value of the
bound (3.222) occurs when M =~ 43” With this ch01ce of M, the ratio of the error
bound to the leading term in (3.221) is (’)ﬁ(n 29~ ™). This is the best accuracy
we can achieve using the truncated version of the expansion (3.221). Numerical
examples illustrating the efficacy of (3.221), truncated optimally, are given in
Table 3.4.

If we neglect the remainder term Cys (1, 8) in (3.221) and formally extend
the sum to infinity, formula (3.221) reproduces Dingle’s expansion (3.215).

One can similarly show that for the coefficients b, (— sec ),

sin (2) )i (-1
m(tanp—PB)/) (tanp— p)*"

M-1 3
X ( Y (i(tanp—pB))" Vi (icot B) I (Zn —m+ E) + Dm (H,,B))
m=0

by (—secB) I 2n+1) = (
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values of n,  and M n=15p3=7% M=20
exact numerical value of |a, (—sec ) I'(2n +1)| 0.267047394498124553674698212052 x 107!
approximation (3.221) to |a, (—sec ) I (2n + 1)| 0.267047394498124495293385515582 x 107!
error 0.58381312696470 x 10°°

error bound using (3.222) 0.115325952521316 x 10°°

values of n, f and M nzlS,,Bz%,MzZO
exact numerical value of |a, (—sec ) I'(2n +1)| 0.578182278411391748669067674043 x 10°
approximation (3.221) to |a, (—sec B) I (2 + 1)| 0.578182278411391622513139516532 x 106

error

error bound using (3.222)

0.126155928157511 x 107
0.249207238615031 x 10~?

values of n, p and M

n=25p=%M=33

CEU eTD Collection

exact numerical value of |a, (—sec )" (2n +1)| 0.520979340670722090241522846652 x 1072
approximation (3.221) to |a, (—sec ) I (2n + 1)| 0.520979340670722090241522872480 x 1072
error —0.25828 x 10

error bound using (3.222) 0.50537 x 10%”

values of n, f and M n:25,ﬁ:51—721,M233
exact numerical value of |a, (—sec )" (2n +1)| 0.687614482335478651602822854016 x 10**
approximation (3.221) to |a, (—sec B)T"(2n + 1)| 0.687614482335478651602822888085 x 10%4
error —0.34069 x 10"

error bound using (3.222) 0.66662 x 1017

Table 3.4. Approximations for |a, (—sec B) I' (2n + 1)| with various n and
B, using (3.221).

holds, where

Dy (1, B)| < (tan g — B)M |Vt (icot B)| T <2n - M+ g) , (3.223)

aslongasn > 0and 1 < M < 2n + 1. It is readily established that the least
value of the bound (3.223) occurs when M ~ 47”.

3.3.4 Exponentially improved asymptotic expansions

The aim of this subsection is to give exponentially improved asymptotic expan-
sions for the Anger, Weber and Anger—Weber functions, and their derivatives,
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for large order and argument. A re-expansion for the remainder term of the
asymptotic power series of the function A_, (vsec ) was obtained, using non-
rigorous methods, by Dingle [35, exer. 22, p. 485]. We shall derive here the rig-
orous form of Dingle’s formal re-expansion as well as the corresponding results
for Rg\?) (v, B), Rg\?/) (v, B) and ﬁg\?/) (v, B). The proof of our results in Proposi-
tions 3.3.1 and 3.3.2 below is essentially the same as that of Proposition 3.1.1 on
the analogous expansion for the Hankel function of large order and argument,
and therefore the proof is omitted.

Proposition 3.3.1. Let M be an arbitrary fixed non-negative integer. Suppose that
10| < 27t — & with an arbitrary fixed small positive 6, |v| is large and N = % (tan f—
B+ 7t) |v| + p with p being bounded. Then

eitermiv A1 m Um (1cot B)

X ToN_my) ((tan B — B+ ) ve?!)

_y e lbe—mv MZL11 (icotB)
(%ﬂVtan:B) m=0 v

X TN+l ((tanp — B+ ) ve 2')

R (v,8) =i

+ Righ (v, B)

R}(\?/) (v,B) =— (Sin (2,3)) zeiCercivMZ_:l(_l)m Vin (icot B)

m
TV =0 v

XToN-m+3 ((tan B — B+ ) ve)

: 1 B .
— S (218) . e—i(ge_n’iy ]VIZI Vm (1 cot ‘B)
TV 0 ym

x T.

N3 ((tan p— B+ ) ve 3)

+ R (v, B),

where § = (tan B — B)v — J and

/ e ¢l
Rg\%])\/f (V/ ﬁ) /Rg\%]&[ (V/ ﬁ) - OM,ﬁ/P < ’ |M-|—% >
v
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for 0] < Z,and

eFIm(8) o FiIm(v)
M+3

A A/
Rg\f,])\/l (V/ :B) s R%\I,AZI (V/ ,B) = OM,ﬁ,p,J < ’ |
1%
for F < £6 <21 —6.

Proposition 3.3.1 together with (3.184), (3.189), (3.199), (3.201), (3.203) and
(3.205) gives the exponentially improved asymptotic expansions for the func-
tions A, (vsecB),J, (vsecB), Ey, (vsec B) and that of the corresponding deriva-
tives.

Proposition 3.3.2. Let M be an arbitrary fixed non-negative integer. Suppose that
10| < 27 — 6 with an arbitrary fixed small positive 6, |v| is large and N = 1 (tan B—
B) |v| + p with p being bounded. Then

el¢ Mot m Um (icot )

Y (-l

(%nvtanﬁ) m=0
e”i¢ M, (icotB)

)3

ﬁ1(\1[3‘) (1/, B) =i TZN—m+% ((tan,B B ,5) Ve%i)

TZN—m+% ((tanp — B) ve_%i)

(AnvtanB) = ym
+ R (v, )
(3.224)
and
/ ~ 7 M-l : ,
151(\?)(1/, )=— (Smﬂ(iﬁ)) et ZO(_l)m_Vm (;;Otﬁ) T2N—m+% ((tanp —p) Vegl)

(S " VUt pyve B

+ ﬁgff& (v,B),
where § = (tan B — B) v — 7 and

for T < £6 <2 — 4.
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Proposition 3.3.2 in conjunction with (3.194), (3.197), (3.199), (3.202), (3.204)
and (3.206) yields the exponentially improved asymptotic expansions for the
functions A_, (vsec B),J—v (vsecB), E_, (vsec B) and that of the corresponding
derivatives.

If we neglect the remainder term Rg\, 1)\/1 (v, B) in (3.224) and formally extend
the sums to infinity, formula (3.224) reproduces Dingle’s original expansion
which was mentioned at the beginning of this subsection.

In the following theorem, we give explicit bounds on the remainder terms
RZ(\?‘Z)VI (v,B), R 1(\1;‘]&1 (v,B), R 5\?])\4 (v, B) and Rg\”&[ (v, B). Note that in these results,
N may not necessarily depend on v and .

Theorem 3.3.3. Let N and M be arbitrary fixed non-negative integers such that M <
2N, and let B be a fixed acute angle. Then we have

ig L 7Tiv .
A e-e U (icot .
R (v, )] < (17|T|1/]tarl‘3)| M|(1/|M !5)|\TZN_M+%((tan5—/s+n)vez )|
2
le~%e=| |y (icot B)] .
(37 |v| tan B) M Ton- M+1 1 ((tanp — B+ m)ve 2Y)|
2

1 U (icot B)| T(2N — M + 1)

(%n’tanﬁ) N(tan‘B . ‘B+ 7‘[)2N7M+% |V’2N+1,

’Rg\ll)\/l (V/5)| < (%7-( |‘1/| ta‘ n ﬁ) | M|(:|C : | ‘ 2N— M+1 ((tanﬁ - ﬁ) Vejl)}
e 16 Up (ico 5 T
(%H‘Mtaln ﬁ) | M|E/|C t || 2N M+3 ((tan,B—,B) vele)‘

1 |Upm(icotp)|T(2N — M+ 3)
(%ntanﬁ) 7 (tan B — ’B)2N—M—|—% |V|2N+1
provided that |6| < 7, and
A/
R (v,B)] <
. 1
< (B0} o o M icotp)
-\ 7|y v
—niv‘ |VM (1C0t5)|
o™
. (sin (2[5))5 Vi (icot B)| T (2N — M + 3)
3 7

| Ton- M+3 (tanﬁ_ﬁJF”)VQ%i)‘

(sin (28) ) .

aay

+ le e ‘TZN—M+% ((tan B — B+ ) ve 21}
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R (v.p)] < (w) e P o (s — v

vl

| Ton- M+3 1 ((tan B — B)ve™ 21)|

. (sin (2ﬁ)>5 Vi (icot B)| T (2N — M + 3)
T n(tanﬁ—ﬁ)zN’M% ‘V|2N+1
for |0| < Zand M > 1.

The proof of Theorem 3.3.3 is essentially the same as that of Theorem 3.1.2
and so, we omit it.

L (sm(Zﬁ > e _1§‘|VM (icotpB) ]

V] v|M

3.4 Anger—Weber function of equally large order
and argument

This section concerns the large-v asymptotic expansions of the Anger—Weber
function A_, (v) and its derivative of equally large order and argument. The
asymptotic expansion of the function A_, (v), v positive, was first established
by Airey [1] in 1918 and subsequently by Watson [117, eq. (7), p. 319] in 1922.
(In fact, both Airey and Watson dealt with the more general case of A_, (v + «)
when « = o(|v|3), but, for the sake of simplicity, we restrict ourselves to the
special case of x = 0.)
In modern notation, the asymptotic expansion of A_, (v) may be written

T 2n+1
A, N—Z m (Znﬂ) , (3.225)

as v — oo in the sector 0| < 27w —, where 0 denotes an arbitrary small pos-
itive constant and 6 = argv (see the paper [71] of the present author). The
cube root in this expansion is defined to be positive when 6 = 0, and it is de-
fined elsewhere by analytic continuation. The coefficients dy, are the same as
those appearing in the asymptotic expansion of the Hankel function Hy, (W (v)
discussed in Section 3.2. To our best knowledge, the precise range of validity of
(3.225) has not been determined in the literature prior to [71].

The structure of this section is as follows. In Subsection 3.4.1, we prove
resurgence formulae for the Anger-Weber function and its derivative of equally
large order and argument. In Subsection 3.4.2, we obtain error bounds for the
asymptotic expansions of these functions. Finally, in Subsection 3.4.3, we de-
rive exponentially improved asymptotic expansions for the above mentioned
functions.
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3.4.1 The resurgence formulae

In this subsection, we investigate the resurgence properties of the Anger—Weber
function, together with its derivative, for equally large order and argument.

We begin by considering the function A_, (v). We substitute —v in place of
v and v in place of z in the integral representation (2.69) to obtain

1 e
A (v)=— /0 e V(sinht=1) 4y (3.226)

for |#] < 7. The function sinht — t has infinitely many second-order saddle
points in the complex t-plane situated at t6) = 27rik with k € Z. Let 2 ()
be the steepest descent path emerging from +(®) = 0 which coincides with the
positive real axis when 6 = 0. We set the orientation of 2(°) (0) so that it leads

away from the origin. Hence we may write

A, (v)= L) (v) (3.227)

3mvs

where T(°/3) (v) is given in (1.38) with the specific choices of f (t) = sinht — ¢
and g (t) = 1. The problem is therefore one of cubic dependence at the end-
point, which we considered in Subsection 1.1.3. To determine the domain A(®)
corresponding to this problem, we have to identify the adjacent saddles and
contours. When 0 = —37”, the path 229 (9) connects to the saddle point
t(1) = 277i, whereas when 0 = 37”, it connects to the saddle point t-1) = 2.
These are therefore adjacent to t(’) = 0. Because the horizontal lines through
the points 2Z'i and — i are asymptotes of the corresponding adjacent contours
¢ (—3) and €~V (3F), respectively (see Figure 3.5), there cannot be further
saddles adjacent to +(9) other than t(1) and +(~1). The domain A(®) is formed by
the set of all points between these adjacent contours.

By analytic continuation, the representation (3.227) is valid in a consider-
ably larger domain than (3.226), namely in 0] < 37” Following the analysis in
Subsection 1.1.3, we expand T(0/3) (v) into a truncated asymptotic power series
with remainder,

N-1 ,(0/3)
T (v) = 1 e 4 RYY ().
n=0 V

It is not difficult to verify that the conditions posed in Subsection 1.1.3 hold
good for the domain A(®) and the functions f (t) = sinht —t and g(t) = 1
with any N > 0. We choose the orientation of the adjacent contours so that
¢1) (—3I) is traversed in the negative direction and ¢ (=1 () is traversed
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Figure 3.5. The steepest descent contour 2% () associated with the Anger—
Weber function of equal order and argument emanating from the saddle point
tO) = 0 when () 0 = 0, (i) 0 = —mand (i) 6 = —7F, (i) 0 = 7
and (v) 0 = I The paths €V (=3F) and €=V (3F) are the adjacent

5

contours for t0). The domain A©) comprises all points between €) (—37”)

and €(—1) (3F).

in the positive direction with respect to the domain A(®). Consequently the
orientation anomalies are yg; = 1 and y9_1 = 0, respectively. The relevant

singulant pair is given by

3

FO:I:l = sinh (:l:27'[1) F 27 = F2ri, arg fo:tl = 0pg+1 = iT

We thus find that

N e N1 -27u )
R (1) == e [TT I 09 e ¥
2ivs SO 1 4i(u/v)3

iN +00 %—1 —2mu .
+ ! = / u—elT(zrfl/g) (ue%l)du
2mivs J0 1—1(1,[/1/)3

with || < 3 and N > 0.

(3.228)

We may now connect the above results with the asymptotic expansion (3.225)

of A_, (v) by writing

(3.229)
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with the notation dp, = az?f /T (#41) and Rg\?) (v) = (3mv3)~ R(0/3)( ).
When deriving (3.229), we used implicitly the fact that aSP”’) vanishes for odd
n. To prove this, first note that, by (1.46),

dr t3 nTH
den (sinht — t> ' (3.230)
t=0

Because the quantity under the differentiation sign is an even function of t and
therefore its odd- order derlvatlves att = 0 are zero, the claim follows. Formulae
(3.230) and dp, = aén /T (251 together reproduces the expression (3.74) for
the coefficients d»,,.

It is possible to obtain a representation for the remainder term Rg\‘?) (v) sim-
pler than (3.228) by observing that the functions T(21/3) (ue’%ni) and
T~1/3) (4ye1) can be expressed in terms of the Hankel function Hl(u1 ) (ue2t).
To see this, let us take 2 (6) & 20 (0 4+ 37), which is exactly the steepest
descent path that we have denoted by 22(°) (8) in Subsection 3.2.1 on the resur-
gence properties of the Hankel function H,Sl) (v). Then the contour ¢1) (—37”)
is congruent to 20 (—2) U 2 (7) but is shifted upwards in the complex
plane by 27i and has opposite orientation, whence®

S0z _ T
" r(n+1)

T(21/3) (uef%”i) _ u;egi/ efue_%n'(sinhtftfsinh(27'(i)+27'(i)dt
-%)
_ / e—uefgi(t—sinh t)dt (3.231)
(=3)u7O(F)
= —musH® (u *%l) = 3H< Y (uet),

using an argument similar to (3.71). One can prove in an analogous manner that
T(2-1/3) (ue%ﬂi) = —nu%Hi(;) (ue%i). (3.232)

The desired expression for the remainder term RZ(\?) (v) now follows from (3.231),
(3232) and R (v) = (371v3) 1R (v):

_1\N +oo 2N=2 5y .
RW (= ED 1 L2 0D (uefi)du (3.233)
N 2N-+1 2 " u

®We specify the orientation of 20) (77”) so that it leads into the saddle point ¢(?).



CEU eTD Collection

3.4. Anger—Weber function of equally large order and argument 223

for |8] < 3 and N > 0. Equations (3.229) and (3.233) together yield the exact
resurgence formula for A_, (v).

Consider now the resurgence properties of the derivative A’ , (v). From
(2.69), we infer that

== / visinht=t) ginh tdt (3.234)

with |6| < 7. Observe that the saddle point structure of the integrand in (3.234)
is identical to that of (3.226). In particular, the problem is one of cubic depen-
dence at the saddle point, and the domain A(®) corresponding to this problem
is the same as that in the case of A_, (v). Since the derivation is essentially
the same as that of the resurgence formula for A_, (v), we omit the details and
provide only the final result. We have

+2

)+R( ) ) (3.235)

A/ Z an

where the remainder term Rg\?/) (v) is given by the integral formula

/ _1\N 400 5,5 o 27TU .
R (v) = ( 31”) zz}uz / L Y (uef)du, (3.236)
v 0 14 (u/v)s

provided that 8] < 3% and N > 1. The coefficients g, are the same as those

appearing in the asymptotlc expansion of the function H, (L (v) and are given
by (3.80).

By neglecting the remainder term in (3.235) and formally extending the sum
to infinity, we obtain an asymptotic expansion for the function A’ , (v). This
asymptotic expansion is valid in the sector |#| < 27 — §, with J being an arbi-
trary small positive constant.

3.4.2 Error bounds

This subsection is devoted to obtaining computable bounds for the remainders
Rg\‘?) (v) and R(A,) (v). To our best knowledge, no explicit bounds for these
remainder terms have been given in the literature. Unless otherwise stated, we
assume that N > 0 when dealing with R( ) (v),and N > 1is assumed in the
case of R( ) (v). /
First, we shall obtain two dlfferent sets of bounds for R( ) (v) and R(A ) (v)

which are valid in the sector |0 < 3 and are useful when vis bounded away
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from the Stokes lines § = £37. From (3.233) and the fact that iHi(j ) (ue2l) is
positive for positive u, one can infer

2N-—-2
(A) i 1 /’+00 uTe—Zrcu . (1) i
R 0] € gz [ i i) e

We estimate 1/|1 + (u/ 1/)% | via the inequality (2.36) and then compare the result
with (3.96) in order to obtain the error bound

1 r(*5%) {!CSC(%G)! i <0< a0

A
\R&)(V){SS_HMZMHZW 1 if |6 < 3F
; < 3m,

Likewise, one can show that

(A") 1 T(2N3+2) |esc (%9)‘ if 3’% <10 < 37”,

Now let us assume that 37 < || < 3Z. By making use of the identity

WIN
TS

1 1 i u
14 (u/v): 1+ w/v)® V314 (u/v)?

1 u

+ =
vil+ (u/v

)

we remove the cube root in the denominator of the integrand in (3.233) and
obtain

<_1)N 1 +oo u¥e727cu.
= i

3 5t o 14 (u/v)?

()N 1 e et g

377 WS fo 2

Vs + (u/v)

(_1)N 1 /+oo u%ef%ru. (1)
0

3 A 1—|—(u/1/)2 iu

+

(uet)du (3.238)

(ue%i)du.

For convenience, we denote f (t) = t —sinht. Let (0 (6) be the steepest
descent contour through the saddle t(°) = 0 which is the union 20) (0) U
20) (0 +27), where 20 (8) is as defined in the previous subsection. Note
that (0) (8) is a steepest descent contour for f (t) and that it is exactly the dou-
bly infinite steepest descent path that was denoted by ¢(%) () in Subsection
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3.2.1 (on the resurgence properties of the Hankel function Hlsl) (v)). With this

notation, we may write

H(l) (ue%i) — _i e—ue%if(t)dt

7T J70)(5)

forany u > 0 (cf. equation (3.92)). By replacing in (3.238) the function HS )(ue%i)
by the above integral representation and performing the change of integration
variable from # and f to s and f via s = uif (¢), one finds

N1 Yoo i -5 2
RW (v) = (=1) ! / s2N32e‘Sl/~ (if () ¢ dtds
o (%)

N V)= wm - 1+ (s/ (vif (1))
N o . —2N+3 27
+—(_31—) —@ /Jr S3eSl/7o p U () 3. ° /;()dtds
S TTJE0(5) 14 (s/ (vif (1))
N+1 © o i —5 72T
= TJ7O(5) 1+ (s/ (vif ()))
(3.239)

Denote by ‘6?2(0) (%) the part of the steepest descent contour %(*) (Z) which lies
in the right half-plane. (The contour %0 (%) is congruent to and has the op-

posite orientation as ¢(~1) (3F) but is shifted upwards in the complex plane by
2mi, cf. Figure 3.5.) An argument similar to (3.26) shows that (3.239) may be
written as

Wy GOV 1 e 2 ()T e
R vm?l/ ) ﬂ/%”}(“)(%) 1+ (s/ (vif (1)) e
= w [ sEes2 | (if (1)~ e *T0

if(t)
b [ S
ST T E®(5) 1+ (s/ (if (1))
(DM 1 [T [ (f () e
v TIEN(E) 1 (s/ if (1))
(3.240)

_|_

where we have taken x = Re (t). A formula for the coefficients dpx analogous
to (3.240) will be needed when deriving the error bouzﬂds; it can be obtained by
inserting (3.240) into the relation I' (25t ) dpy = 3mvs (Rg\?) (v) — Rg\ﬁl (v)).

Hence we have

2N +1 N+1/+°° w2 2 . I NES R PR
r dony = (—1 3 — t 3 i) dxd
(55 )=t [T [ @) e P
(3.241)
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for any N > 0 (cf. equation (3.97)). We first estimate the right-hand side of
(3.240) by using the inequality (2.36) and then compare the result with (3.241),
thereby obtaining the error bound

N 1 L) g (243
IR® (v)| < (3_71 |d2N|2—13+1+3_7T |d2N+2|(2—N3+3)
v v (3.242)
o el TS flesc20)]if 5 < o] <
3 P Lo o<

In arriving at this estimate, one uses the positivity of if (t) and the monotonicity
of x on the path ‘622(0) (5). Note that it is possible to extend the validity of the
above estimate from 2% < |0 < 2 to 0] < 2 due to our earlier bound (3.237).

Let us now turn our attention to the estimation of the remainder RI(\?/) (v).

In this case, one finds that the expressions corresponding to (3.240) and (3.241)
are

R™) (v) =

_1 N+1 1 +00 B 2 . t —% *27'[%
- ) 2N+2/ shr e S ~0) U7 (8) 'e >— sinh x cos ydyds
v (5) 1+ (s/ (vif (1))
N+ I ’ N
+( ) 2N+2/ 52N31e5—/~(0> Gf (1)) .e 5— cosh x sin ydxds
v () 1+ (s/ (vif (1))
. — 20t —271.L
()Y 1 /+°°m+1 2 / (if (1)) 7o
T3 e s e A0(5) 1 sinh x cos ydyds

)
+(s/ (Vlf( )))2
)

(DN 1 oo 2 (if (1) 5" e 7 ,
+ - h dxd
i W/ s 3 e n/“fo 3 1 (s/(v1f( ))) cosh x sin ydxds

v 3

2N+6

N+1 2046 7
_ 1 +o0 0]
+( D / SZAQHQ—SE/N(O (if(t) ° e sinh x cos ydyds
0 %"(3)
(

)
SUENT 14 (s/ (1/1f()))
1 N-+1 ~+00 B 1f()
+( 3)7( ,Hlv%/ smﬁe‘s% S0) ¢ G ) 7 e cosh x sin ydxds
Vs %@ (5) 1+ (s/ (Vlf( ))?
(3.243)
and
oo,y
F(2N3+2) 2N = (—1)N/ sT5 e
0
X E (if (t))_% e 70 sinh x cos ydyds
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400
FEDY [ e
0
2 . 2N+2

X P “(0)(%) if () e 2T cosh x sin ydxds

for any N > 1 with y = Jm (f). From these expressions and the inequality
(2.36), we establish

A I'(2N+2) 1 F(2N+4)
|R§\1 )(V)\ < < 82N Tﬂ 37 |92N42| — o
3 |1/| 3
1 (26 20)| if 3% < |0 (3249
’gZN 4‘ ( 3 ) |CSC( )‘ <’ |<
37[ + ’V|2NT+6 1 if ]9\ < 5”,

by making use of the additional facts that on the contour CJZ;O) (5) the quantity
if (t) is positive, x is monotonic and y decreases monotonically from 7 to 0.

In the special case when v is positive, we have 0 < 1/(1+ (u/ v)%) <1in
(3.233) and together with (3.96), the mean value theorem of integration shows
that

1 T 2N+1
Rz(\?) (v) = ﬁdzN%@)N( )

where 0 < Oy (v) < 11is a suitable number that depends on v and N. In other
words, the remainder term Rz(\?) (v) does not exceed the first neglected term in
absolute value and has the same sign provided that v > 0. We can prove in a
similar manner that

R (v) = gzN ( )EN (v),

1/ 3
where 0 < Ex (v) < 1is an appropriate number that depends on v and N.
In the case that v lies in the closed sector 0] < %”, the bounds (3.242) and

(3.244) are as sharp as one can reasonably expect. However, although acceptable
in much of the sectors 2% < 0] < 37”, the bounds (3.242) and (3.244) become

inappropriate near the Stokes lines 6 = i3” We now provide alternative esti-
mates that are suitable for the sectors 2% < |f| < 27t (which include the Stokes
lines 6 = :|:377T). We may use (3. 233) and (3.236) to define the remainder terms
Rg\?) (v) and Rg\?l) (v) in the sectors 2% < |f| < 27. These alternative bounds

can be derived based on the representat1ons (3.240) and (3.243). Their deriva-
tion is similar to that of (2.43) discussed in Subsection 2.1.2, and the details are
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therefore omitted. One finds that in the sectors 2% < |§| < 271, the remainder
Rg\?) (v) can be estimated as follows:

R () < lesc@@—gN[ 1, T35
| N (V)i = 2N+1 37r| | INA1
cos 3 @* lv| 3
csc (2 (0 — 1 I(2NE3
-|—| C(OS(N3 ;0 ))|37T |d2N+2||(|2—§z+g) (3.245)
v
ICSC( (0 —¢™"))] 1 r(#52)
2N+5 ‘ 2N+4| 2N+5 °
cos 3 @*** lv| 3

Here ¢*, ¢™* and ¢*** are the minimizing values given by Lemma 3.4.1 below
with y = 2855y = 2NE3 and xy = 23 respectively.

Lemma 3.4.1. Let x be a fixed positive real number, and let 6 be a fixed angle such that
M < 10| < 27t. Consider the problem of minimizing |csc( (0 —¢))|/ cos* (p in g
with respect to the following conditions: 2 < |6 — ¢| < t,and 0 < ¢ < 7 when

%” <0 < 2mwhile -5 < ¢ <0 when —2m <0< _T Under these conditions,
the minimization problem has a unique solution ¢* that satisfies the implicit equation

(x +2)cos (20 —3¢*) = (x —2) cos (26 — ¢*),

andhasthepropertythat0<(p < 5”—|—9if5”<9< M40 < g <
+9f3”<9<———+9<q) <z f7”<9<2n,5”+9<(p <0
if =3 <0 < =3¢, 5”+9<(p <3”+91f < —Fand -7 < ¢* <

3”+61f 27r<9§

Lemma 3.4.1 follows easﬂy from Lemma 2.1.2 of Meijer; the details are left
to the reader. Similarly, for 27 < || < 27, the remainder R( ) (v) satisfies the
following bound:

A’ lesc(2(0 —9"))| 1 r(252)
|R§\] )(U)| < Nt2 3_7.( |82N| 21?i+2
cos 3 ¢ vl©3
csc 1 (204
gl 5 =i ))|3 - |82N+2|—( 23+4) (3.246)
cos 3 p** lv| "3
Jloc@O g1 T
2N+6 o 37 S2N+4 INT6 /
cos 3 @ lv| 3

where ¢*, ¢** and ¢*** are the minimizing values given by Lemma 3.4.1 with
x =2 *2, x = 25 and x = 26, respectively.
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The following simple estimates are suitable for the sectors 2% < || < 3Z
(especially near the Stokes lines 6 = :l:?’z—”) and N > 4 and can be obtained from
(3.245) and (3.246) using an argument similar to that given in Subsection 2.1.2:

1 r 2N+1
R ()] < Ly/3e(2N + 1) — |dan] ( ZIC\J’IH)
3 ’1/| 5
+ 24/3e (2N+15)—|d2N+2| !(I 33)

2N+5)

1%

1 3e(2N 19 1 d (
+51/3e( +7)3—n| N+l — s | |2NS+5

1%

and
R ()] < 33N + B) o [san T|<—N)

+51/3e(2N + 17)— |82n+2] %

+ 14/3e (2N+21)—|g2N+4|%.

These bounds may be used in conjunction with our earlier results (3.242) and
(3.244), respectively.

3.4.3 Exponentially improved asymptotic expansions

The aim of this subsection is to give exponentially improved asymptotic expan-
sions for the Anger-Weber function and its derivative of equally large order and
argument. Re-expansions for the remainder terms of the asymptotic expansions
of these functions were derived, using formal methods, by Dingle [35, exer. 23,
p- 485]. He divided each of the asymptotic expansions into three parts accord-
ing to the value of n mod 3 and considered the three remainders of these ex-
pansions separately. We shall derive here the rigorous forms of Dingle’s formal
re-expansions by truncating them after a finite number of terms and construct-
ing their error bounds. /

It is not possible to re-expand directly the remainders R( ) (v) and Rgf? ) (v)
in terms of terminant functions because of the presence of cube roots in the
denominators of the integrands in their representations (3.233) and (3.236). To
overcome this difficulty, we follow Dingle’s idea and write both A_, (v) and
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A’ (v) as a sum of three truncated asymptotic expansions plus a remainder
thereby obtaining representations different from (3.229) and (3.235). The form
of the remainders in these alternative expressions will be suitable for our pur-
poses. Assuming 0| < 7, the representation (3.233) for A_, (v) = R(()A) (v) can
be re-arranged in the form

(cf. equation (3.238)). Next, we expand the denominators of the integrands by
means of (1.7) (with m and M in place of n and N in the second integral, and
with k and K in place of n and N in the third integral) and make use of the
representation (3.96) to deduce

1Nl r(en+d) 1 Md I (2m+1)

Ay (V):3_7T Z 6n1/271—+§+3_7'[n;0 Om+2" 1

1 K=
+_
37‘[k

3.247
I'(2k+3) ( )
v2k+3

1
k14 Rg\?])\/I,K (v).

=0

(A)

The remainder term Ry, x (v) can be expressed as

_1)N 1 +oo 1 2N—3F o —271u ),
R V) = (Gl / ——  iH. ' (ue?')du
N,M,K( ) 377 V2N+% 0 1 + (u/v)z iu ( )
(_1)M+1 1 /+oo uZMeonu lH 1)
37T vZM+1 f, 1+ (u/v)2
(_1)1< 1 /+oo y2K+3e—2mu W
3 2K+3Jo 14 (u/v)t M

+

+

for 0] < 7 and N, M, K > 0. Equation (3.247) gives an expansion of A_, (v)

which has the convenient property that its remainder term R%\?J)\/I ¢ (V) can be

expressed in a simple way using terminant functions.
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In a similar manner, we write

-l r(en+3) 1 M2 r(2m+3)

A’ = den pr 12 T 3n Zg6m+2T+é
I (2k+2) (3.248)
+ A/
2g6k+4 U2k+2 +R§\f,]\)/I,K (V)
with
' —1)N 1 oo 2N=Fe=2mu
R () = ( / g ue2')du
N,M,K( ) 37-( ]/2N+% 0 1 + (u/v)z 1u ( )
ML too 7 2M+3 o —2mu ,
QDL ey,
3t ,2M+3 Jo 1+ (u/v)
-k 1 +oo 1 2K+1g—27tu -
+ (1) 2K+2/ — Hi(;)/(uefl)du
3m v 0 1+ (u/v)

for 0| < 7, N >1and M,K > 0.

Now, we are in the position to formulate our re-expansions for the remainder
terms R%?%A’K (v) and RE\’%I,\)/LK (v), in Proposition 3.4.2 below. In this proposition,
the functions RI\‘;‘: m (v) and RI\‘;‘: mk (v) are extended to a sector larger than
8] < 7 via (3.247) and (3.248) using analytic continuation. The proof of Propo-
sition 3.4.2 is essentially the same as that of Proposition 3.2.1 on the analogous
expansion for the Hankel function of equal order and argument, and therefore
the proof is omitted.

Proposition 3.4.2. Let |, L and Q be arbitrary fixed non-negative integers. Suppose
that |0| < 37 — § with an arbitrary fixed small positive 6, |v| is large and N =
vl +p, M=m|v|+0o, K= rm|v|+nwith p, o and 1 being bounded. Then

. ' r(Z2 "
R(A) (V) = — 1e3 2my ZdZ] m(2jt (n(2]-|—1)> (2]31)T2N_2j(2m/e21)
v ?

i o2 rrej+1) T(ER o
+3e 2”V3—n];)d2jsm( J ) 32T o (2mve 21

L anpr, (21
2 2<zf+1>lsm(n<zf+1>) ()

20+1 2
3

; M-2:2 (27‘(1/e%i)

) TzM—Zg—*2
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ie—3i , .2 Ul 2(2q41) . ) NN\ I 2q+1 -
N leTeZmVS_n Z que 3'1+ igin (7'(( 73‘1‘ )) (23911 )T2K2q3—4(271'1/621)
— V73
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3

MR 7 (
§ v = Z dog sin ( 3

(3.249)

. 2j+2
A/ 1e31 i 7T(2 -|—2 I'(=5= s
R( ) (1/) 27m/ 282] 3 sm( ( ]3 )) <2j43rz )TZN?(vaezl)
V73

. 2j+2
1 _ 7T (27 —|—2 (=== o
_ 271'11/ Z g2] Si n ( ] ) (2j;3_2 ) TZN_ZJ (27'[1/6 21)
3 3 v 3
je3i o2 m(20+2). (20 +2) ( . ) -
— 5 mv?)n Z g€~ 3 lsin ( 3 ) g Tym-22 (2mtve?)
1 omiv 2 - (m(20+2)\ T (352 — 7
+3e i E)g% sin 3 gz Tyn—2t2 (27tve™2)
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. 2q+2
1 2 w(29+2)\ L (F57) ~Zi
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+ Rk (V).
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(3.250)
where
—27|v| —27|y| —27t|v|
A e e e
Rg\]])\/I,K(V)_OIP< 2];1)+0L,0'<| |2L+1>+ Qi7< 2Q+1>’
L, v
e i v (3.251)

(A) eF2Im(v) eF2mIm(v) e F2Im(v)
Ry Mk (v) = OLM —| | 71 +OL0s —2%1 + OQ,WS —2%“ ,
J, v 3
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(A") eF2mIm(v) eF2rIm(v) eF2mIm(v)
RN,M,K (v)= O],p,f5 212 +OLos 2012 + 00,06 20+2
IO v| 3 |5

(3.252)
for 5 < £60 < 2 — 6. Moreover, if | = L = Q, then the estimates (3.251) remain

valid in the larger sector |0| < 37” and (3.252) holds in the range 37” < F0 < 3w —J.

Proposition 3.4.2 together with (3.247) and (3.248) yields the exponentially
improved asymptotic expansions for the Anger-Weber function and its deriva-
tive of equally large order and argument.

If we neglect the remainder terms in (3.249) and (3.250) and formally extend
the sums to infinity, formulae (3.249) and (3.250) reproduce Dingle’s original
expansions which were mentioned at the beginning of this subsection.

In the following theorem, we give explicit bounds on the remainder terms
I

A/
K (v) and Rg\l,Z\ZI,K (v).
Q J,L,Q

[“gv

Note that in these results, N, M and K may not necessarily depend on v.

Theorem 3.4.3. Let N, M, K, ], L and Q be arbitrary fixed non-negative integers such
that ] <3N,L <3M+1Q < 3K+2and [,L,Q =0 mod 3. Then we have

1 (2)+1
A 1 .2 32 F(—) .
|R§\]]:[)%K (v)] < g\eznlv\§|d2]|7ﬁwm_gf(27“/921)\
1, oy 2. 32T (3 n
+§‘e 2n1v‘3—n|d2]|?ﬁ‘T2N_z3](2n’ve 21)‘
2 (335N —3)
T3 2|d2]| oN—-% | 2N
B N PN
1 ) ) 3% F(ZL-‘rl) -
"'g‘ezm‘3—n|d2L|7VT§1|TzM2‘L3—2(27we21)|
1
1 . 2 33 F(2L+1> o
—f—g‘e 2ﬂlv‘§|d2L|?ﬁ‘T2M_zL3z(27ﬂ/e 21)‘
2 L3571 (2M - 252)
gl aM-22 oM+
Bin2 (M
1 2041
1, 9oy 2 32T (555) 1
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provided that |0| < 7 and ], L, Q > 3. In the case when | = L = Q, these bounds are
also valid in the range T < £60 < 3I with ve¥™ in place of v on the right-hand sides.

The proof of Theorem 3.4.3 is essentially the same as the proof of Theorem
3.2.2 and is therefore omitted.
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