
C
E

U
eT

D
C

ol
le

ct
io

n

Graphs with Isomorphic DFS

Spanning Trees

Nika Salia

Academic Advisor: Professor Ervin Gyori

Master Thesis

Department of Mathematics and its Applications

Central European University

Budapest, Hungary

May, 2015.



C
E

U
eT

D
C

ol
le

ct
io

n

1



C
E

U
eT

D
C

ol
le

ct
io

n

Acknowledgments

I doubt words can suffice to express my gratitude to my supervisor Professor

Ervin Gyõri for everything he has done, among those agreeing to be my

supervisor, giving interesting lectures that deepened my knowledge in graph

theory and endless support that he gave during these two years.

I am also grateful to Karoly Boroczky and Pál Hegedűs for their constant

help and support.

I am thankful to my family (mother and brother) for being with me

whenever I needed them regardless of the distance.

I am also thankful to my friends for everything that they have done for

me.

2



C
E

U
eT

D
C

ol
le

ct
io

n

Contents

1 Introduction 4

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Depth First Search Spanning Trees 10

2.1 Applications of Depth First Search . . . . . . . . . . . . . . . 16

3 Graphs with Isomorphic DFS Spanning Trees 26

Bibliography 46

3



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 1

Introduction

A search in a graph is a methodical exploration of all vertices and edges

of the graph. There are many different ways for tracing a graph, which

run in linear time. Two most important methods are Breadth first search

and Depth first search. Breadth first search gives an efficient way to compute

distances between the vertices. Depth first search is useful for checking many

basic connectivity properties, for checking planarity, and also for data flow

analysis for compilers. In this work we are going to work with Depth first

search algorithm.

The Depth First Search technique is a method of traversing a finite graph.

Since the publication of the paper of Hopcroft and Tarjan [8, 9], it is widely

recognized as a powerful technique. However, the algorithm was already

known in 19th century as a technique for threading mazes. For example,

see Lucas’ [10] report of Tremaux’s work. Another algorithm, which was

suggested later by Tarry [11], is just as good for treading mazes and in fact

DFS is just a special case of it. There is the additional structure of DFS,

which makes it so useful, which will be discussed in following chapter.

Now, we will present Depth First Search algorithm idea from the book [12,

4



C
E

U
eT

D
C

ol
le

ct
io

n

p. 53]. Assume we are given finite undirected graph G. Starting in one of the

vertices, we want to ”walk” along the edges, from vertex to vertex, visit all

the vertices and then halt. We seek an algorithm that will guarantee that we

will scan whole graph, and recognize when we are done, without wondering

too long in ”maze”. We allow no pre-planning as by studying the road map

before we start our excursion. We must make our decisions, one at a time,

since we discover the structure of graph as we scan it. Clearly, we need to

leave some markers when we go along, to recognize the fact that we have

returned to the place visited before. Let us mark ”passages”, namely the

connections of the edges to vertices. It suffices to use two types of markers:

F for the first passage to enter the vertex, and E for any other passage when

used to leave the vertex. No marker is ever erased or changed. As we shall

prove later the following algorithm will terminate in the original starting

vertex, after traversing each edge once in each direction.

Definition 1.0.1. A subgraph of a graph G is a graph H such that V (H) ⊂

V (G) and E(H) ⊂ E(G).

Definition 1.0.2. A subgraph H of a graph G is a spanning subgraph

if V (H) = V (G).

Definition 1.0.3. A spanning tree of a graph G is a spanning subgraph

of G that is a tree.

In 1970, Klaus Wagner ( [6] p.50) posed a problem of characterizing con-

nected graphs in which any two spanning trees are isomorphic. In 1971,

Bohdan Zelinka [7] published a solution obtained by considering invariants

of a tree. In 1973, two different solutions appeared by Fisher and Friess

( [2], [3]). Bert L.Harnell ( [4], [5]) solved this problem and also gave solution

to the problem for graphs with two spanning trees up to isomorphism. Since

5



C
E

U
eT

D
C

ol
le

ct
io

n

then many different mathematicians proposed different proofs and variations

of this problem.

In this work we are going to discuss various problems, about connected

graphs in which any two DFS spanning trees are isomorphic (definition is pro-

posed later in this work). We will see that, this question has several different,

interesting variations. We don’t discuss Breadth First Search spanning trees

because problem becomes less interesting. To be more specific for a fixed

graph G and fixed vertex v ∈ V (G) any BFS spanning tree constructed from

v has same set of vertices in each level Ni, the set of vertices at distance i

from the root.

1.1 Definitions

For simplification of the language, we will use ”graph” meaning a ”finite,

simple graph”, i.e finite graph with no loops or multiple edges.

Definition 1.1.1. A tree T with a distinguished vertex v ∈ V (T ) is called

a rooted tree denoted by (T, v).

• T denotes a tree.

• Pn denotes the path with n vertices.

• Cn denotes the cycle with n vertices.

• Kn denotes the complete graph with n vertices.

• Kn,m denotes the complete bipartite graph, color classes have size n

and m.

• Sn denotes the star, complete bipartite graph K1,n, a tree with one

internal node and k leaves.

6



C
E

U
eT

D
C

ol
le

ct
io

n

• A graph is called a broom and denoted byBn
m if it is a path Pn(v1, v2, · · · , vn)

and m hanging leaves on vertex vn. (see: Figure 1.1)

Figure 1.1: Broom

• G = C((T1, v1), (T2, v2), · · · , (Tn, vn)) (n > 2) is a graph which contains

n disjoint rooted trees (Ti, vi), i = 1, 2, , · · ·n and edges (vi, vi+1), i =

1, 2, , · · ·n, ( ”+” operation in modulo n arithmetics). (see: Figure 1.2)

Figure 1.2:

C((T1, v1), (T2, v2), · · · , (Tn, vn))

7



C
E

U
eT

D
C

ol
le

ct
io

n

• G = Kn((T1, v1), (T2, v2), · · · , (Tn, vn))) is a graph which contains n

disjoint rooted trees (Ti, vi), i = 1, 2, , · · ·n and edges (vi, vj), i, j =

1, 2, , · · ·n and i 6= j.

• G = Kn,n((T1, v1), (T2, v2), · · · , (Tn, vn))((T ∗1 , v
∗
1), (T ∗2 , v

∗
2), · · · , (T ∗n , v∗n))

is a graph which contains n+n disjoint rooted trees (Ti, vi) and (T ∗i , vi),

i = 1, 2, , · · ·n and edges (vi, v
∗
j ), i, j = 1, 2, , · · ·n.

• ∀v ∈ V (G), d(v) denotes a degree of a vertex v.

• ∀v, u ∈ V (G), dG(v, u) denotes the length of shortest path connecting

vertex v with vertex u in G.

• A tournament is a digraph, obtained by assigning a direction for each

edge in an undirected complete graph

Definition 1.1.2. For a graph G and ∀v ∈ G, DFS(T, v) denotes any span-

ning tree obtained by DFS algorithm, with starting vertex v.

Definition 1.1.3. Two graphs G and G′ are isomorphic, denoted by G ' G′,

if there exists a bijection φ between V (G) and V (G′) such that any two

vertices v, u ∈ V (G) are adjacent in G if and only if φ(v) and φ(u) are

adjacent in G′

Definition 1.1.4. Two rooted trees (T1, v1) and (T2, v2) are root-isomorphic,

denoted by (T1, v1) ' (T1, v1), if there exists a bijection φ between V (T1) and

V (T2) such that φ(v1) = v2 and any two vertices v, u ∈ V (T1) are adjacent

in T1 if and only if φ(v) and φ(u) are adjacent in T2.

For a graph G, G − e denotes a graph with vertices V (G) and edges

E(G)− {e}.

For a digraph G, e = (v, u) ∈ E(G), we mean an edge which connects

vertex v with vertex u and an edge is directed from v to u .

8



C
E

U
eT

D
C

ol
le

ct
io

n

Definition 1.1.5. A directed graph G (digraph) is strongly connected graph

if for all v, u ∈ V (G), there is a directed path from vertex v to vertex u .

Strong orientation of an undirected graph is an assignment of a direction

to each edge, that makes graph strongly connected graph.

Definition 1.1.6. For a graph G a vertex v ∈ V (G) is central if ∀v′ ∈ V (G)

max
u∈V (G)

d(v, u) ≤ max
u∈V (G)

d(v′, u)

Definition 1.1.7. For a tree T , the central element is the set of central

vertices .

Theorem 1.1.1. In any tree T , the central element is either a single vertex

or a pair of adjacent vertices.

Proof. Let us define sequence of trees T1 = T and Ti+1 is a tree obtained

from Ti just deleting leaves and all edges incident to them. Sooner or later,

we will get Tn+1 an empty graph where Tn is nonempty. This means Tn is a

vertex or K2. Since longest path from every vertex is path connecting this

vertex with a leaf, it is clear that with this operation centeral element of a

tree is not changing. This means, that central element of the tree T is the

same as the central element of Tn. Hence theorem is proved.

9



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 2

Depth First Search Spanning

Trees

In this chapter, first we are going to present Tremaux’s Depth First Search

algorithm and then prove that it works. Then we will show modified DFS

algorithm by Hopcroft and Tarjan. Also we will present DFS algorithm for

digraphs and finally we will discuss several interesting properties of DFS

spanning trees, which will be used in following chapters.

Algorithm 2.0.1. Tremaux’s DFS Algorithm [12, p.53]:

1. v ← r. (r ∈ V (G) is the root, any vertex from which we start traversing

the graph G);

2. If there are no unmarked passages in v, go to the Step 4;

3. Find any unmarked passage, mark it with marker E and traverse the

edge to its other endpoint u. If u has any marked passages (i.e. it

is not a new vertex) mark the passage, though which u has just been

entered with marker E, traverse the edge backwards to v, and go to

10



C
E

U
eT

D
C

ol
le

ct
io

n

Step 2. If u has no marked passage, i.e. it is a new vertex, mark the

passage through which u has been entered with marker F , v ← u and

go to the Step 2;

4. If there is no passage marked with marker F , halt. (We are in the root

r and traversing of the graph is complete);

5. Use the passage marked with marker F , traverse the edge to its other

endpoint u, v ← u and go to the Step 2;

Lemma 2.0.1. Tremaux’s algorithm never allows an edge to be traversed

twice in the same direction [12, p.54]

Proof. If the passage is used as an exit (entering an edge), then either it is

being marked E in the process, and thus the edge is never traversed again in

this direction, or the passage is already marked F . It remains to be shown

that no passage marked F is ever reused for entering the edge.

Let e = (u, v) ∈ E(G) be the first edge to be traversed twice in the same

direction, from u to v. The passage of e, at u, mast be labeled F . Since r(the

root) has no passage marked F , u 6= r. Vertex u has been left d(u)+1 times;

once though each of the passages marked E and twice though e. Thus, u

must have been entered d(u) + 1 times and some edge has been used twice

to enter u, before e is used for the second time. A contradiction.

An immediate corollary of Lemma 2.0.2 is that the process described by

Tremaux’s algorithm will always terminate. Clearly it can only terminate in

r, since every other visited vertex has an F passage. Therefore, all we need

to prove is that upon termination the whole graph has been scanned.

Lemma 2.0.2. [12, p.55] Upon termination of Tremaux’s algorithm each

edge of the graph has been traversed once in each direction.

11



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. Let us state the proposition differently: For every vertex all its inci-

dent edges have been traversed in both directions.

First, consider the start vertex r. Since the algorithm has terminated,

all its incident edges have been traversed from r outward. Thus, r has been

left d(r) times and since we end up in r, it has also been entered d(r) times.

However by Lemma 2.0.2 no edge is traversed more then once in the same

direction. Therefore, all the edges incident to r have been traversed once in

each direction.

Assume now that S is the set of vertices for which the statement, that

each of their incident edges has been traversed once in each direction, holds.

Assume V 6= S. By the connectivity of the graph G there must be edges

connecting vertices of S with V − S. All these edges have been traversed

once in each direction. Let e = (v, u) ∈ E(G) be the first edge to be traversed

from v ∈ S to u ∈ (V −S). Clearly, u’s passage, corresponding to e, is marked

F . Since this passage has been entered, all other passages must have been

marked E. Thus, each of u’s incident edges has been traversed outward.

The search has not started in u and not ended in u. Therefore, u has been

entered d(u) times, and each of it’s incident edges has been traversed inwards.

A contradiction, since u belongs to S.

The Hopcroft and Tarjan version of DFS is essentially the same as Ter-

maux’s except that they number vertices from 1 to n = |V (G)| in the order in

which they are discovered. This is not necessary, as we have seen, for scan-

ning the graph, but the numbering is useful for solving different problems

(you can see in following chapters). Let us denote number (Time when v was

discovered) of vertex v by k(v). Also, now instead of marking passages, we

will mark edges as ”used” and remember for each vertex v, other then root

r, the vertex f(v) from which v has been discovered.

12



C
E

U
eT

D
C

ol
le

ct
io

n

Now we are ready to present the algorithm.

Algorithm 2.0.2. The Hopcroft and Tarjan version of DFS algo-

rithm [12, p.56]:

1. Mark all the edges ”unused”, For every v ∈ V (G), k(v) ← 0, i ← 0.

Choose a root v ← r;

2. i← i+ 1 and k(v)← i;

3. If v has no unused incident edges, go to the step 5;

4. Choose an unused incident edge e = (v, u) ∈ E(G). Mark e ”used”, If

k(u) 6= 0 go to the step 3, Otherwise k(u) = 0 then f(u) ← v, v ← u

and go to the step 2;

5. If k(v) = 1 then halt;

6. v ← f(v) and go to the step 3;

Since this algorithm is simple variation of the previous algorithm, we

won’t prove that algorith will terminate at some point and whole connected

graph G will be scanned. Also it’s trivial to admit that whole algorithm is

of time complexity O(E), namely, linear in the size of the graph.

After applying DFS Algorithm to the a connected graph G let us consider

the set of directed edges E ′ = {(f(v), v)|∀v ∈ V (G), v 6= r}.

Lemma 2.0.3. [12, p.56] The digraph T = (V (G), E ′) defined above is a

directed spanning tree with root r [12, p.56]

Proof. Clearly din(r) = 0 and din(v) = 1 ∀v ∈ V (G), v 6= r. Hence If

we take any directed path P = (v1, v2, v2, v3, · · · , vk) then vi = f(vi+1) =⇒

k(vi) < k(vi+1) =⇒ ∀i > j k(vi) > k(vj) hence any directed path P is

13



C
E

U
eT

D
C

ol
le

ct
io

n

simple. Since ∀v ∈ V (G) v 6= r we have f(v), we can lengthen P . P1 =

(f(v1), v1, v2, v2, v3, · · · , vk)), P2 = (f(f(v1)), f(v1), v1, v2, v2, v3, · · · , vk) and

so on, this process can’t be continuous, so at some point we will get r the

root, hence theorem is proved.

Lemma 2.0.4. If ∀e = (v, u) ∈ (E(G)− E ′) then

• v is an ancestor of u;

or

• v is an descendant of u;

Proof. Without loss of generality we can assume that k(v) < k(u). So, when

DFS algorithm entered in vertex v, vertex u was not explored yet and because

of e = (v, u) ∈ E(G) algorithm wont backtrack from v without exploring u.

Hence v is an ancestor of u.

Remark 1. Let us call all the edges from E ′ tree edges and all other edges

back edges.

Algorithm 2.0.3. DFS algorithm for digraphs [12, p.63]:

1. Mark all the edges ”unused”, For every v ∈ V (G), k(v) ← 0, i ← 0,

choose a root v ← r and i← 0;

2. i← i+ 1 and k(v)← i;

3. If v has no unused incident edges, go to the step 5;

4. Choose an unused incident directed edge e = (v, u) ∈ E(G). Mark

e ”used”, If k(u) 6= 0 go to the step 3, Otherwise if k(u) = 0 then

f(u)← v, v ← u and go to the step 2;

14



C
E

U
eT

D
C

ol
le

ct
io

n

5. If f(v) is defined then v ← f(v) and go to the step 3;

6. (f(v) is undefined), If there is a vertex u for which k(u) = 0 then let

v ← u (New root) and go to the step 2;

7. Halt;

The structure which results from the DFS traversing of digraph isn’t as

simple as it was in case of undirected ones. Instead of two types of edges we

will have four types of them

• A directed edge e = (v, u) is a tree edge if it was used to reach vertex

u from vertex v;

• A directed edge e = (v, u) is a forward edge if when it was scanned for

the first time k(u) > k(v);

• A directed edge e = (v, u) is a back edge if when it was scanned for the

first time k(u) < k(v) and u is an ancestor of v;

• A directed edge e = (v, u) is a cross edge if when it was scanned for

the first time, k(u) < k(v) but u isn’t an ancestor of v;

Assume DFS was performed on a digraph G, and let the set of tree edges

be E ′. The graph (V (G), E ′) is a forest (not a tree), union of disjoint directed

trees.

Remark 2. If e = (v, u) ∈ E(G) and k(u) > k(v) then u is a descendant of

v.

15



C
E

U
eT

D
C

ol
le

ct
io

n

2.1 Applications of Depth First Search

There are dozens of examples where we can see that DFS algorithm is useful .

Contemporary computer science uses DFS algorithm’s different modifications

nearly in every algorithm, which deals with graphs and not only with them.

To show that DFS algorithm is useful we present several famous examples

with DFS algorithm. Also it should be admitted that DFS can be used as a

prof technique.

• Detecting cycle in a graph: a graph has a cycle if and only if we

have a back edge during DFS algorithm.

• Topological sort of digraph vertices is a linear ordering of vertices,

such that for every directed edge (u, v), u comes before v in the ordering.

Idea of topological sort is trivial:

Digraph has a topological sort of vertices, if and only if there is no

directed cycle. We can check this with above mentioned DFS algorithm.

If a digraph has no directed cycle then find a vertex with zero in degree,

run DFS algorithm from it and for each vertex save time of backtracking

it. Output vertices in reverse order of backtracking time. From digraph

DFS tree properties, it is obvious that resulting order is topological sort

of vertices.

• To test if a graph is bipartite or not: traverse graph with DFS

algorithm and color each vertex with opposite color of it’s parent. For

each non DFS tree edge, check if it doesn’t link two vertices of the same

color. Root can be any color.

• Solving puzzles with only solution for example mazes.

16



C
E

U
eT

D
C

ol
le

ct
io

n

• Proving Redei’s theorem: every tournament contains a Hamilto-

nian path. Order vertices by decreasing of finishing time. It is obvious

that, this will be a Hamiltonian path, from digraph DFS tree properties

Theorem 2.1.1. (Robbins’ theorem) A graph G can be oriented to obtain

a strongly connected digraph, if and only if G is 2-edge-connected (G has no

bridge).

Proof. It is obvious that if a graph G has a bridge then there is no strongly

connected orientation of G. Let us prove another side of the theorem.

If a graph G is simple and 2-edge-connected, we are going to find strongly

connected orientation of it. Fix any vertex v ∈ V (G) and construct rooted

DFS spanning tree (T, v). Direct all edges of (T, v) from the parent to the

child. Direct all other edges from the descendant to the ancestor (By DFS

tree property all edges of E(G)−E(T ) connect descendants with ancestors).

Let us define this directed graph G′ formally:

V (G′) = V (G);

E(G′) = {(u, u′)|(u, u′) ∈ E(T ) and k(u) < k(v) or

(u, u′) ∈ E(G)− E(T ) and k(u) > k(v)};

We have left to prove that G′ is strongly connected graph. This means

that ∀u1, u2 ∈ V (G′), we should find P directed path from vertex u1 to vertex

u2. It is enough to prove that ∀u ∈ V (G′) there are paths from vertex v (root

of the DFS tree) to vertex u and from vertex u to vertex v. It is clear that

∀u ∈ V (G′) there is path from vertex v to vertex u. Let us prove that there

is path from vertex u to vertex v with assuming contradiction. Assume u is a

vertex with minimum distance from root v in the tree T from which there is

no path towards vertex v. Let us denote with P a path of a tree T from the

root v to the vertex u and with T ′ subtree of a tree T with root u. If there

is an edge from some vertex u′ ∈ V (T ′) to some vertex v′inV (P ) − u then

17



C
E

U
eT

D
C

ol
le

ct
io

n

there is path from u to v because there is path from u to u′, from u′ there is

an edge to v′ and because of dT (v, v′) < dT (v, u) from assumption, there is

path from vertex v′ to v. If there is no edge from some vertex u′ ∈ V (T ′) to

some vertex v′ ∈ V (P ) − u then the edge (u, f(u)) which connects a vertex

u with it’s parent is a bridge, a contradiction. Hence Theorem is proved.

DFS algorithm is used to find Nonseparable Components of directed

graph. Whole algorithm is from the book [12, p.57].

First we will define nonseparable components of a graph, then define low-

point function for modifying DFS algorithm for our needs. Then we will

prove several lemmas and present an algorithm.

A connected graph G is said to have separation vertex v ∈ V (G), if

∃u1, u2 ∈ V (G), u1 6= v and u2 6= v, such that all paths connecting vertex u1

with vertex u2 pass trough v. In this case we also say v separates u1 from

u2. A graph which has a separation vertex is called separable and one which

has none is called Nonseparable.

Let V ′ ⊆ V (G), the induced subgraph G′(V ′, E ′) is called a nonseparable

component, if G′ is nonseparable and if for every larger V ′′ (V ′ ⊂ V ′′ ⊆ V (G))

the induced subgraph G′′(V ′′, E ′′) is separable.

If a graph G(V,E) contains no separation vertex, clearly the whole G is a

nonseparable component. However, if v is a separating vertex then V − {v}

can be partitioned into V1, V2, · · · , Vk such that V1 ∪ V2 ∪ · · · ∪ Vk = V − {v}

and Vi ∩ Vj = ∅ i 6= j. Two vertices u1, u2 are in same Vj if and only

if there is path connecting them, which doesn’t contain v. (It is obvious

that this relation is reflexive, symmetric and transitive hence this relation is

equivalence relation). Now we can consider each of the subgraphs induced

by Vj∪{v} and continue to partition it into the smaller parts with same way.

18



C
E

U
eT

D
C

ol
le

ct
io

n

Finally we will get desired partition.

Now we are ready to discuss how we can find nonseparable components

of directed graph.

Let define the low-point of v in DFS tree, L(v) be the least number k(u),

of a vertex u which can be reached from v via directed path consisting of

a tree edges followed by at most one back edge (possible empty). Clearly

L(v) ≤ k(v) because we can use an empty path from v to itself. Obviously,

if a non-empty path is used then its last edge is back edge, because directed

path of tree edges leads to vertices with higher value of k(.).

Now, we are ready to prove some lemmas

Lemma 2.1.1. G is a graph whose verteces are already numbered by DFS

hence we have function k : V (G) −→ N then If (u, v) ∈ E(G) is a tree edge

with corresponding direction (k(u) < k(v)), k(u) > 1 and L(v) ≥ k(u) then

u is separating vertex of G

Proof. Let P be the path from the root r to u in DFS spanning tree, including

r and not including u, and T ′ be the subtree of DFS spanning tree rooted

at v, including v. By Lemma 2.0.4 there is no edge connecting any vertex

from V (T ′) to any vertex V (G)− V (T ′) ∪ {u} ∪ V (P ). Clearly, ∀v′ ∈ V (P )

k(v′) < k(v) and there is no edge connecting ∀t ∈ V (T ′) to v′ because of

lemma hypothesis L(v) ≥ k(u) . Hence u is a vertex, separating V (P ) from

V (T ′) and is therefore a separating vertex.

Lemma 2.1.2. G is a graph whose vertices are already numbered by DFS

hence we have function k : V (G) −→ N then If k(u) > 1 and u is separat-

ing vertex then there exists a tree edge (u, v) ∈ E(G) with corresponding

direction (k(u) < k(v)), such that L(v) ≥ k(u).

19



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. Since u is separating vertex so there is partition V = {u}∪V1∪V2 · · ·∪

Vm m > 1 s.t. ∀i 6= j any path from a vertex of Vi to a vertex of Vj pass

trough u. Let us assume that the root of this DFS tree is r ∈ V1. Then take

first tree edge (u, v) with corresponding direction (k(u) < k(v)) such that

v /∈ V1 (without loss of generality we can assume v ∈ V2). Since there are no

edges connecting V2 with V − V2 − {u}, so L(v) ≥ k(u).

Lemma 2.1.3. G is a graph whose vertices are already numbered by DFS,

then root r is separating vertex if and only if it’s degree in DFS spanning

tree is more than one.

Proof. Clearly, if r is separating, it should have degree more than one (pre-

cisely it will have degree equal to number of partition classes); If r has degree

more than one then there are u1, u2 ∈ NDFS(r) and by Lemma 2.0.4 there

is no edge connecting vertices from subtree rooted at u1 with vertices from

subtree rooted at u2. Hence v is separating u1 from u2, therefore it is a

separating vertex.

The remaining problem is the way of calculating L(.) function efficiently.

It is possible to calculate that L(v) by the time we backtrack vertex v. Cal-

culating L(v) when vertex v is a leaf in DFS spanning tree is easy

L(v) = Min{k(u)|u = v or (v, u) is a back edge}

For all vertex v not a leaf in DFS spanning tree, we can calculate L(v) by the

time when we backtrack vertex v, L(v) = Min(k(v), L(u))∀u ∈ V (G) where

(v, u) is a tree edge with corresponding direction.

From Lemmas 3.0.8, 3.0.9, 3.0.10 and functions k(.) and L(.) we can find

separating vertices. If we delete separating vertices from DFS spanning tree

connected components will be non-separable components of the graph.

Now we are ready to present the algorithm.

20



C
E

U
eT

D
C

ol
le

ct
io

n

Algorithm 2.1.1. Algorithm for finding non-separable components

1. Mark all edges as ”unused”,

∀v ∈ V (G), k(v)← 0,

i← 0 and fix some v ∈ V (G),

Let S be an empty sequence;

2. i← i+ 1, k(v)← i, L(v)← k(v),

Put v in sequence S from the end;

3. If v has no unused incident edge go to step 5;

4. Choose an unused incident edge of vertex v e = (v, u), mark e ‘used’.

If k(u) 6= 0 then L(v)←Min{L(v), k(u)} and go to step 3,

Otherwise if k(u) = 0 then f(u)← v, v ← u, and go to step 2;

5. If k(f(v)) = 1 go to step 7;

Else if k(f(v)) 6= 1 then if L(v) < k(f(v)) then L(f(v))←Min{L(f(v)), L(v)}

and go to step 6;

Else if k(f(v)) 6= 1 and L(v) ≥ k(f(v)) then f(v) is separating vertex.

All vertices from S down to and including v are now removed from S.

This set with f(v) , forms a nonseparable component;

6. v ← f(v) go to step 3;

7. All vertices in S down to and including v are now removed from S,

they form with root a nonseparable component;

8. If root has no unused incident edge then halt;

9. Root is separating vertex. Let v ← root and go to step 4;

21



C
E

U
eT

D
C

ol
le

ct
io

n

Time complexity of this algorithm is O(|E|) because each edge is scanned

exactly once in each direction and number of operations per edge is bounded

by constant.

Algorithm for finding strongly-connected Components [12, p.64]:

Let G be a digraph. Let us define an equivalence relation ∼ on V (G).

For x, y ∈ V (G) we say x ∼ y if and only if there is directed path from x

to y and also there is a directed path from y to x in G. Clearly ∼ is an

equivalence relation hence it partitions V (G) into equivalence classes. These

equivalence classes are called the stronglyconnected components of G.

Let C1, C2, · · · , Cm be the stronglyconnected components of a digraph

G(V,E). Let us define the superstructure of G, G′(V ′, E ′)

V ′ = {C1, C2, · · · , Cm}

E ′ = {(Ci, Cj) ordered pair |i 6= j, (x, y) ∈ E(G), x ∈ Ci and y ∈ Cj}

Graph G′ is free of directed cycle, because if it has a directed cycle, all

stronglyconnected components on it should have been in one component.

Thus, there must be at least one sink, Ck, (dout(Ck) = 0) in G.

Let v is the first vertex visited by DFS algorithm from Ck. All vertices

of Ck are reachable from v hence no retracting from v is attempted until all

the vertices of Ck are numbered. They all get numbers greater than k(v) and

since there are no edges leading out of Ck in G no vertices will be visited

outside of Ck from the time of v is numbered until we retract from v. Hence

all these vertices are in Ck.

For finding such v we first define again lowpoint then present algorithm

and finally prove why this algorithm works.

L(v) = the least number k(u), of a vertex u which can be reached from v

via a directed path containing of tree edges (possibly empty), followed by one

22



C
E

U
eT

D
C

ol
le

ct
io

n

back edge or a cross edge, provided u belongs to the same strongly connected

component.

Algorithm 2.1.2. Algorithm for finding strongly-connected compo-

nents

1. Mark all edges ”unused”,

∀v ∈ V (G), k(v)← 0, f(v)←”undefined”,

Let S be an empty sequence,

i← 0 , v ← r where r is any fixed vertex of V (G), (r is the root);

2. i← i+ 1, k(v)← i, L(v)← i and put v in S

3. If there are no unused incident edges from v go to step 7;

4. Choose an unused directed edge e = (v, u). Mark e ”used”.

If k(u) = 0 then f(u)← v, v ← u and go to step 2.

5. If k(u) > k(v) (e is a forward edge) go to step 3.

Otherwise if k(u) ≤ k(v) if u is not in S (u and v are from different

strongly-connected component) go to step 3;

6. k(u) < k(v) and both vertices are in same component, then L(v) ←

Min(L(v), k(u)) and go to step 3;

7. If k(u) = k(v) then delete all the vertices from S down to and including

v, these vertices form a strongly-connected component.

8. If f(v) is defined then L(f(v)) ← Min(L(f(v)), L(v)), v ← f(v) and

go to step 3;

23



C
E

U
eT

D
C

ol
le

ct
io

n

9. else if f(v) is undefined then find u ∈ V (g) such that k(u) = 0 then let

v ← u and go to step 2;

10. Halt!

Lemma 2.1.4. Let v be the first vertex for which, in step 7, L(v) = k(v).

Then all vertices from S down to and including r form a strongly-connected

component of G. (This component is one of the sinks)

Proof. All vertices in S, on top of v, have been numbered after v, and since

no backtracking from v has been attempted yet, these vertices are the de-

scendants of v; i.e. are reachable from v via tree edge.

Now, we want to show that if u is a descendant of v then v is reachable

from u. We have already backtracked from u, but since v is the first vertex for

which equality occurs in step 7, L(u) < k(u). Thus, a vertex u′, k(u′) = L(u),

is reachable from u. Also, k(u′) ≥ k(v) , since by step 8 L(v) ≤ L(u),

(k(u′) = L(u) ≥ L(v) = k(v)) hence u′ is a descendant of v. If u 6= r then

we can repeat the argument again to find a lower numbered descendant of

v reachable from u′, and therefore from u. This argument can be repeated

until v is found to be reachable from u.

So far we have shown that all vertices in S, on top of v and including

v, belong to the same component. It remains to show that no additional

vertices belong to same component.

When the equality L(v) = k(v) is discovered, all the vertices with numbers

higher then k(v) are on top of v in S. Thus, if there are any additional vertices

in component, at least some of them must have been discovered already, and

all of those are numbers lower that k(v). There must be at least one (back or

cross) edge (x, y) such that k(x) ≥ k(v) > k(y) > 0 and x, v and y are in the

same component. Since no removal from S has taken place yet, L(x) < L(y)

24



C
E

U
eT

D
C

ol
le

ct
io

n

ant therefore L(v) ≤ L(x) ≤ k(y) ≤ k(v) a contradiction

If v is the first vertex for which in step 7 L(v) = k(v), then by Lemma

2.1.4 and it’s proof, a component C has been numbered and all its elements

are descendants of v, up to now at most one edge from a vertex outside C into

C has been used to change the lowpoint value of a vertex outside C. At this

point all vertices of C are removed and therefore none of the edges entering C

can change a lowpoint value anymore. Actually, this is equivalent to removal

of C and all its incident edges from G before DFS algorithm starts. Thus,

when equality in Step 7 will occur again, Lemma 2.1.4 is effective again. This

proves the validity of the algorithm.

25



C
E

U
eT

D
C

ol
le

ct
io

n

Chapter 3

Graphs with Isomorphic DFS

Spanning Trees

In this chapter we deal with various problems related with graphs with iso-

morphic spanning trees. First, we start with the problem of isomorphic

spanning trees, the question is what graphs have spanning trees such that

all of them are isomorphic to each other and present proof by P. D. Vester-

gaard 1989 [1]. Then we consider same question but with only DFS spanning

trees. Since the set of DFS spanning trees of a graph is subset of the set with

spanning trees of a graph, class of graphs which is solution for new problem

will increase but question is how big is this set. Unfortunately, this problem

seems to be too complicated and we couldn’t find this class of graphs but we

found interesting class of examples and propose a conjecture. Next discussed

problems in this chapter is also related with previous ones with slight differ-

ence, we fix a tree and find all graphs with all DFS spanning trees isomorphic

to this tree. Finally, we discuss same problem but with rooted DFS trees.

Theorem 3.0.2 (P. D. Vestergaard 1989 [1]). Connected graph G with all

isomorphic spanning trees are

26



C
E

U
eT

D
C

ol
le

ct
io

n

• T a tree;

• C2k+1(T, T, · · · , T );

• C2k(T1, T2, · · · , T1, T2);

Proof. Clearly, these graphs are simple, connected and they have all isomor-

phic spanning trees.

We should prove that these graphs are the only ones with isomorphic

spanning trees. Let us assume that G is simple, connected and has no cycle,

hence G is a tree and we already know that all trees are solution of this

problem.

Let us assume that a simple, connected graph G with all isomorphic span-

ning trees, has exactly one cycle, thenG = Ck((T1, v1), (T2, v2), · · · , (Tk, vk)).

All operations in this proof will be held in modulo k arithmetics. Let us

name edges of Ck

ei = (vi, vi+1)

Remark: Spanning trees of the graph G are only G− e trees, ∀e ∈ Ck

Lemma 3.0.5. Every longest path P inG = Ck((T1, v1), (T2, v2), · · · , (Tk, vk))

• Contains all edges of Ck but one;

Or

• Contains all edges of Ck but two e and e′, these two edges have common

vertex v and the vertex v is diametrically opposite of central element

of trees G− e and G− e′;

Proof. First we can conclude that E(Ck) − E(P ) is Ck or path. Then if

|E(C)− E(P ) > 1| then we have {ei, ei+1} ∈ (E(C)− E(P )) (two adjacent

edges with common vertex vi+1). Because of P is longest path of trees G−ei

27



C
E

U
eT

D
C

ol
le

ct
io

n

and G − ei+1, the central element of P , G − ei and G − ei+1 are all same,

let’s call it c. From theorem statement G − ei and G − ei+1 are isomorphic

and we know that central element is an isomorphism invariant, so

{dG−ei(c, v)|v ∈ V (G)} = {dG−ei+1
(c, v)|v ∈ V (G)}

Easily can be seen that {dG−ei(c, v)|v ∈ V (G) − Ti+1} = {dG−ei+1
(c, v)|v ∈

V (G)− Ti+1} =⇒

{dG−ei(c, v)|v ∈ Ti+1} = {dG−ei+1
(c, v)|v ∈ Ti+1}

Also for some constant number const and ∀v ∈ Ti we have dG−ei(c, v) =

const+ dG−ei+1
(c, v). From last two equation, we can conclude that const =

0. Hence k is even and vi+1 has diametrically opposite vertex vi+1+ k
2

=⇒

vi+1+ k
2

= c. If for path P there exists another adjacent pair of edges in

E(C)− E(P ) , then they will point out another place for c. Hence

|E(C)− E(P )| ≤ 2

Assume that every longest path of G contains exactly k− 1

edges of Ck then first, we will prove following lemma:

Lemma 3.0.6. ∀i, j ∈ 1, 2, · · · , k

h(Ti) = h(Tj)

Proof. Assume contradiction, then ∃i for which h(Ti) > h(Ti+1). From the-

orem assumption, the length of a longest path of G− ei is equal to length of

a longest path of G, so a longest path of G− ei is a longest path of G, hence

it contains all edges of Ck except ei and has length h(Ti) + h(Ti+1) + k − 1.

Since all longest paths contain exactly k − 1 edges from Ck so the length of

28



C
E

U
eT

D
C

ol
le

ct
io

n

any path starting in Ti and ending in Ti+2 is less then h(Ti)+h(Ti+1)+k−1.

Hence h(Ti+2) ≤ h(Ti+1). By the same argument, a longest path of G− ei+1

has length h(Ti+1) + h(Ti+2) + k− 1 but h(Ti+1) + h(Ti+2) + k− 1 < h(Ti) +

h(Ti+1)+k−1 a contradiction. Therefore h(Ti) = h(Tj) ∀i, j ∈ 1, 2, · · · , k.

If k is odd, then ∀i ∈ {1, 2, · · · , k} from Lemma 3.0.5 vi is central element

of the tree G − ei+(k−1)/2. The intersection of all longest paths in this tree,

will contain E(Ck) − ei+(k−1)/2. Because of central element and intersection

of all longest paths are isomorphism invariants, the isomorphism φ, which

exists by statement of the theorem, between trees G − ei+(k−1)/2 and G −

ei+1+(k−1)/2, will map the vertex vi to the vertex vi+1 and E(Ck)− ei+(k−1)/2

to E(Ck) − ei+1+(k−1)/2 =⇒ so Ti is isomorphic to Ti+1 ∀i ∈ {1, 2, · · · , k}.

Hence theorem is proved if every longest path of G contains exactly k − 1

edges of Ck and k is odd.

If k is even, ∀i ∈ {1, 2, · · · , k} from Lemma 3.0.5 ei is central element

of the tree G− ei+ k
2
. Intersection of all longest paths in this tree will contain

E(Ck)−ei+ k
2
. The isomorphism φ from the treeG−ei+ k

2
to the treeG−ei+1+ k

2

maps ei to ei+1. If φ(vi) = vi+1 and φ(vi+1) = vi+2 then we deduce Ti ' Ti+1

and Ti+1 ' Ti+2; If φ(vi) = vi+2 and φ(vi+1) = vi+1 then we deduce Ti ' Ti+2.

These are solutions from statement of this theorem. Hence Theorem is proved

if every longest path of G contains exactly k − 1 edges of Ck and k is even.

If there exists a longest path P of G containing k− 2 edges of

Ck then assume without loss of generality E(Ck) − E(P ) = {e1, e2}. By

Lemma 3.0.5, central element of P path is diametrically opposite of v2. So

h(T1) = h(T3) = h and h(T2) < h and h(T4) < h because of P is one of the

longest paths.

Lemma 3.0.7. k is even and ∀Tj with odd subscript have same height h

and all other trees have height less then h

29



C
E

U
eT

D
C

ol
le

ct
io

n

Proof. If in tree G − e4 all longest paths contain k − 1 edges from Ck then

h(T5) ≥ h because of h(T4) ≤ h−1. On the other hand, h(T5) < h otherwise,

a longest path starting in T3 and ending in T5 would be a longest paths in the

tree G− e4 with k− 2 edges from Ck, a contradiction. Hence tree G− e4 has

a longest paths containing k−2 edges from Ck. Hence two missing edges are

e3, e4 or e4, e5. In the second case if we use Lemma 3.0.5 then h(T6) = h(T4)

and because of h(T4) ≤ h − 1 we got a contradiction because longest path

of the tree G − e4 will be shorter than path P . Therefore, the two missing

edges are e3, e4 hence h(T1) = h(T3) = h(T5) = h from Lemma 3.0.5. We

can continue this argument around Ck. If k were odd then h(Tk) = h and

a longest path starting in T1 and ending in Tk would be longer then P a

contradiction. So 2|k and h(Tj) = h ∀odd j ∈ 1, 2, · · · , k. The proof of

lemma is complete.

From last Lemma and Lemma 3.0.5, the central element of the longest

path P is v2+ k
2

hence this is central element of trees G− e1 and G− e2. The

two vertices belonging to the intersection of all longest paths and each having

distance k
2
− 1 to the central element is an isomorphism invariant, so for the

isomorphism φ between trees G− e1 and G− e2

φ({v1, v3}) = {v1, v3}

and since v1 has different degree in G − e1 and G − e2 we have φ(v1) = v3

and φ(v3) = v1 so rooted trees (T1, v1) and (T3, v3) are isomorphic. By the

same argument around Ck, we get

(T2j+1, v2j+1) ' (T2i+1, v2j+1)

To prove (T2j, v2j) ' (T2i, v2j), we consider two cases k ≡ 0 or 2(mod 4).

If k ≡ 0(mod 4) then in the tree G− e1 the rooted tree, attached to the

central vertex outside from intersection of all longest paths, is (T2+ k
2
, v2+ k

2
).

30



C
E

U
eT

D
C

ol
le

ct
io

n

In the tree G − e3 the rooted tree, attached to the central vertex outside

from intersection of all longest paths, is (T4+ k
2
, v4+ k

2
). Since the rooted tree,

attached to the central vertex outside from intersection of all longest paths

is an isomorphism invariant and G− e1 is isomorphic to G− e3, we get

(T2+ k
2
, v2+ k

2
) ' (T4+ k

2
, v4+ k

2
)

By the same argument around Ck we get

(T2j, v2j) ' (T2i, v2j)

So theorem is proved if k ≡ 0(mod 4).

If k ≡ 2(mod 4) then consider trees G− e1 and G− e2 and isomorphism

function φ between of them. Central element, intersection of all longest paths

and the two vertices belonging to the intersection of all longest paths with

fixed distance from the central vertex are an isomorphism invariants. So we

have φ({v1, v3}) = {v1, v3} and φ({v1+ k
2
, v3+ k

2
}) = {v1+ k

2
, v3+ k

2
} obviously

dG−e1(v1) < dG−e2(v1) hence φ(v1) = v3 =⇒ φ(v1+ k
2
) = v3+ k

2
=⇒ it implies

that

(T1+ k
2
, v1+ k

2
) ' (T3+ k

2
, v3+ k

2
)

By using same argument around Ck we will get

(T2j, v2j) ' (T2i, v2j)

So we have proved that, all graphs with maximum one cycle, are only

ones which are stated in the theorem.

If a graph G has more then one cycle, then we can delete several edges, so

that we will maintain connectivity of the graph and we will get new connected

simple graphG′ with exactly two chordless cycles and all isomorphic spanning

trees. There are three types of such graph G′

31



C
E

U
eT

D
C

ol
le

ct
io

n

• G′ has two disjoint chordless cycle C1 = (u1, u2, · · · , ut1) and C2 =

(u′1, u
′
2, · · · , u′t′1);

• G′ has two chordless cycle C1 = (u, u2, · · · , ut1) and C2 = (u, u′2, · · · , u′t1)

with exactly one common vertex u;

• G′ has two chordless cycle C1 = (v1, v2, · · · , vl, u1, u2, · · · , ut1) and C2 =

(v1, v2, · · · , vl, u′1, u′2, · · · , u′t2)

Proof of first two cases are just the same, that’s why we will prove only

first case. There exists path from C1 to C2 and without loss of generality,

we can assume that there is path P = (u1, v2, v3 · · · , vt, u′1) such that V (P )∩

V (C1) = {u1} and V (P ) ∩ V (C2) = {u′1}. Knowing solution for graphs

with one cycle, we can conclude that number of vertices in u1’s connected

component after deleting vertex u′1 is equal to number of vertices of a tree

hanging on u′3 (without vertex u′3) and number of vertices in u′1’s connected

component after deleting vertex u1 is equal to number of vertices of a tree

hanging on u3 (without vertex u3) which is clearly a contradiction. Hence

there is no graph with all isomorphic spanning trees of first two type.

Suppose thatG′ has two chordless cycle C1 = (v1, v2, · · · , vl, u1, u2, · · · , ut1)

and C2 = (v1, v2, · · · , vl, u′1, u′2, · · · , u′t2) . If l is odd then in graph with one

cycle G′ − (v1, ut1) hanging trees on vertices v1 and vl should be isomorphic

and also in graph G′ − (vl, u
′
1), which cannot happen at the same time so

we got a contradiction else if l is even then number of vertices on the tree

hanging on vertex u1 should be equal to the number of vertices hanging on

v1 in graphs G′−(v1, ut1) and G′−(vl, u
′
1) which is also impossible to happen

either at the same time , a contradiction again and the theorem is proved.

Now, we consider just DFS spanning trees, but the question is the same.

32



C
E

U
eT

D
C

ol
le

ct
io

n

What graphs have DFS spanning trees such that all of them are isomorphic

to each other (we are not interested what vertex is the root of DFS spanning

tree in this case). First it is easy to see that T , Cn, Kn and Kn,n are in

solution class. After considering the class of graphs whose spanning trees

are isomorphic to each other (previous problem), we can try to hang disjoint

trees on each vertex but question is how?

• Hanging trees on vertices of T is trivial you can hang anything on each

vertex, still it will stay as a tree;

• Hanging trees on vertices of Cn is also clear now because the set of

Cn((T1, v1), (T2, v2), · · · , (Tn, vn))’s DFS spanning trees is same as just

spanning trees. So we know solution for this case C2k+1(T, T, · · · , T )

and C2k(T1, T2, · · · , T1, T2);

• Hanging trees on vertices of Kn isn’t also very complicated after we

have seen solution of previous problem, because the set of

Cn((T1, v1), (T2, v2), · · · , (Tn, vn))’s DFS spanning trees is just union of

spanning trees of Cn((Tσ(1), vσ(1)), (Tσ(2), vσ(2)), · · · , (Tσ(n), vσ(n))) for ev-

ery permutation σ. and we get some solution in this caseKn(T, T, · · · , T );

• Hanging trees on vertices ofKn.n will give us also solutionsKk(T, T, · · · , T )

and Kk,k(T, T, · · · , T )(T ′, T ′, · · · , T ′). (From previous case this is just

trivial if we consider that we can’t take just any permutation σ. σ

should be such permutation which permutes odd numbers to odd and

even numbers to even);

We couldn’t prove that there is no other graph such that all DFS trees

are isomorphic to each other, so we propose a conjecture.

33



C
E

U
eT

D
C

ol
le

ct
io

n

Conjecture 3.0.1. Connected graph G with all isomorphic DFS spanning

trees are

• T a tree;

• C2k+1(T, T, · · · , T );

• C2k(T1, T2, · · · , T1, T2);

• Kk(T, T, · · · , T );

• Kk,k(T, T, · · · , T )(T ′, T ′, · · · , T ′);

Now, we will fix a tree (”interesting” ones) such as Pn, Sn, Bn−m
m and find

all graphs whose DFS spanning trees are isomorphic to each other.

Theorem 3.0.3. Simple, connected graph G with all DFS spanning trees

paths are only

• Pn

• Cn

• Kn

• Kn
2
,n
2

Proof. If ∃v0 ∈ V (G), d(v0) = 1 construct DFS path from v0

P1 = (v0, v1, · · · , vn−1)

Start constructing DFS path from vk−1 for all k = 2, 3, · · · , n − 2 and first

take the subpath of P1 towards v0, P
′
2 = (vk−1, vk−2, · · · , v1, v0), because of

d(v0) = 1 DFS algorithm will start backtracking and hence all DFS spanning

trees are paths

34



C
E

U
eT

D
C

ol
le

ct
io

n

(vi, vj) /∈ E(G) if i < k − 1 and j > k − 1

From last we can conclude that G = Pn this is a solution.

If ∀v ∈ V (G), d(v) > 1 then construct DFS path from any v0 ∈ V (G)

P = (v0, v1, · · · , vn−1)

Start constructing DFS path from v1 and first take sub-path of P towards

vn−1, P
′ = (v1, v2, · · · , vn−1) then, DFS algorithm shouldn’t start backtrack-

ing because of d(v0) > 1 and if it does then DFS spanning tree won’t be a

path. Hence (v0, vn−1) ∈ E(G) which means that we have Hamilton cycle

C = (v0, v1, · · · , vn−1) (see: Figure 3.1 (a))

From now on, all operations will be modulo n operations in this proof. It

is obvious that G = Cn is a solution. If G 6= Cn then

E(G)− E(C) 6= ∅ (3.1)

Figure 3.1: C = (v0, v1, · · · , vn−1)

35



C
E

U
eT

D
C

ol
le

ct
io

n

Lemma 3.0.8. If (vi, vi+k) ∈ E(G) then ∀i′ (vi′ , vi′+k) ∈ E(G)

Proof. Start constructing DFS spanning path (see: Figure 3.1 (b))

vi+2, vi+3, · · · , vi+k, vi, vi−1, vi−2, · · · , vi+k+1

There is left only one vertex vi+1 and if (vi+1, vi+1+k) /∈ E(G) then after

backtracking , vi+1 will be hung somewhere in the middle of this path be-

cause of d(vi+1) > 1, a contradiction so (vi+1,vi+1+k) ∈ E(G). By the same

argument around Cn, Lemma 3.0.8 will be proved.

Lemma 3.0.9. ∀i (vi, vi+3) ∈ E(G)

Proof. To prove this lemma it is sufficient to prove for i = 0 because of

lemma 3.0.8.

From ( 3.1) and Lemma 3.0.8 ∃k for which (v1, v1+k) ∈ E(G) Also

(v3, v3+k) ∈ E(G) Start constructing DFS spanning path

v4, v5, · · · , v1+k, v1, v2, v2+k, v3+k, · · · , v0

There is left only one vertex v3 and if (v0, v3) /∈ E(G) then after backtracking,

v3 will be hung somewhere in the middle of this path because of d(v3) > 1,

a contradiction so (v0, v3) ∈ E(G)

Lemma 3.0.10. If (vi, vi+k) ∈ E(G) then (vi, vi+k+2) ∈ E(G)

Proof. From lemmas 3.0.8 (v1, v1+k) ∈ E(G) and (v2, v2+k) ∈ E(G)

Start constructing DFS spanning path

v2, v1, v1+k, vk, vk−1, · · · , v3, v3+k, v4+k, · · · , vn−1, v0

There is left only one vertex v2+k and if (v0, vk+2) /∈ E(G) then after back-

tracking, v2+k will be hung somewhere in the middle of this path because of

d(v2+k) > 1, a contradiction so (v0, vk+2) ∈ E(G). By Lemma 3.0.8 we will

have (vi, vi+k+2) ∈ E(G)

36



C
E

U
eT

D
C

ol
le

ct
io

n

From Lemmas 3.0.8,3.0.9,3.0.10

∀m ∈ N (vi, vi+2m+1) ∈ E(G) (3.2)

From (3.2), if n is odd then G = Kn and this is a solution. If n is even G

contains Kn
2
,n
2

from (3.2) and if G has no other edge G = Kn
2
,n
2

and this is a

solution. If there is an other edge (vi, vi+2k) ∈ E(G) in G from lemma 3.0.8

∃k (v0, v2k) ∈ E(G) using lemma 3.0.10 (v0, v2k+(n+2−2k)) = (v0, v2) ∈ E(G)

now we can conclude that G = Kn from lemmas 3.0.8 and 3.0.10

Another interesting, but simple case is to find all graphs where all DFS

spanning trees are stars.

Theorem 3.0.4. Simple, connected graph G with all DFS spanning trees

stars Sn−1 are

• Sn−1

• K3

Proof. If n ≤ 3 then G ∈ {S0, S1, S2, S3, K3} is trivial to check.

If n > 3 construct DFS spanning star Sn−1 from any u ∈ V (G) . Let us

assume that central vertex is v and there are n−1 leaves v1, v2, · · · , vn−1 and if

G 6= Sn−1 then ∃vi, vj, vk pairwise different vertices such that (vi, vj) ∈ E(G).

Start constructing DFS spanning tree vk, v, vi, vj · · · we got path of length

3 which is contradiction because every path in a star has length less than 3.

Now, we consider a generalization of paths and stars, brooms. We wont

to find all graphs where all DFS spanning trees are Brooms.

37



C
E

U
eT

D
C

ol
le

ct
io

n

Theorem 3.0.5. Simple, connected graph G such that all DFS spanning

trees are brooms Bn−k
k where 1 < k < n− 2 and n > 6 are only

• Bn−k
k

Remark 3. If n ≤ 6 then except of brooms there are solutions which you

can see on figure 3.2

Figure 3.2: Broom

Proof. Construct any DFS spanning broom B from any vertex, V (B) =

{v1, · · · , vn−k, u1, · · · , uk} and E(B) = {(vi, vi+1)|i = 1, 2, · · · , n − k − 1} ∪

{(vn−k, ui)|i = 1, 2, · · · , k.}.

Lemma 3.0.11. For every DFS spanning broom B of G

(ui, uj) /∈ E(G)

Proof. Let us assume by contradiction (ui, uj) ∈ E(G), then start construct-

ing DFS spanning broom v1, v2, v3, · · · vn−k, ui, uj · · · we got path of length

n− k+ 1 but Bn−k
k ’s longest path’s length is only n− k, a contradiction. So

(ui, uj) /∈ E(G).

38



C
E

U
eT

D
C

ol
le

ct
io

n

Lemma 3.0.12. For every DFS spanning broom B of G

dG(v1) = 1

Proof. If (v1, ui) ∈ E(G), then start constructing DFS spanning broom

ui, v1, v2, v3, · · · , vn−k, uj ∀j 6= i we got path of length n − k + 1 but Bn−k
k ’s

longest path’s length is only n−k, hence a contradiction. So (v1, ui) /∈ E(G).

Start constructing DFS spanning broom v2, v3, · · · , vn−k, u1 from Lemma 3.0.11

and (v1, ui) /∈ E(G), DFS algorithm will backtrack one step and hang all

u2, u3, · · · , uk vertices on vn−k. Now place for v1 is strictly defined, it should

be hanged on vertex v2, hence DFS algorithm should start backtracking till

v2, it is easy to conclude that

dG(v1) = 1

Lemma 3.0.13. For every DFS spanning broom B of G

dG(ui) = 1

Proof. If ∀j ∈ {1, 2, · · · , k} (v2, uj) /∈ E(G), then start constructing DFS

spanning broom u1, vn−k, vn−k−1, · · · , v2, v1 since dG(v1) = 1 from Lemma

3.0.12 and from assumption, DFS algorithm will start backtracking and make

two backward steps. Hence all uj should be hung on vn−k. So dG(ui) = 1 for

i 6= 1. With same argument, we can prove the same for u1 just we need to

start constructing DFS spanning broom from vertex u2.

If ∃j ∈ {1, 2, · · · , k} for which (v2, uj) ∈ E(G) then we distinguish three

cases for n− k

Case 1: n− k > 4

If n−k ≥ 5 then start constructing DFS spanning broom v4, v3, v2, uj, vn−k...

since dG(v1) = 1 from Lemma 3.0.12, v1 vertex finally will be hanged on v2

39



C
E

U
eT

D
C

ol
le

ct
io

n

a contradiction (dBroom(v2) > 2 and in vertex v2 starts two disjoint paths of

length more then one)

Case 2: n− k = 4

If n − k = 4 then m > 2 because of problem hypothesis. Without loss

of generality let us assume that j = 1 and start constructing DFS spanning

broom u2, v4, u1, v2, v1 since dG(v1) = 1 from Lemma 3.0.12, DFS algorithm

will backtrack with one step and hung v3 on vertex v2, so all ui where i > 2

should be hung on vertex v2. So we have edges (v2, ui) ∈ E(G) where i > 2.

With same argument we can prove that (v2, u2) ∈ E(G) so we have

(v2, ui) ∈ E(G) ∀i

Let’s start constructing DFS spanning broom, u1, v2, v1 since dG(v1) = 1

from Lemma 3.0.12, DFS algorithm will backtrack with one step and continue

from vertex v2. v2, u2, v4, v3 but this is a contradiction because degree of

vertex v2 in spanning tree is 3 already but all ui’s i > 2 will be hung on

vertices v4 or v3.

Case 3: n− k < 3

If n − k ≤ 3 =⇒ n − k = 3 then the length of longest path in broom is

equal to 3 but if we start constructing DFS spanning tree v1, v2, uj, v3, ui 6=j

we will get path of length, 4 a contradiction.

We have proved that dG(v1) = 1 and dG(ui) = 1 and vertex v1 is hanging

on vertex v2 and vertices ui are hanging on vertex vn−k, so DFS spanning tree

of a graph G′, induced subgraph of G on vertices {v1, · · · , vn−k}, should be

path with starting and ending vertices v1 and vn−k, from Theorem 3.0.3 we

know all graphs with all DFS spanning trees paths, so from checking those

graphs, we will get G′ is a path. Hence the theorem is proved.

40



C
E

U
eT

D
C

ol
le

ct
io

n

Our question for DFS trees will be very different from problem conjecture

3.0.1, if we consider rooted DFS spanning trees. Recall a definition,

Definition 3.0.1. Two rooted trees (T1, v1) and (T2, v2) are root-isomorphic,

denoted by (T1, v1) ' (T1, v1), if there exists a bijection φ between V (T1) and

V (T2) such that φ(v1) = v2 and any two vertices v, u ∈ V (T1) are adjacent

in T1 if and only if φ(v) and φ(u) are adjacent in T2.

Theorem 3.0.6. Simple, connected graphs with one isomorphic class of

rooted DFS spanning trees are

• Cn

• Kn

• Kn
2
,n
2

Proof. Assume G is a graph with all rooted DFS trees isomorphic to (T, v0)

(This rooted tree is one of rooted DFS tree of G). Find longest path of T

starting in vertex v0

P = (v0, v1, v2, · · · , vm)

Length of longest path m+ 1 is invariant for all trees. If ∃u ∈ V (G)− V (P )

and (v0, u) ∈ E(G) then start constructing DFS spanning tree from vertex

u and then take path P from vertex v0, new tree will have different length

longest path started in the root (length will be m + 2).=⇒ there is no such

u and dT (v0) = 1.

Let us find minimum k < m such that dT (vk) > 2 then ∃u ∈ V (G)−V (P )

such that (u, vk) ∈ T (G) (This k is invariant for all rooted DFS trees of G

too ). Start constructing DFS spanning tree from vertex v1 taking path P

41



C
E

U
eT

D
C

ol
le

ct
io

n

towards u, (P = (v1, v2, · · · , vk, u)). From DFS tree property the only vertices

connected with u or it’s descendants can be v0, v1, · · · , vk or u’s descendants.

After tracing all descendants of u DFS tree will start backtracking and will

come back to u. v1, · · · , vk and u’s all descendants are visited already and

(v0, u) /∈ E(G). Hence DFS algorithm will continue backtracking and on vk

will hung vk+1 and u these means minimum t < n such that dT ′(v′k) > 2 is

different from k which is contradiction. =⇒ T = P (T is a path) .

We have just proved that all rooted DFS Spanning trees are rooted paths

hence solution of this problem is subset of solution of theorem 3.0.3. After

checking Pn, Cn, Kn, Kn
2
,n
2

graphs we will get solution.

Remark: If n = 2 then P2 is also solution but P2 = K2

Open Problem 3.0.1. Find all graph G and and a vertex v ∈ V (G) for

which all DFS(T, v) trees are isomorphic to each other.

Open Problem 3.0.2. Find all graph G and set S ⊆ V (G) for which

DFS(T, v) are in same isomorphism class, for ∀v ∈ S

Remark 4. If we can solve open problem 3.0.1, then we can solve 3.0.2 and

vice versa.

Proof. Let a graph G with n vertices and a set S ⊂ V (G) be a solution

of Open Problem 3.0.2. We can produce solution for Open Problem 3.0.1,

graph G′ with n + 1 vertices and a vertex v . Add a vertex v to the vertex

set of G and add edges (v, v′) where v′ ∈ S. V (G′) = V (G) ∪ {v} and

E(G′) = E(G) ∪ {(v, v′) : v′ ∈ S}.G′ is a solution of Open Problem 3.0.1

Similarly if we have a graph G with n vertices and a vertex v, a solution

of Open Problem 3.0.1, we can produce solution for Open Problem 3.0.2,

graph G′ with n − 1 vertices and a set S . Delete a vertex v from vertex

42



C
E

U
eT

D
C

ol
le

ct
io

n

set of G and take S all neighbors of v. Formally S = {v′ : (v, v′) ∈ E(G)},

V (G′) = V (G)−v and E(G′) = E(G)−{(v, v′) : (v, v′) ∈ E(G)}. New graph

G′ with set S is a solution of Open Problem 3.0.2.

From the last two paragraphs we can conclude that there is bijection

between solutions. And bijection function is defined well. All solutions of

Open Problem 3.0.2 can be produced from solutions of Open Problem 3.0.1

and vice versa.

We couldn’t solve above mentioned open problems, but we found several

interesting solutions and patterns.

On the Figure 3.3 you can see a solution of Open Problem 3.0.2. The set

of roots is vertices labeled with stars.(remark: the set of roots can be any

subset of that set also).

Figure 3.3: Solution of f Open Problem 3.0.2

On the Figure 3.4 you can see a solution of Open Problem 3.0.2. The

set of roots is vertices labeled with big black dots or vertices labeled with

”X”.(remark: the set of roots can be any subset of those set also).

43



C
E

U
eT

D
C

ol
le

ct
io

n

Figure 3.4: Solution of f Open Problem 3.0.2

On the Figure 3.5 you can see a solution of Open Problem 3.0.1. The root

is a vertex labeled with big black dot. This solution is derived from solution

on the Figure 3.3. From, this we can see pattern how to construct solution

of Open Problem 3.0.1 from solution of Open Problem 3.0.2.

Figure 3.5: Solution of f Open Problem 3.0.1

On the Figure 3.6 you can see a solution of Open Problem 3.0.1. The root

is a vertex labeled with black star. This solution is derived from solutions on

the Figure 3.3 and the Figure 3.4. From, this solution we can see pattern how

44



C
E

U
eT

D
C

ol
le

ct
io

n

to construct bigger solutions from already know solutions for Open Problem

3.0.1

Figure 3.6: Solution of f Open Problem 3.0.1

45



C
E

U
eT

D
C

ol
le

ct
io

n

Bibliography

[1] P.D. Vestergaard, Finite and Infinite Graphs Whose Spanning Trees are

Pairwise Isomorphic. Annals of Discrete mathematics 41 (1989) 421-436.

Elsevier Science Publishers B.V. (North-Holland)

[2] R. Fischer, Uber Graphen mit Isomorphen Geuisten. Monatsh. f. Math.

77 (1973), 24-30.

[3] L. Friess, Graphen, worin je zwei Geruste Isomorph sind. Math. Ann. 204

(1973), 65-71.

[4] B. L. Hartnell, On Graphs with exactly two Iomorphism Classes of Span-

ning Trees. Utilitas Mathematica 6 (1974), 121-137.

[5] B. L. Hartnell, The Characterization of those Graphs whose Spanning

Trees can be Partitioned into Two Isomorphism Classes. Ph.D. Thesis,

Faculty of Mathematics, University of Waterloo (1974).

[6] K. Wagner, Graphentheorie. Bibliographisches Institut, Mannheim

(1970).

[7] B. Zelinka, Grafu, jejichz vsechny kostry jsou spolu isomorfni, “Graphs,

all of whose Spanning Trees are Isomorphic to each other.” Cas.pro Pest.

Mat. 06 (1971), 33-40.

46



C
E

U
eT

D
C

ol
le

ct
io

n

[8] J. Hopcroft, R.Tarjan, ”Algorithm 447: Efficient Algorithms for Graph

Manipulation” Comm. ACM, Vol. 16, 1973, pp. 372-378.

[9] R.Tarjan, ”Depth First Search and linear Graph Algorithms”, SIAM

J.Comput, Vol. 1, 1972, pp. 146-160

[10] E. Lucas, ”Recreations Mathematiques”, Paris, 1882

[11] G. Tarry,”Le Probleme des Labyrinthes ”, Nouvelles Ann. de Math.,

Vol. 14, 1895, page 187.

[12] S. Even, ”Graph Algorithms”, Pitman 1979.

47


	Introduction
	Definitions

	Depth First Search Spanning Trees
	Applications of Depth First Search 

	Graphs with Isomorphic DFS Spanning Trees
	Bibliography

