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Abstract

Empirical studies suggest that the evolution of output across time is described by a dis-

tribution with the tails fatter than normal. At the same time standard macroeconomics

models are linear and can only replicate this exogenously. I show that replacing the ra-

tional expectations with ones formed under statistical learning can deliver the fat tails

even with using normally distributed exogenous shocks. Monte Carlo experiments using

a small-scale New Keynesian model show that propagation is more reasonable when ra-

tional expectations are replaced on the model‘s final equations rather than when adaptive

learning is micro founded. In both cases a model exhibits large and rare exits that be-

come more pronounced under micro founded rule. An even less rational heuristic learning

propagates the normal shocks as well, but only together with a very high variance.
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1 Introduction

Most of the time economies are progressing normally, not deviating far from the steady

state. Yet short infrequent events that take the economy far away from it happen, leading

to a non normal distribution of the output series across time. This phenomenon has been

recorded by Fagiolo et. al. (2008),(2009) and Christiano (2007) for the worlds major

capitalist economies during the post-war period, in particular for the output growth rate

and the output gap. If this is the case, a next question that arises is whether this is due

to a large exogenous shocks or whether the normal shocks are endogenously propagated

within the economy. The estimation of macroeconomic models using marginal likelihood

relies on the assumption of normally distributed exogenous shocks, thus if former is the

case, macroeconomic modeling of non normality across time would seriously inhibit the

estimation of the models. Therefore in this thesis I provide an explanation how normal

exogenous shocks can be endogenously propagated within the New - Keynesian model to

give the non normal output dynamics described by fat tails. One of the ways to implement

this is through the expectations formation. The same explanation to the non normality

has already been given by De Grauwe (2012a) changing the rational expectations with

the ones formed under two heuristic rules. In this thesis I implement a two standard

versions of a more mainstream statistical learning expectations formation rule into the

standard New - Keynesian model and test if it can propagate the normal shocks as

well. The results from Monte Carlo simulations show that while a model with rational

expectations fails to deliver the desired result, the non normality of output growth rate

and gap can be reproduced under learning by varying a constant gain parameter. A

model with heuristic learning delivers high kurtosis as well, but at the expense of highly

increased second moment of the series analyzed. However, due to either low determinacy

of the model or the very strong propagation dynamics or both, the model occasionally

exhibits unreasonably sharp and large deviations from the steady state.

The paper is organized as follows: first I provide a brief introduction into the topic,
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then follow with the description of statistical learning framework. In the section 5 I

replicate the results by Fagiolo et al. (2008),(2009) using 10 years longer data sample. In

the parts 6-7 I present the model and Monte Carlo simulation results of three different

learning rules.

2 Introduction to the topic

It has been documented in a series of papers that the output growth rates across time

for a single time series are not normally distributed, but in fact their distribution is is

described by fat tails (Fagiolo et al., 2008). In the sequel paper (Fagiolo et al., 2009) the

same pattern is observed for the detrended output time series and the finding is robust

to the filtering method used. In particular the authors fit the growth rate data with the

density that nests Gaussian and Laplace distrubutions:

f(x; b, a,m) = 1

2ab
1
b Γ(1+ 1

b
)
e− 1

b
|x−m

a
|b

After observing from the raw data that the kurtosis is above 4, the estimation

indicates that the b parameter governing the fatness of the tails is close to 1, whereas

the Gaussian distribution would have b = 2. A similar pattern emerges in all major

economies and is robust to serial correlation, outliers and heteroscedasticity.

The sequel paper Ascari et al. (2013) checks if the business cycle models are able

to reproduce this regularity. They show that the basic RBC and medium scale New -

Keynessian as in Smets & Wouters 2003 models cannot produce the fat tail distributions

of output growth from the normally distributed shocks even with models simulated using

second order approximation. This leads the authors to ascribe this to a more established

result that the business cycle models do not have endogenous shock propagation mech-

anism (Cogley and Nason, 1995). Regarding the NK model, a normal technology shock

resulted in a slightly thinner tails, which led the authors conclude that, while its frictions

and rigidities increase the persistence, they also smooth the series of shocks.

2
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In one of several interrelated papers De Grauwe (2012a) shows that a basic New -

Keynessian three equation model with the heuristic forecasting rule described above is

able to produce the fat - tail regularity. However, only the distribution plots without any

formal testing or density estimation as in Fagiolo et al. (2008) are provided in the paper.

The aim of this thesis is to test if the more mainstream approach of adaptive learning is

able to produce the fat - tails of output growth rate in the New - Keynessian models.

3 Adaptive Learning

There have been many different attempts to model the beliefs and expectations that may

not be rational or formed under an imperfect information. Such attempts include a news

- driven business cycles (Beaudry and Portier, 2014), where information friction appears

in the expectation about the future technology shock. While in this setup expectation is

still formed rationally by the agents using Bayesian updating, the noise of the signal of

future technology shock may cause irrational boost of prices and employment in anticipa-

tion of the technology boom. Close, but much less explored way to limit the knowledge is

to impose the restriction that the agents neither know the inflation target nor are aware

of some exogenous processes hitting the economy or to introduce the stickiness of infor-

mation available to the agents using the Calvo type setting Milani (2010). In all of these

frameworks expectations are still formed rationally, but their formation is disturbed or

limited by the information available. On the other extreme is the heuristics approach

postulated by Paul De Grauwe (2010), (2012a). Here economic agents experience cogni-

tive limitations and keep switching between two biased forecasting rules Et(yt+1) = 0 or

Et(yt+1) = yt−1 depending on which performs better in terms of RMSE. Here the only

remainder of rational behavior is the willingness of the agents to learn from the past

mistakes.

In the middle of the above approaches stands the adaptive learning literature. Un-

der rational expectations the agents are assumed to possess the full knowledge of the

3
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model and the exogenous shocks hitting the economy. From that follows that agents

know the steady state values of the model’s variables and the next periods expectation is

formed using the coefficients from the MSV solution of the system. However, according

to Honkapohja and Evans (2001):

”In empirical work economists, who postulate rational expectations, themselves do not

know the parameter values and must estimate them econometrically. It appears more

natural to assume that the agents in the economy face the same limitations on knowledge

about the economy”

The basic idea of the method is to impose that the agents do not have a complete

knowledge about the the reduced form of the economy. This could happen when the

structural parameters of the model are not known, or even if they are, then it is not clear

how they map into the reduced form of the model used in forming the expectations. The

most common approach is to assume that the exogenous shocks hitting the economy and

the structure of the reduced form are known, but the coefficients are re-estimated and

updated each period once new data becomes available. A simple example illustrates the

basic idea:

Suppose that the model is described by the law of motion

yt = α + β0Et−1(yt+1) + β1Et−1(yt) + κwt + εt (1)

The expectation E(yt+1) is unknown and is predicted by the agents using their

perceived law of motion (PLM), which in this specific case is supposed to take the form

yt+1 = ât + b̂twt−1 (2)

wt = ρwt−1 + ν (3)

The coefficients ât, b̂1t, b̂2t are updated each period with the least squares, which

4
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written recursively takes the form

φt = φt−1 + t−1R−1
t−1zt−1(yt − φ′zt−1)

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1)

Realized values of yt1 are mapped into the model, which this gives the actual law

of motion (ALM) of the economy:

yt = T (φt−1)′zt−1 + κεt + νt (4)

where T() is called the T-mapping. In this particular case

T (φt−1) = T

a
b

 =

 α + (β0 + β1)a

(β0 + ρβ1)b+ κρ

 (5)

And Rt is the matrix of the second moments of the variables used in the forecasting

equation

Expectations are in turn determined by the evolution of y through equation (1),

but the effect of irrational forecast is not conceived by the agents and thus the learning

is done by observing the realized values of y

φt = φt−1 + t−1R−1
t−1zt−1(T (φt−1)′zt−1 + κεt + νt − φ′zt−1)

Rt = Rt−1 + t−1(zt−1z
′
t−1 −Rt−1)

This unawareness makes the system self-referential, where a positive shock to y

makes the agents revise their forecasts for the next periods value. Those forecasts are

subsequently mapped into the actual law of motion of the economy and keep affecting

the further forecasts and the evolution of the economy. As shown by Williams (2014) and

5
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Evans and Honkaphoja (2001) a few subsequent exogenous shocks can move the system

away from the steady state, to which it may not come back immediately or result in the

periods of higher volatility (Slobodyan and Wouters, 2012b).

3.1 Variations

3.1.1 Gain

As mentioned before, every least squares equation can be written in the recursive form

at = at−1 + t−1(pt − at−1) (6)

Under some general conditions (Honkapohja and Evans, 2001) this type of learning even-

tually converges to a rational expectations equilibrium, as when t→∞, at = at−1. This

type is called least squares learning. An alternative is to impose some constant value g

in place of t−1, which is known as constant gain learning. A higher value of g means that

agents forget past information more quickly and are ready to believe that the current

changes are due to a structural break in the economy.

Another, computationally even easier way known as stochastic gradient learning

is to impose g = t−1Rt−1. Here the effect of the deviation of a variable on parameter

updating does not depend on the variance of the variables used in the forecasting equation.

3.1.2 Horizon

There are two main ways used in the literature to incorporate learning into the model.

A more traditional way also known as Euler equation learning requires to simply replace

a one period ahead expectation with its forecast under the adaptive learning procedure.

While easier to implement, the rule is not derived from anywhere and sometimes it

becomes not clear what is forecasted by whom. For instance with the Euler equation

6
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taking the form

ĉt = Et(ĉt+1)− 1

σ
(it − Etπt+1 − ρ) (7)

this would mean that the agent is forecasting his own consumption next period. This

may be justifiable in the model, where all the income goes to consumption, but most of

the models are more complex. Another way introduced by Preston (2005) is to derive

the individual consumption rule depending on the variables exogenous to the agent from

the intertemporal budget constraint and Euler equation. Then expectation of (ĉt+1) is

formed by forecasting the exogenous variable using the same least squares procedure. The

forecasts are made for infinite future not realizing that the parameters will be updated

in the next period. In case of a basic NK model, such a rule would look like

ĉt = (1− β)ω̄it + Êi
t

∞∑
T=t

βT−t[(1− β)Ŷ i
T − βσ(̂iT − π̂T+1) + β(gT − gt+1) (8)

where Y i is individual income and g the subjective discount factor and ω̄it is indi-

vidual wealth. Such a rule has to be derived for each variable that is maximized inter

temporally in a model

3.1.3 Other

Other possible variations include varying the perceived law of motion - it could be a

simple VAR wich variables chosen by discretion or observed by the agent, or an MSV

solution of the model Also it matters if the exogenous processes are included in the

forecasting equation. Alternatively it has been shown by Slobodyan and Wouters (2012b)

and Garceles-Poveda (2007) the specification of initial beliefs about the parameters of

the forecasting equation matter, in particular whether they are consistent with rational

expectations or not. Lastly, instead of uncertainty about the parameters of the model,

it is possible to introduce uncertainty about the structural features of the economy, such

as the production function, so that agents optimize given their beliefs Williams (2004).

7
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However due to i.i.d. technology shock assumption this approach thus far could only be

implemented in a highly simplified models.

4 Relevant Literature

The first strand of the literature on adaptive learning was mostly preoccupied with the

stability and learnability of the equilibria under the least squares learning. The fact that

the steady state is learned through time gave a greater support for the rational expecta-

tions assumption. However, constant gain and stochastinc gradient learning imply per-

petual learning and convergence of beliefs to a stochastic distribution around the steady

state (Honkapohja and Evans, 2001). After convergence of adaptive learning mechanism

had been established, a news strand started the explore the response of the systems with

adaptive learning to exogenous shocks. Using the long-horizon consumption decision rule

as in Preston (2005) in the RBC model with the capacity utilization Eusepi & Preston

(2011) find that learning mechanism delivers the same volatility of output as RE models

using technology shock with 20 % smaller standard deviation. This comes from the am-

plification of the substitution effect due to changing beliefs in response to the technology

shock, which makes the investment and working hours to increase more relative to RE

model. The authors also note that the effect comes from the differences from the RE

in the forecasted variables at longer horizons, meaning that the Euler equation learning

would not be able to reproduce this. Milani (2006), (2007) asserts that the model dy-

namics to a very large extent depends on the choice of the gain parameter and therefore

estimates it jointly with other parameters of the model using Bayesian methods. It ap-

pears that the models with learning fits the data better in terms of marginal likelihood

and that under learning, the mechanical sources of persistence, such as habit formation

and inflation indexation become superfluous. Also the model with Euler equation learn-

ing fits the data better than the one with infinite horizon learning (Milani, 2007), as the

need to make infinite horizon forecasts also means large forecast errors and thus lower

8
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fit. Milani (2007) suggest incorporation of learning into the medium-scale DSGE models

as an area for future research. This is done by Slobodyan & Wouters (2012a), (2012b)

using the Euler equation type learning. Besides providing evidence that the model with

learning gives a better fit the first paper (2012a) also reveals that among the two possible

sources of endogenuous propagation - misspecified information set in forecasting equation

and the parameter updating - the former is more important. Also it is shown that the

existence of constant in the forecasting equation, meaning that the belief about the trend

growth rate or the steady state is being updated, matters for the fit. The other paper

(2012b) experiments with different specifications of learning - initial beliefs, information

set and gain parameter in the Smets & Wouters 2007 model. In most of the cases the

behavior of the system exhibits so called rare events with higher volatility and large devi-

ations from the steady state values, similar to those in Williams (2004). They occur with

even at small constant gain parameter 1, but become more frequent and large with the

large g values and more misspecified forecasting equation. The reason why learning gives

a better fit comes from the fact that it can be perceived as a relaxation of restriction of

a constant parameters in the forecasting equation, thus the model uses more information

from the data. At the same time the forecasting power of the model deteriorates, espe-

cially for consumption and the interest rate (Slobodyan and Wouters, 2012b).

Perhaps the most similar although not directly related to this work is the study by

Benhabib and Dave(2014), who use a Lucas asset pricing model with stochastic gradi-

ent learning to generate the fat-tail distribution of price to dividend ratio. Under some

restrictions for the distribution of variables governing the evolution of forecasting coeffi-

cient, they analytically prove that the model produces fat tails, more specifically that the

distribution follows a power law. Also De Grauwe (2013) tries to explain the movement

of the exchange rate using a model with either heuristic forecasting rules as in (Grauwe,

2010) and (DeGrauwe, 2012a) or with the adaptive learning. Reportedly both mecha-

nisms are able to replicate the fat-tails of the exchange rates, but only adaptive learning

1small means around 0.01 or 0.02
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can account for the volatility clustering while only heuristics can reproduce large and

prolonged deviations from the fundamental. 2

There is also a huge literature analyzing the optimal monetary policies under learn-

ing, but since this is not an issue of this study, it will not be reviewed here. However

it is worth mentioning that a policy not taking into account the existence of learning in

the model is suboptimal and even amplifies variability of economic aggregates. Under

this setting the aim of the central bank becomes to tame the forecasted persistence of

inflation (Gaspar et al., 2006). To my best knowledge there have been no studies made

so far trying to explain the non-normal output growth using adaptive learning.

5 Empirical evidence

Before going into the modeling I replicate the major results from Fagiolo et. al (2008),

(2009). The empirical distributions in figures 1-2 from the post-war US data including

years 1947-2015 suggest non-normality for both GDP growth rate and gap. 3. This is

especially acute for output growth rate, which most of the time appears to be clustered

around the mean, but with a low probability exhibits a values far from the mean in

absolute value. The output gap 4 distribution looks more spread, yet still contains value

that would be unlikely under normal distribution.

2This is referred to as the disconnectedness phenomenon in the original paper
3 GDP data is taken from research.stlouisfed.org/fred2. The data series used is a chain linked sea-

sonally adjusted quarterly US GDP
4series for output gap end in 2013. The estimates of the trend at the end of the sample are unreliable,

so it was estimated using all the data available, but only values until 2013 are used as reliable

10
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Figure 1: US GDP growth rate, postwar sample

Figure 2: US output gap,postwar sample

Table 1: Empirical moments: US data

Growth rate Output gap

Mean 0.0079 -0.0001
Standard deviation 0.0097 0.0166

Skewness -0.0537 -0.5768
Kurtosis 4.3753 3.5845

J-B p-value 0.0017 0.0027

Table 1 reports the first four moments of the GDP growth rates and the output gaps

11
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in a given period 5. It is apparent that both series are not normal. Output growth rate

has kurtosis 4.37, which is way higher that 3 implied by the normal distribution. At the

same time its skewness is negligible. This allows to conclude that the Jarque-Berra test

rejects the non-normality due to fat tails as indicated by a low p-value. The output gap

is non-normal as well according to Jarque-Berra test, yet it is described by both higher

than normal kurtosis and sizeable skewness.

Next I fit the data to the subbotin density used in Fagiolo et. al (2008), (2009). Since

it is characterized my many local maxima, the usual estimates obtained by minimizing

of the likelihood are unreliable (Botazzi and Secchi, 2008). For this purpose I use a

”Subbotools” package, which performs the maximization over multiple sub intervals and

then picks the highest one 6. Parameters a,b,m describe the scale, shape and the location.

b=2 recovers a normal distribution, while b=1 gives Laplace. The function

f(x; b, a,m) = 1

2ab
1
b Γ(1+ 1

b
)
e− 1

b
|x−m

a
|b

is symmetric, while the output gap of the data series has skewness different from 0.

To check if it is significantly different I repeated the estimation of skewness over 1000

bootstrapped samples and it appeared that it is more than 2 standard deviations away

from 0. In this cases I also fit the distribution with the asymmetric Subbotin density

available in the Subbotools package as well.7

. The result is provided in the appendix 2.

The results from the estimated densities are in line with Fagiolo et. al. (2008),(2009).

The estimated parameter b̂ for the output growth rate is 1.1 with the 95% confidence

interval not including 2, which suggest that it is better described by the Laplace dis-

tribution. The estimated b̂ for the output gap is 1.6, still lower than normal, however,

asymptotic confidence interval includes 2. The results from fitting it with the asymmetric

5growth rate is definted here as the first difference of log(Y), output gap is the deviation of log(Y)
from the trend obtained using Hodrick - Prescott filter

6The package is freely available at http://cafim.sssup.it/ giulio/software/subbotools/. It is a part of
General Scientific Library software

7Asymmetric density is of the same form, but allows for different b and a parameters for the data
above and below 0

12
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Subbotin density presented in the appendix 2 table 12 reveal that it is in indeed skewed

with fat left and thinner that normal right tail.

Overall the empirical evidence supports the non normality of the series found in

Fagiolo et. al. (2008) (2009) and Chistiano (2007). Contrary to this Frenke (2015)

asserts that the non normaliyt is a result of a structural break in the US monetary policy

in 1983 that resulted in lower output volatility. Then non normality according to him is

a result of pooling two subsamples with different volatilities. However even taking this

into account the non-normality cannot be rejected universally.

Table 2: Estimated parameters of the Subbotin density:US data

Growth rate Output gap

parameter value std. err value std. err
b 1.102 0.1268 b 1.603 0.2057
a 0.007312 0.000549 a 0.01517 0.001051

m 0.007759 0.000464 m 0.000388 0.000992
log lik -3.2657 log lik -2.6866

(Fagiolo et al., 2008) also estimate the data purified from autocorrelation nad het-

eroscedasticity by using the residuals from the best fitting arima model to fit the shocks

hitting the economy with the same density. Such problems could in fact have biased the

estimates reported here, but according to Frenke (2015),the usage of residuals from the

fitted model means to assume that the shock propagation mechanism in the economy is

linear. In this work I do not take a stance on which one, the propagation mechanism is

nonlinear or the shocks are non normal. Instead, the purpose is to analyze how a model

could give rise to a non normally distributed variables given a normal shocks. For this

reason I abstain from estimating the density of the fitted residuals.

6 Model

The model used in here is a basic small scale DSGE model including trend growth,

Calvo price setting,external habit formation in consumption and price indexation to past

13
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inflation. The persistence parameters are included to have the model as comparable as

possible with the one used in De Grauwe (2012a), that is to have the lagged variables

in the aggregate demand equation and the NK Philips curve in order to have the MSV

solution of the form:

kt = λ0 + λ1kt+1 + λ2kt−1 + λ4zt

zt+1 = ρzt + et+1

(9)

where k is a vector of endogenous state variables and z is a vector of exogenous states.

The trend growth is included to back out the model implied output growth rate. The

model is simulated under both Euler equation learning and the infinite-horizon learning

rule as in Preston (2005). For such a study it would be more meaningful to use a richer

model that is more widely used in practice and is able to fit the other stylized facts, i.e.

Smets and Wouters (2007) or Christiano et. al (2005). However, for the models of this

size the derivation of infinite horizon learning is hardly feasible, which would not allow

for a comprehensive study of the effect of learning. In the following sections I lay out the

model.

6.1 Households

Households maximize the infinite stream of utility.

max

∞∑
T=t

βT−t
[
(ln(Ct − ηCt−1)− N1+φ

t

1 + φ

]
(10)

Parameter η reflects the degree of habit and Ct−1 is the aggregate level of consumption

that is used as a point of reference and is external to the agent. Parameter φ is the inverse

of the Frisch elasticity of labor supply and Nt stands for the supply of labor. Since the

economy exhibits trend growth, the inter temporal elasticity of substitution parameter

σ is imposed to be 1 and the utility is additively separable to give the standard Euler
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equation without labor. Households maximize utility subject to a budget constraint:

Ct +
Bt

Pt
≤ Wt

Pt
Nt +

Πt

Pt
+ it−1

Bt−1

Pt
(11)

where it−1 is defined as the gross interest rate

The implied first order conditions are

Ct : λt =
1

Ct − ηCt−1

Nt : Nφ
t = λtWt

Bt : λt = λt+1βitπ
−1
t+1

All the variables except Nt πt and Πt are growing at the trend rate γ. Before log-

linearizing, first order conditions are written in terms of stationary variables

Using ct = γ−tCt, wt = Wt

Ptγt
, Ξt = λtγ

t−1 etc. The labor supply relation and the

consumption euler equation become:

Labor supply: Nφ
t = wtξtγ

Consumption Euler equation: Ξt = βγξt+1itπ
−1
t+1
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6.2 Production side

Intermediate goods are produced with the diminishing returns to scale production func-

tion

Yt(j) = AtN
1−α
t (j) (12)

The technology shock follows an AR(1) process

ln(At) = ln(γ) + ρln(At−1) + εt (13)

Intermediate goods are aggregated into the final ones using Dixit-Stiglitz aggregator

Yt =
[ ∫ 1

0

Yt(i)
ε−1
ε di

] ε
ε−1 (14)

Given this, a cost minimization problem gives the demand for an intermediate good as a

function of aggregate output and prices

Yt(i) =
[Pt(i)
Pt

]−ε
Yt (15)

The labor market is competitive, meaning that the Wt equals the marginal product of

labor. Profit maximization under flexible prices yields

Pt(i) =
ε

ε− 1
MCt (16)

with nominal marginal cost being MCt = 1
1−αWtY

α
1−α
t A

−1
1−α
t

The prices evolve under Calvo type price setting, where ξ is the probability that

the price will stay fixed for the next period. When not changed, the price is indexed

to the inflation rate in the previous period with the extent of indexation controlled by

the parameter ϕ, 1 meaning complete indexation and 0 - none. Under this scheme the
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aggregate price evolves according to the following law of motion:

Pt =

[
(1− ξ)

(
Pt−1π

ϕ
t−1

)1−ε
+ ξ(P ∗t )1−ε

] 1
1−ε

(17)

The inflation rate is defined as πt ≡ Pt
Pt−1

The firm profit maximization problem then takes the form

max
∞∑
T=t

(βξ)T−t
U ′(CT )

U ′(Ct)

(
πϕt−1,tt−1P

∗
t

(πϕt−1,tt−1P
∗
t

Pt+T

)−ε
Yt+T −MCt,t+T

(πϕt−1,tt−1P
∗
t

Pt+T

)−ε
Yt+T

)
(18)

The stationarized first order condition becomes

max

∞∑
T=t

(βξ)T−t
U ′(cT )

U ′(ct)
yT

(
P ∗t
Pt
πϕt−1,tt−1 −

ε

1− ε
mct,t+T

Pt+T
Pt

)
(19)

A more detailed derivation of the model is provided in the appendix.

6.3 Final equations

The aggregate dynamics of the model are given by

γŷt − ηŷt−1 = γEt(ŷt+1)− ηŷt − (γ − η)(̂it − π̂t+1)

π̂t − ϕπ̂t−1 = β(π̂t+1 − ϕπ̂t) + κ

((φ+ α

1− α
+

γ

γ − η
)
ŷt −

η

γ − η
ŷt−1 −

φ+ 1

1− α
ât

)
ât = ρât−1 + εt

κ = 1−ξ
ξ

1−βξ
1+ωβ

The system is closed with the smoothed interest rate rule

ît = ρiît−1 + (1− ρi)ψππ̂t + νt (20)
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where νt is the monetary policy shock.

In is a common practice to write the model equations in terms of output gap and

to use the Taylor rule. In the adaptive learning setup this raises some conceptual issues.

The main premise for using the adaptive learning framework is the idea that agents do

not know the structural parameters of the model or even if they do, it is not known

how they are mapped into the model‘s reduced form. At the same time the agents are

aware of the shocks hitting the economy and know their laws of motion. The main idea

of this particular study is to test the implication of the framework for the dynamics of

output growth rate and the output gap. However, if written in terms of output gap the

technology shock appears in the model through the natural rate of interest. In this case

given that habit formation natural interest rate is rnt = γ(Eŷft+1 − ŷft ) − η(ŷft − ŷft−1)

and each ŷft is an AR(1) process, so there is no direct correspondence with the current

at. Writing the model in this way would violate the above mentioned assumption. An

alternative way to overcome this problem, as done by Milani (2006), (2007) is to simply

impose that rnt follows an AR(1) with persistence parameters estimated separately from

other structural parameters. This approach simplifies the model, but is not entirely sound

and does not allow to back out the sticky price output. In the end, having the output gap

or the Tailor rule in the model requires to have the flexible price output in the aggregate

equations. Having it as an exogenous variable violates the major assumption regarding

the information contained by the agents. Including flexible price output as a state is

technically complicated and conceptually daunting, as this would mean that it is actually

observed and forecasted. Instead after simulating the model I additionally calculate the

yft to back out the model implied output gap. For the same reasons the interest rate rule

does not contain the output gap.

It is also common to use expected value of inflation in the interest rate rule. Such

a case would pose a choice whether the central bank forms expectations rationally or the

same learning procedure as all the agents in the economy. However if the central bank
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is aware that expectations in the economy are not formed rationally, its policy problem

becomes to tame the expectations instead of stabilize the inflation (Gaspar et al., 2006).

Since the analysis of the policy rules is beyond the scope of this study, I keep the agnostic

stance on this issue by using the current value of the variable in the interest rate rule.

6.4 Model with Infinite Horizon Learning

The final equations for this type of learning are derived from the combination of con-

sumption Euler equation with the intertemporal budget constraint (21) and from the

firms optimal price - setting decision (22). A more detailed derivation can be found in

the appendix. Law of motion for output

yt

(
βη

γγ
+

γ

γ − β
− 1

)
= +yt−1

(
γη

γ(γ − β)
− η

γ

)
− β(γ − η)it

γ(γ − β)
+

+
∞∑
T=t

(
β

γ
)T−t

(
β(γ − η)pt+1

γ(γ − β)
− yt+1

(
η

γ

(
β

γ

)2

− β

γ

)
−
(
β

γ

)2
(γ − η)it+1

γ − β

) (21)

Law of motion for inflation

πt − ϕπt−1 =
1− ξ
ξ

κŷt
(
ω2 −

η

γ − η
βξ
)
− 1− ξ

ξ
κ

η

γ − η
ŷt−1 −

1− ξ
ξ

βξϕπ̂t+

+
1− ξ
ξ

∞∑
T=t

(
π̂t+1(βξ − ϕ(βξ)2

)
+

+
1− ξ
ξ

∞∑
T=t

(βξ)T−t
(
ŷT+1(κω2βξ − κ

η

γ − η
(βξ)2

)
+

1− ξ
ξ

∞∑
T=t

(βξ)T−t
φ+ 1

1− α
âT
)

(22)

The interest rate rule is the same as before

ît = ρiît−1 + (1− ρi)ψππ̂t + νt
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6.5 Calibration

Since a model with the infinite-horizon learning cannot be estimated with the regular

software, a problem arose getting the values for the parameters that cannot be calibrated

from the steady-state. At the same the the purpose of the study is not to fit the model

to the data, which makes it sensible to have the reasonable and regular parameter values.

The parameters β, γ and α where calibrated from the steady state using the US quar-

terly data from 1984 to 2015. 8. Since the 0 steady state inflation is assumed throughout,

β = 1
i
, i being the sample average of the nominal 3-month T-bill. γ is the average quar-

terly growth rate of the real US GDP and α is the sample average of the capital share of

gross domestic income.

According to Milani (2006), (2007), when adaptive learning is added to the model,

the parsistence parameters η and ϑ become superfluous. The model used in his papers is

the same model as here, the only difference being the interest rate rule, definition of the

shock process and the fact that habit is internal. Anyway I use the estimates for η and ϑ

from Milani (2007). The value for the substitutability parameter ε is usually assumed and

varies significantly in different studies. Simulations showed that this parameter affects

the model dynamics very little, so I simply use the value 7.69 from Milani (2007).

For the other parameters I simply assumed reasonable values. The parameter θ is

assumed to be 0.5, to give Frisch elasticity of labor supply equal to 2, consistent with

the 40 hour work week. Calvo parameter ξ is set to 0.67, implying an average price

duration of 9 months. The interest rate smoothing is assigned 0.5 to be the same as in

the DeGrauwe (2012a). Ideally a monetary policy shocks should be an i.i.d. process, but

to make the matrix defining the evolution of zt in (9) invertible 9 is assigned to be an

AR(1) process with 0.01 coefficient on the lag. σ = 1 to allow for a trend growth in the

8Data was taken from St. Louis FRED database at research.stlouisfed.org/fred2/
9This is required by the matlab codes which simulates the model
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model.

Table 3: Structural parameters

Parameter Value Source

Discount rate β 0.9629 Calibrated from the data
Trend Growth rate γ 1.0066 Calibrated from the data
Labor Share α 0.362 Calibrated from the data
Risk aversion σ 1 Imposed
External Habit η 0.117 Taken from Milani 2007
Inverse Frisch elasticity of labor supply θ 0.5 Assumed
Inflation Indexation ϑ 0.032 Taken from Milani 2007
Degree of Substitutability ε 7.69 Taken from Milani 2007
Calvo Price Stickiness ξ 0.67 (0.92 in inf-hor) Assumed /Milani 2007
Interest Rate Smoothing ρ 0.5 Assumed
Int. Rate reaction to Inflation ψπ 1.5 Assumed
Persistence of Technology ρa 0.9 Assumed
Persistence of mon. pol. Shock ρi 0.01 Assumed
Standard Deviation of techn shock σa 0.0072 Assumed
Standard Deviation of mon. pol shock σi 0.01 Assumed

6.6 Learning

In this exercise I implement to most standard form of statistical learning with the constant

gain. Since the model is small it is reasonable to assume that the MSV form is known to

the agent, also all the endogenous variables are observed. Therefore the perceived law of

motion is assumed to take the same form as the MSV solution, meaning that the agents

know the structure of the economy, but not how the structural parameters are mapped

into the reduced form. The forecasting equation takes the form:

kt = P k
t−1kt−1 + P z

t−1zt−1 (23)
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where kt =


ŷt

π̂t

ît

 and z =

ât
ν̂t

 and xt =

kt
zt

 The forecasting coefficients are updated

once the new information becomes available

Rt = Rt−1 + g(xt−1x
′
t−1 −Rt−1)

Pt = Pt−1 + gR−1xt−1(kt − x′t−1Pt−1)

There are many different ways how to initiate the learning algorithm and the way

it is done may lead to different dynamics and the forecast errors. The initial values of

P and R can be estimated from the pre-sample data (Slobodyan and Wouters, 2012b),

estimated from the model data, simulated under rational expectations, started at ad-hoc

values (Garceles-Poveda and Giannitsarou, 2007) or may begin at the rational expecta-

tions equilibrium. Since this model is not estimated on the real world data, a natural

alternatives would be to start from the rational expectations equilibrium or from using

the coefficients obtained from regressing a model simulated data. The latter is concep-

tually puzzling due to a self-referential nature of the model, as according to Garceles -

Poveda (2007), this would require the agents to form the correct expectations and thus

know the REE before they start learning about it. Initiating the system at REE suffers

from a similar problem, but at least can provide an illustration of how the economy be-

haves if we start observing it at REE. Since under constant gain learning the forecast

parameter values converge to the ergodic distribution around the REE (Honkapohja and

Evans, 2001), it being at REE is not unrealistic. For this reason I initiate the simulation

at the RE values of P and R.
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7 Simulations

Simulating the model with adaptive learning is not a trivial task. The official Dynare

does not contain the option for it as it cannot deal with time-varying law of motion pa-

rameters. The most popular alternatives available online are the replication code from

the Slobodyan and Wouters (2012a), which includes the Dynare modification for Euler

equation learning. However, it is a replication code not supposed to work for every model

and has a very limited range of learning options. Also it is possible to use a Macroe-

conomic Model Base Dynare package10. Through a user - friendy interface it allows to

run a set of the most popular DSGE models estimated under euler equation learning.

Still both of these option lack flexibility in choosing a model, initial conditions, PLM and

most importantly do not allow for an infinite horizon learning. Bruce Preston‘s matlab

code is available online as well, but is very model specific. For my purposes I used a

code provided by Garceles-Poveda & Giannitsarou (2007), which runs the model under

learning after calculating its MSV solution. Written for an Euler equation learning, the

code is relatively simple to modify and works well with a small scale the models like the

one used here 11.

Model is written and simulated using the deviations from the stationarized steady

states of the variables and the flexible price output was calculated outside the model

once the series of technology shocks was known. The the output growth rate was ob-

tained by getting the level of output from its deviation, re-trending it and applying the

transformation

g(t) =
y(t)− y(t− 1)

y(t− 1)

The output gap was backed out using xt = ŷt − ŷft
10available at macromodelbase.com
11A detailed explanation about the modifications made to the code can be found in the appendix
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7.1 Euler equation learning

To get a better sense of how learning affects the behavior of the system I provide graphs

of an ordinary paths 12 of the output growth rate and gap simulated for 1000 periods with

the normally distributed shocks under the REE and with the gain parameter taking the

values 0.01, 0.02 and 0.05 implying the usage of 25, 12.5 and 5 years of data respectively.

The effect on the growth rate can be seen more clearly as it is less persistent. Overall

as the gain increases series become more volatile, large absolute values become more

frequent. Under the gain 0.05 both of the series start to exhibit large jumps known as

exits or escapes happening when the model is hit by an unlikely combination of either

positive or negative large shocks causing the beliefs to severely propagate the response.

In simulating models with learning, it is common to use a projection facility - to

stop updating the coefficients in the PLM once they become explosive - to avoid an

unreasonably high escapes. The most usual way to implement it is to simply set the

coefficients in the PLM to their values at t-1. Theoretically it should not be invoked very

often under the gain as large as 0.05. Also it is normal to eliminate the simulations when

it is invoked too often. In a current case quite often the facility was invoked in more

than 30 % of the periods, possibly reflective a small determinacy space of the model 13.

Moreover while being able to keep the series in a tight neighborhood of the steady state,

it was also giving an even more rare and exponentially larger deviations than those seen

in the graphs below, which I suspect be the result resetting the parameters for too many

times, while forecast errors continue to accumulate. This led me to abstain from using

the facility.

12simulations were done using the same seed
13I also tried to run the model with high values of η and ϑ, but could not find a parameter combination

that would not violate Blanchard - Kahn conditions
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Figure 3: typical bahavior of simulated output growth rate and gap series with different

constant gain parameters
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For the statistical inference I performed a 700 Monte Carlo simulations for each

value of the gain with the length of 270 quarters, approximately equal to the length of

the longest available post-war data series. The numbers reported in the tables 4-7 are the

means over the given statistic or estimate of each Monte Carlo simulation. Occasional

huge exits were contaminating all the estimates. To tackle this I removed the series

containing a large deviation, which I defined as an observation that is more than seven

times larger in absolute value than the standard deviation of the series that would prevail

under the rational expectations14.

As seen in the tables 4 and 5, increasing the gain leads to consistently higher

standard deviations and the kurtosis, even after rare events are excluded. Also the

average p-values of the Jarque-Berra test decline. Even though they are still above 10%

on average with the gain being 0.05, it is apparent that the normality is being rejected in

the increasing share of the simulated series. Under the 0.05 gain for both growth rate and

the gap it is rejected in around 2/3 of the sample, suggesting the relatively high average

p-value is affected by a small number of outliers. The means and the skewness are not

affected, indicating that both of the series remain symmetric. Also as the gain goes up,

an increasing share of the simulated series have to be discarded due to containing an

unlikely event.

Table 4: growth rate statistics

gain Mean St. dev Skewness Kurtosis JB p-value # of p-values < 0.05 sample

0 0.007003 0.028786 0.080713 3.047506 0.347497 64 700
0.01 0.00704 0.029964 0.099807 3.607333 0.245692 200 500
0.02 0.007051 0.03037 0.089993 3.837327 0.220389 157 404
0.05 0.007081 0.031382 0.161483 4.79983 0.105751 128 183

The estimation results in the tables 5, 6 show that learning mechanism is generally

able to produce the fact tails of the growth rate and gap series. As in Ascari et. al (2013)

the sources of stickiness and persistence limit the propagation of the shocks and give the

14A very similar approach was taken in (Slobodyan and Wouters, 2009)
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Table 5: output gap statistics

gain Mean St. dev Skewness Kurtosis JB p-value # of p-values < 0.05 sample

0 3.33E-05 0.048205 0.015464 2.876194 0.197917 202 700
0.01 -9.2E-05 0.048336 -0.00017 3.286533 0.166645 252 581
0.02 0.000419 0.049318 0.025963 3.607906 0.15998 225 505
0.05 0.00016 0.049242 -0.02933 4.930768 0.111643 217 343

tails thinner than normal, especially in case of output gap. As the gain increases, the

parameter b stably declines towards 1. However at the gain 0.05 it is still not as low as

seen in the data (see table 2 pooled growth rate sample). It could be possible to keep

increasing the gain, but this posits a trade off that huge share of the simulations would

have to be discarded. At the same time larger gains imply a very short memory and

are not consistent with the empirical estimates around 0.01 and 0.02 (Orphanides and

Williams, 2005)15. Another limitation is that the learning method does not differentiate

between going up or down and thus cannot on average generate a skewed distribution,

similar to that of the output gap series for instance. A single simulated series can be

highly positively or negatively skewed with the same probability however.

Table 6: growth rate estimations

b a m likelihood

RE 2.007817 0.028608 0.006991 -2.133884
-0.299913 -0.001932 -0.000383

0.01 1.852834 0.028767 0.006951 -2.098553
0.309770 0.002471 0.000447

0.02 1.800000 0.028700 0.006930 -2.090000
0.339112 0.002544 0.000516

0.05 1.537931 0.027801 0.006908 -2.065006
0.277716 0.003492 0.000723

15gain estimated by fitting the model to match the expectations in the professional forecasters survey
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Table 7: output gap estimations

b a m likelihood

RE 2.288053 0.049529 -0.000012 -1.629459
0.667595 0.008004 0.012994

0.01 2.163203 0.048556 -0.000049 -1.634029
0.707790 0.010210 0.012346

0.02 2.006480 0.048128 0.000377 -1.618417
0.595835 0.009980 0.012683

0.05 1.722022 0.045352 0.000212 -1.641723
0.594743 0.013876 0.012146

7.2 Infinite Horizon Learning

Next I repeat the same exercise for he model with the infinite horizon forecasting rule. The

first two terms in the consumption rule (see appendix) reflect the expected total lifetime

income and make the rule in line with the permanent income hypothesis (Preston, 2005).

Since there is a direct correspondence between consumption and output in the model, this

provides some intuition why the output growth and the gap are less volatile than under the

previous rule. At the same time the agents know the persistence of the technology process

and use this in calculating its infinite discounted sum, which means that this system is

much more responsive to the current shocks. To limit this sensitivity I increased the Calvo

parameter to 0.92, which is a value estimated in Milani (2007) under the same learning

rule. However even then the simulated series exhibit unreasonably large deviations both

with and without projection at the gain parameter as low as 0.01 as can be seen in the

last row of simulated paths. In the least squares constant gain learning deviations may

arise either due to large gain or low variance-covariance matrix. In a current case, this

is in a large part due to the latter (see appendix for the REE coefficients and covariance

matrices), as the exogenous process have low standard deviations meaning that the new

information is trustable and taken into account with a large weight in the learning process.

In contrast, stochastic gradient learning 16 provides a much more reasonable dynamics of

16in stochastic gradient learning parameters are uptated with Pt = Pt−1 + gxt−1(kt − x′t−1Pt−1) not
taking R into account
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both variables. From the first look at the system dynamics larger gain tends to increase

the variability of both output growth rate and the gap relative to the REE. At the same

time escapes begin to occur at a relatively high constant gain value of 0.2.

The statistics and estimates from the Monte Carlo simulations show a similar dy-

namics to the previous model under REE. Since least squares constant gain learning gives

too much variability and too many samples have to be discarded, it is not analyzed here.

The stochastic gradient learning (tables 8-11) on the other hand does not generate that

many exits so that even at the gain equal 0.4 a half and 1/3 of the samples for the growth

rate and the gap respectively could be included in the estimation. However being able to

provide more stability, the method does not create enough propagation. In case of output

growth rate it can produce kurtosis only slightly higher than 3 with the constant gain

as large as 0.2 and 0.4 implying memory of 5 and 2.5 quarters respectively. The same

pattern can be seen in the estimation results in the table 10 the average of the estimate

for b̂ parameter being 1.7218 at the largest gain used.

Table 8: Statistics, growth rate

gain Mean St. dev Skewness Kurtosis JB p-value # of p-values < 0.05 sample

RE 0.006828 0.021393 0.063751 3.018645 0.350522 62 1000
0.01 0.006861 0.022651 0.065879 3.032529 0.353346 81 1000
0.05 0.006857 0.023234 0.066964 3.049591 0.345828 95 1000
0.1 0.006875 0.024142 0.078734 3.080547 0.330432 114 999
0.2 0.006934 0.026391 0.079428 3.239235 0.293288 191 975
0.4 0.007027 0.030313 0.083129 3.528523 0.201091 202 507

As in the previous case the model smooths and gives even thinner tails than normal

for the output gap under RE. The presence of learning increases the moments to the

desired direction, yet the extent of it is too small. The small values of constant gain

increase the variability, but the kurtosis remains the same, meaning that in this case the

shocks of all sizes are propagated evenly. Even though there is less propagation than for

the growth rate, Jarque-Bera p-values are on average lower. This could possibly come
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Figure 4: typical bahavior of simulated output growth rate and gap series with different
constant gain parameters
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Table 9: Estimates, growth rate

b a m lik

RE 2.0296 0.0214 0.0068 -2.4306
0.2949 0.0014 0.0003

0.01 2.0138 0.0225 0.0069 -2.3739
0.3023 0.0017 0.0004

0.05 2.0043 0.0231 0.0069 -2.3486
0.2975 0.0017 0.0004

0.1 1.9825 0.0239 0.0069 -2.3110
0.3008 0.0019 0.0004

0.2 1.8800 0.0255 0.0069 -2.2300
0.3067 0.0023 0.0005

0.4 1.7218 0.0282 0.0069 -2.0942
0.3058 0.0033 0.0007

from the fact that here some of the samples had to be discarded, meaning that there

are some containing the outliers close to the cutoff affecting the whole statistic. A more

sizable increase in the kurtosis and the b̂ estimate can only be achieved be increasing the

constant gain to 0.4, but even then the learning only outweighs the internal smoothing

of the normally distributed shocks.

Table 10: Statistics, output gap

gain Mean St. dev Skewness Kurtosis JB p-value # of p-values < 0.05 sample

RE 0.000701 0.035115 0.002244 2.890697 0.178955 357 1000
0.01 -8.7E-05 0.054456 -0.00791 2.860067 0.146643 469 997
0.05 0.000926 0.056424 -0.00741 2.855983 0.142875 467 992
0.1 -0.00039 0.059587 -0.01046 2.846652 0.143037 451 969
0.2 9.69E-05 0.063664 -0.02662 2.866667 0.156779 363 826
0.4 0.001524 0.066339 -0.00725 2.996784 0.153416 136 311

One of the most straightforward ways to make the system more stable under least-

squares constant gain learning would be to decrease the persistence of technology process.

Yet ρ = 0.9 is a value consistent with the data and trying to decrease it to 0.6 still

gives very similar dynamics. It is as well possible to increase the Calvo parameter ξ.

However 0.92 is already an unrealistic value implying expected price duration of 12.5

quarters. At the same time a value of 0.67 is giving little stability under both least-squares
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Table 11: Estimates, output gap

b a m lik

RE 2.2739 0.0360 0.0007 -1.9464
0.6920 0.0059 0.0093

0.01 2.4642 0.0566 -0.0001 -1.5130
1.0956 0.0111 0.0159

0.05 2.4845 0.0589 0.0010 -1.4794
1.0457 0.0124 0.0166

0.1 2.4794 0.0621 -0.0005 -1.4262
1.2359 0.0141 0.0172

0.2 2.4242 0.0659 0.0001 -1.3619
1.0593 0.0153 0.0184

0.4 2.1635 0.0664 0.0014 -1.3196
0.7690 0.0144 0.0173

and stochastic gradient frameworks. Alternatively taming the inflation with higher λπ

increases the variability of output and makes the deviations larger. However decreasing

it would not give strong enough monetary policy response to endogenous variables and

would lead to indeterminacy.

7.3 Heuristics

For comparison I simulate the model with the same structural parameters under heuristic

learning rule as in De Grauwe (2012a) using the code published in De Grauwe (2012b).

Heuristic learning method like the Euler equation learning replaces one period ahead

forecasts with the ones formed subject to cognitive biases. In short, the agents are now

switching between two forecasting rules: fundamentalist expecting the steady state and

extrapolative - predicting the next period‘s value to be equal to that in the previous

period:

E(ŷt+1) = ŷt−1 and E(ŷt+1) = 0 for output (24)

E(π̂t+1) = π̂t−1 and E(π̂t+1) = 0 for inflation
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The ratio of population using one rule versus the other is referred to as ’animal

spirit’ by the author and is determined by

αf =
exp(γUf,t)

exp(γUf,t) + exp(γUe,t)
= 1− αe

and

Uf,t = ρUf,t−1 − (1− ρ)(yt−1 − Ẽf,t−2yt−1)2 (25)

Parameter γ determines the intensity of learning. When γ = 0, agents keep switching

between the two rules randomly and as γ →∞ there is no noise in the utility and all the

agents switch to the same rule when they do so.

Within this framework I carry out the estimations by varying σ and the parameter

ρ determining how much weight an agent put to the new information relative to the en-

tire previous history, which can be considered as an analogy of a gain parameter in the

previous setup. ρ = 1 means perfect memory and ρ = 0 - no memory. The information

from the Monte Carlo simulations is summarized in tables 13-16 in the appendix 2. First

I simulate the model with the values used in the book (Grauwe, 2012b), γ = 1,ρ = 0.5,

meaning that agents assign equal weights to new information relative to entire history

and that the learning is relatively noisy. The evidence from this benchmark model is

mixed. It is indeed able to give the fat tails in the output growth rate, but not for the

output gap. In fact the propagation is too high than necessary. Also it should be noted

that the model implied variance is much higher than in the data or in the model with

statistical learning.

A benchmark ρ parameter implies unreasonably short memory, something compa-

rable to a constant gain value of 0.5 so it would natural to increase it. However at its

higher values keeping the γ constant makes the system too dependent on the first few

shocks in the simulation that determine to which forecasting rule all the agents converge

to and are very unlikely to switch in the future. In this case outputs deviation from
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the steady either gets stuck at the level where the system is taken by initial sequence of

shocks and exhibits very little variability (when everyone using fundamentalist rule), or

has an upward/downward trend (when everyone is extrapolating). For this reason I per-

form the estimates by increasing both ρ and γ. I increase ρ to 0.9 and 0.98, which could

be compared to the constant gain equal 0.(1) and 0.204. The γ parameter is increased to

1000 implying very little noise in the information observed and giving an almost perfectly

correlated choices of all the agents 17. At these new values, the propagation in output

growth rate becomes enormous, giving the kurtosis above 100. This could happen due

to exits described previously, but in this framework the learning rule do not nest the

REE therefore it is impossible to come up with a cutoff value to discard the samples or

to induce a projection facility. A higher variance here is partly caused by these exits.

However while under statistical learning the system is evolving similarly as under RE

with some rare and brief deviations, here the system fluctuates between between two

moderately high values on both sides of the steady state (figure 5 in Appendix 2 gives

a visual illustration of this). Increased learning efficiency does not propagate the shocks

to the output gap although it does increase the overall variability as well. The means

of the estimated b̂ parameters are sizeably larger than two. This happens due to several

huge outlier estimates in the sample as the parameter is bound by 0 from below, but is

unbounded from above. In fact the median over the samples of estimates appears to be

between 2.05 and 2.07 at γ = 1000.18

17Experiments with different values of γ revealed that the problems associated with γ = 1 disappear
only at such a high values

18the result is not reported here for compactness.
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8 Discussion and Conclusion

It cannot be concluded that any of the frameworks presented here is able to match the

fourth moment of the data perfectly, each posing different problems. Euler equation

learning is able to deliver reasonable levels of internal propagation, while keeping the

standard deviation of the series close to the data as well. Yet when unreasonable exits

are discarded the propagation is still not big enough under the reasonable values of a

constant gain parameter. Infinite horizon learning on the other hand gives too much

propagation as there the current value of output depends on the infinite expectation of

the variables exogenous to the agent, which makes the system highly responsive to the

current exogenous shocks. Also the need to make infinite horizon forecasts increases the

forecast errors and thus the coefficients in the PLM are being updated more drastically.

In this case recursive least squares constant gain learning makes the system too unstable,

while stochastic gradient counterpart is not able to provide enough internal propagation

under a reasonable values of a constant gain. Heuristic learning poses slightly different

problems. While the benchmark specification used in the book delivers the kurtosis high

enough, the overall variance of both the gap and the growth rate become unrealistically

high and the estimated b̂ too low for the former. Moreover, the so called ’animal spirits’

in this framework do not happen when the agents are equipped with long enough memory

comparable to the values of constant gain used before and the imperfect learning capacity.

When on the other hand it is increased, the system becomes highly unstable and described

by large exits similar to those in the constant gain learning. Also none of these standard

frameworks can produce skewed distribution on average.

The model used here is small featuring only one of the many rigidities commonly

used in the DSGE models, also persistence parameters are set to low values. A richer

model with a non trivial persistence parameters and capital may provide more stability

and less exits under learning. At the same time a pattern observed here is expected to

remain the same - infinite horizon learning should bring higher propagation. However
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due to computational and technical issues associated with the infinite horizon learning,

it still has not been implemented in medium - scale DSGE models.

Another caveat of the model comes from low persistence parameters making the

model highly dependent on the expectations and no response of monetary policy to

output, letting it vary more than in the usual models. The combination of these two

possibly create the explosiveness of the system observed in all the setups. However,

the response to output could not be included due to conceptual issues associated with

learning, which caused in the indeterminacy of the model under relatively high persistence

parameters. Still the results support the original conjecture that learning is a source of

endogenous propagation and helps to match the fourth moments of the series of output

growth and gap.
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10 Appendix 1

10.1 linearization and derivation of the model

Households

Loglinearized household conditions:

Consumption Euler equation: Ξ̂t = Ξ̂t+1 + ît − π̂t+1

Labor Supply: φN̂t = ŵt + Ξ̂t

and Ξ̂t =
−γĉt − ηĉt−1

γ − η

Getting the IS relation

Plugging the expession for Ξ̂t into the Euler equation in terms of consumption.

There is no capital or government in the model and the output is perishable implying

Ct(i) = Yt(i). Using this market clearing relation we obtain the IS relation

γŷt − ηŷt−1 = γEt(ŷt+1)− ηŷt − (γ − η)(̂it − π̂t+1) (26)

Firm side

Loglinearized first order condition to the price setting problem under Calvo

log(P ∗t ) =
∞∑
T=t

(βξ)T−t
(

ˆmct,t+T + log(Pt+T )− log(πϕt−1,t+T−1)
)

(27)

real marginal cost depends on the marginal costs at t and the price differential in

the subsequent periods before the price is reset again
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m̂ct+T = m̂ct −
αε

1− α
(log(πϕT−1,t−1P

∗
t )− log(Pt+T ) (28)

using this fact after some manipulation the first order condition can be rewritten

in the form

log(P ∗t )− log(Pt) = β(log(p∗t1)− log(Pt+1) +
1− βξ
1 + ωβ

m̂ct (29)

The loglinearized price law of motion

P̂t = ξP̂t−1 + P̂ ∗t (1− ξ) + ξγπ̂t−1 (30)

Subtracting ξP̂t and rearranging gives the relation between reset price and the

inflation rate

P̂ ∗t+1 − P̂t+1 =
ξ

1− ξ
(π̂t+1 − ϕπ̂t) (31)

Using the definition of the marginal cost and the labor supply relation the expression

for real marginal cost in terms of the output and the level of technology is given by

m̂ct =
(φ+ α

1− α
+

γ

γ − η
)
ŷt −

η

γ − η
ŷt−1 −

φ+ 1

1− α
ât (32)

Using this gives the Philips curve

π̂t−ϕπ̂t−1 = β(π̂t+1−ϕπ̂t)+
1− ξ
ξ

1− βξ
1 + ωβ

[(φ+ α

1− α
+

γ

γ − η
)
ŷt−

η

γ − η
ŷt−1−

φ+ 1

1− α
ât

]
(33)

ω = α
1−α
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10.2 Derivation of the infinite horizon decision rule

To derive the infinite horizon consumption decision rule first iterate forwards the lin-

earized household budget constraint

it−1
Bt−1

Ptγt
≥ Bt

Ptγt
+
Ct
γt
− Yt
γt

(34)

to get

it−1
Bt−1

Ptγt
≥

∞∑
T=t

Rt,t+T (cT − yT ) (35)

Rt,t+T =
∏T

t iT

Bonds are in 0 net supply and cancel out in aggregate. Using this, the steady state

relation i = β
γ

and loglinearization gives

0 =
∞∑
T=t

(
β

γ

)T−t
(ĉT − ŷT ) (36)

To get the expression for ĉT iterate the linearized Euler equation to get

γĉt − ηĉt−1 = γĉt+T − ηĉt+T−1 −
T=T−1∑
T=1

(γ − η)(̂it+T−1 − π̂t+T ) (37)

Inserting the expression for ĉT into the individual budget constraint gives the infinite

horizon consumption decision rule

γ

γ − η
ĉit = it−1

Bt−1

Ptγt
+
∞∑
T=t

(ŷiT +
η

γ
ĉt−1 −

η

γ
c̄t+T−1 −

γ − η
γ − β

β

γ
(iT − πT+1)) (38)

Aggregating, rearranging and using market clearing condition gives the aggregate law of

motion for output under infinite horizon learning

Price decision rule
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Starting with (27) and plugging (28) in and subtracting log(Pt) from both sides yields

log(P ∗t )−log(Pt) =
∞∑
T=0

(βξ)T−t
(

1− β
1 + ωε

m̂cT+(1− βξ)(log(Pt+T )− log(Pt))︸ ︷︷ ︸
1

− (1− βξ)log(πt−1,t+T−1)︸ ︷︷ ︸
2

)

Summation of (1) and (2) gives
∑∞

T=t(βξ)
T−tβξπT+1 and

∑∞
T=t(βξ)

T−tβξπφT respec-

tively

This allows to write the reset price decision rule in terms of the infinite forecast of

inflation and marginal cost.

log(P ∗t )− log(Pt) =
∞∑
T=0

(βξ)T−t
(

1− β
1 + ωε

m̂cT + βξ(log(πT+1 − φlog(πT ))

)
(39)

and the marginal cost is a function of aggregate output and the technology shock. Sub-

stituting price with inflation using (31) gives the law of motion for inflation based on this

rule.

Law of motion of flexible price output is derived by inserting the linearized production

function into the linearized labor supply relation, substituting real wage from the defini-

tion of real marginal cost and using the fact that the real marginal cost is constant under

flexible prices.

yft =
at
(
α2γε− α2γ − α2ε+ α2 − αγε+ αγ + 2αε− 2α + ηεφnφ+1 − εφnφ+1 − ε+ 1

)
α2γε− α2γ − αγε+ αγ + αγεnφ+1 − γεnφ+1 + ηεφnφ+1 − εφnφ+1

+

yft−1

(
αηεnφ+1 − ηεnφ+1

)
α2γε− α2γ − αγε+ αγ + αγεnφ+1 − γεnφ+1 + ηεφnφ+1 − εφnφ+1

and n is the steady state labor supply

n =

(
ε− 1

ε

(1− α)

γ − η

) 1
φ+1

(40)
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11 Appendix 2

Table 12: Output gap: estimates from fitting data with the asymmetric density

Output gap

bl br al ar m log lik
value 1.259 2.615 0.0149 0.0166 -0.00112 -2.7089

std. err 0.294 0.7763 0.002778 0.004161 0.00518

11.1 REE

Euler equation learning

P k =


0.1216 −0.0425 −0.8769

−0.0038 0.0317 −0.0058

−0.0029 0.0238 0.4957

 P z


2.436 −0.0177

−0.4393 −0.0001

−0.3295 0.0099



var(P ) =



0.0002 0 0.0009 −0.0001 −0.0002

0 0.0001 −0.0002 0 0.0001

0.0009 −0.0002 0.0037 −0.0004 −0.0008

−0.0001 0 −0.0004 0.0001 0.0001

−0.0002 0.0001 −0.0008 0.0001 0.0002


Infinite horizon learning

P k =


0.1052 −0.0193 −0.4168

0.0003 0.031 −0.003

0.0001 0.0161 0.3449

 P z =


0.0835 −0.0083

−0.1905 −0.0001

−0.099 0.0068



var(P ) =



0.00030 0.00000 0.00110 −0.00060 −0.00080

0.00000 0.00010 −0.00010 0.00000 0.00010

0.00110 −0.00010 0.00490 −0.00230 −0.00360

−0.00060 0.00000 −0.00230 0.00130 0.00180

−0.00080 0.00010 −0.00360 0.00180 0.00270


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11.2 Estimates under Heuristic learning

Table 13: statistics: output growth rate

parameters Mean St. dev Skewness Kurtosis JB p-value p-values < 0.05 sample

0.5 1 0.047414 0.360803 1.904198 20.94853 0.001465 998 1000
0.5 1000 0.293757 12.52844 0.973507 127.5429 0.012295 971 1000
0.9 1000 0.282395 17.92991 0.990456 119.4801 0.033916 910 1000

0.98 1000 0.243251 9.658872 0.479719 106.4538 0.062998 831 1000

Table 14: Statistics: output gap

parameters Mean St. dev Skewness Kurtosis JB p-value p-values < 0.05 sample

0.5 1 0.000834 0.264112 -0.00315 2.963278 0.334933 85 1000
0.5 1000 6.49E-05 0.436077 -0.00059 2.960202 0.358957 87 1000
0.9 1000 -0.00207 0.411039 0.007794 2.911743 0.33537 134 1000

0.98 1000 -0.00189 0.377176 -0.00809 2.865251 0.302472 214 1000

Table 15: Estimates: output growth rate

b a m lik

0.5 1 1.1842 0.2356 0.0129 0.1864
0.2611 0.0181 0.0139

0.5 1000 0.5173 0.5140 -0.0810 1.2263
0.3466 0.1194 0.0659

0.9 1000 0.5900 0.4850 -0.0789 0.9940
0.4707 0.1601 0.0695

0.98 1000 0.7639 0.4276 -0.0680 0.4652
0.6494 0.2181 0.0680
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Table 16: Statistics: output gap

b a m lik

0.5 1 2.10E 0.266 -0.00181 0.0774
0.35514 0.0220 0.0325

0.5 1000 2.2500 0.4350 0.0015 0.5320
1.5758 0.0813 0.0773

0.9 1000 2.64 0.4172 -0.0001 0.446
3.729701 0.104844 0.105305

0.98 1000 6.39 0.3831 0.0062 0.270
34.96271 0.136401 0.145634

Figure 5: typical bahavior of output growth rate with γ = 1, ρ = 0.5

11.3 Modifications to the Original code used in this thesis

� I extended the original code to run the model with the infinite-horizon learning rule.

This required adjustment in the files solving the model and doing the T-mapping.

To get the model in the MSV form I substituted the infinite sum of expected values

of a variable with the infinite sum of the forecasts.∑∞
T=t(βξ)

T−tŷT+1 with
ϕy

1− ϕyβξ︸ ︷︷ ︸
A

yt +
ϕz

1− ϕzβξ
1

1− ρz︸ ︷︷ ︸
B

zt

The file solving the model solved for ’A’ and ’B’, from them I backed out the ϕy

and ϕz. In the T-mapping to the Actual Law of Motion I calculated ’A’ and ’B’
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using ϕy and ϕz from the previous period and did the mapping using ’A’ and ’B’.

In this way to solution, mapping and the model simulation codes where affected

minimally.

� I added an option to do the Impulse response functions for the model. I simply

created an additional file that creates a shock vector and calls the code, which

simulates the model. They are not reported here, but where used to evaluate if the

model behaves in line with the macroeconomic theory

� After solving for the functional form of yf, I added a command to calculate it from

the technology shocks after the model is simulated.
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